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The Mechanics of Layered Foams
Adam Michael Boyce

This thesis contributes to the understanding of the mechanical response of layered and

hybrid foam structures, such as the sandwich beam, and protective plates comprising

foamed and solid materials. These materials may find applications ranging from critical

structural members in aircraft wings and hulls of ships, to the packaging industry as

well as protective components in bike helmets or dashboards of cars.

The thesis may be broadly split in two parts. Part I considers the influence of residual

stress on the elastic indentation mode of collapse of a sandwich beam whilst the effect

of residual stress on the elastic limit is also explored. Both are explored by the for-

mulation of analytical models and subsequent numerical models and experiments. The

elastic indentation collapse mode increases or decreases in the presence of a tensile or

compressive residual stress. The elastic limit of a sandwich beam in bending is dictated

by the occurrence of three competing mechanisms and the presence of residual stress,

compressive or tensile, is found to negatively affect the load carrying capacity due to

earlier yielding of the sandwich beam.

In Part II, the plane strain indentation response of a polycarbonate (PC) face sheet ad-

hered to a polyvinyl chloride (PVC) foam substrate is measured. The deformation re-

sponse is modelled by finite element simulations and, together with experimental ob-

servations, an analytical model is synthesised. The model assumes elastic membrane

stretching of a face sheet on an elastic, perfectly-plastic foam foundation, and includes

the role of shear-lag between face sheet and foam substrate. Finally, a parametric finite

element study is performed on the indentation of a PC plate attached to a foam foun-

dation consisting of a high-density PVC foam foundation which is in turn attached to

a foundation of low-density foam. The purpose of such a hybrid material is to protect

a structure underneath the foam foundation, whilst also providing similar indentation

resistance at reduced weight.
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Summary
This thesis contributes to the understanding of the mechanical response of layered and

hybrid foam structures, such as the sandwich beam, and protective plates comprising

foamed and solid materials. These materials may find applications ranging from critical

structural members in aircraft wings and hulls of ships, to the packaging industry as

well as protective components in bike helmets or dashboards of cars. The thesis may be

broadly split in two parts. Part I is a study on the strength of sandwich beams. Here we

provide novel insight into the bending behaviour of sandwich beams in the presence of a

residual stress field. Part II of this thesis focuses on the indentation of a foam foundation

protected by a solid polymeric layer in both the plane strain and axisymmetric (plate)

configurations.

The thesis begins with an introduction and literature review and then an outline of the

experimental procedures used to obtain the mechanical properties of the polyvinyl chlo-

ride (PVC) foams and polycarbonate (PC) face sheets that are used throughout the re-

mainder of the thesis. Chapter 4 details an analytical model predicting the collapse

load of a sandwich beam undergoing the elastic indentation mode of collapse during

three point bending whilst subjected to a residual stress in the face sheets. A finite ele-

ment model for a sandwich beam in three point bending and fully clamped conditions

that incorporates a residual stress is developed and then used to validate the analytical

model. An increase in collapse load is observed when a residual tensile stress is present

in the upper face sheet, and vice versa in the case of a compressive residual stress. The

boundaries of the collapse mode map are observed to shift with the magnitude of resid-

ual stress. It is observed that the level of residual stress in a sandwich beam is dependent

on its material properties and sandwich geometry. Consequently, contours of maximum

collapse load can be plotted on a collapse mode map. The model and results from this

chapter indicate that it is possible to achieve significant increases in energy absorbed by

a sandwich beam if a residual stress is present.

Second, the influence of residual stress on the elastic limit or first yield is explored by the

formulation of analytical models and subsequently numerical models and experiments.

The elastic limit of a sandwich beam in bending is dictated by the occurrence of three
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competing mechanisms: i) yield of the face sheets via global bending of the sandwich

structure, ii) yield via indentation i.e. local bending of the face sheet and simultaneous

yield of the core adjacent to the indenter/point load, and iii) yield via shearing of the

entire cross section of the core. The remainder of the chapter details an experimental

implementation of residual stress in sandwich beams that comprise elasto-plastic face

sheets and core, and the resulting effects on the elastic limit and plastic collapse. The ex-

perimental sandwich beam comprises polycarbonate face sheets and H200 PVC foam

core. The limitations of the experimental method are discussed whilst the analytical

models are validated for a number of sandwich beams using experiment and finite ele-

ment methods. The experiments also give insight into the post-collapse behaviour of the

sandwich beams and the associated final failure mechanisms. In general, the presence

of residual stress, compressive or tensile, is found to negatively affect the load carrying

capacity, and subsequent energy absorption behaviour of a sandwich beam.

Third, the plane strain indentation response of a PC face sheet adhered to a PVC foam

substrate (on rigid foundation) is measured. Digital image correlation (DIC) is used

to probe the indentation mode as a function of increasing indent depth. The effects

of indenter size and shape (flat-bottom punch versus cylindrical roller) and of speci-

men length upon the collapse response and failure mechanisms are also explored. The

deformation response is modelled by finite element simulations and, together with the

observations, a simplified analytical model is synthesised. The model assumes elastic

membrane stretching of a face sheet on an elastic, perfectly-plastic foam foundation,

and includes the role of shear lag between face sheet and foam substrate. The chapter

contains a comparison of the indentation response for a face sheet on foam substrate

with that of a sandwich beam in 3-point bending. It is found that membrane stresses

do not develop in the face sheet for the case of 3-point bending, and consequently the

indentation response has negligible hardening post yield. An analytical model is devel-

oped to give direct insight into this alternative collapse mechanism.

Finally, a parametric finite element study is performed on the indentation of a thin PC

plate attached to a foundation consisting of a high density PVC foam foundation which

is in turn attached to a relatively thicker foundation of lower density PVC foam. The
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purpose of such a hybrid material is to protect a structure underneath the foam founda-

tion, whilst also providing similar indentation resistance at reduced weight. The follow-

ing dimensionless parameters were varied in the finite element study; indenter diame-

ter/facesheet thickness, and indenter diameter/high density foam foundation thickness.

The plate was 70% lighter than the equivalent, reference thin PC plate supported by

high density PVC foam only.
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Chapter 1

Introduction

Microarchitectured materials such as lattices and foams are ubiquitous in nature. Such

cellular materials range from cork and balsa wood, to the wings of a bird and the hu-

man bone structure. Man-made cellular materials derive their inspiration from nature

and comprise many materials and structures. Polymer and metallic foams and lattices

provide unique energy absorption and thermal insulation characteristics which are fre-

quently used in myriad industries spanning aerospace, automotive, packaging, and con-

struction technology.

1.1 Foams

Broadly speaking, a cellular solid is an interconnected network of struts and/or plates

which form an array of cells that are arranged in a two dimensional, or three dimensional

fashion (Gibson and Ashby (1999)). A two dimensional cellular solid is usually referred

to as a lattice and an example of such a material is bee’s honeycomb (see Figure 1.1(a)).

On the other hand, foams constitute a three dimensional solid (either closed or open cell)

and are usually manufactured using thermoplastic and thermoset polymers, ceramics,

and a range of metals including stainless steel, aluminium, and copper. Examples of

open and closed cell foams are shown in Figure 1.1(b) and (c). Foamed solids provide a
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(a) (b)

(c)

FIGURE 1.1: (a) Honeycomb lattice (b) open cell foam (c) closed cell foam (Adapted
from Gibson and Ashby (1999))

dramatic increase in the properties available to the industrial engineer. There are three

primary areas of application:

i) Thermal: Polymer foams are widely used as thermal insulators in a broad variety

of applications from the coffee cup to space vehicles. Open cell metal foams (alu-

minium or copper) may also be used in heat exchanger applications. Microcellular

foaming and more recently nanofoaming is being used to achieve ever improving

thermal insulative properties.

ii) Structural: Nature provides an abundance of inspiration for structural applications

of foams; cancellous bones, wood, and birds wings for example. These comprise

of two layers of solid material separated by a foam providing superior flexural

characteristics relative to the equivalent solid material. Man-made applications

of such foam-based structures are panels for aerospace, automotive and marine

applications.
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iii) Packaging and energy absorption: Foams can undergo large compressive strains

at constant stress and are therefore useful for absorbing large amounts of energy

without experiencing excessive loads. This renders foams useful for applications

such as cycling, or military helmets. They are frequently used in seating and

bumpers of cars due to this constitutive behaviour along with their low stiffness.

Foams may also be used in buoyancy, acoustic insulation, and filtration applications.

This thesis is concerned with the structural, and energy absorption properties of foams.

1.2 Layered and graded materials

Nature provides inspiration for countless man-made creations. Layered and graded ma-

terials are universal in natural materials and are a perfect example of such knowledge

transfer between nature and humans. A layered or graded structure consists of a careful

arrangement of a discrete or continuous combination of multiple materials with proper-

ties that may or may not vary with distance, see for example the owl’s skull and maize

leaf of Figure 1.2(b) and (c). An example of such materials are the often studied nat-

ural ceramic nacre, with its superior fracture properties that stem from its layered and

composite structure.

A simple example and one of particular interest to the research carried out in this the-

sis is the sandwich structure. A sandwich structure comprises two stiff and strong face

sheets separated by a lightweight material usually referred to as ’core’. Such a configu-

ration provides a highly efficient material under flexural loading due to the increase in

second moment of area as a result of the separation of the two stiff face sheets. Sand-

wich structures are ubiquitous in nature; the human skull is the most notable example

(see Figure 1.2(c)). Man-made sandwich panels consist of metallic or fibre reinforced

face sheets and polymer or metal foam, or lattice core. Typical sandwich panel config-

urations are shown in Figure 1.3(a), whilst a typical application, an aerospace structure,

is shown in Figure 1.3.
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(c)

(a) (b)

FIGURE 1.2: (a) Cross section of a tall eared owl’s skull, note the graded and multilay-
ered sandwich structure (b) Graded cellular structure of a maize leaf (c) Cross section

of a human skull (Adapted from Gibson et al. (2010))

Both the linear elastic and collapse responses of sandwich beams and plates in flexure

have been well documented, whilst there remains an absence of knowledge in the be-

haviour of a sandwich beam at the elastic limit and also in the post-collapse response. In

addition, further insight is provided into the initial collapse, and elastic limit under the

presence of a residual stress field which has the potential to provide novel strengthening

methods for sandwich beams.
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(b)

(a)

FIGURE 1.3: Sketches of (a) typical sandwich panels, and (b) typical applications of
sandwich panels in an Airbus A380 Thomsen et al. (2005)

1.3 Scope of this thesis

The theme prevalent throughout this thesis is the analysis of indentation mechanics,

capacity for energy absorption, and collapse of layered foam and sandwich structures.

The primary objectives of this thesis are as follows

i) Investigate the influence of residual stress on the collapse mechanisms of sandwich

beams.

ii) Study the first yield behaviour of sandwich beams, and subsequently the influence

of residual stress on first yield.
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iii) Understand and quantify the deep indentation behaviour of a foam protected by a

reinforcing layer.

iv) Understand the indentation behaviour of a layered and graded foam plate.

There is a wealth of literature on the indentation and collapse of layered foam and

sandwich structures. This is addressed in Chapter 2. Chapter 3 details the measurement

of the uniaxial stress versus strain properties of a range of foam grades and a single

grade of polycarbonate. This serves as a basis for the studies carried out in the remaining

chapters. The influence of residual stress on the elastic indentation collapse response

of sandwich beams with elastic face sheets and elastic-plastic core is probed in Chapter

4 and is carried out using analytical methods and supported by further finite element

analyses. In Chapter 5, the point of first yield of sandwich panels is predicted which

assumes a number of modes. The influence of residual stress on these first yield modes

is then predicted using analytical methods and subsequently validated via experimental

and numerical techniques.

The remaining chapters focus specifically on indentation of foam structures. Chapter

6 focuses on the plane strain, deep indentation behaviour of a polymer foam protected

by a ductile polymer layer. Here the membrane stretching of the polymer layer dur-

ing indentation is of primary concern. A new analytical model for such indentation

behaviour is formulated and then validated and supported by experiments and finite el-

ement simulations. In Chapter 7, the indentation of multilayer foam plates protected

by a polycarbonate layer is covered. This chapter uses experimental techniques and fi-

nite element simulations to design a graded or layered structure that achieves significant

lightweighting whilst maintaining similar indentation properties.

Finally, Chapter 8 draws together the conclusions from each of the preceding chapters,

whilst future and related work is suggested.
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Chapter 2

Literature review

Summary

An overview of the literature on the mechanics of foam indentation and the deformation

of hybrid layered foams is presented in this chapter. Firstly, the indentation of polymer

and metal foams is addressed. We then describe the state of the art on the indentation

of foams protected by a face sheet which are in turn supported by a rigid foundation.

Subsequently, we cover the literature on the collapse of sandwich beams in bending,

with a focus on the indentation mode of collapse. We also highlight the influence of

residual stress on the deformation of composite materials as a precursor to the Chapters

4 and 5. Finally, the indentation and general deformation response of graded foams is

discussed.

2.1 Indentation of foams

Polymeric foams typically exhibit a low ductility in tension (of only a few percent),

but a high ductility in compression due to the formation of crush bands (Andrews et al.

(1999); Gaitanaros and Kyriakides (2015); Jang and Kyriakides (2009)). The indenta-

tion strength of polymeric foams is comparable to their uniaxial yield strength due to

the volumetric compressibility of the foam, and the indentation strength is only mildly
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sensitive to the indenter geometry, see Andrews et al. (2001); Flores-Johnson and Li

(2010); Olurin et al. (2000); Onck et al. (2001). For the practical application of foams

to design for protective, energy absorbing packaging and for crash mitigation, it is de-

sirable to enhance the indentation resistance of a foam substrate by the addition of a

suitable face sheet.

The combination of a foam core and a stiff, strong face sheet commonly arises in sand-

wich construction: two stiff and strong face sheets are separated by a lightweight foam

core. Sandwich panels are commonly used in flexural applications due to their low

mass yet high stiffness and strength in bending. The early stage of plastic collapse of

sandwich panels occurs by one of at least three competing mechanisms: face yield, core

shear, and indentation (Ashby et al. (2000); Steeves and Fleck (2004b)). The present

experimental and theoretical study gives additional insight into the indentation mode of

collapse, and addresses the case where indent depths exceed the face sheet thickness

such that the face sheet undergoes membrane action prior to failure. This regime is of

high practical significance; yet it has received little attention in the literature.

Our primary study is concerned with the plane strain indentation response of a single

PC face sheet bonded to a PVC foam substrate upon a rigid foundation. PC is chosen

due to its high tensile strength and ductility, and it finds common use in impact-resistant

transparent components such as masks for eye protection. Our study complements the

experimental investigation of Mohan et al. (2007): they observed a significant elevation

in the axisymmetric indentation strength of a metallic foam due to the presence of a

stainless steel face sheet.

2.1.1 Existing models for the indentation of a face sheet, on a foam

substrate

To date, the plane strain indentation response of a layer on foam substrate has been

concerned primarily with indentation depths that are less than the face sheet thickness.

In such a case, membrane stresses within the top layer play little role. For example,

Biot (1937) analysed the indentation of an elastic layer, of thickness t and Young’s

10



Chapter 2 - Literature review

modulus E f , on an elastic half-space, whilst Hetenyi (1961) simplified this problem

by considering the idealised case of indentation of an elastic beam on an elastic spring

foundation of modulus S by a line load P (per unit thickness), see Figure 2.1(a). Hetenyi

found that the indentation load P is related to the indent depth v by

P = 1.52S3/4t3/4E1/4
f v (2.1)

Soden (1996) extended the Hetenyi analysis for an elastic face sheet and a rigid perfectly-

plastic foundation of strength σcy as shown in Figure 2.1(b). He found that

P = 2.1t3/4
σ

3/4
cy E1/4

f v1/4 (2.2)

Shuaeib and Soden (1997) modified the foam substrate to that of an elastic-perfectly

plastic foundation and more recently Pitarresi and Amorim (2011) considered the sub-

strate to have a more general strain hardening characteristic as defined by a sequence of

distributed springs.

Bostrom (1975) analysed the indentation resistance of a rigid, perfectly-plastic face

sheet of strength σ f y resting on a rigid, perfectly-plastic foundation and loaded by a

transverse point force P. An upper bound for the collapse load was obtained by assum-

ing a mechanism of 3 plastic hinges in the face sheet, to give

P = 2t
√

σ f yσcy (2.3)

Ashby et al. (2000) considered plane strain indentation of a metal face sheet (assumed

as rigid, perfectly-plastic) on a metal foam core (also assumed to be rigid, perfectly-

plastic) by a flat bottom punch of width 2a. They gave an upper bound solution for the

indentation load due to formation of 4 plastic hinges (adjacent to the punch) in the face

sheet as sketched in Figure 2.1(c). They obtained a collapse load of

P = 2t
√

σ f yσcy +2aσcy (2.4)
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FIGURE 2.1: Sketches of (a) Hetenyi (1961) model with foundation modulus S, (b)
Soden (1996) model, and (c) Ashby et al. (2000) upper bound model.

Chen et al. (2001), Bart-Smith et al. (2001), and McCormack et al. (2001) gave exper-

imental support for this plastic collapse mechanism by performing 3-point and 4-point

bend tests on sandwich beams. Whilst this mechanism exists at small indents (with

respect to the face sheet thickness), it neglects the generation of membrane stretch-

ing within the face sheet at larger indent depths. The significance of such membrane

stretching will be a focus of the present study.

Yu and Stronge (1990) realized the interaction between plastic bending and stretching in

the regime of large indentation depth for a rigid, perfectly-plastic face sheet on a rigid,
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perfectly-plastic foundation. Following an upper bound approach with an assumed ve-

locity field, they obtained a ‘membrane factor’ to account for plastic stretching of the

face sheet induced by large deflections. The indentation load P increases with the indent

depth v in the stretching regime according to

P = 2
√

σ f yσcytv (2.5)

An alternative model was developed recently by Rubino et al. (2010) based on experi-

ments on Y-frame and corrugated core bi-layer made from stainless steel. The assumed

collapse mechanism involves rotation about 4 plastic hinges, stretching of the face sheet

between the inner and outer hinges, and shear deformation of the core (of depth c and

shear strength τcy). The resulting indentation load versus displacement relation is

P = 2
√

σ f yσcyt(2v+ t)+ cτcy (2.6)

More recent treatments of indentation on a foam substrate include combined analytical

and finite element studies on the effect of plastic stretching of the face sheet due to

large deflections Qin and Wang (2012); Qin et al. (2014); Xiao et al. (2016); Xie et al.

(2011); Zhang et al. (2016). Both Xiao et al. (2016) and Xie et al. (2011) used an upper

bound approach by assuming a velocity field and assumed that the face sheets and core

are rigid, perfectly-plastic. Thereby, Xie et al. (2011) found the same collapse load as

that given by Equation 2.5. Qin and Wang (2012) and Zhang et al. (2016) modelled the

response of end-clamped sandwich beams under large deflections in their finite element

calculations. Note that the above analyses, assuming rigid, perfectly-plastic behaviour,

ignore elastic stretching of the top face sheet and elastic compliance of the foam core.

It is anticipated that the role of elastic deformation is significant in bi-layers where each

phase has a high value of yield strain, such as PC face sheets on a polymer foam core,

as noted by Boyce et al. (2017). In order for membrane stresses to exist within the

face sheet, there must be load transfer between the face sheet and the foam substrate.

This problem of load diffusion between a strip and a substrate has a long and illustrious

history, see for example Koiter (1966) and Muki and Sternberg (1967). Here, we shall
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FIGURE 2.2: Local property profiles and basic forms of gradients in biological ma-
terials: (a) Local properties change either gradually (I) or in a stepwise manner (II)
through the entire material volume; (b) Local properties vary continuously across the
interface between dissimilar components; (c – g) The gradients in biological materials
are fundamentally associated with the changes in chemical compositions/constituents
(c) and structural characteristics, including the arrangement (d), distribution (e), di-
mensions (f), and orientations (g) of building units; (h) Gradient interface in biological

materials. Adapted from Liu et al. (2017).

present a simple analytical model for membrane stretching of the face sheet during

indentation, based on these classical ideas.

2.1.2 Indentation of gradient materials and structures

2.1.2.1 Basic results and modelling of indentation of gradient materials

Functionally graded materials (FGMs) are spatial composites that display discrete or

continuously varying compositions over a definable geometrical length. The gradients

can be continuous on a microscopic level or layers comprised of metals, ceramics and

polymers. Gradient structures typically involve the variation of a particular material
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property with distance e.g. change of Young’s modulus with depth in a material. This

usually stems from the change in the microstructure over the main dimensions of a

specimen. A simple example of this being the change in cell size in a foamed mate-

rial; this was highlighted in Chapter 1 where natural materials such maize leaves and

animal/human skulls were concerned. Liu et al. (2017) provide insight into the bio-

inspired nature of man-made graded material design; Figure 2.2 shows some biological

gradient structures that inspire man-made designs.

The seminal work on indentation of solids with gradients in elastic properties was car-

ried out by Giannakopoulos and Suresh (1997a,b). They took an analytical and nu-

merical approach and gave the following key findings on the indentation of solids with

varying Young’s modulus with depth

• It was found that a decreasing elastic modulus with depth results in the spreading

of stresses towards the surface rather than to the interior.

• An increasing elastic modulus results in diffusing the stresses towards the interior

of the half-space.

• The influence of the Poisson ratio is strong whenever the elastic modulus is in-

creasing with depth, and is weak whenever the elastic modulus is decreasing with

depth. There is a competing constraint between the elastic modulus distribution

and the increasing Poisson ratio towards the incompressibility limit.

• In all cases the load diffusion is far smoother for the graded material than for

sharp layered cases (e.g. films on substrate), thus avoiding severe stress jumps

that may promote delaminations or other forms of damage.

• On the other hand, a decreasing elastic modulus with depth results in a large

surface deformation which is less localized than the surface deformation for in-

creasing elastic modulus.

A variety of other authors have expanded upon these models and insights by Gian-

nakopoulos and Suresh (1997a,b). Martin et al. (2002) provided a three dimensional
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solution for indentation of a functionally graded material with exponentially varying

elastic properties. Vasu and Bhandakkar (2018) modelled the plane strain solution of a

material with exponentially varying elastic modulus. Giannakopoulos and Pallot (2000)

proposed an indentation model for plane strain indentation by cylindrical punch of a

functionally graded material given as an elastic halfspace in which the elastic modu-

lus varied with depth according to a power law. Ke and Wang (2006) used a similar

approach but gave a solution for an arbitrary variation in elastic properties with depth.

They used a layered approach where the elastic properties changed with the layers and

the variation was captured via a series of piecewise linear curves. Giannakopoulos

(2002) explored the variation of plastic behaviour with depth during the indentation of

a metal substrate. Variations in yield strength were attributed to the change in dislo-

cation density with depth. They found that materials with increasing yield stress with

depth were found to suppress residual stress on the surface whilst the converse pro-

moted surface residual stress. Other authors have considered loading of gradient or

layered structures, see Li et al. (2001).

Most studies outlined so far consider a decreasing elastic modulus with depth as being

advantageous for a variety of reasons such as energy absorption, residual stress reduc-

tion etc. Ziegler and Kraft (2014) considered soft materials where an increase in elastic

modulus with depth was required to reduce the surface tensile stresses during indenta-

tion and delay the onset of cracking relative to the equivalent homogeneous material.

2.1.2.2 Indentation of functionally graded foams

The use and research of functionally graded foams generally revolves around one par-

ticular objective; lightweighting whilst achieving sufficient energy absorption during

impact or denting. A secondary objective typically considered is the protection of an

underlying structure by a functionally graded foam, which may also be protected by an

outer layer. Cui et al. (2009) carried out numerical analysis on impact of functionally

graded foam specimens in compression. They observed that energy absorption capacity

was superior to a homogenous specimen when the density decreased with depth. Al-

though it was observed that this effect was not applicable during high velocity. They
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also highlighted that if the range of material density between top and bottom of the

specimen increases then energy absorption capacity can be increased.

Chapter 7 will focus on both of these issues related to indentation and localised de-

formation of such structures. There have been a small amount of studies that consider

indentation of sandwich panels with graded foam cores, or the indentation of graded

foams protected by thin layers. Both Mu et al. (2015) and Xiao et al. (2016), described

an analytical model based on a virtual work formulation for the axisymmetric indenta-

tion of a plastic membrane on a core in which the plateau stress linearly decreased with

depth. See Apetre et al. (2008) for another study on the energy absorption of gradient

sandwich panels.

