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ABSTRACT
We present the Lyman α flux power spectrum measurements of the XQ-100 sample of
quasar spectra obtained in the context of the European Southern Observatory Large Pro-
gramme ‘Quasars and their absorption lines: a legacy survey of the high redshift universe with
VLT/XSHOOTER’. Using 100 quasar spectra with medium resolution and signal-to-noise
ratio, we measure the power spectrum over a range of redshifts z = 3–4.2 and over a range
of scales k = 0.003–0.06 km−1 s. The results agree well with the measurements of the one-
dimensional power spectrum found in the literature. The data analysis used in this paper is
based on the Fourier transform and has been tested on synthetic data. Systematic and statistical
uncertainties of our measurements are estimated, with a total error (statistical and systematic)
comparable to the one of the BOSS data in the overlapping range of scales, and smaller by
more than 50 per cent for higher redshift bins (z > 3.6) and small scales (k > 0.01 km−1 s).
The XQ-100 data set has the unique feature of having signal-to-noise ratios and resolution
intermediate between the two data sets that are typically used to perform cosmological stud-
ies, i.e. BOSS and high-resolution spectra (e.g. UVES/VLT or HIRES). More importantly, the
measured flux power spectra span the high-redshift regime that is usually more constraining
for structure formation models.

Key words: methods: data analysis – intergalactic medium – cosmology: observations – large-
scale structure of Universe.

1 IN T RO D U C T I O N

The absorption features bluewards of the Lyman α (Lyα) emission
line in the spectra of high-redshift quasars (QSOs) are widely used
as biased tracers of the density fluctuations of a photoionized warm
intergalactic medium (IGM), and are collectively known as the Lyα

forest (see Meiksin 2009; McQuinn 2016 for recent reviews).

� E-mail: irsic@uw.edu (VI); viel@sissa.it (MV)

Although the first speculations and measurements were made
almost 50 yr ago (Gunn & Peterson 1965; Lynds 1971), the physical
picture of the Lyα forest was established in the 1990s by a detailed
comparison of analytic calculations (Bi & Davidsen 1997; Hui 1999;
Viel et al. 2002) and numerical simulations (Cen et al. 1994; Zhang,
Anninos & Norman 1995; Hernquist et al. 1996; Miralda-Escudé
et al. 1996; Theuns et al. 1998, 2002) with observed absorption
spectra (e.g. Kim et al. 2004).

In the last decade, a range of different statistics have been pro-
posed (Ricotti, Gnedin & Shull 2000; Schaye et al. 2000; Theuns &
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Zaroubi 2000; Theuns et al. 2002; Viel et al. 2005; Bolton et al. 2008;
Lidz et al. 2010; Becker et al. 2011; Bolton et al. 2012; Garzilli
et al. 2012; Rudie, Steidel & Pettini 2012; Iršič et al. 2013; Boera
et al. 2014; Lee et al. 2015), and successfully used, that focused
on specific aspects (e.g. targeting cosmology, temperature of the
IGM, etc.). However, the main quantity of choice when comparing
observations with the theoretical predictions has become the one-
dimensional flux power spectrum PF(k) (Croft et al. 1999, 2002;
Kim et al. 2004; Viel, Haehnelt & Springel 2004; McDonald
et al. 2005; Palanque-Delabrouille et al. 2013; Viel et al. 2013a).
This is because the flux power spectrum is tracing the actual fluctu-
ations in the observed forest, making it easy to understand system-
atics and the noise properties. The flux power spectrum also more
cleanly decouples the scales involved (e.g. fluctuations due to poor
continuum fitting are restricted to large scales).

Several measurements of the flux power spectrum have been per-
formed in the last two decades, ranging from measurements on
a few 10 high-resolution, high signal-to-noise ratio QSO spectra
(Vogt et al. 1994; Kim et al. 2004; Viel et al. 2004, 2013a) to
measurements on many thousands of QSO spectra with poor reso-
lution and signal to noise (York et al. 2000; McDonald et al. 2005;
Dawson et al. 2013; Palanque-Delabrouille et al. 2013). Taken to-
gether, these measurements cover over three orders of magnitude in
scale (k = 0.001–0.1 km−1 s); however, they are either only centred
on large scales, or only on small scales, and no study has done a
combined measurements of both.

In this paper, we present a new set of measurements of the one-
dimensional PF(k) on an intermediate data set: a hundred QSO spec-
tra with medium resolution (∼10–20 km s−1) and medium signal-
to-noise ratio (S/N ∼ 10–30). The goal is to achieve measurements
of both large and small scales simultaneously and thus provide a
bridge between the traditionally used data sets probing either large
or small scales.

The paper is structured as follows: in Section 2, we discuss the
observational data used in our analysis, as well as the synthetic data
on which the data analysis procedure was tested. The various steps
of the data analysis are described in detail in Section 3. The final
results are presented in Section 4 and we conclude in Section 5.

2 DATA A N D S Y N T H E T I C DATA

2.1 XQ-100 Sample

In this work, we use 100 QSO spectra from the XQ-100 Legacy
Survey (López et al. 2016), observed with the X-Shooter spectro-
graph on the Very Large Telescope (Vernet et al. 2011). These 100
quasars span the redshift range 3.51 < z < 4.55.

We limit ourselves to spectra obtained from the UVB and VIS
spectrograph arms [see López et al. (2016) for more details], since
the near-infrared spectral range gives us no information regarding
the Lyα forest. For each QSO spectrum, we merge the two spectral
arms into one spectrum by a simple method. We re-bin the spectra
on to a fixed wavelength grid with �log10λ = 3 × 10−5 (with λ

in Å), which is the larger of the two bin sizes of the individual arms.
In the region where the arms overlap, we perform weighted average
of the flux, continuum and resolution element. We have performed
a test where we treated each spectral arm as independent quasar
observation and the results showed that the effect of simple merging
has negligible effect on the flux power spectrum measurements, at
least at the scales where we are able to measure it.

Since the weighting is done using the optimal inverse vari-
ance weights, any bad pixel that was determined to be so during

Figure 1. The QSO redshift distribution for XQ-100 data sample (red), for
NQ = 5000 quasars of the synthetic data sample (blue) and for NQ = 100
quasars of a synthetic data sub-sample (green).

pipeline reduction analysis is thus down-weighted. However, the
subsequent merged spectra are also examined by eye if they make
sense and do not have any pixels that are obvious outliers. Us-
ing weighted merging of the arms also ensures that the continuum
transition from one arm to the other is smooth. Whether this in-
troduces some false large-scale fluctuations in the continuum was
not thoroughly explored, however any such contributions would
show up as excess of continuum power, which we have investi-
gated and verified it is very small (comparable to the noise levels);
see Section 4.5.

The resolution elements were taken to be constant per arm, with
the values of 20 and 11 km s−1 for UVB and VIS arms, respectively.

The continuum used in our analysis is based on cubic spline fits
and is described in more detail in López et al. (2016).

After the spectral arms have been merged, we perform additional
cuts on the data. First, we exclude pixels with negative or zero
flux errors as well as any bad pixels (with very negative flux of
f < −10−15, or as a flux over continuum level f/C < −100).

