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Abstract 
This paper extends the overview (Baker et al. [2], Mitchell et al. [10]) relating graphic statics and 
reciprocal diagrams to linear algebra-based matrix structural analysis. Focus is placed on infinitesimal 
mechanisms, both in-plane (linkage) and out-of-plane (polyhedral Airy stress functions). Each self-
stress in the original diagram corresponds to an out-of-plane polyhedral mechanism. Decomposition 
into sub-polyhedra leads to a basis set of reciprocal figures which may then be linearly combined. 
This leads to an intuitively-appealing approach to the identification of states of self-stress for use in 
structural design, and to a natural “structural algebra” for use in structural optimisation. 
 
A 90° rotation of the sub-reciprocal generated by any sub-polyhedron leads to the displacement 
diagram of an in-plane mechanism. Any self-stress in the original thus corresponds to an in-plane 
mechanism of the reciprocal, summarised by the equation s = M* (where s is the number of states of 
self-stress in one figure, and M* is the number of in-plane mechanisms, including rigid body rotation, 
in the other). Since states of self-stress correspond to out-of-plane polyhedral mechanisms, this leads 
to a form of “conservation of mechanisms” under reciprocity. 
   
It is also shown how external forces may be treated via a triple-layer Airy stress function, consisting 
of a structural layer, a load layer, and a layer formed by coordinate vectors of the structural perimeter.  
 
Keywords:  Airy’s stress function, dual structures, graphic statics, Maxwell, mechanisms, projective 
geometry, reciprocal diagrams, reciprocal figures, self-stress, truss 

1. Introduction 
This paper describes connections between the linear algebra approach to structural analysis and the 
methods that arise from reciprocal diagrams and graphic statics. Although this involves linear algebra, 
graph theory, Airy stress functions, polyhedra and projective geometry, the intention is to extend 19th 
century graphical techniques to create simple methods for structural design, yet which may even 
address problems difficult by standard approaches. In this paper, we restrict attention to 2D trusses. 
Linear structural analysis can be summarised as solving P= KU, where the (square, symmetric) 
stiffness matrix K, assembled element-wise from member stiffnesses and known structural geometry, 
relates nodal displacements U to nodal forces P. The approach underlies most structural finite element 
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software used in practice. The matrix approach was strengthened by Calladine [4], Pellegrino [11] and 
others, where the decomposition BEA=K (where B,E,A are the equilibrium, elasticity and 
compatibility matrices) allows Singular Value Decomposition to reveal the subspace structure of the 
possibly-rectangular matrices B or A (Mitchell et al. [10]). This allows clear separation of equilibrium 
into a statically-determinate case plus a linear combination of states of self-stress, with displacements 
similarly decomposed into those associated with mechanisms and those involving bar extension. 
Problems with inverting possibly singular stiffness matrices can thereby be avoided, but – perhaps 
more importantly – it foregrounds how the finite element solution of a statically-indeterminate 
structure is only one of an infinite number of possibilities, a recognition which underpins lower bound 
plastic design of ductile structures (Calladine [5]). Fig. 1 shows how linear algebra relates (external, 
nodal) displacements U and forces P to (internal, member) extensions V and tensions Q.  Static-
kinematic duality is embodied in the relation A= BT.  

 
Figure 1: Schematic illustration of P=KU (when V0 = 0) with the decomposition BEA=K, showing 

how subspace accountancy requires 2n-m-3 = b-s.  

As described in Mitchell et al. [10], if (and only if) the truss is the projection of a polyhedron, then a 
reciprocal diagram can be drawn, this being the projection of the dual polyhedron. Diagrams can have 
bars parallel or perpendicular to corresponding forces, the latter convention being adopted here. Even 
though diagrams are 2D, that they are projections of dual polyhedra means the rules of 3D projective 
geometry apply, with (points, lines, planes) in one mapping to (planes, lines, points) in the other. 
Fig. 2 relates reciprocal diagrams to the linear algebra framework. Nodal coordinates R = [X,Y] and 
bar vectors L = [Lx, Ly] are now included. Reciprocal objects are denoted by an asterisk.  Since there 
are now two structures, original and reciprocal, there are two Fig. 1 diagrams at left and right. Along 
the base of the diagram, reciprocity is represented by the identities between the states of self-stress of 
one and the bar lengths of the other. The tension coefficients β and β*= β-1 of Rigidity Theory connect 
bars L with self-stress forces Qh within each structure. 
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Figure 2: The relationship between reciprocal diagrams and the linear algebra description of structural 

analysis. The linear algebra framework for the original structure (Fig. 1) appears centre left. 