2.2 Collapse of sandwich beams under quasi-static bend-

ing

2.2.1 Elastic behaviour of sandwich beams in bending

2a
t

c

P, v
Foam core (Ec, �cy,�cy)

Face sheets (Ef, �fy)

LH H

P/2 P/2

FIGURE 2.3: Simply supported geometry for a sandwich beam of thickness b into the
page.

Consider the sandwich beam of span L shown in Figure 2.3. The beam is loaded by a

flat-bottom punch of width 2a. Assume that the face sheets and core behave as elastic,
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perfectly-plastic solids of plane strain Young’s moduli E f and Ec , and of yield strengths

σ f y and σcy, respectively. The shear strength of the foam is given as τcy. At small values

of punch displacement v<< t , both the face sheets and core behave in an elastic manner

such that the load P increases linearly with v according to Ashby et al. (2000) as

v =
PL3

48(EI)eq
+

PL
4(AG)eq

(2.7)

where (EI)eq is the equivalent flexural rigidity and (AG)eq is the equivalent shear rigid-

ity of the sandwich beam; these relate to the elastic moduli and cross-sectional dimen-

sions of the beam as

(EI)eq =
E f bt(t + c)2

2
+

E f bt3

6
+

Ecbc3

12
(2.8)

and

(AG)eq =
Gcb(t + c)2

2
(2.9)

Here, Gc is the shear modulus of the core.

A sandwich panel loaded in bending may collapse in a variety of ways and we shall out-

line all collapse modes in turn. We refer to these as collapse mechanisms, and the active

mode of collapse is determined by the sandwich geometry and its constituent material

properties. Broadly speaking, there are three mechanisms of collapse; face yield, core

shear, and indentation. Subsequently we may differentiate between elastic and plastic

indentation modes of collapse. Elastic indentation is applicable to stiff, elastic brittle

face sheets such as CFRP or GFRP whilst plastic indentation is generally considered for

elastic-plastic face sheets such as aluminium or stainless steel. In addition there are two

modes of core shear collapse. Furthermore, it is found that boundary conditions (sim-

ply supported vs clamped) alter the operative collapse mechanisms. For an extensive

description of the mechanics and design of sandwich structures, the reader is referred

to the works of Plantema (1966), Allen (1969), and Zenkert (1995).
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2.2.2 Face yield

2a

P, v

2a

P, v

(a)

(b)

Plastic hinge

Microbuckling

FIGURE 2.4: Sketches of (a) face yield, and (b) face microbuckling collapse

Face yield or microbuckling occurs when the axial stress in the sandwich face attains

the yield or microbuckling strength of the face material. In the case of an elastic-brittle

facesheet, failure occurs in the tension-loaded face sheet and for long-fibre composite

face sheets, microbuckling occurs on the compression-loaded facesheet at a compres-

sive stress σ f y less than the tensile strength of the face sheet (see Figure 2.4(a)). The

collapse load PM (the subscript M refers to microbuckling), under simply supported

conditions is predicted using the following expression:

PM =
4bt(t + c)

L−2a
σ f y (2.10)

or for clamped specimens (Tagarielli and Fleck (2005)), the following holds

PM =
8bt(t + c)

L−2a
σ f y (2.11)

If the facesheets are elastic-plastic then we consider an upper bound solution in which

the entire midsection of the beam attains yield, both core and facesheets yield simul-

taneously (see Figure 2.4(b)). The expression that predicts this form of collapse is as

follows:
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PFY =
4bt(t + c)

L−2a
σ f y +

bc2

L−2a
σcy (2.12)

A similar result follows when clamped conditions are considered. There are now two

hinges at the boundaries (Tagarielli and Fleck (2005)). The collapse load is as follows

PFY =
8bt(t + c)

L−2a
σ f y +

2bc2

L−2a
σcy (2.13)

It is clear that both the microbuckling load and face yield are equivalent, with the ex-

ception of an extra term.

2.2.3 Core shear

2a

P, v

(a)

Plastic hinge

2a

P, v

(b)

Plastic hinge

Mode A

Mode B

FIGURE 2.5: Sketches of (a) mode A, and (b) mode B core shear collapse

When a sandwich beam is loaded in three-point bending, in general, the transverse shear

force is carried mostly by the core and collapse of the beam may occur via yielding of

the core which is driven by a specific combination of geometry and material properties.

There are two variations on the core shear collapse mode as shown in Figure 2.5. Mode

A involves the formation of four plastic hinges in the face sheets and and shearing of

the core over the length (L/2+ 2H). H is defined as the overhang. The collapse load

for mode A is as follows
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PCS =
2bt2

L−2a
σ f y +2τcyb(t + c)

(
1+

H
L−2a

)
(2.14)

Mode B involves the formation of four additional plastic hinges at the supported ends of

the beam and shearing behaviour of the length L. The collapse load of a beam in mode

B, core shear is described using

PCS =
2bt2

L−2a
σ f y +2τcyb(t + c) (2.15)

Subsequently, a transition between the two modes can be found where Ht is given as

Ht =
t2σ f y

2cτcy
(2.16)

Mode B is the only permissible core shear collapse mode for clamped conditions and

follows Equation 2.15 (Tagarielli and Fleck (2005)). If the face sheets are loaded elas-

tically, as in the case of GFRP and CFRP face sheets, then the contribution of the face

sheets can be neglected by allowing σ f = 0 in Equations 2.14 and 2.16.

2.2.4 Indentation

It is commonly assumed that the indentation of a face sheet on a foam substrate is an

adequate representation of the indentation of a sandwich beam under 3 point or 4 point

bending. We shall show mater in the thesis that this is not always the case.
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2.2.4.1 Plastic indentation

2a

P, v

(a)

(b)

Plastic hinge

2a

P, v

λ

λ

FIGURE 2.6: Sketches of (a) plastic and (b) elastic indentation collapse

Two modes of indentation failure may exist; elastic and plastic. Plastic indentation has

typically been applied to sandwich panels comprised of ductile metal facesheets and

metal foam cores. The mechanism of collapse assumes the formation of four plastic

hinges adjacent to the indenter and at the boundaries of the indentation region, a distance

λ from the indenter. The collapse load can be obtained using an upper bound calculation

PPI =
4Mp

λ
+(a+λ )bσc (2.17)

The full plastic moment, Mp is given as Mp = σ f bt2/4. If PPI is minimised with respect

to λ the expression for the peak load, described by Ashby et al. (2000), is found to be

PPI = 2bt(σcσ f )
1
2 +2abσc (2.18)

The indentation region is given by λ = t
√

σ f /σc.
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2.2.4.2 Elastic indentation

Steeves and Fleck (2004b) modelled the elastic indentation of sandwich panels under

three point bending, suitable to elastic face sheets and plastic core, as an elastic beam

upon an ideally plastic foundation. During collapse, the face sheet local to the indenter

buckles elastically whilst the core yields. The peak load is as follows

PEI = bt

(
π2(t + c)E f σ2

cy

3L

) 1
3

(2.19)

Tagarielli et al. (2004) extended this analysis to the elastic indentation of sandwich

panels with clamped boundary conditions. The resulting peak load was given as

PEI = bt

(
2π2(t + c)E f σ2

cy

3L

) 1
3

(2.20)

2.2.5 Collapse mechanism maps

The operative collapse mode is the one occuring at the lowest load relative to the others,

a load which may be calculated as described in the preceding sections. It is convenient,

for design purposes, to have graphical methods to portray the competing collapse mech-

anisms. Gibson and Ashby (1999) developed these methods and formed collapse mode

maps for specific face sheet/core combinations which gives the regions of dominance of

each collapse mode for a given combination of geometrical parameters. Other authors

have made use of these maps for a variety of sandwich beam systems (Petras and Sut-

cliffe (1999); Triantafillou and Gibson (1987a,b)). An example of a collapse mode map

for aluminium face sheets and aluminium alloy foam core is shown in Figure 2.7, where

the normalised collapse load F̄ = F/(2bLσ f ) is plotted as a function of t/c and c/L.

Also plotted are contours of constant F̄ for each collapse mode, and constant contours

of M̄, the normalised mass of the beam (based on the density of the core (ρc) and the

face sheet (ρ f ) where
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FIGURE 2.7: An example of a collapse mode map for aluminium face sheets and
aluminium alloy foam core. Adapted from Chen et al. (2001)

M̄ =
M

ρ f bL2 = 2t̄ + c̄
ρc

ρ f
(2.21)

Both F̄ and M̄ are useful when obtaining a minimum weight design for a given collapse

load.

2.3 Prestressing and the use of residual stress as a strength-

ening mechanism

The idea of prestressed materials exists predominantly in civil engineering applications

i.e. that of prestressed steel in concrete. Steel reinforced concrete exists in order to

improve the poor tensile properties of concrete (particularly under flexural loads). Fur-

ther improvement is achieved via the prestressing of the steel; it exerts a compressive

load on the tensile face of a beam in flexure, for example, and thereby protecting it

from fracture. To date, this mechanism has widely been used in concrete, however, lim-

ited use has also occurred in other materials, such as carbon or glass fibre reinforced
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polymers (Daynes et al. (2010, 2008); Fancey (2011); Motahhari and Cameron (1998);

Tuttle (1988); Tuttle et al. (1996)).

One main application for prestressed composites are control surfaces on aircraft, where

traditional structures such as ailerons can be replaced by adaptive prestressed structures

that can selectively alter the component curvature (Daynes et al. (2008)). Improvement

of impact resistance is another prime area for the use of prestressed materials; Motah-

hari and Cameron observed that prestressing glass fibre epoxy composites increased the

impact strength of laminates by up to 33% (Motahhari and Cameron (1998)). Other

authors have found similar results (Fazal and Fancey (2014); Nishi et al. (2014)). Mo-

tahhari and Cameron (1998) carried out a further study on their material in flexure,

noting that the strength and stiffness increased substantially. The work of Tuttle, and

Daynes outlined analytical (based on laminate plate theory) and finite element models

on the introduction of prestresses to such materials (Daynes et al. (2010); Tuttle (1988)).

Mines and Li (2000) studied the influence of residual stress on the quasi static bending

response of carbon fibre composites and found a resulting increase in peak load.

Richards and Richards (1990), designed a foam structural member with internal pre-

stressed tendons made from twine, or steel cables. It was found that the flexural per-

formance of such material improved upon application of a prestress to the tendons. To

the best of the authors knowledge, there has been no work carried out on the flexural

performance of prestressed foam sandwich beams and this leaves room for further work

in this area.
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Chapter 3

Material characterisation

3.1 Introduction

In order to successfully carry out further studies on the mechanical behaviour foams,

and hybrid foam structures, it is important to understand the basic mechanical proper-

ties of both the foam and the reinforcing material, polycarbonate (PC). In particular,

studies on the indentation and flexural behaviour of these materials will require exten-

sive compression and tensile characterisation; it is thus necessary to develop a reliable

and accurate test methodology. The following chapter will outline this test methodol-

ogy as well as the basic mechanical properties of Lexan 9020-112 polycarbonate and

three grades of polyvinyl chloride (PVC) foam. The foams are manufactured by Di-

vinycell, with product names: H35, H80, and H200 and having densities of 38, 80, and

200 kg/m3 respectively.

The mechanical properties of the above materials have been covered widely before,

however the present chapter details the material properties used for analytical and nu-

merical studies carried out in the remaining chapters and is thus a necessary addition to

this thesis.
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3.2 Experimental methods

3.2.1 Foam material characterisation

The influence of strain rate on each material in both compression and tension was as-

sessed. All materials were tested at 10−3,10−2,10−1s−1 strain rates in the z-direction.

In addition to this, a study was carried out on the potential anisotropy introduced as a

result of the manufacturing process. The foams were supplied in large boards which

were 25mm thick and tested in x, y, z, and 45◦ to the x-y directions (see Figure 3.1) at

a strain rate of 10−3s−1. In the case of tension, the foams were not tested in the z di-

rection. All foams were tested in a 5500R-6025 Instron machine. Load cells of 1.5kN,

5kN, and 15kN were used for each of the foams, H35, H80, and H200 respectively. The

variation in load cells ensured that the measured loads achieved the greatest resolution

possible for all foams. An EIR LE-05 laser extensometer was used to make all dis-

placement measurements between two 2mm highly reflective adhesive tags. The laser

extensometer had a resolution of 1µm and a variable range between 5mm and 127mm.

z

xy

t

FIGURE 3.1: Loading directions

3.2.1.1 Compression tests

The three grades of foam were loaded between compression platens at three different

strain rates and in four different directions. The specimen used was a 25mm cube,

which was manufactured on a milling machine to ensure that all faces were parallel
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and orthogonal to one another. The gauge length and displacement were both measured

between the reflective tags placed on the loading platens. Three repeat tests were carried

out for each strain rate and each direction.

3.2.1.2 Tension tests

Tension specimens were tested and manufactured using purposely designed loading rigs

and fixtures. The tension specimens themselves (Figure 3.2) were loaded via aluminium

loading shackles and pins (see Figure 3.3), the motivation for such a design was to

ensure that no crushing of the foam occurred during testing. Two aluminium tabs were

bonded to each end of the dogbone to ensure that no indentation of the foam occurred.

10mm holes were centrally located and placed in the aluminium tabs and dogbone to

ensure that the 10mm pins applied the load through the centre of the dogbone.

The prepartion procedure for the dogbone samples was carried out as follows. All

four aluminium tabs were bonded simultaneously. The tabs were abraded using coarse

emery paper to promote adhesion and then rinsed using acetone. Once they were dry,

Araldite Rapid epoxy adhesive was then used to bond the tabs to the dogbones. A

10mm pin (which was attached to a flat baseplate) was then passed through the two

aluminium tabs (with adhesive applied) and the dogbone, this was done on both ends

of the specimen and ensured that all holes were correctly located and aligned. A 4.5kg

weight was placed on either end to ensure full contact between the aluminium tabs

and foam. Plates, spanning the length and width of the dogbone were then clamped

either side of the specimen to ensure that all aluminium tabs were orientated correctly

and aligned parallel with the edge of the dogbone. The specimens remained in this

configuration for one hour prior to removal of the weights, plates, and clamps.

The dogbones themselves were machined in such a way that the centre of the loading

holes were in line with the centre line of the specimen. This was carried out by clamping

a 200mm x 75mm x25mm block in a purposely made jig. The holes were drilled in

either end, and without unclamping the radius and gauge length were machined. All

relevant dimensions were referenced to the end of the specimen as shown in Figure 3.2.
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FIGURE 3.2: Tensile dogbone specimen (all dimensions in millimetres)

Load Load

Aluminium loading shackles

10mm diameter aluminium loading pins

Dogbone

FIGURE 3.3: Tensile dogbone specimen loading configuration

The three grades of foam were loaded at three different strain rates and in three differ-

ent directions. The displacement was measured using a laser extensometer; the gauge

length and displacement were measured between the reflective tags placed at a distance

of 40mm apart. This distance corresponded with the centre of the gauge length. Three

repeat tests were carried out for each strain rate and each direction (except for the z-

direction).
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FIGURE 3.4: Tensile dogbone specimen (all dimensions in mm)

3.2.2 PC material characterisation

3.2.2.1 Tension tests

For the tensile tests, Lexan 9020-112 polycarbonate was acquired in large sheets of

1mm thickness. Dogbone specimens were machined using a milling machine with the

dimensions as shown in Figure 3.4. The ends of the dogbone were gripped in a 5500R-

6025 Instron machine and loaded at rates which corresponded to strain rates in the range

10−3,10−2,10−1s−1. An EIR LE-05 laser extensometer was used to make all displace-

ment measurements between two 2mm highly reflective adhesive tags, a distance of

60mm apart within the gauge section. Three repeat tests were carried out for each strain

rate.

3.2.2.2 Compression tests

Compression tests were carried out on cylindrical specimens with a height of 12mm and

diameter of 12mm. The tests were performed on the Instron machine (as mentioned pre-

viously) between loading platens lubricated with PTFE spray. The laser extensometer

31



Chapter 3 - Material characterisation

was used to make displacement measurements between the two platens and the speci-

men was loaded at three different strain rates 10−3,10−2,10−1s−1. Three repeat tests

were carried out for each strain rate.

3.3 Results and discussion

3.3.1 Foam properties

Tables 3.1 and 3.2 summarise the mechanical properties found during the material char-

acterisation process in the out-of-plane and in-plane directions respectively. A com-

parison is also drawn between the properties measured during this studies and those

measured by the manufacturer DIAB (2005). There was negligible scatter between the

three repeated tests in all compression and tension experiments. It is clear that small dif-

ferences exist between the experimental work in this study and that of the manufacturer.

The ductility of the materials in this study varied significantly from that of the manufac-

turers measurements, this may be due to the difference in strain measurement or testing

methods. It must be noted that all stresses σ and strains ε , are given as nominal values

in the remaining sections.

3.3.1.1 Influence of loading direction and strain rate

It is evident that strain rate plays a moderate role in the compressive and tensile de-

formation (Figures 3.5 (a), (c) (e)) behaviour of PVC foams. In compression, higher

strain rates give higher yield strengths and plateau strengths. Little effect is seen on

the foam stiffness. In tension, the foam experiences higher yield strengths and stiffness

with increasing strain rate. However, the strain to failure decreases with strain rate,

whilst the failure strength increases. This tensile behaviour is similar to that found by

Poapongsakorn and Kanchanomai (2011) and Deshpande and Fleck (2001) who tested

a range of Divinycell foams.
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TABLE 3.1: Out-of-plane mechanical properties (z direction)

Compressive
strength
(MPa)

Compressive
modulus
(MPa)

Tensile
strength
(MPa)

Tensile
modulus
(MPa)

Failure
strain (%)

H35-
Experiment

0.423 ±
0.006

27.8 ±
0.393 N/A N/A N/A

H35-
Manufacturer

0.5 40 1 49 N/A

H80-
Experiment

1.321 ±
0.009

61.9 ± 4.4 N/A N/A N/A

H80-
Manufacturer

1.4 90 2.5 95 N/A

H200-
Experiment

5.363 ±
0.248

134.88 ±
2.062

N/A N/A N/A

H200-
Manufacturer

5.4 310 7.1 250 N/A

TABLE 3.2: In-plane properties (x and y directions)

Compressive
strength
(MPa)

Compressive
modulus
(MPa)

Tensile
strength
(MPa)

Tensile
modulus
(MPa)

Failure
strain (%)

H35-
Experiment

0.335 ±
0.003

14.86 ±
0.469

0.9 ±
0.044

29.361 ±
1.578

5.353 ±
0.414

H35-
Manufacturer

N/A N/A N/A N/A N/A

H80-
Experiment

0.84 ±
0.009

38.271 ±
3.042

1.95 ±
0.088

53.307 ±
4.051

11.623 ±
0.967

H80-
Manufacturer 1 37 2 75 6.5

H200-
Experiment

3.446 ±
0.056

124.67 ±
1.973

5.755 ±
0.07976

160.541 ±
3.76617

15.413 ±
0.492

H200-
Manufacturer 4 120 4.8 210 10
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FIGURE 3.5: Comparison of nominal compressive and tensile stress strain responses
under varying strain rates for H35, H80, H200 in (a), (c), (e) respectively. Compari-
son of nominal compressive stress strain responses under varying loading direction for

H35, H80, H200 in (b), (d), (f) respectively.
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We show the effect of loading direction on the stress versus strain responses in com-

pression for the full range of foams (H35, H80, H200) in Figures 3.5 (b), (d), and

(f) respectively. Compression tests in the in-plane (x and y) directions of the foam

showed significantly lower yield and plateau strengths than the tests in the out-of-plane

z-direction, although the stiffness is relatively unchanged. Variation between in-plane

properties was minimal indicating that the material is transversely isotropic. The same

trends exist in the tension samples (results not shown), however, the tensile behaviour

in the z-direction could not be obtained due to geometrical limitations. We attribute

the transverse isotropic behaviour to inherent alignment of the cell due to gravitational

effects during the manufacturing process. The cells are longer in the z-direction in com-

parison to the x-y-directions giving higher yield and plateau strengths.

3.3.1.2 Tension compression asymmetry and ductility

Figures 3.5 (a), (c), (e) show the typical asymmetrical behaviour, where it is very ductile

(and does not fail) in compression, whilst it is very brittle in tension. Despite this, it

is evident that the foams yield at a higher strength in tension than that of compression.

This behaviour may be due to the fact that a foam is bending dominated in compression

whilst bending and then stretching dominated in tension. The struts buckle and collapse

in compression via the formation of shear bands, whilst in tension they fail via tearing

of the cell struts and walls. We observe that the disparity between the failure strength

in tension and the peak compressive yield strength decreases as the relative density

increases for these foams. The H35 tensile/compressive strength ratio is approximately

2 whilst in the case of H200 a ratio of approximately 1.25 is observed. It is hypothesised

that this is a result of the change in the aspect ratio of the cells due to the change in

relative density. The cell shape of the higher density is more homogeneous than the

lower density H35.
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FIGURE 3.6: Nominal stress versus strain for polycarbonate in compression and ten-
sion.

3.3.2 Polycarbonate properties

The nominal stress versus strain curves for polycarbonate in both compression and ten-

sion, for three different strain rates, are shown in Figure 3.6. There was negligible

scatter between the three repeated tests in all compression and tension experiments. In

tension we measure a Young’s modulus of E = 2200MPa and observe that the once the

elastic limit is exceeded the stress reaches a local maximum in stress at ≈ 60MPa. We

then observe a sharp drop in stress at this point which coincides with the formation of

a neck within the gauge length. The stress stabilises at a stress of σ ≈ 52MPa. Subse-

quently we observe a plateau in the stress as the neck stabilises and propagates along

the gauge length. This phenomenon is associated with the alignment of the molecular

chains in the polymer. At a nominal strain of 0.6, the plateau region ends and we ob-

serve a stiffening of the response. At this point all of the polymer chains have aligned

and eventually break under increasing strain with a final nominal strain of ε ≈ 1.1.

In compression, we observe that once the elastic limit is exceeded, a small amount of

softening occurs followed by significant hardening. We note that the yield stress of
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polycarbonate in compression is greater than that in tension (σy = 82, approximately

1.3 times greater).

3.4 Conclusion

This section has outlined the successful characterisation of the basic tensile and com-

pressive properties of a range of Divinycell PVC foams as well as a single grade of solid

polcarbonate. It is clear that one must be mindful of strain rate and the direction of load-

ing in any further experiments. Further studies will involve the fracture and bending of

the foam in the in-plane directions and these properties must be considered. In addi-

tion to this, a clear difference between the yield behaviour in tension, versus the yield

behaviour in compression. This fact typifies the asymmetrical behaviour of a foam and

will be needed in further studies, such as that of the analytical behaviour of a beam in

bending.
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Chapter 4

The influence of residual stress on the

collapse of sandwich beams with elastic

face sheets

Summary

The influence of residual stress on the elastic indentation mode of sandwich beam col-

lapse for both simply supported and clamped boundary conditions is first investigated

analytically and then via finite element simulations. An indentation model is presented

in which an elastic beam, supported by a rigid plastic foundation, is loaded by a cylin-

drical roller. In addition to bending loads, the elastic beam undergoes axial loading

due to the action of a residual stress (compressive or tensile) as well as a compressive

force due to the global bending of the entire sandwich structure. The analytical model

quantifies the change in collapse load as a function of a non-dimensional residual stress,

independent of sandwich beam geometry. Subsequently, a collapse mechanism map is

formed for a sandwich beam system comprising GFRP facesheets, and a PVC foam

core, which incorporates contours of the change in collapse load as a function of sand-

wich beam geometry and applied residual stress. The influence of residual stress on the
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boundaries of the collapse map is explored using the analytical model. The relation-

ship between residual stress and collapse load is validated for both a simply supported

sandwich beam and clamped beams loaded by a cylindrical roller. A marked increase

or decrease in collapse load is shown to occur when a tensile or compressive residual

stress is present in a simply supported beam respectively. A clamped beam shows the

same behaviour when a compressive residual stress is present. However, when a tensile

residual stress is present the response becomes dominated by membrane stretching and

no increase in collapse load occurs.

4.1 Introduction

Sandwich panels are used extensively as structural elements in the aerospace and au-

tomotive industries. Consequently, their mechanical behaviour, and in particular their

collapse mechanisms under flexural loading have been widely studied. As described in

Chapter 2, sandwich panels collapse via competing mechanisms (face yield, core shear,

or indentation) which depends upon their constituent properties as well as geometry.