Secondly, we mask regions around Damped Lyman α (DLA) sys-
tems, using the DLA sample provided by the survey team (Sánchez-
Ramı́rez et al. 2016). We do not use data within 1.5 equivalent widths
from the centre of the DLA.

When measuring the flux power spectrum within the Lyα forest,
we only use the pixels within the 1045–1185 Å restframe wave-
length range of each QSO spectrum. This range is conservative in
the sense that we do not probe the absorption region close to the
quasar Lyα and Lyβ emission lines (McDonald et al. 2005).

2.2 Synthetic data

Our data analysis pipeline was tested with synthetic data that were
generated exclusively for this work. We want to generate a realistic
flux field with a QSO redshift distribution matching that of the
observed data sample.

First, we approximated the observed QSO redshift distribution
by binning the emission redshifts of the XQ-100 sample into 10
redshift bins, as shown in Fig. 1. To generate synthetic QSO sample,
we have drawn their redshifts from this distribution. Fig. 1 shows
the distribution of 5000 and 100 randomly drawn QSO redshifts
from the distribution given by the data.
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Table 1. Different mock catalogues used in testing the data-
analysis routine.

Name NQ Pixel size/resolution

mock 5000 5000 XQ-100 values
mock 100 100 XQ-100 values

The various mock QSO catalogues used in this paper are pre-
sented in Table 1.

In the next step, we want to produce flux spectra along the line
of sight of each QSO from the synthetic catalogues. To this end,
we use a suite of high-resolution hydro-dynamical simulations of
the IGM between redshifts 3 < z < 5, with 2 × 20483 particles
in a 40 h−1 Mpc box size (PRACE: Sherwood simulations – Bolton
et al. 2017). The outputs were produced with a redshift step of
�z = 0.1 in a given redshift range, in the form of an extracted
optical depth along 5000 randomly selected lines of sight.

For each line of sight, and each redshift bin, the simulated optical
depth is given on a velocity grid (τ (v)).

First, we convert this to a grid of wavelengths (λ), or equivalently
Lyα absorption redshifts (1 + z = λ/λα), where λα stands for Lyα

line (1215.67 Å). The conversion is done so that the mean absorption
is assumed to happen at the redshift bin of the simulation output
(zs)

λ = λα (1 + zs)

√
1 + v

c

1 − v
c

, (1)

where v is the velocity coordinate along the line of sight within a
simulation box. Since the length of the absorption spectrum along
each line of sight, at a given redshift zs extends over the whole box
size, and since the cosmological simulations have periodic boundary
conditions, we make use of that to extend the signal also to negative
velocities by periodically repeating the spectrum from a simulation
box. Thus, for a redshift bin zs, the signal spans the redshift range
of zs − �zs < z < zs + �zs, where �zs is simply the redshift length
of the simulation box at a redshift zs. We choose to only repeat the
periodic signal once, since in the case of our simulations the redshift
difference between each zs and its neighbours is less than 2�zs.

Secondly, we collect all the redshift outputs along each line of
sight into a single optical depth array. In principle, the merging
of the simulation boxes at different redshifts can be done using
a variety of methods (e.g. weighted interpolation between signals
in neighbouring redshift bins). However, we adopted the simplest
method and order them, one after the other, by increasing simulation
redshift, choosing simulation redshift bin with lower mean redshift
in the areas of overlap between two simulation outputs.

Such a construction allows us to have a line of sight extending
over many redshifts, and thus mimicking the observed spectrum.
There are, of course, a few shortcomings we would like to point
out.

Most importantly, our basic ingredient is a spectrum extracted
from a numerical simulation with a given box size. Hence, we will
only be able to measure meaningful statistics on smaller scales. But
we will be able to do so for each redshift along a single line of sight.

Secondly, such a construction has rather discrete jumps in flux on
the border between regions from simulation outputs with different
mean redshift. The artefacts in a spectrum caused by such discrete
jumps can be avoided by using a more advanced technique of merg-
ing the simulation outputs together along each line of sight, such
as linear (or higher order) interpolation. However, for our own tests

on the power spectrum, this did not play an important role, and thus
we settled for the simplest merging.

Thirdly, it is usually common to rescale the optical depth ac-
quired from simulations at a given redshift, so that the mean flux
in that redshift bin matches the observed one. Such re-scaling can
be viewed as a correction of the ultraviolet background ionization
rate from the simulations to match the observed mean flux (due
to degeneracy between the two). The increase (or decrease) in the
optical depth is usually less than 20 per cent.

We performed a similar correction, but on the optical depth along
the entire constructed line of sight. The correction factor had a
redshift dependence, with redshift binning matching that of the
simulation output. The values were computed through iteration with
the condition that the mean flux computed along a specific line of
sight matches one from observations. For the purpose of testing the
data analysis on synthetic data, it did not matter what exactly is the
input observed mean flux, as long as we recover it. We chose to use
one given by Palanque-Delabrouille et al. (2013).

The last part in creating the synthetic data involved tailoring the
simulation output to a given survey specifications: QSO redshift
distribution, pixel-size, resolution and noise properties.

First, we assigned a QSO emission redshift to each line of sight,
thus specifying what part of the redshift range falls in the Lyα forest
region for that QSO spectrum. Quasars used in this procedure were
determined by the synthetic quasar catalogue.

Each QSO spectrum was then rebinned with the same wavelength
bin size as in the XQ-100 observations (�log10λ = 3 × 10−5).

A convolution was performed on each spectrum with a Gaussian
kernel with resolution element of 33 km s−1. Such a resolution ele-
ment is larger than the one in XQ-100 survey but for our purposes of
testing the data analysis procedure the exact number did not matter.

In the end, we also added noise to the spectrum. In principle,
adding noise after the convolution with the resolution kernel only
adds a component that is flux-independent (e.g. read-out noise).
If the dominating contribution to the noise were flux dependent
(e.g. Poisson noise), we could add it before convolving with the
resolution kernel. Both options were tested in the synthetic data
and subsequent data analysis, but for most of the tests presented in
the rest of the paper synthetic data has only flux-independent noise
component added.

To make sure that our data-analysis routines correctly recognize
and subtract the noise, we used a noise model that is comparable
to averaging the flux errors of the actual XQ-100 data. As shown
in Fig. 2, the noise has a slight wavelength dependence towards the
edges of the spectrum. Even though the scatter is not negligible,
it was not modelled in the synthetic data. The function we used
to describe the noise model in the synthetic data is not a fit to the
averaged flux errors. It is just a simple closed form function that
exhibits the same large-scale wavelength-dependence behaviour.
We found that for testing purposes of this paper such a model was
sufficient.