Drawing the original structure as a directed graph, its incidence matrix C gives the connectivity. We 
call C the bar-node matrix, and its elements are 1,-1 or 0. The equation L= CR represents how bar 
vectors L are the difference between the coordinates R of the bar end nodes. Since the force Pi applied 
at node i is the sum of the forces Q in bars connecting to that node, it follows that P=CTQ, and we call 
CT the node-bar matrix. A second matrix, J, the face-bar matrix, lists the bars forming the edges of 
each face of the polyhedron whose projection gives the original structure. Again, its elements are 1,-1 
or 0, with the sign given by the bar direction (as contained in C) relative to the oriented area of that 
face. We call its transpose JT the bar-face matrix. Elementary considerations show that JC=0, a 
matrix of zeros. That (JC)X=0 for any X corresponds to the sum of bar length x-components Lx = CX 
being zero around the closed loop defined by any row of J. The node-face duality of 3D projective 
geometry immediately implies that the bar-node matrix C* of the reciprocal will be the bar-face 
matrix JT of the original. Similarly, we obtain J* = CT.  
Bar directions may be encoded via direction cosine matrices cx=diag(cos αx)=diag(Lx/L)= diag(CX/L) 
and cy=diag(CY/L). Writing applied forces as the 2n𝘹𝘹1 vector P=[Px;Py] then Px=CTQx=CTcxQ gives 
P = BQ = [CTcx; CTcy]Q, whence B = [CTcx; CTcy]. Note that writing P as 2n𝘹𝘹1or n𝘹𝘹2 is deeper than 
just computational book-keeping. In the usual linear algebra 2n𝘹𝘹1 form of P=BQ, the 2n𝘹𝘹b 
equilibrium matrix B contains both topological (C) and geometric (cx,cy) information, with Q a b𝘹𝘹1 
matrix of scalar bar forces. The reciprocal description uses the n𝘹𝘹2 form P=CTQ with the n𝘹𝘹b matrix 
CT containing only topological information. Geometric information is then contained in Q, which is 
now a b𝘹𝘹2 matrix of the components of bar force vectors. Whilst the subspace structures of B and A 
give information about self-stresses and mechanisms, those of C and J do not. (To simplify notation, 
the symbols P and Q have been used to denote both single and double column forms, with the 
meaning determined by context). 
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2. The vector space of states of self-stress 
A statically-indeterminate original structure has, in general, a family of reciprocal diagrams. If the 
original has s degrees of statical indeterminacy then there is an s-dimensional family of reciprocal 
diagrams forming an s-dimensional vector space.  For example, the structure in Fig.3 (based on 
Maxwell [9] Figs. 5/V, following Baker et al. [2]) is the projection of an octahedron. The outer 
triangle may be taken as the z = 0 base plane, and any point thereon can define the origin at which all 
normals will be based. The normal to the z=0 base plane intersects the reciprocal plane z=1 at the 
reciprocal origin (x*,y*,1) = (0,0,1). Since the outer nodes remain on the z=0 plane, there remain three 
free nodes {1,2,3}. Because the mesh is triangulated, these can be raised independently to form local 
pyramidal stress functions ψi. (Strictly, out-of-plane displacements generate polyhedra, whilst stress 
functions involve force units, but here we identify the two).  Origin-based normals to the pyramid 
faces define the nodes of the sub-reciprocal diagrams Qi on the z=1 plane. That these nodes can be 
raised independently forms the basis of the resulting vector space of reciprocal diagrams.  
Linear combinations of the  basis reciprocals can be created by raising the inner nodes simultaneously, 
creating the stress function ψ=h1ψ1+h2ψ2+h3ψ3 whose normals define the reciprocal diagram 
Q=h1Q1+h2Q2+h3Q3. In this case, the reciprocal is the projection of a (topological) cube, this being 
the polyhedral dual of the original octahedron. Each of the six faces of the cube is a four-bar linkage. 