Sandwich structures are frequently subjected to concentrated loads resulting in denting,

or indentation, and the theme of this chapter is this indentation mode of collapse and

how it is influenced by the presence of residual stress.

In general, residual stress exists in all materials on some level and to some extent which

may have positive and/or negative effects on the structural behaviour. Residual stress

is multi-scale and can exist at the micro-scale in fibre reinforced materials which may

cause cracking or debonding of fibres from the matrix material. It is a deleterious effect

in this case. The development of residual stress may also occur at a macro-scale via

asymmetrical cooling across a component depth such as PMMA during the casting pro-

cess, for example. This can lead to warped and defective components. In contrast, we

can observe positive effects from residual stress. Within the field of civil engineering,

a cast concrete component for a bridge or building exhibits elastic brittle behaviour in

tension. To overcome this issue, steel reinforcing members are added to concrete during

the casting process. This serves to strengthen the structure in tension, under bending.
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If further strength is required, then a residual stress is added to the structure via pre-

stressing or post-stressing. This is achieved by placing the steel members in tension

during the casting process. Once the concrete has solidified, the tensile load on the steel

members is released and is subsequently transferred to the concrete, placing it in a state

of compression. This protects it from failure in tension.

The study presented in this chapter draws inspiration from the pre-stressing process in

the field of civil engineering. The presence of residual stress has the potential to improve

or adversely affect the collapse load; this is analysed in detail in this chapter. Residual

stress may also influence the displacement to failure, and significantly alter the mode by

which the sandwich beam attains initial yield or fails, and this is subsequently analysed

in the next chapter, Chapter 5. Here, both face sheets are pre-stressed in tension, whilst

the foam material is placed in a compressive state, akin to that of pre-stressed concrete.

The faces and core behave in an interconnected manner when collapse occurs and this

altered stress state may have a strong influence in changing these collapse states. A sys-

tematic analytical and numerical study has been carried out on a pre-stressed sandwich

beam comprising an elastic brittle GFRP face sheet and PVC foam core with the aim of

understanding the positive or negative effects under the action of a residual stress. This

chapter aims to address the following research questions

1. Is it possible to quantify the change in the elastic indentation collapse due to the

presence of residual stress?

2. Do the boundary conditions alter the influence of residual stress on the collapse

load?

3. Are the boundaries of the collapse mode map sensitive to the presence of residual

stress?
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FIGURE 4.1: (a) Simply supported beam geometry (b) clamped beam geometry (c)
schematic of top face sheet of the sandwich beam during the elastic indentation collapse

mechanism with residual stress R and axial compressive load due to bending, F0.

4.2 An analytical description of the influence of residual

stress on the elastic face indentation collapse mode

4.2.1 A model for the influence of residual stress on the elastic face

indentation collapse of a simply supported beam

Consider a simply supported sandwich beam in bending of depth, b, length, L, facesheet

thickness, t, and core thickness, c, as shown in Figure 4.1(a). A clamped beam is dealt

with later in the chapter and is shown in Figure 4.1(b). The beam behaves in a linear

elastic manner under the applied point load P, resulting in a maximum bending moment

at the centre of the beam of PL/4. This bending moment is in equilibrium with axial

loads ±F0 in the face sheets, where
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F0 =
PL
4d

(4.1)

and d = t + c. The core beneath the indenter yields at σcy, and the upper face sheet

bends in an elastic manner with a wavelength λ . This mechanism is outlined in Figure

4.1(c). Steeves and Fleck (2004b) identified this mode as the elastic face indentation

collapse mode. Subsequently, we will idealise the problem by considering the top face

sheet as an elastic beam sitting on a core idealised as a rigid perfectly-plastic founda-

tion. Further, assume that the upper face sheet is subjected to a net axial load F which

comprises the residual tension (or compression), R, and the compressive load, F0

F = F0−R (4.2)

where R = σRt in terms of a residual stress σR, see Figure 4.1(c). If a differential beam

element is considered then a moment M and shear force V are applied via a transverse

load per unit length q = σcb, subsequently vertical force equilibrium is given as

q =
dV
dx

(4.3)

and moment equilibrium as

F
dv
dx

+V =
dM
dx

(4.4)

where v(x) is the transverse deflection of the beam. We now invoke classical Euler beam

theory

M =−E f I f
d2v
dx2 (4.5)

This results in the following governing differential equation
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d4v
dx4 +

F
E f I f

d2v
dx2 =

−q
E f I f

(4.6)

with solution

v(x) = A1cos(kx)+A2sin(kx)+A3x+A4−
σcybx2

2F
(4.7)

The wave number k is defined as

k =

√
F

E f I f
(4.8)

The coefficients A1, A2, A3, and A4 are determined from the boundary conditions as

follows

Symmetry gives

v′(x = 0) = 0 (4.9)

a)

The shear force on the mid-section of the beam equals P/2 at x = 0, giving

v′′′(x = 0) =
P

2E f I f
(4.10)

b)

At the end of the indentation zone, the core is rigid. This gives

v(x = λ ) = 0 (4.11)

c)
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The slope at the end of the indented zone equals zero

v′(x = λ ) = 0 (4.12)

d)

The moment in the face sheet at the end of the indented zone equals zero since

the bending moment is taken to be continuous

v′′(x = λ ) = 0 (4.13)

e)

The coefficients A1 to A4 follow as

A1 =
2d

Lkα

(
1− cosµ−µsinµ

sinµ−µcosµ

)
(4.14)

A2 =−
2d

Lkα
(4.15)

A3 =
2d
Lα

(4.16)

A4 =
2d

Lkα

(
1− cosµ−µsinµ

sinµ−µcosµ

)
+

dµ2

Lkα

(
1+ cosµ

sinµ−µcosµ

)
(4.17)

Here we define µ = kλ and α as

α =

(
1− 4Rd

PL

)
(4.18)

The load P, mid span roller displacement v(0), and wavelength λ can be given as a

function of the parameters α and µ . First, we obtain an implicit expression for P, µ and

α by using boundary condition (d), expressed as Equation 4.12; this is given as

α
1/3P =

[
4dE f σcy

2

3L

(
sinµ−µcosµ

1− cosµ

)2
]1/3

(4.19)
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Equations 4.1, 4.8, and 4.19 can be used to obtain an expression for the wavelength λ

α
1/3

λ = tµ

[
dE f

6Lσcy2

(
1− cosµ

sinµ−µcosµ

)]1/3

(4.20)

The deflection v(x = 0) may also be found as v(0) = A1 +A4 such that

v(0) =
4d

Lkα

(
1− cosµ−µsinµ

sinµ−µcosµ

)
+

dµ2

Lkα

(
1+ cosµ

sinµ−µcosµ

)
(4.21)

We recognise that v(0) increases monotonically from zero as µ increases from zero.

The parameter µ reaches a value of π at P = PR,max where

α
1/3PR,max = bt

(
π2dE f σc

2

3L

)1/3

(4.22)

via Equation 4.19. To account for the residual stress parameter α as defined in Equation

4.18, we assume that it is fixed at PR,max implying a value of R, in turn giving an explicit

solution for the maximum load. If no residual stress is present in the face sheet, then

α = 1, and the above analysis returns the Steeves and Fleck (2004b) solution for elastic

face indentation of a simply supported beam, P0,max

P0,max = bt

(
π2dE f σc

2

3L

)1/3

(4.23)

4.2.2 A model for the influence of residual stress on the elastic face

indentation collapse of a clamped beam

If we now consider a clamped sandwich beam in bending we may use the above analysis

to produce a load versus displacement relationship and collapse load for such a beam.

The geometry for a clamped beam is shown in Figure4.1(b). The sandwich beam is

under the action of a point load, P, and clamped boundary conditions at both ends. This
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gives a linear elastic response with a maximum bending moment at the centre of the

beam, resulting in a maximum axial load F0 in the face sheet

F0 =
PL
8d

(4.24)

Local to the indenter we observe the same behaviour as seen in the simply supported

case and thus we use the same formulation of the governing differential equation and its

solution given in Equations 4.6 and 4.7 respectively. The new solution takes the form

v(x) = B1cos(kx)+B2sin(kx)+B3x+B4−
σcbx2

2F
(4.25)

Note that k,µ,λ maintain their definitions from Section 4.2.1. We now apply boundary

conditions (a)-(e) as before, however we use the new definition of the maximum global

bending moment from Equation 4.24 to obtain the coefficients B1 to B4.

B1 =
4d

Lkβ

(
1− cosµ−µsinµ

sinµ−µcosµ

)
(4.26)

B2 =−
4d

Lkβ
(4.27)

B3 =
4d
Lβ

(4.28)

B4 =
4d

Lkβ

(
1− cosµ−µsinµ

sinµ−µcosµ

)
+

dµ2

Lkα

(
1+ cosµ

sinµ−µcosµ

)
(4.29)

where the coefficient β is given as

β =

(
1− 8Rd

PL

)
(4.30)

The load P, mid span roller displacement v(0), and wavelength λ can be given as a

function of the fixed parameter β and variable parameter µ and are all definied as fol-

lows. Boundary condition (d), allows us to relate the load P and parameters µ and β .

We obtain the following implicit expression
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β
1/3P =

[
8dE f σc

2

3L

(
sinµ−µcosµ

1− cosµ

)2
]1/3

(4.31)

As before, we subsequently obtain an expression for the wavelength λ

β
1/3

λ = tµ

[
dE f

3Lσc2

(
1− cosµ

sinµ−µcosµ

)]1/3

(4.32)

v(x = 0) may also be found as v(0) = B1 +B4 for a range of values of µ

v(0) =
8d

Lkβ

(
1− cosµ−µsinµ

sinµ−µcosµ

)
+

2dµ2

Lkβ

(
1+ cosµ

sinµ−µcosµ

)
(4.33)

We now use the same argument as before and recognise that v(0) increases monoton-

ically from zero as µ increases from zero. The parameter µ reaches a value of π at

PR,max. The load P thus attains a maximum Pmax as follows

β
1/3PR,max = bt

(
2π2dE f σc

2

3L

)1/3

(4.34)

To account for the parameter β , we assume that it is fixed at PR,max implying a value

of R, in turn giving an explicit solution for the maximum load. If no residual stress is

present in the face sheet, then β = 1, and the above analysis returns the Tagarielli et al.

(2004) solution for elastic face indentation of a clamped beam, P0c,max

P0,max = bt

(
2π2dE f σc

2

3L

)1/3

(4.35)

4.2.3 The predicted influence of residual stress on the collapse load

for a sandwich beam in bending

Sections 4.2.1 and 4.2.2 outlined the peak collapse load, and load versus displacement

response of a sandwich beam in bending subjected to additional axial loads in the face
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sheets which were driven by the coefficients α and β . We see from Equations 4.22 and

4.34 that in general terms, we can represent the increase in collapse load as follows

P̄ =
PR,max

P0,max
=

1
n1/3 (4.36)

where n = α or β . We define R̄ as

R̄ =
Rd

P0,maxL
(4.37)

If we now take Equation 4.36, insert either α or β and rearrange, we obtain

mR̄ = P̄− 1
P̄2 (4.38)

where m = 4 or 8 for the simply supported or full clamped case, respectively.

Equation 4.38 is plotted for both cases in Figure 4.2. In broad terms, we observe that

a significant increase in collapse load is predicted for a sandwich beam with residual

tension, regardless of the applied boundary conditions. A clamped beam with residual

tension in the upper face sheet is expected to produce an increase in collapse load which

is significantly greater than that of a simply supported case for a given R̄, as R̄ increases.

Validation via finite element methods is provided in Section 4.5.

4.2.4 A note on the influence of residual stress on other collapse

modes

This chapter deals with the influence of residual stress on the elastic indentation collapse

mode only. We neglect the influence of residual stress on the face yield/microbuckling

collapse mode for the following reasons. This collapse mode concerns the influence of

the compressive or tensile strength of the chosen face sheet. Here we are concerned

only with an elastic face sheet of a theoretical infinite strength and this assumption
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FIGURE 4.2: Influence of residual stress on the peak load of a sandwich specimen in
the elastic face indentation mode.

gives scope to explore the elastic indentation collapse mode more thoroughly. The

influence of residual stress on the face yield collapse mode is quantified in Chapter

5 with regards to interaction with the plastic indentation collapse mode. In order to

quantify its interaction with the elastic indentation collapse mode, further study will be

required.

We also neglect to account for the influence of residual stress on the core shear col-

lapse mode and its interaction with the elastic indentation mode. Residual stress within

the core of a sandwich beam can cause a significant reduction in the collapse load due

to earlier yielding of the core during bending. The reader is directed to Section 5.2.3

where we quantify such knockdowns in performance. Given that the elastic indenta-

tion mechanism involves yielding of the core, we find that despite the core yielding, the

beam will still approach an elastic indentation collapse. Thus it is clear that there is

a potential for significant interaction between these modes. Again, due to this poten-

tially complex behaviour we choose to isolate the elastic indentation mode by selecting

geometries that fit within the elastic indentation region, at a significant distance from

the core shear region on the collapse mode map. This proves to be a useful approach

given the successful validation of the models proposed in previous sections. This will

be shown in Section 4.5.
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4.3 Collapse mode maps for GFRP facesheets and PVC

foam core

The remaining sections of this chapter outline a case study in which we choose specific

materials to form a sandwich beam system which allows us to probe the implications of

the analytical models detailed in the previous section.

4.3.1 Material selection and creation of a collapse mode map

Fibre reinforced composite materials are frequently used as face sheet materials in a

variety of industrial applications. We choose an elastic brittle GFRP face sheet and

polymer foam core so as to align with these practices. Steeves and Fleck (2004a) car-

ried out material characterisation on a Hexcel Fibredux 7781-914G woven glass-epoxy

composite and it is the material properties from their study that we employ here. The

measured material properties of the GFRP from their studies were; an elastic modulus

E f = 30GPa and an average measured compressive failure strength σ f = 350MPa. The

measured in-plane properties of the H200 core were measured as described in Chapter

3. The in-plane elastic modulus of H200 PVC foam was measured as Ec = 125 MPa

and the compressive strength is σcy =3.2 MPa.

We do not carry out any material characterisation on GFRP or any prestressing or bend-

ing experiments on these sandwich panels. The material properties of GFRP were well

characterised by Steeves and Fleck (2004a), who also used H200 core in their sandwich

beams.

Using these properties, we can thus form a collapse mode map based on the competing

modes of collapse (elastic indentation, core shear and face microbuckling) as outlined

in Chapter 2. The collapse map is formed by choosing a square matrix within a range

of reasonable normalised geometry variables: t̄ = t/c and c̄ = c/L. The collapse load

for all potential modes was calculated, i.e. Equations 4.23, 2.15, and 2.10, at each

matrix point and the minimum and thus operative mode was found. The collapse mode

map for the combination of GFRP face sheets and H200 PVC core in simply supported
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and clamped conditions is shown in Figures 4.3 and 4.4 respectively. We note that the

elastic indentation and face microbuckling regimes are greater in area in the case of

simply supported boundary conditions.

It is instructive to write the normalised residual stress R̄ and P̄ as a function of t̄ and

c̄, and the various material properties. Subsequently we can plot contours of P̄ on the

collapse load map for any assumed value of R̄ allowing us to view and select the range

of geometries available for a given combination of R̄ and P̄. We combine Equation 4.37

with Equation 4.23, and obtain

R̄ =
R
t

(
d
L

)2/3(
3

π2

)1/3(
1

E f σ2
cy

)2/3

(4.39)

Note that for the sake of brevity, we choose to use the simply supported conditions for

this analysis. The following process can be repeated for clamped conditions. If we

choose R such that it is limited by the yield strength of the foam i.e. Rc = cσcy/2,

Equation 4.39 becomes

R̄c =
c̄2/3

2t̄
(1+ t̄)2/3

(
3

π2

)1/3(
σcy

E f

)1/3

(4.40)

and if we choose R such that it is now limited by the strength of the face sheet i.e.

R f = σ f yt, then Equation 4.39 becomes

R̄ f = c̄2/3(1+ t̄)2/3

(
3

π2

)1/3(
σ f y

E1/3
f σ

2/3
cy

)
(4.41)

We can then quantify a transition between these Equations 4.40 and 4.41 using the yield-

/failure strength of the facesheet and foam, σ f y, and σcy in combination with Equation

4.44

t̄trans =
σcy

2σ f y
(4.42)

56



Chapter 4 - The influence of residual stress on the collapse of sandwich beams with
elastic face sheets

Now we can relate t̄ and c̄ to P̄ via Equation 4.38 and plot contours of P̄ for R̄ =

{±0.1,±0.2,±0.3} on the collapse mode map as seen in Figures 4.3 and 4.4 for both

simply supported and clamped beams respectively. We note that the transition between

facesheet and foam governed residual stress for a combination of GFRP and H200 PVC

foam is very small (t̄trans = 0.0046) and we conclude that, for this particular combination

of materials, it is only necessary to include the foam governed contours on the collapse

mode map in the case of simply supported conditions, i.e. Equation 4.40. Face sheet

governed contours are included in the case of the clamped beam as shown in Figure 4.4.

4.3.2 The influence of residual stress on the collapse mode map

The collapse mode map for a GFRP facesheet and H200 PVC foam with−0.4≤ R̄≤ 0.4

is shown in Figures 4.4 and 4.4 for a simply supported and clamped beam respectively.

We observe that once R̄ > 0 the elastic indentation region shrinks due to the raised

collapse load for elastic indentation. The converse is true if R̄ < 0.

We observe that as residual stress increases, the area of possible elastic indentation

collapse shrinks, whilst the contours of P̄ also move accordingly and stay within this

area. We can conclude that the presence of residual stress and its associated collapse

mode contours and trajectory of boundaries give significant insight into the areas of

the collapse load map that facilitate increased energy absorption of sandwich panels in

bending.
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FIGURE 4.3: The collapse mode map for a simply supported beam with GFRP face
sheets and H200 PVC foam core. The change in map boundaries due to the presence
of residual stress is shown for (a)-(b) R̄ =±0.1 (c)-(d) R̄ =±0.2 and (e)-(f) R̄ =±0.3.

The corresponding contour for P̄ is shown in each case.
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FIGURE 4.4: The collapse mode map for a clamped beam with GFRP face sheets
and H200 PVC foam core. The change in map boundaries due to the presence of
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The corresponding contour for P̄ is shown in each case.
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4.4 Finite element methods for sandwich beams in bend-

ing under the action of residual stress

4.4.1 Geometry and material models

In the remaining sections of this chapter we outline numerical simulations that validate

the analytical model provided in Section 4.2 and provide further insight into the be-

haviour of sandwich beams under bending subjected to residual stress. We will now

outline the finite element methods used. Quasi-static finite element simulations were

performed using the finite element analysis package ABAQUS/Explicit (v6.14). Figure

4.1 shows the geometry and loading for the three-point bending of the sandwich beams.

The beam is supported between the span by rigid cylindrical rollers of radius r = 9.5mm,

and is indented by a circular roller of diameter D = 1mm. The contact between rollers,

supports and the beam surfaces is assumed to be frictionless. The mesh comprises of

20 four-noded quadrilateral plane strain elements (designated CPE4R in ABAQUS/Ex-

plicit) through the thickness of the facesheet and about 100 elements through the core

thickness with suitable additional refinement at the indenter and at the support rollers.

Perfect adhesion was assumed between the face sheets and foam core. A symmetric

half model was employed in the FE study with the bottom edge of the core fixed and

the roller prescribed with a vertical downward velocity. The punch velocity in the FE

calculations was chosen to be sufficiently small to ensure negligible inertial effects in

order to simulate quasi-static conditions. Figure 4.5 shows the finite element model as

described above and also shows the presence of residual stress, for which the numerical

methodology will be discussed in Section 4.4.2.

The face sheet was a glass fibre reinforced plastic (GFRP) modelled as an elastic solid

with an elastic modulus of E f = 30 GPa and Poisson’s ratio of ν f = 0.3, as mentioned

previously. The PVC foam properties were specified with an elastic modulus Ec = 125

MPa and Poisson’s ratio νc = 0.3. The measured nominal stress versus strain response

is given in Figure 4.6 (a). The post-yield behaviour of the foam was modelled using

the crushable foam model in ABAQUS which allows for a dissimilar response of the
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FIGURE 4.5: Residual stress state in the facesheets and core at the end of the pre-
stressing step.

foam in tension and compression; a detailed description of the constitutive model is

given in Appendix A. The assumed true uniaxial compressive response of the foam is

plotted in Figure 4.6 (b); this curve is a smooth spline fit of the measured response in

uniaxial compression (at a strain rate of 10−4s−1) upon excluding the stress peak at

the onset of yield. A perfectly-plastic response is assumed for foam under tension via a

constant parameter k2 as explained in Appendix A. For a choice of k2 = 2.2, the uniaxial

tensile yield strength from the FE simulation agrees with the measured uniaxial tensile

strength (of 4.7 MPa) to within 3%, and this value is employed in all the FE simulations.

Failure of GFRP and PVC was not included in the FE model. Rate sensitivity was also

neglected for both GFRP and PVC.

4.4.2 FE prestressing procedure

The role of residual tensile stress in the facesheets on the collapse load of sandwich

beams in simply supported and clamped bending was explored via a two-step FE anal-

ysis in ABAQUS. In the first step of the analysis, the facesheet is thermally loaded to a

temperature T inducing a stress σ f R in the facesheet of magnitude
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FIGURE 4.6: (a) Measured stress versus strain response for H200 PVC foam in both
tension and compression (b) The input stress versus strain response for FE simulations.

σ f R =
E f αT T

1+ E f
Ec

2t
c

(4.43)

Equilibrium dictates that there is a stress σcR in the core of magnitude

σcR =
2t
c

σ f R (4.44)

where αT is the coefficient of linear thermal expansion of the facesheet. We present

Equations 4.43 and 4.44 without proof, however this is addressed in Chapter 5. αT T

is required as an input to the finite element model in order to simulate the prestress in

the face sheet. We calculate this by using Equation 4.43 and selecting a desired value

of σ f R. Note that the maximum tensile residual stress in the facesheet is limited by

the core compressive strength, σcy, and the thickness of the facesheets, t and core c

according to Equation 4.44, as σ f R,max = σcyc/2t. Figure 4.5 shows an example of the

stress state in the facesheets and core at the end of the thermal stressing step for a case

where the facesheet contains a uniform tensile residual stress of σ f R = 43 MPa exists in

the facesheet and a uniform compressive residual stress 3.2 MPa exists in the core, both

outside the shear lag region 20 mm. The shear lag region is estimated as Ls = tσR f /τcy

where τcy for H200 PVC foam is 2.7 MPa. In the case of the simply supported beam, the
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length of the overhang, H, is chosen such that H > Ls to ensure a uniform residual stress

state within the span prior to bending. In the case of the clamped beam, the clamped

conditions are applied following the thermal stressing procedure and it is assumed that

L/2−λ >> Ls to ensure that the elastic collapse mechanism occurs within an area of

uniform tensile residual stress in the face sheet.

In the second step of the analysis, a frictionless contact is established between the in-

denter, the supporting stationary rollers, and the beam. The indenter is then displaced

vertically at a velocity small enough for the inertial effects to be negligible so as to

simulate the quasi-static bending response of the sandwich beam.

4.5 Finite element analysis of the influence of residual

stress on the collapse of sandwich beams

We now present a series of finite element simulations that probe the relationship be-

tween the relative increase in collapse load P̄ and the applied, dimensionless residual

stress R̄ as described by Equation 4.38 and represented in Figure 4.2 for both sim-

ply supported and clamped boundary conditions. FE simulations explored R̄ values of

−0.4 < R̄ < 0.4 in intervals of R̄ = 0.1. The resulting value of P̄ was measured and

compared with the corresponding analytical value.

The following methodology was used to choose geometry and the subsequent levels of

residual stress needed to validate the analytical model. First, a value of R̄ was fixed,

and then the geometry was chosen in accordance with Equation 4.40 where a value of t̄

was calculated for a fixed value of c̄ = 0.1 in all simply supported and clamped cases.