The very complicated flux error dependence comes from two in-
strumental effects. First is that the flux error has a long wavelength
mode modulation, where it increases towards the edges of the ob-
served spectral range, which coincides with the edges of the CCD
camera where the pixel sensitivity is lower than that in the middle
of the CCD. This is the effect we wanted to capture in the model
of the flux errors since a large mode fluctuation in real space of
the flux errors might cause sharp features in the Fourier space. We
wanted to make sure we access such a possibility on the mock data,
and understand any potential systematics it might cause. However,
our error estimate did not show any weird behaviour compared to
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Figure 2. Averaged flux errors of the XQ-100 sample (in red) compared to
the noise model used in constructing the synthetic spectra (in blue).

having a constant value of flux error with wavelength. Second effect
on the observed flux error that causes it to have a very complicated
dependence was the small-scale modulation, which is caused by
lower sensitivity at the overlapping higher Echelle orders of the
spectrograph. We did not model such a small-scale variation in our
mock catalogues, since our error estimates on both mock and real
data would average over such small scales.

It should be noted that while the synthetic data in this paper were
designed for analysis of the flux power spectrum, they should be
applicable to other flux statistics as well.

3 DATA A NA LY SIS

In this section, we describe the steps taken in the data analysis pro-
cedure. The same strategy was adopted for both real and synthetic
data in order to check for any systematic effect arising due to the
analysis itself.

The bulk of the analysis consists of the Fourier transforms of
the input spectra, which is a method that has been used extensively
before, on similar data sets (Croft et al. 1999, 2002; Kim et al. 2004;
Viel et al. 2004, 2013a). This method is used to measure the flux
power spectrum of the Lyα forest. The measurements, of both real
and synthetic data, are in 7 z −bins (z = 3.0–4.2 with step �z = 0.2)
and 19 k−bins (k = 0.003–0.06 km−1 s, linearly binned with step
�k = 3 × 10−3 km−1 s).

3.1 Continuum

Using the provided continuum fits for each QSO spectrum (C), we
first divided the continuum of the XQ-100 spectrum measurement
(f). While we tested the robustness of the results by using different
continuum models, we opted in the end for the official XQ-100
continuum fits described in López et al. (2016). We did not fit the
continuum at the same time as the mean flux or the power spectrum.
In the synthetic data, the continuum was modelled as a constant
equal to unity.

3.2 Redshift sub-samples

For each line of sight, we split the data into separate sub-samples
(z-bins) by measured redshift. Each pixel is assigned an absorption

redshift that determines the redshift of the sub-sample it falls into.
We perform this step, so that the Fourier Transform used for the
power spectrum analysis is performed on the level of z-bins and not
on the whole line of sight. This is foremost much easier to handle,
since the scales of different mean redshifts are not mixed together.
It is also convenient to measure the power within a redshift bin
where the variation in wavelength is described by a velocity coor-
dinate only. This is an approximation, since measuring flux along a
photon’s path gives a relation between redshift and proper coordi-
nate (or equivalently velocity coordinate). However, the corrections
are very small when measuring Lyα power spectrum (McDonald
et al. 2006; Iršič, Di Dio & Viel 2016).

3.3 Mean flux

We perform an un-weighted average of the flux to obtain an estimate
of the mean flux (F̄ = 〈F 〉 = 〈f /C〉). A sample average gives us
an unbiased estimator of the true value, but underestimates the error
on the average. To perform the unbiased weighted average, the full
variance would have to be known (which is the sum of the error
flux variance and variance due to cosmic fluctuations). However,
the cosmic variance is not known at this stage in the data analysis.
One option would be to measure the mean flux and its variance
together through a likelihood-based iteration scheme, or compute
the variance from the measured power spectrum. We opted for the
latter and simpler method.

3.4 Flux power spectrum

For each line of sight, and each z-bin we perform Fourier Trans-
form on a flux fluctuation field (δF = F/F̄ − 1). The flux power
estimator is then given as a sum of the squared Fourier coefficients
over all the pixels in all the z-bins along all the lines of sight that
contribute to the measured (k, z) bin:

P̂tot(ki, zj ) = 1

Nij

∑
n,m

|δF (kn, zm)|2δD(ki − kn)δD(zj − zm), (2)

where Nij represents the number of pixels contributing to the bin
(ki, zj). The sum goes over all the pixel pair configurations with a
wavenumber kn and redshift zm. We have denoted the Dirac delta
function as δD.

At this point, we also correct the result for the effects of finite pixel
width and resolution element. Deconvolution of the flux fluctuation
field translates into simple division in the Fourier space, thus

δF (kn, zm) = δ
(measured)
F (kn, zm)

W 2(kn; pn,m, Rn,m)
, (3)

where pn, m is pixel width of pixel corresponding to bin (kn, zm)
and Rn, m is resolution element of the same pixel. Both p and R are
in velocity units. The pixel width p is constant in both our data
sets (p = c�log10λ, with λ in Å), whereas the resolution element
can vary and is given for each pixel. In the synthetic data set, R
is constant and equal to 33 km s−1 but in the real data set it varies
between 11 and 20 km s−1 due to different resolutions in different
spectral arms.

The de-convolution kernel in Fourier space, W(k; p, R), is a prod-
uct of a Gaussian (Gaussian smoothing of the resolution element)
and a Fourier transform of a square function (pixel width):

W (k; p,R) = e− 1
2 k2R2 sin2

(
kp

2

)
(

kp

2

)2 . (4)
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3.5 Noise power

In the subsection above, we have explained how the total flux power
spectrum is evaluated. However, this power describes both fluctua-
tions due to noise and the cosmological signal we are interested in.
It is fair to assume that noise is uncorrelated with the cosmological
signal, and thus it can be removed at the power spectrum level:

PF (k, z) = Ptot(k, z) − PN (k, z). (5)

We estimate the noise power by assuming that the PN(k, z) can be
treated as constant in k, and its normalization for each redshift can
be obtained through the variance of the flux errors as a function
of redshift. To that end, we compute the estimate of the flux error
variance, at the step when we compute the mean flux

σ 2
N (zj ) =

∑
i

σ 2
F (λ(zi))

Mj

, (6)

where Mj is the number of pixels that correspond to a redshift bin
zj. The noise power is then given by

F̄ 2(z)σ 2
N (z) = 1

π

∫ ∞

0
PN (k, z) dk ≈ 1

π
PN (z) (kmax − kmin) , (7)

where kmin = 0 for our choice of binning and kmax is equal to Nyquist
scale, which is the largest independent scale we measure through
our Fourier Transform analysis.

The estimate obtained through the above relation is used in our
data analysis as the noise power. This method has been tested on
synthetic data (see the next section) and provides satisfactory results.

4 R ESULTS

In this section, we present the results of the data analysis procedure
presented in this paper. First, we show the results and tests of various
methods and approximations used in the analysis of the synthetic
data. We then show the main results of this paper, performed on the
XQ-100 sample of QSO spectra. In the last subsection, we discuss
the way to obtain the estimate of the errors on the flux power
spectrum bins.

4.1 Power spectrum results on synthetic data

First, we apply the data analysis procedure to the synthetic catalogue
5000 QSO spectra in order to test for possible systematic effects in
our analysis. By using a larger number of QSO spectra, we hope
to beat down the statistical fluctuations and proclaim the deviations
that remain as systematic errors.

