Temple places Excavating cultural sustainability in prehistoric Malta

By Caroline Malone, Reuben Grima, Rowan McLaughlin, Eóin W. Parkinson, Simon Stoddart & Nicholas Vella

Volume 2 of Fragility and Sustainability – Studies on Early Malta, the ERC-funded *FRAGSUS Project*

Temple places

McDONALD INSTITUTE MONOGRAPHS

Temple places

Excavating cultural sustainability in prehistoric Malta

By Caroline Malone, Reuben Grima, Rowan McLaughlin, Eóin W. Parkinson, Simon Stoddart & Nicholas Vella

With contributions by

Stephen Armstrong, Jennifer Bates, Jeremy Bennett, Anthony Bonanno, Sara Boyle, Catriona Brogan, Josef Caruana, Letizia Ceccerelli, Petros Chatzimpaloglou, Nathaniel Cutajar, Michelle Farrell, Katrin Fenech, Charles French, Christopher O. Hunt, Conor McAdams, Finbar McCormick, John Meneely, Jacob Morales Mateos, Paula Reimer, Alastair Ruffell, Ella Samut-Tagliaferro, Katya Stroud & Sean Taylor

Illustrations by

Steven Ashley, Caroline Malone, Rowan McLaughlin, Stephen Armstrong, Jeremy Bennett, Catriona Brogan, Petros Chatzimpaloglou, Michelle Farrell, Katrin Fenech, Charles French, Conor McAdams, Finbar McCormick, John Meneely, Alastair Ruffell, Georgia Vince & Nathan Wright

Volume 2 of Fragility and Sustainability – Studies on Early Malta, the ERC-funded *FRAGSUS Project*

Established by the European Commission

This project has received funding from the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7-2007-2013) (Grant agreement No. 323727).

Published by: McDonald Institute for Archaeological Research University of Cambridge Downing Street Cambridge, UK CB2 3ER (0)(1223) 339327 eaj31@cam.ac.uk www.mcdonald.cam.ac.uk

McDonald Institute for Archaeological Research, 2020

© 2020 McDonald Institute for Archaeological Research. *Temple places* is made available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (International) Licence: https://creativecommons.org/licenses/by-nc-nd/4.0/

ISBN: 978-1-913344-03-0

Cover design by Dora Kemp and Ben Plumridge. Typesetting and layout by Ben Plumridge.

On the cover: Digital scan of the Kordin III excavation in 2015, by John Meneely.

Edited for the Institute by James Barrett (Series Editor).

CONTENTS

Contribut Figures Tables Dedication Acknowle Foreword	n	xv xxii xxv xxxi xxxii xxxiii xxxiii
Chapter 1	Archaeological studies of Maltese prehistory for the <i>FRAGSUS Project</i> 2013–18 Caroline Malone, Simon Stoddart, Rowan McLaughlin & Nicholas Vella 1.1. Introduction	1
	1.1. Island studies	1
	1.1.2. Chronology and new scientific studies	2
	1.1.3. Island criteria	2
	1.2. Background to FRAGSUS as an archaeological project	4
	1.3. The Cambridge Gozo Project 1987–95	6
	1.4. The FRAGSUS Project 2013–18	9
	1.4.1. Archaeological concerns in Maltese prehistory and the FRAGSUS Project	9
	1.4.2. Time and artefacts	9
	1.4.3. Architecture 1.5. Five research questions	10 10
	1.6. The field research programme, 2014–16: the selection of sites for	10
	excavation and sampling and the goals for each site	12
	1.6.1. Taċ-Ċawla	14
	1.6.2. Santa Verna	14
	1.6.3. Kordin III	14
	1.6.4. Skorba	14
	1.6.5. Ġgantija	18
	1.6.6. In-Nuffara	21
	1.7. Additional studies	21 21
	1.8. Environmental and economic archaeology 1.9. Conclusions	24
Chapter 2	Dating Maltese prehistory	27
	Rowan McLaughlin, Eóin W. Parkinson, Paula J. Reimer & Caroline Malone	
	2.1. Introduction: chronology building in the Maltese islands	27
	2.1.1. Malta and megalithismus	27
	2.1.2. Malta and the Mediterranean: the development of absolute chronologies	28
	2.2. Methodology 2.2.1. Sources of data	29 29
	2.2.1. Sources of unit 2.2.2. AMS radiocarbon dating	29
	2.2.3. Bayesian phase modelling	29
	2.2.4. Density modelling	30
	2.3. Results	31
	2.3.1. Early Neolithic Ghar Dalam and Skorba phases	31
	2.3.2. Fifth millennium hiatus	31
	2.3.3. Zebbuġ phase	32
	2.3.4. Mgarr / transitional Ġgantija phase	32
	2.3.5. Ggantija phase	32
	2.3.6. Saflieni phase 2.3.7. Tarxien phase	32 32
	2.3.7. Turxien pruse 2.3.8. Thermi phase	33
		00

	 2.3.9. Tarxien Cemetery phase 2.3.10. Borg in-Nadur phase 2.3.11. Preferred model summary 2.3.12. Kernel density model 2.3.13. Comparison with other regions 2.4. Non-prehistoric dates 2.5. Discussion 2.6. Conclusion 	 33 33 34 34 36 37 37 38
Chapter 3	Excavations at Taċ-Ċawla, Rabat, Gozo, 2014 Caroline Malone, Rowan McLaughlin, Stephen Armstrong, Jeremy Bennett, Conor McAdams, Charles French, Simon Stoddart & Nathaniel Cutajar	39
	3.1. Introduction	39
	3.1.1. Location and physical setting	40
	3.1.2. History of the site	42
	3.2. The Van der Blom and Veen watching brief	42
	3.2.1. The initial evaluation 1993–4	42
	3.2.2. The archaeological investigation 1993–4	44
	3.2.3. The Horton-Trump 1995 investigation	47
	3.2.4. Pottery phases Ghar Dalam (с. 5500 вс)	47
	3.2.5. Tarxien Phase с. 2800 to 2400 вс	48
	3.2.6. Later levels of Punic, Roman and Medieval material c. 800 BC to AD 1500	48
	3.2.7. Post Medieval	48
	3.2.8. The 2014 excavations – methods	48
	3.3. Results of the 1995 work and the 2014 work	48 50
	3.3.1. Wall (172)	50 53
	<i>3.3.2. Internal floors and features within the structure: house layers 3.3.3. Level 1 deposits</i>	56
	3.3.4. Level 2 deposits	60
	3.3.5. Level 3 deposits	62
	3.3.6. Level 4 deposits	65
	3.3.7. Level 5 deposits	67
	3.3.8. Level 6 deposits	69
	3.3.9. Level 7 deposits	71
	3.3.10. Level 8 deposits	73
	3.4. Superficial levels and the Roman vine channels	75
	3.4.1. North Baulk and Main Quadrant	75
	3.4.2. Box Trench 5	75
	3.4.3. Box Trench 4 and main (Horton-Trump 'H') trench	77
	3.4.4. Box Trench 6	79
	3.4.5. The prehistoric deposits outside the wall east of the stone structure	81 82
	3.5. The lower levels of extramural occupation	83 83
	3.5.1. Summary 3.5.2. The Northern Sector	83
	3.5.3. The North Central Sector	88
	3.6. Destruction layers, middens and a <i>torba</i> remnant outside the building wall	91
	3.6.1. The South Central Sector	91
	3.6.2. The South Sector	95
	3.6.3. Summary of the stratigraphic sequence of the eastern exterior of the stone structure	96
	3.6.4. East extent of the Taċ-Ċawla site	96
	3.7. Ancient soils and deposits and the Roman vine channels and pits	103
	3.8. The agricultural channels in the northeast area of the site	103
	3.8.1. The Roman agricultural channel sequence and fills	104
	3.9. Recent historical remains	114

	3.10. The material culture of Taċ-Ċawla	114
	3.10.1. Ceramics	114
	3.10.2. Lithics and artefacts	115
	3.11. The plant economy of Taċ-Ċawla	117
	3.12. Summary	117
	3.12.1. Conclusions and discussion	117
Chapter 4	Santa Verna	123
,	Rowan McLaughlin, Charles French, Eóin W. Parkinson, Sara Boyle, Jeremy Bennett, Simon Stoddart & Caroline Malone	
	4.1. Introduction	123
	4.2. The site	124
	4.2.1. Location and physical setting	124
	4.2.2. History of the site	124
	4.2.3. The 1911 excavations	127
	4.2.4. The 1961 excavations	127
	4.2.5. The Cambridge Gozo Survey	127
	4.2.6. The 2014 Survey	129
	4.3. The 2015 excavations	129
	4.3.1. Methodology	129
	4.3.2. Trench A	134
	4.3.3. Trench B	135
	4.3.4. Trench C	135
	4.3.5. Trench D	137
	4.3.6. Trench D western extension	143
	4.3.7. Trench D northern extension	143
	4.3.8. Trench E	146
	4.3.9. Keyhole investigations between Trenches C, D and E	149 151
	4.3.10. Trench F	151 151
	4.3.11. Trench G	151
	4.4. Soil micromorphology and geochemistry 4.4.1. Introduction	151
	4.4.2. Physical and elemental characterization	151
	4.4.3. Summary of earthen floor micromorphology	151
	4.4.4. Conclusion	151
	4.5. Discussion	153
	4.5.1. Pre-temple features and deposits	153
	4.5.2. The prehistoric temple at Santa Verna	157
	4.5.3. Destruction and collapse of the temple	163
	4.5.4. Evidence of Punic, Roman and Arab phases	164
	4.5.5. The medieval chapel of Santa Verna	164
	4.5.6. Previous excavation campaigns at the site	165
	4.6. The megalithic survey	166
	4.7. Summary and conclusions	166
Chapter 5	Ġgantija	169
Cimpiter e	Catriona Brogan, Charles French, Sean Taylor, Jeremy Bennett,	107
	Eóin W. Parkinson, Rowan McLaughlin, Simon Stoddart & Caroline Malone	
	5.1. Introduction	169
	5.2. Location and physical setting of the site	169
	5.3. History of the site	170
	5.3.1. Museum Department excavations	172
	5.4. 2014 survey and excavations	173
	5.4.1. Methodology	174

	 5.4.2. Results 5.5. 2015 excavations 5.5.1. Excavation rationale 5.5.1. Excavation results 5.6. Discussion 5.6.1. Introduction 5.6.2. Pre-temple features and deposits 5.6.3. Stone structure 5.6.4. Modern activity 	174 180 180 180 181 187 187 187 187 187 189 191
	5.7. Conclusion	191
Chapter 6	Kordin III	193
	Rowan McLaughlin, Catriona Brogan, Eóin W. Parkinson,	
	Ella Samut-Tagliaferro, Simon Stoddart, Nicholas Vella & Caroline Malone	102
	6.1. Introduction 6.2. The site	193 193
		193
	6.2.1. Location and physical setting 6.2.2. History of the site	193
	6.3. Methodology and personnel	194
	6.4. Results: Trench I	201
	6.4.1. Trench IA	201
	6.4.2. Trench IB	208
	6.4.2. Trench IB	208
	6.4.3. Trench IC	212
	6.5. Results: Trench II	214
	6.5.1. Trench IIA	214
	6.5.2. Trench IIB	215
	6.6. Results: Trench III	217
	6.7. Results: Trench IV	219
	6.7.1. Trench IVA	219
	6.7.2. Trench IVB	219
	6.8. Discussion	220
	6.8.1. Palaeosols	220
	6.8.2. Possible Skorba phase features	221
	6.8.3. Mgarr phase layers	221
	6.8.4. Pre-temple Ggantija phase layers	221
	6.8.5. The megalithic 'temple' and its date	221
	6.8.6. Later activity	222
	<i>6.8.7. Re-arrangement of the megaliths</i> 6.9. Conclusion	222 223
Chapter 7	Skorba	227
Chapter	Catriona Brogan, Eóin W. Parkinson, Rowan McLaughlin, Charles French	
	& Caroline Malone	
	7.1. Introduction	227
	7.2. The site	227
	7.2.1. Location and physical setting	227
	7.2.2. History of the site	228
	7.2.3. The 1961–63 campaign	228
	7.3. Methodology of the 2016 campaign	230
	7.4. Results	231
	7.4.1. Northern corner	232
	7.4.2. Central sondage	232

	 7.4.3. Eastern corner 7.4.4. The upper levels 7.5. Discussion 7.5.1. Contemporary settlement in southern Italy 7.6. Conclusion 	235 235 239 241 242
Chapter 8	In-Nuffara	245
	Stephen Armstrong, Catriona Brogan, Anthony Bonanno, Charles French,	
	Rowan McLaughlin, Eóin W. Parkinson, Simon Stoddart & Caroline Malone	245
	8.1. Introduction 8.2. The site	245 245
	8.2.1. Location and physical setting	245 245
	8.2.2. History of the site	245
	8.3. Surface survey	240
	8.4. The 2015 excavations	248
	8.4.1. Excavation rationale	248
	8.4.2. Methodology and personnel	249
	8.4.3. Results	249
	8.4.4. Geoarchaeological report	254
	8.5. Discussion	256
	8.5.1. The Bronze Age settlement at In-Nuffara and contemporary use of the	
	rock-cut pit	256
	8.5.2. The silos and their construction	257
	8.5.3. Site abandonment and later activity at In-Nuffara	258
	8.5.4. Punic, Roman and later activity at In-Nuffara	258
	8.6. Conclusions	258
	8.7. The pottery from In-Nuffara	260
	8.7.1. Introduction: In-Nuffara pottery overview report	260
	8.7.2. The catalogue	261
	<i>8.7.3. Catalogue numbers</i> 8.8. Characteristics and manufacture	261 261
	8.8.1. Fabric	261
	8.8.2. Surface treatment	260 260
	8.8.3. Decoration	260
	8.9. Comparanda	262
	8.9.1. Noteworthy missing shapes	262
	8.9.1. Unique representations, without parallels elsewhere	262
	8.10. Stratigraphic context and date	262
	8.11. Recent archaeometric results	263
	8.12. Impact of the above on the In-Nuffara assemblage	263
	8.13. Concluding remarks	263
	8.14. Catalogue of Bronze Age pottery from In-Nuffara	263
Chapter 9	Economy, environment and resources in prehistoric Malta	281
,	Rowan McLaughlin, Finbar McCormick, Sheila Hamilton-Dyer, Jennifer Bates,	
	Jacob Morales-Mateos, Charles French, Petros Chatzimpaloglou, Catriona Brogan,	
	Alastair Ruffell, Nathan Wright, Patrick J. Schembri, Christopher O. Hunt,	
	Simon Stoddart & Caroline Malone	
	9.1. The environment of early Malta	281
	9.2. Material resources	281
	9.2.1. Indigenous materials	281
	9.2.2. Exotic materials: their origins and distribution	286
	9.3. Economy and foodways	287
	9.3.1. Introduction: the lines of evidence	287

9.3.2. Palaeoecology	289
9.3.3. Plant remains	289
9.4. Faunal remains: mammal bone	294
9.4.1. Introduction	294
9.4.2. Fragmentation	295
9.4.3. Species distribution	295
9.4.4. Sheep/goat	295
	293
9.4.5. Cattle and pig	298
9.5. Other species 9.6. Mammal bones: discussion	299
9.6.1. Livestock and religion	302
9.7. Birds and fish	303
9.7.1. Bird bones	303
9.7.2. Fish bones	304
9.8. Faunal remains: conclusions	304
9.9. Human remains	305
9.9.1. Dental wear	305
9.9.2. Stable isotopes	305
9.10. Conclusions: the economic basis of prehistoric Malta	306
<i>Chapter 10</i> The pottery of prehistoric Malta	309
Caroline Malone, Catriona Brogan & Rowan McLaughlin	
10.1. Introduction	309
10.1.1. History	310
10.1.2. Dating pottery	311
10.1.3. Recent research on Maltese pottery	311
10.2. The FRAGSUS ceramic research programme	313
10.2.1. Pottery phase descriptions	314
10.2.2. The typology and recognition of pottery types in Malta	320
10.2.3. The FRAGSUS pottery analysis: general data from across the sites	323
10.2.4. Pottery frequency	323
10.2.5. Phase frequency on the 2014–16 excavated sites	323
10.2.6. Fragmentation of pottery	323
10.3. Ghar Dalam pottery (Phase 1)	324
10.3.1. Ghar Dalam pottery from FRAGSUS sites	326
10.3.2. Ghar Dalam style representation	326
10.3.3. Ghar Dalam: catalogue descriptions	326
10.3.4. Ghar Dalam: style characteristics	327
	330
10.3.5. Ghar Dalam: fabric, finish and decoration 10.3.6. Regional style	330
	331
10.4. Skorba pottery (Phase 2)	551
10.4.1. Skorba (Red and Grey) bowl and jar forms from Santa Verna and Skorba:	334
catalogue descriptions	334 334
10.4.2. Skorba general forms: catalogue descriptions	
10.4.3. Red Skorba: catalogue descriptions	335
10.4.4. Forms and shapes	335
10.5. Żebbuġ pottery (Phase 3)	339
10.5.1. The Żebbuġ assemblage	339
10.5.2. Trefontane style: forms	340
10.5.3. Trefontane	340
10.5.4. Trefontane-Żebbug bowls: catalogue descriptions	342
10.5.5. Żebbuġ bowls: catalogue descriptions	344
10.5.6. Żebbug cups, handles, lugs, bases and profiles: catalogue descriptions	346
10.5.7. Żebbuġ jars and bowls: catalogue descriptions	346

10.5.8. Żebbug inverted jars and bowls, sherds and decoration: catalogue descriptions	349
10.5.9. The Żebbuġ assemblage	349
10.6. Mgarr pottery (Phase 4)	351
10.6.1. The FRAGSUS assemblage	351
10.6.2. Mgarr inverted bowls: catalogue descriptions	351
10.6.3. Mgarr patterned sherds and bowls: catalogue descriptions	354
10.6.4. Mgarr decoration	354
10.6.5. Mgarr inverted and everted forms and lugs: catalogue descriptions	355
10.7. Ggantija pottery (Phase 5)	357
10.7.1. Ġgantija ceramic repertoire	357
10.7.2. Ggantija everted tapered rim bowls and cups: catalogue descriptions	359
10.7.3. Ggantija everted rolled rim bowls: catalogue descriptions	359
10.7.4. Ggantija tapered rim bowls: catalogue descriptions	361
10.7.5. Ġgantija inverted rolled rim jars: catalogue descriptions	363
10.7.6. Ggantija inverted tapered rim bowls and cups: catalogue descriptions	366
10.7.7. Ġgantija inverted tapered rim bowls: catalogue descriptions	366
10.7.8. Ġgantija rolled rim jars (biconical forms): catalogue descriptions	367
10.7.9. Ġgantija rolled and collared rim jars and bowls: catalogue descriptions	367
10.7.10. Ġgantija deep and tapered rim jars: catalogue descriptions	371
10.7.11. Ġgantija lids, bases and base decorated sherds: catalogue descriptions	373
10.7.12. Ġgantija handles, lugs and decorated sherds: catalogue descriptions	373
10.8. Saflieni pottery (Phase 6)	374
10.8.1. Saflieni vessels and sherds: catalogue descriptions	374
10.8.2. Discussion of Saflieni ceramics	376
10.9. Tarxien pottery (Phase 7)	376
10.9.1. The Tarxien assemblage	376
10.9.2. Tarxien open carinated bowls and cups: catalogue descriptions	376
10.9.3. Tarxien small carinated bowls and cups: catalogue descriptions	378
10.9.4. Tarxien inverted jars and bowls: catalogue descriptions	381
10.9.5. Tarxien textured and rusticated surface vessels: catalogue descriptions	384
10.9.6. Tarxien rusticated coarseware and larger vessels: catalogue descriptions	384
10.9.7. Tarxien two-sided patterned vessels, lids and bases: catalogue descriptions	386
10.9.8. Tarxien handles and lugs: catalogue descriptions	389
10.10. Early Bronze Age pottery	389
10.10.1. Pottery from Thermi-Tarxien Cemetery phases	391
10.10.2. Thermi and Early Bronze Age pottery from Tac-Cawla: catalogue	
descriptions	393
10.10.3. Bronze Age and Thermi pottery: catalogue descriptions	395
10.11. Conclusions	397
	077
<i>Chapter 11</i> Small finds and lithics: reassessing the excavated artefacts and their sources in	
prehistoric Malta	399
Caroline Malone, Petros Chatzimpaloglou & Catriona Brogan	
Part I – The excavated artefacts	
11.1. Introduction	399
11.2. Small finds – 'Temple' Culture artefacts	399
11.2.1. Stone artefacts – querns and ground stone	399
11.2.2. Ceramic objects, figurines	403
11.2.2. Cerumie objecto, jigurmeo	403
11.2.4. Bone tools and artefacts	403
11.3. Lithic tools: raw materials and technology	406
11.3.1. Chert – Santa Verna	400
11.3.2. Obsidian – Santa Verna	412
11.3.3. Chert – Taċ-Ċawla	412
	±±4

