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This analysis has two aims: 1. To assess the rate of accumulation of SBS and ID mutation in normal intestinal crypts in individuals
with DNA polymerase germline mutations 2. To assess the differences in SBS and ID mutation rates between individuals with
different germline mutations

This analysis evaluates the rate of accumulation of SBS and ID mutations in histologically normal crypts from individuals with
germline mutations in POLE and POLD1 exonuclease domains and compares them to individuals with no germline predisposition
(Lee-Six et al 2019). Studies in experimental systems inducing hypermutator phenotypes have shown that different germline
mutations in the same gene can alter the rate of accumulation of mutations. Consistent with this observation we will model the
accumulation of mutations in normal crypts from individuals with germline polymerase mutations allowing for different mutation
rates in each grouping. We categorise data into three groups: POLE L424V n=7, POLD1 S478N n=4, POLD1other (L474P and
D316N) n=2.

Analysis from these data and evidence from studies in mice suggest that the mutational processes of defective DNA polymerases
are continuous and accumulate linearly with age. We therefore seek as a primary aim to define the differences in the rate of
accumulation of mutations due to the underlying mutational processes that result from these germline mutations.

Model parameters encoded are: 1. Age - chronological age in years from birth at the time of tissue sampling 2. Site - anatomical
site (small or large bowel) 3. Germline Mutation - this is a categorical variable that encodes WT, POLD1 and POLE exonuclease
domain mutation carriers 4. Patient - this is encoded as a random effect interacting with germline mutation

To better understand the degree to which the SBS rate is elevated in affected individuals, we include whole genome sequencing
data from a cohort of 445 normal intestinal crypts from a previously published study (Lee-Six et al 2019). There are two method-
ological differences between the current and previous study; 1. Sequencing coverage was greater in current study (wild-type (WT)
cohort ~17x median of the POLE/D1 cohort ~33.5x), 2. Mutation filtering was slightly different. To resolve these differences we
have; 1. normalised the mutation burden in all crypts according to the sensitivity in each sample (a function of median coverage
and median VAF) 2. re-filtered the WT cohort data using the same approach adopted in the current study (Methods). Since we
correct for coverage before modelling, we do not include it as a parameter for modelling.

First we load and explore the data and its categorisation.

suppressWarnings (library(nlme))
suppressWarnings (library(MuMIn))
options(stringsAsFactors = F)

df_all <- read.delim("mutation_rate_summary2020-06-09.txt",
header = T, sep = "")
df _all$germline mutation[df_all$patient %inJ, c("PD44588",
"PD44590")] <- "POLDlother"
df _all$germline_mutation[df_all$germline_mutation == "POLD1"] <- "POLD1S478N"
df _all$sitenew = ifelse(df_all$site %in) c("right", "left",
"transverse"), "large", "small")



df _all$sitenew <- factor(df_all$sitenew, c("large", "small"))
df _all$germline_mutation <- factor(df_all$germline_mutation,

levels = c("WT", "POLE", "POLD1S478N", "POLDlother"))
df_all$coverage <- scale(df_all$coverage)
df_all <- df_all[df_all$patient != "0337", ]
head(df_all)

#Very high chemotherapy related mutation burden

## sample patient age germline_mutation site sbstotal indeltotal
## 1 HLS_1C_30_B5 HLS 60 WT right 4734 218
## 2 HLS_1C_30_D5 HLS 60 WT right 4306 158
## 3 HLS_1C_30_G5 HLS 60 WT right 3959 188
## 4 HLS_1C_30_H5 HLS 60 WT right 3627 115
## 5 HLS_2C_30_D6 HLS 60 WT right 3790 124
## 6 HLS_2C_30_E6 HLS 60 WT right 4444 163
## median_vaf median_indelvaf coverage sensitivity sbstotal_corr

##H 1 0.4167 0.4615 -0.08931167  0.9554499 4954.734

## 2 0.3889 0.4348 -0.47757499 0.8659166 4972.766

## 3 0.4091 0.4286 -0.12863389  0.9460467 4184.783

## 4 0.4286 0.5238 -0.74982461  0.8382143 4327.056

## 5 0.4545 0.5263 -0.84017848 0.8410742 4506.142

## 6 0.4375 0.5000 -0.65287957  0.8778454 5062.395

##  sensitivity_indel indeltotal_corr sitenew

# 1 0.9935051 219.4251  large

## 2 0.9832130 160.6976  large

## 3 0.9865349 190.5660 large

## 4 0.9968977 115.3579  large

## 5 0.9968893 124.3869  large

# 6 0.9950350 163.8133  large

The normal intestinal stem cells studied in this cohort are from different anatomical sites including the small and large intestine. We
see small differences in the mutation rate between these sites in WT intestinal crypts and observe different mutational processes
(Lee-Six et al 2019). Furthermore individuals with germline polymerase mutations are predisposed to both large and small bowel
tumours albeit clinical data suggests at different rates. Since we have limited numbers of small bowel crypts in this cohort we are
interested in inclusion in the model to improve fit but are cautious about interpretation of any differences that a model may identify.
Below are tables summarising the number of individual crypts represented across different anatomical sites grouped by germline
mutation. For the purpose of modelling sites have been grouped into large and small intestine.

table(df_all$germline_mutation, df_all$site)

##

## duodenum ileum left right transverse
##  WT 0 21 119 159 134
##  POLE 14 10 21 4 16
##  POLD1S478N 0 0 15 6 6
##  POLDlother 0 0o 11 3 3

table(df_all$germline_mutation, df_all$sitenew)

##

## large small
#OWT 412 21
##  POLE 41 24
##  POLD1S478N 27 0
##  POLDlother 17 0

Examining the raw-data with linear regression lines fitted, we can see evidence of increasing mutation burden with age and



differential mutation rates in crypts with the various germline mutations. ID mutation rates appear to differ between individuals
with the POLD1 S478N, given the sparsity of the data it is challenging to fit a simple linear regression. We can however make a
conservative assumption that mutation burden in the fertilised embryo (time point 0-9mths) is 0 and that it will be modestly higher
in the intestinal stem cells at birth. When we fit the mixed effects model we assume the intercept passes near to / through the
origin.
colvec = c(WT = "black", POLE = "dodgerblue", POLD1S478N = '"red",
POLDlother = "magenta")
plot(df_all$age, df_all$sbstotal_corr, col = colvec[df_all$germline_mutation],
xlim = c(0, 80), xlab = "age (yrs)", ylab = "SBS mutations")
abline(1lm(df_all$sbstotal_corr[df_all$germline_mutation ==
"WT"] ~ df_all$age[df_all$germline_mutation == "WT"]),
col = colvec["WT"])
abline(1lm(df_all$sbstotal_corr[df_all$germline_mutation ==
"POLE"] ~ df_all$agel[df_all$germline_mutation == "POLE"]),
col = colvec["POLE"])
abline(1m(df_all$sbstotal_corr[df_all$germline_mutation =
"POLD1S478N"] ~ df_all$age[df_all$germline_mutation =
"POLD1S478N"]), col = colvec["POLD1S478N"])
abline(1lm(df_all$sbstotal_corr[df_all$germline_mutation =
"POLDlother"] ~ df_all$age[df_all$germline_mutation =
"POLDlother"]), col = colvec["POLDlother"])
legend("topleft", legend = c("WI", "POLE", "POLD1S478N",
"POLDlother"), col = colvec, bty = "n", 1ty = 1, lwd = 3)
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plot(df_all$age, df_all$indeltotal_corr, col = colvec[df_all$germline_mutation],
xlim = c(0, 80), xlab = "age", ylab = "ID mutations")

abline(1lm(df_all$indeltotal_corr[df_all$germline_mutation =
"WT"] ~ df_all$agel[df_all$germline_mutation == "WT"]),
col = colvec["WT"])

abline(1lm(df_all$indeltotal_corr[df_all$germline mutation ==
"POLE"] ~ df_all$agel[df_all$germline_mutation == "POLE"]),
col = colvec["POLE"])



abline(1lm(df_all$indeltotal_corr[df_all$germline mutation ==
"POLD1S478N"] ~ df_all$age[df_all$germline_mutation ==
"POLD1S478N"]1), col = colvec["POLD1S478N"])

abline(1m(df_all$indeltotal_corr[df_all$germline_mutation ==
"POLDlother"] ~ df_all$age[df_all$germline_mutation ==
"POLDlother"]), col = colvec["POLDlother"])

legend("topleft", legend = c("WI", "POLE", "POLD1S478N",
"POLDlother"), col = colvec, bty = "n", 1ty = 1, lwd = 3)