The measurements of the mean flux on synthetic data are pre-
sented in Fig. 3. The input mean flux with which we have calibrated
the simulation outputs is plotted in full black line (BOSS 2013 –
Palanque-Delabrouille et al. 2013). Red points with error bars are
measurement from the data analysis procedure presented in this pa-
per. The results agree well with the input version and suggests no
important systematic effects are present in this measurement. The
analysis was also repeated on a synthetic catalogue with only 100
QSOs. The results are plotted in green in Fig. 3, and agree well
with the 5000 QSO spectra sample. Note however that the error
bars are very similar, and that is because they are dominated by the
variance of flux fluctuations. As a comparison, Fig. 3 also shows
observed flux from two other surveys (Kim et al. 2007 and Becker
et al. 2013; Viel et al. 2013a) on a different sample of measured real
data spectra.

Figure 3. The mean transmitted flux as obtained from the synthetic data.
In red, we show results using 5000 mock QSO spectra and using 100 mock
QSO spectra (in blue). In black, we plot the standard observational results by
Kim et al. (2007, dashed), Becker et al. (2013, dot–dashed) and Palanque-
Delabrouille et al. (2013, full line). The input to the mocks was the BOSS
mean flux. The data points are shifted in redshift (by 0.01) to be readily
distinguishable.

Figure 4. The flux power spectrum measured on the synthetic data for 5000
(full lines) and 100 (dashed lines) QSO spectra is shown. The three colours
correspond to three (out of seven measured) redshift bins: z = 3.0 (red),
z = 3.6 (blue) and z = 4.2 (green). The dotted lines correspond to the power
spectrum extracted from a simulation at that redshift. The error bars are
evaluated using bootstrap method (see Section 4.4 for details).

Next, the data analysis was tested on the measurements of the
flux power spectrum. Fig. 4 shows the results as a function of
scale (k) for three redshift bins (z = 3.0 – red, z = 3.6 – blue
and z = 4.2 – green). The full lines represent the measurements
performed on the synthetically generated spectra as described in
Section 2.2. For comparison, we show the flux power spectrum
obtained by measuring it directly on the simulation output at the
specified redshifts (using 5000 lines of sight), without going through
the construction procedure of the synthetic data (dotted lines). The
departures from the input power spectrum at large scales are due to
insufficient number of lines-of-sight probing those scales. This is
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Figure 5. The ratio between flux power spectrum measured from the syn-
thetic data (mock 5000) and the input simulation power spectrum is reported.
The colours again correspond to three redshift bins (red – z = 3.0, blue –
z = 3.6 and green – z = 4.2). Different line styles correspond to different as-
sumptions when generating synthetic data as well as different data analysis
steps taken: PN – whether noise is added to the synthetic data, R – whether
resolution/pixel width were added; P(k, R) – whether in the data analysis
resolution was corrected and −PN whether noise was subtracted (see the
text for details).

apparent from looking at the dashed line in Fig. 4, where the same
analysis is performed on only 100 QSO spectra.

However, there are still some fluctuations present at smaller scales
that persist even when increasing the number of QSO spectra in our
analysis of the synthetic data. Fig. 5 shows in greater detail the
ratio between the recovered flux power from the synthetic data and
simulation power spectrum at those redshifts. The three colours still
represent three redshift bins, but different line style shows different
tests done in either the construction of the mock data or the data
analysis procedure.

The dashed coloured lines (Fig. 5) show the effect of not cor-
recting for the pixel width. The lines show the recovered power
spectrum from the mocks, where no noise has been added (PN = 0)
and no convolution with the resolution element has been performed
(R = ∞). No corrections to noise, resolution or pixel width were
added when extracting the flux power from the mocks. The ratio is
different from unity because in the synthetic data the spectra were
rebinned using XQ-100 wavelength bin size, while the flux power
spectrum from simulations was computed using much finer binning.

The dotted lines (Fig. 5) show the effect of not correcting for the
resolution element. The lines show the recovered power spectrum
from the mocks with no noise (PN = 0), but spectra were convolved
with a Gaussian kernel with a resolution element R (see Section 2.2).
However, no correction to the resolution was made in the data
analysis. Comparing with dashed lines, properly correcting for the
resolution has much bigger impact on the recovered flux power than
correcting for the pixel width.

Additional tests were performed, where both noise (PN �= 0)
and resolution (R) were added to the synthetic data, and while the
data analysis corrected for the resolution element, no correction
to the noise was added (dot–dashed coloured lines in Fig. 5). Not
correcting for the noise clearly introduces spurious power on small
scales that increases rapidly, while large scales remain unaffected.

The last test (full lines in Fig. 5) shows the effect of correcting the
resolution element with slightly wrong value. We assume that our

Figure 6. The mean transmitted flux measured on the XQ-100 data sample
(red points) using the data analysis and cuts as described in Sections 3
and 2.1. As a comparison, we also plot results for mean flux from Palanque-
Delabrouille et al. (2013, full black line) and extrapolated values from Kim
et al. (2007, dashed black line). The error bars on the mean flux were taken to
be from the bootstrap covariance matrix. We also compare our results to the
mean flux measurements by Becker et al. (2013, blue points). The difference
comes from different continua estimation (see the text for details).

knowledge of the (synthetic) data resolution element is of the order
of few km s−1 (or roughly 10 per cent). Both noise and XQ-100 pixel
width were used in the construction of the mock sample, and both
were as well corrected for in the power spectrum estimation. How-
ever, the effect of misestimating the resolution element translates
into wrong power spectrum recovery on small scales. Deviations of
the flux power spectrum on small scales (k ∼ 0.05 km−1 s) are of
order of 5–10 per cent.

On large scales, tests agree nearly perfectly with each other, which
indicates that the fluctuations there are specific to the data set not
the data-analysis routine, and thus of statistical nature. However, on
smaller scales the difference to the simulation power is interpreted
as correcting for slightly wrong values of resolution element or
pixel width (where resolution carries more weight). The differences
are again of the same order of magnitude (5–10 per cent) at the
small-scale end of our measurements. Additional cause of these
differences might be that no correction has been made in the analysis
regarding the aliasing of small scales approaching Nyquist scale.
To account for these systematic effects in our data analysis, we use
the results shown in full lines in Fig. 5 to determine the systematic
errors. The absolute difference between the models shown in Fig. 5
(full lines) and the reference line of unity was used as a systematic
error standard deviation.