	11.3.4. Obsidian and chert – Taċ-Ċawla	413
	11.3.5. Chert and obsidian – Ġgantija	417
	11.3.6. Chert and obsidian – Skorba	417
	11.3.7. Chert and obsidian – Kordin III	417
	11.4. Discussion	418
	Part II – The lithic sources	
	11.5. Assessing the lithic assemblages and sourcing chert artefacts	420
	11.6. Lithic provenance	420
	11.6.1. Geological background and chert rocks	421
	11.7. Materials and methods	423
	11.7.1. Field research	423
	11.7.2. Laboratory research	423
	11.7.3. Chert sources of Malta and Sicily	424
	11.7.4. Geochemical examination	428
	11.8. Lithic assemblages	431
	11.8.1. Macroscopic examination	432
	11.8.2. Mineralogical examination	434
	11.8.3. Geochemical examination	435
	11.9. Summary and conclusions	440
	11.9. Chaîne opératoire	440
		442
	11.10. Integration with <i>FRAGSUS</i>	445
Chanter 12	Megalithic site intervisibility: a novel phenomenological approach	447
Chupter 12	Josef Caruana & Katya Stroud	TI/
	12.1. Introduction	447
	12.2. GIS and the study of the Neolithic in Malta	447
	12.2.1. Technical background and crucial advances in pixel coverage	447
	12.3. The Neolithic landscape	447
	12.3.1. Project aims	448
	12.3.2. Methodology	448
	12.4. QGIS and associated analyses	449
	12.5. The parameters used	450
	12.5.1. Height	450
	12.5.2. Extent of view	450
	12.5.2. Extent of otew 12.5.3. Height of observer	450
	12.5.4. Curvature	450
	12.6. Assumptions and limitations	450
	12.7. Results and observations	450
		451
	12.7.1. Correlation analysis	451
	12.8. Agglomerative hierarchical clustering 12.9. Conclusion	454
	12.7. Conclusion	404
Chanter 13	Conclusions	457
Chilip let 10	Caroline Malone, Catriona Brogan, Reuben Grima, Eóin W. Parkinson,	107
	Rowan McLaughlin, Simon Stoddart & Nicholas Vella	
	13.1. Introduction	457
	13.2. Excavation, sampling and some lessons learnt	457
	13.2.1. Challenges and opportunities	457
	13.2.2. Excavation and recording methods	464
	13.2.2. Exclusion and recording memous 13.2.3. Public engagement	466
	13.3. New discoveries	400
	13.3.1. Prehistoric settlement	471
	13.3.2. 'Temples' and their evolution	471
	13.3.2. Temples and the culture sequence	474 474
	10.0.0. Duting and the cutture sequence	4/4

	 13.3.4. Material culture 13.4. The bigger picture 13.4.1. The FRAGSUS questions revisited 13.5. Postscript 	476 478 479 482
References Index		483 503

Appendices (online only)

Appendix to Chapter 2	513
A2.1. AMS radiocarbon dates	513
A2.2. Chronological Query Language (CQL2) definition of the preferred model	516
Appendix to Chapter 3	517
A3.1. Taċ-Ċawla context register	518
A3.2. Small find register	546
A3.3. Soil samples	557
A3.4. Pottery numbers and frequency by context and phase	559
A3.5. Pottery weights	566
A3.6. AMS dates	572
A3.7. Taċ-Ċawla: micromorphological analysis of the occupation deposits A3.8. Short report on the environmental samples and handpicked shells from	573
the Taċ-Ċawla, Gozo, excavation	587
A3.9. Taċ-Ċawla Roman materials from the agricultural channels	597
	611
Appendix to Chapter 4	611
A4.1. Santa Verna context register A4.2. Small find register	614
A4.3. Pottery counts and frequency by context and phase	618
A4.4. AMS dates	622
A4.5. Santa Verna: soil micromorphology of the temple floor sequence	622
A4.6. Physical properties of the Santa Verna megaliths	628
Appendix to Chapter 5	631
A5.1. Ggantija context register	631
A5.2. Finds register 2014 WC Section	632
A5.3. Pottery counts and frequency by context and phase	633
A5.4. AMS dates	635
A5.5. Geoarchaeology report: micromorphology	636
A5.6. Harris Matrix diagram of stratigraphic sequence of Test Pit 1	640
Appendix to Chapter 6	641
A6.1. Kordin III context register	641
A6.2. Small find register	647
A6.3. Pottery register by number in context and phase	652
A6.4. AMS dates	656
A6.5. Kordin III soil sample register	657
A6.6. SV, LOI, RF Loss of Ignition, etc., soil samples	660
A6.7. Kordin marine shell register	661

A7.1. Skorba context register665A7.2. Small find register666A7.3. Pottery database667A7.4. AMS dates668A7.5. Skorba soil samples668A7.6. OSL (optically stimulated luminescence) sample list669A7.7. Soil micromorphology and geochemistry670Appendix to Chapter 8675A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686A8.6. In-Nuffara: soil micromorphology of selected pit fills687
A7.2. Small find register666A7.3. Pottery database667A7.4. AMS dates668A7.4. AMS dates668A7.5. Skorba soil samples668A7.6. OSL (optically stimulated luminescence) sample list669A7.7. Soil micromorphology and geochemistry670Appendix to Chapter 8675A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A7.4. AMS dates668A7.5. Skorba soil samples668A7.6. OSL (optically stimulated luminescence) sample list669A7.7. Soil micromorphology and geochemistry670Appendix to Chapter 8675A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A7.4. AMS dates668A7.5. Skorba soil samples668A7.6. OSL (optically stimulated luminescence) sample list669A7.7. Soil micromorphology and geochemistry670Appendix to Chapter 8675A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A7.6. OSL (optically stimulated luminescence) sample list669A7.7. Soil micromorphology and geochemistry670Appendix to Chapter 8675A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A7.7. Soil micromorphology and geochemistry670Appendix to Chapter 8675A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A7.7. Soil micromorphology and geochemistry670Appendix to Chapter 8675A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A8.1. In-Nuffara context register676A8.2. Small find register677A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A8.3. Palynological analysis of samples from In-Nuffara678A8.4. AMS dates685A8.5. Soil sample register686
A8.4. AMS dates685A8.5. Soil sample register686
1 0
Appendix to Chapter 9 691
A9.1. Palaeobotanical assemblages 692
A9.2. Zooarchaeological assemblages 714
Appendix to Chapter 10 723
A10.1. Drawn pottery 724
A10.2. Ceramic thin section analysis of Temple Period, Neolithic and Bronze Age material from Malta 742
A10.3. Phase sequence and forms after Evans (1971) and Trump (1966, 1989) 750
Appendix to Chapter 11 763
A11.1. Worked stone artefacts 763
A11.2. Terracotta and shell artefacts 765
A11.3. Worked bone and shell artefacts 765
A11.4. Taċ-Ċawla obsidian assemblage, length and width 766
A11.5. Chert and obsidian numbers from the <i>FRAGSUS</i> sites 769
A11.6. Geological description and analysis of lithic samples 775

Contributors

STEPHEN ARMSTRONG Archaeology, College of Humanities, University of Exeter, UK Email: sa622@exeter.ac.uk

Stephen Ashley Norfolk Museums Service, Shirehall, Market Avenue, Norwich, UK Email: steven.ashley@norfolk.gov.uk

Dr Jennifer Bates Dept. of Anthropology, Penn Museum, University of Pennsylvania Email: jenbates@sas.upenn.edu

JEREMY BENNETT Department of Archaeology, University of Cambridge, Cambridge, UK Email: jmb241@cam.ac.uk

PROF. ANTHONY BONANNO Department of Classics & Archaeology, University of Malta, Msida, Malta Email: anthony.bonanno@um.edu.mt

DR SARA BOYLE (NOW STEWART) Ordnance Survey of Northern Ireland, Land & Property Services, Lanyon Plaza, 7 Lanyon Place, Town Parks, Belfast, Northern Ireland

DR CATRIONA BROGAN 14 Glenmanus Village, Portrush, Antrim, Northern Ireland Email: cbrogan03@qub.ac.uk

Dr Josef Caruana Head Office Heritage Malta, Ex Royal Naval Hospital, Kalkara, Malta Email: josef.caruana@gov.mt

LETIZIA CECCARELLI Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, P.zza Leonardo da Vinci, 32, 20133 Milano, Italy Email: letizia.ceccarelli@polimi.it

DR PETROS CHATZIMPALOGLOU Department of Archaeology, University of Cambridge, Cambridge, UK Email: pc529@cam.ac.uk NATHANIEL CUTAJAR Head Office Heritage Malta, Ex Royal Naval Hospital, Kalkara, Malta Email: nathaniel.cutajar@gov.mt

DR MICHELLE FARRELL Centre for Agroecology, Water and Resilience, School of Energy, Construction and Environment, Coventry University, Coventry, UK Email: ac5086@coventry.ac.uk

Dr Katrin Fenech Department of Classics & Archaeology, University of Malta, Msida, Malta Email: katrin.fenech@um.edu.mt

PROF. CHARLES FRENCH Department of Archaeology, University of Cambridge, Cambridge, UK Email: caif2@cam.ac.uk

DR REUBEN GRIMA Department of Conservation and Built Heritage, University of Malta, Msida, Malta Email: reuben.grima@um.edu.mt

SHEILA HAMILTON DYER Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK Email: shamiltondyer@bournemouth.ac.uk

PROF. CHRISTOPHER O. HUNT Faculty of Science, Liverpool John Moores University, Liverpool, UK Email: c.o.hunt@ljmu.ac.uk

PROF. CAROLINE MALONE School of Natural and Built Environment, Queen's University, Belfast, Northern Ireland Email: c.malone@qub.ac.uk

CONOR MCADAMS Centre for Archaeological Science School of Earth and Environmental Sciences, University of Wollongong, New South Wales, Australia Email: cm065@uowmail.edu.au

DR FINBAR MCCORMICK Emeritus, School of Natural and Built Environment, Queen's University, Belfast, Northern Ireland Email: f.mccormick@qub.ac.uk DR Rowan McLaughlin School of Natural and Built Environment, Queen's University, Belfast, Northern Ireland Email: r.mclaughlin@qub.ac.uk

JOHN MENEELY School of Natural and Built Environment, Queen's University, Belfast, Northern Ireland Email: j.meneely@qub.ac.uk

Dr Jacob Morales Mateos Departamento de ciencias historicas, Universidad de Las Palmas de Gran Canaria, Spain Email: jacobmoralesmateos@gmail.com

Dr Anthony Pace UNESCO Cultural Heritage, Valletta, Malta Email: anthonypace@cantab.net

Dr Eóin Parkinson Department of Classics & Archaeology, University of Malta, Msida, Malta Email: ewparkinson24@gmail.com

PROF. PAULA REIMER School of Natural and Built Environment, Queen's University, University Road, Belfast, Northern Ireland Email: p.j.reimer@qub.ac.uk

DR ALISTAIR RUFFELL School of Natural and Built Environment, Queen's University, University Road, Belfast, Northern Ireland Email: a.ruffell@qub.ac.uk Ella Samut-Tagliaferro Formerly of the Superintendence of Cultural Heritage, Malta

Prof. Patrick J. Schembri Department of Biology, University of Malta, Msida, Malta Email: patrick.j.schembri@um.edu.mt

DR SIMON STODDART Department of Archaeology, University of Cambridge, Cambridge, UK Email: ss16@cam.ac.uk

KATYA STROUD Head Office Heritage Malta, Ex Royal Naval Hospital, Kalkara, Malta Email: katya.stroud@gov.mt

DR SEAN TAYLOR Department of Archaeology, University of Cambridge, Cambridge, UK Email: st435@cam.ac.uk

Prof. Nicholas C. Vella Faculty of Arts, University of Malta, Msida, Malta Email: nicholas.vella@um.edu.mt

DR NATHAN WRIGHT School of Social Science, The University of Queensland, Brisbane, Australia Email: n.wright@uq.edu.au

Figures

0.1	David Trump and John Evans together at the Deya Conference, Mallorca.	xxxii
0.2	Joseph Magro Conti at Kordin.	xl
1.1	Early excavation images of Tarxien in 1915 during the superficial clearance.	5
1.2.	Xaghra Brochtorff Circle excavations from 1987–94.	7
1.3.	The Cambridge Gozo Survey 1987–95, recording landscape features and surface scatters.	8
1.4.	General view of Taċ-Ċawla, 2014, and members of the 2014 team.	15
1.5.	General views of work at Santa Verna, 2015.	16
1.6.	General views of work at Kordin III, 2015.	17
1.7.	General views of work at Skorba, 2015.	18
1.8.	General views of work at Ġgantija, 2016.	19
1.9.	General views of work at In-Nuffara, 2015.	20
1.10.	Ceramic processing and finds work.	22
1.11.	Location map of sites investigated by the FRAGSUS Project.	23
1.12	Research intensity on Maltese prehistory.	24
1.13.	Images of scholars and fieldworkers of Maltese prehistory.	25
1.14.	Research pioneers of prehistoric Malta.	26
2.1.	OxCal plot of phases of Maltese prehistory.	34
2.2.	Kernel density estimates for radiocarbon-dated phases of Maltese prehistoric sites.	35
2.3.	KDE models of archaeological phases and the density of dated charcoal from sediment cores.	35
2.4.	KDEs of the temporal distribution of Maltese radiocarbon dates.	36
3.1	Site location map.	40
3.2.	Site location details.	41
3.3.	Site layout of Trench E in 1994.	43
3.4.	Location of scatters surveyed in 1960s and trial trenches in 1993 and 1995.	44
3.5.	General trench layout in 1995: section, trench photograph and stone figurine.	46
3.6.	Site layout in 2014.	49
3.7.	The excavated stone structures and the remnant vine channels and pits.	50
3.8.	The double-sided structure wall and related post- and stake holes.	51
3.9.	The exterior face of the wall (172) in the eastern zone.	52
3.10.	The relationship of wall (287) in BT5 to extramural and internal levels.	53
3.11.	Wall contexts of the Neolithic structure and digital scan of stone walls.	54
3.12.	Structure wall in BT5.	55
3.13.	Structure wall in BT6.	55
3.14.	Recording and excavation of the North Baulk inside the structure.	55
3.15.	Section drawings of BT5.	57
3.16.	Section drawings of BT6 and exploratory trench.	58
3.17.	Location of main box trenches.	58
3.18.	The lower cobble layers and underlying terra rossa in BT6.	59
3.19.	Plan showing locations of principal contexts in Level 1.	59
3.20.	BT6, revealing bedrock overhang, floors and foundation deposits.	60
3.21.	<i>View of the excavations in the western extent of the site.</i>	60
3.22.	The stony cobbled and bedrock base in the eastern quadrant.	61
3.23.	Plan showing location of principal contexts in Level 2.	61
3.24.	Sections cut through structure floors – north side of 1995 trench.	62
3.25.	Level 3 deposits within the 'house' structure.	63
3.26.	Re-cut 1995 trench recording location of BT4.	64
3.27.	Layers revealed in BT4.	64
3.28.	The 1995 trench recorded in 2014.	65
3.29.	Level 4 showing main cobble deposits.	66
3.30.	<i>View of the trenches through the eastern half of the structure.</i>	66
3.31.	<i>Level 5 showing main cobble deposits.</i>	67
3.32.	Section record of the North Baulk.	68

3.33.	Photograph of baulk in the North West Quadrant.	68
3.34.	The cleaning and recording of the North Baulk.	70
3.35.	The cleaned floor in Level 7 in the east of the structure.	70
3.36	Level 6 yellow brown deposits.	71
3.37.	Cleaned floor deposit in Context (195), showing charcoal and burnt lenses.	72
3.38.	Section cut through floors close to the stone wall.	72
3.39.	Level 7 deposits – dark lenses and floors.	73
3.40.	Location of the main Level 8 deposits.	74
3.41.	General view looking south of excavation beyond the 1995 trench.	74
3.42.	View of the extramural layers visible in BT5.	76
3.43.	View of the intermediate stage of excavation of BT6.	77
3.44.	<i>View of the excavation of the internal floors and structure wall.</i>	77
3.45.	Internal floors and remnant walls of the structure.	78
3.46.	The wall structures looking west.	78
3.47.	<i>Upper excavation levels of the area to the north of the stone structure.</i>	79
3.48.	Partially cleared vine pits.	80
3.49.	View of the late stages of excavation showing walls and bedrock.	80
3.50.	Vine pits (8) and (9) and the emerging stones of wall (172).	81
3.51.	The sequence of contexts in the extra-mural deposits in Level 1 and Level 2.	82
3.52.	Northeast Sector postholes and reconstruction plan.	84
3.53	Intermediate levels in the extramural area and upper prehistoric levels in the extramural area.	86
3.54.	Exposed bedrock in the area immediately outside wall (172).	87
3.55.	Postholes under excavation.	88
3.56.	Section of (268) longitudinal $W-E$, and cross sections $N-S$.	89
3.57.	<i>The external cobbled area (210), dumps and displaced wall stones.</i>	90
3.58.	Primary contexts around the structure walls and cleared bedrock in the Main Quadrant.	90
3.59.	Location of stone spread (178).	92
3.60.	<i>View of the north-facing section of the mini baulk and floors within the structure.</i>	93
3.61.	Southwest-facing section of BT3.	93
3.62.	Contexts in southern extramural zone.	94
3.63.	Southern extramural zone with rock-cut and primary features.	94
3.64.	Plan of the east zone of excavation, showing the parallel vine pits/channels.	97
3.65.	Excavated rock features in the southeast excavation area.	97
3.66.	Excavations in the southeast area in 2014.	97
3.67.	Plan of Context (109), section record, and clay oven fragments and drawing.	99
3.68.	Obsidian core and associated pottery.	100
3.69.	Sections and location plan recording the stratigraphy in the southeast area of excavation.	100
3.70.	Box Trench profiles and their numbered contexts.	101
3.71.	Paving stones in Channel 1 and sherd scatters in Context (120).	102
3.72.	Sandstone quern in situ in Context (120) between Channels 2 and 3.	102
3.73.	Layout of the vine pit/agricultural channels across the excavation area.	105
3.74.	Differential coloration of the agricultural channels, looking west.	100
3.74.	The agricultural features during excavation.	107
3.76 .	The agricultural jealures during exclosition. The excavated vine pits and features in plan and profile east of the stone structure (172).	108
3.77.	The mollusc pits in section and plan.	110
3.78.	Photographs of the sectioned snail pit.	110
3.79.	Excavation of the shallow deposits on the east side of the site.	110
3.80. 3.81	Bedrock features along the east baulk of the excavation, showing potential posthole and torba deposits.	112 113
	Post-medieval kiln or burning pit, showing rubble base and circular edge.	
3.82.	Possible layout of the Neolithic domestic structures at Tac-Cawla.	115
3.83. 2.84	Taċ-Cawla, main trench early in the excavation.	116
3.84. 3.85.	The site at the close of the 2014 season. Later phases of activity at Tak Carola: Classical and Thermi phases	116
3.85. 3.86.	Later phases of activity at Taċ-Ċawla: Classical and Thermi phases.	118
3.00.	Temple Period phases of activity at Taċ-Ćawla: Tarxien and Ġgantija phases.	118

3.87.	Earlier phases of activity at Taċ-Ċawla: Żebbuġ and Skorba phases.	118
3.88.	Lithic distribution at Taċ-Ċawla.	119
3.89.	Pottery-lithic distributions at Taċ-Ċawla – summed probability plots.	120
3.90.	The FRAGSUS teams during the 2014 season.	121
4.1.	Location map of Santa Verna.	124
4.2.	'Plan of a Phoenician Temple': preparatory drawing from Houël's 1789 engravings.	125
4.3.	The 1911 plan of Santa Verna.	126
4.4.	Selection of photos from the 1911 excavations at Santa Verna.	120
4.5.	South-facing section of the 1961 Trench 'A'.	120
4.6.	Density of Early Neolithic pottery found in the Santa Verna survey.	130
4.7.	Density of Early Temple Period pottery found in the Santa Verna survey.	130
4.8.	Density of Ghar Dalam, Grey & Red Skorba and Temple Period sherds recovered in 2014.	131
4.9.	Relative proportion of sherds recovered from north and east of Santa Verna.	131
4.10.	Relative proportion of sherds recovered from west of Santa Verna.	131
4.11.	Ground penetrating radargrams of Santa Verna.	132
4.12.	The Santa Verna megaliths partially enveloped with vegetation.	132
4.13.	Site scan of Santa Verna at close of excavation.	133
4.14.	2015 trench layout showing major megaliths.	133
4.15.	Post-excavation photo of Trench A, showing bedrock, looking west.	134
4.16.	Snail figurines from Santa Verna, 2015.	135
4.17.	Post-excavation photo of Trench B, showing terra rossa, looking east.	135
4.18.	Obsidian blade (SF19) from Context (8).	136
4.19.	Sherd of stamped pottery from (17), similar to Sicilian Stentinello ware.	136
4.20.	Post-excavation plan of Santa Verna temple.	137
4.21.	Vertical section of Trump 1961 trench and location of micromorphology samples.	138
4.22.	Saddle quern fragment embedded within torba floor (23).	139
4.23.	Vertical section of 1911 sondage [54].	140
4.24.	South-facing vertical section.	141
4.25.	Threshold stone (57), with Context (59) in the background.	142
4.26.	Fragment of a rim of a large stone bowl from Context (58).	142
4.27.	Stones (59) as they were in 1911 (left) and 2015 (right).	143
4.28.	The western edge surface {21} and floor (121), also showing 1911 sondage [120].	144
4.29.	Detail of preserved plaster at the edge of floor (121).	144
4.30.	<i>Layer</i> (116), a patch of torba of presumed Skorba date.	145
4.31.	Trench D, northeast facing vertical section showing Cut [76] into pre-Temple deposits.	145
4.32.	'Fire pit' feature in surface {21}.	145
4.32. 4.33.		
	South-facing vertical section of sondage in Trench E.	147 147
4.34.	<i>The lobed wall (91) of the outer right temple apse running through Trench E.</i>	147
4.35.	Polygonal 'tiles', Context (92).	148
4.36.	<i>Obsidian arrowhead from (52) (SF132).</i>	148
4.37.	Photograph from Bradley (1912) of workers at Santa Verna.	149
4.38.	Post-excavation laser scans.	149
4.39.	Photograph of the keyhole investigations between Trenches C, D and E.	150
4.40.	Photograph of chert objects from topsoil (13) in Trench F.	150
4.41.	Thin section photomicrographs from Santa Verna and Ggantija.	152
4.42.	Ghar Dalam pottery from Context (8) in Trench B.	154
4.43.	Painted ware sherds illustrated in Ashby et al. (1913), of Żebbuġ style.	155
4.44.	Bayesian model multiplot for the Zebbug phase and construction of Santa Verna.	156
4.45.	Plans of Santa Verna on discovery and with 2015 excavation features alongside extant megaliths.	157
4.46.	Site profile from north to south.	158
4.47.	Photograph of tiles (92) taken at the time of their discovery.	158
4.48.	Outline plans of the Santa Verna temple.	160
4.49.	Outline plan of the Santa Verna temple, with Ġgantija as a comparison.	161
4.50.	Tarxien phase sherds from (33), the foundation of the Phase V floor.	162