The value of σR f was then calculated based on Equation 4.44, given t̄ and σcy. Finally,

the value of αT T was calculated using Equation 4.43 and used as input to the GFRP

material model in ABAQUS/Explicit. The FE procedure, as described in Section 4.4,

was then carried out for beams that had (a) no residual stress, (b) a tensile residual stress

in the face sheets and compressive residual stress in the core, and (c) a compressive

63



Chapter 4 - The influence of residual stress on the collapse of sandwich beams with
elastic face sheets

TABLE 4.1: Geometry and residual stress values for numerical simulations (SS=simply
supported, C=clamped)

Mode R̄ t̄ c̄ t (mm)
c

(mm)
L

(mm)
σ f R

(MPa) αT T

SS ±0.1 0.034 0.1 0.34 10 100 ±43 0.025
SS ±0.2 0.017 0.1 0.17 10 100 ±86.5 0.026

SS ±0.3 0.012 0.1 0.12 10 100 ±133.63 0.028
SS ±0.4 0.0086 0.1 0.086 10 100 ±172.94 0.029

C ±0.1 0.025 0.1 0.25 10 100 ±64 0.027
C ±0.2 0.0125 0.1 0.125 10 100 ±128 0.029
C ±0.3 0.0083 0.1 0.083 10 100 ±192.71 0.03
C ±0.4 0.0062 0.1 0.062 10 100 ±258.27 0.032

residual stress in the face sheets and tensile residual stress in the core. The geometry,

and numerical details for each case is provided in Table 4.1.

4.5.1 Results and discussion

4.5.1.1 Simply supported beam results

The load versus indentation responses for the simply supported beams outlined in Table

4.1 with residual stress level in the range −0.4 ≤ R̄ ≤ 0.4 are shown in Figure 4.7. In

broad terms, we observe excellent agreement between the FE simulations and the ex-

pected change in collapse load between the cases with and without residual stress. The

analytical model described in Section 4.2 for a point load, implies that a peak load is

reached and then softening occurs as indentation proceeds. In Figure 4.7 (a) we observe

this behaviour for all three cases of R̄ = 0,±0.1. However the remaining cases in Figure

4.7 (b)-(d) show a hardening response, or at least a plateau in the load versus displace-

ment response. We can trace this behaviour to the following. As R̄ increases we have

chosen t such that it is decreasing. Thus the ratio t/D is also decreasing which promotes

increasing contact area between the roller and facesheet. If we analyse the maximum

principal stress along the length of the beam, midway through the facesheet thickness,

we observe that the increased contact area promotes significant levels of membrane ten-

sion in the facesheet following initial collapse. We now consider an example where
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where both types of collapse occur in tandem; the softening response of initial collapse

is not suppressed but then geometric hardening occurs subsequently. Consider the case

in Figure 4.7 (d) when R̄ =−0.4, we clearly see two stages of collapse: initial collapse

with a softening response dictated by the analytical model (Section 4.2) and the pres-

ence of significant compressive maximum in-plane principal stresses (σ1) in the face

sheet (see Figure 4.8 (a)), which is marked as (A) (v = 0.15 mm) on the load versus

displacement response. The softening reaches a minimum as the indentation proceeds

and we then observe increased indenter contact and subsequent geometric hardening

leading to tensile stretching which can be seen in Figure 4.8 (b) and indicated as point

(B) (v = 1mm) on the load versus displacement response.

We note that the elastic indentation models of the present chapter do not incorporate

the presence of a residual stress in the core (which is not the case for the finite element

models). A residual stress in the core may cause earlier yielding of the foam and thus

would directly affect the elastic bending and collapse of the beam. This may contribute

to the more compliant finite element load versus displacement responses observed in

Figure 4.7, however it is not immediately clear the extent to which it affects the collapse

load given the agreement between finite element and analytical models.

Despite the significant geometrical effects, as described, we observe that the relationship

between a prescribed residual stress R̄ and a resulting change in collapse load P̄ holds,

as described by Equation 4.38. The sensitivity of collapse load to R̄ is given in Figure

4.10 and the FE predictions broadly agree with theory. We note that this increase in R̄

and subsequently the collapse load gives a significant increase in energy absorption, i.e.

the area under the load versus displacement curve.

4.5.1.2 Clamped beam results

We present the load versus displacement responses in Figure 4.9 for the full range of

clamped beams in bending as outlined in Table 4.1. Initial collapse is accurately pre-

dicted when R̄ ≤ 0 and it is clear that the prediction for R̄ > 0 is not adequate. The FE

results for P̄ against prescribed R̄ are given in Figure 4.10 and compared with the ana-

lytical response of 4.38 and confirm this conclusion. However, we observe a small rise
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in collapse load when a tensile residual stress is present, comparable to that of the sim-

ply supported case. If we again analyse the maximum principal stress along the length

of the beam, midway through the facesheet thickness, we see that face sheet bends and

collapses elastically, but then gives way to membrane stretching (a) due to the clamped

boundary conditions, (b) increasing contact area between the indenter and face sheet,

and (c) the presence of a tensile residual stress. This inhibits the potential for increasing

the collapse load of the sandwich panel in the presence of residual stress. In summary,

rather than inhibiting the influence of the axial compressive force in the facesheet due to

global bending (as in the simply supported case) we discover that the beam rapidly tran-

sitions into a stretching mode and the tensile residual stress contributes and adds to this

behaviour. The converse is true in the case of the compressive residual stress, we see a

delay in the membrane action and a reduction in expected collapse as predicted by the

analytical model. We also note that energy absorption is significantly increased when

a tensile residual stress is present after initial collapse; the deep indentation membrane

response of a prestressed beam maintains a raised loading response relative to that of

the case absent a residual stress.

4.6 Concluding remarks

This chapter focused on the effect of residual stress on the collapse behaviour of sand-

wich panels with elastic face sheets and foam core in flexure, under both simply sup-

ported and fully clamped configurations. An analytical description predicting the in-

fluence of an additional axial load in the face sheets was provided and indicated that

significant changes in collapse load may occur as a result. The analytical model ex-

pands upon the models of both Steeves and Fleck (2004b) and Tagarielli et al. (2004).

This model was then used to form a collapse load map for a sandwich beam system com-

prising GFRP (elastic) facesheets and PVC foam (rigid-perfectly-plastic) core in which

the influence of residual stress was included. This new collapse mode map showed con-

tours of the relative change in collapse load due to the presence of residual stress as well

as the trajectory of the boundaries of this map under the influence of changing residual

stress.
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FIGURE 4.7: Load versus displacement for the four simply supported (SS) cases as
outlined in Table 4.1. A reference sample, R̄ = 0 is included in each case.

A series of numerical simulations were carried out, which successfully validated the

analytical model in the case of a simply supported beam for both tensile and compres-

sive residual stresses in the face sheet. We observed significant potential for increase in

collapse load and thus energy absorbed by a sandwich beam specimen. Conversely, it

is clear that compressive residual stresses in the face sheet promote elastic indentation

collapse and impacts negatively on the collapse load and energy absorption characteris-

tics of a beam. The FE simulations also demonstrated the significant role that facesheet

thickness/indenter size ratio plays on the energy absorption characteristics under deep

indentation at depths greater than the facesheet thickness. We found that the numerical

simulations for a clamped case validated the model where compressive residual stresses
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area as indentation proceeds from (A) v = 0.15mm to (B) v = 1mm.

were concerned. However, we observed that tensile residual stresses did not produce

the expected increase in collapse but instead promoted membrane stretching, and alter-

natively produced significant increases in energy absorbed as a result.

The elastic indentation models described in this chapter consider the bending of a face

sheet which is supported by a uniformly distributed load. This distributed load is de-

fined by the yield strength of the foam. If a residual stress is present in the core then

earlier yielding of the foam will occur, which will directly influence the calculated col-

lapse load. A model for the influence of residual stress on the first yield of the core is
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FIGURE 4.9: Load versus displacement for the four clamped (C) cases as outlined in
Table 4.1. A reference sample, R̄ = 0 is included in each case.

presented in Section 5.2.3. If the core yield model was coupled with the elastic inden-

tation models of the present chapter then a more accurate representation of the collapse

behaviour would be obtained. The absence of such a calculation is the main limitation

of the residual stress-elastic indentation collapse model, and provides a source of future

work.

The study presented in this chapter has given insight into the behaviour of sandwich

beams under the action of residual stress and has provided new potential design tools

for the industrial end user of sandwich panels which allows greater energy absorption

and collapse loads for the same weight. However, there are significant caveats that must

be noted, and addressed in future studies. First, the present study has shown theoretical
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and numerical analysis only. Experiments are required in order to provide further insight

into the behaviour described in preceding sections. Second, we have not provided any

feasible, practical method for inducing residual stresses in a sandwich panel of such

materials. This issue is discussed in more detail in the following chapter. The failure of

the facesheet or foam has not been included in our analysis and this has the potential to

limit the effectiveness of mechanisms described within this chapter.
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Chapter 5

The influence of residual stress on the

elastic limit and collapse of sandwich

beams with elasto-plastic face sheets

Summary

The influence of residual stress on the elastic limit or first yield is initially explored by

the formulation of analytical models and subsequently numerical models and experi-

ments. We find that the elastic limit of a sandwich beam in bending is exceeded by

the occurrence of three competing mechanisms: i) yield of the face sheets via global

bending of the sandwich structure, ii) yield via indentation, i.e. local bending of the

face sheet and simultaneous yield of the core adjacent to the indenter/point load, and

iii) yield via shearing of the entire cross section of the core. Models are presented for

all three mechanisms. These three mechanisms are closely related to the three collapse

mechanisms (core shear, indentation, and face yield/microbuckling). We subsequently

discuss the effect of residual stress on these collapse modes and postulate that there is

indeed no effect of a residual stress field due to the fact that they are full plastic col-

lapse modes and are formulated as upper bound calculations. The remainder of the

chapter details an experimental implementation of residual stress in sandwich beams
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that comprise elasto-plastic face sheets and core, and the resulting effects on the elastic

limit and plastic collapse. The experimental sandwich beam comprises polycarbonate

face sheets and H200 PVC foam core. The limitations of the experimental method are

discussed whilst the analytical models are validated for a number of sandwich beams

using experiment and finite element methods. The experiments also give insight into

the post-collapse behaviour of the sandwich beams and the final failure mechanisms.

5.1 Introduction

The elastic behaviour of sandwich beams has been thoroughly documented, see for

example the works of Plantema (1966), Allen (1969), and Zenkert (1995). Once the

elastic limit is exceeded, failure will occur in the case of an elastic-brittle face sheet or

the beam will proceed to full plastic collapse. Both Steeves and Fleck (2004a,b) and

Tagarielli et al. (2004) have considered the indentation collapse of a sandwich beam

when the face sheets remain elastic whilst the core yields. This form of collapse was

considered in detail in Chapter 4. The plastic collapse of the sandwich panel, core and

face sheets, occurs via three competing mechanisms (core shear, plastic indentation,

and face yield) and has been covered by both Allen (1969) and Ashby et al. (2000) in

which they employ upper bound models to describe these collapse behaviours. There

is a noteworthy gap in this literature; the elastic limit or first yield of sandwich beams

in bending that precedes full plastic collapse. We aim to address this gap in the present

chapter from the perspective of residual stress and its influence on the yield/fracture of

the sandwich panel.

Chapter 4 demonstrated that the collapse behaviour of a sandwich panel in bending can

be significantly altered when residual stress is present in the face sheets. We realise that

the upper bound behaviour of sandwich beams will not be influenced by residual stress.

However, we aim to extend our analysis of the first yield of face sheets to incorporate

the influence of residual stress on the first yield. The aim of such analysis is to probe

the potential for increased/decreased energy absorption due to a residual stress field,
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introduced into the sandwich beam by design or via manufacturing defects. For exam-

ple, if a thermoplastic sandwich panel is manufactured in one step via the combined

solid and foam extrusion process then there is the potential for the presence of residual

stress present in the face sheets and foam due to thermal gradients in the component

during cooling and solidification. We employ an analytical, experimental and numer-

ical analysis on elasto-plastic face sheets (polycarbonate) and elastic-perfectly plastic

core (polyvinyl chloride foam).

In summary, we aim to address the following research questions in the present chapter.

1. Can we quantify the elastic limit for sandwich beams in bending?

2. Does a sandwich beam reach the elastic limit via differing mechanisms?

3. Is it feasible to experimentally introduce residual stress into a sandwich beam

specimen and are there limitations?

4. Is it possible to quantify the influence of residual stress on the first of yield of the

sandwich panels?

5. How is the failure of sandwich panels influenced by the presence of residual

stress?

5.2 An analytical description of the influence of resid-

ual stress on the first yield and collapse modes of a

sandwich beam in three-point bending

5.2.1 First yield via global bending and the influence of residual

stress

Consider a sandwich beam in three-point bending, as shown in Figure 5.1, of depth b

(into the page) and span L, comprising two face sheets of thickness t and a foam core

75



Chapter 5 - The influence of residual stress on the elastic limit and collapse of
sandwich beams

2a
t

c

P, v
Foam core (Ec, �cy,�cy)

Face sheets (Ef, �fy)

LH H

P/2 P/2

FIGURE 5.1: Geometry and loading for three-point bend

of thickness c. The second moment of area of the beam is given as I f = bt(t + d)2/2.

The beam is loaded by a flat-bottomed punch of width 2a. We define the apparent

span as L′ = L−2a. The maximum moment Mmax occurs at mid-span and the resulting

maximum bending stress (σ f = Mmaxy/I f ) in the beam occurs at the outer fibres in

the face sheet (which has a cross-sectional area, A f = bt) at an approximate distance

y = (t + c)/2 = d/2 from the neutral axis (centre of the cross-section). In addition to

the axial stress due to bending at the outer fibre of the beam, we now apply an additional

uniform axial residual stress, σ f R = R/A f , in the face sheet. Equilibrium dictates, that

at y = d/2 the total stress, σ f in the face sheet is given as follows

σ f =
Mmaxd

2I f
+

R
A f

(5.1)

Under an applied moment Mmax = PL′/m (m = 4or8 for simply supported or clamped

conditions respectively), the face sheet will attain first yield when the total stress σ f

reaches the material yield strength σ f y. The load at first yield Pf yR may then be found

by rearranging Equation 5.1

Pf yR =
mbtd

L′
(σ f y−σ f R) (5.2)
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FIGURE 5.2: Predicted change in first yield load relative to the upper bound collapse
load as a function of applied residual stress.

The resulting behaviour is that of a linear relationship between the collapse load Pf yR

and the applied residual stress σ f R in the face sheet. If we now normalise the first yield

Equation 5.2 by the collapse load 2.12 we obtain a prediction of P̄f y, the change in load

at which the elastic limit is exceeded, as a function of the dimensionless residual stress

R̄ f y = Rd/L′P0

Pf yR

Pf y0
= 1−m

Rd
L′Pf y0

= 1−mR̄ f y (5.3)

Figure 5.2 shows the change in collapse load P̄f y obtained due to presence of residual

stress (tensile or compressive) in the face sheet for any given set of material properties

and sandwich geometry. We observe that if a residual stress is present in the face sheet,

then, regardless of directionality, the load at which the elastic limit is exceeded will

reduce.

We must now consider three scenarios in order to locate the point of first yield in the

beam.
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i) σ f R = 0: if the face sheet material possesses the same uniaxial stress versus strain

behaviour in tension and compression then both face sheets will yield simultane-

ously.

ii) σ f R > 0: the lower, tensile face sheet will attain yield earlier whilst the upper,

compressive face sheet will be protected from yield.

iii) σ f R < 0: the upper, compressive face sheet will attain yield earlier whilst the lower,

tensile face sheet will be protected from yield.

There are more complex scenarios where the tensile and compressive response of the

face sheets are different from one another, however for the sake of brevity we list the

three scenarios above. In general, once one of the face sheets yields, the remaining face

sheet will proceed to the yield point whilst the core will begin to approach yield across

the entire cross-section of the specimen. Once this occurs, the beam has reached full

plastic collapse and the upper bound behaviour is detailed by Ashby et al. (2000) and

described by Equation 2.12.

The above analysis assumes an elastic-plastic face sheet such as aluminium alloy or

polycarbonate (as used in this study) which is typically used in sandwich beam con-

struction. Now consider a face sheet that is made from an elastic-brittle material such

as ceramics, GFRP or CFRP. It is clear that the analysis detailed in this section holds.

We can predict the response of the beam to residual stress, the load, and location of

failure. The beam however does not transition to full plastic collapse and instead is

likely to fail catastrophically, or via other mechanisms that are beyond the scope of this

analysis.

5.2.2 First yield via localised indentation and the influence of resid-

ual stress

We now identify another mode by which a sandwich beam may reach the elastic limit:

localised indentation of the face sheet, and the mechanism is described as follows. The

face sheet bends elastically local to the indenter and subsequently attains the yield
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FIGURE 5.3: Loading of face sheet and foam foundation (a) without global bending
present as seen in Soden (1996) and (b) the present case where global bending of the

sandwich beam is present.

strength of the material upon sufficient displacement of the indenter. The face sheet

is supported by foam that has undergone yield (local to the indenter) and serves to act

as a perfectly-plastic foundation given the plateaued post yield behaviour of the foam

itself. This mechanism has been identified by Soden (1996).

However we recognise that this localised mechanism is occurring in tandem with the ac-

tion of a bending moment to the whole sandwich beam via three-point bending. In order

to model such behaviour we treat the upper face sheet as an elastic beam in bending sup-

ported by a plastic foundation (as described), which is coupled via superposition, with

a uniform compressive load in the face sheet due to the global bending moment. Now

consider an additional uniform axial stress, compressive or tensile, in the face sheet due

to the presence of a residual stress field. These three stresses may be superimposed and

are described in detail later in the section.

In order to proceed with a solution to predict the elastic limit load, we choose to ex-

tend the Soden (1996) solution to account for a flat bottomed indenter. Soden (1996)

predicted the load versus displacement response of an elastic beam on rigid plastic foun-

dation subjected to point load as described by Equation 2.2, and the bending stress at
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which the beam fractures or attains yield σ f as

σ f =
9P2

16b2t2σcy
(5.4)

Now consider the same mechanism as shown in Figure 5.3 with the elastic beam un-

dergoing a load P. In this case the load is applied via flat bottomed indenter of width

2a. The beam is supported by the rigid plastic foundation given as q = σcyb, whilst

the reaction forces Q0, and moments M0 ensure that the face sheet remains attached.

The distributed load q acts over a plastic zone length λp and we also define the region

outside the indenter as λ
′
p = λp− 2a. We apply Euler beam theory to determine the

displacement v0 at the beam midspan

v0 =
λ
′3
p

192E f I f

(
P−2abσcy−

bσcyλ
′
p

2

)
(5.5)

M0 is determined by assuming that the slope at the boundaries is zero and is given as

M0 =
(P−2abσcy)λ

′3
p

8
−

bσcyλ
′2
p

12
(5.6)

Vertical equilibrium dictates that Q0 is given as

Q0 =
(P−2abσcy)

2
−

bσcyλ
′
p

2
(5.7)

It is clear that the moment, reaction force, and displacement all depend on the size of

the plastic zone λ
′
p. If Equation 5.5 is differentiated with respect to λ

′
p it is found that

the plastic zone size has a maximum length λ
′∗
p given as

λ
′∗
p =

3(P−2abσcy)

2bσcy
(5.8)

If Equation 5.8 is substituted into Equations 5.5 and 5.6 then we find that M0 = 0 and

that relationship between P and the maximum value of v∗ as
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v∗ =
27(P−2abσcy)

4

6144b3σ3
cy

(5.9)

Upon rearranging we get

PL = Kbt3/4
σ

3/4
cy E1/4

f v∗1/4 +2abσcy (5.10)

Here K = (4/
√

3)(2/3)1/4 ≈ 2.1. We now note that the maximum moment occurs at

x = λ
′∗
p /2 and is given as

Mmax =
3

32
(P−2abσcy)

2 (5.11)

and subsequently the maximum stress at the outer fibres of the face sheet can be deter-

mined as

σmax =
6Mmax

bt2 =
9(P−2abσcy)

2

16bt2σcy
(5.12)

We can find the load at which a sandwich beam exceeds the elastic limit due to local

indentation of the face sheet by considering the stress distribution in the face sheet. The

stress distribution in the face sheet may be found by superposition in which we include

the stress due to the bending of the face sheet local to the indenter as described by

Equation 5.12 (now represented by subscript L), the residual stress σ f R = R/A f , and a

compressive stress due to the global bending of the sandwich beam (represented by the

subscript G). The total stress in the face sheet σ f is thus given as follows

σ f =
MLyL

(EI)L
−MGyG

(EI)G
± R

A f
(5.13)

Here yL = t/2, yG = d/2, (EI)G = E f bt(t + c)2/2, and (EI)L = E f bt3/12. This now

gives us the following relationship between the elastic limit load P, the applied residual
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stress in the face sheet σ f R, and the constituent geometry and material properties of the

face sheet and core as described previously

±σ f y =
9(P−2abσcy)

2

16t2σcy
− P(L−2a)

mdt
±σR, f (5.14)

Note that the above equation is quadratic in nature and thus has two solutions. We find

the roots of the above equation, i.e. solutions for P. The lowest, positive root gives us

the elastic limit load. However we must also consider that first yield may occur on the

compressive side of the face sheet or on the tensile side. Thus we must solve Equation

5.14 twice; once for a positive yield stress (tension) and a second time for a negative

value of yield stress (compression). We compare the two loads obtained and consider

the lowest load as being the operative mode and location for first yielding. We note that

since the axial load due to the global bending of the sandwich beam is compressive in

nature, the first yield is more likely to occur on the compressive side of the face sheet

unless a sufficiently high tensile residual stress is present in the beam. In the limiting

case of no residual stress, we thus find that first yield always occurs on the compressive

side of the face sheet.

It proves difficult to provide a tractable prediction of the relationship between change

in first yield load due to the presence of residual stress as was carried out in Section

5.2.1. This is due to the quadratic nature of Equation 5.14 and the heavy dependency

on geometry and material properties.

5.2.3 First yield via shearing of the core

The core shear collapse load was first predicted by Allen (1969). Allen (1969) shows

that, during elastic bending of a sandwich beam via an applied load P, the core, due

to its relatively low stiffness, carries an approximately uniform shear stress across the

entire cross-section given by

τ =
P

2btd
(5.15)
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Once the beam deflects sufficiently, the core will attain the core shear strength τcy. This

gives the first yield load as

P = 2btdτcy (5.16)

If the beam geometry is chosen to ensure that it operates within the core shear collapse

mode then full plastic collapse of the beam will occur via Equation 2.14 or Equation

2.15. If the beam geometry choice implies that full plastic collapse (or elastic indenta-

tion collapse) occurs then the beam will first yield via core shear and then proceed to

the operative collapse mode.

We now consider the influence of residual stress on the first yield via core shear of a

sandwich beam, once again in the knowledge that it does not influence the upper bound,

full plastic collapse. The core shear yield mode is driven primarily by the yield strength

of the foam. A situation where residual stress is present in the core will ensure that

the core yields at lower loads than predicted by Equation 2.15 (when σ f = 0) due to

the presence of an additional tensile, or compressive axial load due to residual stress.

We now quantify this knockdown by beginning with the Deshpande-Fleck yield surface

for metal foams (Deshpande and Fleck (2000)). The yield surface for PVC foam is

described using the Deshpande and Fleck yield surface as initially developed for metal

foams (Deshpande and Fleck (2001)). Subsequently this was shown to be an accurate

description for polymer foams provided an elastic buckling cap was included (Desh-

pande and Fleck (2001)). The yield surface of the foam is taken to be

Φ = σ̂ −σcy = 0 (5.17)

where σcy is the yield strength of the foam and σ̂ is the effective stress, defined by

σ̂
2 =

1
1+(αDF/3)2 (σ

2
e +α

2
DFσ

2
m) (5.18)
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Here σe is the Von Mises effective stress and σm is the hydrostatic stress. The parameter

αDF describes the aspect ratio of the elliptical yield surface; J2 flow theory is recovered

when αDF = 0. The present model assumes that the yield surface grows in a geomet-

rically self-similar manner. The plastic strain rate is assumed to be normal to the yield

surface such that associated flow prevails. Polymer foams have a zero plastic Poissons

ratio, which results in αDF ≈ 2. Introduce the (x1,x2,x3) co-ordinate system as shown in

Figure 5.1 where the x3 direction is into the page. The stress state within the foam is as

follows. A residual tension is present in the x1 direction and is given as σ11 = −2R/c.

