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S2 Appendix, Stochastic modelling of experiments in vector in-
oculation access to host plants

The equation describing the joint probability, Q(t + δt), of exactly N pathogen-bearing insects

and M plant inoculation events at time t + δt in an inoculation access period assay (IAP) is,

Joint dynamics of infected plants and virus-bearing vectors QM,N(t + δt) = QM,N(t)

+

( Virus loss or death

(ν + f )(N + 1)QM,N+1(t)− (ν + f )NQM,N(t) +
Inoculation

βNQM−1,N(t)− βNQM,N(t)
)

δt

(S2.1)

with initial conditions: M(0) = 0, N(0) = y0 (i.e., Q0,y0(0) = 1). The system can be rewrit-1

ten as a partial differential equation (PDE) in which the dependent variable is the probability2

generating function, denoted w(s1, s2, t), of the variables M and N from system S2.1, i.e.,3

w(s1, s2, t) =
∑

M,N
sM

1 sN
2 QM,N(t). Multiplying both the left hand side and right hand terms4

of the process in Eq. S2.1 by
∑

M,N
sM

1 sN
2 and rearranging, produces the PDE,5

∂w
∂t

=
∂w
∂s1

0 +
∂w
∂s2

((ν + f )(1− s2)− βs2(1− s1)) (S2.2)

The PDE given by Eq. S2.2 is linear and can be solved along characteristic curves (curves on6

which the solution w(s1, s2, t) is constant). This involves forming a linear system of ODEs from7

the PDE. They are given by,8
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ds1

dt
= 0

ds2

dt
= (βs2(1− s1))− ((ν + f )(1− s2) (S2.3)

Thus s1 is constant with respect to time, and s2 is governed by a linear ODE which can be9

solved by the change of variables so it becomes homogeneous. In summary the variables change10

according to s′1 = s1 and s′2 = s2 − ŝ2, b = t where ŝ2 = (ν + f )/(β(1 − s1) + ν + f )11

(recalling that s1 is constant with respect to time). The solution of the ODE is,12

s′2(b) = s′2
0eβ(1−ŝ1)+ f+ν)b (S2.4)

where we have let ŝ′2(0) = ŝ′2
0. Hence,13

s0
2 = ŝ2 + e−(β(1−ŝ1)+ f+ν)b(s2 − ŝ2) (S2.5)

and hence,14

w(s1, s2, t) = H(s1
0, s2

0)

= H(s1, ŝ2 + (s2 − ŝ2)e−(β(1−z0
1+ν+ f )b) (S2.6)

All that remains is to find the function H and this is achieved by using the generating function’s15

initial condition, i.e. w(s1, s2, 0) = sy0
2 so that,16
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H(s1
0, s2

0)

∣∣∣∣
t=0

= sy0
2 (S2.7)

Evaluating the second argument to H at t = 0, letting it equal to the dummy variable y, solving17

y in terms of s2 on the right hand side of Eq. S2.7, and finally replacing s2 with the resulting18

expression, leads to,19

w(s1, s2, t) = (ŝ2 + (s2 − ŝ2)e−(β(1−s1)+ν+ f )t)y0 (S2.8)

with ŝ2 = (ν + f )/(β(1− s1) + ν + f ). Note that ŝ2 = 1 when s1 = 1. Next we recall that20

we are interested chiefly in N (i.e., the number of plant inoculations), and hence we reduce Eq.21

S2.7 to a generating function in N only, i.e.,22

W(s, t) = w(1, s2, t) =

(
ν + f + β(1− s1)e−β(1−s1)+ν+ f )t

(β(1− s1) + ν + f

)y0

. (S2.9)

since w(1, s2, t) =
∑

M,N 1MsN
2 PM,N(t) = w(s2, t) by the definition of generating functions.23

Since we are interested in the probability of plant infection, denoted S(t), we can finally convert24

Eq. S2.9 to a simpler form by calculating the probability that N ≥ 1. This leads to,25

S(t) = 1−W(0, t) = 1−
(

ν + f + βe−(β+ν+ f )t

β + ν + f

)y0

. (S2.10)
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