4.51.	Extract from Ashby et al.'s (1913) plan, overlain with the excavation results.	163
4.52.	Tarxien phase pottery from Santa Verna found in 1911.	164
4.53.	Photographs showing the discovery of a Globigerina Limestone slab.	165
4.54.	Schematic plan showing megaliths categorized by volume.	166
4.55.	Digital laser scan, showing stones placed to overlap adjacent members.	166
5.1.	Location map of Ġgantija.	170
5.2.	Hoüel's (1787) engraving of the Xaghra Brochtorff Circle and Ġgantija Temples.	171
5.3.	Lacroix's illustrations of notable artefacts kept by Bayer from Ġgantija.	171
5.4.	The trilithon structure and retaining wall as depicted by Brocktorff (1820s).	172
5.5.	Smyth's engraving (1829) of Ġgantija.	173
5.6.	The fault line at Ġgantija revealed through GPR.	174
5.7.	Orthophotograph of the Ġgantija temples showing resistivity results for the 'olive grove'.	175
5.8.	Plan of Trench 1/2014.	176
5.9.	Trench 2/2014 after excavation.	176
5.10.	Vertical section of Trench 3/2014 showing the wall structure, Context (2004).	177
5.11.	Mid-excavation plan of Trench 3/2014 showing the wall structure, Context (2004).	178
5.12.	Photograph of Trench 3/2014 in the olive grove, looking south.	178
5.13.	The southeast-facing vertical section beneath the former office/WC.	179
5.14.	Section drawing of the southeast-facing section showing in situ megaliths and stratified deposits.	179
5.15.	Typical Tarxien phase sherds recovered from Context (2012).	180
5.16.	Plan of Ggantija showing the location of Trench 1/2014 ext. (1) and Trench 1/ 2015 (2).	180
5.17.	East-facing vertical section drawing of Trench 1/2014 ext.	181
5.18.	Southeast-facing vertical section drawing of Trench 1/2014 ext.	182
5.19.	Trench 1/2014 ext. post-excavation, with in situ megalith.	182
5.20.	Two Ġgantija phase cups recovered from Context (004).	183
5.21.	Post-excavation plan of Trench 1/2015.	184
5.22.	Post-excavation plan of sondage at the base of Trench 1/2015.	184
5.23.	Superficial vertical section in Trench 1/2015, with micromorphology sample locations.	185
5.24.	Deep vertical section at the base of Trench 1/2015, with micromorphology sample locations.	185
5.25.	Photograph of the excavated ramp structure.	186
5.26.	Pottery from Context (1002)/(1003).	186
5.27.	Mid-excavation photograph of Trench 1/2015.	188
5.28.	Tarxien phase pottery from Contexts (1015) and (1016).	188
5.29.	Laser scan of Trench 1/2015 post-excavation, clearly showing the wall structure.	189
6.1.	Location map of Kordin III.	193
6.2.	The temples of Kordin I and Kordin II as recorded by Caruana (1896).	193
6.3.	Ashby's plans of Kordin I, II and III (Ashby et al. 1913).	195
6.4.	Orthophotograph and survey map of the Kordin site locations.	195
6.5.	Location of prehistoric sites in the area (digital elevation model from LiDAR).	196
6.6.	Location map of Kordin III with viewsheds calculated through LiDAR.	190
6.7.	Image of Kordin III in 1925, surrounded by the enclosing wall.	197
6.8.	Site photos from Ashby and Peet's excavation at the Kordin sites.	198
6.9.	Ashby's plan of Kordin III showing the locations of Evans' and Trump's trenches.	199
6.10.	Evans' plan of Kordin III (adapted from Ashby et al. 1913).	199
6.11.	Evans' and Trump's section and trench drawings.	200
6.12.	Kordin III and the University of Malta 2006 survey.	200
6.12. 6.13.	Overlay of the 2015 trenches at Kordin III.	200
6.14. 6.15.	Overview of Trench I. Tranch 1 A and 1C contacts	202
	Trench 1A and 1C contexts.	203
6.16.	Bayesian model of the radiocarbon dates from sondages in Trench I.	204
6.17.	Plan of eastern end of Trench I. Plata angula of torba floor (20) and condeas in Contact (07)	205
6.18.	<i>Photograph of</i> torba <i>floor (89) and sondage in Context (97).</i>	205
6.19.	<i>Photographic section and section record of (70) and (71).</i>	207
6.20.	Mgarr pottery from midden deposit (71).	207

6.21.	Three stone discs from Context (71) (SF167).	208
6.22.	Small features in Trench 1B.	208
6.23.	Possible stone pendant (SF132), from Context (67).	209
6.24.	The smashed threshold stone (SfM model).	209
6.25.	The smashed threshold in context.	210
6.26.	Photo-model of megalithic wall (6) and fragments of plaster (15).	211
6.27.	Section drawing of plaster fragments in Context (14).	211
6.28.	Fragment of plaster with pigment (SF15) from topsoil in Trench IB.	211
6.29.	<i>Post-excavation photograph of</i> [37] <i>and</i> [42] <i>looking west.</i>	212
6.30.	Struck chert (SF109) from Context (31).	212
6.31.	North-facing section in Trench 1C.	213
6.32	East-facing section in Trench 1C.	213
6.33.	South-facing section in Trench 1C.	213
6.34.	Sherd of Mgarr pottery from (93) and slingstone from (5).	214
6.35.	Mid-excavation photograph of Trench IC showing (93) after removal of (78).	214
6.36.	Trench II during excavation in 2015.	215
6.37.	Torba <i>floor</i> (151) <i>and related layers.</i>	216
6.38.	Plan and photographs of Trench II.	217
6.39.	Trench III showing excavation progress.	218
6.40.	Pottery and obsidian artefacts.	219
6.41.	Trench IV showing excavation progress.	220
6.42.	Plan of 2015 structures overlain on Ashby's 1909 plan.	222
6.43.	Sectioned deposits revealing 'modern' tin cup beneath megalith.	223
6.44.	View of excavations before site closure, Trench I.	224
6.45.	Laser scan of Trench I.	224
6.46.	The team at Kordin.	225
7.1.	Location map of Skorba.	228
7.2.	Map of Skorba and nearby Temple Period sites and local topography.	228
7.3.	<i>Trump's</i> (1966) excavation plan of Skorba with locations of 2011/2016 excavations.	229
7.4.	Trench M during excavation in 2011. Work during the 1961 magnation account with maritime of the 2016 transh indicated	230
7.5.	Work during the 1961 excavation season with position of the 2016 trench indicated.	231 231
7.6.	Location of the 2016 trench.	
7.7.	Photograph of the 2015 trench.	232 233
7.8.	Detailed plans of the 2015 trench.	
7.9. 7.10.	Southwest-facing vertical section of the trench.	234
7.10.	Harris matrix for the 2015 excavation at Skorba.	234 234
7.11.	Shell beads (SF5) recovered from the FRAGSUS excavation at Skorba. Section of northwest end of trench, exposing Trump's sondage cut.	234
7.12.	Drawings of southeast-facing section (Trump's ' Y') and the Ghar Dalam wall stratigraphy.	235
7.13.	Section drawing of northeast corner of the trench.	230
7.14.	Deposits in the eastern corner.	237
7.15.	Photograph of the wall.	237
7.10.	Photograph of initial clearance of the trench.	237
7.17.	Southeast-facing section of the trench, showing OSL sampling locations.	230
7.19.	The column extracted for OSL dating in the northeast corner.	239
7.20.	Views of the 2016 excavations at Skorba.	240
8.1.	Location map of In-Nuffara.	240
8.2.	View of In-Nuffara mesa and the Ramla Valley.	240
8.3.	Sketch of a vertical section of two adjoining silo pits from the 1960 excavation.	240
8.4.	Orthographic, LiDAR and topographic imagery of In-Nuffara.	247
8.5.	The remains of a partially eroded rock-cut pit along the limestone cliff-face.	240
8.6.	Structure from Motion orthograph and plan of the trench.	250
8.7.	Photograph of the trench after topsoil removal, with silos visible.	250
8.8.	North-facing section record of Silo 1.	250
	,o	

8.9.	Photographs of the in situ capstone of Silo 1 following the removal of topsoil.	251
8.10.	North-facing half section of the archaeological deposits within Silo 2.	252
8.11.	Structure from Motion model of the half sectioned deposits in Silo 2.	253
8.12.	Spindle whorls recovered from Silo 2.	254
8.13.	3-D laser scan section and plan of the silos.	255
8.14.	Ceramics catalogue numbers 1–17.	266
8.15.	Ceramics catalogue numbers 18–26.	269
8.16.	Ceramics catalogue numbers 27–37.	271
8.17.	Ceramics catalogue numbers 38–45.	275
8.18	Ceramics catalogue numbers 46–50.	276
8.19	Ceramics catalogue numbers 51–65.	278
9.1.	Holocene potential vegetation map of Malta, c. 6000 вс.	282
9.2.	Lagoon wetlands map of Malta in the early Holocene.	284
9.3.	Map showing the origins of exotic materials brought to Malta in prehistory.	286
9.4.	The temporal distribution of economic evidence obtained by the FRAGSUS Project.	288
9.5.	The Maltese pollen data over time.	291
9.6.	Temporal distribution of cereals and legumes.	292
9.7.	a) Cultivated plant seeds; b) wild plants; c, d) horsebeans from Tarxien Cemetery.	293
9.8.	MNI percentage distribution.	296
9.9.	NISP percentage distribution.	296
9.10.	Taċ-Ċawla sheep age slaughter pattern.	296
9.11.	Percentage distribution of sheep/goat bones from Taċ-Ċawla.	300
9.12.	Percentage distribution of sheep/goat bones from Santa Verna.	300
9.13.	Percentage distribution of sheep/goat bones from Kordin III.	300
9.14.	Percentage distribution of sheep/goat bones from In-Nuffara.	300
9.15.	Percentage distribution of cattle bones from Taċ-Ċawla.	301
9.16	Percentage distribution of cattle bones from Santa Verna.	301
9.17.	Percentage distribution of pig fragments from Tac-Cawla.	301
9.18.	Percentage distribution of pig fragments from Santa Verna.	301
9.19.	Tooth of a sand tiger shark from Taċ-Ċawla.	304
9.20.	Graphs of cereal pollen detectability.	306
10.1.	Evans' typological scheme for Maltese phases, 1953.	317
10.2.	a) Number of sherds found per phase at FRAGSUS excavations at temple sites; b) total number;	
	c) total number from the Cambridge Gozo Survey.	318
10.3.	Estimated vessel sizes recorded from rim diameter in the different phases of pottery production.	319
10.4.	Pottery frequency, fragmentation and relative presence.	320
10.5.	Aoristic totals of pottery by phase.	321
10.6.	Context-by-context comparison of fragmentation for Żebbuġ and Ġgantija pottery at Taċ-Ċawla.	322
10.7.	Ghar Dalam pottery forms.	328
10.8.	<i>Ghar Dalam: classification of patterns.</i>	329
10.9.	Skorba (Red and Grey) bowl and jar forms from Santa Verna and Skorba.	336
10.10.	Skorba general forms.	337
10.11.	Red Skorba.	338
10.12.	Trefontane-Żebbuġ bowls.	343
10.13.	Żebbuġ bowls.	345
10.14.	Żebbuġ cups, handles, lugs, bases and profiles.	347
10.15.	Żebbuġ jars and bowls.	348
10.16.	Żebbuġ inverted jars and bowls, sherds and decoration.	350
10.17.	Mgarr inverted bowls.	353
10.18.	Mgarr patterned sherds and bowls.	355
10.19.	Mgarr inverted and everted forms and lugs.	356
10.20.	Ġgantija everted tapered rim bowls and cups.	360
10.21.	Ġgantija everted rolled rim bowls.	361
10.22.	Ġgantija tapered rim bowls.	362

10.00		2(4
10.23.	Ggantija inverted rolled rim jars.	364
10.24.	<i>Ggantija inverted tapered rim bowls and cups.</i>	365
10.25.	Ggantija inverted tapered rim bowls.	368
10.26.	Ggantija inverted rolled rim jars (biconical forms).	369
10.27.	Ggantija rolled and collared rim jars and bowls.	370
10.28.	Ggantija deep and tapered rim jars.	371
10.29.	Ġgantija lids, bases and base decorated sherds.	372
10.30.	Ggantija handles, lugs and decorated sherds.	374
10.31.	Saflieni vessels and sherds.	375
10.32.	Tarxien open carinated bowls and cups.	379
10.33.	Tarxien small carinated bowls and cups.	380
10.34.	<i>Tarxien inverted jars and bowls.</i>	382
10.35.	Tarxien textured and rusticated surface vessels.	383
10.36.	Tarxien rusticated coarseware and larger vessels.	385
10.37.	Tarxien two-sided patterned vessels, lids and bases.	387
10.38.	Tarxien handles and lugs.	388
10.39.	Thermi and Early Bronze Age pottery from Taċ-Ċawla.	394
10.40.	Thermi and Middle to Late Bronze Age pottery.	396
11.1.	<i>Querns and worked stone.</i>	400
11.2.	$\stackrel{\sim}{Q}$ uerns, bowls and worked stone, mainly from Taċ-Ċawla.	401
11.3.	Discs, querns and grinders from Santa Verna and Kordin III.	402
11.4	Sling stone and weights, loom weights, worked stone.	404
11.5.	Terracotta objects, snails, beads, shell objects and In-Nuffara loom weights.	405
11.6.	Worked bone and shell objects.	403
11.0.	Pie and bar charts of obsidian and chert artefacts from Taċ-Ċawla.	408
11.7.	Bar charts showing ratios of chert colours and chert tools/obsidian artefacts.	408
11.0. 11.9.	Santa Verna chipped stone: chert.	409
11.9.		411 412
	Santa Verna chipped stone: chert and obsidian.	
11.11.	Ġgantija lithics.	414
11.12.	Taċ-Cawla chipped stone: chert.	415
11.13.	Taċ-Cawla chipped stone: obsidian.	416
11.14.	Skorba chipped stone.	418
11.15.	Kordin III chipped stone.	419
11.16.	<i>Geological map of the Maltese Islands including sample locations.</i>	421
11.17.	Geological map of Sicily.	422
11.18.	Chert outcrops on Gozo.	424
11.19.	Chert outcrops on Malta.	425
11.20.	Examples of Sicilian chert rocks: bedded Radiolarian outcrop along the Valona River.	425
11.21.	Examples of black and translucent cherts recorded in Sicily.	426
11.22.	Different angles of Radiolarian beds on the riverbed of the Valona River.	426
11.23.	Representative FTIR spectra of the chert samples from Malta.	427
11.24.	Representative FTIR spectra of the chert samples from Gozo.	427
11.25.	Representative FTIR spectra of the chert samples from Sicily.	428
11.26.	Geochemical models: ternary diagram and binary diagram.	429
11.27.	Normalized patterns of rare earth elements of Maltese and Sicilian chert samples.	430
11.28.	Cluster bar diagram presenting the total number of each assemblage.	431
11.29.	<i>Pie-charts showing the ratio between the different types of rock.</i>	431
11.30.	Representative samples of the first group of artefacts from Ġgantija.	432
11.31.	Representative samples of the second group of artefacts.	433
11.32.	Representative samples of the macroscopically diverse third group of artefacts.	433
11.33.	Comparison FTIR-ATR spectra between a representative artefact and the chert sources.	434
11.34.	Geochemical models cross-examining the Sicilian cherts and the artefacts of group 1.	435
11.35.	<i>Comparable spider plots of REE concentrations of Sicilian chert outcrops.</i>	436
11.36.	Geochemical models cross-examining the Maltese cherts and artefacts of group 2.	437

11.05		107
11.37.	Comparable spider plots of REE concentrations of local origin.	437
11.38.	Comparable spider plots of REE concentrations: samples from Skorba.	438
11.39.	Geochemical models cross-examining the Sicilian black chert sources and Group 3.	439
11.40.	Comparable spider plot of REE concentrations: Sicilian black chert and Group 3.	439
11.41.	Geochemical models cross-examining the West Sicilian chert.	440
11.42.	Comparable spider plot of REE concentrations: West Sicilian chert Group 3.	441
11.43.	Different flake types from Context 1019 of the Ġgantija assemblage.	442
11.44.	Example of a blade made from the Xaghra Brochtorff Circle.	443
11.45.	A scraper from the Xaghra Brochtorff Circle.	444
11.46.	Unimarginal flake of non-local chert from Santa Verna.	444
11.47.	Bi-marginal flake from Taċ-Ċawla that exhibits serration at its edge.	444
11.48.	Unhafted biface tool from Tac-Cawla.	445
12.1.		4452
	Viewshed analysis of selected prehistoric sites in Gozo.	
12.2.	Viewshed analysis of selected prehistoric sites in Malta.	452
12.3.	Viewshed analysis of Borg in-Nadur.	453
12.4.	Viewshed analysis of the Hal Saflieni Hypogeum.	454
12.5.	Dendrogram of sites in Malta divided into four major clades.	455
13.1.	Remote sensing at Ggantija and across the landscape.	459
13.2.	Ta' Marżiena plan and digital scan.	460
13.3.	Borġ in-Nadur LiDAR and digital scans.	461
13.4.	Dating advances – the Skorba section and its layers.	462
13.5.	Summed date ranges for the excavated sites in the FRAGSUS Project.	463
13.6.	Laser scans of Taċ-Ċawla – plan and section.	464
13.7.	John Meneely and Simon Stoddart scanning Taċ-Ċawla in 2014.	465
13.8.	The multidisciplinary FRAGSUS team meeting in Cambridge in 2016.	466
13.9.	The pollen team, with magnified 3-D-printed pollen grains.	467
13.10.	The launch meeting in 2013 and the team with the Malta High Commissioner in 2014.	468
13.11.	Open days at Kordin III, 2015.	469
13.12.	Exhibition at the National Museum of Archaeology, Valletta, March 2018.	470
13.12.	Conference in Fort Sant'Angelo, March 2018 – key speakers.	470
13.13.		470
	Santa Verna Temple structure, partly revealed in 2015.	
13.15.	David Trump attending the 2016 team meeting in Cambridge.	472
13.16.	<i>Ghajnsielem Road section in 1986, the first 'house' excavation.</i>	473
13.17.	<i>Temi Zammit with the reconstructed great stone bowl of Tarxien.</i>	475
A3.7.1.	Taċ-Ĉawla site plan.	573
A3.7.2.	<i>The deep section through the karstic feature.</i>	574
A3.7.3.	Excavation area showing walls, floors, the deep section and section FGH.	574
A3.7.4.	Deep section profile with the location of the micromorphological block samples.	575
A3.7.5.	Photomicrographs of the karstic deep feature and section FGH.	579
A3.7.6.	Section FGH, looking west.	582
A3.7.7.	Section FGH sample G1.	582
A3.7.8.	The Horton Trench and Profile 1/1.	583
A3.7.9.	The Horton Trench Profile 1/2.	584
A3.7.10.	The Horton Trench, Profile 2.	584
A3.8.1.	Percentage distribution of different particle sizes from the vine trench samples from Taċ-Ċawla.	588
A3.8.2.	Percentage distribution of different particle sizes from the shell midden deposits at Taċ-Ċawla.	588
A3.8.3.	Anthropogenic and biological content of the vine trench fill samples.	589
A3.8.4.	Anthropogenic and biological content of the shell midden deposits.	589
A3.8.5.	<i>The same anthropogenic and biological contents in the shell midden deposits.</i>	590
A3.8.6.	Land snails from the vine trench fills.	590
A3.8.7.	Land snails from the shell midden deposits.	590
A3.8.8.	Molluses from the vine trench fills.	590
A3.8.9.	Molluses from the shell midden deposits.	591
A3.8.10.	Edible land snail species found in the vine trench fills.	592

A3.8.11.	Edible land snail species found in the shell midden deposits.	592
	Number of juvenile and adult edible and non-edible land snails in the vine trench fill samples.	593
A3.8.13.	Number of juvenile and adult edible and non-edible land snails in the shell midden deposits.	593
A3.8.14.	Number of the burrower Cecilioides acicula found in the vine trench fill samples.	594
A3.8.15.	Number of the burrower Cecilioides acicula found in the shell midden deposits.	594
A3.8.16.	TCC14/95 before excavation.	595
A3.8.17.	TCC14/95 after excavation, revealing a pit.	595
A3.8.18.	TCC14/100 before excavation. Scale in 10 cm.	596
A3.9.1.	Bowls: open forms.	599
A3.9.2.	Bowls: open forms 2.	600
A3.9.3.	Bowls: open forms 3.	601
A3.9.4.	Plates: open forms 4.	603
A3.9.5.	Lids.	605
A3.9.6.	Jars and jugs.	606
A3.9.7.	Flasks and amphorae.	607
A3.9.8.	North African imports.	608
A4.5.1.	General plan of Santa Verna excavations.	623
A4.5.2.	Section drawings of Trench E, Trump Cut 55 and the Ashby Sondage.	623
A5.5.1.	Ġgantija trench locations and excavation trenches.	637
A5.5.2.	WC trench profile and sample loci.	638
A5.5.3.	Photomicrographs of the Ġgantija WC Tr 1 section profile.	639
A5.6.1.	Harris Matrix diagram of stratigraphic sequence of Test Pit 1.	640
A6.4.1.	Bayesian model multiplot for the AMS dates from Kordin III.	656
A6.7.1	Marine shell distribution by species at Kordin III.	663
A7.7.1.	Locations of OSL dating samples.	670
A7.7.2.	Harris Matrix of the 2016 excavation trench.	671
A7.7.3.	Skorba thin section photomicrographs.	672
A8.3.1.	Percentage pollen diagram from the silo at In-Nuffara.	680
A8.6.1.	In-Nuffara thin section photomicrographs.	688
A9.1.1.	Bar charts representing the division of Tac-Cawla crops between cereal and pulses, and by species.	709
A9.1.2.	Pie charts showing the division of crop groups and the percentage of crops from Taċ-Cawla.	710
A10.1.1.	Pot drawing frequency diagram.	741
A10.2.1.	Samples 2, 6, 59.	745
A10.2.2.	<i>Samples</i> 13, 14, 15.	746
	<i>Samples 17, 22, 23.1.</i>	747
	<i>Sample 23.2, 24, 28.</i>	748
A10.2.5.	Sample 29, Odd 2, Odd 3.	749
A10.3.1.	Evans' (1971) typological scheme.	750
A10.3.2.	<i>Trump's</i> (1989) pottery recognition scheme, as used at the Xaghra Brochtorff Circle excavations.	756
A10.3.3.	<i>Phase sequence and forms after Evans and Trump – forms arranged chronologically.</i>	757
A10.3.4.	<i>Phase sequence and forms after Evans and Trump – bowls.</i>	758
A10.3.5.	<i>Phase sequence and forms after Evans and Trump – jars and flasks.</i>	759
A10.3.6.	<i>Phase sequence and forms after Evans and Trump – cups.</i>	759
A10.3.7.	<i>Phase sequence and forms after Evans and Trump – carinated forms.</i>	760
A10.3.8.	<i>Phase sequence and forms after Evans and Trump – platter and lid forms.</i>	760
A10.3.9.	Phase sequence and forms after Evans and Trump – pedestal forms.	761