The foam is unloaded in the remaining axial directions i.e. σ22 = σ33 = 0. A shear

stress σ12 is present due to the applied load in three point bending and is given as

σ12 = σ21 = PR/2c. All other shear components are zero. Recall that the deviatoric

tensor is given as Si j = σi j−δi jσm where σm = σkk/3 =−2R/3c. We then express the

Von Mises stress as

σ
2
e =

3
2

Si jSi j = 3

[
S2

12 +
1
2

(
S2

11 +S2
22 +S2

33

)]
(5.19)

Now we find the components of the deviatoric tensor which are all given as follows.

S11 =−4R/3c,S22 = S33 = 2R/3c, and S12 = S21 = P/2c. Combining these with Equa-

tion 5.19 gives the following relationship between the Von Mises equivalent stress σe,

collapse load PR, and the applied residual tension R

σ
2
e = 3

[(
PR

2c

)2

+3

(
2R
3c

)2]
(5.20)

We then combine Equation 5.20 and the Deshpande-Fleck yield surface (Equation 5.18)

to achieve a relationship between the applied residual stress R, the foam compressive

strength σcy, and the resulting collapse load PR

σ
2
cy =

1
1+(αDF/3)2

[
3

(
PR

2c

)2

+(9+α
2
DF)

(
2R
3c

)2]
(5.21)
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FIGURE 5.4: Influence of residual stress on the peak load of a sandwich specimen in
the core shear first yield mode.

When R = 0 we obtain the collapse load P0 with the definition as described by Equation

5.16. If we now rearrange Equation 5.21 and normalise by P0, we obtain a relationship

between the change in collapse load and the applied residual stress which is shown in

Figure 5.4 for a number of values of αDF and is described by the following equation

PR

P0
=

(
1− (9+α2

DF)

3

(
4R
3P0

)2)1/2

(5.22)
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5.3 Experimental behaviour of an elasto-plastic sand-

wich beam in three-point bending subjected to resid-

ual stress

5.3.1 Analysis of the experimental procedure for prestressing

It is instructive to quantify the expected residual stress present in a specimen prior to

a three-point bend experiment. Here we present a simple analytical description of the

chosen experimental prestressing procedure. In this study, we aim to bring a sandwich

panel into a state of equillibrium with a residual stress field present, comprising a tensile

stress in the face sheets and a compressive stress in the core. This is illustrated in Figure

5.5 and achieved via the following steps

(i) The foam and both face sheets are unbonded and unstressed (σc = σ f = 0).

(ii) A tensile stress, σ f 0 is applied to the face sheets, where σ f 0 < σ f y. The foam core

remains unstressed and unbonded (σc = 0).

(iii) The unstressed core is bonded between the face sheets. The face sheets remain at

σ f 0 for a period of ∆t whilst the adhesive cures.

(iv) The load is released on the bonded sandwich structure. In the process of reaching

a state of equilibrium, the stress in the face sheet reduces to σ f R via a change in

strain ∆ε which results in a compressive stress of σcR in the core.

∆ε describes the loss in tensile load in the face sheet due to the mismatch in Young’s

modulus of both core and face sheet materials. This loss is a consequence of the chosen

experimental methodolgy in this study. ∆ε may be expressed as

∆ε =
∆σ f

E f
=

∆σc

Ec
(5.23)
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FIGURE 5.5: (a) Schematic of experimental prestress procedure. (b) Stress and strain
state in face sheet and core during and after the experimental prestress procedure. (c)

Strain state in the face sheet as a function of time.
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where E f and Ec are the Young’s modulus of the face sheet and core respectively. ∆ε is

the change in strain during unloading between state (iii) and (iv). As a result, the stress

in the foam and the face sheets at the final state (iv), may be given as follows

σ f R = σ f 0 +∆σ f (5.24)

σcR = 0+∆σc (5.25)

Equilibrium of the foam and face sheets in the final state B dictates that

2tσ f R = cσcR (5.26)

Equating Equations 5.23 - 5.26 enables the prediction of the change in strain of the

sandwich beam between state (iii) and (iv) as a function of the initial load in the face

sheet and material Young’s modulus, face sheet thickness, t, and core thickness, c

∆ε =−
2t
c

σ f 0
E f

2t
c + Ec

E f

(5.27)

In addition to this, the final stress induced in the face sheet may also be given as follows

σ f R =
σ f 0

2E f
Ec

t
c +1

(5.28)

If the core was prestressed in compression whilst the face sheets were simultaneously

prestressed in tension and subsequently bonded then there would be no loss in residual

stress. In practice it is difficult to apply a compressive load to the core due to its length;

column buckling is likely to occur. A more practical, but not ideal, method has been

described in general above and the detailed experimental procedure will be described in

Section 5.5. This methodology is inspired by the prestressed steel reinforced concrete

used in civil engineering applications.
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5.3.2 Limitations on material selection due to experimental method-

ology

The general conclusion from the analysis in Section 5.3.1 is that the chosen experimen-

tal prestressing method does not produce the same level of residual stress state as that of

the ideal case. This places limits on material selection for face sheet and core materials.

If we assume that the desire is to place the sandwich beam in the maximum possible

residual stress state, then we assume that we load a material to its elastic limit (ε f ). We

now take Equation 5.29 and normalise

ε̂L =
∆ε

ε f
=− 1

1+ c
2t

Ec
E f

(5.29)

This equation gives a design space for a sandwich beam in terms of the constituent

geometry and stiffness properties with the goal of minimising ε̂L. The relationship be-

tween ε̂L and t/c for a variety of Young’s modulus mismatches (Ē = E f /Ec) is shown in

Figure 5.6. It is clear that as the mismatch in Young’s modulus increases, the allowable

t/c space in which a small loss in residual stress occurs becomes increasingly limited.

Consider the GFRP and H200 PVC foam from Chapter 4. The modulus mismatch is

approximately Ē = 200 and thus severely limits the maximum residual stress in the face

sheet to 0 < ε̂L < 0.3 for values of t/c < 1. Thus we find that the loss in tension ∆ε is

large for a GFRP face sheet prestressed to approximately its failure load. The loss in

tension is in fact approximately equal to the pretension applied for a significantly large

range of t/c resulting in no induced residual stress in the sandwich structure. It must

be noted that geometry plays a role, but in this case the stiffness of the material is so

high that the loss in tension is a dominant factor. If, in contrast, we choose a PC face

sheet and H200 foam core, (Ē ≈ 15), we find that, for most geometries, the efficiency

is higher than the GFRP and H200 sandwich panel, and it is indeed possible to achieve

much lower losses, with the loss in residual stress exceeding ε̂L > 0.5. We conclude

that, when using the present methodology of applying a residual stress to a sandwich
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FIGURE 5.6: Loss of residual stress during the experimental prestress procedure for a
variety of E f /Ec

panel, a system comprising PC face sheets and H200 foam core is more practical than

the GFRP/PVC foam combination.

5.4 Material characterisation and design of experiments

A typical three-point bend experimental setup is shown in Figure 5.1. First yield and

collapse mode maps may be constructed for a given set of face sheet and core materials

using the equations outlined in Section 5.2. We form a collapse mode map based on the

competing modes of collapse (elastic indentation, core shear and face microbuckling)

as outlined in Chapter 2 and a first yield map (face yield, indentation, and core shear) in

the same manner based on the equations in Section 5.2. The collapse/first yield map is

formed by choosing a square matrix within a range of reasonable normalised geometry

variables: t̄ = t/c and c̄ = c/L. The collapse/yield load for all potential modes was

calculated at each matrix point and the minimum and thus operative mode was found.
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The materials used within this study were Lexan 9030-112 polycarbonate face sheets

and Divinycell H200 PVC foam core, for which the appropriate properties were mea-

sured (as described in Chapter 3). The polycarbonate face sheet properties are as fol-

lows: σ f = 52MPa, and E f = 2.45GPa. The Divinycell H200 core properties are:

σc = 3.17MPa, Ec = 125MPa and τc = 2.7MPa. The nominal tensile, and compressive

stress-strain curves associated with PC face sheets, and H200 foam core are shown in

Figure 5.7.

The constituent properties were then used to form the collapse mode maps shown in

Figure 5.8 for both a flat punch (ā = 0), and for a roller (ā = 0.025). The points A-F

highlighted in Figure 5.8 indicate the experimental points that are probed. Table 5.1

and 5.2 outline the experimental geometries for each of these points. It is important to

highlight that we do not probe the core shear response. The geometries required for

such a specimen require extremely thick face sheets with little separation due to very

thin cores. The structure thus deviates from the traditional idea of a sandwich beam and

we exclude this particular mode from our experimental and finite element analysis, and

leave for future work.
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TABLE 5.1: Details of the sandwich beam geometry for each three point bending ex-
periment using a flat indenter with ā = 0.025 for each representative mode of collapse,
face yield, elastic indentation, plastic indentation. Note that the overhang length, L0, is
50mm in each case and that R = 19mm for cases A and D, and R = 4mm for case C.

Case
Collapse

mode t̄ c̄
t

(mm)
c

(mm)
L

(mm)
2a

(mm)
σ f R

(MPa)

A FY 0.1 0.04 1 10 250 10 16
B PI 0.05 0.2 1 20 100 4 28
C PI 0.1 0.4 1 10 25 1 16

TABLE 5.2: Details of the sandwich beam geometry for each three point bending
experiment using a cylindrical indenter of diameter D for each representative mode
of collapse, face yield, elastic indentation, plastic indentation. Note that the overhang
length, L0, is 50mm in each case and that R = 19mm for cases A and D, and R = 4mm

for case C.

Case
Collapse

mode t̄ c̄
t

(mm)
c

(mm)
L

(mm)
2a

(mm)
σ f R

(MPa)

D FY 0.1 0.04 1 10 250 10 16
E PI 0.05 0.2 1 20 100 4 28
F PI 0.1 0.4 1 10 25 1 16
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FIGURE 5.8: Collapse mode map for a sandwich beam made from Divinycell H200
foam core and Lexan PC face sheet under three-point bend, with a cylindrical (ā = 0)

and flat indenter geometry (ā = 0.025).

92



Chapter 5 - The influence of residual stress on the elastic limit and collapse of
sandwich beams

(a) (b)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t
t

c
�

c
c

L
�

Core

Shear

Face

Yield

A0

B0

C0

Plastic

Indentation

(yield in compression)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t
t

c
�

c
c

L
�

Core

Shear

D0

E0

F0

Plastic

Indentation

(yield in compression)

c
c

L
�

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t
t

c
�

Core

Shear

AR CR

Plastic

Ind.
Face

Yield

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t
t

c
�

c
c

L
�

Face

Yield

Core

Shear

BR

Plastic

Indentation

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t
t

c
�

c
c

L
�

Core

Shear

DR FR

Face

Yield

a=0

Plastic

Indentation

(yield in compression)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t
t

c
�

c
c

L
�

Core

Shear

Plastic Indentation

(yield in tension)

ERFace

Yield

a=0

a=0�fR=0MPa

a=0�fR=16MPa

a=0�fR=28MPa

a=0.025�fR=0MPa

a=0.025�fR=16MPa

a=0.025�fR=28MPa

(c) (d)

(e) (f)

FIGURE 5.9: First yield mode map for a sandwich beam made from Divinycell H200
foam core and Lexan PC face sheets under three-point bend, with (a), (c), (e) a cylin-
drical indenter geometry (ā = 0) and (b), (d), (f) a flat indenter geometry (ā = 0.025).

Residual stress levels, σ f R, vary in each case.
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5.5 Experimental procedure

5.5.1 Specimen preparation and prestress procedure

Two polycarbonate dogbones were manufactured and clamped together in the assem-

bly shown in Figure 5.10. The assembly was placed in a screw driven Instron tensile

testing machine and then the PC sheets were stretched simultaneously. Once they were

stretched to a load corresponding to the yield point of the PC, the Instron was set to

hold the assembly at a fixed displacement. Subsequently Loctite 401, low viscosity and

fast curing, cyanoacrylate adhesive was spread on both faces of the polycarbonate. The

foam core was then inserted between the face sheets and the assembly was subsequently

clamped and allowed to cure for 30 minutes before unloading. A strain gauge (FLA-6-

11 manufactured by Tokyo Measuring Instruments Lab.) with a maximum strain limit

of 5% was placed in the centre of one of the face sheets and enabled the measurement

of strain during prestressing, the loss in strain within the curing interval and finally the

change in strain, ∆ε during and after unloading of the sandwich beam. Once unloading

was complete, the assembly was removed from the Instron and the ends were removed

using a band saw, leaving only the prestressed three point bend specimen. The strain

gauge was used to ensure that the residual stress remained after the cutting procedure.

5.5.2 Three-point bend procedure

The three-point bend test was carried out immediately after the prestressing procedure.

The support rollers were 19mm (or 4mm in case C and F) in diameter and all tests were

carried out at a crosshead speed of L/100 mm/min. Two indenters were used: a flat

indenter (2a/L = 0.025), and a cylindrical indenter with D/L = 0.025 (as with the flat

indenter). Digital image correlation was used to measure the extent of indentation, i.e.

the displacement of the top face sheet relative to the displacement of the bottom face

sheet. The images taken during this procedure were also used to assess the collapse

mode.
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FIGURE 5.10: (a) Front and (b) side view of the experimental setup for prestressing
a sandwich beam. Note that the foam core is only inserted in step (iii) as described in

Section 5.3.1. All dimensions are in millimetres.

5.6 Finite element methods

The analytical models of Section 5.2 are validated via both experiment and finite ele-

ment simulations. The finite element methodologies for carrying out a three point bend

test on a sandwich beam whilst subjected to a residual stress field are outlined in Sec-

tion 4.4 of Chapter 4. We use the same methodologies in this chapter. However, we

now use PC face sheets and H200 PVC foam. The material model for the H200 foam

is outlined in Appendix A. The material model for the PC face sheet is described as

follows. The PC face sheet was modelled as an isotropic, rate-independent, Von Mises
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FIGURE 5.11: Uniaxial true stress versus logarithmic strain responses for the FE sim-
ulations: (a) PC face sheet and (b) PVC H200 foam core.

solid with a true stress versus true strain response as shown in Figure 5.11. This curve

is derived from the measured response of PC face sheet in uniaxial tension (at a strain

rate of 10−4s−1) upon assuming a bi-linear fit for the post-yield nominal stress versus

nominal strain data of Figure 5.7. The elastic modulus and Poisson’s ratio are taken

as E f = 2 GPa and ν f = 0.3, respectively, based on the measured values in uniaxial

tension. Failure and rate sensitivity of PC was not included in the FE model.

5.7 Results and discussion

5.7.1 Experimental prestressing procedure

We note that once the loading of the face sheets is complete and the Instron is set to a

fixed displacement, the face sheet exhibits viscoelastic stress relaxation. This results in

a loss of approximately 20% of applied prestress. An example of the face sheet strain

history during prestressing is given in Figure 5.12. It is evident that the strain remains

constant during the curing interval with some small fluctuations which were unavoid-

able due to clamping of the specimen. In addition some error may be present here due to

a thermal strain component from heat released during curing of the adhesive. Although
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FIGURE 5.12: Strain versus time on one of the PC face sheets during the experimental
prestress procedure. Each step during the prestressing procedure is illustrated in Fig.5.5
and is as follows. (i) Face sheet and foam are undeformed, (ii) face sheets have been
stretched to σ f 0, (iii) adhesive has been applied, foam has been inserted, and adhesive

cured, (iv) fully cured sandwich structure has been unloaded

after 30 minutes of curing these effects will have dissipated and the specimen will have

reached thermal equilibrium. Subsequently, once unloading is complete there is a small

loss in strain which results from creep of the foam, adhesive and polycarbonate. This

creep was monitored over a 24 hour period and it was found that it reached a steady

state after approximately 30 minutes with the same strain level measured 1 day later.

5.7.2 First yield via global bending

5.7.2.1 Finite element results

Here we validate the relationship given by Equation 5.3 and shown in Figure 5.2. We

choose a single geometry that lies within the face yield mode of first yield and collapse

and then subject it to varying magnitudes of residual stress fields in the face sheets.

The geometry and residual stress values are given in Table 5.3. The first yield load

is measured by the load at which the Von Mises equivalent stress exceeds the yield

strength of the material.
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TABLE 5.3: Geometry and residual stress levels for the numerical validation of the
analytical model for first yield via global bending

Geometry: t=1mm, c=20mm, L=200mm, t̄ = 0.05, c̄ = 0.1, 2a = 10mm

R̄ 0 0.05 0.1 0.2 -0.05 -0.1 -0.2
σ f R

(MPa) 0 8.684 14.87 22.88 -8.684 -14.87 -22.88

A sample of the load versus displacement response for a specimen as described in Table

5.3 with residual stress levels of R̄ f y = {0,0.1,−0.1} is given in Figure 5.13(a). Fur-

thermore, in Figure 5.13(b), we provide the finite element predictions for the full range

of simulations carried out to predict the change in first yield load as predicted by Equa-

tion 5.3. It is clear that the finite element results are in broad agreement with Equation

5.3 and a reduction in first yield load is observed regardless of whether the stress is

compressive or tensile. The load versus displacement response of Figure 5.13(a) shows

that little change in the final collapse load occurs as predicted whilst overall energy

absorbed (i.e. area under the curve) is reduced due to the presence of residual stress.

Figure 5.13(c) shows the location (in grey) of first yield for (i) a specimen with no

residual stress present, and as expected both face sheets yield simultaneously which is

immediately followed by buckling of the upper face sheet due to compressive yielding

of the PC. This is indicated in Figure 5.13(a) as softening following the peak load which

is linked with the loss in cross-section of the beam following buckling. In Figure 5.13(c)

(ii) and (iii), as expected, we observe a switch in location of yield to the bottom face

sheet when a tensile residual stress is present and the upper face sheet when a compres-

sive residual stress field is present, whilst the opposite face sheet in both cases remains

elastic. Note that when a compressive residual stress exists, there is a small drop in the

load at which buckling occurs relative to the other specimens due to the fact that the

beam reaches this load more readily due to an additional compressive load in the face

sheet.
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FIGURE 5.13: Comparison of the experimental, finite element, analytical load versus
indentation responses for a prestresseed and non-prestressed face yield specimen (a)

flat indenter, (b) cylindrical indenter D = 10mm

5.7.2.2 Experimental results

The load versus displacement response of the experimental points for a flat punch A0

and AR and a cylindrical indenter D0, and DR, as defined in Tables 5.1 and 5.2 are

given in Figures 5.14(a) and (b). In general, we achieve excellent agreement between

experiment, finite element, and analytical models for the elastic and collapse response

of the sandwich beam. Due to experimental constraints, it was not possible to obtain

first yield information from the experiments, and we rely on first yield data from the
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corresponding finite element models. As expected, we observe very little change in the

collapse load despite the presence of residual stress. An elevation in collapse load is

observed in cases A0 and AR relative to D0 and DR due to the use of a flat punch which

is as predicted.

The final failure of the specimen is observed to change based on the shape of the indenter

and the level of residual stress. If a flat punch is used then we find that immediately

after collapse (the peak load), failure occurs on the tensile side of the beam which is

shown in Figure 5.14(c). Crack initiation occurs within the foam due to its low ductility

(ε f ≈ 0.16). The face sheet alone must carry the load and thus the strain in the face sheet

increases rapidly resulting in fracture and catastrophic failure of the beam itself. This

failure mode occurs irrespective of the residual stress level. In contrast, if a cylindrical

indenter is used, two different failure modes will occur. When there is no residual stress

present, case D0, the upper face sheet will begin to buckle when collapse occurs (as

shown in Figure 5.14(d)), and as described in Section 5.7.2.1. If a tensile residual stress

is present such as in case DR, then we observe the tensile face to fail as described above

(Figure 5.13(e).

5.7.3 First yield via local indentation

We now validate the relationship between first yield load/location and applied residual

stress via finite element models accompanied by experimental analysis. Firstly, the

load versus displacement response for cases B0, BR, E0 andER are presented in Figures

5.15(a) and (b). We observe excellent agreement between experiment, finite elements

and analytical model (collapse load for plastic indentation). The first yield maps in

Figures 5.9(a) and (e) indicate that the beam should yield via localised indentation when

loaded by a cylindrical roller (E0 and ER). However they also show that there is a

transition between two types of localised indentation: yield on the compressive side of

the upper face sheet when there is no residual stress, and yield on the tensile side of the

face sheet when a residual stress is present. This transition is observed as expected and

the location of yield is confirmed in the finite element contours of Figures 5.15(c) and

(d). The collapse mode map shown in Figure 5.8 indicates that the final collapse mode
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FIGURE 5.14: Comparison of the experimental, finite element, analytical load versus
indentation responses for a prestresseed and non-prestressed face yield specimen (a)

flat indenter, (b) cylindrical indenter D = 10mm
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is plastic indentation, this is the case for both cylindrical roller and flat punch as shown

Figures 5.15(e) and (f).

The load versus displacement response for cases C0, CR, F0 andFR are shown in Figure

5.16(a) and (b). Broad agreement is found between experiment, finite element and

analytical models. In all cases, the first yield mode is via localised indentation whilst

the final collapse mode is in the plastic indentation region as confirmed by the plastic

hinge formation observed during experiments (see Figure 5.16(c) and (d)). The results

of finite element and experiments all conform to this prediction. Like the cases B0, BR,

E0 and ER, we observe a reduction in load at which first yield is exceeded when residual

stress is present. Likewise we confirm the predictions made by Equation 5.14. In the

cases C0, CR, F0 andFR we do not observe specimen failure. This is based on the fact

that the strain in the tensile face sheet is limited due to the thin core used whilst the

tensile residual stress level is low. Contrary to this we observe failure in BR, and ER due

to a thicker beam and the presence of a large residual stress.

5.8 Concluding remarks

This chapter has analysed the elastic limit of sandwich beams, the three competing

mechanisms that govern first yield/fracture, and the full plastic collapse of the sandwich

beams, all from the perspective of an applied residual stress field. We have described

analytical models for the first yield loads and an experimental, and numerical approach

for applying a residual stress to a sandwich beam and its subsequent effect on the yield,

collapse and post-collapse behaviour.

The analytical models predict that the presence of residual stress, regardless of the

mode, causes a reduction in the yield behaviour of the beam, i.e. a beam will always

reach the elastic limit at a lower load due to the presence of a residual stress in the face

sheets or core. This is confirmed by finite element simulations on a sandwich beam

comprising PC face sheets and PVC foam core. The analytical models allow us to form

a map indicating the operative elastic limit mode, akin to that of the collapse mode maps

of Chapter 4. We observe that these maps vary significantly depending on the level of
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FIGURE 5.15: Comparison of the experimental, finite element, analytical load versus
indentation responses for a prestresseed and non-prestressed elastic indentation spec-
imen (a) flat indenter, (b) cylindrical indenter D = 4mm, and (c) cylindrical indenter

D = 19mm.
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FIGURE 5.16: Comparison of the experimental, finite element, analytical load versus
indentation responses for a prestresseed and non-prestressed plastic indentation speci-

men (a) flat indenter, (b) cylindrical indenter D = 1mm

residual stress present, and the shape and size of the indenter used during the three

point bend experiment. There was difficulty in measuring the first yield of the sand-

wich beam during experiments; we observe that it is indeed possible to apply a residual

stress to a sandwich panel and observe its effects on the peak collapse load, collapse

behaviour and post-collapse and final failure. In lieu of experimental evidence we rely

on finite element simulations to successfully validate the numerical models presented

in this chapter.

The local indentation via first yield model described in this chapter considers the bend-

ing of a face sheet which is supported by a uniformly distributed load. This distributed

load is defined by the yield strength of the foam. As with Chapter 4, if a residual stress

is present in the core then earlier yielding of the beam will occur, which will directly
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influence the calculated first yield load. If the core yield model (Section 5.2.3) was cou-

pled with the first yield indentation model of the present chapter then a more accurate

representation of the first yield load and first yield maps (shown in Figure 5.9) would

be obtained. This is the main limitation of the present chapter, and provides a source of

future work.