 
Figure 3: Reciprocal basis diagrams from local Airy polyhedra. The original supports 3 independent 

local stress functions, linear combinations of which lead to more general reciprocals. Faces of the 
basis reciprocals Q1-3 appear triangular, yet are dual to original nodes of valency 4. In each case a 
fourth bar of zero length at the reciprocal origin (grey) connects nodes dual to those (white) faces 

outside the (coloured) zone of influence. Graphical construction of h1Q1+h2Q2+h3Q3 scales each basis 
reciprocal and adds vectors emanating from the (grey) origin to the nodes of appropriate colour. More 

elegantly, scaled stress functions are added (right), with face normals defining reciprocal nodes.  
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3. Mechanisms 
Reciprocal diagrams represent states of self-stress which form the null-space of the equilibrium matrix 
B of the original structure. Given that the compatibility matrix A=BT, it is unsurprising that 
reciprocals also provide information about the null-space of A, which contains the mechanisms.  
Fig. 4 (based on Fig.4/IV of Maxwell [9]) shows the projection of a hexahedron. Two independent 
states of self-stress Q1 and Q2 may be created by raising the inner nodes 1 and 2. Consider a linear 
combination Q=h1Q1+h2Q2 having the diagram shown (centre). Consider also the self-stress 
(h1+g)Q1+h2Q2 created by further raising the node 1 associated with the reciprocal basis diagram Q1. 
This additional out-of-plane flexing of the original polyhedron only affects the nodes dual to the faces 
involved in Q1. Since each diagram is reciprocal to the original structure, it follows that corresponding 
members are perpendicular to those in the original structure, and are thus mutually parallel. We call 
such a motion an offset as per Mitchell et al. [10] (it may also be referred to as a glide, and Crapo and 
Whiteley [6] use the term parallel drawing).  Such a family of offsets corresponds to a 1D family of 
states of self-stress, parameterized by the extra flexing g.  
Consider the reciprocal displacements U* caused by a small extra flexing g=δh of node 1, causing an 
offset from Q to Q+δQ, with δQ=Q1δh. The reciprocal bar vectors L*=Q change by δL*=δQ. The 
reciprocal bar extensions are V*=l*.δL*= q.δQ (lower case denoting unit vectors), and since this is an 
offset, the δQ are parallel to the Q. If, instead, the displacements U* are rotated by 90° it follows that 
the corresponding changes in the reciprocal bar vectors Q will be perpendicular to the Q, i.e.  
q.rot90(δQ) = 0.  That is, the rotated displacements generate no bar extensions and thus correspond to 
an infinitesimal in-plane mechanism. Although demonstrated by example, the result is general: 
rotating an offset by 90° generates an in-plane mechanism.  

 
Figure 4: 90° rotation of an offset giving a mechanism 

Fig. 5 illustrates this, and yet without constructing the reciprocal. The structure (left) contains a four-
bar linkage, but boundary conditions complicate matters. The offset family involves extrusion of bars 
g and i whilst keeping h parallel to its original (top centre). The pin at node 1 (aed) will be the zero-
displacement origin and the roller at node 5 requires the displacement there to be perpendicular to the 
reaction T. Selecting that offset (bottom centre) which has the hi (node 5) intersection on a line 
passing through the origin 1 and parallel to the reaction T ensures that, once rotated, the displacement 
at node 5 will be perpendicular to T. Vectors from the origin to the nodes, when rotated through 90° 
and applied to their nodes, give the infinitesimal mechanism (right).  
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Figure 5: Mechanisms by graphical analysis. 

4. Self-stress/Mechanism Reciprocal Correspondence 
Since rotating an offset gives an infinitesimal mechanism, and each offset corresponds to flexing an 
Airy sub-polyhedron associated with an independent state of self-stress, we have established that 
s=M* and s*=M, where s, M and s*, M* are the number of independent states of self-stress and 
mechanisms in the original and reciprocal respectively. That is, we have the 1-to-1correspondences 