4.2 Lyman α flux power spectrum from XQ-100 sample

This section contains the main results of the data analysis of the
XQ-100 data sample. First, we present the measurements of the
mean transmitted flux as a function of redshift, in Fig. 6. The error
bars were obtained using the method described in Section 3.3. As a
comparison, we also plot mean flux fitting formulas from Palanque-
Delabrouille et al. (2013) and Kim et al. (2007). The mean flux
measurements of XQ-100 data agree well with Kim et al. (2007) up
to redshift around 3.8. The line for Kim et al. (2007) plotted in this
paper is in fact an extrapolation of the fitting formula performed
on lower redshift QSO spectra (z < 3). However, comparing it to

MNRAS 466, 4332–4345 (2017)



4338 V. Iršič et al.

Figure 7. The flux power spectrum measurements of the XQ-100 data sample (circles). Full data analysis procedure described in Section 3 was applied, as
well as all the cuts to the data presented in Section 2.1. We have also subtracted the metal power spectrum (see Section 4.3). The error bars used in this plot
are a squared sum of both statistical errors (from bootstrap matrix estimation) and systematic errors (see Section 4.1). As a comparison measurements from
Palanque-Delabrouille et al. (2013, dots) and Viel et al. (2013a, black triangles) are also plotted.

our results, it seems to be valid even at higher redshifts. The differ-
ence in mean flux normalization between our results and Palanque-
Delabrouille et al. (2013) is probably due to different continuum
fitting procedures. In Fig. 6, we also compare to the results of the
mean transmitted flux of Becker et al. (2013). The difference is
mainly due to different continuum fitting. Moreover, the results by
Becker et al. (2013) presented in this paper were rescaled to match
lower redshift measurements by Faucher-Giguère et al. (2008). Our
data lack the sufficiently low redshifts (z = 2–2.5) to be used as
rescaling of the results by Becker et al. (2013).

The most important result of our paper is present in Fig. 7. The
figure shows the flux power spectrum, measured on the XQ-100
sample of QSO spectra, as a function of scale for three redshift bins
from our analysis. All the steps from the data analysis procedure
were performed in order to obtain the flux power values presented
in this plot (see Table A1 for full sample of measurements). We
have also subtracted the metal power spectrum, measured within
the same data sample and extrapolated to lower redshifts (see Sec-
tion 4.3). As a comparison, the measurements of the BOSS 2013
analysis are also plotted (Palanque-Delabrouille et al. 2013) as well

as overlapping redshift from high-redshift measurements (Becker
et al. 2013). Since XQ-100 data sample only has 100 QSO spec-
tra, the flux power cannot be measured at scales as large as BOSS
analysis could. However, as predicted, due to higher resolution and
signal to noise, smaller scales are measured. The error bars of the
flux power used in this plot were estimated using a bootstrap co-
variance matrix of the data itself (see Section 4.4 for details) as
well as the systematic errors estimation using the method described
in Section 4.1. The XQ-100 flux power spectrum measurements
presented in this paper also agree remarkably well with the high-
redshift measurements.

4.3 Metal flux power spectrum

The flux power spectrum measured in this paper using the data
analysis presented in Section 3 contains the power coming from
both Lyα forest (predominantly) as well as a small contamination
from the metals.

Typically one can estimate the metal power spectrum in the
QSO spectra redwards of the Lyα emission line, where only metal
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Figure 8. (a) The metal power spectrum measured in the restframe redshift range of 1268–1380 Å for three redshift bins: z = 3.8 (red), z = 4.0 (blue) and
z = 4.2 (green). Measurements of metal power spectrum by McDonald et al. (2005, dot–dashed lines) and Palanque-Delabrouille et al. (2013, dashed lines) are
also plotted. (b) The measurements of the metal power spectrum as a function of redshift, for three different k-modes: k = 0.003 km−1 s (red), k = 0.006 km−1 s
(blue) and k = 0.012 km−1 s (green). The dashed lines show the result by Palanque-Delabrouille et al. (2013). Previous measurements of metal power (dashed
lines) indicate that the redshift dependence can be approximated as roughly constant for each k-mode. Dotted lines show our result of such an approximation,
which is also used to extrapolate Pm(k, z) to lower redshift bins.

absorption is present (McDonald et al. 2005). The absorption due
to metals is coming from mostly lower redshifts, but if unidentified
it contaminates the higher redshift Lyα forest. It is thus further as-
sumed that the metal fluctuations are uncorrelated with the real Lyα

signal, and that one can remove the effect of the metals by subtract-
ing their power spectrum from the measured one. If higher accuracy
is desired, further corrections can be added to this approach (Iršič
& Slosar 2014).

However, to measure the power spectrum redwards of the Lyα

emission line, for the same redshift range, where flux power in
the forest is measured, a secondary sample of lower redshift QSO
spectra is needed. Since XQ-100 data sample contains only 100
quasars at relatively high redshift, measurements of the metal power
spectrum could only be achieved for the higher redshift bins, as
shown in Fig. 8(a). To measure the power, we have adopted the
restframe wavelength range of 1268–1380 Å in each QSO spec-
trum. As is evident from Fig. 8(a), the results are slightly noisy
compared to the metal power estimated in Palanque-Delabrouille
et al. (2013).

To estimate the Lyα forest flux power for all redshifts, we have
performed a simple extrapolation of the metal power spectrum
measurements. For each k-bin, the value of metal power remains
roughly constant as a function of redshift in the measurements of
Palanque-Delabrouille et al. (2013). Using this information, we av-
eraged our Pm(k, z) over the three redshift measurements for each
k-bin and used this as an extrapolation to lower redshifts. This is
shown in Fig. 8(b). Even though such an approximation is very
rough, the value of Pm(k, z) is generally smaller or at best of the
same order as the statistical errors on our flux power spectrum
measurements.

To perform a more detailed analysis of the metal power spec-
trum, another sample of lower redshift quasars would be needed,
or individual metals contaminating the forest would need to
be identified. However, we believe that the results would not
change significantly and leave such a detailed analysis for future
studies.

4.4 Covariance matrix

To estimate the error bars on the flux power spectrum, the separate
QSO spectra contributions to the power spectrum were bootstrapped
by assuming each spectrum to be an independent measurement of
the flux power (Slosar et al. 2011, 2013; Iršič et al. 2013). We gener-
ated 1000 bootstrapped samples of the input data set and calculated
the corresponding bootstrap covariance matrix.

The method was applied first to the synthetic data sample, for
mean flux as well as flux power spectrum measurements. Fig. 9(a)
shows how the diagonal elements of the bootstrapped covariance
matrix (bootstrap variance) for the mean flux change as a function of
redshift. The relative error on the mean flux from bootstrapped sam-
ples is roughly constant. Different line styles correspond to using
100 or 1000 bootstrap samples, and the differences are small. Two
colour schemes (magenta and green) correspond to estimating the
error bars on a mock 100 or 5000 catalogues. The ratio between the
two estimations is exactly

√
NQ(mock 5000)/

√
NQ(mock 100),

meaning that the variance scales as expected with the number of
QSO spectra in the sample (∼1/

√
NQ). In red, we plot the estimates

of the mean flux error bars coming from the integrals over the full
(signal + noise) power spectra at each redshift bin.

Same analysis test was performed also on the flux power spectrum
variance estimation, as shown in Fig. 9(b). Full lines and dot–dashed
lines correspond to the bootstrapped samples of mock 100 and mock
5000 QSO spectra, respectively. The scaling of the variance holds
in this case as well. In dashed lines, we show the estimation of the
systematic errors on the mean flux (see Section 4.1).