We have provided novel insight into the behaviour of sandwich panels under the action

of residual stress whilst predicting the load and mechanism at which a sandwich beam

exceeds the elastic limit. This is useful to the design engineer because it provides them

with tools to predict either the onset of permanent deformation to the sandwich beam (if

elastic-plastic face sheets are used) or the failure of sandwich beams (if elastic-brittle

face sheets are used).
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The indentation response of layered
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Chapter 6

Indentation of a layer on foam

substrate

Summary

The plane strain indentation response of a polycarbonate (PC) face sheet adhered to a

polyvinyl chloride (PVC) foam substrate (on rigid foundation) is measured. Part I of

this study considers the indentation of the bi-layer when it is resting on a rigid foun-

dation and uses experimental and numerical methods to probe the deep indentation and

final failure of such a configuration. The deformation mode involves foam crushing, and

membrane stretching of the PC layer at large indenter displacements; this is quantified

using optical strain measurement techniques. The bottom corners of the foam substrate

lifts off its underlying support when the foam layer is sufficiently thin. Peak load is

dictated by tensile failure of the foam on the bottom of the bi-layer. Finite element

simulations suggest that a deep foam core prevents this lift-off and results in a greater

load carrying and energy absorption capacity. Part I acts as a basis for Part II where

the indentation response is considered for a bi-layer when it is rigidly attached to the

foundation. The effects of indenter size and shape (flat-bottom punch versus cylindrical

roller) and of specimen length upon the collapse response and failure mechanisms are

also explored. The deformation response is modelled by finite element simulations and,

109



Chapter 6 - Indentation of a layer on foam substrate

together with the observations, a simplified analytical model is synthesised. The model

assumes elastic membrane stretching of a face sheet on an elastic, perfectly-plastic foam

foundation, and includes the role of shear lag between face sheet and foam substrate.

The study ends with a comparison of the indentation response for a face sheet on foam

substrate with that of a sandwich beam in 3-point bending. It is found that membrane

stresses do not develop in the face sheet for the case of 3-point bending, and conse-

quently the indentation response has negligible hardening post yield. An analytical

model is developed to give direct insight into this alternative collapse mechanism.

6.1 Introduction

Polymeric foams typically exhibit a low ductility in tension (of only a few percent),

but a high ductility in compression due to the formation of crush bands (Andrews et al.

(1999); Gaitanaros and Kyriakides (2015); Jang and Kyriakides (2009)). The indenta-

tion strength of polymeric foams is comparable to their uniaxial yield strength due to

the volumetric compressibility of the foam, and the indentation strength is only mildly

sensitive to the indenter geometry, see (Andrews et al. (2001); Flores-Johnson and Li

(2010); Olurin et al. (2000); Onck et al. (2001)). For the practical application of foams

to design for protective, energy absorbing packaging and for crash mitigation, it is de-

sirable to enhance the indentation resistance of a foam substrate by the addition of a

suitable face sheet.

The combination of a foam core and a stiff, strong face sheet commonly arises in sand-

wich construction: two stiff and strong face sheets are separated by a lightweight foam

core. Sandwich panels are commonly used in flexural applications due to their low

mass yet high stiffness and strength in bending. The early stage of plastic collapse of

sandwich panels occurs by one of at least three competing mechanisms: face yield, core

shear, and indentation (Ashby et al. (2000); Steeves and Fleck (2004b)). The present

experimental and theoretical study gives additional insight into the indentation mode of

collapse, and addresses the case where indent depths exceed the face sheet thickness
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such that the face sheet undergoes membrane action prior to failure. This regime is of

high practical significance; yet it has received little attention in the literature.

Our primary study is concerned with the plane strain indentation response of a single

PC face sheet bonded to a PVC foam substrate upon a rigid foundation. PC is chosen

due to its high tensile strength and ductility, and it finds common use in impact-resistant

transparent components such as masks for eye protection. Our study complements the

experimental investigation of Mohan et al. (2007): they observed a significant elevation

in the axisymmetric indentation strength of a metallic foam due to the presence of a

stainless steel face sheet.

Part I

Part I of this study considers the indentation response of a PC/H80 PVC foam bi-layer

when it is resting on a rigid foundation and uses experimental and numerical methods

to probe the deep indentation and final failure of such a configuration.

6.2 Experimental methods

The specimens consisted of Diab Divinycell H80 PVC closed cell foam core and a

Lexan 9030-112 polycarbonate top sheet, bonded together by Loctite 401 low viscosity

and fast curing, cyanoacrylate adhesive. The nominal compressive stress-strain curves

of the foam and tensile stress-strain curves of the PC were measured and are shown

in Figures 6.1(a) and (b), respectively. The responses are found to be relatively in-

dependent of strain rate in the range 10−4s−1 to 10−2s−1. The face sheet thickness

was t = 1mm, the foam foundation thickness was c = 50mm, and both were of width

b = 25mm. The overall specimen length was L = 150mm; the test setup is shown in

Figure 6.1(c). The Aramis 3D Digital Image Correlation (DIC) system produced by

GOM GmbH was used to visualise the strain field on the specimen during an inden-

tation experiment. Prior to testing, a white spray paint base coat was applied to the
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FIGURE 6.1: (a) Nominal uniaxial compressive stress strain response for Divinycell
H80 foam. (b) Nominal uniaxial tensile stress strain response for Lexan PC. (c) Nu-
merical and experimental test geometry. (d) Schematic of specimen rotation during

indentation.

specimen followed by a fine black speckle pattern. The images taken during the exper-

iments were correlated using the GOM Correlate software. The specimen was placed

on a rigid, PTFE coated platen within a screw driven tensile test machine. A silver steel

cylindrical roller of diameter, D = 2mm and length b = 25mm, was used to indent the

specimen at a cross-head displacement rate of 1mm/min. In addition, an indentation test

was conducted on a foam substrate absent the PC layer. This was done for comparison

purposes and all other experimental parameters were held fixed.

6.3 Numerical methods

The finite element (F.E.) package ABAQUS was used to predict the indentation response

of the foam-PC bi-layer. A symmetrical 2D model with 4-node CPE4R plain strain

elements was used. The post yield behaviour of the foam was implemented using the
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crushable foam model in ABAQUS and the constitutive model for H200 PVC foam

as described in Appendix A is adapted for H80 PVC foam. The PC face sheet yield

surface was modelled using J2 flow theory. Both constitutive models for the face sheet

and foam were calibrated using experimental uniaxial data, with the initial stress peak

in PC stress strain curve neglected.

The indentation tests were modelled as follows. Frictionless contact was assumed

between the specimen and the underlying rigid support. Likewise, the rigid roller

was taken to be frictionless. The finite element idealisation is summarised in Figure

6.1(c). An additional F.E. study was conducted to explore the effect of foam depth and

face sheet length upon the indentation response such that t = 1mm, L = 1000mm and

c = 1000mm.

6.4 Results and discussion

Both measured and predicted load versus displacement curves are given in Figure 6.2(a).

Consider first the polycarbonate/foam bi-layer; the initial response, up to a deflection

of the thickness of the PC layer, is characterised by elastic bending of the face sheet,

and elastic and plastic crushing of the foam core as described by Soden (1996). Subse-

quent indentation gave plastic crushing of the foam, and a combination of bending and

axial stretching of the face sheet. The foam specimen (absent a PC face) is shown for

comparison; it has a much lower load carrying capacity.

Introduce the (x1,x2) co-ordinate system as shown in Figure 6.1(d). Contours of strain

components (ε11,ε22) from the DIC observations and F.E. simulations are compared in

Figure 6.3. In broad terms, there is excellent agreement between prediction and obser-

vation. The PC face sheet is in a membrane state except directly below the indenter

where it acquires the same curvature as that of the indenter. The foam directly beneath

the indenter (and PC layer) acquires a large tensile strain component ε11 ≈ 0.4 and a

large crushing strain ε22 ≈−1.8. The experiments (and F.E. simulations) revealed that

the outer bottom faces of the foam substrate lifted off from the rigid support, as sketched
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FIGURE 6.2: (a) Load versus displacement response for (i) PC layer and large foam
substrate, (ii) PC layer and small foam substrate, and (iii) foam only. (b) DIC true strain

contours (2-direction) showing failure mechanism of PC layer and small substrate.

in Figure 6.1(d). This may be explained as follows. The PC face sheet acquires the cur-

vature of the roller indenter, and the underlying foam bends in a compatible manner.

The hinging action results in eventual tensile failure of the specimen, with a crack ini-

tiating at the bottom of the specimen adjacent to the hinge and propagating up through

the specimen, see Figure 6.2(b). The finite element model adequately captures both

the load displacement response and the deformation profile, when compared to exper-

iments. As a reference case, the case of a very large foam depth and large face sheet

length was considered. Figure 6.2(a) shows a comparison of the indentation response

for the small and large specimens. It is clear that the initial stiffness of the small foam

specimen (c = 50mm and L = 150mm) exceeds that of the larger specimen, due to the

fact that it is a thinner foam core. Membrane action of the PC face sheet develops for

the large foam core and the indentation load increases with depth, see Figure 6.2(a).

In contrast, the small foam core is unable to support membrane stress within the PC

face sheet, and the alternative mode of lift-off leads to a smaller and saturated value of

indentation load.
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(c) DIC true strain contours (1-direction) at v = 10mm. (d) DIC true strain contours

(2-direction) at v = 10mm.

Part II

Part II addresses the indentation response of a PC/H200 PVC foam bi-layer attached to

a rigid foundation. This study comprises an exploratory experimental study, accompa-

nying finite element models, followed by an analytical treatment of the deep indentation

problem. An analytical model for the deep indentation response of a sandwich beam in

three point bending is also formulated and a subsequent comparison with the bi-layer

response is given.
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FIGURE 6.4: Geometry and loading in indentation tests.

6.5 Experimental methods

6.5.1 Test methods

The indentation test setup is sketched in Figure 6.4. The specimens comprised a DIAB

Divinycell H200 PVC closed cell foam substrate and a Lexan 9030-112 PC top layer,

bonded together by a cyanoacrylate adhesive. In all cases, the face sheet thickness was

t = 1 mm, the foam substrate thickness was c = 100 mm; both were of depth b = 25

mm into the page. The bottom face of the PVC foam was bonded by the cyanoacrylate

adhesive to a steel plate of sufficient thickness H = 50 mm that the plate behaves in a

rigid manner relative to that of the foam and face sheet. The steel-backed specimens

were placed on the loading platen of a screw-driven tensile test machine.

A series of indent tests are listed in Table 6.1, and were performed as follows:

I) An initial basic study whereby the bi-layer (on steel support) was indented by

a flatbottom punch of width 2a = 4 mm with a corner radius ρ = 0.5 mm, see

Figure 6.4. The indent velocity was v̇ = 0.025mms−1, and the overall length of

the specimen was L = 400 mm, as listed in Table 6.1. Additionally, an indentation

test was performed on a foam substrate absent the PC layer to provide insight into

the indentation response of a foam layer as the reference case.
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II) The effect of indenter size (relative to face sheet thickness) was determined by

employing 2 additional flat-bottom punches, of width 2a = 2 mm and 10 mm,

with corner radius ρ = 0.5 mm.

III) The sensitivity of indentation response to head shape was explored by performing

tests at v̇ = 0.025mms−1 and L = 400 mm using circular rollers of radius r =

1,2,and5 mm.

IV) Rate sensitivity was determined by performing additional tests using the flat-

bottom punch of width 2a = 4 mm, and v̇ = 0.0025mms−1 and 0.25mms−1.

V) The overall specimen length was decreased from L = 400 mm to L = 50 mm in

order to determine the effect of specimen length on the development of membrane

action in the facesheet. This test also made use of the flat-bottom punch of width

2a = 4 mm, and an indent velocity of v̇ = 0.025mms−1.

In each case, 3 repeat experiments were carried out on each specimen. A 3D Digital

Image Correlation (DIC) system was used to visualize and measure the surface strain

field during the indentation tests. Prior to testing, a matt white spray paint base coat

was applied to the specimen followed by a black paint to generate a fine black speckle

pattern. The white base ensured that any reflections from variation in the texture of the

underlying specimen were minimised, thereby allowing accurate tracking of the dis-

placement of each black speckle. Images were acquired at a frequency of 0.33 Hz and

a resolution of 4096 x 3072 pixels during the experiments; these images were subse-

quently used to produce the in-plane strain contour maps using the correlation software

of the DIC system.

6.5.2 Test materials

The uniaxial tensile and compressive stress versus strain responses of the PC face sheet

and of the PVC foam were measured; these are plotted as nominal (engineering) quan-

tities in Figure 6.5. The initial response of PC is linear elastic with a Young’s modulus

E f = 2 GPa, at a strain rate of 10−4s−1. Tensile yield of PC occurs at σ f y = 62 MPa;
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TABLE 6.1: Geometry and experimental details for plane strain indentation tests. In
all cases, t = 1 mm, c = 100 mm, andb = 25 mm.

Specimen a (mm) r (mm) v̇ (mm/s) L (mm)

Basic study I

Medium
punch on
PC/PVC

foam
bi-layer

2 - 0.025 400

Medium
punch on

PVC
foam
layer

2 - 0.025 400

Indenter study

II

Small
roller

- 1 0.025 400

Medium
roller

- 2 0.025 400

Large
roller

- 5 0.025 400

III

Small
punch 1 - 0.025 400

Medium
punch 2 - 0.025 400

Large
punch 5 - 0.025 400

Rate study IV Low rate 2 - 0.025 400
High rate 2 - 0.025 400

Length study V

Short
specimen 2 - 0.025 50

Long
specimen 2 - 0.025 400

this is followed by a load drop to 52 MPa and a subsequent drawing of the material (ac-

companied with mild strain hardening) until tensile fracture occurs at a nominal strain

value of ε ≈ 1.15. In compression, PC has a yield strength of 81 MPa. A strong strain-

hardening behaviour is observed at a nominal compressive strain above 0.2, see Figure

6.5(a).

The nominal stress versus nominal strain response of PVC H200 foam is shown in Fig-

ure 6.5(b). The Young’s modulus of the foam is Ec = 125 MPa, based on the measured
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FIGURE 6.5: Nominal tensile and compressive responses for (a) polycarbonate and
(b) H200 PVC foam for strain rates of 10−4s−1,10−3s−1, and 10−2s−1. Cross marks

indicate failure.

responses at a strain rate of 10−4s−1. Tensile fracture of the foam occurs at ε ≈ 0.14

and at an ultimate tensile strength (UTS) of approximately 4.7 MPa for all values of

strain rate shown in Figure 6.5(b). The compressive yield strength of the PVC foam (at

onset of yield) is σcy = 3.2 MPa, with progressive strain-hardening of the foam evident

at nominal compressive strains greater than 0.1. The responses of PC and PVC are only

mildly sensitive to strain rate in the range 10−4s−1to10−2s−1 , see Figure 6.4(a) and (b).

6.6 Finite element analysis

Quasi-static finite element (FE) calculations were performed within ABAQUS/Explicit

v6.14 to simulate the indentation response of the PC/foam bi-layer, and to aid interpre-

tation of the experimental results. Thus, it is appropriate to outline the FE analysis prior

to reporting the indentation results.

The FE mesh for both the PC face sheet and PVC foam substrate comprised of linear

quadrilateral elements in plane strain (type CPE4R). Perfect adhesion was assumed be-

tween the face sheet and foam substrate. The loading punch (and roller) were modelled

as rigid surfaces, and a frictionless contact was assumed between the punch and the

face sheet. A graded FE mesh was employed to provide adequate resolution close to the
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punch. The face sheet had 10 elements across its section to capture the bending stress

field; a sensitivity study was performed to ensure that this mesh refinement was ade-

quate to give a converged indentation load versus displacement response. A symmetric

half model was employed in the FE study with the bottom edge of the core fixed and

the loading punch (and roller) prescribed with a vertical downward velocity.

The PC face sheet was modelled as an isotropic, rate-independent, von Mises solid with

a true stress versus true strain response as shown in Figure 6.6(a). This curve is derived

from the measured response of PC face sheet in uniaxial tension (at a strain rate of

10−4s−1) upon assuming a bi-linear fit for the post-yield nominal stress versus nominal

strain data of Figure 6.5(a). The elastic modulus and Poisson’s ratio are taken as E f =

2 GPa and ν f = 0.3, respectively, based on the measured values in uniaxial tension.

The PVC foam is specified with an elastic modulus Ec = 125 MPa and Poisson’s ratio

νc = 0.3. The post-yield behaviour of the foam was modelled using the crushable foam

model in ABAQUS which allows for a dissimilar response of the foam in tension and

compression; a detailed description of the constitutive model is given in Appendix A.

The assumed uniaxial compressive response of the foam is plotted in Figure 6.6(b); this

curve is a smooth spline fit of the measured response in uniaxial compression (at a strain

rate of 10−4s−1) upon excluding the stress peak at the onset of yield. A perfectly-plastic

response is assumed for foam under tension via a constant parameter k2 as explained in

Appendix A. For a choice of k2 = 2.2, the uniaxial tensile yield strength from the FE

simulation agrees with the measured uniaxial tensile strength (of 4.7 MPa) to within

3%, and this value is employed in all the FE simulations. Failure of PC and PVC was

not included in the FE model. Rate sensitivity was also neglected for both PC and PVC.
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FIGURE 6.6: Uniaxial true stress versus logarithmic strain responses for the FE simu-
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6.7 Experimental results and interpretation by finite el-

ement predictions

6.7.1 Indentation by flat-bottom punch

The indentation responses are compared in Figure 6.7(a) for a PC/foam bi-layer (t = 1

mm, c = 100 mm, L = 400 mm) and for a foam layer absent the PC top layer; in

both cases the flat bottom punch of 2a = 4 mm was used at an indentation speed of

v̇ = 0.025mms−1, as listed in the basic study I of Table 6.1. Measurements are displayed

in Figure 6.7(a) for the 3 repeat tests and reveal minimal scatter. Predictions from the

FE calculations are included in Figure 6.7(a) and they show good agreement with the

measured indentation responses for both the bi-layer and the foam layer.

The presence of the PC face sheet has a major effect upon the initial collapse load and

the subsequent hardening response, as follows. We shall show below that, for the case

of the PC/foam bi-layer, the high hardening rate is due to the development of tensile

membrane stresses in the PC layer (first elastic stretching and then plastic stretching). It

is less obvious why the indentation of an elastic, almost perfectly-plastic foam substrate

(absent a PC top layer) leads to the strong hardening observed in Figure 6.7(a). An
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FIGURE 6.7: Indentation response of PC/foam bi-layer and foam layer (Study I): (a)
Load versus displacement response and (b) Observed damage progression in the foam.

explanation is found in the fact that the foam cracks into a wedge-shaped crush zone

beneath the indenter, see Figure 6.7(b). With increasing indent depth, the width of the

crush zone increases in a linear fashion, and, upon assuming a constant magnitude of the

local crush strength, the load increases with depth in a linear fashion. The measurements

of Figure 6.7(a) support this interpretation. We note in passing that there is a small

discontinuous drop in load when a crack nucleates and propagates into the foam at an

indentation depth of approximately 5 mm.

The measured load versus displacement response of a representative PC/foam bi-layer

is replotted in Figure 6.8(a) from the data of Figure 6.7(a), along with the analytical

prediction of Soden (1996) for indentation of an elastic beam on a rigid, perfectly-plastic

foundation. There is adequate agreement between the Soden (1996) prediction and the

initial post-yield response of the bi-layer. However, this analytical prediction becomes

inadequate once v > t = 1 mm. We shall now show from DIC measurements and FE

calculations that face sheet membrane stresses dominate the indentation response at

deep displacements of the indenter relative to the face sheet thickness, and this is the

root cause of the strong hardening behaviour.
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In order to gain further insight into deep indentation, the distribution of von Mises

strain εe (logarithmic) within the PC layer is determined by both DIC and FE analysis,

for the bilayer specimen of Figure 6.8(a) at 3 stages of indentation: (A) v = 0.5 mm,

(B) v = 5 mm and (C) v = 12 mm. These 3 values are marked in Figure 6.8(a) and

the strain distributions εe are given in Figure 6.9. There is general agreement between

the observed contours of strain from DIC and the FE prediction. The following broad

remarks can be made from Figure 6.8(a) and Figure 6.9, taken together.

Load case A: At displacements v >> v = 1 mm, the face sheet bends elastically with

negligible membrane action, whilst the foam compresses in an elastic manner. Under

increasing indentation, but v/t < 1, the foam substrate yields within a crush zone be-

neath the punch while the PC face sheet bends elastically, as idealised by Soden (1996).

Yielding of the core in the FE simulations occurs at an indentation depth v = 0.5 mm,

labelled as point A in Figure 6.8(a); the corresponding strain profile in the face sheet is

shown in Figure 6.9.

Load case B: When the displacement v is on the order of (or exceeds) the face sheet

thickness t, the face sheet stretches elastically in addition to bending (in a plastic man-

ner) while the foam continues to compress in a plastic manner within the crush zone, as
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FIGURE 6.9: Contours of von Mises strain in the PC face sheet of the bi-layer at
increasing values of indent depth (Study I), at loads A, B, and C as marked in Figure

6.8(a).
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sketched in Figure 6.8(b). The strain profile in face sheet at point B corresponding to

v = 5mm is shown in Figure 6.9. The face sheet has an almost constant curvature ad-

jacent to the indenter and it carries a tensile load of magnitude T , as labelled in Figure

6.8(b).

Load case C: At displacements v/t >> 1, the tensile membrane stresses in the face

sheet attain yield magnitude. With continued indentation, PC layer undergoes plastic

stretching, and the magnitude of the plastic strain increases with increasing v. The

deformed profile of the face sheet at point C (corresponding to v = 12 mm) resembles

that of Figure 6.8(b), except T = Tu =σ f yt for this case. The strain profile recorded from

the DIC is shown in Figure 6.9 along with the FE prediction. Recall that the logarithmic

failure strain of the PC (about 0.76) significantly exceeds that of the foam (about 0.13),

and consequently the foam cracks adjacent to the stretched PC layer leading to a drop

in the load at v = 18.5 mm.

6.7.2 Role of indenter geometry

A comparison of the measured load P versus displacement v response of the PC/foam

bilayer is given in Figure 6.10(a) for the flat-bottom punches and circular rollers, at an

indentation speed of 0.025mms−1; these are cases II and III of Table 6.1. Scatter was

minimal and so only a representative P versus v response is shown in Figure 6.10(a).

The predictions from the FE calculations are included in Figure 6.10(a) and they show

good agreement with the measured response for each case. We note from Figure 6.10(a)

that the P versus v responses are almost parallel for the flat-bottom punches and circular

rollers, with an increase in load (for a given indent depth) with increasing a/t or r/t.

In the flat-bottom punch tests, the peak load is dictated by cracking of the underlying

foam, followed by shear-off of the PC from the corners of the punch, see Figure 6.11(a)

and (b). The failure mode for the small circular roller is similar to that of the flat-bottom

punch, see Figure 6.11(c). In contrast, at high r/t, first failure is by tensile cracking of

the foam at the edge of the indentation zone, as shown in Figure 6.11(d). Punch velocity

has only a minor effect upon the indentation response (study IV of Table 6.1), as shown
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indentation speed v̇ = 0.025s−1, (b) Load versus displacement response for flat punch

indentation (a/t = 2) at selected indentation speeds (Study IV).

in Figure 6.4(b) for the flat-bottom punch of a/t = 2. This is attributed to the small

strain rate sensitivity of both the PC face sheet and PVC foam.

6.7.3 Role of specimen length

The ability to develop membrane stresses relies upon load transfer between the face

sheet and core over a shear lag zone adjacent to the crush zone, as sketched in Figure

6.8(b). Assume that the foam exerts a shear traction on the PC face sheet of magnitude

equal to the shear yield strength τcy of the foam. Then, the length of shear lag zone Ls

in order to develop a membrane tension T in the PC face sheet equal to its yield value

Tu(= σ f yt) is Ls = σ f yt/τcy = 19 mm for τcy. We anticipate that membrane stress is not

able to develop to full extent when the semi-length of the bi-layer specimen is much less

than this shear lag length. In order to confirm this, tests (of type V in Table 6.1) were

performed on specimens of length L = 50 mm and 400 mm, using a flat-bottom punch

of width a/t = 2, see Figure 6.12. The initial indentation response is almost insensitive

to the magnitude of L for shallow indents such as v < 2 mm. However, at deep indents,

such as v> 5 mm, the indentation load (at a given indent depth) for a specimen of L= 50

mm is significantly below that for L = 400mm. An analytical model is now developed,
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FIGURE 6.11: Observed failure modes in the indentation of bi-layer with flat bottom
punches of (a) a/t = 1 at v= 16.7 mm, (b) a/t = 5 at v= 21.2 mm, and with cylindrical

rollers of (c) r/t = 1 at v = 11.5 mm and (d) r/t = 5 at v = 15.8 mm.

based on the existence of the shear lag zone in order to predict the deep indentation

resistance of the bi-layer.