WT

POLE
POLD1S478N
POLD1other

ID mutations
1000 2000 3000 4000

0
I
qg
o)
d

0 20 40 60 80
age

1.Mixed-effects linear modelling of single-base substitution (SBS) burden in non-neoplastic intesti-
nal stem cells
Null model including age as the main function of sbstotal.

model.age <- model.age <- Ilme(fixed = sbstotal_corr ~ age,
random = list(patient = pdSymm(form = ~1)), data = df_all,
method = "ML")

summary (model.age)

## Linear mixed-effects model fit by maximum likelihood
## Data: df_all

## AIC BIC logLik
##  9614.621 9631.802 -4803.31
##

## Random effects:
## Formula: ~1 | patient

#it (Intercept) Residual

## StdDev: 5588.096 1337.055

##

## Fixed effects: sbstotal_corr ~ age

## Value Std.Error DF  t-value p-value



## (Intercept) 3912.524 2996.1511 488 1.3058500 0.1922

## age 24.104 49.4751 52 0.4871981 0.6282

## Correlation:

## (Intr)

## age -0.967

##

## Standardized Within-Group Residuals:

#i Min Q1 Med Q3 Max
## -6.67538324 -0.24936262 -0.02519256 0.21787940 9.40384317
##

## Number of Observations: 542
## Number of Groups: 54

intervals(model.age, which = "fixed")

## Approximate 95, confidence intervals

##

## Fixed effects:

## lower est. upper
## (Intercept) -1963.55319 3912.52401 9788.6012
## age -74.99147 24.10416 123.1998

## attr(,"label")
## [1] "Fixed effects:"

model = model.age
plot(model$fitted[, 1], resid(model), xlab = "fitted", ylab = "residual")
abline(h = 0, 1ty = 3)
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model has a very poor fit. Introduction of additional parameters, specifically the germline mutation may help to improve this.

Second model including an interaction term between age and germline mutation, assuming a continuous increase in SBS burden
throughout life. The accumulation of mutations in intestinal stem cells is by default assumed to be linear based on data from
Lee-Six et al 2019. This model provides a reasonable fit to the data.



model.age.int.germ <- lme(fixed = sbstotal_corr ~ age:germline_mutation -

1, random = list(patient = pdSymm(form = ~germline_mutation -
1)), weights = varIdent(form = ~1 | germline_mutation),
data = df_all, method = "ML")

summary (model.age.int.germ)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Linear mixed-effects model fit by maximum likelihood
Data: df_all
AIC BIC logLik
8719.527 8796.842 -4341.763

Random effects:
Formula: ~germline_mutation - 1 | patient
Structure: General positive-definite

StdDev Corr
germline_mutationWT 502.7683 grm_WT g_POLE g_POLD
germline_mutationPOLE 5023.4344 0.009
germline_mutationPOLD1S478N 1341.0151 0.000 0.000
germline_mutationPOLDlother 237.0724 0.000 -0.008 0.000
Residual 495.6003
Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | germline_mutation

0

0
0
0

## Parameter estimates:

## WT POLE POLD1S478N POLDlother

## 1.0000000 7.2326501 2.3315286 0.8028155

## Fixed effects: sbstotal_corr ~ age:germline_mutation - 1

## Value Std.Error DF t-value p-value
## age:germline_mutationWT 49.1491  1.36305 50 36.05812
## age:germline_mutationPOLE 331.1969 36.02109 50 9.19453
## age:germline_mutationPOLD1S478N 152.2589 12.02297 50 12.66400
## age:germline_mutationPOLDlother 58.0833 3.39675 50 17.09967
## Correlation:

## ag:_WT a:_POLE a:_POLD1S

## age:germline_mutationPOLE 0

## age:germline_mutationPOLD1S478N O 0

## age:germline_mutationPOLDlother O 0 0

##

## Standardized Within-Group Residuals:

#i# Min Q1 Med Q3 Max

## -3.08905548 -0.53617340 -0.04966287 0.45715200 3.85996474

##

## Number of Observations: 542

## Number of Groups: 54

intervals(model.age.int.germ, which = "fixed")

## Approximate 957, confidence intervals

##

## Fixed effects:

## lower est. upper
## age:germline_mutationWT 46.42144 49.14909 51.87674



## age:germline_mutationPOLE 259.11390 331.19692 403.27995
## age:germline_mutationPOLD1S478N 128.19933 152.25890 176.31846
## age:germline_mutationPOLDlother 51.28598 58.08333 64.88069
## attr(,"label")

## [1] "Fixed effects:"

model = model.age.int.germ
plot(model$fitted[, 1], resid(model), xlab = "fitted", ylab = "residual")
abline(h = 0, 1ty = 3)
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The second model appears to have a good fit to the data and there is no clear shape to the residuals, suggesting that we have
introduced an appropriate number of parameters in the model. There is however some variance at higher fitted values suggesting
that there may be some inter-individual and intra-individual heterogeneity that is not accounted for by the age and germline
mutation. Inter-individual heterogeneity is modeled later on in this document.

Now we compare the model fit of the first (null) model as defined at the top of this section and the second, more complex model
that includes germline_mutation as a grouping variable, fixed effect and interaction term with age.

anova(model.age, model.age.int.germ)

#i# Model df AIC BIC loglLik Test L.Ratio
## model.age 1 4 9614.621 9631.802 -4803.310

## model.age.int.germ 2 18 8719.527 8796.842 -4341.763 1 vs 2 923.0939
## p-value

## model.age
## model.age.int.germ <.0001

Inclusion of an interaction between age and germline_mutation results in a more complex model with a statistically significant
improvement in model fit.

So far we have not considered the impact of anatomical site on mutation burden and whether inclusion of this parameter can
improve model fit. We know that the mutational processes in small and large bowel are different and that small bowel tumours
are less common in individuals with germline polymerase mutations. We therefore wish to assess whether inclusion of site as a
fixed effect improves the model.



model.age.int.germ.site <- lme(fixed = sbstotal_corr ~ age:germline mutation -
1 + sitenew, random = list(patient = pdSymm(form = ~germline_mutation -
1)), weights = varIdent(form = ~1 | germline_mutation),
data = df_all, method = "ML")

summary (model.age.int.germ.site)

## Linear mixed-effects model fit by maximum likelihood
## Data: df_all

## AIC BIC logLik
##  8674.35 8760.255 -4317.175
##

## Random effects:
## Formula: ~germline_mutation - 1 | patient
## Structure: General positive-definite

## StdDev Corr
## germline_mutationWT 524.9251748 grm_WT g_POLE g_POLD
## germline_mutationPOLE 4986.2363854 0.197

## germline_mutationPOLD1S478N 1432.5220988 0.000 0.000

## germline_mutationPOLDlother 0.1683105 0.000 0.043 0.017
## Residual 466.3767117

##

## Variance function:

## Structure: Different standard deviations per stratum

## Formula: ~1 | germline_mutation

## Parameter estimates:

## WT POLE POLD1S478N POLDlother

## 1.0000000 7.6439065 2.4773611 0.8277718

## Fixed effects: sbstotal_corr ~ age:germline_mutation - 1 + sitenew

## Value Std.Error DF  t-value p-value
## sitenewlarge 609.6018 245.13202 487 2.486830 0.0132
## sitenewsmall -228.8592 270.88514 487 -0.844857 0.3986
## age:germline_mutationWT 39.8067 4.09702 50 9.716004 0.0000
## age:germline_mutationPOLE 323.1615 36.07783 50 8.957344 0.0000
## age:germline_mutationPOLD1S478N 142.0805 13.42620 50 10.582333 0.0000
## age:germline_mutationPOLDlother 47.8132 4.37491 50 10.928958 0.0000
## Correlation:

## stnwlr stnwsm ag:_WT a:_POLE a:_POLD1S

## sitenewsmall 0.898

## age:germline_mutationWT -0.939 -0.847

## age:germline_mutationPOLE -0.118 -0.110 0.110

## age:germline_mutationPOLD1S478N -0.304 -0.273 0.286 0.036

## age:germline_mutationPOLDlother -0.928 -0.834 0.872 0.109 0.282
#i

## Standardized Within-Group Residuals:

# Min Q1 Med Q3 Max

## -3.30809084 -0.53107172 -0.05940079 0.44902346 4.10050432

##

## Number of Observations: 542

## Number of Groups: 54

intervals(model.age.int.germ.site, which = "fixed")

## Approximate 95, confidence intervals



#it
## Fixed effects:

## lower est. upper
## sitenewlarge 130.62820 609.60178 1088.57536
## sitenewsmall -758.15280 -228.85915 300.43450
## age:germline_mutationWT 31.62323 39.80666  47.99009
## age:germline_mutationPOLE 251.09926 323.16150 395.22373

## age:germline_mutationPOLD1S478N 115.26289 142.08053 168.89817
## age:germline_mutationPOLDlother  39.07471 47.81320 56.55169
## attr(,"label")

## [1] "Fixed effects:"

model = model.age.int.germ.site
plot(model$fitted[, 1], resid(model), xlab = "fitted", ylab = "residual")
abline(h = 0, 1ty = 3)
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The addition of the anatomical site results demonstrates that small bowel crypts have fewer mutations than those from the large
bowel when allowing for differences in age and germline_mutation. However, the effect size intervals are very broad and the
p-value is non-significant. Inclusion of site as a fixed effect does however result in a statistically significant improvement in model
fit. The very large effect intervals suggest that it is not necessarily an optimum fit. The simpler model which does not include site,
appears to provide an acceptable model fit. We therefore proceed with model 2 (model.age.int.germ) as the default model.

anova(model.age.int.germ, model.age.int.germ.site)

it Model df AIC BIC logLik  Test
## model.age.int.germ 1 18 8719.527 8796.842 -4341.763

## model.age.int.germ.site 2 20 8674.350 8760.255 -4317.175 1 vs 2
## L.Ratio p-value

## model.age.int.germ
## model.age.int.germ.site 49.17695 <.0001

print(paste0(" p-value = ", anova(model.age.int.germ, model.age.int.germ.site,
test = T)$"p-value"[2]))

## [1] " p-value = 2.09585164651507e-11"



Visualisation of the interval / effect sizes of our default model

int <- intervals(model.age.int.germ, which = "fixed")

kf <- dim(int$fixed) [1]

par(oma = c(1, 4, 1, 1))

plot(int$fixed[, 2], kf:1, xlab = "SBS/year", ylab = "',
x1lim = c(0, 400), axes = F, col = colvec, lwd = 2)

axis(1, at = c("'O", "100", "200", "300", "400"))

axis(2, kf:1, c("WT", "POLE", "POLD1 S478N", "POLDlother"),

las = 2)
segments (int$fixed[, 1], kf:1, int$fixed[, 3], kf:1)
abline(v = 0)
abline(v = int$fixed[, 2], 1ty = 2, col = "grey")
WT — o
POLE o
POLD1 S478N — ——
POLD1other — © | | | |
0 100 200 300 400

SBSlyear

We accept the model “model.age.int.germ” as the default model and will use this to undertake hypothesis testing.

Finally we test the proportion of the data which is explained by the accepted model. Both the fixed effects (as indicated by the
marginal value) and the combination of fixed and random effects (as indicated by the conditional value) show good R2 values for
the fixed and combined fixed and random effects.

r.squaredGLMM(model .age.int.germ)
## Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help
## page.

## R2m R2c
## [1,] 0.8686718 0.9909524

2.Mixed-effects linear modelling of insertion / deletion (ID) burden in non-neoplastic intestinal stem
cells

We then explore the above models and their fit in the indel burden (ID) data.

First we explore a very simple model including age alone as a fixed effect.

model.indel.age <- lme(fixed = indeltotal_corr ~ age, random = list(patient = pdSymm(form = ~1)),
weights = varIdent(form = ~1), data = df_all, method = "ML")

10



summary (model.indel.age)

## Linear mixed-effects model fit by maximum likelihood
## Data: df_all

## AIC BIC logLik
##  6907.285 6924.466 -3449.642
##

## Random effects:
## Formula: ~1 | patient

# (Intercept) Residual

## StdDev: 698.4433 105.0795

##

## Fixed effects: indeltotal_corr ~ age

## Value Std.Error DF  t-value p-value

## (Intercept) 224.86966 373.0887 488 0.6027244  0.547

## age 2.54717 6.1611 52 0.4134252 0.681

## Correlation:

##t (Intr)

## age -0.967

##

## Standardized Within-Group Residuals:

## Min Q1 Med Q3 Max
## -9.61858116 -0.24918020 -0.01492432 0.21505062 8.74696591
##

## Number of Observations: 542
## Number of Groups: 54

This model appears to lack the complexity to describe the data. Next we include an interaction term with germline mutation.
model.indel.age.int.germ <- lme(fixed = indeltotal_corr ~
age:germline_mutation, random = list(patient = pdSymm(form = ~germline_mutation -
1)), weights = varIdent(form = ~1 | germline_mutation),
data = df_all, method = "ML")

summary (model.indel.age.int.germ)

## Linear mixed-effects model fit by maximum likelihood
## Data: df_all

#i# AIC BIC logLik
##  6007.654 6089.264 -2984.827
#it

## Random effects:
## Formula: ~germline_mutation - 1 | patient
## Structure: General positive-definite

#it StdDev  Corr
## germline_mutationWT 35.0336 grm_WT g_POLE g_POLD
## germline_mutationPOLE 221.4797 0.000

## germline_mutationPOLD1S478N 512.4891 0.097 0.000

## germline_mutationPOLDlother 125.2573 -0.001 0.000 0.000
## Residual 39.8169

#i#

## Variance function:

## Structure: Different standard deviations per stratum

## Formula: ~1 | germline_mutation

11



## Parameter estimates:

## WT POLE POLD1S478N POLDlother

##  1.000000 3.423933 9.771265 2.966312

## Fixed effects: indeltotal_corr ~ age:germline_mutation

## Value Std.Error DF t-value p-value
## (Intercept) 30.06818 25.424700 488 1.182636 0.2375
## age:germline_mutationWT 1.02182 0.410888 49 2.486862 0.0163
## age:germline_mutationPOLE 12.95958 1.636106 49 7.920994 0.0000

## age:germline_mutationPOLD1S478N 43.84728 4.568253 49 9.598260 0.0000
## age:germline_mutationPOLDlother 12.26740 1.694656 49 7.238874 0.0000
## Correlation:

#it (Intr) ag:_WT a:_POLE a:_POLD1S
## age:germline_mutationWT -0.972

## age:germline_mutationPOLE -0.269 0.262

## age:germline_mutationPOLD1S478N -0.093 0.090 0.025

## age:germline_mutationPOLDlother -0.252 0.245 0.068 0.023

##

## Standardized Within-Group Residuals:

## Min Q1 Med Q3 Max
## -3.20145516 -0.51395624 -0.04788394 0.46008182 4.54512306
##

## Number of Observations: 542
## Number of Groups: 54

Comparison of the first and second models demonstrates much improved model fit with the inclusion of a germline mutation
interaction effect.

anova(model.indel.age, model.indel.age.int.germ)

## Model df AIC BIC loglik  Test
## model.indel.age 1 4 6907.285 6924.466 -3449.642

## model.indel.age.int.germ 2 19 6007.654 6089.264 -2984.827 1 vs 2
#i L.Ratio p-value

## model.indel.age
## model.indel.age.int.germ 929.631 <.0001

print(paste0(" p-value = ", anova(model.indel.age, model.indel.age.int.germ,
test = T)$"p-value"[2]))

## [1] " p-value = 1.60137027168589¢-188"

Effect sizes and accompanying 95% confidence intervals are displayed below:

int <- intervals(model.indel.age.int.germ, which = "fixed")

int <- as.data.frame(int$fixed)

int = int[-1, ]

kf <- nrow(int)

par(oma = c(1, 4, 1, 1))

plot(int[, 2], kf:1, xlab = "ID/year", ylab = "", xlim = c(0,
50), axes = F, col = colvec, lwd = 2)

axis(1, at = c¢('O", "10", "20", "30", "40", "50"))

axis(2, at = 4:1, labels = c("WT", "POLE", "POLD1S478N",
"POLDlother"), las = 2)

segments(int[, 1], kf:1, int[, 3], kf:1)

abline(v = 0)

abline(v = int[, 2], 1ty = 2, col = "grey")
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Finally we test the proportion of the data which is explained by the accepted model. Both the fixed effects (as indicated by the
marginal value) and the combination of fixed and random effects (as indicated by the conditional value) show good R”2 values
for the fixed and combined fixed and random effects.

r.squaredGLMM(model .indel.age.int.germ)

## R2m R2c
## [1,] 0.9404094 0.9957105

3.Hypothesis Testing - Interindividual Variability & heteroscedasticity

Here we undertake testing of two key hypotheses 1. Assessment of inter-individual variability in the cohort 2. Assessment of
heteroscedasticity

# INTERINDIVIDUAL VARIABILITY - WHOLE COHORT

model.age.int.germ <- lme(fixed = sbstotal_corr ~ age:germline_mutation -
1, random = list(patient = pdSymm(form = ~germline_mutation -
1)), weights = varIdent(form = ~1 | germline_mutation),
data = df_all, method = "ML")

model.age.int.germ.minus.btpt.het <- lme(fixed = sbstotal_corr ~
age:germline_mutation - 1, random = list(patient = pdSymm(form = ~1)),
weights = varIdent(form = ~1 | germline_mutation), data = df_all,
method = "ML")

anova(model.age.int.germ.minus.btpt.het, model.age.int.germ)

#i# Model df AIC BIC logLik
## model.age.int.germ.minus.btpt.het 1 9 8739.284 8777.941 -4360.642
## model.age.int.germ 2 18 8719.527 8796.842 -4341.763
## Test L.Ratio p-value

## model.age.int.germ.minus.btpt.het

## model.age.int.germ 1 vs 2 37.75659 <.0001

The above suggests that allowance for inter-individual heterogeneity is improving our model. Removal of this results in a worse
model fit. The difference in model fit is statistically significant.
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Next we test whether the inter-individual heterogeneity still exists with the WT cohort removed.
# INTERINDIVIDUAL VARIABILITY - REMOVAL OF WT COHORT

df_no_WT <- df_all[df_all$germline_mutation != "WT", ]

model.age.int.germ.with.btpt.het.no.WT <- Ilme(fixed = sbstotal_corr ~
age:germline_mutation - 1, random = list(patient = pdSymm(form = ~germline_mutation -
1)), weights = varIdent(form = ~1 | germline_mutation),
data = df_no_WT, method = "ML")

model.age.int.germ.minus.btpt.het.no.WT <- lme(fixed = sbstotal_corr ~
age:germline_mutation - 1, random = list(patient = pdSymm(form = ~1)),
weights = varIdent(form = ~1 | germline_mutation), data = df_no_WT,
method = "ML")

anova(model.age.int.germ.with.btpt.het.no.WT, model.age.int.germ.minus.btpt.het.no.WT)

#i# Model df AIC BIC
## model.age.int.germ.with.btpt.het.no.WT 1 12 2013.578 2045.874
## model.age.int.germ.minus.btpt.het.no.WT 2 7 2017.457 2036.296
## loglik Test L.Ratio p-value

## model.age.int.germ.with.btpt.het.no.WT  -994.7891
## model.age.int.germ.minus.btpt.het.no.WT -1001.7285 1 vs 2 13.87872 0.0164

When we exclude WT individuals from the analysis, there is a marginal (but non-significant) improvement in model fit in the model
that incorporarates interindividual variability. This suggests that inter-individual heterogeneity may be occurring in polymerase
mutant groupings and WT cohorts.

Next, we assess whether within-individual variability is different in individuals with polymerase mutations compared to those without
i.e. testing for heteroscedasticity.

model.age.coverge.minus.heteroscedasticity <- lme(fixed = sbstotal_corr ~
age, random = list(patient = pdSymm(form = ~germline_mutation -
1)), data = df_all, method = "ML")

anova(model.age.coverge.minus.heteroscedasticity, model.age.int.germ,
test = TRUE)

## Model df AIC BIC

## model.age.coverge.minus.heteroscedasticity 1 13 9450.787 9506.625

## model.age.int.germ 2 18 8719.527 8796.842

# loglik  Test L.Ratio

## model.age.coverge.minus.heteroscedasticity -4712.394

## model.age.int.germ -4341.763 1 vs 2 741.2601

## p-value

## model.age.coverge.minus.heteroscedasticity

## model.age.int.germ <.0001

print(paste0(" p-value = ", anova(model.age.coverge.minus.heteroscedasticity,

model.age.int.germ, test = T)$"p-value"[2]))

## [1] " p-value = 5.87418888791649e-158"

This comparison shows that a model allowing for within-individual heterogeneity results in an improved fit with a highly significant
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p-value. Estimates for within individual standard deviation in mutation counts are 496 SBS mutations/crypt without polymerase
mutations - WT, 3585 SBS mutations/crypt - POLE 424V, 1156 SBS mutations/crypt - POLD1S478N and 398 SBS mutations/crypt
- POLD1 D316N and L474P.

c(WT = summary(model.age.int.germ)$sigma, (summary(model.age.int.germ)$sigma *
coef (model.age.int.germ$modelStruct$varStruct, uncons = F)))

## WT POLE POLD1S478N POLDlother
##  495.6003 3584.5035 1155.5062  397.8756

4.Assessment of telomere attrition in wild-type and DNA polymerase mutant intestinal crypts

To assess whether telomere attrition is more accelerated in individuals carrying germline DNA polymerase exonuclease domain
mutations, we analyse the telomere content of individual crypts (proxy for stem cells) in both normal wild-type crypts as well as
those from this cohort. Comparison is made between the DNA polymerase cohort (considered as a whole) and normal controls
(Lee-Six et al 2019, Nature) (see Methods for details of telomere length estimation).

Firstly we visualise this data and see a negative correlation between age and telomere content in normal crypts. This is likely
attributable to the shortening of telomeres with each replicative cycle; increasing age exposes the intestinal stem cell to greater
numbers of replicative cycles and hence greater telomere shortening. We do not observe any mutations activating genes associ-
ated with telomere length maintenance and make a conservative assumption that the telomere length maintenance mechanisms
have similar levels of activity between samples across samples from different individuals and different germline states.

