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Abstract. As one of the most plausible convex optimization methods for sparse data recon-

struction, `1-minimization plays a fundamental role in the development of sparse optimization

theory. The stability of this method has been addressed in the literature under various as-

sumptions such as restricted isometry property (RIP), null space property (NSP), and mutual

coherence. In this paper, we propose a unified means to develop the so-called weak stability

theory for `1-minimization methods under the condition called weak range space property of

a transposed design matrix, which turns out to be a necessary and sufficient condition for the

standard `1-minimization method to be weakly stable in sparse data reconstruction. The re-

construction error bounds established in this paper are measured by the so-called Robinson’s

constant instead of the normal RIP or NSP constants. We also provide a unified weak stability

result for standard `1-minimization under several existing compressed-sensing matrix properties.

In particular, the weak stability of `1-minimization under the constant-free range space property

of order k of the transposed design matrix is established for the first time in this paper. Different

from the existing analysis, we utilize the classic Hoffman’s Lemma concerning the error bound

of linear systems as well as the Dudley’s theorem concerning the polytope approximation of the

unit `2-ball to show that `1-minimization is robustly and weakly stable in recovering sparse data

from inaccurate measurements.
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1 Introduction

Data might be contaminated by some form of random noise and the measurements of data are

subject to quantization error. Thus a huge effort in sparse data reconstruction is made to ensure

the reconstruction algorithms stable in the sense that reconstruction errors stay under control

when the measurements are slightly inaccurate and when the data is not exactly sparse (see,

e.g., [2, 21, 22, 25]). One of the widely used reconstruction models is the `1-minimization

min
x
{‖x‖1 : ‖Ax− y‖p ≤ ε}, (1)

where ‖ · ‖p is the `p-norm with p ≥ 1 (p = 1, 2,∞ will be considered in this paper). In the

above model, A ∈ Rm×n (m < n) is a full-row-rank matrix called a design or sensing matrix

which is a collection of known or learned dictionaries, y = Ax̂+ u is the acquired measurement

vector for the data x̂ to be reconstructed, and u represents the measurement error with level

‖u‖p ≤ ε. The size of ε is closely tied with the noise power. In this paper, the given data

(A, y, ε) is referred to as the problem data of (1). When ε = 0, (1) is reduced to the so-called

standard `1-minimization, i.e., min{‖x‖1 : Ax = y}. The use of `1-norm to promote sparsity

in data processing has actually a long history (see, e.g., [32, 39, 31, 19, 33, 14, 34]), but a

significant development of theory and algorithms for sparse data reconstruction has been made

only recently in the framework of compressed sensing (see, e.g. [16, 10, 9, 17, 8, 21, 22]).

Assume that an unknown vector, denoted by x̂, satisfies ‖Ax̂ − y‖p ≤ ε. In traditional

compressed sensing setting, it is generally assumed that problem (1) admits a unique optimal

solution, in which case it is interesting to know how close the unique solution of (1) to x̂. This

leads to the traditional stability analysis for `1-minimization methods. The major results in this

aspect have been achieved by Donoho, Candès, Romberg, Tao, and others (e.g., [17, 10, 9, 8]).

However, from a mathematical point of view, we still need to understand the general stability

(which is referred to as the weak stability in this paper) of a reconstruction model by taking into

account the settings where the problem might possess multiple optimal solutions or the sensing

matrix A might admit a certain less restrictive property than existing assumptions. Moreover,

the study of weak stability will also provide a novel stability result under existing stability

conditions. Let us first recall the notation of best k-term approximation before we introduce

the weak stability. Let k be an integer number and define

σk(x)1 := inf
z
{‖x− z‖1 : ‖z‖0 ≤ k},

where x ∈ Rn and ‖z‖0 denotes the number of nonzero entries of z ∈ Rn. σk(x)1 is called the

`1-error of best k-term approximation. Let x∗ be an optimal solution of (1) with given problem

data (A, y, ε). Problem (1) is said to be weakly stable for noise-free reconstruction (ε = 0) if for

any feasible vector x of the problem, there is a solution x∗ of (1) such that

‖x− x∗‖ ≤ Cσk(x)1, (2)

where ‖ · ‖ is a norm and C is a constant depending on the problem data (A, y). Problem (1) is

said to be robustly and weakly stable for noisy reconstruction (ε > 0) if for any feasible vector

x of the problem, there is a solution x∗ of (1) such that

‖x− x∗‖ ≤ C1σk(x)1 + C2ε, (3)
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where C1 and C2 are constants determined by the problem data (A, y, ε).

When the solution x∗ of (1) is unique (for instance, when ε = 0 and when the matrix A

admits the restricted isometry property (RIP) or null space property (NSP), see Definition 2.1),

the weak stability can be reduced to the normal stability for problems if constants C, C1 and C2

are often measured in terms of RIP or NSP constants. Candès and Tao [10, 11] introduced the

notion of the RIP with constant δK , where K is a certain integer number, and they proved in [11]

that if δ2k + δ3k < 1, all k-sparse vectors can be exactly recovered via standard `1-minimization.

Furthermore, Candès, Romberg and Tao [9] have shown that the stability of problem (1) with

p = 2 can be guaranteed if δ3k + 3δ4k < 2. This result was improved to δ2k <
√

2 − 1 in [8],

and was further improved by several researchers (see, e.g., [24, 4, 35, 5, 25, 1]). Finally, Cai and

Zhang [6] has improved this bound to δ2k < 1/
√

2.

The NSP of order k (see Definition 2.1) is a necessary and sufficient condition for every

k-sparse vector to be exactly recovered with standard `1-minimization. This NSP property

appeared in [18, 16, 28] and was formally called the null space property by Cohen et al. [15].

The NSP is strictly weaker than the RIP (see, e.g., [23, 3]). It was shown [15, 38, 22, 25, 3] that

the stable NSP or robust NSP (which is a strengthened version of the NSP of order k) guarantees

the stability of `1-minimization. A typical feature of RIP- and NSP-based stability results for

`1-minimization methods is that the coefficients C,C1 and C2 in (2) and (3) are measured by

the RIP constant, stable NSP constant or the robust NSP constant.

The range space property (RSP) of order k of AT (see Definition 2.1) was in-

troduced in [45]. This property is also a necessary and sufficient condition for

recovering every k-sparse vector with standard `1-minimization. So this property

is equivalent to the NSP of order k. If the RSP is only defined locally at a specific

vector x∗, it is called the individual RSP of AT at x∗, which is a nonuniform recov-

ery condition for a specific vector [45]. A stability analysis at a specific vector for

`1-minimization has been carried out in [43], under an assumption equivalent to the

individual RSP. Note that RSP of order k of AT and NSP of order k are constant-free

conditions in the sense that their definitions do no involve any constant, unlike the

stable or robust NSP of order k. Although the stability of `1-minimization methods

has been extensively studied under various conditions in the literature, the weak

stability of these methods has not been properly established at present. In this

paper, we consider a more relaxed constant-free condition than RSP of order k of

AT . We ask whether the weak stability of `1-minimization methods can be developed

under less restrictive constant-free matrix properties than existing assumptions.

We note that the optimal solution x∗ of (1) is not determined by the problem data A only.

Clearly, x∗ is jointly determined by all problem data (A, y, ε) of (1). Different measurement

vector y and noise level ε together with different choice of the norm in (1) will affect the optimal

solution of (1) as well. In other words, in addition to A, the problem data (y, ε) will also

directly or indirectly affect the reconstruction ability and stability of `1-minimization methods.

Exploiting adequate problem data will levitate the dependence on the matrix property, and

might yield a weak stability result under less restrictive assumptions than existing conditions.

The purpose of this paper is to establish such weak stability results for `1-minimization

methods under a constant-free and mild matrix property. We prove that the so-called weak

range space property of AT (see Definition 2.2) is a desired sufficient condition for many

`1-minimization methods to be weakly stable in sparse data reconstruction. We

3



show that this condition is also necessary for standard `1-minimization to be weakly

stable for any given measurement vector y ∈ {Ax : ‖x‖0 ≤ k}. This property is directly

tied to and originated naturally from the fundamental Karush-Kuhn-Tucker (KKK)

optimality conditions for linear optimization. It is well known that the optimality conditions

completely characterize the optimal solutions x∗ of `1-minimization through problem data no

matter whether the optimal solution of the problem is unique or not. We will demonstrate that

the weak RSP of order k of AT , together with a classic error bound of linear systems developed

by Hoffman [30] and Robinson [37], provides an efficient way to develop the weak stability theory

for `1-minimization. Existing RIP, NSP, mutual coherence conditions and their variants imply

the weak RSP of AT , and we show that each of these existing conditions implies the same

reconstruction error bounds with constants determined by the so-called Robinson’s constants

depending on the problem data. Moreover, the weak stability of `1-minimization under the RSP

of order k of AT or NSP of order k is immediately obtained for the first time, as a special case

of the general weak stability results established in this paper.

This paper is organized as follows. In section 2, we give the definitions of several key matrix

properties and recall the Robinson’s constant and Hoffman’s lemma. We also prove that the weak

RSP of order k of AT is a necessary condition for standard `1-minimization with measurements

y ∈ {Ax : ‖x‖0 ≤ k} to be weakly stable in sparse data reconstruction. In section 3, we

characterize the weak stability of standard `1-minimization under the weak RSP. In section 4,

we show the robust weak stability of the `1-minimization problem with linearly representable

constraints, i.e., p = 1 and p = ∞ in (1). In section 5, we prove the robust weak stability of

quadratically constrained `1-minimization.

Notation. Unless otherwise stated, the identity matrix of any order will be denoted by I

and a vector of ones will be denoted by e. The nonnegative orthant in Rn will be denoted

by Rn+. The set of m × n matrices is denoted by Rm×n. The p-norm of a vector is defined as

‖x‖p = (
∑n

i=1 |xi|p)
1/p , where p ≥ 1. In particular, when p = ∞, the p-norm is reduced to

‖x‖∞ = max1≤i≤n |xi|. The induced matrix norm of A is defined as ‖A‖p→q = max‖x‖p≤1 ‖Ax‖q.
For a vector x ∈ Rn, |x|, (x)+ and (x)− denote the vectors in Rn with components |x|i := |xi|,
[(x)+]i := max{xi, 0} and [(x)−]i := min{xi, 0}, i = 1, . . . , n, respectively. Given a subset

S ⊆ {1, . . . , n} and a vector x ∈ Rn, we use |S| to denote the cardinality of S, S to denote

the complement of S, i.e., S = {1, . . . , n}\S, and xS to denote the subvector of x by deleting

the components xi with i /∈ S. For matrix A, AT denotes the transpose of A, R(AT ) the range

space of AT , and N (A) the null space of A. For any vectors x, y ∈ Rn, x ≤ y means xi ≤ yi
for all i = 1, . . . , n. A vector x is said to be k-sparse if it admits at most k nonzero entries, i.e.,

‖x‖0 ≤ k.

2 Weak RSP of order k of AT and Robinson’s constant

In this section, we provide some notions and facts that will be used throughout the remainder

of the paper. Let us first recall some important matrix properties that have been widely used

in sparse recovery framework.

Definition 2.1. (a) (RIP of order 2k) [10, 8] The matrix A is said to satisfy the restricted

isometry property of order 2k with constant δ2k ∈ (0, 1) if (1−δ2k)‖x‖22 ≤ ‖Ax‖22 ≤ (1+δ2k)‖x‖22
holds for all k-sparse vector x ∈ Rn.