6.8 Analytical model

Existing models for the indentation of sandwich beams assume that the indent depth is

sufficiently small such that the face sheet behaves in a bending manner with negligible

membrane action. In the present study, the indent depth increases to more than the face

sheet thickness, and so significant membrane stresses develop in the face sheet: a new

model is needed to account for this mode of deformation.

Consider plane strain indentation of a face sheet and underlying foam core by a flat-

bottom punch of width 2a, as shown in Figure 6.13(a). The face sheet is an elastic,

perfectly-plastic solid, of plane strain Young’s modulus E f , tensile yield strength σ f y
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FIGURE 6.12: Effect of specimen length on the indentation response of bi-layer (Study
V).

and thickness t. It is perfectly adhered to a semi-infinite foam substrate. The foam core

is treated as an elastic, perfectly plastic solid of plane strain Young’s modulus Ec , and

compressive yield strength σcy.

The above experiments and FE analysis both suggest the following overall deformation

mode. Assume that the face sheet develops a purely membrane state with a line tension

(per unit length into the page), T (x) = σ f (x)t where σ f (x) is the tensile axial stress at

any location x in the current configuration, see Figure 6.13(b). There are two distinct

zones:

1. an outer shear lag zone whereby the tension in the elastic face sheet drops with

increasing x by the presence of a shear stress τ(x) on its lower face (adhered to

the elastic foam substrate). This outer zone starts at a distance s from the centre

line, see Figure 6.13(b).

2. an inner zone of core crush such that the foam core exerts a compressive normal

traction of magnitude σcy on the underside of the face sheet in the deformed con-

figuration. Since the shear traction of the foam core on the face sheet is negligible

in this zone (of width 2s) the tension T (x) is uniform within this zone, and we
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write T (x) = Tu for a < |x|< s. Force equilibrium of the membrane dictates that

its radius of curvature R is given by

R =
Tu

σcy
(6.1)

and we conclude that R is constant. Thus, the face sheet adopts the profile of a

circular arc. We shall assume initially that the face sheet is elastic, but later extend

our solution to the case where the face sheet yields at an axial tension Tu = Ty.

6.8.1 Indentation with elastic stretching of the face sheet

The core crush zone: Consider indentation to a depth v by the flat-bottom punch (of

corner radius ρ << a). The load P is obtained by invoking vertical equilibrium to give

P = 2σcy(Rsinω +a) (6.2)

Where ω is the inclination of the face sheet adjacent to the punch, as defined in Figure

6.13(a). Geometry dictates that

v = R(1− cosω) (6.3)

and

s = Rsinω +a (6.4)

It remains to solve for R or equivalently the magnitude of Tu within the core crush zone,

recall Equation 6.1. To proceed, we turn our attention to the outer shear lag zone in

order to solve for Tu.

Formulation for the outer shear lag zone: The membrane force Tu is resisted by both the

face sheet and the underlying elastic core, and gives rise to an inward displacement u
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(a)

(b)

elastic shear lag zone

core crush zone

elastic shear lag zone

(c)

core crush zone

core 

face sheet

FIGURE 6.13: Indentation of a face sheet attached to a foam core: (a) geometry and
loading, (b) stress state in the face sheet and core under the applied loading, and (c)
geometry and loading for the subsidiary problem of determining the elastic spring stiff-

ness in the shear lag zone.
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at the boundary x = ±s between core crush zone and outer shear lag zone, see Figure

6.13(c). This subsidiary problem gives us the spring constant k where

Tu = ku (6.5)

First, we complete our analysis and then we present a finite element solution for the

subsidiary problem of evaluation of k. We assume that the face sheet remains bonded

to the foam core, with vanishing slip, and that it undergoes negligible straining directly

beneath the punch. At any indentation depth v, the face sheet elongates by 2χ over its

length, where

χ =
Tu

E f t
Rω +u (6.6)

Upon comparing the initial and final configurations, χ is also given by

χ = Rω−Rsinω (6.7)

Now, substitute Equations 6.1, 6.5 and 6.7 into 6.6 to obtain

ω− sinω =

(
Rω

E f t
+

1
k

)
σcy (6.8)

We emphasize that k = k(s), and it is still to be found. Treat ω as the independent

variable. Then, R is an implicit function of ω , and iteration is needed to solve Equation

6.8 for R as a function of ω . After obtaining R(ω) we solve for the load P(ω) via 6.2,

and thereby determine v(ω). The effective stiffness k(s) is now obtained by solving a

subsidiary problem using finite element analysis.

Finite element estimate for the spring stiffness k: The spring stiffness k(s) in the

outer shear lag region is estimated from the response of a force dipole of magnitude Tu

in the face sheet, separated by a distance 2s, as shown in Figure 6.13(c). The face sheet
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and the core in the outer shear lag region are assumed to behave as elastic solids with

plane strain moduli E f and Ec, respectively. The portion of the core within the crush

zone has negligible stiffness and this is accounted for by the removal of a semi-circular

portion of radius s from the core, as shown in Figure 6.13(c).

The FE calculations are performed using ABAQUS Standard (v6.14). Symmetry bound-

ary conditions applied to one half of the FE model are shown in Figure 6.14(a). A 2D

FE mesh is generated with ten 8-noded biquadratic plane strain elements (type CPE8R)

along the thickness of the face sheet. A horizontal displacement u is applied to the ver-

tical edge of the face sheet, and the value of the spring stiffness k = Tu/u is computed

for selected values of E f t/Ecs in the range of 0.1 to 10. A regression analysis for values

of core depth c≥ 10E f t/Ec and specimen length L≥ 2s+10E f t/Ec reveals power-law

scaling between the spring constant k and (E f ,Ec, t,s)of the form

k = βEc

(
E f t
Ecs

)1/3

(6.9)

where β = 0.36, see Figure 6.14(b).

The dipole problem considered above additionally informs us of the length of shear lag

zone. The shear traction τ(χ) along the face sheet decays quadratically with distance

χ in the far-field region(χ >> s), see Figure 6.14(c). A regression analysis for τ(χ) in

this region reveals a power-law scaling with E f t/Ecs as

sτ(χ)

Tu
= 0.85

(
s
χ

)2(
E f t
Ecs

)2/3

(6.10)

We define (arbitrarily) the shear decay length λ as the distance over which the shear

traction decays to 1% of Tu/s, such that τ(χ = λ ) = 0.01Tu/s. Accordingly, Equation

6.10 gives an estimate for λ as

λ

s
= 9.22

(
E f t
Ecs

)1/3

(6.11)
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FIGURE 6.14: Force dipole problem: (a) geometry and loading employed in the FE
simulation, (b) scaling for the spring stiffness k, (c) shear traction on the bottom layer
of the face sheet τ(χ); solid lines are FE predictions, and (d) scaling for the shear lag

length λ .

The value of λ as obtained from FE simulations for different values of E f t/Ecs in the

range of 0.1 and 10 is plotted in Figure 6.14(d) along with the predicted value 6.11; the

agreement is excellent.
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6.8.2 Comparison of analytical model with full indentation solution

A comparison of the indentation response from the above analytical model and from

the full FE solution is given in Figure 6.15(a), for the case of a PC layer (t = 1mm)

on a PVC foam substrate indented by a flat-bottom punch of width 2a = 1 mm . The

substrate is of thickness c = 1 m and of length L = 1 m. We find from Figure 6.15(a)

that the P versus v responses are almost parallel, but there is an offset such that the

analytical solution is stiffer. This is traced to the elastic compliance of the substrate

in the FE model: it contributes an additional displacement ∆v in the far-field region of

magnitude

∆v =
P

2πEc

3−4νc

1−νc
ln

(
c

λ0

)
(6.12)

as given by the standard Flamant solution [30] for the vertical displacement at a depth

c due to a point transverse load P acting on the surface of an elastic solid with plane

strain modulus Ec and Poisson’s ratio νc . The characteristic length λ0 is taken to be

λ0 =E f t/Ec. The predicted response from the model upon accounting for the additional

displacement, Equation 6.12 due to a finite core depth is close to the full FE response,

see Figure 6.15(a).

Additional comparisons are made in Figure 6.15(b) for the displacement profile of the

top layer of the face sheet for v = 10 mm and in Figure 6.15(c) for the decay of shear

traction along the bottom layer of the face sheet, also for v = 10 mm. The face sheet

displaces approximately in the form of a circular arc within the core crush zone as

predicted by the model, see Figure 6.15(b). The shear traction along the face sheet in

the outer shear lag region also shows good agreement with the prediction 6.10, as shown

in Figure 6.15(c). It is further seen from Figure 6.15(d) that the extent of the core crush

zone s, as assumed in the force dipole problem for the computation of spring stiffness

k, is approximately the plastic zone size in the full FE calculation. It appears that the

force dipole problem, as depicted in Figure 6.14(a), is adequate to capture the response

in the outer shear lag region.
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FIGURE 6.15: Comparison of the elastic membrane model with the full FE indentation
response (with elastic face sheet): (a) Load versus displacement, (b) displacement pro-
file of the top layer of the face sheet, (c) shear traction on the bottom layer of the face
sheet, and (d) contours of the von Mises stress in the foam core; (b)-(d) correspond to

v = 10 mm.

6.8.3 Plastic stretching of the face sheet

At a sufficiently high load, the tension Tu in the face sheet within the inner zone of core

crush attains the yield value Tu = σ f yt. Consequently, Equation 6.1 becomes

R =
σ f y

σcy
t (6.13)
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and, upon substitution of this value for R into Equation 6.8 and 6.9 along with Equation

6.4 we obtain a characteristic Equation for the critical value of ω = ωy at the onset of

plastic stretching of the face sheet as

(
σ f y

σcy
sinωy +

a
t

)1/3(
E f

Ec

)2/3

−β
E f

σcy

[
ωy

(
1−

σ f y

E f

)
− sinωy

]
= 0 (6.14)

The value of the indentation load at the onset of plastic stretching in the face sheet

Py is obtained by substituting R from Equations 6.13 and ωy from Equation 6.14 into

Equation 6.2 as

Py = 2(σ f ytsinωy +σcya) (6.15)

If the face sheet behaves in an elastic, perfectly-plastic manner, then necking will occur

soon after Tu attains the value σ f yt, and the limit load Py is given by Equation 6.15. In

reality, PC has a sufficiently strong strain hardening characteristic beyond initial yield

that it does not fail by necking but by cracking at an axial true strain on the order of 0.7.

A more complex analytical model could be developed for the PC in the plastic range

but this is beyond the scope of the present study and is of limited value.

The prediction of the above analytical model for the bi-layer geometry (and loading) of

the basic study I of Table 6.1 is shown in Figure 6.7(a) to compare with the measured

response and the full finite element prediction (including the plastic response of PC face

sheet). It is clear from Figure 6.7(a) that the analytical model is in good agreement with

measurement and FE prediction up to the yield load Py as given by Equation 6.15. At

higher loads, the analytical model is somewhat too stiff and this is due to the fact that it

neglects tensile yield of the face sheet.
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6.9 Indentation response of sandwich beam in 3-point

bending

Is the indentation response of a bi-layer the same as that for a beam in 3-point bend-

ing, for the case where the beam collapses by an indentation mode? This is implicitly

assumed to be the case in indentation analysis of sandwich beams. In order to address

this question for the case of a PC/foam bi-layer, additional experiments were performed

to compare the indentation response of a PC/foam sandwich beam in 3-point bending,

with the indentation response of the bi-layer on a rigid support.

A typical 3-point bend geometry is shown in Figure 6.16(a). It comprises two identical

PC face sheets of thickness t and a PVC foam core of thickness c. The sandwich beam

is of depth b (into the page) and of span L, and it is supported on its span by two circular

rollers, each of radius R. Consider indentation of the beam by a flat-bottom punch of

width 2a (with a corner radius ρ). We choose a geometry such that the beam collapses

by plastic indentation. Experiment and FE simulation were conducted on a beam of

L = 66 mm, c = 20 mm, t = 1 mm and b = 25 mm. Support rollers of radius R = 9.5

mm, and a flat bottom punch of width 2a = 4 mm (with ρ = 0.5 mm) were employed.

The punch speed was v = 0.025mms−1.

The corresponding bi-layer geometry is given in Figure 6.4: it has the geometry of the

basic study I of Table 6.1, such that t = 1 mm, c = 100 mm and L = 400 mm. The

load versus displacement responses of both specimens are given in Figure 6.16(b). The

initial elastic response of both geometries is similar, with elastic bending of the face

sheets and elastic compression of the core directly beneath the punch. Now consider

each geometry in turn.

1. For the bi-layer case, the core yields beneath the punch and the face sheet bends

elastically as suggested by the Soden solution for small indent depth. Under

increasing indent depth, membrane tension develops in the face sheet and this

leads to a strong hardening response, as discussed above for the bi-layer problem.
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FIGURE 6.16: Indentation response of a sandwich beam under 3-point bending: (a)
geometry and loading, (b) load versus displacement response of the PC/PVC beam,
and (c) an overlay of the observed deformation profile of the beam in the experiment
and the predicted deformation profile from FE, at v = 10 mm; only the face sheet

deformation from the FE prediction is shown here.

2. For the sandwich beam, plastic collapse is by indentation of the top face sheet as

suggested by Ashby et al. (2000), with the formation of plastic hinges adjacent

to the punch as shown in Figure 6.17(a). Both experiment and FE analysis reveal

that indentation continues in the manner as shown in Figure 6.16(c) for v = 10

mm; the measured and predicted deformation profile of the beam are in good

agreement. We deduce from Figure 6.16(c) that the post-yield indentation of the

beam involves rotation of the two face sheets (by an angle ω) and transverse

compression of the core (by an amount vc), with negligible hardening in the load

versus indent depth curve. The FE solution also reveals that membrane tension

does not develop in the upper face sheet, consistent with the observation that the

load versus indent depth curve is almost flat. This is explained in the following

analytical model.
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FIGURE 6.17: Indentation collapse of a sandwich beam under 3-point bending: (a)
Collapse mode at small punch displacement (Ashby et al. (2000)), (b) assumed collapse
mode for finite punch displacement, (c) assumed distribution of the longitudinal stress
in the core and bottom face sheet at the mid-span section of the beam. N.A. refers to

the Neutral Axis of bending.

6.9.1 Analytical model for 3-point bending response

Consider the sandwich beam of Figure 6.16(a) loaded by a flat-bottom punch (of corner

radius ρ << a). Assume that the face sheets and core behave as elastic, perfectly-plastic

solids of plane strain Young’s moduli E f and Ec, and of yield strengths σ f y σ f y and σcy,

respectively. At small values of punch displacement v << t, both the face sheets and

core behave in an elastic manner such that the load P increases linearly with v according

to Ashby et al. (2000) as

v =
PL3

48(EI)eq
+

PL
4(AG)eq

(6.16)
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where (EI)eq is the equivalent flexural rigidity and (AG)eq is the equivalent shear rigid-

ity of the sandwich beam; these relate to the elastic moduli and cross-sectional dimen-

sions of the beam as

(EI)eq =
E f bt(c+ t)2

2
+

E f bt3

6
+

Ecbc3

12
(6.17)

and

(AQ)eq =
Gcb(c+ t)2

2
(6.18)

Here, Gc is the shear modulus of the core.

Indentation collapse of the beam occurs when plastic hinges form in the top face sheet

(adjacent to the punch) while the underlying core yields in compression, as sketched in

Figure 6.17(a). At a small indent depth, the collapse load is that given by Equation 2.4,

and the mode is that of Ashby et al. (2000). The outer hinges have a fixed separation λ ,

where

λ = t
√

σ f y

σcy
(6.19)

as discussed by Ashby et al. (2000). The finite element solution suggests that this

collapse mechanism evolves into the finite displacement version as defined in Figure

6.17(b), motivated by the observations of Figure 6.16(c). It has the following features.

The two segments of the top face sheet, each of length λ , rotate but do not stretch.

Directly beneath the punch, the core yields hydrostatically while the bottom face sheet

yields in axial tension. The top face sheet carries negligible axial stress. An upper

bound calculation is now performed to estimate the collapse response of the beam.

Consider first the top face sheet. Define φ as the angle of rotation of each of the 4 plastic

hinges in the top face sheet such that
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φ = sin−1(vc

λ
) (6.20)

where vc is the core compression at any given value of the punch displacement v, as

defined in Figure 6.16(c).

Now consider the neutral axis of bending of the beam section comprising core and

bottom face sheet, at the mid-span position. Place the neutral axis at a height z above

the outermost fibre of the bottom face sheet. Then, axial force equilibrium on this

section dictates that

tσ f y +(z− t)σcy = [c− (z− t)]σcy (6.21)

with solution

z = t +
c
2

(
1−

tσ f y

σcy

)
(6.22)

For the sandwich beam under consideration, Equation 6.22 implies that z ≈ t, and the

longitudinal stress state on the cross-section of the beam at mid-span is sketched in

Figure 6.17(c).

Kinematic consistency between the face sheets and core implies

v = vc +
L
2

tanω (6.23)

for an angle of rotation ω of the beam section about its neutral axis of bending at the

midspan section, as sketched in Figure 6.17(b). Equating the horizontal contraction of

the core and top face sheet gives

ctanω = λ (1− cosφ) (6.24)
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The indentation load of the sandwich beam is determined by a work calculation along

the same lines as that of Ashby et al. (2000). The external plastic work done by load P

during an incremental punch displacement δv is

δW = Pδv (6.25)

This is balanced by the internal plastic work which includes the contribution from two

modes of deformation:

1. a local mode of deformation involving the rotation of 4 plastic hinges in the top

face sheet, each by an angle δφ , and transverse compression of the core between

the outer hinges by an amount δvc. The incremental local plastic work δWL (per

unit depth of the beam) is

δWL = 4MP f δφ +(2a+λcosφ)σcyδvc (6.26)

where MP f is the plastic moment of the top face sheet section, MP f =
1
4σ f yt2 and

2. a global mode of deformation wherein the beam section (of core and bottom face

sheet) rotates about the neutral axis of bending by an angle δω . The incremental

global plastic work δWG (per unit depth of the beam) is

δWG = 2MPδω (6.27)

where MP is the plastic moment of the beam section given by

MP =
1
2

σcyc2
(

1− vc

c

)2

(6.28)

upon ignoring the minor contribution from the top face sheet.

The statement of work balance, δW = δWL +δWG, reads
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P

(
δvc +δω

L
2

)
= 4MP f δφ +(2a+λcosφ)σcyδvc +2MPδω (6.29)

upon using the relations 6.25-6.27. Now define two non-dimensional terms v̄ and λ̄ as

v̄ =
vc
λ√

1− v2
c

λ 2

(6.30)

and

λ̄ = λ

√
1− v2

c
λ 2 (6.31)

The indentation load, Equation 6.29, for small ω can be rewritten in terms of v̄ and λ̄

using Equations 6.20, 6.23 and 6.24 along with Equations 6.30 and 6.31

P

(
1+

Lv̄
2c

)
=

4MP f

λ̄
+(2a+ λ̄ )σcy +

2MPv̄
c

(6.32)

The full P versus v collapse response is obtained from 6.23 and 6.32 upon treating v̄

as a free parameter, and this is plotted in Figure 6.16(b) together with the initial elastic

response 6.16. We find from Figure 6.16(b) that the simple analytical model gives

mild softening in contrast to the plateau in load as observed in the experiment and FE

simulation. This is partly attributed to the lack of hardening in both the face sheet and

the foam core in the analytical model.

We emphasize that there is a marked contrast between the collapse response of a sim-

ply supported beam and an end-clamped beam. For the end-clamped case, membrane

tension can develop in the face sheet, as noted by Tagarielli et al. (2004). They com-

pared the response of simply supported and end-clamped beams in 3-point bending, and

showed that the end-clamping leads to a hardening curve of indent load versus displace-

ment, and that the hardening is geometric in nature and not material related.
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6.10 Concluding remarks

The present study highlights the fact that a PC face sheet significantly elevates the in-

dentation strength of a PVC foam substrate. The foam compresses plastically while the

face sheet remains elastic until the indent is much deeper than the face sheet thickness.

The increase in indentation load is first due to elastic bending and then due to elastic

stretching of the PC face sheet. This is supported by detailed finite element simulations

and an analytical model that is based on the idea of load diffusion. Our study also high-

lights the distinction between the indentation response of a bi-layer on rigid foundation

and a sandwich beam in 3-point bending. Although the initial yield load is comparable

for the 2 geometries, the subsequent hardening responses differ significantly. Finite ele-

ment analysis and an idealized analytical model reveal that the lack of hardening in the

sandwich beam is due to the low bending strength of the core and bottom face sheet.
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Chapter 7

The indentation response of

lightweight multilayer foam plates

Summary

A parametric finite element study is performed on the indentation of a thin PC plate

attached to a foundation consisting of a high density PVC foam foundation which is in

turn attached to a relatively thicker foundation of lower density PVC foam. The purpose

of such a hybrid material is to protect a structure underneath the foam foundation, whilst

also providing similar indentation resistance at reduced weight. The following dimen-

sionless parameters were varied in the finite element study; indenter diameter/facesheet

thickness (D/t), and indenter diameter/high density foam foundation thickness (D/c1).

The plate was 70% lighter than the equivalent reference thin PC plate supported by high

density PVC foam only. We observe that the indentation resistance of the hybrid mate-

rial is similar to that of the reference case whilst doing an excellent job at protecting the

underlying structure.
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7.1 Introduction

This chapter focuses on the indentation behaviour of lightweight hybrid plates, com-

prising one or more polymer foam layers with a ductile polymer layer (PC) bonded

as a facesheet. Foam sandwich plates are ubiquitous in both natural and man made

structures. The purpose of a sandwich plate is generally to provide a lightweight, struc-

turally efficient material that protects an underlying structure or object. For example,

the brain is surrounded and protected by the skull bones which is itself a sandwich panel

comprising solid bone facesheets and porous, graded bone in between.

It is of great interest in the aerospace industry to protect critical components from impact

by sharp or blunt impact. This applies to wing components or in particular the casings

of engines where the protection of the turbine fan blades is critical. An additional re-

quirement is that these components remain lightweight in order to reduce fuel costs and

the subsequent environmental impact. This study aims to use a system of polymers and

polymer foams to enable such behaviour during impact. We aim to reduce the pressure

experienced by the underlying component whilst maximising the load experienced by

the composite with the overall goal of achieving superior energy absorbtion characteris-

tics. The chapter will present a numerical parametric study which explores the potential

for weight reduction and protection for a polycarbonate plate bonded to two varieties of

PVC polymer foam. One of high density and one of a density one order of magnitude

lower. Additional indentation experiments complemented by X-ray CT scans will be

used to validate the numerical study and provide further insight into the deformation

and failure mechanisms.

7.2 Designing a hybrid, layered foam system for energy

absorption and protection

The desired characteristics of the hybrid foam system to be designed and studied within

chapter are as follows:

148



Chapter 7 - The indentation response of lightweight multilayer foam plates

i) Maximise the energy absorbed by the hybrid material.

ii) Minimise the level of pressure/stress experienced by an underlying surface.

iii) Maximise the load experienced by the the hybrid material.

iv) Minimise the mass of the entire hybrid system.

This chapter presents an initial study towards achieving these goals. To this end, using

finite element methods, we generate a large range of energy absorption and pressure

level data during quasi-static indentation for a single low mass system with multiple

indenter sizes. We subsequently analyse the data and provide insight into the potential

for such a hybrid material formulation. Some basic indentation experiments and X-Ray

computed tomography analyses are performed to gather further insight and validate the

finite element data.

7.3 Finite element parametric study on the quasi-static

indentation of hybrid foam plates

7.4 Details of parametric study

Consider a plate of diameter 2r (as shown in Figure 7.1) comprising a foam layer of

a given relative density ρ̄1 and thickness c1, a second foam layer of relative density

ρ̄2 and thickness c2, and a solid polymer layer (PC in this case) with a density of ρ

and thickness t. The plate undergoes quasi-static indentation, via a blunt, spherical

indenter of diameter D. The following parametric study is used to explore the following

normalised quantities, D/c1, and t/c1 in order to assess their effect on the extent of

protection, which is quantified via the measurement of the pressure pmax (as shown in

Figure 7.1) and the peak load Pmax.

The materials chosen for this study are as follows. The facesheet is PC, with a Young’s

modulus, E f = 2200MPa, a yield strength in tension of σ f = 52MPa and a density of
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FIGURE 7.1: Hybrid plate geometry.