Tables

1.1.	Research potential for island study and Malta.	3
1.2.	Timetable of fieldwork.	12
1.3.	Chronological range of FRAGSUS sites and their contribution to the project questions	14
1.4.	Summary table of the archaeological discoveries made by FRAGSUS.	23

1.5.	Chronological range of the FRAGSUS sites.	24
2.1.	Radiocarbon dates obtained by the FRAGSUS Project.	30
2.2.	95% confidence intervals for the modelled dates of phase boundaries.	35
2.3.	Simplified cultural phases.	38
3.1.	Layers recorded within the stone structure.	56
3.2.	Extramural deposits around the stone structure.	82
3.3.	Post- and stake hole dimensions.	85
3.4	Radiocarbon dates from Pit 268.	89
3.5.	Contexts containing Roman pottery.	104
3.6.	Agricultural channel fills.	104
3.7.	Vine channel fill and cut contexts.	113
3.8.	Taċ-Ċawla and the FRAGSUS questions.	122
4.1.	Radiocarbon dates from Santa Verna Context (90).	146
4.2.	Sample contexts for micromorphological, physical and multi-element analyses.	151
4.3.	pH, magnetic and selected multi-element results from Ggantija and Santa Verna.	153
4.4.	Santa Verna and the FRAGSUS questions.	167
5.1.	AMS dates from Ggantija.	187
5.2.	Ggantija and the FRAGSUS questions.	190
6.1.	Kordin III and the FRAGSUS questions.	225
7.1.	OSL and AMS dates from Skorba.	238
7.2.	Skorba and the FRAGSUS questions.	242
8.1.	AMS dates from In-Nuffara.	256
8.2.	In-Nuffara and the FRÄGSUS questions.	259
9.1.	Charcoal identification of timber from the FRAGSUS sites and cores.	290
9.2.	Number of seeds recovered relative to the number of samples taken and their volume.	292
9.3.	Ubiquity of cereal and pulse use at the FRAGSUS Project excavation sites.	292
9.4.	MNI percentage distribution.	295
9.5.	NISP percentage distributions.	295
9.6.	Bird and fish bone.	303
10.1.	Evans' 1953 scheme of pottery phasing.	311
10.2.	Trump's 1966 chronology scheme.	312
10.3.	Trump's 2002 revised chronology scheme.	312
10.4.	New chronological sequence.	312
10.5.	Total number of pottery sherds from Neolithic sites.	313
10.6.	Total number of pottery sherds from Temple Period sites.	313
10.7.	Total number of pottery sherds from Bronze Age sites.	313
10.8.	Total sherds recovered by the FRAGSUS Project for each phase.	313
10.9.	Recognized sherd numbers as recorded in Evans (1971).	315
10.10.	Frequency, relative frequency and fragmentation of pottery by phase.	324
10.11.	Phase 1. Ghar Dalam style characteristics.	325
10.12.	Pattern organization of Calabrian Stentinello pottery.	331
10.13.	Phase 2. Grey Skorba, Grey to Red Skorba Transitional, and Red Skorba style characteristics.	332
10.14.	Phase 3. Żebbug style characteristics.	341
10.15.	Phase 4. Mgarr style characteristics.	352
10.16.	Phase 5. Ġgantija style characteristics.	358
10.17.	Phase 6. Saflieni style characteristics.	375
10.18.	Phase 7. Tarxien style characteristics.	377
10.19.	Phase 8a. Thermi style characteristics; and Phase 8b. Tarxien Cemetery style characteristics.	390
10.20.	Phase 9. Borġ in-Nadur style characteristics.	392
10.21.	Phase 10. Bahrija style characteristics.	393
11.1.	Chert and obsidian from FRAGSUS sites.	406
11.2.	Santa Verna lithic assemblage totals.	410
11.3.	Counts of raw material type from Santa Verna.	410
11.4.	Chert and obsidian tool categories from Taċ-Ċawla.	413

11.5.	Taċ-Ċawla chert colours and flake/tool ratios.	413
11.6.	Lithics from Skorba.	417
11.7.	Chert colours from Skorba.	417
11.8.	Kordin III obsidian sources.	417
11.9.	Chert artefact types from Kordin III.	417
12.1.	Sites included in the GIS study, visibility and attributes.	449
12.2.	Pearson correlation matrix for all sites in the study.	451
12.3.	Pearson correlation matrix for sites in Malta.	453
13.1.	Dating implications and changing time range.	458
13.2.	The updated chronology of Maltese prehistory that emerges from the FRAGSUS Project work.	476
13.3.	The FRAGSUS questions and themes.	480
A2.1.1.	AMS radiocarbon dates.	513
A3.1.1.	Taċ-Ċawla context register.	518
A3.2.1.	Small find register.	546
A3.3.1.	Taċ-Ċawla soil samples.	557
A3.4.1.	Pottery numbers and frequency by context and phase.	559
A3.5.1.	Pottery weights.	566
A3.6.1.	AMS dates.	572
A3.7.1.	Soil samples from Horton Trench 2014 and 2015.	576
A3.7.1.	Field descriptions from deep section.	576
A3.7.2. A3.7.3.	pH, magnetic susceptibility and multi-element analysis.	570
A3.7.4.		577
A3.7.4. A3.7.5.	Results of principal components analysis.	578
A3.7.5. A3.7.6.	Summary of micromorphological features of karstic feature.	578
	Field descriptions of excavated contexts.	
A3.7.7.	Summary of micromorphological features.	578 570
A3.7.8.	Field descriptions of floor deposits.	579
A3.7.9.	Summary of micromorphological features in floor deposits.	580
A3.8.1.	Handpicked shells from Taċ-Cawla.	595 596
A3.8.2.	Details of environmental samples taken and analysed.	596
A4.1.1.	Santa Verna context register.	611
A4.2.1.	Small find register.	614
A4.3.1.	<i>Pottery counts and frequency by context and phase.</i>	618
A4.4.1.	AMS dates.	622
A4.5.1.	Summary of micromorphological features in torba floors and pit fills.	624
A4.5.2.	AMS dates for micromorphological samples.	624
A4.5.3.	<i>Field descriptions of floor samples.</i>	624
A4.5.4.	<i>pH, magnetic susceptibility and multi-element analysis.</i>	624
A4.5.5.	Soil analysis.	625
A4.5.6.	LOI test table.	626
A4.5.7.	Rock fractions.	627
A4.6.1.	Physical properties of the Santa Verna megaliths.	628
A5.1.1.	Ggantija context register. Finde register 2014 INC Section	631
A5.2.1	Finds register 2014 WC Section.	632
A5.3.1.	<i>Pottery counts and frequency by context and phase.</i>	633
A5.4.1.	AMS dates.	635
A5.4.2.	Soil sample list.	635
A5.5.1.	Sample contexts for micromorphology.	636
A5.5.2.	<i>pH, magnetic susceptibility and multi-element analysis.</i>	636
A5.5.3.	Summary of micromorphological features.	638
A6.1.1.	Kordin III context register.	641
A6.2.1.	Small find register.	647
A6.3.1.	<i>Pottery register by number in context and phase.</i>	652
A6.4.1.	AMS dates.	656
A6.5.1.	Kordin III soil sample register.	657

A6.6.1.	SV, LOI, RF Loss of Ignition, etc., soil samples.	660
A6.7.1.	Kordin marine shell register.	661
A6.7.2.	Marine shell distribution by grid reference and species.	662
A7.1.1.	Skorba context register.	665
A7.2.2.	Small find register.	666
A7.3.1.	Pottery database.	667
A7.4.1.	AMS dates.	668
A7.5.1.	Skorba soil samples.	668
A7.6.1.	OSL sample list.	669
A7.7.1.	Sample list and contexts in Section 2, Profile D-E, Trench A, Skorba.	670
A7.7.2.	<i>pH, magnetic susceptibility and selected multi-element results.</i>	671
A7.7.3	Loss-on-ignition organic/carbon/calcium carbonate components and particle size analysis.	672
A7.7.4.	Summary soil micromorphology descriptions for the floor and plaster deposits.	672
A8.1.1.	In-Nuffara context register.	676
A8.2.1.	Small find register.	677
A8.3.1.	Summary pollen data and results of preservation tests.	679
A8.3.2.	Summary pollen data and results of preservation tests.	679
A8.4.1.	AMS dates.	685
A8.5.1.	Soil sample register.	686
A8.6.1.	Sample contexts in two storage pits at In-Nuffara.	687
A9.1.1a.	Macrobotanical raw seed counts from Taċ-Ċawla.	692
	Macrobotanical raw chaff and non-seed counts from Taċ-Ċawla.	704
A9.1.1c.	Taċ-Ċawla soil sample numbers, macrobotanical litres analysed, and phytolith sample.	705
	Macrobotanical Minimum Number of Seeds from Taċ-Ċawla.	707
	Ubiquity of crops at Taċ-Ċawla and Ġgantija.	709
	Density of crops at Tac-Cawla and Ggantija.	709
	Proportion of crops at Taċ-Ċawla.	710
A9.1.3.	Macrobotanical raw counts from Santa Verna.	710
A9.1.4a.	Macrobotanical raw counts from Ġgantija.	711
	Macrobotanical raw counts from Ggantija. Macrobotanical raw counts from Ggantija compared by context.	712
A9.1.5.	Macrobotanical raw counts from Kordin III.	712
A9.1.5. A9.1.6.	Macrobotanical raw counts from Skorba.	712
A9.1.7.	Macrobotanical raw counts from In-Nuffara.	713
A9.2.1.	Taċ-Ċawla. Fragments and MNI distribution.	713
A9.2.1. A9.2.2.	Taċ-Ċawla. Distribution of identifiable sheep and goat bones.	714
A9.2.2. A9.2.3.	Taċ-Ċawla. Cattle fusion data.	714
A9.2.3. A9.2.4.	Taċ-Ċawla. Pig fusion data.	714
A9.2.4. A9.2.5.	Taċ-Ċawla. Sheep/goat fusion data.	714
A9.2.5. A9.2.6.		714
A9.2.0. A9.2.7.	Taċ-Cawla. Sheep/Goat age-slaughter data based on tooth eruption and wear. Taċ-Ċawla. Cattle age-slaughter data based on tooth eruption and wear.	715
A9.2.7. A9.2.8.		715
A9.2.8. A9.2.9.	Taċ-Cawla. Pig age-slaughter data based on tooth eruption and wear. Taċ-Ċawla. Cattle measurements.	715
A9.2.9. A9.2.10.		715
A9.2.10. A9.2.11.	Taċ-Cawla. Pig measurements. Taċ Ċawla. Sharp and Coat astrogolus measure	715
	Taċ-Cawla. Sheep and Goat astragalus measure.	716
A9.2.12.	Taċ-Cawla. Sheep and goat astragalus measurements.	716
A9.2.13.	Taċ-Cawla. Sheep femur measurements.	
A9.2.14.	Taċ-Ċawla. Sheep and goat humerus measurements.	716
A9.2.15.	Taċ-Cawla. Sheep and goat metacarpal measurements.	717
A9.2.16.	Taċ-Cawla. Sheep and goat metatarsal measurements.	717
A9.2.17.	Santa Verna. Fragments and MNI distribution.	717
A9.2.18.	Santa Verna. Cattle fusion data.	717
A9.2.19.	Santa Verna. Pig fusion data.	717
A9.2.20.	Santa Verna. Sheep/goat fusion data.	718
A9.2.21.	Santa Verna Sheep astragalus measurements.	718

A9.2.22.	Santa Verna. Sheep humerus measurements.	718
	Santa Verna. Seep and Goat metacarpal measurements.	718
	Santa Verna. Cattle measurements.	718
	Kordin III. Fragments and MNI distribution.	718
	Kordin III. Sheep/goat fusion data.	718
	Kordin III. Cattle fusion data.	718
	Kordin III. Pig fusion data.	719
	Kordin III. Cattle measurements.	719
	Kordin. Sheep measurements.	719
	Kordin. Pig measurements.	719
	Skorba. Fragments and MNI distribution.	719
	Skorba. Cattle fusion data.	719
	Skorba. Sheep/goat fusion data.	719
	Skorba. Pig fusion data.	720
	Skorba. Sheep/Goat age-slaughter data based on tooth eruption and wear.	720
	Skorba. Bone measurements.	720
	Ġgantija. Fragments and MNI distribution.	720
	Ġgantija. Sheep/goat fusion data.	720
	Ġgantija. Bone measurements.	720
	In-Nuffara. Fragments and MNI distribution.	720
	In Nuffara. Sheep/goat fusion data.	721
	In Nuffara. Cattle fusion data.	721
	In Nuffara. Bone measurements (astragalus only).	721
	In Nuffara. Sheep/goat age-slaughter data based on tooth eruption and wear.	721
	Dog measurements.	721
	Drawn ceramics.	724
	<i>Counts of sherds from the</i> FRAGSUS <i>sites by phase.</i>	741
	Thin sections of Maltese prehistoric pottery.	742
	Catalogue of thin section samples.	743
	Worked stone artefacts.	763
	Terracotta and shell artefacts.	765
	Worked bone objects and tools.	765
	Taċ-Ċawla obsidian length and source data.	766
	Lithic counts from all sites.	769
	Santa Verna assemblage totals – chert colours and obsidian.	769
	Santa Verna obsidian object categories.	769
	Kordin III chert and obsidian artefact types.	769
	Skorba lithic categories.	769
A11.5.6.	Skorba chert colours.	769
	Taċ-Ċawla artefact types obsidian and chert.	769
	Taċ-Ċawla Chert and Obsidian flake types.	769
	Taċ-Ċawla chert colours.	769
	Lithics catalogue.	770
	Description of the geological samples from the Maltese Islands.	775
	Description of the geological samples from Sicily.	776
	Explicatory table of the coding system for the Neolithic Maltese sites.	777
	Macroscopic description of the chert samples collected from Malta.	778
	Macroscopic description of the chert samples collected from Sicily.	779
A11.6.6.		780
	Second group of the LA-ICP-MS analyses results of the Maltese rock samples.	781
	The LA-ICP-MS analyses results of the Sicilian chert samples.	782
	Second group of the LA-ICP-MS analyses results of the Sicilian chert samples.	782
	Table recording the total amount of lithics found on sites.	783
	The macroscopic description of the chert artefacts investigated from assemblages.	784

A11.6.12.	The macroscopic description of the chert artefacts from Skorba assemblage.	797
A11.6.13.	Typology and craft techniques.	800
A11.6.14.	The main and minor peaks of the minerals recorded with the FTIR.	806
A11.6.15.	The main and minor peaks of the minerals recorded with the ATR.	806
A11.6.16.	<i>The LA-ICP-MS analyses results of the Xaghra Brochtorff Circle samples (BR).</i>	807
A11.6.17.	The LA-ICP-MS analyses results of the Kordin samples.	808
A11.6.18.	The LA-ICP-MS analyses results of the Tac-Cawla samples.	809
A11.6.19.	Second group of the LA-ICP-MS analyses results of the Tac-Cawla samples.	809
A11.6.20.	The LA-ICP-MS analyses results of the Santa Verna samples.	810
A11.6.21.	The LA-ICP-MS analyses results of the Ġgantija samples.	811
A11.6.22.	The LA-ICP-MS analyses results of the Skorba samples.	812
A11.6.23.	Second group of the LA-ICP-MS analyses results of the Skorba.	813

Dedication – in memoriam John Davies Evans David Hilary Trump

Malta may be small in scale but it has had a rich and important archaeological past which has been explored and enjoyed by many past scholars. A visit to the Archaeology Museums of Malta and Gozo testifies to a long history of collecting, scholarship and passion dating back to the early to mid-nineteenth century. It is a heritage that is beloved by Malta and its visitors alike.

The editors of this volume wish to pay tribute to two remarkable 'visitors' to Malta, each of whom, in their own way, made great contributions to our present appreciation of the islands' ancient past and supported our early researches, teams and ideas. Now we want to record our debt as some of the continuing scholars of Maltese prehistory, since we cannot imagine where we could have begun our current quest to take the story onwards and deeper without their prior work.

On behalf of the whole *FRAGSUS* team, we wish to dedicate this volume to their enduring memory.

Professor John Davies Evans (OBE) (1925–2011) arrived in Malta in 1952 from Cambridge to commence the task of organizing the war-damaged museum collections in preparation for a synthesis of Maltese prehistory. His task was enormous, and involved a new assessment of the pottery and material culture sequence of Maltese prehistory. He prepared his now classic study *The Prehistoric Antiquities of the Maltese Islands*, published in 1971, which has remained the primary compendium of reference to this day. Together with carefully targeted excavations, John Evans set in train the many questions that inspired not only David Trump, his successor, to explore and challenge the com-

plex story of Malta's prehistoric past, but also ourselves over the last 35 years. John noted important aspects of sequence, material connectivity and, of course, the temples. These he recorded and described in such detail that his work remains vitally important today.

David Hilary Trump (OM) (1931-2016) succeeded John Evans, having already experienced Maltese prehistory in the field with him, and became the Curator of the Museum of Archaeology for five years until 1963. In that short time, he too made an enormous impression on the understanding of prehistoric Malta. His work at Skorba (as we discuss in Chapter 7) was inspired and informed, and it too set the direction for the future explorations of prehistory in the islands. David Trump maintained his interest in Malta throughout his career, leading regular study tours to the island and latterly, with ourselves, undertaking the sustained programme of fieldwork at the Xaghra Brochtorff Circle (1987–9). He wrote numerous books and papers on Malta's prehistory, popular and academic; and his contribution has been widely acknowledged through museum displays, the award of the Order of Merit of Malta and an Honorary Degree from the University of Malta for which he felt hugely honoured. But back in the United Kingdom, from whence both these scholars came, there has been less mention of their work on Malta. Evans moved eastwards to Crete in his research interests, and has been identified mainly with that work; whilst Trump, a retiring and extremely modest individual, did not promote his achievements on Malta during his teaching years at Cambridge, which was arguably too theoretical to fully appreciate his remarkable contribution.

Figure 0.1. *David Trump and John Evans together at the Deya Conference, Mallorca* (c. 1983) (reproduced with permission of Judith Conway, niece of John Evans).

Acknowledgements

Firstly, the FRAGSUS Project is the result of a very generous research grant from the European Research Council (Advanced Grant no. 323727), without which this and two partner volumes and the research undertaken could not have taken place. We heartily thank the ERC for its award and the many administrators in Brussels who monitored our use of the grant. The research team also wants to record our indebtedness to the administrators of the grant within our own institutions, since this work required detailed and dedicated attention. In particular we thank Rory Jordan in the Research Support Office (Queen's University Belfast - QUB), Laura Cousens (Cambridge University - UoC), Glen Farrugia and Cora Magri (University of Malta - UM), the Curatorial, Finance and Designs & Exhibitions Departments in Heritage Malta (HM) and Stephen Borg at the Superintendence of Cultural Heritage (SCH).

All archaeological excavations described in this volume were carried out using standard methods, in accordance with the policies of the SCH, in particular the guidance given in the document *Operating Procedures and Standards for Archaeology Services – February* 2013. Permits to enable excavation, survey, sampling and study were granted through the SCH and we are especially grateful to Anthony Pace and Nathaniel Cutajar for their unstinting efforts to ensure fieldwork was enabled.

Taċ-Ċawla

The Taċ-Ċawla excavations were directed by Prof. Caroline Malone, and the crew consisted primarily of students and staff from UoC, UM and QUB, supervised by Stephen Armstrong, Jeremy Bennett and Conor McAdams, with additional supervision from Dr Simon Stoddart, Dr Sara Boyle and Dr Emily Murray. We are also very grateful for Dr George Azzopardi who sought out accommodation for the project, assisted on site, and with his colleagues in HM enabled access to space for storage, environmental sampling and finds processing in Rabat. John Cremona and his colleagues in the Ministry for Gozo also played an important role in enabling site clearance and facilities at Taċ-Ċawla, and in securing the site following our work, with the long-promised surrounding wall. We also acknowledge a great number of local Gozitan businesses, hardware stockists, JCB drivers and cafe and restaurant owners, who supported our work in so many ways.