(b) (NSP of order k) [15, 44, 25] The matrix A is said to satisfy the null space property of
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order k if ‖vS‖1 < ‖vS‖1 holds for any v ∈ N (A) and any S ⊆ {1, . . . , n} with |S| ≤ k.
(c) (Stable NSP of order k) [15, 44, 25] The matrix A is said to satisfy the stable null space

property of order k with constant ρ ∈ (0, 1) if ‖vS‖1 ≤ ρ‖vS‖1 holds for any v ∈ N (A) and any

S ⊆ {1, . . . , n} with |S| ≤ k.
(d) (Robust NSP of order k) [15, 25] The matrix A is said to satisfy the robust null space

property of order k with constants ρ ∈ (0, 1) and τ > 0 if ‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖ holds for any

v ∈ Rn and any S ⊆ {1, . . . , n} with |S| ≤ k.
(e) (RSP of order k of AT ) [45] The matrix AT is said to satisfy the range space property

of order k if for any disjoint subsets S1, S2 of {1, . . . , n} with |S1| + |S2| ≤ k, there is a vector

η ∈ R(AT ) satisfying that ηi = 1 for i ∈ S1, ηi = −1 for i ∈ S2, |ηi| < 1 for i /∈ S1 ∪ S2.

The notion (e) above arises from the uniqueness analysis for the solution of linear `1-

minimization. In fact, for any given x̂, it is known that x̂ is the unique solution to the problem

min{‖z‖1 : Az = Ax̂} if and only if Asupp(x̂) (the submatrix of A formed by deleting the columns

corresponding to the indices not in supp(x̂) = {i : x̂i 6= 0}) has full column rank and the fol-

lowing property holds: there is a vector η ∈ R(AT ) such that ηi = 1 for x̂i > 0, ηi = −1 for

x̂i < 0, and |ηi| < 1 for x̂i = 0. The sufficiency of the above statement was shown in [26], and

the necessity of the above statement was first shown in [36]. This fact was also rediscovered

and proved independently in [27, 45, 25, 42]. However, this uniqueness property depends on

the individual vector x̂, and thus it is insufficient for the uniform reconstruction of all k-sparse

vectors via `1-minimization. To exactly reconstruct every k-sparse vector with `1-minimization,

this individual property is strengthened to the RSP of order k of AT in [45] so that it is indepen-

dent of any individual vector. Given a matrix A ∈ Rm×n, it is shown in [45] that every k-sparse

vector x̂ ∈ Rn can be exactly reconstructed by the `1-minimization method

min{‖z‖1 : Az = y := Ax̂} (4)

if and only if AT admits the RSP of order k. So the RSP of order k of AT is a necessary and

sufficient condition for the uniform recovery of all k-sparse vectors, and hence it is equivalent to

the NSP of order k. An advantage of the RSP concept is that it can be easily extended to sparse

data reconstruction with more complex structure than (4) (see,e.g., [46, 49]). We now introduce

the weak RSP of order k which is a relaxation of the RSP of order k.

Definition 2.2. (Weak RSP of order k of AT ) The matrix AT is said to satisfy the weak

range space property of order k if for any disjoint subsets S1, S2 of {1, . . . , n} with |S1|+|S2| ≤ k,

there is a vector η ∈ R(AT ) satisfying that

ηi = 1 for i ∈ S1, ηi = −1 for i ∈ S2, |ηi| ≤ 1 for i /∈ S1 ∪ S2. (5)

Different from the RSP of order k, the inequality “|ηi| ≤ 1 for i /∈ S1 ∪ S2” in Definition 2.2

is not required to hold strictly. The weak RSP of order k of AT is a strengthened optimality

condition for the individual problem (4). In fact, by the KKT optimality condition, x̂ is an

optimal solution of (4) if and only if there is a vector η ∈ R(AT ) satisfying ηi = 1 for x̂i > 0,

ηi = −1 for x̂i < 0, and |ηi| ≤ 1 otherwise. Define the specific pair of (S1, S2) with

S1 = {i : x̂i > 0} and S2 = {i : x̂i < 0}. The KKT optimality condition implies that the

condition (5) holds for such a specific pair (S1, S2). This can be called the individual

weak RSP of AT at x̂. If we expect that every k-sparse vector x̂ is an optimal solution

to the `1-minimization problem with measurements y = Ax̂, then condition (5) must
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hold for any disjoint subsets (S1, S2) with |S1 ∪ S2| ≤ k in order to cover all possible

cases of k-sparse vectors. This naturally and unavoidably yields the concept of weak

RSP of order k of AT .

The RIP of order 2k with δ2k ≤ 1/
√

2 implies every k sparse vector can be exactly recovered

by `1-minimization (e.g., [6]). Thus it implies the RSP of order k of AT which is equivalent to

the NSP of order k. We see that the recovery condition µ1(k) + µ1(k − 1) < 1 presented in [41]

also implies the NSP of order k (see, e.g., Theorem 5.15 in [25]), where µ1(k) is the so-called

accumulative coherence defined as

µ1(k) = max
i∈{1,...,n}

max

∑
j∈S
|aTi aj | : S ⊆ {1, . . . , n}, |S| = k, i /∈ S

 ,

where ai, i = 1, . . . , n are the `2-normalized columns of A. Thus we have the following relation:

RIP of order 2k ⇒
Stable NSP of order k ⇒

Robust NSP of order k ⇒
µ1(k) + µ1(k − 1) < 1⇒


NSP of order k ⇔ RSP of order k of AT ⇒

weak RSP of order k of AT .

The weak RSP is the mildest one among the above-mentioned matrix properties. To see how

mild such a condition is, let us first prove that the weak RSP of order k of AT

is a necessary condition for standard `1-minimization with any given measurement

vector y ∈ {Ax : ‖x‖0 ≤ k} to be weakly stable in sparse data reconstruction.

Theorem 2.3. Let A be a given m× n (m < n) matrix with rank(A) = m. Suppose

that for any given measurement vector y ∈ {Ax : ‖x‖0 ≤ k}, the following holds: For

any x ∈ Rn satisfying Ax = y, there is a solution x∗ of the problem min{‖z‖1 : Az = y}
such that ‖x−x∗‖ ≤ Cσk(x)1, where ‖ · ‖ is a norm and C is a constant dependent on

the problem data (A, y). Then AT must satisfy the weak RSP of order k.

Proof. Assume that (S1, S2) is an arbitrary pair of disjoint subsets of {1, . . . , n} with |S1|+
|S2| ≤ k. Under the assumption of the theorem, we now prove that there exists a vector η ∈
R(AT ) satisfying (5). Then, by Definition 2.2, AT must admit the weak RSP of order k. Indeed,

let x̂ be a k-sparse vector in Rn such that

{i : x̂i > 0} = S1, {i : x̂i < 0} = S2. (6)

Consider the problem (4), i.e., min{‖z‖1 : Az = y := Ax̂}. By the assumption, there is an

optimal solution x∗ to this problem such that ‖x̂ − x∗‖ ≤ Cσk(x̂)1, where C depends on the

problem data (A, y). Since x̂ is k-sparse, the right-hand side of the inequality above is equal to

zero, and hence x̂ = x∗. This, together with (6), implies that

{i : x∗i > 0} = S1, {i : x∗i < 0} = S2, x
∗
i = 0 for all i /∈ S1 ∪ S2. (7)

Note that x∗ is an optimal solution to the convex problem (4). x∗ must satisfy the optimality

condition, i.e., there exists a vector u ∈ Rm such that ATu ∈ ∂‖x∗‖1, where ∂‖x∗‖1 is the

subgradient of the `1-norm at x∗, i.e.,

∂‖x∗‖1 = {v ∈ Rn : vi = 1 for x∗i > 0, vi = −1 for x∗i < 0, |vi| ≤ 1 otherwise}.
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By setting η = ATu ∈ ∂‖x∗‖1, we immediately see that ηi = 1 for x∗i > 0, ηi = −1 for x∗i < 0,

and |ηi| ≤ 1 for x∗i = 0. This, together with (7), implies that the vector η = ATu satisfies (5).

Since S1 and S2 are arbitrary disjoint subsets of {1, . . . , n} with |S1|+ |S2| ≤ k. Thus AT must

satisfy the weak RSP of order k. �

In the next section, we show that the converse of the above result is also valid (see

Theorem 3.2 and Corollary 3.3 for details). Thus the property introduced in this

paper is the mildest condition governing the weak stability of `1-minimization. The

purpose of the remainder of this paper is to show the weak stability of `1-minimization methods

under the weak RSP of AT . We will use a classic error bound for linear systems established by

Hoffman [30]. Let us first recall a constant introduced by Robinson [37]. Let P ∈ Rn1×q and

Q ∈ Rn2×q be two real matrices. Define a set F ⊆ Rn1+n2 by

F = {(b, d) : for some z ∈ Rq such that Pz ≤ b and Qz = d}.

Let ‖ · ‖α and ‖ · ‖β be norms on Rq and Rn1+n2 , respectively. Robinson [37] has shown that the

quantity

µα,β(P,Q) := max
‖(b,d)‖β≤1,(b,d)∈F

min
z∈Rq
{‖z‖α : Pz ≤ b, Qz = d} (8)

is a finite real number. It has also been shown in [37] that the extreme value above

is attained. In this paper, we use α = ∞, in which case ‖x‖∞ is a polyhedral norm

in the sense that the closed unit ball {x : ‖x‖∞ ≤ 1} is a polyhedron. Define the

optimal value of internal minimization in (8) as

g(b, d) = min{‖z‖α : Pz ≤ b, Qz = d}, (b, d) ∈ F.

Then

µα,β(P,Q) = max
(b,d)∈B̃∩F

g(b, d),

where B̃ = {(b, d) : ‖(b, d)‖β ≤ 1} is the unit ball in Rn1×n2 . As pointed out in [37], the

function g(b, d) is convex over F if ‖ · ‖α is a polyhedral norm. In this case, µα,β(P,Q)

is the maximum of a convex function over the bounded set B̃ ∩ F.
Let M ′ ∈ Rm×q and M ′′ ∈ R`×q be two given matrices. Consider (P,Q) of the special form

P =

[
IN 0
−I 0

]
∈ R(|N |+m)×(m+`), Q =

[
M ′

M ′′

]T
∈ Rq×(m+`),

where N is a subset of {1, . . . ,m} and IN is obtained from the m×m identity matrix I by deleting

the rows corresponding to indices not in N. Robinson [37] defined the following constant:

σα,β(M ′,M ′′) := max
N⊆{1,...,m}

µα,β

([
IN 0
−I 0

]
,

[
M ′

M ′′

]T)
. (9)

As shown in [37], the well known Hoffman’s Lemma [30] in terms of constant (9) with (α, β) =

(∞, 2) is stated as follows.

Lemma 2.4. (Hoffman) Let M ′ ∈ Rm×q and M ′′ ∈ R`×q be given matrices and F = {x ∈
Rq : M ′x ≤ b,M ′′x = d}. For any vector x in Rq, there is a point x∗ ∈ F with

‖x− x∗‖2 ≤ σ∞,2(M ′,M ′′)
∥∥∥∥[ (M ′x− b)+

M ′′x− d

]∥∥∥∥
1

.
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The constant σα,β(M ′,M ′′), defined as (9), is referred to as the Robinson’s constant

determined by (M ′,M ′′). Given the solution set F of a linear system, Hoffman’s error

bound claims that the distance from a point in space to F can be measured in terms

of the Robinson’s constant and the quantity of the linear system being violated at

this point.