Using two mixed-effects models we assess model fit using a model incorporating genotype (POLE/D vs WT) and one without this
categorical variable. This model suggests that model fit is better without the inclusion of the germline variable suggesting that the
genotype is not a significant effect on telomere attrition.

joined <- read.delim("polymerase_normal_telomerehunter_length_for_model2.txt",
header = T)
joined$patient = substr(joined$sample, 1, 7)

# genotype '1' = POLE/D and '0' = WT

plot(tel_content ~ age, data = joined[joined$genotype ==
0, 1, col = "grey", ylab = "Telomerehunter - content",
xlim = c¢(0, 80), ylim = c(0, 900))

abline(1lm(tel_content ~ age, data = joined[joined$genotype ==
0, 1), col = "grey", 1ty = 2)

points(tel_content ~ age, data = joined[joined$genotype ==
1, ], col = "dodgerblue")

abline(Ilm(tel_content ~ age, data = joined[joined$genotype ==
1, 1), col = "dodgerblue", lty = 2)

legend("topleft", legend = c("normal", "POLE/D1"), col = c("grey",
"dodgerblue"), box.lty = 0, cex = 0.8, pch = c(1, 1),
bty = "n"
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# Model lmw - with genotype included as a nested effect

joined.lmw <- 1lme(fixed = tel_content ~ age + genotype,
random = list(patient = pdSymm(form = ~genotype - 1)),
weights = varIdent(form = ~1 | genotype), data = joined,
method = "ML")

# Model lmw — with mno inclusion of genotype
joined.lmwo <- lme(fixed = tel_content ~ age, random = list(patient = pdSymm(form = ~1)),
weights = varIdent(form = ~1), data = joined, method = "ML")

summary (joined.lmwo)

## Linear mixed-effects model fit by maximum likelihood
## Data: joined

## AIC BIC logLik
##  6944.629 6961.898 -3468.314
##

## Random effects:
## Formula: ~1 | patient

#it (Intercept) Residual

## StdDev: 78.42695 120.0295

#it

## Fixed effects: tel_content ~ age

## Value Std.Error DF  t-value p-value
## (Intercept) 508.0369 48.78754 519 10.413250 0.000
## age -2.6227 0.84504 519 -3.103616  0.002
## Correlation:

## (Intr)

## age -0.95

#i#

## Standardized Within-Group Residuals:

#i#t Min Q1 Med Q3 Max
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##
##
##
##

-2.4042717 -0.5982259 -0.1342493 0.5187133 3.6394728

Number of Observations: 554
Number of Groups: 34

summary (joined.lmw)

##
##
##
##
##
##
##
##
##
##
##
##
##

Linear mixed-effects model fit by maximum likelihood
Data: joined
AIC BIC logLik
7023.614 7049.517 -3505.807

Random effects:

Formula: ~genotype - 1 | patient
genotype Residual

StdDev: 86.23655 139.412

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | genotype

## Parameter estimates:

## 0 1

## 1.0000000 0.7791055

## Fixed effects: tel_content ~ age + genotype

## Value Std.Error DF  t-value p-value
## (Intercept) 524.3607 27.741931 519 18.901376  0.000
## age -2.3171 0.472966 519 -4.899075 0.000
## genotype -52.1444 27.283302 32 -1.911222 0.065
## Correlation:

#Hit (Intr) age

## age -0.971

## genotype -0.108 0.052

##

## Standardized Within-Group Residuals:

## Min Q1 Med Q3 Max
## -2.6455257 -0.6311778 -0.1437166 0.5180956 3.4675608
#i#

## Number of Observations: 554

## Number of Groups: 34

intervals(joined.lmw, which = "fixed")

## Approximate 95, confidence intervals

##

## Fixed effects:

## lower est. upper

## (Intercept) 470.008150 524.360667 578.713185

## age -3.243737 -2.317094 -1.390451

## genotype -107.568028 -52.144436  3.279156

## attr(,"label")

## [1] "Fixed effects:"

intervals(joined.lmwo, which = "fixed")

##
##

Approximate 95 confidence intervals
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## Fixed effects:

## lower est. upper
## (Intercept) 412.364686 508.036858 603.709029
## age -4.279798 -2.622678 -0.965559

## attr(,"label")
## [1] "Fixed effects:"

anova(joined.lmwo, joined.lmw, test = T)

## Model df AIC BIC loglik Test L.Ratio p-value
## joined.lmwo 1 4 6944.629 6961.898 -3468.314
## joined.lmw 2 6 7023.614 7049.517 -3505.807 1 vs 2 74.98465 <.0001
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Supplementary methods

Mutational signature extraction

Fourteen signature components were extracted; HDPO-HDP13 (Supplementary Information Fig. 1). To
deconvolute composite signatures and to equate obtained HDP signatures to reference ones, we assessed the
cosine similarity and employed an EM-algorithm to deconstruct these signatures into reference constituents
(SBS1, SBS5, SBS7a, SBS7b, SBS10a, SBS10b, SBS17a, SBS17b, SBS25, SBS28, SBS31, SBS35, SBS88 and SBS89%2).
Deconstructed signature components are displayed in Supplementary Information Fig. 2. In this way, HDP3 was
broken down into SBS1 and SBS5; HDP4 into SBS10a and SBS5; HDP5 into SBS1, SBS5, SBS10a, and SBS28; HDP9
into SBS7a, SBS7b, SBS10a, and SBS28. HDP1 was broken down into SBS10a and SBS10b, but SBS10b poorly
reflected the observed C>T component of HDP1 and HDP6, which heavily impacted later fitting of signatures.
Hence, we constructed our version of SBS10b by subtracting the estimated contribution of SBS10a from HDP1.
In this vein, HDP1 became SBS10a and SBS10b, and HDP6 was decomposed into SBS10b, SBS1, SBS5, and SBS28.

HDP2 and 7, exclusively found in patients with a POLD1 germline mutation, were renamed as SBS10c and
SBS10d, respectively, and not subjected to decomposition. HDP13 found in multiple samples from an individual
with a POLE germline mutation was renamed SBS91. HDPO, 8 and 11 only had one major contributor and were
replaced by the purer reference signatures SBS5, SBS88, and SBS89. HDP10 was found to be due to platinum-
based chemotherapy, as it is constituted of SBS31 and SBS35. However, the report of a spectrum of signatures
due to these chemotherapy agents® (Extended Figure 1b) and the relatively poor reconstitution using SBS31 and
SBS35 only, prompted us to retain HDP10 without further decomposition hence, we name it SBS35-like. A similar
approach was used for the capecitabine-related HDP12 component, which resembles SBS17b but has closer
similarity to previously reported therapy-related signatures**. Hence, we renamed HDP12; SBS17b-like.

Therefore, we identify a total of 14 signatures: SBS1, SBS5, SBS7ab, SBS10a-d, SBS17b-like, SBS28, SBS35-like,
SBS88, SBS89 and SBS91. These signatures were refitted to all mutation counts of branches of phylogenies using
the R package sigfit (https://github.com/kgori/sigfit)®. To avoid overfitting, a limited subset of reference
mutational signatures were included per patient corresponding to the HDP signatures that have been identified
in that individual. In the case of SBS10d, it was only fitted to branches in which an exposure had originally been
reported.

Validation of mutational signatures

To verify the mutational signatures extracted using HDP, we used the non-negative matrix factorisation (NMF)
based algorithm SigProfiler! to extract SBS mutational signatures. SigProfiler reports fewer substitution
signature components (7 vs 14) but the components it does extract have clearly recognisable counterparts in
the compendium of HDP components (Supplementary Information Fig. 3 and Fig. 4). Additional components
that are stably extracted and have close resemblance to known, reported signatures were identified by HDP but
not SigProfiler.