The full bootstrap covariance matrix of the flux power spectrum
is shown in Fig. 10. The plots correspond to the analysis done on
mock 5000 (Fig. 10a) and mock 100 (Fig. 10b) synthetic quasar
catalogues. The covariance matrix in the plots was normalized (i.e.
what is shown is Cij /

√
CiiCjj ) so that the structure is readily dis-

cernible. Within one redshift bin the correlations between different
k-bins are largely uncorrelated, with small correlation growing from
large to small scales. However, the correlations between adjacent
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Figure 9. (a) The estimation of relative variance on the mean flux measurements of the synthetic data sample. In red is shown the variance obtained through
our data analysis (see Section 3.3), while magenta and green colours present the 1000 bootstrapped variance of mock 100 and 5000 QSO spectra sample,
respectively. Dashed lines show the corresponding variance when only 100 bootstrap samples were used. (b) The estimation of the relative variance on the flux
power spectrum measurements of the synthetic data sample. Three colours correspond to three redshift bins: red – z = 3.0, blue – z = 3.6 and green – z = 4.2.
Full and dot–dashed lines show the results obtained on mock 100 and 5000 QSO spectra samples, respectively (both with 1000 bootstrap samples). In dotted
lines, the estimation of the systematic error is shown.

Figure 10. The error correlation matrices of the flux power spectrum (Cij /
√

CiiCjj ). Fig. (10a) corresponds to the analysis done on 5000 synthetic spectra,
and Fig. (10b) to the analysis on only 100 synthetic spectra. The structure of the plot is that within each labelled redshift bin, the k-bins follow in increasing
order. See the text for details.

redshift bins are quite large. This is a spurious result of the way
synthetic data are generated since up to two simulation snapshots
with successive redshift span roughly the size of one redshift bin in
the measurements. The structure remains basically the same (albeit

noisier) when comparing the results obtained on only a 100 QSO
spectra.

Finally, the same scheme was adopted on the XQ-100 sample,
and the results of the bootstrap covariance matrix are shown in
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Figure 11. The error correlation matrix (Cij /
√

CiiCjj ) of the flux power
spectrum measurements of the XQ-100 sample. See the text for details.

Fig. 11. The correlation matrix is somewhat noisy, which is to be
expected comparing to the analysis with the varying number of
input spectra performed on the synthetic data. The correlations with
adjacent redshift bins are negligible.

Previous studies have shown that bootstrapped covariance ma-
trix underestimates the variance elements of the matrix by roughly
10 per cent (Kim et al. 2004; Busca et al. 2013; Iršič et al. 2013;
Palanque-Delabrouille et al. 2013; Slosar et al. 2013). To compen-
sate for that in order to achieve a conservative estimation of the
error bars, the full bootstrapped covariance matrix was multiplied
by a factor of 1.1.

4.5 Continuum errors

Since the absorption of the IGM at higher redshift becomes stronger,
it becomes hard to provide an objective estimate of the continuum
levels, due to inability to find transmission regions in the Lyα forest.
Most attempts in the literature regarding this issue assume that either
the quasar intrinsic emission in the Lyα forest region is unchanging
from quasar to quasar and with redshift, or they model it on a quasar-
by-quasar basis (Kim et al. 2004; McDonald et al. 2005; Busca
et al. 2013; Iršič et al. 2013; Palanque-Delabrouille et al. 2013;
Slosar et al. 2013; Viel, Schaye & Booth 2013b).

Nevertheless, the discussions and analysis on the topic in the liter-
ature agree that a change in the normalization of the continuum level
in the Lyα forest is perfectly degenerate with the mean transmitted
flux estimations. On the other hand, any large-scale modulations of
the continuum affect the measurements of the correlations within
the forest, but when working in Fourier space, they are confined to
large scales.

To estimate the possible contamination of the continuum power
leaking into the flux power spectrum, we perform a measurement
of the bare continuum fits, as if they were representing fluctuat-
ing absorption features of the Lyα forest. This would be equivalent
to averaging the continua over all the lines of sight, to obtain an
average and a statistical description of its fluctuations. Such an ap-

Figure 12. This figure shows the levels of the leaking continuum power
spectrum into the total measured Lyα forest power spectrum (dot–dashed
lines). Compared to the statistical (and systematic) errors evaluated in the
previous sections of this paper (dashed lines), uncertainties due to continuum
fitting are small on the measurements of the power spectrum. The full forest
flux power and the power spectrum of the noise are shown as a comparison
(full lines and dotted lines, respectively). The three colours represent three
redshift bins: z = 3.0 (red), z = 3.6 (blue) and z = 4.2 (green).

proach is a valid approximation in the limit for which we assume
that all quasar continua follow the same shape (but different nor-
malization due to different overall observed fluxes). The results of
this simple model are shown in Fig. 12. The figure shows the con-
tinuum power spectra for three different redshift bins (dot–dashed
line), compared to the levels of the statistical errors (dashed line)
on the measurements of the flux power (full line).1 The contin-
uum power spectra show a plateau-like feature towards smaller
scales (k > 0.01 km−1 s), increasing in power towards large scales
(k < 0.01 km−1 s), as expected from previous analysis. The level of
the continuum power leaking into the total forest flux power is thus
very small, indeed it is comparable to the estimated noise power
(dotted line).

While we do not use this approach in our standard analysis,
it convinces us that the systematic errors due to the continuum
estimation that would result into increased uncertainties on very
large scales are much smaller than the statistical and systematic
errors on our measurements and can thus be neglected. We caution
that this is a simple estimation, and valid only for the data presented
in this paper.

5 C O N C L U S I O N S

In this paper, we have performed an Lyα flux power spectrum
analysis on the XQ-100 sample of 100 medium resolution, medium
signal-to-noise QSO spectra in the redshift range 3.5 < z < 4.5
(López et al. 2016). The results are shown in Fig. 6 for the mean flux
measurements, in Fig. 7 for the flux power spectrum measurements
and in Fig. 11 for the estimation of the error correlations of the flux
power.

The resulting mean transmitted flux is in good agreement with
previously measured mean flux by Kim et al. (2007) at lower

1 The systematic errors estimated in Section 4.1 are comparable to the sta-
tistical errors, and are not shown in this figure.
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redshifts. The redshift dependence shows slight deviations from
the fitting formula in the Kim et al. (2007) paper at the higher
redshift end, but it is still within 1σ–2σ discrepancy.

Measurements of the flux power spectrum cover the range of
z = 3.5–4.2 in seven redshift bins and k = 0–0.06 km−1 s in 20
k-mode bins. The results agree well with the expectations that de-
spite a small sample of QSO spectra, the higher values of spec-
tral resolution and signal-to-noise ratio allow for measurements of
smaller scales than a large QSO number survey such as SDSS-
III/BOSS (Dawson et al. 2013). The total error bars on our mea-
surements (combined statistical and systematic) are of the same
order as those in BOSS analysis, specifically on small scales
(k > 0.01 km−1 s). At higher redshifts (z > 3.6), our error bars
are even smaller by more than 50 per cent.

In the final analysis, the official (and publicly available) XQ-100
Legacy Survey continuum fits were used. To consistently measure
the mean flux (and flux power), a simultaneous measurement of the
quasar continua should be performed. However, wrong estimation
of the continuum levels would result in a slight change of normal-
ization in the mean flux, while any long-range modulations of the
continuum are absorbed into large-scales k-bins in the PF(k) mea-
surements – and thus will not change the results on the medium to
small scales this experiment probes.