In this paper, we use Lemma 2.4 to develop a weak-stability theory for `1-

minimization problems. This lemma is very helpful in developing a weak-stability

theory for linear sparse optimization problems. The purpose of the study of weak

stability of `1-minimization is to estimate the distance between an unknown vector

(which is the target data to recover) and the solution of this method. Note that

the solution set of a linear optimization problem is a polyhedron which can be rep-

resented as the solution set of a certain linear system by using the KKT optimality

condition. From this observation, a recovery error bound via `1-minimization is

similar to the Hoffman’s error bound, although they are not completely the same

since sparsity is also involved in the problem of sparse data reconstruction. How-

ever, this similarity or connection motivates one to use Hoffmam’s error bound

combined with sparsity assumption to form a new analytic method for studying

stability issues in sparse data reconstruction. This method is different from the

standard ones in this field.

Our analysis not only provides a new tool to the study of stability issues of `1-

minimization, but also makes it possible to go beyond the standard framework of

methods (such as RIP and NSP based ones) in order to develop stability results

under mild conditions or in general settings. As we have pointed out, most exist-

ing conditions can be relaxed to the assumption made in this paper. Traditional

recovery error bounds are often established in terms of RIP constant, stable or

robust stable NSP constant or their variants. Our assumption is a constant-free

condition in the sense that the definition of this condition does not involve any

constant which is difficult to certify. Under the constant-free weak RSP of AT dis-

cussed in this paper, we use Robinson’s constant to express stability coefficients

in reconstruction error bounds. The error bound established under this assump-

tion can apply to a wide range of matrix conditions, leading to a somewhat unified

version of error bounds for sparse data reconstruction (see. e.g. Corollary 3.5).

This is different from the standard analysis, which often requires an assumption-

to-assumption analysis and the resulting error bounds are often dependent of an

assumed individual assumption. Hoffman’s Lemma and Robinson’s constant pro-

vide a new perspective and an efficient way to interpret the sparse-signal-recovery

behavior of `1-minimiztaion methods.

3 Weak stability of `1-minimization in noise-free settings

In this section, we consider the case where the nonadaptive measurements y ∈ Rm are accurate,

i.e., y = Ax̂, where x̂ ∈ Rm is the sparse data to reconstruct. The situation with inaccurate

measurements will be discussed in later sections. Given a matrix A and the noiseless measure-

ments y, the compressed sensing theory indicates that if A admits some strong property, the
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standard `1-minimization

min{‖x‖1 : Ax = y} (10)

can exactly reconstruct the sparse data x̂ in the sense that the unique solution x∗ of (10)

coincides with x̂. In many situations, however, the data x̂ is not exactly sparse and it can only

be claimed that x̂ is close to a sparse vector. In these situations, it is important to know whether

the reconstruction is weakly stable. In section 2, we have shown that the weak RSP of order

k of AT is a necessary condition for standard `1-minimization with any given measurements

y ∈ {Ax : ‖x‖0 ≤ k} to be weakly stable. In this section, we further show that this condition is

also sufficient for the problem to be weakly stable. Note that the problem (10) can be written

as the linear program

min
(x,t)
{eT t : Ax = y, − x+ t ≥ 0, x+ t ≥ 0, t ≥ 0}, (11)

to which the dual problem is given as

max
(w,u,v)

{
yTw : ATw − u+ v = 0, u+ v ≤ e, (u, v) ≥ 0

}
. (12)

Thus, by the optimality conditions, the solution of (10) can be characterized as follows.

Lemma 3.1. x∗ is an optimal solution of (10) if and only if there exist vectors t∗, u∗, v∗ ∈
Rn+ and w∗ ∈ Rm such that (x∗, t∗, u∗, v∗, w∗) ∈ D where

D = {(x, t, u, v, w) : Ax = y, x ≤ t, − x ≤ t, ATw − u+ v = 0, u+ v ≤ e,
yTw = eT t, (u, v, t) ≥ 0}. (13)

Moreover, any (x, t, u, v, w) ∈ D satisfies that t = |x|.

The first assertion follows directly from the optimality conditions of (11) and (12). The

second assertion is implied from (13) and can be directly seen from (11) as well. In fact, x∗ is

an optimal solution of (10) if and only if x∗, together with t∗ = |x∗|, is an optimal solution of

(11). Note that (13) is of the form

D = {z = (x, t, u, v, w) : M ′z ≤ b, M ′′z = d}, (14)

where b = (0, 0, e, 0, 0, 0) and d = (y, 0, 0) and

M ′ =



I −I 0 0 0
−I −I 0 0 0
0 0 I I 0
0 0 −I 0 0
0 0 0 −I 0
0 −I 0 0 0

 , M ′′ =

 A 0 0 0 0
0 0 −I I AT

0 −eT 0 0 yT

 . (15)

In the remainder of the paper, we use c, c1, c2 to denote the following constants:

c = ‖(AAT )−1A‖∞→∞, c1 = ‖(AAT )−1A‖∞→1, c2 = ‖(AAT )−1A‖∞→2. (16)

We now prove the main result in this section.
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Theorem 3.2. Let A ∈ Rm×n (m < n) be a given matrix with rank(A) = m, and let y be

any given vector in Rm. If AT satisfies the weak RSP of order k, then, for any x ∈ Rn, there is

an optimal solution x∗ of (10) such that

‖x− x∗‖2 ≤ γ {2σk(x)1 + (1 + c)‖Ax− y‖1} , (17)

where c is a constant given in (16), and γ = σ∞,2(M
′,M ′′) is the Robinson’s constant with

(M ′,M ′′) given as (15). In particular, if x satisfies Ax = y, then there is an optimal solution

x∗ of (10) such that

‖x− x∗‖2 ≤ 2γσk(x)1. (18)

Proof. Let x be any given vector in Rn and let t = |x|. Let S denote the support set

of the k-largest components of |x|. Let S = S+ ∪ S−, where S+ = {i ∈ S : xi > 0} and

S− = {i ∈ S : xi < 0}. We now construct a vector (ũ, ṽ, w̃) so that it is a feasible point to the

dual problem (12). Since AT has the weak RSP of order k, there exists a vector η ∈ R(AT ) such

that AT w̃ = η for some w̃ ∈ Rm and η satisfies that

ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| ≤ 1 for i /∈ S = S+ ∪ S−,

from which we see that (AT w̃)S = ηS = sign(xS). We construct (ũ, ṽ) as follows: ũi = 1 and ṽi =

0 for i ∈ S+; ũi = 0 and ṽi = 1 for i ∈ S−; ũi = (|ηi|+ ηi)/2 and ṽi = (|ηi| − ηi)/2 for all i /∈ S.
From this construction, (ũ, ṽ) satisfies that (ũ, ṽ) ≥ 0, ũ + ṽ ≤ e and AT w̃ = η = ũ − ṽ. Thus

(ũ, ṽ, w̃) is a feasible vector to the problem (12). We now estimate the distance of (x, t, ũ, ṽ, w̃)

to the set D given by (13) which can be written as (14). By applying Lemma 2.4 to (14), for

the point (x, t, ũ, ṽ, w̃), where t = |x|, there exists a point (x∗, t∗, u∗, v∗, w∗) ∈ D such that

∥∥∥∥∥∥∥∥∥∥


x
t
ũ
ṽ
w̃

−

x∗

t∗

u∗

v∗

w∗


∥∥∥∥∥∥∥∥∥∥
2

≤ γ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



(x− t)+
(−x− t)+

(ũ+ ṽ − e)+
Ax− y

AT w̃ − ũ+ ṽ
eT t− yT w̃

(ϑ)−



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

, (19)

where (ϑ)− denotes the vector ((ũ)−, (ṽ)−, (t)−) and γ = σ∞,2(M
′,M ′′) is the Robinson’s con-

stant determined by (M ′,M ′′) given as (15). By the choice of (ũ, ṽ, w̃) and the fact t = |x|, we

have

(x− t)+ = (−x− t)+ = 0, (ũ+ ṽ − e)+ = 0, AT w̃ − ũ+ ṽ = 0, (ϑ)− = 0.

Thus the inequality (19) is reduced to

‖(x, t, ũ, ṽ, w̃)− (x∗, t∗, u∗, v∗, w∗)‖2 ≤ γ

∥∥∥∥[ Ax− y
eT t− yT w̃

]∥∥∥∥
1

. (20)

Denote by h = Ax− y. By the choice of (t, ũ, ṽ, w̃), we see that

eT t− yT w̃ = eT |x| − (Ax− h)T w̃ = ‖x‖1 − xT (AT w̃) + hT w̃.

Substituting this into (20) and noting that

‖x− x∗‖2 ≤ ‖(x, t, ũ, ṽ, w̃)− (x∗, t∗, u∗, v∗, w∗)‖2,
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we obtain

‖x− x∗‖2 ≤ γ
{
‖Ax− y‖1 +

∣∣‖x‖1 − xT (AT w̃) + hT w̃
∣∣} . (21)

Note that A has full row rank and ‖η‖∞ ≤ 1. From AT w̃ = η, we see that

‖w̃‖∞ = ‖(AAT )−1Aη‖∞ ≤ ‖(AAT )−1A‖∞→∞‖η‖∞ ≤ c, (22)

where c is a constant given in (16). Note that

(xS)T (AT w̃)S = (xS)T ηS = (xS)T sign(xS) = ‖xS‖1.

Therefore,∣∣‖x‖1 − xT (AT w̃) + hT w̃
∣∣ =

∣∣‖x‖1 − (xS)T (AT w̃)S − (xS)T (AT w̃)S + hT w̃
∣∣

=
∣∣‖x‖1 − ‖xS‖1 − (xS)T (AT w̃)S + hT w̃

∣∣
=

∣∣σk(x)1 − (xS)T (AT w̃)S + hT w̃
∣∣

≤ σk(x)1 +
∣∣(xS)T (AT w̃)S |+ |h

T w̃
∣∣

≤ 2σk(x)1 + ‖h‖1 · ‖w̃‖∞
≤ 2σk(x)1 + c‖Ax− y‖1, (23)

where the second inequality follows from∣∣(xS)T (AT w̃)S
∣∣ ≤ ‖xS‖1 ∥∥(AT w̃)S

∥∥
∞ = ‖xS‖1‖ηS‖∞ ≤ ‖xS‖1 = σk(x)1,

and the final inequality follows from (22). Substituting (23) into (21) yields the error estimate

(17), as desired. In particular, if x is a solution to the underdetermined linear system Az = y,

then (17) is reduced to (18). �

Under the weak RSP of order k of AT , Theorem 3.2 indicates that the standard

`1-minimization problem, i.e., problem (1) with ε = 0, is weakly stable for any given

y ∈ Rm(= {Ax : x ∈ Rn} due to the fact that A is underdetermined with full row rank).

In particular, they are weakly stable when y ∈ {Ax : ‖x‖0 ≤ k} ⊂ Rm. Theorems 2.3

indicates that if the standard `1-minimization problem is weakly stable for any

given y ∈ {Ax : ‖x‖0 ≤ k}, then AT must satsify the weak RSP of order k. Merging

Theorems 2.3 and 3.2 immediately yields the following statement.

Corollary 3.3. Let A ∈ Rm×n(m < n) be a matrix with rank(A) = m. The standard

`1-minimization problem min{‖x‖1 : Ax = y} is weakly stable in sparse data recon-

struction for any given measurements y ∈ {Ax : ‖x‖0 ≤ k} if and only if AT satsifies

the weak RSP of order k.

The weak RSP of AT is the mildest condition, which cannot be relaxed without

damaging the weak stability of `1-minimization problems.