HDP combined mutational signature extraction

To assess the association between signatures in different mutational classes and to validate the findings of
previous iterations of signature extraction, combined extraction of SBS, ID and doublet based substitutions (DBS)
was performed using de novo extraction with HDP. This leading to a direct incorporation and simultaneous
extraction of SBS, ID and DBS components. Count matrices were constructed from unique mutations. For
computational efficiency mutations were subsampled to a maximum of 3000 per sample. As previously, low
mutation burden samples; those with fewer than 100 mutations, were excluded.

The following parameters were used:
Chains: 20 MCMC chains



Iterations: 40,000

Burn-in: 20,000

Samples: 200 / chain

Signature components identified: 11
Component Names: HDPO-HDP10

Extracted components are displayed in Supplementary Information Fig. 5. These results confirm known
associations of mutational signatures across different mutation classes e.g. ubiquitous signatures: SBS1 & SBS5
& ID1, platinum therapy exposure: SBS35 & DBS5 (component 7), colibactin exposure: SBS88 & ID18 (component
5) and UV light: SBS7a & DBS1 (component 8). Furthermore they demonstrate an association between activities
of polymerase signatures i.e. defective POLE proofreading: SBS10a / SBS10b & ID1 (component 1 and 4) and
SBS10c & ID1 (component 2).

Validation and extension of mutational signature analysis

Of the novel mutational signatures identified, two bear similarity to published mutational signatures; SBS10c is
similar to SBS56 and SBS91 to SBS52. SBS52 and SBS56 are found sporadically in a small number of cancer types
and are thought to be possible artefacts®. The following observations are made and analyses undertaken to
evaluate the evidence for the validity of SBS10c, SBS10d and SBS91.

Firstly, we manually inspected and verified a random sample of somatic mutations from each mutational
signature using the JBrowse genome browser (SBS10c; 200 mutations, SBS10d; 100 mutations and SBS91; 500
mutations). Representative mutations associated with each mutational signature (SBS10c, SBS10d and SBS91)
are shown in Extended Data Fig. 5, 6 and Supplementary Information Fig. 6.

1. Validation of mutations and mutational signatures SBS10c and SBS10d

e Novel mutational signatures were identified in the following number of independently processed
samples; SBS10c was identified in 52 samples and SBS10d was identified in 3 samples.

e Using signature assignment (outlined below), mutations were attributed to each mutational signature;
~170000 mutations to SBS10c and ~220000 mutations to SBS10d.

e SBS10c and SBS10d have not been identified in other human tissue samples processed with the same
laboratory pipeline indicating that these are not systematic artefacts.

e SBS10c and SBS10d mutational signatures have not been identified in whole-genome sequenced
samples in other cohorts of normal tissues sequenced with the same Illumina Novaseq platform
suggesting that they are not sequencing artefacts

e Individual mutations assigned to each signature were independently identified in multiple samples
(Extended Data Fig. 5 and 6). That means that the mutations have been independently isolated,
sequenced and hence validated and that they, therefore, cannot have occurred due to a laboratory or
sequencing artefact.

2. Aetiology of SBS10c and SBS10d

e  SBS10c and SBS10d mutational signatures were only identified in individuals carrying POLD1 mutations
and not in individuals with POLE mutations.

e The replication strand bias, replication timing, extended sequence context of signatures SBS10c,
SBS10d were characterised and summarised (Extended Data Fig. 5 and 6). SBS10c and SBS10d show
strong replication strand bias, with an excess of mutations on the lagging strand consistent with the
role of POLD1 and consistent with previous characterisation of POLD1 in experimental systems. In
addition to the strong trinucleotide sequence context bias, they also demonstrate strong extended
sequence context bias, consistent with the polymerase signatures that are seen in POLE signatures
SBS10a and SBS10b. These characteristics along with the validation of the SBS10c-d signature across
multiple individuals with POLD1 mutations and multiple samples from each individual provide support



that the signatures are bona fide and the aetiology is the result of the defective DNA proofreading due
to the inherited mutation in POLD1.

3. Validation of SBS91

SBS91 was identified in 6 independently isolated and sequenced tissue samples

907 mutations were confidently assigned to this mutational signature

This signature was found in samples from one individual in this cohort. It was not identified in other
individuals in this cohort, suggesting that it is unlikely to be the result of a systematic artefact
Furthermore, SBS91 has not been identified in other human tissue samples processed with the same
laboratory pipeline and sequencing platform indicating that these are not obviously systematic or
sequencing artefacts.

Shared mutations were observed across multiple samples taken from the sample tissue section. Some
mutations were shared across samples, others were not.

The SBS91 mutation burden was highest in three adjacent samples (Supplementary Information Fig. 6)
and lower in more distant samples indicating the presence of a clone of cells giving rise to the
mutations. Such spatial clustering / arrangement would not be expected with an artefact.

The genome distribution of SBS91 mutations showed a strong bias toward early replicating and exonic
regions in contrast with SBS10a,b,c,d which show a depletion in exons and in the case of SBS10a late
replication timing bias.

The extended sequence context of SBS91 demonstrates a distinctive motif GGGTGGTCTC (mutated
base underlined) and is enriched in short interspersed repeats of the Alu Family (Supplementary
Information Fig. 6). Sequencing artefacts do not typically exhibit such specific traits.

We attempted to phase somatic SBS91 mutations to nearby heterozygous single nucleotide
polymorphisms (snps). We found multiple examples of mutations in close proximity to known
heterozygous snps. Artefactual mutations would be expected to be agnostic to the phasing of snps
hence would occur randomly and not obey phase. We observe both mutations that obey the phasing
of mutations and also those that do not.

4. Aetiology of SBS91

In summary, SBS91 was identified in multiple samples from an individual across at least 2 tissue types.
The signature demonstrates some features, outlined above which suggest it is behaving in a manner
that is not typical of conventional SBS signatures.

Since SBS91 behaves in an atypical manner we have less confidence in attributing it to the defective
DNA polymerases, it may indeed arise due to a different aetiology.

4. Summary for SBS91

There are many features compatible with SBS91 being a genuine biological signature.

A degree of non-phasing with local SNPs is, however, consistent with it being artefact. Nevertheless,
the strong and distinctive local sequence context may mean that SBS91, if biological, hypermutates
certain sequences and this could also potentially explain non-phasing with local SNPs.

The targeting to Alu sequences is dissimilar from other Polymerase deficiency signatures and thus, even
if biological, its origin is unclear.

Because of multiple uncertainties concerning this signature we have not discussed it in the main text
and have not discussed samples that carry it.

However, further details are in Supplementary Information Fig. 6.

Mutational signature assignment

To assess the likely causative mutational signatures for individual mutations, all SBS mutations that mapped to

branches of the phylogenetic trees were assigned signature probabilities. These assigned probabilities were used

to subset mutations for further analysis i.e. replication strand and extended sequence context biases as
displayed in Extended Data Fig. 7.



Mutational signature assignment was performed for all SBS mutations assigned to phylogenetic trees treating
each branch / edge as a unique sample, hence ensuring that mutations were not double counted. HDP
mutational signature extraction with deconvolution into reference signatures was undertaken to define the
proportion of each mutational signature in each sample. Deconvoluted signatures were used to define the
relative probability of each trinucleotide context per signature. Mutational assignment probability was defined
as the probability P that, that a particular mutation, i, could be assigned to a given signature, j, in genome k
was calculated as follows:

Wik - fi,j
P' 'k—
Y Wik fi

where wj; is the proportion of mutations assigned to signature j in genome k and f; ; is the fraction of
mutations in signature j that are the same substitution type and occur at the same trinucleotide context as

mutation i.
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Supplementary Information Figure 1| HDP signature components

Fourteen signature components were extracted; HDPO-HDP13. Plots show mutational spectra of extracted
components. Trinucleotide context (x-axis) and mean proportion (y-axis). Credibility intervals (95%) are
displayed as a thin black line above and below each bar. Trinucleotide contexts which are not statistically
significant are shown in light grey. A subset of these 14 signatures appeared to be combinations of previously
reported reference signatures®.
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Supplementary Information Figure 2| HDP signature component deconvolution
Plots show mutational spectra of extracted component; trinucleotide context (x-axis) and mean proportion (y-

axis). Each HDP component is displayed in the uppermost panel followed by the reconstituted component after
deconvolution and its cosine similarity to the original HDP component. COSMIC reference signatures and their
relative contributions are displayed on the lower panels. Relative contribution is displayed in the title of the plot.
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Supplementary Information Figure 3 | Comparison of HDP and SigProfiler signature components
Comparison of signature extraction with HDP and SigProfiler was performed (methods). No new signatures were

identified using SigProfiler and more mixing between signature components was observed using Sigprofiler
compared with HDP.