State of self-stress ↔ local Airy sub-polyhedron ↔ reciprocal offset ↔ reciprocal mechanism. 
The 1-to-1 correspondence between states of self-stress and polyhedra was established in the second 
paper in this sequence, Mitchell et al. [10]. The correspondence between polyhedra and offsets 
follows immediately from the node-face duality of 3D projective geometry, in that the tilting of  
polyhedral faces corresponds to the motion of reciprocal nodes, and vice versa. The correspondence 
between offsets and mechanisms follows from the analysis of the previous section, via the 
interchangeability of offset displacements and their 90° rotations. 
(There is a technicality if only two (non-collinear) bars meet at a node, since they would then carry 
zero force, their reciprocals would have zero length, and whilst there exists a plane reciprocal to that 
node, the “face” on that plane could have zero area. The middle correspondence between polyhedra 
and offsets is then difficult to establish. Whilst it is nevertheless possible to consider states of self-
stress in bars of zero length, we leave such considerations for the future, and - like Maxwell [9] - 
analysis here is restricted to those cases where each node connects at least three bars.) 
For any reciprocal figure, an obvious offset rescales the whole diagram relative to a fixed origin. This 
corresponds to additional proportional tilting of the planes/normals defining the reciprocal points.  
Rotating this offset through 90° thus corresponds to a rigid body rotation of the diagram about the 
origin. The M*-dimensional vector space of reciprocal mechanisms thus contains this rigid body 
rotation. For example, in Fig. 5 earlier, separate flexing of self-stresses Q1 and Q2 caused offsets 
involving only the inner and outer triangles respectively. The corresponding mechanisms thus rotate 
inner and outer triangles separately, but there is a linear combination which rotates both triangles to 
give a rigid body rotation. That linear combination is Q=h1Q1+h2Q2, the self-stress drawn. Usually, 
when counting mechanisms (as in Fig. 1), the number of mechanisms m does not include rigid body 
rotation. Here though, it does. M* is thus one greater than m*, giving s=m*+1 (and likewise s*= m+1). 
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Since s=M* and s*=M, then reversing one and adding gives s+M = s*+M*. Subtracting the rigid body 
rotation in each, this may also be expressed as  

s+m = s*+m*. 
That is, the sum of the number of states of self-stress and mechanisms is preserved under reciprocity. 
Since each independent state of self-stress corresponds to an independent out-of-plane polyhedral 
mechanism, we thus obtain a form of “conservation of mechanisms” (out-of-plane polyhedral and in-
plane linkage-like) under reciprocity.  