Santa Verna

The Santa Verna excavations were directed by Prof. Caroline Malone, assisted by Dr Simon Stoddart and Dr Rowan McLaughlin. The crew consisted primarily of a number of students and staff from UoC, QUB and UM, supervised by Stephen Armstrong, Jeremy Bennett, Dr Catriona Brogan and Eóin Parkinson. Dr Evan Hill wet-sieved the soil samples using flotation and the site was sampled for soil micromorphology and geochemistry by Prof. Charles French, Dr Sean Taylor and Conor McAdams. During the excavation, our understanding of the extant megalithic structure was improved by the superb plan produced by Stephen Ashley. Tiomoid Foley conducted a condition survey of the megalithic remains, the results of which were incorporated into an MSc project. Rupert Barker made a short film of the excavations -A Day on a Dig (https://youtu.be/cGNOGpq746I). Digital laser scanning was undertaken by John Meneely. Individuals whose efforts are warmly acknowledged include Stephen Armstrong, Dr Catriona Brogan, Dr Bela Dimova, Dr Paola Filippucci, Dr Reuben Grima, Laura James, Lottie Stoddart and Dr Sean Taylor, who supervised trenches, organized field assistants and gave logistical support to the running of the project. At Santa Verna, we particularly thank Dr George Azzopardi (HM) for his invaluable logistical help at the start of the excavations and insightful comments made throughout, and Ella Samut-Tagliaferro, Cristian Mifsud, Mevrik Spiteri and Daphne M Sant Caruana, who accommodated the wet-sieving and flotation operations at the Ggantija World Heritage site visitor centre. This was facilitated by Prof. Nick Vella and Chris Gemmell (UM), who organized and set up the sieving system. We acknowledge the interest taken in our work by other organizations including Xaghra parish council, Wirt Ghawdex, and the staff and pupils at Gozo College. Indeed, the FRAGSUS team was delighted by the level of interest in the excavations shown by local residents and other visitors to the site. We particularly acknowledge the help, understanding and patience of the residents who offered us the use of their garage to store tools and equipment overnight, and the local farmer who provided gifts of bananas and kindly offered the use of his pumphouse as a tool shed. We especially thank Joseph Attard Tabone for his interest in and support of all our work, especially at Santa Verna.

Ġgantija

The Ġgantija excavations in 2015 were directed by Prof. Charles French, Dr Simon Stoddart, Dr Sean Taylor and David Redhouse, assisted by Stephen Armstrong, Jeremy Bennett, Dr Catriona Brogan, Conor McAdams, Aran McMahon, Eóin Parkinson, Jacob Pockney and Mariele Valci. Flotation of soil samples was undertaken by Dr Evan Hill. Digital laser scanning was undertaken by John Meneely. The field researchers comprised the geophysical survey team in 2014 under the supervision of David Redhouse and Dr Alistair Ruffell with assistance from Jeremy Bennett. Dr Sara Boyle and Jeremy Bennett undertook initial survey of the WC section area in 2014.

We thank especially HM and its staff on Gozo, who enabled access and provided much assistance at this busy World Heritage Site (the most visited ancient site in the islands), namely George Azzopardi, Daphne M Sant Caruana and Nicolene Sagona.

Kordin III

The excavations were directed jointly by Prof. Caroline Malone and Prof. Nicholas Vella, assisted by Dr Reuben Grima, Dr Rowan McLaughlin, Ella Samut-Tagliaferro and Dr Simon Stoddart. The crew consisted mainly of students from UM, who participated as part of their annual training excavation. They were supervised by Jeremy Bennett, Dr Catriona Brogan, Rebecca Farrugia, Dr Reuben Grima, Tore Lumsdalen and Eóin Parkinson. Flotation of soil samples was undertaken by Dr Evan Hill. Digital laser scanning was undertaken by John Meneely and Jeremy Bennett. We also acknowledge the kind assistance of Fondazzjoni Wirt Artna, the Malta Heritage Trust, who granted access to the site.

Skorba

The excavations were directed by Prof. Caroline Malone and Dr Rowan McLaughlin, who were assisted by Stephen Armstrong, Jeremy Bennett, Dr Catriona Brogan, Emma Hannah and Eóin Parkinson. OSL profiling and geoarchaeological sampling was performed by Prof. Charles French, Dr Timothy Kinnaird (University of St Andrews), Dr Simon Stoddart and Dr Sean Taylor. The site was laser scanned by Jeremy Bennett. We thank HM for enabling access to the site and Dr Josef Caruana and Katya Stroud for supporting the work.

In-Nuffara

The excavations were directed by Dr Simon Stoddart and Dr Rowan McLaughlin, who were assisted by Stephen Armstrong, Stephen Ashley, Robert Barratt, Donald Horne, Katie Hutton, Christina O'Regan and Leslie Torwie. Many thanks to Dr George Azzopardi (HM) and Ella Samut-Tagliaferro (SCH) for their logistical support. John Meneely laser scanned the silos and analysed the volumetric data. We thank Dr Anthony Pace and Nathaniel Cutajar and their staff from the SCH for enabling access to the site.

Post-excavation

The Department of Classics and Archaeology, UM, kindly offered storage space during the project and accommodated the post-excavation team in the sunny courtyard where pottery and finds were studied. We thank Chris Gemmell in particular for his invaluable help throughout the project, but especially in enabling storage of material and access to it for the project team and the logistics on various sites and for his skilled assistance in setting up the flotation processing. In Belfast, Emma Hannah undertook data entry, sample sorting and volume indexing, and Georgia Vince assisted with data entry and logistics and produced many of the excavation plans and section drawings used throughout this volume. She also archived and scanned the project records along with the original Cambridge Gozo Project, and these are now housed in the National Museum of Archaeology, Valletta. In Malta, pottery was studied by Stephen Armstrong, Stephen Ashley, Prof. Anthony Bonanno, Dr Catriona Brogan, Prof. Caroline Malone, Lisa Coyle McClung,

Rowan McLaughlin, Eóin Parkinson and Dr Simon Stoddart. We thank Prof. Nicki Whitehouse for her enthusiastic support and advice on environmental matters. Thin section slides were produced by Dr Tonko Rajkovača of the McBurney Laboratory, Department of Archaeology, University of Cambridge. We are very grateful to Sharon Sultana (Curator) of the Museum of Archaeology for not only housing the study material but also providing access to it in 2017. Stephen Ashley and Prof. Caroline Malone illustrated the pottery and small finds. Dr Catriona Brogan assisted in the production and editing of this volume. We also wish to thank Ben Plumridge, Production Editor, for seeing this and the two companion volumes through the arduous process of publication. Thanks too, to Jason Hawkes (copy editing), Olivia Shelton (references) and Emma Hannah (indexing) for their careful work on the volume.

Permits and access

The *FRAGSUS* team is very grateful to the heritage bodies of Malta, namely HM and the SCH and their officers, who enabled access to sites and provided the

permissions and opportunities to study the buried archaeology. It cannot be over-emphasized just how privileged the Project has been in having access to excavate and examine the exceptional sites of prehistoric Malta. Not only is the entire category 'Maltese Temple' protected, but most sites are also inscribed within the UNESCO World Heritage Site listing for Malta. Some readers may wonder why very small trenches and sondages were permitted at all, whilst others may query the value of small investigations. This volume presents a range of scales of study from the small to the large across prehistoric sites and assesses the value of particular data sets that have been collected. Together with Volume 1, which examines the wider landscapes and environments of early Malta, and Volume 3, which examines the bones and lives of the ancient individuals, this volume fills the middle ground - the sites themselves, and we thank all our collaborators and volunteers in this venture. In particular, we thank the willing site assistants, volunteers, surveyors, cooks and illustrators who gave their time and energy to the archaeological work, and we list them below:

UoC	Dr Simon Stoddart	CI/Direction	QUB	Conor McAdams	Field assistant
UoC	Prof. Charles French	Geoarchaeology	QUB	Stephen Armstrong	Field assistant
UoC	Dr Sean Taylor	Geoarchaeology	QUB	Lorraine Barry (MSc.)	Survey/technical
UoC	Jennifer Bates (MRes)	Soil sieving	QUB	Dr Sara Boyle	Research coordinati
UoC	David Redhouse	Technical staff	QUB	Jeremy Bennett	Field/survey assista
UoC	Hettie Hill	Field assistant	QUB	Dr Alastair Ruffell	GPR survey
UoC	Angus Knight	Field assistant	QUB	Alix Baxter	Field assistant
UoC	Theo Arnold Foster	Field assistant	QUB	Eóin Parkinson	Field assistant
UoC	Rosanna O'Keefe	Field assistant	QUB	Dr Emily Murray	Staff supervisor
UoC	Kate Wilson	Field assistant	QUB	Anastasia Boomsma	MSc. training
UoC	Louise Green	Field assistant	QUB	Deborah Schroeter	MSc. training
UoC	Emma Brownlee	Field assistant	QUB	Claire Privilege	MSc. training
UoC	Dr Letizia Ceccarelli	Pottery study	QUB	Laura Patrick	MSc. training
HM	Dr George Azzopardi	Landscape archaeology	QUB	Joel Goodchild	MSc. training
HM	Katya Stroud (MA)	Field/survey assistant	QUB	Michael Lavery	MSc. training
HM	Joanne Mallia (MA)	Archaeology/archives	QUB	Naomi Finn	Catering
HM	Iona Muscat (MA)	Archaeology/archives	QUB	Tiomoid Foley	Field assistant
HM	Marie Elena Zammit (MA)	Archaeology/archives	QUB	Jake Morris	Field assistant
			QUB	Jonny Small	Field assistant
Norfolk CC	Steven Ashley	Illustration	QUB	Dr Michelle Farrell	Environmental PDF
Indep	Phil Wright	Field assistant	QUB	John Meneely	Digital scanning
Indep	Dr Rebecca Enlander	Field assistant	QUB	Conor Graham	Survey/technical
Indep	Lottie Stoddart	Catering/illustration	QUB	Michael Armstrong	Field assistant
QUB	Prof. Caroline Malone	PI/Direction	Rome	Mariele Valci	Field assistant

Spring and Summer 2014, Gozo – Taċ-Ċawla, In-Nuffara, Ta' Marżiena, Ġgantija, Gozo landscapes

Swansea	Lucy Stoddart	Ecology assistant
UM	Dr Reuben Grima Fieldwork direction	
UM	1 Dr Nick Vella CI/Direction	
UM	Dr Katrin Fenech	Environmental analysis
UM	Prof. Patrick Schembri	Environmental direction
UM	Nicole Micaleff	Field assistant
UM	Jessica Scicluna	Field assistant
UM	Luke Brightwell	Field assistant

April 2015, Gozo – Santa Verna, Ġgantija, In-Nuffara

-		o ,
UoC	Dr Simon Stoddart	CI/Direction
UoC	Jeremy Bennett (MSc.)	Survey supervisor
UoC	Dr Letizia Ceccarelli	Ceramics and finds
UoC	Prof. Charles French	Geoarchaeology
UoC	Dr Sean Taylor	Geoarchaeology
UoC	David Redhouse	Survey supervisor
UoC	Robert Barratt	Digital recording
UoC (CAU)	Donald Horne	Site supervisor
UoC (CAU)	Katie Hutton	Site supervisor
UoC	Laura James	Site supervisor
UoC	Dr Paola Filippucci	Student training
UoC	Dr Bela Dimova	Student training
UoC	Charles Barker	Student training
UoC	Tansy Branscombe	Student training
UoC	Imogen Coulson	Student training
UoC	Olivia Crawford	Student training
UoC	Louise Green	Student training
UoC	Josie Howl	Student training
UoC	Isaac Lawton	Student training
UoC	Jodie Manners	Student training
UoC	Aran McMahon	Student training
UoC	Susanne Navara	Student training
UoC	Jacob Pockney	Student training
UoC	Lily Rice	Student training
UoC	Alisa Santikam	Student training
UoC	Rebecca Seakins	Student training
UoC	Finnoula Taylor	Student training
UoC	Katherine Wilson	Student training
UoC	Conor McAdams (M.Phil)	Geoarchaeology
UoC	Dr Ronika Power	Human osteology
UoC	Dr Letizia Ceccarelli	Pottery study
INDEP	Rupert Barker	Filmmaker

UM	Tamsin Kingman	Field assistant
UM	Kay Mallia	Field assistant
UM	Karl Cachia	Field assistant
UM	Cecilia Zammit Endrich	Field assistant
UM	Annalise Agius	Field assistant
UM	Joseph Grima	Field assistant
UM	Dean Galea	Field assistant

NL (11	CL A 11	T11 (); (1);
Norfolk CC	Steven Ashley	Illustration/planning
QUB	Prof. Caroline Malone	PI/Direction
QUB	Dr Rowan McLaughlin	Senior site supervisor
QUB	Eóin Parkinson (MSc.)	Site supervisor
QUB	Dr Catriona Brogan	Site supervisor
QUB	Stephen Armstrong (M.Arch.Sci.)	Site supervisor
QUB	John Meneely (MSc.)	Digital survey/ technical
QUB	Dr Sean Pyne O'Donnell	Coring
LJMU	Dr Chris Hunt	Coring
QUB	Dr Rory Flood	Coring
QUB	Dr Michelle Farrell	Coring
QUB	Dr Finbar McCormick	Zooarchaeology
QUB	Tiomoid Foley (M.Arch.Sci.)	Survey assistant
QUB	Rory Sutton (M.Arch.Sci.)	Field assistant
QUB	Claire Holmes (M.Arch.Sci.)	Field assistant
QUB	Dr Evan Hill	Environmental
IAC Ltd.	Christina O'Regan (MSc.)	Field assistant
RDS	Charlotte Stoddart (MA)	Field assistant
Indep.	Rupert Barker	Film maker
ROME	Mariele Valci	Field assistant
SCH	Ella Samut-Tagliaferro (MA)	Site supervisor
SCH	Bernardette Mercieca (MSc.)	Human osteology
UM	Gillian Asciak	Student training
UM	Stephanie Parisi	Student training
UM	Maja Sausmekat	Student training
UM	Leslie Torwie	Student training
UM	Dr Reuben Grima	Landscape

UoC	Dr Simon Stoddart	CI/Direction
UoC	Jeremy Bennett (MSc.)	Survey
UoC	Dr Letizia Ceccarelli	Ceramics
UoC	Matthew Greenhill	Field assistant
UoC	Beth Whitlock (MPhil)	Field assistant
MEPA	Tony Zammit (MSc.)	MEPA
MEPA	Joseph Magro Conti (MSc.)	MEPA
QUB	Prof. Caroline Malone	PI/Direction
QUB	John Meneely (MSc.)	Survey
QUB	Dr Rowan McLaughlin	Principal supervisor
QUB	Eóin Parkinson (MSc.)	Site supervisor
QUB	Dr Catriona Brogan	Site supervisor
QUB	Dr Finbar McCormick	Zooarchaeology
QUB	Dr Evan Hill	Molluscs/sieving
SCH	Ella Samut-Tagliaferro	SCH
Swansea	Lucy Stoddart	Field assistant
UM	Chris Gemmell	Logistics
UM	Rebecca Farrugia	Site supervisor
UM	Dr Sean Taylor	Geoarchaeology
UM	Prof. Anthony Bonanno	Ceramics
UM	Dr Nicholas Vella	CI/Direction
UM	Dr Reuben Grima	CI/Direction
UM	Adrian Camilleri	Field assistant
UM	Aidan Lehane	Field assistant

June-July 2015 -	- Kordin	Temple
------------------	----------	--------

UM	Anne Marie Schembri	Field assistant
UM	Gavin Borg	Field assistant
UM	Gillian Asciak	Field assistant
UM	Prof. John Betts	Survey
UM	Leanne Azzopardi	Field assistant
UM	Luke Briitghtwell	Field assistant
UM	Maja Sausmekat	Field assistant
UM	Daniela Formosa	Field assistant
UM	Mara de Richter	Field assistant
UM	Maria Serpina	Field assistant
UM	Melanie Debono	Field assistant
UM	Nico Muscat	Field assistant
UM	Nicole Micaleff	Field assistant
UM	Nidia Lisic	Field assistant
UM	Rachel Grillo	Field assistant
UM	Sefora Borg	Field assistant
UM	Tamsin Kingwell	Field assistant
UM	Tore Lomsdalen	Field/survey assistant
UM	Sandy Pirani	Field assistant
UM	Tamsin Cauchi	Field assistant
UM	Ryan Grech	Field assistant
UM	Gabriel Farrugia	Field assistant
UM	Dwayne Haber	Field assistant
UM	Dean Galea	Field assistant

April 2016 – Skorba excavation

UoC	Dr Simon Stoddart CI/Co-Direction	
UoC	Jeremy Bennett (MSc.) Field assistant	
UoC	Eóin Parkinson (MSc.)	Field assistant
HM	Dr Josef Caruana	Heritage assistant
QUB	Prof. Caroline Malone	PI/Direction
QUB	Dr Rowan McLaughlin	Assistant direction

QUB	Dr Catriona Brogan	Field assistant
QUB	Stephen Armstrong (M.Arch.Sci.)	Field assistant
QUB	Emma Hannah (MPhil)	Field assistant
SCH	Ella Samut-Tagliaferro	Field manager
Univ. St Andrews	Dr Timothy Kinniard	OSL/geomorphology

Summer 2016 - Pottery and finds analysis (University of Malta)

UoC	Dr Simon Stoddart
Norfolk CC	Steven Ashley
QUB	Prof. Caroline Malone

QUB	Dr Rowan McLaughlin
QUB	Stephen Armstrong
QUB	Dr Catriona Brogan

June 2017 – Pottery analysis (University of Malta and National Museum of Archaeology)

UoC	Eóin Parkinson (MSc.)
QUB	Dr Rowan McLaughlin
QUB	Prof. Caroline Malone

QUB	Dr Catriona Brogan					
QUB	Dr Lisa Coyle McClung					

Foreword

Joseph Magro Conti

Consider, 5000 years ago you are on one of the smallest islands in the Mediterranean, which has no water sources, dependent on brief winter rain showers, shallow soil patches, with only stone, clay and salt as natural resources, perhaps a few trees and shrubs. How would you live in such environment? This second volume of the FRAGSUS Project (2013-18) provides readers with fresh information achieved through high quality scientific research on palaeoenvironmental analysis, radiocarbon dating, human and faunal bone studies as well as on ceramics, lithics, domestic contexts and monuments, fully addressing five main questions targeted by the project. The support of the European Research Council has been transformative in making this new knowledge about Maltese prehistory more understandable and accessible, as a reader will discover throughout this and the other two volumes.

The coming of *FRAGSUS* was a long journey. Twenty-seven years passed since I first met the main protagonists of this project, Prof. Caroline Malone and Dr Simon Stoddart. They left a long-lasting positive impression on me. I was an archaeology undergraduate at the University of Malta in 1993, under the academic guidance of Prof. Anthony Bonanno, with colleagues Nicholas Vella (now Professor, and former Head of the Archaeology Department at the University of Malta) and Dr Anthony Pace (my predecessor as Superintendent of Cultural Heritage). I was on my first archaeological research excavation by an Anglo-Maltese mission at the unique Neolithic mass burial site of the Xaghra Brochtorff Circle in Malta's sister island of Gozo. A couple of decades later I had the opportunity to participate on other research digs in Malta with Malone-Stoddart, this time as part of FRAGSUS at Kordin III Neolithic temples in Malta, a site about which I had long endeavoured to raise awareness for its better understanding and management.

The Temple Period is renowned for the monumental megalithic structures (presumed temples) and the associated underground mass burial places, which offer an aura about the Neolithic mindset, belief system, organisation, ritual and physical capabilities in engineering and art. But what should be further intriguing to the reader is another aspect of human life - how the early people lived? What evidence is there for this aspect from the Temple Period? Previously, such questions were largely without much evidence except sporadic discoveries of typical deposits and material culture, but which were very lacking in data to advance site prediction and environmental data collection. The very few huts so far discovered and interpreted as domestic were ephemeral and thus prone to unrecorded destruction during building construction. I was pleased to contribute my knowledge of domestic sites to the publication of the Gozo study in 2009, and delighted to write this Foreword. This work records the next stages of discovery of the inhabitation record of the Maltese islands, most notably at Taċ-Ċawla, a site preserved from development by the action of the Superintendence.

In the past fifty years, the Maltese Islands have undergone successive building booms, each significantly endangering Malta's historic environment. In my quest as an applied archaeologist/heritage manager for over two decades at the Planning Authority and for the past two years as Superintendent of Cultural Heritage, I have endeavoured to collaborate with disparate stakeholders to save or mitigate impacts on the fragile remains of the past, and to raise awareness. The findings from FRAGSUS will be an especially useful source of information for policy makers, heritage managers, regulatory agencies and conservation scientists in their quest to preserve and understand Malta's past. The study enables them to make informed decisions about future human impacts on the archaeological heritage, mainly caused by

Figure 0.2. Joseph Magro Conti at Kordin.

building development on the small island environment and its island society and economy.

This volume is a seminal interdisciplinary study, not only for Maltese prehistory but also a milestone

in world prehistory more generally. As prehistory pre-dates the invention of writing, the approach of *FRAGSUS*'s research agenda turns archaeo-environmental data into 'words' by digging deep into the embryonic matrix of garden soils on which the temples builders sustained themselves. The project can now explain queries about this sustainability, a theme that is still relevant to modern generations. With the use of multidisciplinary and multinational teams of specialists, the study placed innovative scientific approaches at the fore, and addressed silent aspects that go beyond the traditional art-historical basics of Grand Traditions. The investigations into the core essence of life five millennia ago belong to new scientific approaches.

The *FRAGSUS Project* has addressed lacunae and used unconventional approaches in theory and method to obtain robust scientifically-backed results that have filled in significant gaps in the research agenda of Maltese prehistory and beyond. Equally, the results have surely raised many questions for future research agendas. I look forward to further collaboration, and I am eager to see more collaborative projects between Maltese veterans and upcoming academics and our overseas colleagues.

> Joseph Magro Conti Superintendent of Cultural Heritage, Malta September 2020

Archaeological studies of Maltese prehistory for the FRAGSUS Project 2013–18

Caroline Malone, Simon Stoddart, Rowan McLaughlin & Nicholas Vella

1.1. Introduction

The *FRAGSUS Project* ('Fragility and Sustainability in small island environments: adaptation, cultural change and collapse in prehistory') was devised to explore issues of prehistoric island sustainability set against the background of environmental change and instability. The Project set out with four explicit objectives. These aimed to establish the factors that led to the growth, sustainability and apparent demise of the Neolithic Temple Culture civilization of Malta. The scenario set by previous research (Malone & Stoddart 2013; Trump 1976) identified that the collapse of this long-lived civilization was caused perhaps by isolation and a deteriorating unstable ecosystem amongst other possible factors. The objectives designed to explore the socio-economic changes that took place were to:

- Reconstruct the past environment to investigate the environmental context of and human impact on ancient Malta. This would be achieved through an assessment of vegetation and landscape stability before, during and after the establishment, maintenance and collapse of the Neolithic civilization; and gathering data for comparisons with the later protohistoric and historical periods.
- 2) Improve the existing chronological framework by developing a reliable, precise and accurate time frame that would integrate events and trends determined from environmental, landscape and human-archaeological records. The chronology was to be achieved through the implementation of Accelerator Mass Spectrometry (AMS) radiocarbon, isotopic and Optically Stimulated Luminescence (OSL) dating methods (tephra analysis was undertaken in order to enable cross-dating with the AMS-dated pollen sequence, within which sparse tephra shards were found). The resulting determinations would give precision to the already

unusually detailed artefactual framework, and all results would then be assessed using a Bayesian approach.