Remark 3.4. Uniform recovery requires that every k-sparse vector can be recon-

structed by `1-minimization. This means that every k-sparse vector is an optimal

solution of `1-minimization. Then the classic KKT optimality condition naturally

yields the matrix property of weak RSP of AT . Therefore, no matter what (de-

terministic or random) design matrix A is used, the weak RSP of order k of AT
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is an unavoidable property required for achieving the uniform recovery with `1-

minimization as a decoding method. The existence of a matrix with such a prop-

erty can follow directly from that of RIP matrices. We recall the following result:

(Candés, Tao, etc) Let A be an m× n Gaussian or Bernoulli random matrix. Then

there exists a universal constant C > 0 such that the RIP constant of A/
√
m satisfies

δ2k ≤ γ with probability at least 1− ε provided

m ≥ Cγ−2
(
k ln(en/k) + ln(2ε−1)

)
.

The first version of this fact was shown by Candès and Tao [10] and their first

version was improved later by Candès and other researchers. Taking γ = 1/
√

2, Cai

et al. [6] have shown that the RIP of order 2k with constant δ2k < 1/
√

2 guarantees

the uniform recovery of k-parse vectors via `1-minimization method. Note that the

uniform recovery of k-parse vectors via `1-minimization is equivalent to that AT

satisfies the RSP of order k (see [45] for details) and hence AT satisfies the weak

RSP of order k. Combining these facts and taking γ = 1/
√

2, we immediately obtain

the following statement: Let A be an m× n Gaussian or Bernoulli random matrix.

Then there exists a universal constant C > 0 such that AT /
√
m satisfies the weak

RSP of order k with probability at least 1− ε provided

m ≥ 2C
(
k ln(en/k) + ln(2ε−1)

)
. (24)

By Theorem 3.2, when AT satisfies the weak RSP of order k, the error bound (18)

always holds. Combining Theorem 3.2 and the above statement yields the following

fact: Let A be an m×n (m < n) Gaussian or Bernoulli random matrix with full row

rank, and y be a given vector in Rm. Then there exists a universal constant C > 0

such that with probability at least 1− ε, the standard `1-minimization problem with

matrix A/
√
m is weakly stable, provided that (24) is satisfied.

From Theorem 3.2, we obtain a unified stability result for several existing matrix properties.

Corollary 3.5. Let (A, y) be given, where y ∈ Rm and A ∈ Rm×n (m < n) with rank(A) =

m. Suppose that A admits one of the following properties:

(p1) RIP of order 2k with constant δ2k < 1/
√

2.

(p2) A is a matrix with `2-normalized columns and µ1(k) + µ1(k − 1) < 1, where µ1(k) is the

accumulated mutual coherence.

(p3) The stable NSP of order k with constant 0 < ρ < 1.

(p4) The robust NSP of order k with constant 0 < ρ < 1 and τ > 0.

(p5) The NSP of order k.

(p6) The RSP of order k of AT .

Then, for any x ∈ Rn, the optimal solution x∗ of (10) approximates x with error

‖x− x∗‖2 ≤ 2γσk(x)1 + γ(1 + c)‖Ax− y‖1,
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where c is a constant given in (16) and γ = σ∞,2(M
′,M ′′) is the Robinson’s constant determined

by (15). In particular, for any x with Ax = y, the optimal solution x∗ of (10) approximates x

with error ‖x− x∗‖2 ≤ 2γσk(x)1.

The above corollary follows directly from Theorem 3.2, since each of the properties (p1)–(p6)

implies the weak RSP of order k of AT as well as the uniqueness of the optimal solution x∗ of

(10). Corollary 3.5 is a unified weak stability result in the sense that every matrix property of

(p1)–(p6) implies the same error bound in terms of the Robinson’s constant. The weak stability

result of this type is new and established in this paper for the first time.

4 Robust weak stability of linearly constrained models

In more realistic situations, the measurements y for the unknown sparse data x̂ ∈ Rn are

inaccurate, and thus y = Ax̂+ u, where u denotes the measurement error satisfying ‖u‖ ≤ ε for

some norm ‖ · ‖ and noise level ε > 0. Thus we consider the robust weak stability of (1) with a

known level ε > 0. In this section, we focus on the following problems:

min{‖x‖1 : ‖Ax− y‖∞ ≤ ε}, (25)

min{‖x‖1 : ‖Ax− y‖1 ≤ ε}, (26)

corresponding to p = ∞ and p = 1 in (1), respectively. The case p = 2 in (1) will be treated

separately in section 5. Problems (25) and (26) are referred to as the `1-minimization with

`∞-norm and `1-norm constraints, respectively. A common feature of (25) and (26) is that their

constraints can be linearly represented. This structure makes it possible to extend the approach

in section 3 to establish the robust weak stability of (25) and (26).

4.1 `1-minimization with `∞-norm constraint

We first consider the problem (25), which can be written as

min
(x,t)

{
eT t : − x+ t ≥ 0, x+ t ≥ 0, t ≥ 0, − εe ≤ Ax− y ≤ εe

}
(27)

to which the dual problem is given as

max
(u,v,w,w′)

{
(y − εe)Tw − (y + εe)Tw′ : AT (w − w′) = u− v, u+ v ≤ e, (u, v, w,w′) ≥ 0

}
. (28)

Clearly, x∗ is an optimal solution of (25) if and only if (x∗, t∗) with t∗ = |x∗| is an optimal solution

of (27). By the optimality condition of a linear program, we can immediately characterize the

solution set of (25) as follows.

Lemma 4.1. x∗ is an optimal solution of (25) if and only if there exist vectors t∗, u∗, v∗

in Rn+ and w∗, w′∗ in Rm+ such that (x∗, t∗, u∗, v∗, w∗, w′∗) ∈ D(∞) where

D(∞) = {(x, t, u, v, w,w′) : −x+ t ≥ 0, x+ t ≥ 0, − εe ≤ Ax− y ≤ εe,
AT (w − w′) = u− v, u+ v ≤ e,
eT t = (y − εe)Tw − (y + εe)Tw′,
(t, u, v, w,w′) ≥ 0}.

(29)

Moreover, for any (x, t, u, v, w,w′) ∈ D(∞), it must hold that t = |x|.
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The set D(∞) can be written as

D(∞) = {z = (x, t, u, v, w,w′) : M (1)z ≤ b(1), M (2)z = b(2)}, (30)

where b(2) = 0 and

M (1) =



I −I 0 0 0 0
−I −I 0 0 0 0
A 0 0 0 0 0
−A 0 0 0 0 0
0 −I 0 0 0 0
0 0 I I 0 0
0 0 0 0 −Im 0
0 0 0 0 0 −Im
0 0 −I 0 0 0
0 0 −I 0 0


, b(1) =



0
0

y + εe
εe− y

0
e
0
0
0


, (31)

M (2) =

(
0 0 −I I AT −AT
0 eT 0 0 −(y − εe)T (y + εe)T

)
, (32)

where I and Im are n- and m-dimensional identity matrices, respectively. We now show that

the robust weak stability of (25) is guaranteed under the weak RSP of order k of AT .

Theorem 4.2. Let the problem data (A, y, ε) of (25) be given, where ε > 0, y ∈ Rm and

A ∈ Rm×n (m < n) with rank(A) = m. Let AT satisfy the weak RSP of order k. Then for any

x ∈ Rn, there is an optimal solution x∗ of (25) such that

‖x− x∗‖2 ≤ γ1
{
‖(Ax− y − εe)+‖1 + ‖(Ax− y + εe)−‖1 + 2σk(x)1 + c1ε+ c1‖Ax− y‖∞

}
,

where c1 is the constant given in (16) and γ1 = σ∞,2(M
(1),M (2)) is the Robinson’s constant

determined by (M (1),M (2)) given in (31) and (32). In particular, for any x with ‖Ax−y‖∞ ≤ ε,
there is a solution x∗ of (25) such that

‖x− x∗‖2 ≤ 2γ1{σk(x)1 + c1ε}.

Proof. For any given x ∈ Rn, we consider a vector (t, u, v, w,w′) satisfying the following

properties: t = |x| and (u, v, w,w′) satisfies AT (w−w′) = u− v, u+ v ≤ e and (u, v, w,w′) ≥ 0,

i.e., (u, v, w,w′) is a feasible vector to problem (28). Note that the set (29) can be written as

(30). For such a vector (x, t, u, v, w,w′), applying Lemma 2.4 with (M ′,M ′′) = (M (1),M (2))

being given in (31) and (32), there must exist a vector (x∗, t∗, u∗, v∗, w∗, w′∗) ∈ D(∞) such that

∥∥∥∥∥∥∥∥∥∥∥∥



x
t
u
v
w
w′

−


x∗

t∗

u∗

v∗

w∗

w′∗



∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ γ1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



(x− t)+
(−x− t)+

(Ax− y − εe)+
(Ax− y + εe)−

AT (w − w′)− u+ v
(u+ v − e)+

eT t− (y − εe)Tw + (y + εe)Tw′

(ϑ̂)−



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

, (33)

where (ϑ̂)− is short for the vector ((u)−, (v)−, (t)−, (w)−, (w′)−), and γ1 =σ∞,2(M
(1),M (2)) is

the Robinson’s constant with (M (1),M (2)) being given by (31) and (32). By the nonnegativity
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of (u, v, t, w,w′), we see that (ϑ̂)− = 0. Since t = |x| and (u, v, w,w′) is feasible to problem (28),

we see that

(x− t)+ = (−x− t)+ = 0, AT (w − w′)− u+ v = 0, (u+ v − e)+ = 0.

Thus the system (33) is reduced to

‖(x, t, u, v, w,w′)− (x∗, t∗, u∗, v∗, w∗, w′∗)‖2 ≤ γ1

∥∥∥∥∥∥
 (Ax− y − εe)+

(Ax− y + εe)−

eT t− (y − εe)Tw + (y + εe)Tw′

∥∥∥∥∥∥
1

.

Let φ = y −Ax. We see that

eT t− (y − εe)Tw + (y + εe)Tw′ = eT t− yT (w − w′) + εeT (w + w′)

= eT |x| − (Ax+ φ)T (w − w′) + εeT (w + w′)

= eT |x| − xTAT (w − w′)− φT (w − w′) + εeT (w + w′).

Merging the above two relations leads to

‖(x, t, u, v, w,w′)− (x∗, t∗, u∗, v∗, w∗, w′∗)‖2
≤ γ1{‖(Ax− y − εe)+‖1 + ‖(Ax− y + εe)−‖1
+
∣∣eT |x| − xTAT (w − w′)− φT (w − w′) + εeT (w + w′)

∣∣}. (34)

By the weak RSP of order k of AT , we now construct a specific vector (ũ, ṽ, w̃, w̃′) which is

feasible to problem (28). To this goal, let S denote the support set of the k-largest components

of |x|. Let S+ = {i ∈ S : xi > 0} and S− = {i ∈ S : xi < 0}. Clearly, S = S+ ∪ S−. Since AT

satisfies the weak RSP of order k, there exists a vector η ∈ R(AT ) such that η = AT g for some

g ∈ Rm and η satisfies the following conditions:

ηi = 1 for i ∈ S+, ηi = −1 for all i ∈ S−, and |η1| ≤ 1 for i ∈ S = {1, . . . , n} \ S.

Construct (ũ, ṽ) as follows: ũi = 1 and ṽi = 0 for i ∈ S+; ũi = 0 and ṽi = 1 for i ∈ S−;

ũi = (1 + ηi)/2 and ṽi = (1 − ηi)/2 for all i ∈ S. By this construction, we see that ũ − ṽ = η.