Since many QSO spectra in the sample feature a DLA, these
strong absorption system affect the flux power. In the current analy-
sis, we have simply removed the pixels within 1.5 of the DLA equiv-
alent width around the DLA central absorption redshift. However,
with a more careful analysis DLA component could be removed
from the spectra and thus additional wavelength ranges could be
potentially added to the flux power spectrum analysis to increase
the final signal to noise in the PF(k) measurements. However, since
the effect on the flux power seemed to be small and only affected
large-scale k-bins, a simpler approach was adopted in the final anal-
ysis of the data.

Through the use of a realistic synthetic QSO spectra sample, an
estimation of the systematic error of our data analysis was obtained.
However, for the larger part the systematic error bars are below the
statistical errors, obtained through bootstrapping the data sample.
This is valid at least in the probed k-mode range. At larger scales,
additional contribution to systematic errors is introduced due to
imperfect continuum fitting, while at small scales imperfect de-
convolution of the resolution/pixel width contribution introduces
significant obstacles. Last but not least, a Fourier Transform analysis
also introduces aliasing on small scales that is difficult to correct
for. For that reason, such small scales (just below Nyquist k-mode)
were not measured in the data analysis presented in this paper. We
leave such corrections to subsequent analysis.

Due to lack of lower-redshift quasars in the XQ-100 sample, the
contaminating metal power in the Lyα forest was only measured
in three highest redshift bins (z = 3.8–4.2). A simple and rough
extrapolation was used to obtain an estimate of the metal power
at smaller redshifts. A separate study could be used to address
this issue. We also point out that if the metal power spectrum is
measured sufficiently accurately at all redshifts, additional second-
order corrections are known to be necessary to recover the Lyα

forest flux power (Iršič & Slosar 2014).
The results on the flux power spectrum presented in this paper

have a great potential in putting additional constraints on the cosmo-
logical parameters, as the measurements stretch between large and
small scales, probed respectively by low-resolution large-quasar
number surveys, and a few high-resolution, high signal-to-noise
QSO spectra. The power in these intermediate scale range is sen-

sitive to the small-scale properties of the dark matter, as well as to
reionization epoch through the Jeans scale measurements.
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APPENDI X A : TABLE – MEASURED LYα F L U X
POWER SPECTRU M

The last column PF(k, z) shows the total measured flux power
spectrum, while the third column shows our estimate of the Lyα

forest power spectrum Pα(k, z), where we have subtracted the
extrapolated metal power spectrum. The second-to-last column
is measured metal power spectrum, with a dash where no data
could be measured within the XQ-100 data set. Statistical errors
(σ stat) were obtained using bootstrap covariance matrix on the
data. The systematic errors were obtained through analysis on
synthetic data (see Section 4.1). The flux power spectrum and
its covariance matrix can be obtained from the following link:
http://adlibitum.oats.inaf.it/XQ100survey/Data.html

Table A1. Measured Lyα flux power spectrum from XQ-100 data sample. All power spectrum (and error)
columns are in [km s−1] units. The scale k is in (km−1 s) units. The columns are: mean redshift and scale of the
power spectrum bin, estimated Lyα forest flux power, measured metal and total flux power, as well as statistical
and systematic errors.

z k (km−1 s) Pα(k, z) (km s−1) σ stat (km s−1) σ sys (km s−1) Pm(k, z) (km s−1) PF(k, z) (km s−1)

3.0 0.003 39.6936 3.47799 2.96111 – 41.3668
3.0 0.006 26.9847 2.59723 0.740328 – 27.7626
3.0 0.009 20.7667 2.01472 0.197852 – 21.6864
3.0 0.012 20.5633 2.13739 0.518419 – 21.3302
3.0 0.015 17.4999 1.67476 0.077641 – 18.1371
3.0 0.018 13.3093 1.55476 0.0705116 – 13.6733
3.0 0.021 12.8818 1.28926 0.677582 – 13.1812
3.0 0.024 8.42079 0.843842 0.0403608 – 8.85882
3.0 0.027 8.65179 0.952071 0.297344 – 9.03964
3.0 0.03 7.11185 0.663833 0.251926 – 7.34621
3.0 0.033 6.34019 0.478553 0.14305 – 6.52495
3.0 0.036 5.38066 0.516292 0.293888 – 5.68213
3.0 0.039 5.84972 0.684576 0.190915 – 6.11011
3.0 0.042 3.9562 0.41663 0.263036 – 4.11763
3.0 0.045 4.0884 0.375191 0.0865709 – 4.21108
3.0 0.048 3.299 0.357229 0.232406 – 3.47645
3.0 0.051 3.00056 0.234432 0.217284 – 3.15771
3.0 0.054 2.41408 0.268641 0.517127 – 2.55463
3.0 0.057 2.30919 0.167658 0.483684 – 2.38873
3.2 0.003 50.5538 3.76044 3.48715 – 52.227
3.2 0.006 36.6106 2.45683 4.6167 – 37.3885
3.2 0.009 29.5313 1.86716 0.141733 – 30.451
3.2 0.012 23.1562 1.58399 0.42266 – 23.9231
3.2 0.015 17.56 1.14134 0.822192 – 18.1972
3.2 0.018 15.714 0.856297 1.42563 – 16.078
3.2 0.021 14.8417 1.04861 0.526579 – 15.1411
3.2 0.024 12.6287 1.02804 0.626563 – 13.0667
3.2 0.027 10.3106 0.762546 1.31213 – 10.6985
3.2 0.03 9.74955 0.807138 0.638237 – 9.98391
3.2 0.033 8.73696 0.571104 1.07065 – 8.92172
3.2 0.036 7.87109 0.607356 0.299586 – 8.17256
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Table A1 – continued

z k (km−1 s) Pα(k, z) (km s−1) σ stat (km s−1) σ sys (km s−1) Pm(k, z) (km s−1) PF(k, z) (km s−1)