Plots show mutational spectra of extracted components showing trinucleotide context (x-axis) and mean
proportion (y-axis). Credibility intervals (95%) are displayed as a thin black line above and below each bar.

Trinucleotide contexts whose contribution is not statistically significant are shown as light grey bars.
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Supplementary Information Figure 4 | Cosine similarity of HDP and SigProfiler signature components
Heatmap showing the cosine similarity between components extracted using the HDP algorithm and SigProfiler.
SigProfiler recommends an optimum solution based on stability, this solution was used for the comparison.
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Supplementary Information Figure 5 | HDP combined signature extraction

Components are shown in full below. Plots show mutational spectra of extracted components showing
trinucleotide context (x-axis) and proportion (y-axis). Credibility intervals (95%) are displayed as a thin black line
above and below each bar. Trinucleotide contexts whose contribution is not statistically significant are shown
as light grey bars.



0.4

0.3

0.2

0.1

Mutation Type Probability

0.0

o
Q
©

o
Q
@

Mutation Type Probability
o
o
<3

o
=3
=1

0.020

Type Probabilit:
Ype r.ga ility
2
o

o

.010

ion

Mutati

0.005

0.000

Component 0 (SNV:89.2%)

C>A C>G C>T T>A T>C T>G
Y N

kil ||.|||I. L.l [ |.|i|.|. II||| Looaddn, caa,

Component 0 (Indel:10.5%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)

c c 2 L ] 5 ] 2 NG T T 2 S T

ca L Ly L "
] ] [ S — 1 ___ ¥ ____ i ¥ |
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length
Component 0 (DNV:0.3%)
AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN TA>NN TC>NN TG>NN TT>NN
- | | | ] I




0.35
£ 0.30

0.25

pe Probability

0.20

>
S
Z 015

101

0.10

Mutat

0.05
0.00

ty

=0.021

0.014

e Probabi

Type

0.007

ion

Mutati

0.000

€ S
8 8
S

0010

(=3
(=3
o
@

0006

M@ano@Typ@’ro@bllit
8
R

o
o
(=3
(=3
Q
N

0.00000

Component 1 (SNV:97.4%)

C>A C>G C>T T>A T>C T>G

Component 1 (Indel:2.6%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)
Cc ] 2 o83 e 2 8 e 2 [31 .
i . ‘
| _ | | __ | I N ¥ 5 J§ |
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length
Component 1 (DNV:0%)
1 AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN TA>NN TC>NN TG>NN TT>NN
| | | ] I




Component 2 (SNV:74.9%)

0.20

C>A C>G C>T T>A T>C T>G
Y N

Mutation Type Probability

Component 2 (Indel:25%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)
> Cc ] 2 o83 e 2 8 e 2 [31 .
3 0.24
©
e
<)
o
o 0.16
Q
=
§ 0.08
8
=1
= 0.00 -
’ | _ | | __ | I N ¥ 5 J§ |
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length

Component 2 (DNV:0%)

T AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN  TA>NN TC>NN TG>NN TT>NN
I I I I I

g 2

°
S 9
2 2
[N
1

0010 —

(=3
(=3
o
@
|

0006 —

M@ano@Typ@’ro@bllit
8
R
1

o
o
(=3
(=3
Q
N
|

0.00000



o o
S) o

Mutation Type Probability
o
o
o

0.00

0.12

0.08

0.04

Mutation Type Probability

0.00

1)
o o
2 2
> ©

o Mutation Typs Prokability o
2 9 g9 g
S & @ g9
S © o 9
rOE & &

0.0000

Component 3 (SNV:84.3%)

C>A C>G C>T T>A T>C T>G
Y N

Component 3 (Indel:15.5%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)
Cc ] 2 o83 e 2 8 e 2 [31 .
& ] . ‘
| _ | | __ | I N ¥ 5 J§ |
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length
Component 3 (DNV:0.2%)

AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN TA>NN TC>NN TG>NN TT>NN

| | | ] I




0.8

0.6

0.4

0.2

Mutation Type Probability

0.0

o
o
W
@

o

.022

Type Probability

ion

0.011

Mutati

0.000

€ S
8 8
S

0010

(=3
(=3
o
@

0006

M@ano@Typ@’ro@bllit
8
R

o
o
(=3
(=3
Q
N

0.00000

Component 4 (SNV:96.8%)

C>A C>G C>T T>A T>C T>G

Component 4 (Indel:3.2%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)
Cc ] 2 o83 e 2 8 e 2 [31 .
M L | l L
| _ | | __ | I N ¥ 5 J§ |
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length
Component 4 (DNV:0%)

. AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN TA>NN TC>NN TG>NN TT>NN

. | | | ] I




o o o
o e N
S o o

Mutation Type Probability

o
=3
G

0.00

0.06

0.04

0.02

Mutation Type Probability

0.00

0.0020

e Probability
o
2
o

Pl
o
2
)

Mitation Ty

.0005

0.0000

Component 5 (SNV:76.8%)

C>A C>G C>T T>A T>C T>G
Y N

Component 5 (Indel:22.9%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)

c c 2 L ] 5 ] 2 NG T T 2 S T

] [ S — 1 ___ ¥ ____ i ¥ |
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length

Component 5 (DNV:0.3%)

AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN  TA>NN TC>NN TG>NN TT>NN
I I I I I




T>C T>G

98.4%)
T>A

Component 6 (SNV
C>T

C>G

C>A

LOEELOORELQOETOaR
3386383885388633836
222288836833RERR
1bp insertion

C T 2

(deletion length)
TT>NN

.
FPEFERE

NG T T 2 S T
1

1 ___ ¥ ____ i ¥ |

o
4
o
Deletion with microhomology
Microhomology length

TG>NN

Number of repeat units
TC>NN

<4
5
>1bp insertion at repeats
(insertion length)

1.5%)
0%)
TA>NN

GC>NN

Component 6 (DNV.
CT>NN

<
8
Component 6 (Indel
>1bp deletion at repeats
(deletion length)
o83 e
Number of repeat units

Homopolymer length
CC>NN CG>NN

AT>NN

1bp deletion

AC>NN

012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length

0.7

0.0
012
008
000

T T T T
v Y 0 o =
S o o o

0.6

0.004
0025 —
020 —
015 —
010 —
0005 —

=1 o o (=3 =1
Shuatgord &AL udgeinn S

)

Aungedoid edAL uoneiniy Rigeqo:J edAL Sreinpy

0.00030 -

0.00000



Component 7 (SNV:90.1%)

4
>
]

C>A C>G C>T T>A T>C T>G
Y N

Mutation Type Probability
o o o o o
s g g = o
S (2} © o N
1 1

o
Q
Y]

o
=]
o

Component 7 (Indel:4.5%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)
> Cc ] 2 o83 e 2 8 e 2 [31 .
=
80.009
<)
o
80.006
'Z ‘
c
%0.003 |
=1
2,000 Lo e e e 1 b oy A EEEIT
| _ | | __ | I N ¥ 5 J§ |
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+
Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length
Component 7 (DNV:5.4%)
0.030 AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN  TA>NN TC>NN TG>NN TT>NN
' ] I
= | | |
30.025
©
8
£0.020 |
o
(=3
£0.015
c
S
£0.010
5
2 | |
0.005 - | |
0.000 . ! I



92.4%)

Component 8 (SNV

T>G

T>C

T>A

C>T

C>G

C>A

0.25

20 —
0.15
10

o > o
Aungeqoid edAL uonein

0.05

N

1.2%)

Component 8 (Indel

Deletion with microhomology

>1bp insertion at repeats

>1bp deletion at repeats

(deletion length)

(insertion length)

NG T T 2 S T

(deletion length)

L ] 5 ]

1bp insertion

1bp deletion

2] -
[=3 o [=3
(=] (=]

z___nmmven_ mmﬁ :owm_z

012345+01234540123454012345+012345+012345+01234540123454012345+012345+012345+012345+411212312345+

0.000

W

Microhomology length

Number of repeat units

Number of repeat units

Homopolymer length

Homopolymer length

6.4%)

Component 8 (DNV.