ρ = 1500kgm−3. We choose two foams, both closed cell PVC foam; (i) Divinycell

H35 with ρ̄ = 0.025, Ec1 = 27.8MPa, and σc1 = 0.43MPa and (ii) Divinycell H200

with ρ̄ = 0.14, Ec1 = 143MPa, and σc1 = 5.1MPa. Note that the foam properties are

chosen to be in the rise direction (z-direction, as described in Chapter 2). We choose to

fix c1/c2 = 0.1, this gives a significant reduction in mass of the entire structure (70%

reduction based on a fixed 1mm PC face sheet) and serves as a good basis for achieving

the goals (i)-(iii) as described in section 7.2. An outline of the indenter and specimen

geometry used for the full set of simulations is detailed in Table 7.1. All simulations

were carried out for three instances: (a) The multilayer, hybrid case with thickness c1

consisting of H200 foam and the layer of thickness c2 consisting of H35 foam. (b) a

reference case where all of the foam material is H35, and (c) a second reference case

where all of the foam material is H200. The PC face sheet was fixed at a thickness of

1mm for all simulations.

7.4.1 Finite element methods

Quasi-static finite element (FE) calculations were performed within ABAQUS/Explicit

v6.14 to simulate the indentation response of the PC/foam sandwich plate. The FE mesh

for both the PC face sheet and PVC foam substrate comprised of bilinear quadrilateral
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TABLE 7.1: Indenter and specimen dimensions for finite element parametric study.

t/c1=0, c1/c2=0

D/c1 c1 (mm) D (mm) r (mm)

0.5 10 5 200
1 10 10 200
2 10 20 200
5 10 50 200

t/c1=0.02, c1/c2=0.1

D/c1 c1 (mm) D (mm) r (mm)

0.5 50 25 1000
1 50 50 1000
2 50 100 1000
5 50 250 1000

t/c1=0.04, c1/c2=0.1

D/c1 c1 (mm) D (mm) r (mm)

0.5 25 12.5 500
1 25 25 500
2 25 50 500
5 25 125 500

t/c1=0.1, c1/c2=0.1

D/c1 c1 (mm) D (mm) r (mm)

0.5 10 5 200
1 10 10 200
2 10 20 200
5 10 50 200

t/c1=1, c1/c2=0.1

D/c1 c1 (mm) D (mm) r (mm)

0.5 1 0.5 100
1 1 1 100
2 1 2 100
5 1 5 100
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axisymmetric elements (type CAX4R). Perfect adhesion was assumed between the face

sheet and foam, and the foam-foam interface. The spherical indenter was modelled as

a rigid surfaces, and a frictionless contact was assumed between the rigid surface and

the face sheet. A graded FE mesh was employed to provide fine refinement within the

regions of contact. The face sheet had 20 elements along its thickness to suitably cap-

ture the bending stress field; a sensitivity study was performed to ensure that this mesh

refinement was adequate to yield a converged indentation load versus displacement re-

sponse.

The PC facesheet was modelled as an isotropic rate-independent von Mises solid with

a true stress versus true strain response. This curve is derived from the measured re-

sponse of PC face sheet in uniaxial tension (at a strain rate of 10−3s−1) upon assuming

a bi-linear fit for the post-yield nominal stress versus nominal strain data, based on the

measured values in uniaxial tension. The PVC foam is specified with elastic proper-

ties as defined above. The post-yield behaviour of the foam was modelled using the

crushable foam model in ABAQUS which allows for dissimilar response of the foam in

tension and compression.

7.4.2 Experimental methods

Hybrid foam plates were manufactured and comprised two foams, H35 and H200, and a

protective layer of polycarbonate (all with properties as described in section 7.3). Two

cases were tested. Case 1 assessed the behaviour of a hybrid plate when D/c1 = 0.5

and Case 2 when D/c1 = 2. t/c1 was constant in both cases at a value of t/c1 = 0.2.

Hybrid specimens were manufactured by bonding multiple layers of the various foams

and polycarbonate layers with dimensions according to Table 7.2. A loctite 401 rapid

curing cyanoacrylate adhesive was used to bond the various layers. Homogeneous plates

of H200 and H35 foam only were made for comparison in both Case 1 and 2.

Prior to indentation testing the specimens were scanned in an X-ray computed tomogra-

phy (CT) machine. This gave a three-dimensional image of the internal microstructure

of the specimen prior to testing. The specimens were then placed on the loading platen
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of a screw-driven Instron tensile test machine and were subsequently indented using

spherical indenters with diameters of D = 2.5mm or D = 10mm for Case 1 and Case 2

respectively as described in Table 7.2. A post-failure X-ray CT scan was performed to

give insight into the failure mechanism.

TABLE 7.2: Indenter and specimen dimensions for experimental indentation study.

2r (mm) c1 (mm) c2 (mm) D (mm) D/c1 t/c1

Case 1 150 5 50 2.5 0.5 0.2
Case 2 200 5 50 10 2 0.2

7.5 Results and discussion

7.5.1 General FE parametric results

Shown in Figure 7.2 is a collection of typical load versus displacement responses for the

indentation of a multilayer plate (where t/c1 = 0.1). We observe that the load versus

displacement response is generally linear in all cases which is typical of a stretching

dominated response. Inspection of the stresses in the face sheet during indentation

confirm that high degrees of stretching occurs in the radial direction.

An important result arises in which the multilayer case begins to approach the response

of the reference H200 case when D/c1 < 1. That is, we can achieve the same load

carrying capacity with 90% less high density foam and that 90% of the underlying foam

specimen has little influence on the load carrying capacity during indentation. Specimen

failure is observed to occur via face sheet necking, local to the indenter. Shown in Figure

7.3 is the peak load for all simulations carried out over the full range of D/c1 and t/c1

values. Here we see that for D/c1 ≤ 1 the peak load of a hybrid structure equals that

of a H200 homogeneous plate across the whole range of t/c1 values. When D/c1 > 1

we observe that the peak load of the hybrid foam material is always below that of H200

homogeneous plate but greater than the H35 plate. The peak load tends towards the

response of the homogeneous H35 plate as t/c1 increases for D/c1 > 1. The physical

explanation for such trends is based on the following two observations from FE
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i) As D/c1 increases the influence of the indenter becomes important; the size of the

crush zone becomes much greater than the size of the foam layer (c1) and the crush

zone mostly occurs within the H35 foam. Explained in the converse situation, at

small D/c1 values the crush zone is small enough that it exists just within the H200

foam layer and thus carries all the traits of a homogeneous H200 plate.

ii) As t/c1 increases the bending stiffness of the face sheet becomes dominant relative

to the H200 foam layer. This implies a large crush zone and thus little influence of

the H200 layer, and a dominant H35 layer, resulting in the lower peak loads.
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FIGURE 7.2: Load versus displacement response for D/c1 = [0.5,1,2,5] at a constant
value of t/c1 = 0.1.
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FIGURE 7.3: Normalised peak load as a function of t/c1 for D/c1 = [0.5,1,2,5].

The energy absorbed up until the peak load is plotted as a function of t/c1 for a range of

values of D/c1 in Figure 7.4. We observe that the energy absorbed for the hybrid foam

is similar or higher than the majority of the reference cases. This may be attributed to

the bending action associated with indentation of the hybrid structure; the intermediate

H200 layer bends unlike the reference homogeneous cases. The compliance due to the

bending structure delays stretching and thus failure of the PC facesheet and thus the

failure of the entire structure resulting in higher normalised energy absorption despite

the lower normalised failure load in some cases.
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FIGURE 7.4: Normalised peak energy absorbed as a function of t/c1 for D/c1 =
[0.5,1,2,5].

7.5.2 Predicted specimen failure

We anticipate that there is the possibility for foam failure within the specimen. The

strain is monitored at the interface between the H200 foam and the H35 foam. The

H200 foam bends due to the compliant foundation underneath. Hence we anticipate

that it will fail in tension under bending and thus we use the tensile failure strain of

H200 foam (ε f ,c1 = 0.16) as a failure criterion. This failure is indicated in Figure 7.2,

and we note that failure of the foam will occur at a constant value of indentation load

although at increasingly lower normalised displacement values, v/D, with increasing

D/c1. Furthermore, if we plot the normalised displacement at failure v f /D as a function
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FIGURE 7.5: Normalised displacement to failure as a function of D/c1 for t/c1 =
[0,0.02,0.04,0.1,1], based on the foam, and the face sheet failure criterion.

of D/c1 for all t/c1 values we can observe a number of interesting results (see Figure

7.5. First, we see that the displacement to failure is not influenced by changes in t/c1.

In addition we observe that foam failure does not occur for D/c1 < 1. In broad terms

we can say that as D/c1 increases, the displacement to foam failure decreases. These

results have the potential for limiting the effectiveness of using a lightweight hybrid

structure such as this. Initial experiments are carried out to explore this issue later in

the chapter.

7.5.3 Protection of underlying structure

In Figure 7.6 we plot the pressure pmax (normalised by the maximum indenter pressure

P̄) on the underlying surface beneath the PC layer and foam, and directly in line with

the indenter (as shown in Figure 7.1), as a function of t/c1 for a range of values of D/c1.

We observe that, as D/c1 increases, the level of protection improves, that is we observe

a decrease in pmax/P̄. This is explained as follows. The level of membrane stretching,

and the size of the shear lag region is directly related to the size of the indenter as seen in
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FIGURE 7.6: Normalised protection parameter as a function of t/c1 for D/c1 =
[0.5,1,2,5].

the plane strain response in Chapter 6. We observe such behaviour in the present study

and that this acts as a protection mechanism for the underlying surface. We also see

improvement in the protection as t/c1 increases. Again membrane stretching increases

when a thicker facesheet is present and we arrive at the same conclusion.

When a hybrid foam structure is used, we observe a moderate improvement in pro-

tection. It is clear, as per the results of Giannakopoulos and Suresh (1997a,b) that a

decreasing Young’s modulus with depth results in the concentration of stresses at the

upper surface adjacent to the indenter. However it appears that the relative influence of

this particular arrangement of materials is stronger at lower values of D/c1 < 1 as seen

in Figure 7.6.
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7.5.4 Experimental results

The normalised experimental load versus displacement response for both Case 1 and

Case 2 are shown in Figure 7.7. In broad terms, we observe excellent agreement be-

tween FE and measured data, and of even more significance, we observe the same gen-

eral behaviour as that found in the FE parametric study; a similar given indentation

response for a 70% lighter structure.

The hybrid material in Case 1 approaches that of the heavier, homogeneous H200 re-

sponse, whilst in Case 2 it is only marginally better than the homogeneous H35 re-

sponse. These results are in line with the FE parametric study. One point of interest

is that the premature failure due to cracking of the foam at the foam-foam interface

does not occur as expected from the FE parametric study. This is confirmed in the post-

experiment X-Ray CT scans shown in Figure 7.8 (a) and (d); specimen occurs by face

sheet necking. This result does not render the data from section 7.5.2 obsolete, it merely

necessitates the need for further experiments and general study of the indentation of hy-

brid foam plates.
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FIGURE 7.8: Post-failure X-ray CT images at failure for Case 1 (a)-(c) and Case 2 (d)-
(f). (a) and (d) show the hybrid cases. (b) and (e) show the H35 reference specimen.

(c) and (f) show the H200 reference specimens.
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7.6 Concluding remarks

Giannakopoulos and Suresh (1997a,b) provided some basic insights into the behaviour

of elastic indentation behaviour of graded materials. We found that they proved useful

within this study as basic guidelines for the design of a hybrid layered foam structure.

For example, we chose to have a system where the Young’s modulus decreased with

depth; this ensured that the stresses were localised to the exterior of the specimen i.e.

adjacent to the top layer and not at the bottom surface. This results in protection of the

bottom surface as required.

We performed a parametric finite element study complemented by experiments which

studied the indentation of a thin PC plate attached to a foundation consisting of a high

density PVC foam foundation which is in turn attached to a relatively thicker founda-

tion of lower density PVC foam. The following dimensionless parameters were varied

in the finite element study; indenter diameter/facesheet thickness (D/t), and indenter

diameter/high density foam foundation thickness (D/c1). We then observed that, de-

spite its 70% reduction in mass, the hybrid structure could provide similar indentation

resistance to that of a structure with a homogenous, high density foam foundation. This

was observed to occur due to the localisation of deformation in the upper high density

foam foundation whilst leaving the lower foam foundation relatively undeformed. If the

indenter becomes large relative to the size of the high density foam layer then the hy-

brid structure becomes less effective at energy absorption and more useful in protecting

the underlying surface (underneath the low density foam foundation). Thus a trade-off

occurs between the indenter size and high density foam thickness.

This chapter has demonstrated a simple method for producing a lightweight, protective

structure through the use of a gradient structure. The chapter provides promising results

but is a preliminary study in essence and it is clear that a large amount of research

remains to be carried out on such structures. For example, this study has been carried

out at one ratio of the thickness of the high density foam layer to the thickness of the

low density foam layer i.e. a 70% reduction in mass. The study must be carried out for

a range of system masses.
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Chapter 8

Conclusions and future work

The central theme of this thesis was the mechanics of layered foams, a generalised

phrase that encompassed sandwich beams, foam protected by a reinforcing layer, and

foams with gradient properties. The objectives of this thesis, as outlined in section

1.3, were thus described as follows: (i) to investigate the influence of residual stress

on the collapse mechanisms of sandwich beams (ii) study the first yield behaviour of

sandwich beams and the subsequent influence of residual stress (iii) understand and

quantify the deep indentation behaviour of a foam protected by a reinforcing layer and

(iv) understand the indentation behaviour of a graded foam plate. These objectives

were addressed in Chapters 4, 5, 6, and 7 respectively. the present chapter outlines the

primary conclusions from these chapters and gives potential areas of future work that

may need to be addressed in this field.

8.1 Chapter 4-The influence of residual stress on the

elastic indentation collapse mode of sandwich beams

with elastic face sheets

a) An analytical description predicting the influence of an additional axial load in the

face sheets was provided and indicated that significant changes in collapse load may
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occur as a result. The analytical model expands upon the models of both Steeves and

Fleck (2004b) and Tagarielli et al. (2004).

b) This model was then used to form a collapse load map for a sandwich beam system

comprising GFRP (elastic) facesheets and PVC foam (rigid-perfectly-plastic) core

in which the influence of residual stress was included. This new collapse mode

map showed contours of the relative change in collapse load due to the presence

of residual stress as well as the trajectory of the boundaries of this map under the

influence of changing residual stress.

c) A series of numerical simulations were carried out, which successfully validated

the analytical model in the case a of simply supported beam for both tensile and

compressive residual stresses in the facesheet. We observed significant potential for

increase in collapse load and thus energy absorbed by a sandwich beam specimen.

Conversely, it is clear that compressive residual stresses in the face sheet promotes

elastic indentation collapse and impacts negatively on the collapse load and energy

absorption characteristics of a beam.

d) The FE simulations also demonstrated the significant role that facesheet thickness/in-

denter size ratio plays on the energy absorption characteristics under deep indenta-

tion at depths greater than the facesheet thickness. We found that the numerical sim-

ulations for a clamped case validated the model where compressive residual stresses

were concerned. However, we observed that tensile residual stresses did not pro-

duce the expected increase in collapse but instead promoted membrane stretching,

and alternatively produced significant increases in energy absorbed as a result.

8.1.1 Future work-Chapter 4

The study presented in this chapter has given insight into the behaviour of sandwich

beams under the action of residual stress and has provided new potential design tools

for the industrial end user of sandwich panels which allows greater energy absorption

and collapse loads for the same weight. However, there are significant caveats that

must be noted, and addressed in future studies. Firstly, the present study has shown
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theoretical and numerical analysis only. Experiments are required in order to provide

further insight into the behaviour described in preceding sections. Second, we have

not provided any feasible, practical method for inducing residual stresses in a sandwich

panel of such materials. This issue is discussed in more detail in the following chapter.

The failure of the face sheet or foam has not been included in our analysis and this has

the potential to limit the effectiveness of mechanisms described within this chapter.

8.2 Chapter 5-The influence of residual stress on the

first yield and collapse behaviour of sandwich beams

with elasto-plastic facesheets

a) An analytical description predicting the influence of a residual stress field on the

elastic limit of a sandwich beam in bending. Three modes were identified: i) yield of

the face sheets via global bending of the sandwich structure, ii) yield via indentation

i.e. local bending of the face sheet and simultaneous yield of the core adjacent to

the indenter/point load, and iii) yield via shearing of the entire cross section of the

core. Residual stress was predicted to reduce the load at yield or the elastic limit of

the sandwich panel.

b) Akin to collapse mode maps, first yield maps were formulated for a sandwich beam

in three point bending giving the operative first yield mode for a set of dimension-

less beam geometry and constituent material values. The boundaries of the maps

depended on indenter shape (flat punch or cylindrical indenter) and level of residual

stress present.

c) An experimental approach to applying a residual stress field to a sandwich beam was

developed. An analytical prediction of the residual stress present after the experi-

mental procedure was formulated. This also enabled an analysis of the limitations

of the chosen experimental procedure.
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d) A combination of experiments and finite element models were used to successfully

validate the analytical models of a) whilst also highlighting the post-collapse be-

haviour of the beam and its final failure. In a number of cases, residual stress was

shown to limit the displacement to failure of the sandwich beam.

8.2.1 Future work-Chapter 5

This chapter has provided significant insight into the prediction of the load and location

at which the elastic limit is exceeded on a sandwich panel, providing a useful tool for the

designer to predict failure or permanent deformation of a sandwich panel. Despite this,

there is significant work yet to be carried out on this topic. First, a significant quantity

of additional experimental and finite element geometries and materials are required to

provide a comprehensive approach to validation of the models and maps provided here.

Secondly, the experimental approach used here is sufficient for initial insights into the

influence of residual stress on the flexural response of sandwich panels. However, there

is significant scope for further optimisation of the experimental method, which, if done

successfully would allow for other traditional stiffer face sheet materials to be studied

such as GFRP and CFRP. This would also allow the elastic indentation response of

Chapter 5 to be probed experimentally.

8.3 Chapter 6-Indentation of a layer on foam substrate

a) Plane strain indentation is by a flat-bottom punch or by a cylindrical roller, and the

strain distribution within the PC face sheet and in the foam substrate are measured

by digital image correlation. With increasing indent depth, the face sheet bends and

stretches elastically and then plastically until face sheet or substrate fail. The gen-

eration of membrane tension in the face sheet plays a major role in supporting the

indentation load when the indent depth exceeds the thickness of the face sheet and

leads to a strong hardening behaviour beyond the initial collapse load for indenta-

tion. Finite element predictions of the full indentation response are based upon the

measured tensile and compressive responses of the PVC foam and PC layer.
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b) An analytical model is developed by matching the stretching response of the PC face

sheet to the indentation response of the underlying foam, with due consideration for

load diffusion from membrane tension of the PC face sheet into the underlying foam

substrate. The indentation model is calibrated by ancillary finite element simulations

of the load diffusion problem, and they emphasise the role of a shear lag zone in

dictating the large indentation resistance. The indentation response of the bi-layer is

also compared with that of a sandwich beam in 3-point bending.

c) Experiments, finite element simulations and an additional analytical model for in-

dentation of the sandwich beam in 3-point bending reveal that strong hardening of

the post-yield load versus displacement response is now absent, in contrast to that of

the bi-layer. The lack of hardening in 3-point bending is traced to the relatively low

value of the plastic bending moment of the beam section.

8.3.1 Future work-Chapter 6

This chapter provided a comprehensive study on the deep indentation of a layer on foam

substrate. The model proposed here considers the indentation an elastic membrane

stretching whilst attached to a plastic foundation. Brief insight is given into plastic

membrane stretching, however we do not predict the final failure of the membrane.

Further work should be carried out to this end, which would also lead to the creation

of design maps for the industrial designer. Such a map would give energy absorption

and peak load as a function of indenter size, foam strength, face sheet strength, and face

sheet ductility.

8.4 Chapter 7-The indentation response of lightweight

multilayer foam plates

a) A parametric finite element study complemented by experiments which studied the

indentation of a thin PC plate attached to a foundation consisting of a high density

PVC foam foundation which is in turn attached to a relatively thicker foundation
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of lower density PVC foam. The following dimensionless parameters were varied

in the finite element study; indenter diameter/facesheet thickness (D/t), and inden-

ter diameter/high density foam foundation thickness (D/c1). It was observed that,

despite its 70% reduction in mass, the hybrid structure could provide similar in-

dentation resistance to that of a structure with a homogenous, high density foam

foundation. This was observed to occur due to the localisation of deformation in

the upper high density foam foundation whilst leaving the lower foam foundation

relatively undeformed.

b) It was found that, if the indenter becomes large relative to the size of the high density

foam layer then the hybrid structure becomes less effective at energy absorption and

more useful in protecting the underlying surface (underneath the low density foam

foundation). Thus a trade-off occurs between the indenter size and high density foam

thickness.

c) We found that the guidelines of Giannakopoulos and Suresh (1997a,b) proved useful

within this study as basic guidelines for the design of a hybrid layered foam structure.

For example, we chose to have a system where the Young’s modulus decreased with

depth; this ensured that the stresses were localised to the exterior of the specimen

i.e. adjacent to the top layer and not at the bottom surface. This results in protection

of the bottom surface as required.

8.4.1 Future work-Chapter 7

This chapter has demonstrated a simple method for producing a lightweight, protective

structure through the use of a gradient structure. The chapter provides promising results

but is a preliminary study in essence and it is clear that a large amount of research

remains to be carried out on such structures. For example, this study has been carried

out at one ratio of the thickness of the high density foam layer to the thickness of the

low density foam layer i.e. a 70% reduction in mass. The study must be carried out for

a range of system masses.
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8.5 Published work

Chapter 6 has resulted in two publications in international scientific journals. The ref-

erences are given below. Publications based on Chapters 4, 5 and 7 are in preparation.

Boyce, AM, Deshpande, VS, and Fleck, NA (2017) On the Indentation Resistance of a

PC Layer on PVC Foam Substrate. Advanced Engineering Materials, vol. 19, no. 10,

p. 1700075, 2017.

Boyce, AM and Tankasala, HC and Fleck, NA (2019) Indentation of a layer on foam

substrate. International Journal of Mechanical Sciences, 150. pp. 379-392. ISSN 0020-

7403

169





Appendix A: A material model for

PVC foam

The post-yield behaviour of the PVC foam substrate is modelled using the ABAQUS

crushable foam model with volumetric hardening. This phenomenological model allows

for a dissimilar response of the foam in tension and compression, as commonly observed

in polymer foams such as PVC, see Figure 3.5. The yield surface is assumed to be

elliptical, and of the form

φ = σ
2
e +α

2
DF(σ

2
m−A2)−B2 ≤ 0 (8.1)

where σe is the von Mises effective stress, σm is the mean stress, and αDF is the shape

factor of the yield ellipse. The parameters A and B scale with the hydrostatic com-

pressive strength of the foam pc and with the hydrostatic tensile strength pt according

to

A =
pc− pt

2
and B = αDF

pc− pt

2
(8.2)

In order to account for the observed value of zero plastic Poisson’s ratio for the PVC

foam, a non-associated plastic flow rule is adopted, with an assumed flow potential µ

of the form

µ = σ
2
e +

9
2

σ
2
m (8.3)
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During plastic flow, the hydrostatic compressive strength pc increases with the increas-

ing magnitude of the volumetric compressive plastic strain, while the hydrostatic tensile

strength pt remains constant. The hardening response of the foam is specified in the FE

model by providing the uniaxial Cauchy stress versus true plastic strain data from a

uniaxial compression test.

The shape factor αDF of the yield surface is specified via the two strength ratios: (i) the

ratio of the initial yield strength in uniaxial compression to hydrostatic compression, k1

, and (ii) the ratio of the yield strength in hydrostatic tension to the initial yield strength

in hydrostatic compression, k2. These are related to αDF according to

αDF =
3k1√

(3k2 + k1)(3− k1)
(8.4)

The values of k1 and k2 are such that 0 < k1 < 3 and k2 > 0. For the PVC H200 foam

employed in this study, k1≈ 2 based on the experimental study of Deshpande and Fleck,

and k2 = 2.2 in order for the predicted uniaxial tensile strength for the foam to match the

measured uniaxial tensile strength (to within 3%). Consequently, we obtain αDF ≈ 2

for the H200 foam.
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