5. External Forces 
Focus thus far has been on reciprocal diagrams (as per Maxwell [9]), with states of self-stress giving 
graphical access to the null-space of the equilibrium matrix B and – via rotated reciprocal offsets – to 
the null-space of the compatibility matrix A.  The missing elements are the external forces and the 
nodal displacements that populate the other subspaces of A and B. Treating applied forces via graphic 
statics is well-known, particularly amongst architects (e.g. Allen and Zalewski[1]), and the 
displacement, velocity and acceleration diagrams of graphic kinematics feature in many undergraduate 
mechanics courses. The intention here is to create a reciprocal description encompassing both.  
The key to describing external loads is the notion of a twin-layer Airy stress function which 
constitutes the surface of a polyhedron. This has been applied to structures with no external loads in 
Baker et al. [2], with projections of the polyhedron and its dual giving the form and force diagrams. 
The notion extends readily to trusses with applied loads by partitioning the polyhedron into a load 
surface and a force surface. The boundary between these domains is the structural perimeter in the 
original and the force polygon in the dual.  
In unloaded structures, the twin layer nature has the advantage of removing some bar crossings which, 
for a single layer stress function, would require an additional node to be inserted. Whilst inserting a 
node in this manner has no effect from an equilibrium perspective, it may interfere with any kinematic 
interpretation. When loads are applied, however, the partition of the polyhedron into structure and 
force surfaces means that structural nodes will typically be confined to one layer, and bar crossings 
will tend to require node insertion. 
A closed force polygon guarantees horizontal and vertical equilibrium, but moment equilibrium is 
only established once the reciprocal diagrams are fully constructed, since this gives full consideration 
to lines of action of forces. However Rankine [12] (p 140) showed that moment equilibrium is 
obtained if the nodes of the force polygon are related to a suitable system of lines radiating from a 
point. Cremona [7] called such a point the “pole”. Its location is arbitrary, as is the origin of a 
coordinate system. Indeed the “polar radials” are nothing more than coordinate vectors of nodes on the 
force polygon. By constructing the reciprocal to these radials, Cremona [7] obtained the funicular 
polygon which, although a force concept, exists on the original diagram. In the polyhedral 
interpretation, the force surface on the original consists of nothing other than the funicular polygon 
connected to the structural perimeter by a surrounding garland of quads formed by the lines of action 
of the applied forces. (Satisfaction of moment equilibrium is also related to the Cesaro integral 
condition on the continuum Airy stress function, (Mitchell et al. [10])).  
One advantage of the funicular polygon is that it can remove troublesome infinities. The notion that 
parallel lines meet at “the point at infinity” is central to projective geometry, and whilst infinite 
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polyhedra present no conceptual difficulty, they can present practical problems. Fig. 8 later shows a 
bridge to which parallel forces are applied. Considering the reciprocal to be a form diagram, then 
without the funicular, equilibrium of its right hand abutment would lead to the unsatisfying conclusion 
that the finite vertical force component Ey equals 0(∞-∞). The infinities arise because, without the 
funicular, the parallel forces j and t would extend to the point at infinity, and so the reciprocal forces 
in horizontals J and T (considered as bars) would be infinite. By including the funicular, as in Fig. 8, 
the lines of action of applied forces have finite length, and the vertical component of the radial from 
the “pole” can equilibrate with that in the thrust from the reciprocal arch. Troublesome infinities are 
thus removed. 
The force polygon and the polar radials are reciprocal respectively to the lines of action and the 
funicular. Interchanging form and force gives corresponding interpretations in structural terms. That 
is, the dual concepts are the structural perimeter and its coordinate vectors in one diagram, together 
with their reciprocals, the perimeter bar tensions and the polygon reciprocal to the coordinate vectors. 
This latter may be called the position funicular or the coordinate hoop. The coordinate vectors R of 
the structural perimeter nodes thus enter the reciprocal picture. In this dual sense, the concept of 
“pole” is nothing other than the origin of the nodal coordinate vectors. Much of this description can be 
found in Cremona [7], pp135-142. 
The internal (non-perimeter bars) of the structure may have a complicated form, and moment 
equilibrium is only established after chasing both diagrams through to completion. However, this may 
be simplified by considering the coordinate vectors R of the perimeter nodes – temporarily - as bars. 
This leads to a triple layer Airy stress function, via the somewhat remarkable proposal that the 
diagram of coordinate vectors will be folded, origami-like, to create an intermediate coordinate 
surface which cleaves the original polyhedron into two parts. Separate reciprocal diagrams may then 
be created for the force/coordinate sub-polyhedron and the coordinate/structure sub-polyhedron, with 
the two finally being combined along their common boundary. That boundary is the polygon 
reciprocal to the nodal coordinate vectors, i.e. the position funicular.  
The duality can be seen in Fig 6.  Structural items (bars, bar tensions, nodal vectors and their 
reciprocals) are coded black, with applied force items (force polygon, polar radials, lines of action and 
funicular) coded red. Top right, a solid black perimeter with dashed black spokes contains a red inner 
web, this being a dashed red polygon connected to the perimeter by solid red lines. Akin to Poncelet’s 
twin-column descriptions of the duality of 3D projective geometry (where theorems remain true when 
the words “point” and “plane” are interchanged), a perfect description of the lower right diagram is 
obtained by simply interchanging the words “black” and “red” in the previous sentence.  
To emphasise that there are two different correspondences at play, note that we may say that “the 
force polygon is reciprocal to the lines of action of the applied forces”, whilst we may also say that 
“the force polygon is dual to the structural perimeter”. It is this latter correspondence - topological 
equivalences of objects - that is highlighted here (Figs. 6 and 7). 
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Figure 6: Duality in graphic statics.  

A further simplification obtains if the coordinate origin in each diagram is taken to be one of the nodes 
in the corresponding perimeter. The reciprocal to the coordinate radials is then a funicular polygon 
which shares an edge with the other perimeter, and which is garlanded by a triangle, a sequence of 
quads, and a final triangle (that is, one of the quads in the more general arrangement has been reduced 
to a line shared by the funicular and the perimeter). Such configurations, whether in the full or the 
simplified form, are in some sense “canonical”, in that they will almost invariably arise in any 
problem of graphic statics. 
Fig. 7a gives an example, showing a cross-braced bay adjacent to a four-bar linkage. Although the 
stiffness matrix is square, this is a classic example where analysis is not straightforward by standard 
methods. Fig. 7b shows the simplified canonical form of the loaded structure. The (black) structural 
perimeter has (black dashed) coordinate spokes radiating from a perimeter node, and (red) lines of 
action of applied forces are connected by the simpler (red dashed) funicular. The reciprocal diagram 
of Fig. 7c has the same configuration of perimeter/spokes/actions/funicular, but with “red” and 
“black” interchanged. Note how each funicular is garlanded by the triangle-quads-triangle sequence. 
(In this example, the quad of the original four-bar linkage bay will remain planar when flexed, thus 
the reciprocal to the coordinate spoke across that quad has zero length in Fig 7c).   
All that remains is to add the reciprocal to the internal bars of the structure. A node is inserted to split 
each cross-brace in two. Since bar tensions are conserved across the node, the reciprocal consists of a 
parallelogram (Fig. 7e) whose opposite sides are the equal tensions in each “half” cross-brace. The bar 
tensions for this state of self-stress may then be inserted into the canonical configuration (shown green 
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in Fig. 7f) to obtain the final figure.  Since the degree of self-stress is arbitrary, this parallelogram may 
scale arbitrarily, gliding along the lines connecting to its corners. 

