Donnelly et al. Estimating epidemiological parameters from experiments in vector access to host plants, the method of matching gradients. PLOS Computational Biology

S2 Appendix, Stochastic modelling of experiments in vector inoculation access to host plants

The equation describing the joint probability, $Q(t + \delta t)$, of exactly N pathogen-bearing insects and M plant inoculation events at time $t + \delta t$ in an inoculation access period assay (IAP) is,

Joint dynamics of infected plants and virus-bearing vectors $Q_{M,N}(t + \delta t) = Q_{M,N}(t)$

$$+\left(\underbrace{(\nu+f)(N+1)Q_{M,N+1}(t)-(\nu+f)NQ_{M,N}(t)}_{\text{(S2.1)}}+\beta NQ_{M-1,N}(t)-\beta NQ_{M,N}(t)\right)\delta t$$

with initial conditions: $M(0) = 0, N(0) = y_0$ (i.e., $Q_{0,y_0}(0) = 1$). The system can be rewritten as a partial differential equation (PDE) in which the dependent variable is the probability generating function, denoted $w(s_1, s_2, t)$, of the variables M and N from system S2.1, i.e., $w(s_1, s_2, t) = \sum_{M,N} s_1^M s_2^N Q_{M,N}(t)$. Multiplying both the left hand side and right hand terms of the process in Eq. S2.1 by $\sum_{M,N} s_1^M s_2^N$ and rearranging, produces the PDE,

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial s_1} 0 + \frac{\partial w}{\partial s_2} ((\nu + f)(1 - s_2) - \beta s_2(1 - s_1))$$
(S2.2)

⁶ The PDE given by Eq. S2.2 is linear and can be solved along characteristic curves (curves on ⁷ which the solution $w(s_1, s_2, t)$ is constant). This involves forming a linear system of ODEs from ⁸ the PDE. They are given by,

$$\frac{ds_1}{dt} = 0$$

$$\frac{ds_2}{dt} = (\beta s_2(1-s_1)) - ((\nu+f)(1-s_2))$$
(S2.3)

⁹ Thus s_1 is constant with respect to time, and s_2 is governed by a linear ODE which can be ¹⁰ solved by the change of variables so it becomes homogeneous. In summary the variables change ¹¹ according to $s'_1 = s_1$ and $s'_2 = s_2 - \hat{s}_2$, b = t where $\hat{s}_2 = (\nu + f)/(\beta(1 - s_1) + \nu + f)$ ¹² (recalling that s_1 is constant with respect to time). The solution of the ODE is,

$$s_2'(b) = s_2'^0 e^{\beta(1-\hat{s}_1) + f + \nu)b}$$
(S2.4)

where we have let $\hat{s}_2'(0) = \hat{s}_2'^0$. Hence,

$$s_2^0 = \hat{s}_2 + e^{-(\beta(1-\hat{s}_1) + f + \nu)b}(s_2 - \hat{s}_2)$$
(S2.5)

14 and hence,

$$w(s_1, s_2, t) = H(s_0^1, s_0^2)$$

= $H(s_1, \hat{s}_2 + (s_2 - \hat{s}_2)e^{-(\beta(1 - z_1^0 + \nu + f)b)}$ (S2.6)

- All that remains is to find the function H and this is achieved by using the generating function's
- ¹⁶ initial condition, i.e. $w(s_1, s_2, 0) = s_2^{y_0}$ so that,

$$H(s_0^1, s_0^2)\Big|_{t=0} = s_2^{y_0}$$
(S2.7)

Evaluating the second argument to H at t = 0, letting it equal to the dummy variable y, solving y in terms of s_2 on the right hand side of Eq. S2.7, and finally replacing s_2 with the resulting expression, leads to,

$$w(s_1, s_2, t) = (\hat{s}_2 + (s_2 - \hat{s}_2)e^{-(\beta(1 - s_1) + \nu + f)t})^{y_0}$$
(S2.8)

with $\hat{s}_2 = (\nu + f)/(\beta(1 - s_1) + \nu + f)$. Note that $\hat{s}_2 = 1$ when $s_1 = 1$. Next we recall that we are interested chiefly in *N* (i.e., the number of plant inoculations), and hence we reduce Eq. S2.7 to a generating function in *N* only, i.e.,

$$W(s,t) = w(1,s_2,t) = \left(\frac{\nu + f + \beta(1-s_1)e^{-\beta(1-s_1)+\nu+f}t}{(\beta(1-s_1)+\nu+f}\right)^{y_0}.$$
 (S2.9)

since $w(1, s_2, t) = \sum_{M,N} 1^M s_2^N P_{M,N}(t) = w(s_2, t)$ by the definition of generating functions. Since we are interested in the probability of plant infection, denoted S(t), we can finally convert Eq. S2.9 to a simpler form by calculating the probability that $N \ge 1$. This leads to,

$$S(t) = 1 - W(0, t) = 1 - \left(\frac{\nu + f + \beta e^{-(\beta + \nu + f)t}}{\beta + \nu + f}\right)^{y_0}.$$
 (S2.10)