Moreover, by setting w̃ = (g)+ and w̃′ = −(g)−, we see that w̃ ≥ 0, w̃′ ≥ 0, w̃ − w̃′ = g. It is

easy to see that the vector (ũ, ṽ, w̃, w̃′) specified as above satisfies the conditions

ũ+ ṽ ≤ e, AT (w̃ − w̃′) = ũ− ṽ, (ũ, ṽ, w̃, w̃′) ≥ 0

which indicates that (ũ, ṽ, w̃, w̃′) is a feasible vector to problem (28). Thus it follows from

(34) that for the vector (x, t = |x|, ũ, ṽ, w̃, w̃′), there is a point in D(∞), denoted still by

(x∗, t∗, u∗, v∗, w∗, w′∗), such that

‖(x, t, ũ, ṽ, w̃, w̃′)− (x∗, t∗, u∗, v∗, w∗, w′∗)‖2
≤ γ1{‖(Ax− y − εe)+‖1 + ‖(Ax− y + εe)−‖1
+
∣∣eT |x| − xTAT (w̃ − w̃′)− φT (w̃ − w̃′) + εeT (w̃ + w̃′)

∣∣}. (35)

By the construction of (ũ, ṽ, w̃, w̃′), we see that [AT (w̃− w̃′)]S = (ũ− ṽ)S = ηS = sign(xS). Thus∣∣eT |x| − xTAT (w̃ − w̃′)− φT (w̃ − w̃′) + εeT (w̃ + w̃′)
∣∣
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=
∣∣‖x‖1 − (xS)T [AT (w̃ − w̃′)]S − (xS)T [AT (w̃ − w̃′)]S − φ

T (w̃ − w̃′) + εeT (w̃ + w̃′)
∣∣

=
∣∣‖x‖1 − ‖xS‖1 − (xS)T [AT (w̃ − w̃′)]S − φ

T (w̃ − w̃′) + εeT (w̃ + w̃′)
∣∣

≤ σk(x)1 + |(xS)T [AT (w̃ − w̃′)]S |+ |φ
T (w̃ − w̃′)|+ ε|eT (w̃ + w̃′)|

≤ σk(x)1 + ‖(xS)‖1‖[AT (w̃ − w̃′)]S‖∞ + |φT g|+ ε|eT ((g)+ − (g)−)|
≤ 2σk(x)1 + ‖g‖1‖φ‖∞ + ε‖g‖1, (36)

where the last inequality follows from the fact ‖[AT (w̃ − w̃′)]S‖∞ = ‖ηS‖∞ ≤ 1. Since AT has

full column rank, it follows from AT g = η that g = (AAT )−1Aη, and hence

‖g‖1 = ‖(AAT )−1Aη‖1 ≤ ‖(AAT )−1A‖∞→1‖η‖∞ ≤ ‖(AAT )−1A‖∞→1 = c1. (37)

Merging (35), (36) and (37) yields the bound

‖x− x∗‖2 ≤ ‖(x, t, ũ, ṽ, w̃, w̃′)− (x∗, t∗, u∗, v∗, w∗, w′∗)‖2
≤ γ1

{
‖(Ax− y − εe)+‖1 + ‖(Ax− y + εe)−‖1 + 2σk(x)1 + ‖g‖1(‖φ‖∞ + ε)

}
≤ γ1

{
‖(Ax− y − εe)+‖1 + ‖(Ax− y + εe)−‖1 + 2σk(x)1 + c1‖y −Ax‖∞ + c1ε

}
,

as desired. In particular, when x satisfies the constraint of (25), i.e., ‖y −Ax‖∞ ≤ ε, the above

estimate reduces to ‖x− x∗‖2 ≤ 2γ1{σk(x)1 + c1ε}. �

4.2 `1-minimization with `1-norm constraint

We now show the robust weak stability of problem (26). Note that (26) is equivalent to

min
(x,r)

{
‖x‖1 : |Ax− y| ≤ r, eT r ≤ ε, r ∈ Rm+

}
. (38)

It is evident that x∗ is an optimal solution of (26) if and only if there is a vector r∗ such that

(x∗, r∗) is an optimal solution of (38). We may further write (38) as the linear program

min
(x,t,r)

{
eT t : x ≤ t, − x ≤ t, t ≥ 0, Ax− y ≤ r,−Ax+ y ≤ r, eT r ≤ ε, r ≥ 0

}
. (39)

The dual problem of (39) is given by

max −yT (v3 − v4)− εv5
s.t AT (v3 − v4) + v1 − v2 = 0, v3 + v4 ≤ v5e, v1 + v2 ≤ e, (40)

vi ≥ 0, i = 1, . . . , 5,

where v1, v2 ∈ Rn+, v3, v4 ∈ Rm+ , and v5 ∈ R+. By the optimality condition of a linear program,

the solution set of (26) can be characterized as follows.

Lemma 4.3. x∗ is an optimal solution of (26) if and only if there exist vectors t∗, v∗1, v
∗
2 ∈

Rn+, v∗3, v∗4, r∗ ∈ Rm+ and v∗5 ∈ R+ such that (x∗, t∗, r∗, v∗1, . . . , v
∗
5) ∈ D(1), where

D(1) = {(x, t, r, v1, . . . , v5) : x ≤ t, − x ≤ t, Ax− r ≤ y, −Ax− r ≤ −y,
eT r ≤ ε, (r, t) ≥ 0, AT (v3 − v4) + v1 − v2 = 0,
v3 + v4 − v5e ≤ 0, v1 + v2 ≤ e,
eT t = −yT (v3 − v4)− v5ε, vi ≥ 0, i = 1, . . . , 5}.

(41)

Moreover, for any (x, t, r, v1, . . . , v5) ∈ D(1), it must hold that t = |x|.
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In order to apply Lemma 2.4 in the proof of the next theorem, we rewrite D(1) as

D(1) = {z = (x, t, r, v1, . . . , v5) : M∗z ≤ b∗, M∗∗z = b∗∗} , (42)

where b∗∗ = 0, b∗ is a vector consisting of 0, y,−y, e and ε, The matrix M∗ captures all coefficients

of the inequalities in (41), and M∗∗ is the matrix capturing all coefficients of the equalities in

(41). The entries of M∗ and M∗∗ are given by the problem data (A, y, ε). M∗ and M∗∗ are

omitted here. We have the following stability result.

Theorem 4.4. Let the problem data (A, y, ε) of (26) be given, where ε > 0, y ∈ Rm and

A ∈ Rm×n (m < n) with rank(A) = m. Let AT satisfy the weak RSP of order k. Then for any

x ∈ Rn, there is an optimal solution x∗ of (26) such that

‖x− x∗‖2 ≤ γ2
{

2σk(x)1 + (‖Ax− y‖1 − ε)+ + c(ε+ ‖y −Ax‖1)
}
,

where c is the constant given in (16), and γ2 = σ∞,2(M
∗,M∗∗) is the Robinson’s constant

determined by (M∗,M∗∗) in (42). In particular, for any x with ‖Ax − y‖1 ≤ ε, there is an

optimal solution x∗ of (26) such that

‖x− x∗‖2 ≤ 2γ2{σk(x)1 + cε}. (43)

Proof. Let x be any vector in Rn, and let (t, r, v1, . . . , v5) satisfy the following properties:

t = |x|, r = |Ax− y|, and (v1, . . . , v5) is feasible to (40), i.e.,

AT (v3 − v4) + v1 − v2 = 0, v1 + v2 ≤ e, v3 + v4 ≤ v5e, (v1, . . . , v5) ≥ 0.

For such a vector (x, t, r, v1, . . . , v5), applying Lemma 2.4 with (M ′,M ′′) = (M∗,M∗∗) where

M∗ and M∗∗ are the matrices in (42), there exists a point (x∗, t∗, r∗, v∗1, . . . , v
∗
5) in D(1) defined

by (41) such that

∥∥∥∥∥∥∥∥∥∥∥∥∥



x
t
r
v1
...
v5


−



x∗

t∗

r∗

v∗1
...
v∗5



∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ γ2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



(x− t)+
(−x− t)+

(Ax− y − r)+
(Ax− y + r)−

(eT r − ε)+
AT (v3 − v4) + v1 − v2

(v1 + v2 − e)+
(v3 + v4 − v5e)+

eT t+ yT (v3 − v4) + v5ε
(ϑ∗)−



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

, (44)

where (ϑ∗)− is the short for the vector ((t)−, (r)−, (v1)
−, . . . , (v5)

−), and γ2 = σ∞,2(M
∗,M∗∗) is

the Robinson’s constant determined by the matrices (M∗,M∗∗) in (42). By the nonnegativity

of (t, r, v1, ..., v5), we see that (ϑ∗)− = 0. Since (v1, . . . , v5) is feasible to (40), we also have

(x− t)+ = (−x− t)+ = 0, AT (v3 − v4) + v1 − v2 = 0, (v1 + v2 − e)+ = 0,

(v3 + v4 − v5e)+ = 0, (Ax− y − r)+ = (Ax− y + r)− = 0.

Thus the inequality (44) is reduced to

‖(x, t, r, v1, . . . , v5)− (x∗, t∗, r∗, v∗1, . . . , v
∗
5)‖2 ≤ γ2

∥∥∥∥[ (eT r − ε)+
eT t+ yT (v3 − v4) + v5ε

]∥∥∥∥
1

. (45)
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Furthermore, letting φ = y −Ax, we see that

eT t+ yT (v3 − v4) + v5ε = eT |x|+ (Ax+ φ)T (v3 − v4) + v5ε

= eT |x|+ xTAT (v3 − v4) + φT (v3 − v4) + v5ε. (46)

Merging (45) and (46) leads to

‖(x, t, r, v1, . . . , v5)− (x∗, t∗, r∗, v∗1, . . . , v
∗
5)‖2

≤ γ2
{

(eT r − ε)+ +
∣∣eT |x|+ xTAT (v3 − v4) + φT (v3 − v4) + v5ε

∣∣} . (47)

We now construct a specific vector (ṽ1, . . . , ṽ5) which is feasible to problem (40). To this goal,

we still let S be the support set of the k-largest components of |x|, and we still decompose S as

S = S+ ∪ S−, where S+ = {i ∈ S : xi > 0} and S− = {i ∈ S : xi < 0}. Let S = {1, . . . , n} \ S.
Since AT satisfies the weak RSP of order k, there exists a vector η = AT g for some g ∈ Rm

satisfying that ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, and |ηi| ≤ 1 for i ∈ S. Define the vectors

ṽ1 and ṽ2 as follows: (ṽ1)i = 1 and (ṽ2)i = 0 for i ∈ S+; (ṽ1)i = 0 and (ṽ2)i = 1 for i ∈ S−;

(ṽ1)i = (|ηi| + ηi)/2 and (ṽ2)i = (|ηi| − ηi)/2 for all i ∈ S. This construction ensures that

(ṽ1, ṽ2) ≥ 0, ṽ1 + ṽ2 ≤ e, and ṽ1 − ṽ2 = η. Moreover, by setting

ṽ3 = |(g)−| = −(g)−, ṽ4 = (g)+, ṽ5 = ‖g‖∞,

we see that ṽ3 ≥ 0, ṽ4 ≥ 0, and

ṽ3 + ṽ4 = −(g)− + (g)+ = |g| ≤ ‖g‖∞e = v5e, ṽ3 − ṽ4 = −(g)− − (g)+ = −g.

Note that AT (ṽ3 − ṽ4) = −AT g = −η = ṽ2 − ṽ1. Therefore, the vector (ṽ1, . . . , ṽ5) constructed

as above is feasible to the problem (40). We also note that ηS = sign(xS) and ‖ηS‖∞ ≤ 1. Then

it follows from (47) that for the vector (x, t = |x|, r = |Ax − y|, ṽ1, . . . , ṽ5), there exists a point

in D(1), denoted still by (x∗, t∗, r∗, v∗1, . . . , v
∗
5), such that

‖(x, t, r, ṽ1, . . . , ṽ5)− (x∗, t∗, r∗, v∗1, . . . , v
∗
5)‖2

≤ γ2
[
(eT r − ε)+ +

∣∣eT |x|+ xTAT (ṽ3 − ṽ4) + φT (ṽ3 − ṽ4) + ṽ5ε
∣∣] .