- 3) Establish the population history of early Malta by applying multi-disciplinary approaches to the study of the ancient population using previously excavated human remains from Xagħra. These remains were to be sampled to establish population structure, chronology, diet, stress, activity, disease, taphonomy and external origins.
- 4) Reconstruct the settlement, subsistence and landscape history of early Malta through study of the changing socio-economic patterns of early settlement, landuse and resource exploitation in prehistory. This would be combined with understanding the impact of deforestation, soil erosion and climate instability on early farming societies by sampling 'time capsules' of settlement and palaeoeconomic activity.

These four themes underpin the work of *FRAGSUS*, and the outcomes are recorded in three monographs of which this is the second. The first volume deals with the first two objectives, namely the environmental aspects and the chronology associated with soil, cores, pollen and climate. The third volume deals with the third objective, the human population and its physical remains, making reference to the other objects. Finally, this volume deals with the fourth objective, in particular settlement and archaeological evidence, but is closely linked throughout with the other objectives.

A principal goal for the *FRAGSUS Project* has been to detect and sample environmental data, which when combined with archaeological evidence, can inform on the impact of human activity on the natural environment. In the Maltese context we specifically wanted to identify how humans managed to cope when the natural world began to fail their needs, a failure that appears to have occurred at intervals over the long time frame of later prehistory. The *FRAGSUS Project* was designed to explore and record this long human sequence, one that had defined cultural identity throughout its evolution, and that had human subjects at its heart. By incorporating many datasets, the goal was to establish theories and interpretations about how we, the human species, both controlled, and were controlled by the natural environment we chose to exploit. The outcomes are recorded in three *FRAGSUS* volumes, of which this is the second (see also French *et al.* 2020; Stoddart *et al.* in press).

In Volume 1, we discuss at length the importance of islands as units for study. In this volume we focus on the archaeology and ecological aspects of islands. An island represents a conveniently circumscribed landscape of a known size, surrounded by water, and thus remote from larger landmasses and their biological and cultural stimuli. From the seminal ecological studies of Charles Darwin (Jones 2009) and Alfred Wallace (1892) in the nineteenth century, to the rich theoretical literature on biogeography and equilibrium theory in islands first initiated by MacArthur and Wilson (1963, 1967), an entire sub-discipline of island studies has developed. The studies range from Simberloff's equilibrium theory (1974), the ecology models of Gorman (1979), the ecological anthropology of Vayda & Rappaport (1963) to current ideas of evolution and equilibrium (Lomolino et al. 2010), and colonization (Cox et al. 2016). Generally, the bulk of research has been focused on non-human subjects, with issues of extinctions and conservation foremost. But nevertheless, a number of important theories and models from these island studies are relevant to archaeology.

1.1.1. Island studies

In the FRAGSUS Project we have sought to examine the particular impact made by humans on an environment and its natural resources in the prehistoric island context, and in this case, the archipelago of Malta and Gozo. There have been a number of useful studies on island colonization patterns and case studies of the Mediterranean and the Caribbean in particular, that extract some key ideas from the ecological models and apply them to the anthropic context. Evans (1973) was amongst the first to present the 'island' as the laboratory case study of an ancient society, and in particular in the Mediterranean context. Cherry (1981, 1990) further demonstrated the more quantitative outcomes of these ideas. Such work has generated a succession of useful, relevant studies and some focus specifically on Malta (Broodbank 2013; Dawson 2014; Kirsch 1986, 1996; Kolb 2005; Malone 1997-8; Patton 1996; Rainbird 2007; Renfrew 1973; Stoddart 1997-8). Collectively, these have worked to develop theory and demonstrate the archaeological relevance of the application of island ecology

models. As time has progressed, increasingly detailed complementary information has been added, especially chronology. Now with fifty years or so of growing ¹⁴C dating estimations, the tempo of island colonization, consolidation and desertion can be interrogated and the archaeological record better understood. We can now present an understanding of chronology as human time, rather than speculate about when and which groups of humans arrived on particular islands. This scientifically determined chronology, combined with traditional culture sequence studies allows discussion of when distinctive socio-cultural evidence appeared and disappeared in the sequence of social and environmental evolution. When Cherry (1981, 1990, 2004) was estimating island colonization patterns in the Mediterranean, far fewer, uncalibrated dates were available. Whilst he and Patton (1996) identified the sixth millennium BC as the first major episode of Mediterranean colonization associated with the spread of farming, there was little chance then to break the key 'sixth' millennium down into detailed episodes that might enable us to trace the dynamics of what was an extended process across the Mediterranean and Europe. Dawson, in a number of papers (Dawson 2004-6, 2008, 2010, 2014), identified Malta and Gozo as an archipelago likely to have been colonized just once, on the basis of data available. This notion was largely supported by Trump (1995–6) who had pioneered understanding of Malta's Neolithic. Even though there were insufficient date estimations available during his studies, he did speculate about possible breaks in the sequence of settlement and cultural evolution. But, without detailed chronology, the momentary episodes of cultural activity are impossible to pin down in a time sequence extending over millennia, often without much apparent cultural change. Accurate time measurement is also fundamental in measuring the relationship of human activity against episodes of environmental change and climate fluctuation.

1.1.2. Chronology and new scientific studies

The growing field of palaeoecology, combined with increased knowledge of past climates and catastrophic events demands chronological precision that can tally with human timescales. Increasingly accurate chronologies measure the small fluctuations of change and currently we are fortunate to have AMS dating that enables individual lifetimes to be identified, not simply great swathes of 'time'. Indeed, the increasing accuracy allows current archaeo-environmental studies to identify distinct events in the past, signalled by data that demonstrate downturns, climaxes, catastrophes (Baillie 1999). These events are not always clear cut or easy to distinguish, but nevertheless had an impact on the natural environment and, in turn, the world in which prehistoric communities lived. *FRAGSUS*'s work has, therefore, focused on trying to identify trends in the environmental and economic data for early Malta that may highlight instances of variation in the past and be investigated to address the research questions below (§1.5).

Shortcomings of all previous work on the prehistory of Malta (and indeed, in much of the southern Mediterranean) have been the lack of coordinated scientific fieldwork and data collection. All too often, 'research' has been content to simply identify sites and pottery, with little broader work on 'landscape' and 'monuments'. All too rarely have soils and the environment been considered as archaeological components, other than in the general sense of a covering over buried sites. Never had a soil history been undertaken of Malta that investigated the changing nature of soil over time (Volume 1). Geographers had undertaken some excellent work in preparation for independence (Bowen-Jones et al. 1961) and observed a much more accessible and visible landscape than is possible today. That work, however, was centred on the present and not aimed at environmental reconstruction. Consequently, environmental work was not attempted until the Xaghra Brochtorff Circle study of the late 1980s and early 1990s. Yet, that site had limited potential for soil study, as it was a particular cave environment. Samples from buried cave soils found no pollen preserved, whilst the funerary context was, by definition, some distance from the sites of the living. Instead, landsnails became the main focus of environmental study as they were well preserved (Schembri et al. 2009, 19-22). The question of landscape reconstruction, nevertheless remained. Over the next two decades, one member of the original Xaghra team (Hunt) continued in the quest to obtain suitable environmental material. He obtained meaningful pollen samples, but considerations of cost and experience limited the scope of their sampling and dating (Hunt 2015; Hunt & Vella 2004–5). The initial history of vegetation change was indicative (Carroll et al. 2012; Fenech 2007; Hunt et al. 1995), but inconclusive, with substantial gaps in the sequence for Malta at the crucial time of later prehistory. Similarly, other environmental work over the decades had not investigated animal bone and the settlement and economy of prehistoric Malta in early sites in detail (Fiorentino et al. 2012; Stoddart et al. 2009a).

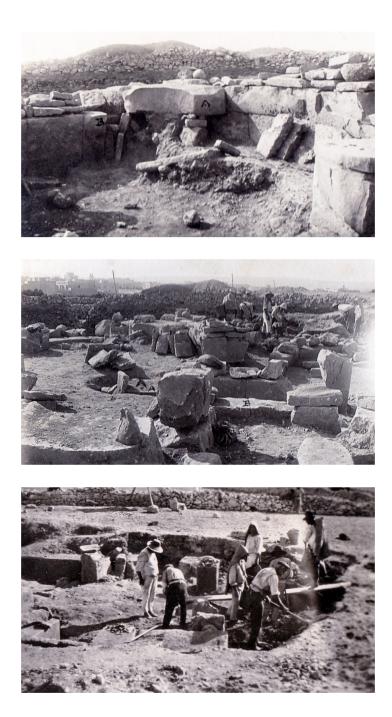
The rise and florescence of the extraordinary Maltese Temple Culture lies at the centre of prehistoric study in Malta. But it could not be explained in socio-economic terms with any level of reliability. Consequently, predictions of population levels and density in prehistory remained speculative (Stoddart & Malone 2015). Neither was it possible to measure changes in socioeconomic conditions in prehistory without better data and a more extensive chronology. Thus, without a deeper understanding of the environmental or economic base, Malta's Neolithic World Heritage Sites remained 'mysterious' and sometimes liable to excessive interpretation based more on a fantasy goddess culture than on archaeological facts.

In the absence of new scientific study, useful work took place over the last two decades that advanced knowledge and interest in phenomenological and landscape approaches to the monuments (Barrowclough & Malone 2007; Grima 2004, 2005, 2007; Malone & Stoddart 2009; Pace 2000, 2004a, 2004b, 2004c; Skeates 2010; Stoddart & Malone 2010, 2013; Tilley 2004,). There was, nevertheless, a solid case for new research on the environment which the ERC assessors generously recognized. We consider their trust to have been well founded.

1.1.3. Island criteria

Small islands can make excellent subjects against which to challenge ideas about social resilience and isolation. But they also have drawbacks for archaeological study because of limited sample scope, lack of comparators

Table 1.1. Research potential for island study and Malta.


Characteristics	The Malta opportunities
1. A relatively isolated island group of small size (<i>i.e.</i> less than 500 km ²)	Malta has a maximum size of 316 km ² , and is over 80 km from Sicily
2. Surviving settlement, ceremonial and funerary sites of prehistoric date available for sampling and gathering chronological and environmental materials	Numerous ceremonial megalithic sites (temples), knowledge of tombs, hypogea and some settlements. The extensive Xaghra Brochtorff Circle population
3. Environmental data (pollen, soil, human/animal/ plant remains) to reconstruct vegetation, soils, climate and dietary/climatic isotopic information	Coastal valley inlets and valleys with deep sedimentation and good soil formations. Preservation of environmental materials in limestone environment and within prehistoric site stratigraphies
4. Samples of ancient human, animal and molluscan remains to enable dietary, isotopic and genetic investigation	Huge human remains archive (Xagħra) that has been partly studied and dated. The potential to sample new animal bone and plant rich deposits on habitation sites
5. A distinctive, dynamic and dated archaeological sequence of human activity and material culture	A rich ceramic and artefact tradition from a reasonably dated sequence, with preliminary typological and material study in place
6. Access to sites, museum collections and opportunities for collaborative research	Well established collaboration between Malta and the Cambridge-Belfast teams since 1987

and eroded environments with sparse potential to yield suitable materials. In the case of Malta and Gozo, the positive island characteristics we identified for study are listed in Table 1.1.

1.2. Background to *FRAGSUS* as an archaeological project

The richness of Maltese prehistoric archaeology has attracted a range of key figures who have explored its unusual qualities. Before the twentieth century, Maltese antiquities were a curiosity noted by travellers and administrators, but this work lacked much coherent scholarship. Later nineteenth century scholars sought to identify and protect sites (e.g. Antonio Annetto Caruana; Fig. 1.15) and a significant number were described and partly published (although these were always interpreted as Punic in date). It was only from the first decade of the twentieth century that the outstanding partnership of Themistocles Zammit (an established scientist and archaeologist; Fig. 1.15) and Thomas Ashby (a stratigraphic excavator whose skills were honed on the Roman monuments of Caerwent; Fig. 1.15), projected the riches of prehistoric Malta onto the world stage. This followed the detailed published study of the German scholar Albert Mayr (Mayr 1901; Fig. 1.15), who likewise had recognized the extraordinary prehistory of the Maltese Temple culture. Ashby contributed to knowledge of Santa Verna, Kordin, Mnajdra and Hagar Qim (Ashby et al. 1913). While independently and more dramatically, the work of Zammit led to the completion of work at Hal Saflieni and the discovery of Tarxien (Zammit 1930), collectively demonstrated the creativity of the inhabitants of the Maltese Islands from an antiquity that had not previously been accepted. Together with scholars and excavators Napoleon Tagliaferro (Fig. 1.15) and Giuseppe Despott, Zammit also developed a powerful understanding of the structure and diversity of the elaborate material culture that came from the impressive monuments he examined. Above all, he realized the importance of reconstructions *in situ*, coupled with rapid publication and dissemination of information in written and museological form. A less well-known figure until recently is Luigi Maria Ugolini (Ugolini 1934; Pessina & Vella 2005) who was one of the first scholars to appreciate the significance of these earlier discoveries. He stresssed their importance, over and above the Roman-inspired wisdom of the time (Ceschi 1939). His work (Ugolini 1934) was amongst the first to try to interpret the discoveries in terms of the living people who created the monuments. As a synthesis, it is probably fair to state that these pioneers developed a broad understanding of the major monuments, most notably of the so-called temples, but also of the underground burial chambers of Ħal Saflieni. However, other potential questions (principally those concerned with landscapes, environment and subsistence) were still under-investigated.

After WWII, two archaeologists, John Evans and David Trump (Fig. 1.15), built on the achievements of these pioneers. John Evans, like many significant figures of his generation honed his forensic skills at Bletchley Park (WWII intelligence) and applied them through his training in Archaeology and Anthropology at Cambridge to the early archaeology of the Mediterranean. In 1952, he was appointed by a committee headed by the Royal University of Malta to systematize the unpublished and outstanding discoveries of the pioneers in a survey of the state of knowledge of the Maltese islands. He combined this systematization with a series of surgical strikes on key monuments to attempt a chronological resolution to the rich material culture. Evans focused on sites where stratigraphy was clearly preserved by the sealed packed limestone (torba) floors, and where uncontrovertible sequence could be extracted. In the tradition of Zammit, he also developed an early synthesis of these results (Evans 1953, 1956, 1959). Even if publication of the full dataset took time (Evans 1971), this delay allowed for the inclusion of new and significant information, notably from David Trump's work (see below). At the same time, Evans paralleled the footsteps of Ugolini by developing an interpretative framework, albeit in a rather different direction and tradition; he both posited the ideas of island archaeology (Evans 1973a; 1977) and considered the role of key actors, such as the 'priest' in some of the monuments that he was synthesizing (Evans 1973b). David Trump accompanied Evans on his exploratory fieldwork and, following his appointment as Curator of the Museum of Archaeology in 1958, developed the subtleties of the prehistoric timetable much further. Most significantly, he excavated the site of Skorba, uncovering new phases in the Maltese sequence, named by him after the same site, and provided the radiocarbon dates that, at last, were available to archaeologists to accompany this material (Trump 1961; 1966). The results were that the chronology was no longer relative, but increasingly precise, even if based on remarkably few samples. Trump was also instrumental with Charles Zammit, the museum director and the son of Themistocles, in displaying these achievements in the newly established National Museum of Archaeology in the centre of Valletta. In fact, David Trump developed a natural, albeit idiosyncratic, talent and strong following in the popularization of the importance of the Maltese islands in prehistory (Trump 1972; 2002; 2010). The reward was a celebration of his achievements by the Maltese nation to a level never recognized in his country

Figure 1.1. *Early excavation images of Tarxien in 1915 during the superficial clearance of masonry and deposit (Zammit) courtesy of the National Museum of Archaeology, Malta.*

of birth – an honorary degree from the University of Malta and the Order of Merit of Malta.


Two further figures are connected to the *FRAGSUS Project*. Colin Renfrew (1973) advanced the implications of the new radiocarbon dates that had been produced largely by David Trump, but also supplemented by himself. He highlighted the broader setting of calibration, and thus firmly established the claim that

these monuments were the oldest free-standing stone monuments in the world. This is a claim that still stands today for roofed stone monuments, in spite of the relatively recent discovery of the much older, but open air, stone monuments of Gobekli Tëpe (Schmidt 2007). At the same time, Renfrew took their theoretical understanding forward by proposing theories of societies and their territories in an island setting, and how they might have developed over time (Renfrew 1973; Renfrew & Level 1979). Anthony Bonanno, the long-standing head of the Department of Classics and Archaeology that he founded at the University of Malta, also made his own very real contribution to the debate. He synthesized the available information (Bonanno 1986a) and, with Colin Renfrew, jointly proposed an Anglo-Maltese collaboration during a seminal conference that he organized in 1985 (Bonanno 1986b).

1.3. The Cambridge Gozo Project 1987–95

The collaboration that followed (1987–95) between the Universities of Malta and Cambridge and the then Museums Department took stock of the current state of knowledge based on Anthony Bonanno's 1986 synthesis. It was clear that study of the so-called 'temples', mainly on the island of Malta, had dominated previous research. Questions of death, domestic life, economy, the human and physical landscape had been under-researched. The Cambridge Gozo project under the direction of Anthony Bonanno, Tancred Gouder, David Trump, Caroline Malone and Simon Stoddart sought to investigate these remaining gaps. A single phase Temple Period settlement structure at Ghajnsielem on Gozo was investigated in the first 1987 season (Malone et al. 1988, 2009, Ch 4.). The Xaghra Brochtorff Circle was researched over all seven field seasons, and a field survey was undertaken in those moments when the great investment of work on the Circle permitted. The most successful feature of the project was a deeper understanding of Maltese death ritual (Malone et al. 2009). Some major strides were made towards appreciating principal changes in settlement distributions between the ceramic phases of Ghar Dalam to Bahrija in the central part of Gozo through a systematic site and off-site landscape survey (Boyle 2013, 2014; Malone *et al.* 2009; Volume 1, Chapter 6). Some new data were gleaned as proxies for domestic life and several likely settlement sites were located, although the one excavated Ghajnsielem Road structure was largely devoid of refuse (Malone et al. 1988, 2009). Very few advances were made in understanding the changes in the physical and natural landscape. Several specialist scholars, however, were invited and they attempted to identify the means to extract knowledge from a challenging environment at a time before many of the current methods used in the current project became available. The most successful work came indirectly from the study of land snails from the Xaghra Brochtorff Circle (Schembri et al. 2009). The scientific goals of the Cambridge Gozo Project (1987–95) were significant on a number of fronts. In particular, it achieved knowledge of prehistoric funerary ritual and an initial study of the prehistoric population, and accompanying animal remains. Inadequate funding meant that the osteological study was preliminary. Nevertheless, that work revolutionized approaches to the bioanthropology of the prehistoric population. It represented only the second discovery of a Temple Period funerary complex (rather than individual tombs) in Malta, and the only example of a fully recorded burial assemblage. Chronological progress included a suite of AMS radiocarbon dates on human bone, which fixed the episodes of burial for the first time. Other major achievements included the systematic study of molluscan evidence in environmental reconstruction, the identification of hard stone sources from outside Malta, and preliminary work on diet and the exploitation of animals. The post-excavation research (between 1996 and 2009) also identified a number of directions for future research. In particular, we (Malone et al. 2009, 383-4) specified the need for: more scientific analysis of the human remains; a better understanding of diet, disease and changing life patterns; more AMS dating; and the application of (the then) new and promising aDNA methods on the enormous assemblage of human bones (c. 220,000 individual parts). As with many burial sites, it is vital to establish the composition of the buried community, both social and biological; aDNA can offer new insights into the latter and by implication the former. In conjunction with excavated materials, we also suggested that sedimentological and environmental research might interrogate the question of climatic downturns to address an overriding question, 'why did the Temple Culture collapse and disappear'? The work of the late Frank Carroll at Huddersfield University (Carroll 2007; Carroll et al. 2012) showed that these methods were viable in the Maltese contexts.

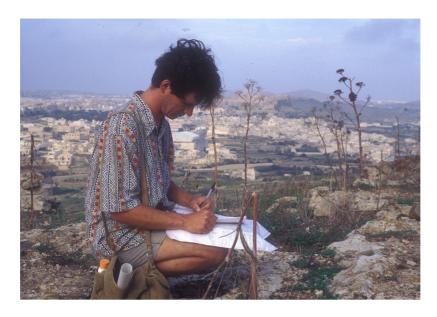

In the years immediately following the 2009 publication, while other fieldwork was developed in Etruria, these various issues became a discussion point for some of us (especially Hunt and Malone in the palaeocology labs of Queen's University Belfast – QUB, colleagues in the Universities of Malta and Cambridge - UM and UoC, and the newly established bodies of Heritage Malta – HM – and the Superintendence of Cultural Heritage - SCH), to develop a project that was resolutely designed to solve these remaining questions, and extend research activity towards Malta as well as the smaller island of Gozo. Pollen, soils and sediment thus became central concerns for the new project together with investigation of food, subsistence and domestic life in prehistoric times. It was also realized that the chronology of the Maltese islands, although established in its broad outlines, was based on all too few samples, too much on pottery, and, where available,

Figure 1.2. Xagħra Brochtorff Circle excavations from 1987–94 (Malone and Stoddart, the Cambridge Gozo Project).