3.2 0.039 7.55867 0.554116 0.14941 – 7.81906
3.2 0.042 6.41257 0.379081 0.193592 – 6.574
3.2 0.045 5.253 0.384992 0.0941316 – 5.37568
3.2 0.048 4.63914 0.336089 0.127258 – 4.81659
3.2 0.051 4.2735 0.306388 0.295822 – 4.43065
3.2 0.054 3.775 0.236653 0.220056 – 3.91555
3.2 0.057 3.25205 0.183355 0.281402 – 3.33159
3.4 0.003 54.6488 3.67166 1.31521 – 56.322
3.4 0.006 45.1101 2.37959 2.05999 – 45.888
3.4 0.009 33.6866 1.90515 1.59619 – 34.6063
3.4 0.012 29.4042 1.83353 1.34494 – 30.1711
3.4 0.015 22.2285 1.22494 0.165127 – 22.8657
3.4 0.018 21.4314 1.21646 1.31261 – 21.7954
3.4 0.021 18.3216 1.12336 0.561181 – 18.621
3.4 0.024 16.861 1.0669 0.458334 – 17.299
3.4 0.027 13.1393 0.752371 0.199968 – 13.5272
3.4 0.03 12.1581 0.747101 1.47473 – 12.3925
3.4 0.033 10.8306 0.739907 0.217761 – 11.0154
3.4 0.036 9.94063 0.65352 0.439429 – 10.2421
3.4 0.039 8.85191 0.541132 0.149585 – 9.1123
3.4 0.042 7.06202 0.441117 0.406511 – 7.22345
3.4 0.045 7.21777 0.520931 0.0199403 – 7.34045
3.4 0.048 6.5484 0.394166 0.0315864 – 6.72585
3.4 0.051 5.54113 0.357655 0.00463702 – 5.69828
3.4 0.054 5.33921 0.318303 0.279183 – 5.47976
3.4 0.057 4.79408 0.294146 0.180972 – 4.87362
3.6 0.003 64.6285 3.93553 0.572105 – 66.3017
3.6 0.006 46.3763 2.77871 0.391996 – 47.1542
3.6 0.009 44.561 2.92414 0.369775 – 45.4807
3.6 0.012 33.4982 2.30848 1.55865 – 34.2651
3.6 0.015 27.2763 1.57973 0.76344 – 27.9135
3.6 0.018 24.5006 1.58857 0.619505 – 24.8646
3.6 0.021 19.7668 1.17869 0.187915 – 20.0662
3.6 0.024 20.2644 1.47368 0.144347 – 20.7024
3.6 0.027 16.3306 0.943949 0.911005 – 16.7185
3.6 0.03 14.6182 0.837248 1.03125 – 14.8526
3.6 0.033 11.5936 0.729936 0.218077 – 11.7784
3.6 0.036 11.0542 0.663244 0.0259277 – 11.3557
3.6 0.039 9.13545 0.561005 0.137402 – 9.39584
3.6 0.042 8.65139 0.547743 0.221311 – 8.81282
3.6 0.045 7.84233 0.545822 0.572906 – 7.96501
3.6 0.048 7.07895 0.429794 0.330696 – 7.2564
3.6 0.051 7.29084 0.450913 0.471224 – 7.44799
3.6 0.054 5.97605 0.38174 0.574253 – 6.1166
3.6 0.057 5.35158 0.386213 0.466262 – 5.43112
3.8 0.003 94.9659 4.78048 3.15856 2.20798 97.1739
3.8 0.006 64.7637 5.17604 1.52262 0.618829 65.3825
3.8 0.009 51.1572 3.0288 0.770617 1.01263 52.1698
3.8 0.012 41.4319 3.02359 1.43161 0.710195 42.1421
3.8 0.015 35.5927 2.77421 0.320939 0.757387 36.3501
3.8 0.018 31.0847 2.22233 0.209592 0.44708 31.5318
3.8 0.021 26.1317 1.57351 0.170671 0.3575 26.4892
3.8 0.024 20.8432 1.57842 0.266877 0.55192 21.3951
3.8 0.027 18.3734 1.34587 0.00462213 0.558363 18.9318
3.8 0.03 15.6996 1.15623 0.621457 0.335736 16.0353
3.8 0.033 14.5548 0.924196 0.209155 0.192244 14.747
3.8 0.036 11.8421 0.884394 0.360085 0.433281 12.2754
3.8 0.039 10.5212 0.661361 0.370649 0.301957 10.8232
3.8 0.042 10.3815 0.811933 0.326826 0.18257 10.5641
3.8 0.045 9.4877 0.582263 0.466667 0.15454 9.64224
3.8 0.048 8.20416 0.531247 0.412172 0.211622 8.41578
3.8 0.051 6.52915 0.466894 0.355527 0.193798 6.72295
3.8 0.054 6.01328 0.467307 0.530194 0.195322 6.2086
3.8 0.057 5.25984 0.430496 0.592233 0.0734851 5.33333
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Table A1 – continued

z k (km−1 s) Pα(k, z) (km s−1) σ stat (km s−1) σ sys (km s−1) Pm(k, z) (km s−1) PF(k, z) (km s−1)

4.0 0.003 111.399 10.3519 3.8603 0.8259 112.225
4.0 0.006 68.0376 5.04346 2.3163 0.517393 68.555
4.0 0.009 52.8667 5.3455 1.82327 0.570465 53.4372
4.0 0.012 48.6669 4.45016 4.65906 0.535946 49.2028
4.0 0.015 41.833 3.42083 1.51375 0.394923 42.2279
4.0 0.018 29.9528 2.45372 0.581078 0.222861 30.1757
4.0 0.021 33.2897 2.75049 0.120818 0.18742 33.4771
4.0 0.024 28.6796 2.3593 0.771985 0.3025 28.9821
4.0 0.027 24.4995 2.33264 0.69748 0.242358 24.7419
4.0 0.03 21.8006 1.87943 0.592556 0.124732 21.9253
4.0 0.033 16.7224 1.48355 1.90312 0.118568 16.841
4.0 0.036 14.9103 1.3448 0.560797 0.159498 15.0698
4.0 0.039 14.4875 1.30919 0.113916 0.175863 14.6634
4.0 0.042 12.0117 1.05231 1.13926 0.0995424 12.1112
4.0 0.045 10.2184 0.786477 1.02756 0.0734334 10.2918
4.0 0.048 9.49697 0.662276 0.727909 0.126871 9.62384
4.0 0.051 8.66586 0.707745 0.91366 0.113339 8.7792
4.0 0.054 6.85466 0.612431 1.1111 0.0813378 6.936
4.0 0.057 7.21086 0.630264 1.21433 0.0649048 7.27576
4.2 0.003 112.535 20.2444 3.0241 1.98573 114.521
4.2 0.006 96.4383 8.39488 11.2881 1.19746 97.6358
4.2 0.009 80.4612 7.55641 0.560461 1.17602 81.6372
4.2 0.012 45.9185 4.27574 0.427649 1.05457 46.9731
4.2 0.015 43.2432 6.7416 0.597927 0.759341 44.0025
4.2 0.018 40.3104 3.4052 1.07437 0.421928 40.7323
4.2 0.021 34.65 3.52365 0.21666 0.353345 35.0033
4.2 0.024 26.8387 3.50562 0.139405 0.459671 27.2984
4.2 0.027 29.9342 3.90649 1.88457 0.362843 30.297
4.2 0.03 22.545 2.20596 1.55529 0.242615 22.7876
4.2 0.033 20.9133 2.19605 1.34463 0.243462 21.1568
4.2 0.036 15.9715 2.35841 0.167869 0.311622 16.2831
4.2 0.039 15.0499 2.78053 0.550652 0.303354 15.3533
4.2 0.042 14.0982 2.00849 0.926213 0.202175 14.3004
4.2 0.045 11.7465 1.52352 1.77379 0.140056 11.8866
4.2 0.048 9.48362 1.33956 1.18794 0.193858 9.67748
4.2 0.051 8.204 1.17976 0.772654 0.164307 8.36831
4.2 0.054 8.31223 0.855154 1.44071 0.144993 8.45722
4.2 0.057 7.77377 0.888949 1.9529 0.100243 7.87401
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