= γ2
[
(eT r − ε)+ +

∣∣‖x‖1 + (xS)T [AT (ṽ3 − ṽ4)]S + (xS)T [AT (ṽ3 − ṽ4)]S − φ
T g + ṽ5ε

∣∣]
= γ2

[
(eT r − ε)+ +

∣∣‖x‖1 − ‖xS‖1 − (xS)T ηS − φ
T g + ṽ5ε

∣∣]
≤ γ2

[
(eT r − ε)+ + σk(x)1 + ‖xS‖1‖ηS‖∞ + |φT g|+ ṽ5ε

]
≤ γ2

[
(eT r − ε)+ + 2σk(x)1 + ‖φ‖1‖g‖∞ + ‖g‖∞ε

]
. (48)

As ‖η‖∞ = 1 and g = (AAT )−1Aη, we have ‖g‖∞ ≤ ‖(AAT )−1A‖∞→∞ = c. We also note that

r = |Ax− y| = |φ|, which indicates that eT r = ‖Ax− y‖1 = ‖φ‖1. Thus it follows from (48) that

‖x− x∗‖2 ≤ ‖(x, t, r, ṽ1, ..., ṽ5)− (x∗, t∗, r∗, v∗1, ..., v
∗
5)‖2

≤ γ2
[
(‖Ax− y‖1 − ε)+ + 2σk(x)1 + c(‖y −Ax‖1 + ε)

]
.

In particular, when x satisfies the constraint of (26), i.e., ‖y − Ax‖1 ≤ ε, the above estimate is

reduced to (43). The proof is complete. �

Similar to Corollary 3.5, we immediately have the following result.

Corollary 4.5. Let the problem data (A, y, ε) be given, where ε > 0, y ∈ Rm and A ∈
Rm×n (m < n) with rank(A) = m. Let c and c1 be the constants given in (16), and let γ1 and

18



γ2 be the Robinson’s constants given in Theorems 4.2 and 4.4, respectively. Suppose that the

solutions to (25) and (26) are unique. If A satisfies one of the conditions (p1)–(p6) in Corollary

3.5, then the following statements hold:

(i) For any x satisfying ‖Ax− y‖∞ ≤ ε, the solution x∗ of (25) approximates x with error

‖x− x∗‖2 ≤ 2γ1{σk(x)1 + c1ε}.

(ii) For any x satisfying ‖Ax− y‖1 ≤ ε, the solution x# of (26) approximates x with error

‖x− x#‖2 ≤ 2γ2{σk(x)1 + cε}.

A difference between Corollary 4.5 and existing results is in that the constants γ1 and γ2 in

Corollary 4.5 are Robinson’s constants instead of RIP or NSP constants. Each of the matrix

properties (p1)–(p6) in Corollary 3.5 implies an identical error bound.

5 Robust weak stability of quadratically constrained models

We now consider the robust weak stability of the quadratically constrained `1-minimization

γ∗ := min
x
{‖x‖1 : ‖Ax− y‖2 ≤ ε}, (49)

where ε > 0, and γ∗ denotes the optimal value of the problem. Let S∗ denote the set of optimal

solutions of (49), which can be represented as

S∗ = {x ∈ Rn : ‖x‖1 ≤ γ∗, ‖Ax− y‖2 ≤ ε}.

Let B = {z ∈ Rm : ‖z‖2 ≤ 1} be the unit `2-ball. Then problem (49) can be written as

γ∗ = min
x
{‖x‖1 : u = (Ax− y)/ε, u ∈ B}. (50)

Since the constraint of (49) is nonlinear, Lemma 2.4 does not apply to this situation directly.

We need to establish several auxiliary results in order to show the robust weak stability of (49).

The main idea is to approximate B with a polytope. We recall that B is the intersection of half

spaces aT z ≤ 1 tangent to its surface, i.e.,

B =
⋂
‖a‖2=1

{
z ∈ Rm : aT z ≤ 1

}
. (51)

We also recall the Hausdorff metric of two sets S1, S2 ⊆ Rm :

δH(S1, S2) = max

{
sup
z′∈S1

inf
z∈S2

‖z′ − z‖2, sup
z∈S2

inf
z′∈S1

‖z′ − z‖2
}
. (52)

By taking a finite number of half-spaces in (51) to approximate B, Dudley [20] established the

following result. (A more discussion on the polytope approximation of B can be found, for

instance, in [7].)

Lemma 5.1. (Dudley [20]) There exists a constant τ such that for every integer number

K > m there is a polytope

PK =
⋂

‖ai‖2=1,1≤i≤K

{z ∈ Rm : (ai)T z ≤ 1}, (53)
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achieving

δH(B,PK) ≤ τ

K2/(m−1) , (54)

where δH(·, ·) is the Hausdorff metric defined by (52).

From the above lemma, we see that PK can approximate B to any level of accuracy provided

that K is sufficiently large. For PK given by (53), we use MPK := [a1, . . . , aK ] to denote the

matrix with ai ∈ Rm, i = 1, . . . ,K as its columns. We also use the symbol Col(MPK ) =

{a1, a2, . . . , aK} to denote the set of columns of MPK . Thus PK can be written as

PK = {z ∈ Rm : (MPK )T z ≤ e},

where e is the vector of ones in RK . Let {PK}K>m be any sequence of the polytopes given as

(53) and satisfying (54). Consider the sequence of polytopes {P̃J}J>m, where

P̃J =
⋂

m<K≤J
PK . (55)

Thus P̃J is still a polytope formed by a finite number of half space (ai)T z ≤ 1 where ‖ai‖2 = 1.

We still use MP̃J to denote the matrix with these vectors ai’s as columns, so

P̃J = {z ∈ Rm : (MP̃J )T z ≤ e}.

We still use Col(MP̃J ) to denote the collection of column vectors of MP̃J .

In what follows, for a given compact convex set T ⊆ Rn, we denote the projection of x into

T by πT (x) := argmin{‖x− w‖2 : w ∈ T}. We first prove the following lemma.

Lemma 5.2. Let {PK}K>m be any sequence of the polytopes defined by (53) and satisfying

(54). For any J > m, let P̃J be given as (55). Then for any point z ∈ Rm with ‖z‖2 = 1, there

exists a column vector ai of MP̃J , i.e., ai ∈ Col(MP̃J ), such that

‖z − ai‖2 ≤
√

2τ

J2/(m−1) + τ
.

Proof. Let z be any given point on the unit sphere, i.e., ‖z‖2 = 1. Since B ⊆ P̃J , where J > m,

the straight line passing through z and the center of B crosses a point, denoted by z′, on the

surface of polytope P̃J . Clearly, z = z′/‖z′‖2, i.e., z is the projection of z′ onto B. Note that

B ⊆ P̃J ⊆ PJ for any J > m. By the definition of Hausdorff metric and Lemma 5.1, we obtain

‖z − z′‖2 ≤ δH(B, P̃J) ≤ δH(B,PJ) ≤ τ

J2/(m−1) . (56)

Since z′ is on the surface of P̃J , there is a vector ai0 ∈ Col(MP̃J ) such that (ai0)T z′ = 1. Note

that ‖z′ − z‖2 = ‖z′ − z′

‖z′‖2 ‖2 = ‖z′‖2 − 1, ‖ai0‖2 = ‖z‖2 = 1 and (ai0)T z′ = 1. We immediately

have

‖z − ai0‖22 = 2(1− (ai0)T z) = 2(1− (ai0)T z′

‖z′‖2
) = 2(1− 1

‖z′‖2
)

=
2‖z′ − z‖2
‖z′ − z‖2 + 1

≤ 2(τ/J2/(m−1))

(τ/J2/(m−1)) + 1
=

2τ

τ + J2/(m−1) ,

where the inequality follows from (56). �
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Recall that S∗ is the set of optimal solutions of (49). We now prove the next lemma.

Lemma 5.3. Let {PK}K>m and P̃J be given as Lemma 5.2. Let SP̃J be the set

SP̃J = {x ∈ Rn : ‖x‖1 ≤ γ∗, u = (Ax− y)/ε, u ∈ P̃J}, (57)

where γ∗ is the optimal value of (49). Then δH(S∗, SP̃J )→ 0 as J →∞.

Proof. Note that B ⊆ P̃J ⊆ PJ for every J > m. By the definition of Hausdorff metric and

Lemma 5.1, we see that

δH(B, P̃J) ≤ δH(B,PJ) ≤ τ

J2/(m−1) , J > m. (58)

Note that SP̃J , given by (57), can be rewritten as

SP̃J = {x ∈ Rn : ‖x‖1 ≤ γ∗, (MP̃J )T (Ax− y) ≤ εe},

where γ∗ is the optimal value of (49). Clearly, S∗ ⊆ SP̃J due to the fact B ⊆ P̃J . We now prove

that δH(S∗, SP̃J ) → 0 as J → ∞. Since S∗ is a subset of SP̃J , by the definition of Hausdorff

metric, we see that

δH(S∗, SP̃J ) = sup
w∈SP̃J

inf
z∈S∗
‖w − z‖2 = sup

w∈SP̃J

‖w − πS∗(w)‖2, (59)

where πS∗(w) ∈ S∗ is the projection of w into S∗. The projection operator πS∗(w) is continuous

in w and SP̃J is compact convex set for any P̃J . Thus for every polytope P̃J , the superimum in

(59) can be attained, i.e., there exists a point, denoted by w∗
P̃J
∈ SP̃J , such that

δH(S∗, SP̃J ) =
∥∥∥w∗P̃J − πS∗(w∗P̃J )

∥∥∥
2
. (60)

We also note that S∗ ⊆ SP̃J+1
⊆ SP̃J for any J > m, which implies that δH(S∗, SP̃J+1

) ≤
δH(S∗, SP̃J ). Thus {δH(S∗, SP̃J )}J>m is a non-increasing nonnegative sequence. There must

exist a number δ ≥ 0 such that

lim
J→∞

δH(S∗, SP̃J ) = δ ≥ 0.

We now further prove that δ = 0. Note that w∗
P̃J
∈ SP̃J for any J > m. Thus∥∥∥w∗P̃J∥∥∥1 ≤ γ∗, (MP̃J )T (Aw∗P̃J
− y) ≤ εe for any J > m. (61)

The inequality (61) implies that the sequence {w∗
P̃J
}J>m is bounded and satisfies that sup

ai∈Col(MP̃J )
(ai)T (Aw∗P̃J

− y)

 ≤ ε for any J > m.

Note that for any m < J ′ ≤ J, we have Col(MP̃J′
) ⊆ Col(MP̃J ). Thus the inequality above

implies that for any fixed integer number J ′ > m, sup
ai∈Col(MP̃J′

)

(ai)T (Aw∗P̃J
− y)

 ≤ ε for any J ≥ J ′.
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Note that the sequence {w∗
P̃J
}J≥J ′ is bounded. Pasting through to a subsequence if necessary,

we may assume that w∗
P̃J
→ w∗ with ‖w∗‖1 ≤ γ∗. Thus it follows from the above inequality that

sup
ai∈Col(MP̃J′

)

(ai)T (Aw∗ − y) ≤ ε, (62)

which holds for any given J ′ > m. We now prove that (62) implies that ‖Aw∗ − y‖2 ≤ ε. We

show this by contradiction. Assume that ‖Aw∗−y‖2 > ε, which by the definition of the `2-norm

implies that

max
‖a‖2=1

aT (Aw∗ − y) = ‖Aw∗ − y‖2 > ε.