Figure 1.3. The Cambridge Gozo Survey 1987–95, recording landscape features and surface scatters: Duncan Brown (above), Barry Kemp and Duncan Brown (below). (Simon Stoddart).

had used older methodologies that paid less attention to socio-economic and environmental evidence. If the understanding of the tempo of island life from prehistory to more recent times was to be established, it was considered vital to invest heavily in cutting edge chronometric techniques that included AMS as well as OSL dating. It was evident that only a major, very well-funded, project could apply the necessary levels of interdisciplinary scientific analysis to test these questions, and potentially make an advance in understanding. A period of collaborative discussion in 2011–12 led to the application, headed by Malone, for funding from the European Research Council, and *'FRAGSUS'* as a project was developed. The application was submitted in April 2012, and the team were notified in November 2012 of its success, enabling the five-year programme of research to commence on 1 May 2013. A large team was assembled comprising nineteen scholars (see Acknowledgements), spread between Britain and Malta, and initially from QUB, UoC, UM, HM and the SCH. Later some colleagues moved to the Universities of Plymouth and Liverpool John Moores. In addition, new research staff attached to the main partner institutions were engaged to undertake specific sub-programmes of specialist work, and over the years a number of post-graduate students also joined the project to undertake Ph.D. and Masters dissertations based around the project's work.

1.4. The FRAGSUS Project 2013-18

The FRAGSUS Project attempts to address the many issues identified above in the broader framework of resilience theory within a restricted island community. It necessarily draws on the work of our predecessors, Zammit, Ugolini, Evans, Trump and Renfrew, who had in their various ways laid the foundations for this continuing study. The FRAGSUS Project was born out of the combination of previous archaeological fieldwork undertaken between 1987-94 (the Cambridge Gozo Project – excavations at the Xaghra Brochtorff Circle), and the complementary studies in environmental change (Carroll et al. 2012; Fenech 2007; Hunt & Schembri 1999; Schembri et al. 2009) coupled with the many questions that still remained to be addressed. New studies demanded the investment of modern scientific infrastructure and expensive specialist analyses, and FRAGSUS could never have been achieved without the availability of substantial funds from the European Research Council, provided through the award of an Advanced Researchers Grant. We are very grateful for the support provided and trust that this, and its partner volumes, provide a suitable acknowledgement as well as justification for an investment that has implications for understanding both the past and the present (see Volume 1 Conclusions and this volume).

1.4.1. Archaeological concerns in Maltese prehistory and the FRAGSUS Project

The summary above highlights the main strands of intellectual development of the project. This section adds detail to some archaeological themes that are central to the *FRAGSUS* study, which we aim to address through the field research undertaken during the project.

1.4.2. Time and artefacts

From Zammit onwards, the megalithic structures and the remarkable 'art' and artefacts of the Neolithic 'Temple' culture provoked an ongoing interest in Mediterranean prehistory and the relationship between that area and the better known west European megalithic sites (Piggott 1965; Daniel 1963). By the mid-twentieth century, it was generally agreed that the cultures of Malta were of Neolithic and 'Copper' Age date, but beyond that notion, chronology was vague. The synthesis and record of the prehistory of Malta by Evans in the mid-1950s represented the first stage of a full evaluation of the material culture and sites of Malta's prehistory. That project was a major step forward in organizing the cultural sequence and assigning the rich archaeological assemblages stored in the National Museum of Archaeology to separate phases. Evans' small exploratory excavations were designed to demonstrate the chronological-archaeological sequence, and he presented his ideas in a number of publications that remain relevant today (Evans 1953, 1956, 1971). In 1958, David Trump, from his position as curator of the Museum, followed in Evans' path and organized further excavations to test the archaeological sequence, which spanned from the earlier Neolithic to the Bronze Age. Now armed with the powerful new tool of radiocarbon dating, Trump obtained a modest selection of samples tied to ceramic types that collectively demonstrated the very long archaeological occupation of Malta. The key site of Skorba Temple (Mgarr) formed the core of the dating programme, but it was supplemented by key-hole excavations at Santa Verna, Kordin III, Ggantija, Tarxien and Hagar Qim that extracted distinctive ceramics often in defined stratigraphic layers. Linked to the few dated pottery levels, Trump was able to assert a new and unexpectedly ancient sequence. The achievement of the work was published in 1966 (Trump 1966), and its impact was deftly identified by Colin Renfrew in a chapter in Before Civilization (1973). There, Renfrew argued for the independent development of the Maltese island culture and their early dates, long before later Mycenean or Egyptian influence, which had, hitherto, been the chronological reference point in the Mediterranean and west European Megalith debate.

The Skorba sequence revolutionized both theoretical thinking and chronological understanding. It was, therefore, unfortunate that after the declaration of the independence of Malta in 1964, international collaboration or any ongoing scientific research in prehistoric archaeology all but ceased for many years. For over two decades, the sequence and the interpretations proposed by Evans and Trump were unchallenged, with no new fieldwork of significance being reported. In that time, theoretical studies filled the gap; for example, the modelling proposed by Renfrew that tested ideas on territories (Renfrew & Level 1979), or work that attempted to integrate and synthesize Maltese sites with other megalith building societies (Joussaume 1985). The period also saw the rise of Mother Goddess studies and other weird, wonderful and entirely unsupported proposals to interpret the Temple Culture (Gimbutas 1991). The need to provide counter evidence for these theories of a Greater Balkan Civilization, also drove the demand for new field research forward. The most recent studies (Tas-Silg – Bonanno & Vella 2015; Cazzella & Recchia 2012; the Cambridge Gozo Project – Malone et al. 2009, and work by the emerging government agencies HM/ SCH - Grima 2011; Pace 2000) have been constrained by the legacy of an earlier history of rather rigid material culture designations and typological systems. Given the effectiveness of Evans' and Trump's work in describing the archaeological sequence in material terms, almost no attempt has been made to revise the system. In contrast, later periods have benefitted from work that necessarily takes account of broader Mediterranean systems (Anastasi 2013, 2016; Bonanno 2005; Quinn & Vella 2014; Sagona 2002), whilst the ceramic chronology of prehistoric Malta has largely remained a silo in its own insular world. In this volume, we assemble a large new collection of excavated material and subject it to detailed analysis (Chapter 10) with the intention of clarifying the present scheme and shaping it into one that is current and linked to a new chronology and science.

1.4.3. Architecture

The *FRAGSUS Project* also addresses the issue of temple architectural development. This theme commenced, in some respects, with the work of David Trump, who sought to identify an evolutionary scheme for the structural development of Maltese temples (Trump 1972; 2000, 2002). The opportunity to excavate beneath and around early temple structures has enabled us to examine architectural development in a limited way. In particular, the work at Santa Verna (Chapter 4 this volume) provides an important insight into early temple development supported by detailed dating. Likewise, the exploration at Kordin III (Chapter 6 this volume) has revealed details of construction at another early site. Architecture, however, is only dealt with briefly here, and forms the subject, we hope, of future studies.

1.5. Five research questions

The *Project*, as summarized above, was devised to tackle the all of outstanding issues highlighted above by posing five specific questions that attacked the central problem of the end of the Maltese Temple Culture. These interlinked questions focused on the fragility and resilience of island life. As is so often the case in such an intensive project, not only have many questions been answered, but the answers demonstrate enormous complexity and themselves raise new questions. A central feature of the project was to bring to bear multiple techniques in addressing the same questions, thus strengthening the validity of many of the conclusions.

1. What was the impact of human settlement on Malta, and how rapid was the process of deforestation, erosion and degradation? When did technical mechanisms to manage the environment develop – such as terracing, water and food storage? Were such mechanisms in place before or after the Temple Culture collapsed?

Enormous advances have been made by interlinking proxy samples from seven new pollen locations (with a corresponding sevenfold increase in catchment) and six new archaeological stratigraphies. As both this and Volume 1 show, a highly complex and fragile turbiditic landscape has been uncovered. Questions about early terracing, water and food storage have been less effectively addressed and remain issues to be solved by the next generation of archaeologists.

2. How did a very small island community in prehistoric times manage to sustain dense, complex life over millennia, and what specific social, economic and ritual controls emerged to enable this? Were the monumental temples instrumental in the process of sustaining cultural life?

For the answer to this question, we necessarily draw on the information provided by Zammit, Evans and Trump. It was these scholars who investigated the temples when they were best preserved. However, the *FRAGSUS Project* has supplemented this work by investigating parts of four temples (Ġgantija, Santa Verna, Skorba and Kordin III). In addition, the evidence from the settlement area of Taċ-Ċawla, despite being a complex multi-period site, has permitted the elucidation of some of the essential differences between the communal activities of the temples and the smaller scale activities of the living sites.

3. What sort of agriculture was used, and what did people eat, especially as the landscape became increasingly degraded and the environment more unpredictable? Were there failures in the food supply? What impact did diet, disease and stress have on the population?

A three-pronged approach has been delivered successfully, drawing on the refuse of the living, the remains of the dead and palynological evidence. The settlement site of Taċ-Ċawla has, for the first time, delivered a series of refuse samples that give a measured development of the food resources (carbonized seed and bone) from the Maltese islands. These can now be compared with the evidence from the bodily remains of their near neighbours and contemporaries interred in the Xaghra Brochtorff Circle. The latter have provided samples for both isotopic and dental analyses, which have revealed invaluable information on dietary trends in the fourth and third millennia BC (see Volume 3). The presence of livestock and domesticated plants, while shifting in locational focus, were shown to be uninterrupted from their inception at the beginning of the sixth millennium BC until their major decline in the final stages of the Temple Period.

4. What was the size and nature of the early Maltese population and what role had demographic connectivity (immigration) in maintaining island sustainability?

Our insights into the changing demography of the Maltese islands remain indirect. The Cambridge Gozo survey (undertaken in the late 80s and early 90s, but presented in these volumes) has given some sense of the relative and changing density of a small part of the landscape. The pollen record has provided an important idea of the impact of these populations on the islands at a date even earlier than the settlement record. aDNA, isotopes and the physical anthropology have given different degrees of understanding of the connectivity of humans with the outside world and their genetic variation. These can be measured against the import and circulation of non-organic materials, as well as crops, trees, animals and other resources. A deeper understanding of demography remains a substantial challenge, and one that future generations can continue to tackle.

5. Was there social, economic or environmental failure at the end of the Temple Culture, and what may have caused society to collapse or change so drastically? Was there a hiatus between the Temple Culture and later Bronze Age settlers? Can a hiatus be identified during the earlier settlement of Malta, between c. 5000 and 3800 BC?

A number of proxies have been combined to investigate the situation at the end of the Temple Period: pollen, sediments, human remains and the distribution of radiocarbon dates. These do support the evidence for important changes at about 2340 BC, but similar analyses have also detected a similar downturn in the fifth millennium BC, which extended over a longer period. The focus on dating has revealed a long and apparently culturally empty episode between the Skorba Neolithic and the Zebbug. The definition and narrowing of these windows of change is one of the exciting results of the current work, and presents stimulating prospects for further analysis by future generations of archaeologists.

These questions were designed to provoke interdisciplinary approaches that employed fieldwork, fresh data collection, various analyses and a range of new scientific approaches. Some questions were simple, provoked and supported by the outcomes of previous study, and they had superficially obvious answers. Yet, when tackled through new and demanding methodologies, these same questions invariably opened doors to entirely new territories. Other questions were more speculative and designed to test new methodologies such as isotopic science and aDNA. It was the intention of the project to explore and tackle the unknown, to take risks and move the fields of study forward. As the reviewers of the grant application commented, the *Project* aspirations were admirable, but although many might not fully succeed, the journey was worthwhile in itself. It was thus that the team set out in May 2013 to start a demanding programme of research into past climate, landscapes, people and their cultures and to explore what enabled or hindered human sustainability in small islands in the past. Our focus was the Maltese islands, of which we had previous knowledge, but that were also chosen because their size and scale presented opportunities to examine the 'rise and fall' of a distinct civilization. In other parts of the Mediterranean or Aegean, it might have proven harder to distinguish such distinctiveness, but Malta - with its remarkable 'Temple' Culture – presented the greatest potential to test our questions. Malta was also chosen because of the long-standing collaborative relationship between the team members extending over decades, and our shared sense of affinity with a remarkable ancient people whose world we had begun to observe at ever closer quarters.

The outcome of the FRAGSUS research was always envisaged as being complex, incomplete and difficult to interpret. Nevertheless, the goal has been to go beyond simply gathering data about time, plants, soils, pots and people. We aimed to model aspects of how the ancient communities of Malta lived and died, how they organized their existence on a small and crowded island, and how they managed to maintain apparently placid social relations between the islands and their communities. One intriguing aspect of the Temple Culture and its remarkable architecture is that is appears to have emerged as a response to the local conditions of intense competition. The team have long debated the problem of how to interpret the temple evolution and its role in society, just as preceding scholars have for the last century and more. Now, with the benefit of detailed time control, set against a much deeper understanding of economic variability and the physical impact of that productivity on the human skeleton, we can begin to see how the early Maltese coped with their world (see Volume 3). At times it was a productive place, whilst at others, life probably hung in the balance between dry seasons, disease and economic failure. The temples seem to have been the places where the action of daily, seasonal and ceremonial life took place, but just what were the 'temples' in the minds of their makers? We have found evidence for ceremonial activity, fires, pots, animal bones, grinding feasting, grain processing, storage, display, sacrifice, theatre and aesthetics. The structures were large enough to live in, but evidence is not apparent that anyone did inhabit these places. This question of the function of the temples will be revisited in the Conclusions, Chapter 13.

1.6. The field research programme, 2014–16: the selection of sites for excavation and sampling and the goals for each site

The FRAGSUS research programme in archaeology was enabled by close collaboration between the team members, in particular those working in HM and the SCH, who were able to identify suitable and accessible sites for analysis. Although Malta is extraordinarily rich in prehistoric sites, most of them are inaccessible for excavation for one reason or another. Some are public 'heritage' sites, others are on private land, and there is a clear understanding that disturbance of sites should be avoided unless there are overwhelming reasons to intervene. Research archaeology has to make a strong case, and FRAGSUS was able to do this, since it brought new, and rather urgent opportunities to undertake diagnostic work that had potential to improve understanding and conservation. Most of the 'Temple' sites are inscribed as World Heritage Sites on the UNESCO list, and protected by national legislation. But that protection is only as good as planning, environmental pressures and erosion allow. The protective legislation covering Heritage and Antiquities has been greatly enhanced in recent years, and there is a general discouragement of any excavation or intervention that could cause damage or destruction. The team is therefore very grateful to the SCH and to HM (the two agencies responsible for protection of archaeological sites in Malta), for allowing and enabling FRAGSUS to work on the sites reported

Table 1.2.	Timetable	of fieldwork.
10010 101	1 11110 1110 10	0) //0///000//00

on in this volume. Two sites formed quite large excavation trenches (Taċ-Ċawla and Santa Verna) and both had the advantage of earlier archaeological work, with the *FRAGSUS* trenches comprising in part, interventions in areas of earlier backfill. The other sites were examined by small sondages (Skorba, Ġgantija), with larger slot trenches at Kordin III and two rock-cut silos at In-Nuffara. These excavations were precisely located, on the instruction of the authorities, and could not be expanded, regardless of the emerging deposits found. Future opportunities may arise for other scholars to expand these small sondages to explore and interpret the often limited evidence that was uncovered.

Over recent years, efforts have been made by HM to research the management and stone erosion of the monuments (Cassar et al. 2018; Grima 2011; Stroud 2003, 2004-5, 2007; Zammit & Mallia 2008). The issue, however, of the eroding surrounding landscape had not been included in this work, although it is the subject of several other conservation and heritage programmes (Gigli et al. 2012). Areas of bare rock caused by erosion of covering soil and vegetation are encountered while visiting any one of the 'temple' sites, and this erosion is seen across the entire landscape. As Volume 1 describes, the erosion process has been ongoing for millennia, and was exacerbated by human activity, agricultural regimes, heavy rainfall and the very nature of the landscape itself. Short of covering over entire sites, there is little chance of preserving them in an intact form. Although conservation issues were prominent in

Taċ-Ċawla	2014	March–July	Neolithic settlement open area excavation Post-excavation processing and recording of material culture Environmental sample processing
Ġgantija	2014 2015	May–July March–April	Survey and recording of WC Section Excavation of sample sondages and large trench over ramp area
In-Nuffara	2014 2015	May March–April	Digital survey of plateau Silo Excavation Environmental sample processing
Santa Verna	2014 2015	March–April April–May	Digital and surface survey Large trench excavation of Temple site Environmental sample processing
Kordin III	2015	June–July	Trench excavation of Temple site Post-excavation environmental processing and recording of material culture
Skorba	2016	March–April	Sondage excavation of Temple site Environmental sample processing Lithic survey and analysis
In-Nuffara, Santa Verna	2015	June–July	Post-excavation processing and recording of material culture
Santa Verna, Ġgantija, Kordin III, In-Nuffara	2016	June	Post-excavation processing and recording of material culture
Taċ-Ċawla, Ġgantija	2017	June	Post-excavation processing/recording of material culture

the selection of sites studied by *FRAGSUS*, they were not the only concerns. As the research questions above specify, the goals were to obtain samples from periods of prehistory that might inform on particular aspects of the environment, the economy, the diet, and the general lifestyle and development of prehistoric communities. Such samples needed to be of sufficient quantity and quality and be subjected to rigorous quantitative and scientific scrutiny. They mostly had to be freshly obtained through new excavation and coring, since little suitable sampling had been done in the past. Samples needed intact stratigraphic levels in reliable and meaningful locations containing undisturbed deposits. Careful prior research identified likely spots for sample collection. Only reconnaissance and subsequent investigation could reveal the detail of time and environment, and given the level of previous intervention and erosion, such places are difficult to locate or even recognize. When found, they offered spectacular windows (e.g. Santa Verna and Skorba) into the hidden. This was a parallel experience to that encountered by the same team in much larger island contexts such Sicily (Malone & Stoddart 2000), where pockets of deposition could be readily accessed. The Project was correspondingly ambitious regarding the number of sites it investigated, and only pursued those deemed to have appropriate intact windows into the past that covered the necessarily extensive time range. The chosen sites, described below, had particular attributes capable of contributing new knowledge that could justify intervention in the UNESCO World Heritage Sites and the expenditure of time and resources required.

By the end of the *Project*, the excavations resulted in one settlement zone around a probable water hole (Taċ-Ċawla), four temple sites (Ġgantija and Kordin III, where only one phase was examined; and Santa Verna and Skorba, which had deeper stratigraphies) and a Bronze Age settlement (In-Nuffara). Already collected samples were analysed from a further two prehistoric sites (Xagħra Brochtorff Circle and Tarxien) and one medieval site (Mdina). The sites of Taċ-Ċawla, Santa Verna and Skorba provided the most chronologically wide-ranging information; whereas Taċ-Ċawla, Santa Verna and Kordin III provided the most spatially informative data over the area of a single site.

The programme of work engaged substantial field teams at Taċ-Ċawla, Santa Verna and Kordin III. The main personnel at each of these sites were recruited from Queen's University Belfast, the University of Cambridge and the University of Malta respectively (see Acknowledgements for staff list).

The choice of site was designed to map on the *FRAGSUS* questions by contributing to understanding of the:

- 1a. Impact of human settlement on Malta
- 1b. Rate of deforestation, erosion, degradation
- 1c. Technical management of environment
- 2a. Socio-economic sustainability
- 2b. Role of temples in sustaining cultural-economic life
- 3a. Nature of agriculture
- 3b. Failure of agriculture
- 3c. Impact of diet, disease and stress on population
- 4a. Size and nature of the prehistoric population
- 4b. Role of demographic connectivity in maintaining sustainable life
- 5a. Socio-economic failure at the end of the Temple Culture
- 5b. Evidence for a hiatus between the Temple Culture and the Bronze Age, or at other times

As Table 1.3 shows, the sites each spanned slightly different time ranges, enabling the project to sample materials covering almost 5000 years which could address the five main questions and their sub-questions. (This table and the questions is revisited in the Conclusions, Chapter 14). Linking all of these questions and sites is the programme of AMS radiocarbon dating that was applied to all suitable material from the excavations. Table 1.3 also includes the previously excavated Xagħra Brochtorff Circle, the remains from which form the focus of Volume 3, and the manner by which those materials contribute to the *FRAGSUS* questions.

A number of other sites were considered for investigation, but were not included on the grounds of time, scope, access and uncertainty of their contribution to the FRAGSUS questions. These sites, nevertheless, continue to offer the potential for study by future generations of archaeologists. Ta' Marziena (Fig. 12.1), a probable temple site with a reasonable stratigraphy, was laser scanned, but its access would have required separate negotiation with a private land-owner. The main Bronze Age fortifications of Borg in-Nadur on Malta were scanned (Fig. 12.2), but some work had already recently been undertaken (Tanasi & Vella 2011; 2015) and further work was logistically difficult. Xrobb l-Ghagin, a temple site on Malta that is threatened by cliff collapse, was considered too dangerous to investigate. But this site has been scanned subsequently by members of the FRAGSUS team using drone facilitated technology. Ghar ta' Ghejżu on Gozo was scanned, but had already been badly damaged and contained no deposits. The Xemxija burial chambers were scanned (Volume 3) and the skeletal remains recovered by Evans

	Early Temple				Q 1			Ç	<u>)</u> 2		Q3		Q4		Q5	
	Neolithic	Period	Bronze Age	Later contexts	a	b	с	a	b	a	b	с	а	b	а	b
Taċ-Ċawla	5400-5000 вс	3700-2400 вс	2400-2300 вс	Punic, Roman	\checkmark		\checkmark									
Ġgantija		2600-2500 вс			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		
Santa Verna	5400–5100 вс	3800–3100 вс		Medieval	\checkmark			\checkmark		\checkmark						
In-Nuffara			1100-1000 вс		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark		
Kordin		3600–3100 вс				\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		
Skorba	5400-4800 вс	3600-3300 вс			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
Xagħra Brochtorff Circle		3800-2350 вс	2000–1600 вс					V	V	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 1.3. Chronological range of FRAGSUS sites and their contribution to the project questions.

are considered by Jess Thompson in Volume 3, Chapter 13. Għar Dalam was scanned, but the deposits were considered too precious for further excavation. The south temple of Ġgantija was scanned but not considered for excavation, except on its margins, where excavation was undertaken as part of the project. The current state of the Xagħra Brochtorff Circle was scanned, but permission was not received for further limited excavation and conservation assessment. Finally, the Skorba phase site of Ta' Kuljat detected through the original Cambridge Gozo survey was identified for excavation, but considered logistically too problematic because of its relative inaccessibility and private ownership.