TG>NN TT>NN

TC>NN

TA>NN

AT>NN CC>NN CG>NN CT>NN GC>NN

AC>NN

0.10

T T
© <
] ]
o o
Aungeqoid adA| uoneiny

0.08
0.02

0.00



T>C T>G

94.4%)
T>A

Component 9 (SNV
C>T

C>G

C>A

(deletion length)
TT>NN

.
EEPEES
S N EETI 2 5 N T

o
4
o
Deletion with microhomology
Microhomology length

TG>NN

Number of repeat units
TC>NN

|
<4
5
>1bp insertion at repeats
(insertion length)
012345¢012345+012345¢+012345+012345+012345+012345+012345+012345+012345+012345+012345+112123122345+

5.1%)
0.5%)
TA>NN

GC>NN

I I
.
o
o

Component 9 (DNV.
CT>NN

<
8
Component 9 (Indel
>1bp deletion at repeats
(deletion length)
o83 e
Number of repeat units

CG>NN

1bp insertion
CC>NN

Homopolymer length

AT>NN

1bp deletion

Homopolymer length
AC>NN

<4 101 o
901
0L
4 YOoL
109
909
009
V09 —
100
920 1
000
v00
< 1oV b
20V
20V o
YoV

o
8
1 |||||| ||||||||| Lt taes ol NI PR A ||| ||| |||||||||||

T T T T T
vt @ N bt <
o o© o o o o

012
008
004
020 —
015 —
010 —
0005 —

0.
0.

0.000
0.0025

S ] ] 5 ===
Aungeqoid adAy uoneiniy Aungedoid SdAL ucneni AigeqoigredAL wiein

3

0.0000



Component 10 (SNV:14%)

C>A C>G C>T T>A T>C T>G
Y N

L1 RN LLLLLLEEL L ‘I L1 L1
!

OO SO OE SO0 OB S OaE OO SO OE SONE OO S0aE SO0 <OOE SOOE SO0 SOOF SOOF SOOE SOOF SOOF SOOF SO0 SOOE SO0 £O0
S 1513} Q0 00 og 1513} Q0 00 og 1513} Q0 00 OkEEREFE EEEE EEEREFEFREEEEE EEEREEEEREEE
3885388538858 885808088858385838P88858885388508 R RRREREEEREEFPPEEReREBEEE0EE P RFERCREEEEER85EREE

Component 10 (Indel:85.3%)

>1bp deletion at repeats >1bp insertion at repeats Deletion with microhomology
1bp deletion 1bp insertion (deletion length) (insertion length) (deletion length)

c c 2 L ] 5 ] 2 NG T T 2 S T

0.05
z

S 004
Qo

S

o

5 0.03
S

2
5002
ksl

=3

S 0.0t

0.00

2 0.09
H

E

S

T 0.06
g

=

§ 0.03
s

2

0.00

0.010 -
20.008
£
2
£0.006
I
=
50.004
£

£
=0.002
0.000

L1l |i || 1 | 11 | (N l 1 Ii lll"hl b BT iill 'i'll l II i'll
] ] [ S — 1 ___ ¥ ____ i ¥ |
012345¢012345+012345¢+012345¢012345+012345+012345+012345+012345¢012345+012345¢+012345+11212312345+

Homopolymer length Homopolymer length Number of repeat units Number of repeat units Microhomology length
Component 10 (DNV:0.7%)
AC>NN AT>NN CC>NN CG>NN CT>NN GC>NN TA>NN TC>NN TG>NN TT>NN
| | | ] I




Supplementary Information Fig. 6 | Characterisation of mutational signature SBS91

(a) Mutational profiles of samples with predominant SBS91 exposure; 3 representative cerebral cortex
samples (PD44594c_lo0005, PD44594¢_|o0001 and PD44594c¢_|00007) and an oesophagus sample
(PD44594h_100001). (b) Histograms of Variant Allele Fraction (VAF) for SBS mutations corresponding
to each sample. (c) Mutational profile showing replication strand bias of SBS91 mutations. Coloured
bars indicate leading strand and light grey bars indicate lagging strand. No statistically significant
strand asymmetry is seen in SBS91 (d) Barplot of mutations on the transcribed (T) and un-transcribed
(U) strands arranged according to mutation type. No statistically significant transcriptional strand bias
was observed. (e) Histogram showing SBS91 mutation count across replication timing bins (f) JBrowse
images showing SBS91 somatic mutations validated across multiple independent samples. (g)
Histology image of cerebral cortex displayed in perspective view. Tissue microbiopsies are indicated
by shapes with black outlines and annotated with numbers 1,2,5,6,7 corresponding to biopsies
PD44594c_|o0001, PD44594c_lo0002, PD44594c_lo0005, PD44594c_|o0006 and PD44594c_|o0007.
Phylogeny of SBS mutations is overlaid to illustrate the region of highest mutation density (biopsies
5,6 and 7). (h) Extended sequence context of mutations assigned to signature SBS91 displayed with
pyrimidine annotation (i) Proportion of somatic mutations assigned to each mutational signature that
are in Alu repeats. (j) Barplot of mutations assigned to SBS91 that are in Alu repeats (Alu) and those
that are elsewhere in the genome (non-Alu). Mutations occurring with the canonical extended
sequence context GGGTGGTCTC or its reverse complement GAGACCACCC (mutant base underlined)
are represented by the green bars and those occurring outside of the canonical repeat are purple. P-
value calculated with the two-sided Pearson’s Chi-squared test.
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Supplementary Information Fig. 7 | Protein structure and mutation site of POLD1 and POLE polymerases
Mutations carried by individuals included in this study mapped onto the Saccharomyces cerevisiae DNA
polymerase & and DNA polymerase €

a. b.

Site of germline DNA polymerase mutations in this cohort mapped (blue) onto the protein structure of the
exonuclease domains (grey) of **(a)** Saccharomyces cerevisiae Pol 6 (Protein Data Bank identifier (PDB ID)
3IAY) and **(b)** Pol € (PBD ID 4M80). Single-stranded DNA from the aligned bacteriophage T4 polymerase
complex (PDB ID 1NOY117) is shown in yellow. The exo | motif active site residues are highlighted in magenta
(with the exception of mutated Pol 6 active site residue D316, which is also the site of one of the germline
mutations carried by an individual in this study).






	SpringerNature_NatGenet_930_ESM.pdf
	1.Mixed-effects linear modelling of single-base substitution (SBS) burden in non-neoplastic intestinal stem cells
	2.Mixed-effects linear modelling of insertion / deletion (ID) burden in non-neoplastic intestinal stem cells
	3.Hypothesis Testing - Interindividual Variability & heteroscedasticity
	4.Assessment of telomere attrition in wild-type and DNA polymerase mutant intestinal crypts