The maximum above attains at a∗ = (Aw∗ − y)/‖Aw∗ − y‖2. By continuity, there exists a

neighborhood of a∗, namely, U = a∗+ δ∗B, where δ∗ > 0 is a small number, such that any point

w ∈ U ∩ {z ∈ Rm : ‖z‖2 = 1} satisfies that

wT (Aw∗ − y) ≥ 1

2
(‖Aw∗ − y‖2 + ε) . (63)

Note that P̃J achieves (58). Let J ′ be an integer number such that
√

2τ
(J ′)2/(m−1)+τ

≤ δ∗. Applying

Lemma 5.2 to P̃J ′ , we conclude that for the vector a∗, there is a vector ai ∈ Col(MP̃J′
) such

that

‖ai − a∗‖2 ≤

√
2τ

(J ′)2/(m−1) + τ
≤ δ∗,

which, together with the fact ‖ai‖2 = 1, implies that ai ∈ U ∩ {z ∈ Rm : ‖z‖2 = 1}. Thus it

follows from (63) that

(ai)T (Aw∗ − y) ≥ 1

2
(‖Aw∗ − y‖2 + ε) > ε.

This contradicts (62). Thus w∗ must satisfy that ‖Aw∗ − y‖2 ≤ ε. This together with the fact

‖w∗‖1 ≤ γ∗ implies that w∗ ∈ S∗. As a result, πS∗(w
∗) = w∗. It follows from (60) and the

continuity of πS∗(·) that

δ = lim
J→∞

δH(S∗, SP̃J ) = lim
J→∞

‖w∗P̃J − πS∗(w
∗
P̃J

)‖2 = ‖w∗ − πS∗(w∗)‖2 = 0,

as desired. �

We will also make use of the following property of a projection operator.

Lemma 5.4. Let S′ and S′′ be compact convex sets in Rn. Then for any x ∈ Rn,

‖πS′(x)− πS′′(x)‖22 ≤ δH(S′, S′′)(‖x− πS′(x)‖2 + ‖x− πS′′(x)‖2).

Proof. By the property of projection operators, we have

(x− πS′(x))T (v − πS′(x)) ≤ 0 for all v ∈ S′, (64)

(x− πS′′(x))T (u− πS′′(x)) ≤ 0 for all u ∈ S′′. (65)

We project πS′′(x) ∈ S′′ into S′ to get the point v̂ = πS′ (πS′′(x)) ∈ S′ and we project πS′(x) ∈ S′

into S′′ to get the point û = πS′′ (πS′(x)) ∈ S′′. By the definition of Hausdorff metric, we have

‖v̂ − πS′′(x)‖2 ≤ δH(S′, S′′), ‖û− πS′(x)‖2 ≤ δH(S′, S′′). (66)
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Substituting v̂ into (64) and û into (65) yields

(x− πS′(x))T (v̂ − πS′(x)) ≤ 0, (x− πS′′(x))T (û− πS′′(x)) ≤ 0,

which implies the first inequality below

‖πS′(x)− πS′′(x)‖22 = (πS′(x)− x+ x− πS′′(x))T (πS′(x)− πS′′(x))

= −(x− πS′(x))T (πS′(x)− πS′′(x)) + (x− πS′′(x))T (πS′(x)− πS′′(x))

≤ −(x− πS′(x))T (v̂ − πS′′(x)) + (x− πS′′(x))T (πS′(x)− û)

≤ ‖x− πS′(x)‖2‖πS′′(x)− v̂‖2 + ‖x− πS′′(x)‖2‖πS′(x)− û‖2
≤ δH(S′, S′′)(‖x− πS′(x)‖2 + ‖x− πS′′(x)‖2),

where the final inequality follows from (66). �

For each K > 2m, by Lemma 5.1, there is a polytope PK of the form (53) achieving (54),

and PK can be represented as PK = {z ∈ Rm : (MPK )T z ≤ e}. We now add the following 2m

half spaces

(±%i)T z ≤ 1, i = 1, . . . ,m

to PK , where %i (i = 1, . . . ,m) denotes the i-th column vector of the m×m identity matrix. Let

K̂ denote the cardinality of the set Col(MPK ) ∪ {±%i : i = 1, . . . ,m}. This yields the polytope

P
K̂

:= PK ∩ {z ∈ Rm : %Ti z ≤ 1, − %Ti z ≤ 1, i = 1, . . . ,m}, (67)

Therefore,

Col(MP
K̂

) = Col(MPK ) ∪ {±%i : i = 1, . . . ,m} (68)

and K̂ = |Col(MP
K̂

)|. Clearly, K ≤ K̂ ≤ K + 2m which together with K > 2m implies that

1 ≤ K̂/K ≤ 2. Let τ be the constant in Lemma 5.1 and let τ ′ = 41/(m−1)τ. By the definition of

Hausdorff metric and Lemma 5.1, we see that the polytope P
K̂

constructed as (67) satisfies

δH(B,P
K̂

) ≤ δH(B,PK) ≤ τ

K2/(m−1) =
τ

K̂2/(m−1)

(
K̂

K

)2/(m−1)

≤ τ ′

K̂2/(m−1)
. (69)

We use the set P
K̂

defined as (67), which achieves (69), to construct the sequence of polytopes

{P̃J} as follows:

P̃J =
⋂

m<K̂≤J

P
K̂
. (70)

Let SP̃J denote the set (57) with P̃J being given by (70). Then Lemma 5.3 remains valid for the

sequence of polytopes given by (70). So δH(S∗, SP̃J )→ 0 as J →∞. Thus in the remainder

of the paper, let ε′ > 0 be any fixed small number. From the above discussion, there

exists an integer number J0 > 2m such that

δH(S∗, SP̃J0
) ≤ ε′. (71)

We consider the fixed polytope P̃J0 constructed as above, which is an approximation

of B and achieves (71). We use N̂ to denote the number of columns of MP̃J0
and use e

N̂
to
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denote the vector of ones in RN̂ to distinguish it from e, the vector of ones in Rn. Replacing B

in (50) by P̃J0 leads to the following approximation of (49):

γ∗P̃J0
:= min

x
{‖x‖1 : u = (Ax− y)/ε, u ∈ P̃J0} = min

x
{‖x‖1 : (MP̃J0

)T (Ax− y) ≤ εe
N̂
}, (72)

where γ∗
P̃J0

is the optimal value of the above problem. Let

S∗P̃J0
= {x ∈ Rn : ‖x‖1 ≤ γ∗P̃J0

, u = (Ax− y)/ε, u ∈ P̃J0}

be the set of optimal solutions of (72), and let SP̃J0
be the set defined by (57) with P̃J replaced

by P̃J0 . Clearly, S∗ ⊆ SP̃J0
. Note that γ∗

P̃J0
≤ γ∗ due to the fact B ⊆ P̃J0 . We immediately see

that S∗
P̃J0
⊆ SP̃J0 The problem (72) can be written as

min
(x,t)
{eT t : x ≤ t, − x ≤ t, t ≥ 0, (MP̃J0

)T (Ax− y) ≤ εe
N̂
},

to which the dual problem is given as

max −
[
εe
N̂

+ (MP̃J0
)T y
]T
v3 (73)

s.t. ATMP̃J0
v3 + v1 − v2 = 0, v1 + v2 ≤ e, (v1, v2, v3) ≥ 0.

The following lemma immediately follows from the optimality condition of the above linear

program.

Lemma 5.5. x∗ ∈ Rn is an optimal solution of (72) if and only if there exist vectors

t∗, v∗1, v
∗
2 ∈ Rn+ and v∗3 ∈ RN̂+ such that (x∗, t∗, v∗1, v

∗
2, v
∗
3) ∈ D(2) where

D(2) = {(x, t, v1, v2, v3) : x ≤ t, − x ≤ t, (MP̃J0
)T (Ax− y) ≤ εe

N̂
,

ATMP̃J0
v3 + v1 − v2 = 0, v1 + v2 ≤ e,

eT t = −
[
εe
N̂

+ (MP̃J0
)T y
]T
v3, (t, v1, v2, v3) ≥ 0}.

(74)

Moreover, for any (x, t, v1, v2, v3) ∈ D(2), it must hold that t = |x|.

To apply Lemma 2.4, we write (74) in the form

D(2) = {z = (x, t, v1, v2, v3) : M+z ≤ b+, M++z = b++}, (75)

where b++ = 0 and

M+ =



I −I 0 0 0
−I −I 0 0 0

(MP̃J0
)TA 0 0 0 0

0 0 I I 0
0 −I 0 0 0
0 0 −I 0 0
0 0 0 −I 0
0 0 0 0 −I

N̂


, b+ =



0
0

(MP̃J0
)T y + εe

N̂

e
0
0
0
0


, (76)

M++ =

(
0 0 I −I ATMP̃J0
0 eT 0 0 εeT

N̂
+ yTMP̃J0

)
, (77)
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where I and I
N̂

are the n × n and N̂ × N̂ identity matrices, respectively. We now prove the

main result in this section.

Theorem 5.6. Let the problem data (A, y, ε) of (49) be given, where ε > 0, y ∈ Rm

and A ∈ Rm×n (m < n) with rank(A) = m. Let ε′ be any prescribed small number and

let the polytope P̃J0 achieve (71). Suppose that AT satisfy the weak RSP of order k.

Then for any x ∈ Rn, there is an optimal solution x∗ of (49) such that

‖x− x∗‖2 ≤ 2γ3

{
N̂(‖Ax− y‖2 − ε)+ + 2σk(x)1 + c1ε+ c2‖Ax− y‖2

}
+ 2ε′, (78)

where c1 and c2 are constants given in (16), γ3 = σ∞,2(M
+,M++) is the Robinson’s

constant determined by (M+,M++) given in (76) and (77). Moreover, for any x

with ‖Ax− y‖2 ≤ ε, there is an optimal solution x∗ of (49) such that

‖x− x∗‖2 ≤ 4γ3σk(x)1 + 2γ3(c1 + c2)ε+ 2ε′.

Proof. Let x be any vector in Rn and let t = |x|. We still denote by S the support set of

the k-largest entries of |x|. Let S+ = {i ∈ S : xi > 0} and S− = {i ∈ S : xi < 0}. Then

S = S+∪S−. Since AT satisfies the weak RSP of order k, there exists a vector η = AT g for some

g ∈ Rm, satisfying that ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, and |ηi| ≤ 1 for i ∈ S, where

S = {1, . . . , n}\S. For the given problem data (A, y, ε), as shown between (67) and (71), there

exists an integer number J0 > 2m such that the polytope P̃J0 , given as (70), can approximate

B and achieve the bound (71). We now construct a feasible solution (ṽ1, ṽ2, ṽ3) to problem

(73). Set (ṽ1)i = 1 and (ṽ2)i = 0 for all i ∈ S+, (ṽ1)i = 0 and (ṽ2)i = 1 for all i ∈ S−, and

(ṽ1)i = (|ηi|+ ηi)/2 and (ṽ2)i = (|ηi| − ηi)/2 for all i ∈ S. This choice of ṽ1 and ṽ2 ensures that

(ṽ1, ṽ2) ≥ 0, ṽ1 + ṽ2 ≤ e and ṽ1 − ṽ2 = η. We now construct the vector ṽ3. By the construction

of P̃J0 , we see that

{±%i : i = 1, . . . ,m} ⊆ Col(MP̃J0
).