1.6.1. Taċ-Ċawla

The site of Tac-Cawla (Fig. 1.4) was selected because it was the only extensive known settlement site of the Neolithic that was accessible for study. Initial assessment in the 1990s had shown that structures were present, and that quantities of pottery and artefacts had been recorded that spanned from the earlier Neolithic to the Bronze Age. The land was in government ownership and the site was readily accessible by vehicles and available for new study, and importantly, it had demonstrated deep stratigraphy over parts of the site. The site was a remarkable survival within an urban area and could also be readily protected by the constant observation of local people. Its topographic position was interesting, overlooking a valley and a small temple (Ta' Marziena) on a nearby ridge. Excavation trenches were permitted over areas previously exposed in the 1990s, and where backfill covered known archaeological levels. The extent of the site was expanded to limits agreed with the SCH.

1.6.2. Santa Verna

Santa Verna (Fig. 1.5) was selected because it is one of the few ruined 'temple' sites that is not a World Heritage Site, is not much visited by the public, and is located on accessible and undeveloped church land. The landscape surveys undertaken in the 1980s, 1990s and in 2014 demonstrated the existence of extensive archaeological material far beyond the few visible megalithic stones. This indicated a large and important complex of archaeological potential. Trump's work in the 1960s and the earlier study by Ashby and Bradley in 1911 (Ashby *et al.* 1913) offered promising insights to a long duration of Neolithic activity on the site, mirroring the discoveries by Trump at Skorba on Malta. Its topographic position at one of the highest points of the Xagħra plateau also pointed to its importance. The excavation trenches were permitted because areas external to the temple site had produced significant densities of surface pottery, or were located in the area previously excavated in the 1900s.

1.6.3. Kordin III

Kordin III (Fig. 1.6) was selected because it too had not received inscribed World Heritage Site status (although the status is now under review), was not much visited by the public (Borg 2007) and had considerable areas within the enclosed precinct that had not been excavated in the past. Early work at the site by Ashby had been promising (Vella 2004), but no work had been undertaken at the site since the 1950s, and no absolute dating had been done at all. Its tantalizing early 'temple' phases (identified by pottery at the site and its relatively simple architecture) indicated that a key-hole investigation could advance knowledge and demonstrate the site's value, date and history. In particular, work at this site was deemed to have the potential to fill in the elusive Mgarr phase. Excavation trenches were permitted only as determined by the SCH, and did not necessarily enable exposure of the logical extents of the temple structure.

1.6.4. Skorba

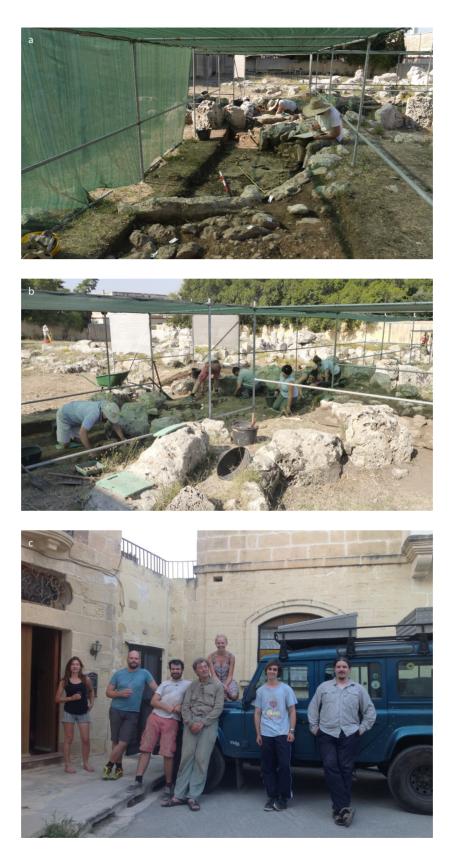

The temple site of Skorba (Fig. 1.7) was selected because it was the original chronological control site for absolute dating on Malta. With the massive advances in calibration and AMS methods of dating that have since taken place, it was felt that the chronology of the site should be tested, and the entire Maltese prehistoric

Figure 1.4. *a) General view of Taċ-Ċawla in 2014, at the end of excavation, looking north-northeast; b) members of the 2014 team (McAdams, Malone, Hannah, Armstrong, Parkinson (all QUB) and Kay Mallia (UM)).*

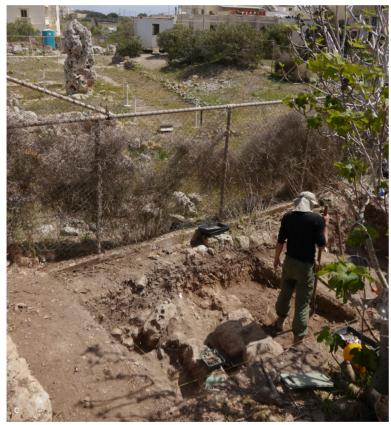

Figure 1.5. *a, b)* General views of work at Santa Verna, 2015; c) Trump sondage, reopened in 2015; d) threshold slab within destroyed temple structure; e) Structure from Motion model of the south lobe of the temple under excavation.

Figure 1.6. General views of work at Kordin III, 2015: *a*) excavation in Trench 1; *b*) Trenches 1 and 2 under excavation; *c*) some of the QUB/Cambridge Kordin III team preparing for work.

Figure 1.7. *General views of work at Skorba, 2016, and some of the team: a) the deep trench under excavation; b) the southern trench with the team at work; c) view over the 2016 trench with the enclosed Skorba temple monument beyond and the two early walls visible in the excavation trench.*

sequence calibrated accordingly. A very small trench, outside the fenced and protected World Heritage Site, was identified as the most suitable location to test the many early phases that Trump had identified in his work (1966). This work was permitted as it reopened previously studied areas and was external to the fenced area of the protected site (see Fig. 1.7). The opportunity to test three forms of chronological control were adopted. These were: ceramics from stratified deposits, AMS radiocarbon dates and a geoarchaeological OSL

sequence from the same stratigraphy that promised to allow important comparison.

1.6.5. Ġgantija

The area surrounding Ġgantija (Fig. 1.8) had already shown its promise not only during excavations by Evans and Trump, but also during the 1980s surveys of the Cambridge Gozo project, which showed the presence of several ceramic phases. The detection of a faultline, a spring line and intact well-formed soils during the

Figure 1.8. General views of work at Ġgantija, 2015: a) view of the terrace walls below Ġgantija and the site of the spring (visible at left, below palm trees); b) sondage at south end of the temple facade; c) section exposed beneath former office and WC under recording; d) commencement of excavation in 2015, temple facade in background; e) the trench at the end of investigation.

Figure 1.9. *a)* General view of In-Nuffara, 2015; b) initial exposure and excavation of the silo pits; c) Bronze Age pottery under study from the In-Nuffara silo; d) the excavation team at the completion of work at In-Nuffara; e) pot washing of the Bronze Age pottery.

FRAGSUS Project added considerable interest to the location. Four areas were targeted for small stratigraphic sondages at the edge of the megalithic terrace-forecourt. One test hole was placed to assess the depth of the twentieth century garden forecourt and terrace of the monument when it was planned to move a decorative palm tree from the monumental garden. A second

sondage was placed where intact soils had been detected by augering. The third sondage arose from additional opportunities provided by the removal of the blockbuilt custodian's office and public conveniences, which had both been erected around 1960. This exposed an extent of stratified deposit, over a metre in depth with significant stratified levels extending below modern material. Additional work included a geo-radar survey of the forecourt and the adjacent olive grove, where the excavation of a fourth small test trench was permitted. The interventions by FRAGSUS are extensively reported in Chapter 5, but it is important to note that the exposed deposits presented a serendipitous opportunity to test a number of hypotheses. These hypotheses included the age of Ggantija, which was always supposed to be one of the 'earliest' temples because of its massive and crude stones and diagnostic pottery; the nature and age of the constructed forecourt; and the lost entrance ramp and megalithic entry to the site from downslope. Additional questions included the nature of the buried deposits, ancient soils and their contents. Permits for excavation were granted since either the trenches were in areas that had already been disturbed or reopened through management interventions, or they were particularly small (i.e. the deep sondage).

1.6.6. In-Nuffara

The selection of In-Nuffara (Fig. 1.9) the Middle Bronze Age fortified plateau site immediately south of Ggantija, enabled the project to extend the study to the Middle and Later Bronze Age. This location was abandoned agricultural land, which was not difficult to access, provided that the bird hunting and trapping season was avoided. This work enabled assessment of environmental and economic change after the 'Temple Period', and also offered the opportunity to obtain absolute dating samples that would place those changes in a reliable chronology. No radiocarbon dates had ever been obtained for the Borg in-Nadur phase before. As such, it was unknown when the Tarxien Cemetery phase ended or for how long the Bronze Age persisted in Malta. Such questions are valid, given the quite large number of Bronze Age sites across the islands, some of which have only come to light during the period of the FRAGSUS Project, such as the silos on the Citadella of Gozo that were found during conservation works. The permit was given to examine just two visible silos and their immediate surrounding area.

1.7. Additional studies

Maltese prehistory cannot be complete without a thorough and increasingly scientific assessment of its distinctive material culture. Pottery (Fig. 1.10), lithic tools and waste, stone objects such as querns and weights, personal ornaments, worked animal bone and shell occur on most prehistoric sites, and it was the aim of the *FRAGSUS Project* to integrate cultural materials with the contexts from which they came. Not only was there potential to use material culture in interpreting its function, but also of identifying and interpreting

chronology, style, external interactions, and possibly notions of value, aesthetic and ritual. Previous studies (e.g. Bonanno 1986a; Grima 2007; Malone 2007, 2008; Malone et al. 2009; Vella 2007) have long sought to make sense of the material record of Malta. But unless this material is linked to secure archaeological contexts, such work is inevitably of less value than when the original context is fully understood. It was the aim of FRAGSUS to undertake detailed scientific analysis of material culture (technology, style, raw material, connectivity, chronology and function) to explore links between the environment of the sites, time and natural resources. This approach has the potential to advance understanding of how an island culture responded to changes in the wider environment. The study of interaction through sourcing materials can reflect connectivity, which in turn may reflect on a society and its cultural practices and tastes. Such studies could dominate the project, and there is much ongoing potential for far more research in the future. Yet, here material culture is but a small element of the research. Our main focus falls on ceramics and the development of the existing typological scheme and on lithics and their materials. Other artefacts are recorded and reviewed more briefly. The main goal was to improve and advance chronological understanding between absolute dating estimates and material things. Nevertheless, these monograph reports aspire to advance our knowledge, to add to the collected archives of the past, and add a small step on the long route to better understanding of ancient Malta and its changing worlds.

1.8. Environmental and economic archaeology

A principal goal of the project was to extract economic data from the excavated sites. It is almost impossible to locate reliable samples of animal bones or plant remains without breaking the surface of the ground, and thus excavation was targeted towards locations that had potential to yield economic material in stratified ancient rubbish. The ideal location would be a pit full of organic remains that painted the complete picture of Maltese economic life over millennia. Unfortunately, such contexts only occur in the Bronze Age, hence the work at In-Nuffara to extract one such sample. Earlier prehistoric sites are far more challenging, because, although there are remarkable plaster floors and sealed deposits, Temple Period people were too tidy and too clean! They removed their rubbish, swept their floors, and seem to have undertaken their food processing activities mainly off-site, with the result that samples are rarely large or very promising. What remains of carbonized seeds or broken bones tend to be eroded, gnawed, crushed and trampled, suggesting they were

Figure 1.10. Ceramic processing and finds work: a) Parkinson and Brogan sorting pottery in the courtyard of the Auberge de Provence; b) Coyle McLung recording pottery; c) pottery processing in the Auberge de Provence; d) Bates and Armstrong undertaking flotation in Gozo; e) sieving at Santa Verna; f) Ashley drawing artefacts in the University of Malta.

	Context sheets	Site photos	Site drawings	No. bulk Soil samples processed	Volume soil processed (litres)	Micromorphology samples	Special finds	Animal bones identified	Pottery sherds	Pottery weight (kg)	Finds photos	Pottery drawings	Other drawings	Radiocarbon dates
Taċ-Ċawla	306	798	107	122	1255	20	528	1430	50,679	392	2034	293	41	33
Ġgantija	40	119	10	26	292	15	10	82	6466	67	108	126	2	11
Santa Verna	122	905	50	49	863	6	161	547	21,546	185	1046	247	84	23
In-Nuffara	46	213	4	23	763	3	16	321	6000	150	152	26	0	5
Kordin	203	1696	92	124	1226	2	196	193	18,766	115	508	96	64	15
Skorba	30	205	9	27	223	3	6	c. 100	5859	53	180	54	13	6
Other sites														95
Totals	747	3936	263	344	4399	46	911	c. 2700	c. 110,000	962	4028	842	204	188

Table 1.4. Summary table of the archaeological discoveries made by FRAGSUS.

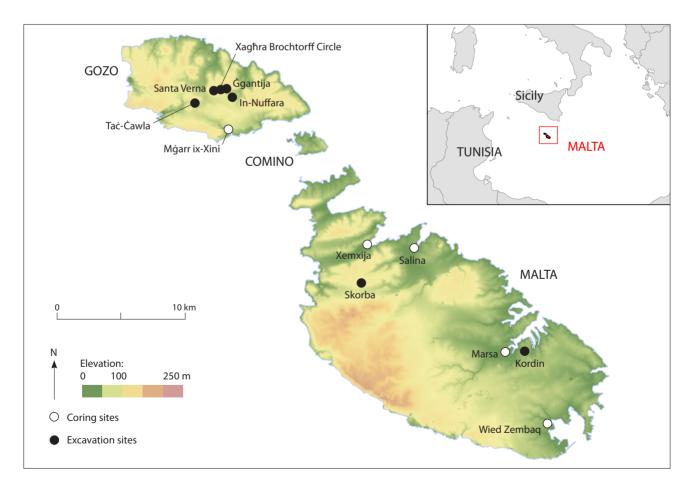
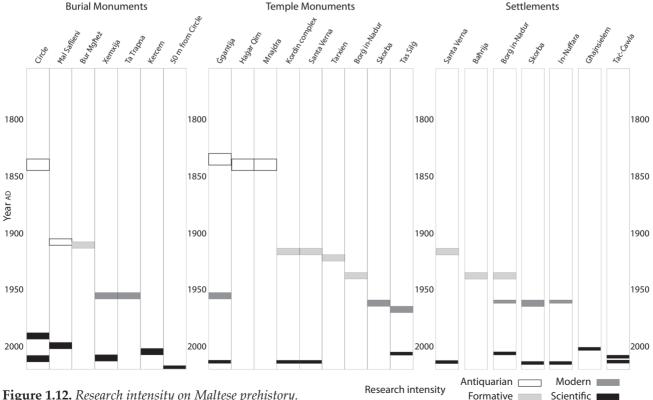


Figure 1.11. Location map of sites investigated by the FRAGSUS Project.

Period	Phase	Start	End
	Pre-Skorba	6000 вс	5400 вс
Neolithic	Early Neolithic	5400 вс	4600 вс
	Fifth millennium hiatus	4600 вс	3800 вс
	Żebbuġ	3800 вс	3600 вс
	Mgarr transitionary phase	3600 вс	3400 вс
Temple	Ġgantija	3400 вс	3200 вс
Period	Saflieni	3200 вс	2850 вс
	Tarxien	2850 вс	2350 вс
	Thermi	2350 вс	2100 вс
Bronze	Tarxien Cemetery	2350 вс	1600 вс
Age	Borġ in-Nadur / Baħrija	1600 вс	750 вс
	Phoenician / Punic	750 вс	250 вс
	Roman / Byzantine	250 вс	ad 870
Historic	Arab / Norman	ad 870	ad 1530
	Knights	ad 1530	ad 1798
	Modern	ad 1798	Present


Table 1.5. Chronological range of prehistoric and later sites in the FRAGSUS study as revealed by the dating campaign of the project.

probably exposed in a dusty domestic yard or rubbish heap before being finally buried in a deposit. The best means to sample such unpromising material is an effective sampling strategy that ensures sufficient diagnostic pieces are collected through a programme of

systematic sediment sampling for small items, and, in the case of bone, very careful excavation. The FRAGSUS *Project* invested in such sampling, collecting a total of 4399 litres of soil from secure deposits for flotation, and retained every fragment of recognizable bone during excavation. Below, Table 1.4 records the statistics of activities, samples, photos, sherds and so on that accumulated as samples were processed during the three years of Project fieldwork (Fig. 1.10). Such figures are remarkable for the Maltese context, and demonstrate the intensive level of labour and dedication shown by the project participants.

1.9. Conclusions

This volume addresses many of the themes posed by the original research questions by examining each site and its particular period and past history through interdisciplinary approaches. The methodologies applied were relatively well tested, and excavation methods inevitably are standardized and rigorous with little room for much innovation. Some scientific applications and digital scanning approaches were relatively new when the project was conceived in 2012. Now, eight years later, many other opportunities have emerged that, in hindsight, may have presented different ways of analysing and thinking about the discoveries that were made, and indeed, posed different types of research

Figure 1.13. Images of scholars and fieldworkers of Maltese prehistory: a) Renfrew and Malone at Hagar Qim in front of display, 2018; b) Bonanno and Gouder, 1994; c) visit to Hagar Qim, from left to right: Hunt, Keefe, Renfrew, Malone and Stoddart.

Figure 1.14. Research pioneers of prehistoric Malta, from top left: A.A. Caruana (University of Malta); N. Tagliaferro; A. Mayr; Father E. Magri (with permission from 'the Jesuit Delegate for Malta, Society of Jesus'; photo Daniel Cilia); T. Zammit (reproduced with permission, National Museum of Archaeology, Malta); T. Ashby (BSR Photographic Archive, BS collection, bs-0143); E.T. Peet (reproduced with permission: Griffith Institute Photograph 101.141; © Griffith Institute, University of Oxford); R.N Bradley; G. Caton-Thompson (photographed by Ramsey & Muspratt, Cambridge, 1938; © courtesy of the RAI); M. Murray (reproduced with permission, NPG London); J.D. Evans (reproduced with thanks to his family); and D.H. Trump (photo Daniel Cilia).

questions too. Nevertheless, the collected data and wealth of ideas that have resulted from this collaborative and interdisciplinary work provide a point of reference for ongoing and future investigations into the rich prehistory of Malta. The goal – as set out in the many questions listed above – is to interrogate the nature of the world in which the Temple People lived, and the manner by which it emerged, was sustained and changed. The three volumes collectively have achieved an important exercise in cross-disciplinary research to tackle these questions. They also pay homage to the scholars who went before and who developed the understanding of cultural sequence and the many questions that emerge; and we illustrate some of the fieldworkers and scholars who have formed the study and data collection of prehistoric Malta (Figs. 1.13 & 1.14).

Temple places

The ERC-funded *FRAGSUS Project* (*Fragility and sustainability in small island environments: adaptation, culture change and collapse in prehistory, 2013–18*) led by Caroline Malone (Queen's University Belfast) has focused on the unique Temple Culture of Neolithic Malta, and its antecedents and successors through investigation of archaeological sites and monuments. This, the second volume of three, presents the results of excavations at four temple sites and two settlements, together with analysis of chronology, economy and material culture.

The project focused on the integration of three key strands of Malta's early human history (environmental change, human settlement and population) set against a series of questions that interrogated how human activity impacted on the changing natural environment and resources, which in turn impacted on the Neolithic populations. The evidence from early sites together with the human story preserved in burial remains reveals a dynamic and creative response over millennia. The scenario that emerges implies settlement from at least the mid-sixth millennium BC, with extended breaks in occupation, depopulation and environmental stress coupled with episodes of recolonization in response to changing economic, social and environmental opportunities.

Excavation at the temple site of Santa Verna (Gozo) revealed an occupation earlier than any previously dated site on the islands, whilst geophysical and geoarchaeological study at the nearby temple of Ġgantija revealed a close relationship with a spring, Neolithic soil management, and evidence for domestic and economic activities within the temple area. A targeted excavation at the temple of Skorba (Malta) revisited the chronological questions that were first revealed at the site over 50 years ago, with additional OSL and AMS sampling. The temple site of Kordin III (Malta) was explored to identify the major phases of occupation and to establish the chronology, a century after excavations first revealed the site. Settlement archaeology has long been problematic in Malta, overshadowed by the megalithic temples, but new work at the site of Taċ-Ċawla (Gozo) has gathered significant economic and structural evidence revealing how subsistence strategies supported agricultural communities in early Malta. A study of the second millennium BC Bronze Age site of In-Nuffara (Gozo) likewise has yielded significant economic and chronological information that charts the declining and changing environment of Malta in late prehistory.

Editors:

Caroline Malone is a Professor in the School of Natural and Built Environment, Queen's University Belfast. *Reuben Grima* is a Senior Lecturer in the Department of Conservation and Built Heritage, University of Malta. *Rowan McLaughlin* is Senior Researcher in the Department of Scientific Research at the British Museum, and previously Research Fellow for the *FRAGSUS Project*; he is honorary research scholar at Queen's University Belfast. *Eóin W. Parkinson* completed his PhD at Cambridge University and is currently Leverhulme Research Fellow at the University of Malta.

Simon Stoddart is Reader in Prehistory in the Department of Archaeology, University of Cambridge. *Nicholas C. Vella* is Associate Professor of Mediterranean Archaeology in the Department of Classics and Archaeology, University of Malta.

Published by the McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK.

Cover design by Dora Kemp and Ben Plumridge.

ISBN: 978-1-913344-03-0