 
Figure 7: A loaded structure with a self-stress and a mechanism. 

Whilst loads have thus far been applied to nodes on the structural perimeter, note that the perimeter 
need not coincide with the hull of the structural diagram, and much as the seam on a baseball 
partitions that surface into two domains, its plane projection can be a somewhat convoluted curve 
visiting points in the interior of the diagram. We leave this for future discussion. 

6. Structural Algebra 
Section 2 demonstrated how local Airy sub-polyhedra could be added to make new polyhedra, with 
the result that corresponding reciprocal bar force diagrams were added vectorially. This is perhaps 
unsurprising, since vector addition of forces is familiar. Perhaps more unusual is that this leads to a 
“structural algebra” in which structures can be added. Since the original/reciprocal can be considered 
as a form/force or force/form pair, then a reciprocal force combination Q*new=ΣhiQ*i corresponds to 
constructing a linear combination of structures Li=Q*i. That is, flexing the independent sub-polyhedra 
over the reciprocal creates a basis set of structures Li which can be added to create a variety of 
structures. In addition, since the lines of action of the applied forces, the funicular, the force polygon 
and the polar radials are all now part of the Airy stress function perspective, the procedure results in 
the addition of loaded structures. Each basis structure is in equilibrium with the applied loads, and 
therefore so is any linear combination thereof.   Fig. 8 shows an example from the bridge optimization 
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of Beghini et al. [3]. The bridge (upper left) has a reciprocal (upper right), and flexing seven 
independent local Airy sub-polyhedra over the reciprocal creates the vector diagrams Li of seven basis 
structures. (There is an eighth freedom that involves the raising just the pole, node 12, but this merely 
slides the funicular along the load verticals, and is not shown). Not only can the original bridge be 
recreated as a vector sum of the basis structures, but so can new structures, each in equilibrium with 
the applied forces.  
 

 
Figure 8: A bridge and its reciprocal are shown at the top left and top centre respectively. Seven basis 

structures are created by seven independent local stress functions ψ1-ψ7 on the reciprocal. Linear 
combinations ΣhiLi (hi given) can recreate the original bridge or variants thereof.  

The simplest way to achieve this computationally is to take the weighted sum of the nodal coordinates 
Ri of each sub-diagram and then connect with bars according to the matrix C, noting that this must be 
extended to include the nodes of the funicular polygon. (We also note in passing that such addition 
operations may be performed graphically without calculation). 
This vector space of loaded basis structures provides part of the arena in which structural design and 
optimization can be conducted, since the reciprocity guarantees equilibrium, despite the presence of 
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mechanisms. It would be difficult to accomplish this via standard P=KU approaches, given the non-
invertibility of the stiffness matrix. In addition flexing reciprocal nodes out-of-plane, further design 
degrees of freedom exist via in-plane motion of the reciprocal nodes (Beghini et al. [3], Baker et al. 
[2]). Definition of what constitutes a design degree of freedom will depend upon the problem to hand. 

 
7. Concluding remarks 
The other papers in this trio have explained why graphic statics and kinematics remain worthy of 
study. Here a framework has been outlined relating the static and kinematic objects via reciprocal 
diagrams and Airy stress functions. Whilst much of this may have been known in the 19th century, 
some novel interpretations have been presented, including the s=M* identity between states of self-
stress and reciprocal mechanisms (Crapo and Whiteley [6]), the treatment of external loads via the 
three-layer Airy stress function and the “structural algebra” for use in design and optimization. 
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