It is not difficult to show that there exists a vector ṽ3 ∈ RN̂+ satisfying MP̃J0
ṽ3 = −g and

‖ṽ3‖1 = ‖g‖1. In fact, without loss of generality, we assume that {−%i : i = 1, . . . ,m} are

arranged as the first m columns and {%i : i = 1, . . . ,m} are arranged as the second m columns

in MP̃J0
. For every i = 1, . . . ,m, if gi ≥ 0, then we set (ṽ3)i = gi; otherwise, if gi < 0, then we

set (ṽ3)m+i = −gi. All remaining entries of ṽ3 ∈ RN̂ are set to be zero. By this choice of ṽ3, we

see that ṽ3 ≥ 0, MP̃J0
ṽ3 = −g and

‖ṽ3‖1 = ‖g‖1 = ‖(AAT )−1Aη‖1 ≤ ‖(AAT )−1A‖∞→1‖η‖∞ ≤ c1, (79)

where c1 is the constant given in (16).

LetD(2) be given as in Lemma 5.5. D(2) can be written as (75). For the vector (x, t, ṽ1, ṽ2, ṽ3),

applying Lemma 2.4 with (M ′,M ′′) = (M+,M++) where M+ and M++ are given as (76) and
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(77), there exists a point in D(2), denoted by (x̂, t̂, v̂1, v̂2, v̂3), such that

∥∥∥∥∥∥∥∥∥∥


x
t
ṽ1
ṽ2
ṽ3

−

x̂

t̂
v̂1
v̂2
v̂3


∥∥∥∥∥∥∥∥∥∥
2

≤ γ3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



(
(MP̃J0

)T (Ax− y)− εe
N̂

)+
(x− t)+

(−x− t)+
ATMP̃J0

ṽ3 + ṽ1 − ṽ2
(ṽ1 + ṽ2 − e)+

eT t+
(
εe
N̂

+ (MP̃J0
)T y
)T

ṽ3

t−

(ϑ̃)−



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

, (80)

where (ϑ̃)− denotes the vector ((ṽ1)
−, (ṽ2)

−, (ṽ3)
−), and γ3 = σ∞,2(M

+,M++) is the Robinson’s

constant determined by (M+,M++) given in (76) and (77). Note that t = |x| implies that

(x − t)+ = (−x − t)+ = t− = 0. Also, since (ṽ1, ṽ2, ṽ3) is feasible to (73), we have (ϑ̃)− = 0,

(ṽ1 + ṽ2 − e)+ = 0 and ATMP̃J0
ṽ3 + ṽ1 − ṽ2 = 0. Thus (80) is reduced to

‖x− x̂‖2 ≤ γ3
{∥∥∥∥[(MP̃J0 )T (Ax− y)− εeN

]+∥∥∥∥
1

+

∣∣∣∣eT t+
[
εe
N̂

+ (MP̃J0
)T y
]T
ṽ3

∣∣∣∣} . (81)

Note that for every ai ∈ Col(MP̃J0
), we have ‖ai‖2 = 1 and thus (ai)T (Ax − y) ≤ ‖Ax − y‖2.

This implies that
[
(ai)T (Ax− y)− ε

]+ ≤ (‖Ax− y‖2 − ε)+ and hence[
(MP̃J0

)T (Ax− y)− εe
N̂

]+
≤ (‖Ax− y‖2 − ε)+eN̂ ,

and hence ∥∥∥∥[(MP̃J0 )T (Ax− y)− εe
N̂

]+∥∥∥∥
1

≤ N̂(‖Ax− y‖2 − ε)+. (82)

By the definition of η, we see that xTAT g = xT η = ‖xS‖1 + xT
S
ηS and thus∣∣eT |x| − xTAT g∣∣ =

∣∣‖x‖1 − ‖xS‖1 − xTSηS∣∣ ≤ ‖xS‖1 + |xT
S
ηS | ≤ 2‖xS‖1 = 2σk(x)1.

We also note that

‖g‖2 = ‖(AAT )−1Aη‖2 ≤ ‖(AAT )−1A‖∞→2‖η‖∞ ≤ c2, (83)

where c2 is the constant given in (16). Thus, by letting φ = Ax−y and noting that MP̃J0
ṽ3 = −g,

we have∣∣∣∣eT t+
[
εe
N̂

+ (MP̃J0
)T y
]T
ṽ3

∣∣∣∣ =
∣∣∣eT |x|+ xTATMP̃J0

ṽ3 − φTMP̃J0 ṽ3 + εeT
N̂
ṽ3

∣∣∣
= |eT |x| − xTAT g + φT g + εeT

N̂
ṽ3|

≤ 2σk(x)1 + |φT g|+ |εeT
N̂
ṽ3|

≤ 2σk(x)1 + ‖φ‖2‖g‖2 + ε‖ṽ3‖1
≤ 2σk(x)1 + c2‖Ax− y‖2 + εc1, (84)

where the last inequality follows from (79) and (83). Merging (81), (82) and (84) leads to

‖x− x̂‖2 ≤ γ3
[
|N̂ |(‖Ax− y‖2 − ε)+ + 2σk(x)1 + c1ε+ c2‖Ax− y‖2

]
. (85)
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Note that the set SP̃J0
and S∗ are compact convex sets. Let x∗ and x denote the projection

of x onto S∗ and SP̃J0
respectively, namely, x∗ = πS∗(x) ∈ S∗ and x = πSP̃J0

(x) ∈ SP̃J0 . Since

S∗ ⊆ SP̃J0
, we have ‖x − x‖2 ≤ ‖x − x∗‖2. By (71), δH(S∗, SP̃J0

) ≤ ε′, which together with

Lemma 5.4 implies that

‖x∗ − x‖22 ≤ δH(S∗, SP̃J0
)(‖x− x∗‖2 + ‖x− x‖2) ≤ ε′(‖x− x∗‖2 + ‖x− x‖2). (86)

Note that x̂ ∈ S∗
P̃J0
⊆ SP̃J0 and x is the projection of x into the convex set SP̃J0

. Thus ‖x−x‖2 ≤
‖x− x̂‖2. By triangle inequality and (86), we have

‖x− x∗‖2 ≤ ‖x− x‖2 + ‖x− x∗‖2
≤ ‖x− x̂‖2 + ‖x− x∗‖2
≤ ‖x− x̂‖2 +

√
ε′(‖x− x∗‖2 + ‖x− x‖2). (87)

Since ‖x− x‖2 ≤ ‖x− x∗‖2, it follows from (87) that

‖x− x∗‖2 ≤ ‖x− x̂‖2 +
√

2ε′‖x− x∗‖2, (88)

which implies that

‖x− x∗‖2 ≤

(√
2ε′ +

√
2ε′ + 4‖x− x̂‖2

2

)2

≤ 2ε′ + 2‖x− x̂‖2,

where the last inequality follows from the fact
(
a+b
2

)2 ≤ a2+b2

2 . Combination of the inequality

above and (85) immediately yields (78), i.e.,

‖x− x∗‖2 ≤ 2ε′ + 2γ3

{
N̂(‖Ax− y‖2 − ε)+ + 2σk(x)1 + c1ε+ c2‖Ax− y‖2

}
.

In particularly, when x satisfies ‖Ax− y‖2 ≤ ε, the above inequality is reduced to

‖x− x∗‖2 ≤ 2ε′ + 2γ3 {2σk(x)1 + (c1 + c2)ε} = 4γ3σk(x)1 + 2γ3(c1 + c2)ε+ 2ε′,

as desired. �

We immediately have the following corollary.

Corollary 5.7. Let the problem data (A, y, ε) be given, where ε > 0, y ∈ Rm and A ∈
Rm×n(m < n) with rank(A) = m. Let ε′ be any prescribed small number and the polytope P̃J0
achieve (71). Then under each of the listed conditions in Corollary 3.5, for any x ∈ Rn with

‖Ax− y‖2 ≤ ε there is an optimal solution x∗ of (49) such that

‖x− x∗‖2 ≤ 4γ3σk(x)1 + 2(γ3c1 + γ3c2)ε+ 2ε′.

where c1 and c2 are given in (16) and γ3 is the Robinson’s constant given in Theorem 5.6.

The weak stability is a more general concept than stability. Any traditional

sufficient condition for the stability of `1-minimization problems, by Theorem 2.3,

necessarily implies the weak RSP of AT . From a mathematical point of view, we have

completely characterized the weak stability of standard `1-minimization under this

assumption (see Corollary 3.3). It is worth emphasizing several important features

of the weak RSP of AT .
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(a) Uniform recovery of every k-sparse vector is a basic requirement in com-

pressed sensing, and the classic KKT optimality condition is a fundamental tool for

understanding the internal mechanism of `1-minimization methods. The weak RSP

of AT is natural property capturing both the requirement of uniform recovery and

the deepest property of any optimal solution to `1-minimization. So our assump-

tion is actually a strengthened KKK optimal conditions by taking into account the

requirement of uniform recovery. As a result, no matter what (deterministic or

random) design matrix A is used, the weak RSP of AT is a fundamental proper-

ty guaranteeing the success and stableness of `1-minimization methods in sparse

data recovery. As shown by Corollary 3.3, this property cannot be relaxed with-

out damaging the weak stability of `1-minimization, since it is a necessary and

sufficient condition for `1-minimization to be weakly stable for any measurement

y ∈ {Ax : ‖x‖0 ≤ k}.
(b) Our analysis is different from existing frameworks. It is based on the Hoff-

man’s error bound for linear systems and the polytope approximation of the unit

`2-ball. The weak RSP of AT is a constant-free matrix property. The stability co-

efficients C,C1 and C2 in error bounds (2) and (3) are measured by the Robinson’s

constants, no matter the matrix property is constant-free (such as the weak RSP

of AT , RSP of order k of AT , or NSP of order k) or is constant-dependent (such as

the RIP, stable or robust stable NSP). Thus our analytic method yields a certain

unified weak stability result irrespective of an individual assumption on A, provided

that the imposed assumption implies the weak RSP of AT (see Corollaries 3.5, 4.5

and 5.7.

(c) Practical signals are often structured or with some prior information, and

typical design matrices in practice are not Gaussian or Bernoulli. This makes the

standard analysis and results (based on Gaussian and Bernoulli random matrices)

inapplicable in these situations. Thus the structured sparse data reconstruction

becomes one of the active research areas of compressed sensing and applied math-

ematics. The weak RSP concept derived from optimality conditions of convex

optimization can be easily adapted to these situations to interpret the behavior of

more complex and general recovery problems. For instance, the so-called restricted

RSP property of AT was used to deal with the sign or support recovery of signals

in 1-bit compressed sensing problems [49].

It is also worth mentioning that the analytic method in this paper is not diffi-

cult to be extended to the study of the weak stability of weighted `1-minimization

problems (e.g., [13, 48, 47]), Dantzig selector [12], and Lasso problems [40, 29].

6 Conclusions

We have shown that the so-called weak range space property of the transposed design matrix

is a sufficient constant-free condition for various `1-minimization problems to be (robustly and)

weakly stable in sparse data reconstruction. For noise-free measurements, this matrix property

turns out to be a necessary condition for standard `1-minimization to be weakly stable. All

existing stability conditions (such as mutual coherence, RIP, NSP, or their variants) imply

our assumption. As a result, certain unified weak stability results have been developed for
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`1-minimization under existing matrix properties. In particular, the weak stability under the

constant-free null space property of order k and range space property of order k have been

established in this paper. Our stability coefficient are measured by the Robinson’s constants

determined by the given problem data. Our study indicates that the reconstruction error bounds

via `1-minimization can be understood from Hoffman’s error bounds for linear systems with

compressed sensing matrices.
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