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How to Accurately Map the Milky Way with a

Billion Sources

by Andrew Everall

Abstract

Accurately modelling the phase-space distribution of Milky Way sources relies on two vital

components: unbiased distance estimators and survey selection functions. Without either,

models are susceptible to significant systematic uncertainties.

My case study of the tilt of the local velocity ellipsoid demonstrates this. Well-

constructed distances for the Gaia DR2 RVS sample return a velocity ellipsoid broadly

consistent with spherical alignment. Using the reciprocal parallax distance estimator

significantly alters the conclusions.

I produce selection functions for catalogues needed to model the phase-space structure

of the Galaxy. My spectrograph selection function method is generalisable to many multi-

fibre observatories. I supplement this with tools to combine selection functions for unions

of samples and transform from observable to intrinsic coordinates. I produce selection

functions for Gaia catalogues including astrometry and RVS samples. My model fits the

complex behaviour of the Gaia spacecraft impressively well.

To enhance our understanding of the published Gaia astrometry, I introduce the

Astrometric Spread Function, the expected covariance for a simple point source in Gaia.

This reproduces the mean behaviour of published observations to degree level resolution.

This is brought together to model the vertical distribution of Milky Way sources.

Systematics are minimized by marginalising over parallax uncertainties and regulating the

likelihood with Gaia EDR3 selection functions. The veracity of the method is demonstrated

on a Gaia-like mock population. Applying to Gaia EDR3, I infer a north-south asymmetry

weaker than previously reported and provide updated parameter values for the vertical

scale heights of the thin and thick disks, the halo power-law exponent, local stellar mass

density and surface density of the Milky Way.

My thesis demonstrates the potential of Gaia when distances are well modelled and

incompleteness is accounted for. My tools will be invaluable for answering further questions

about the Milky Way using future Gaia data.
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1
Introduction

“Hey Google, what’s your favourite star?”

“Favourite star? There are too many to choose from.”

A short conversation with Google Home.

There are approximately one hundred billion stars in our Galaxy, the Milky Way.

Some are like our Sun, others are very different. Dispersed between the stars is dust

and gas which has been accreted into the Galaxy or expelled from dying stars. There is

an additional, dominant mass component, dark matter, which we think is composed of

invisible particles permeating the visible Galaxy and extending out far beyond.

We have been trying to answer many questions about the Milky Way ever since we

learned that our Sun is just one of billions of stars in the Galaxy. What is the shape of

the Galaxy? Where are all of the stars located and how many of them are there? Where

have these stars come from and where are they going to? What are their properties? How

bright and hot are they and exactly what are they made of?

Whilst these questions are important to understand our place in the Milky Way, their

answers will also help solve more fundamental questions about the Universe. How do

Galaxies form and evolve and what will become of them as the Universe continues to age?

Where is this mysterious dark matter and what is it even made of? Is it a modification to

our understanding of gravity or is it truly a new unclassified type of matter? What are

the physical processes shaping our Galaxy, from the dynamics of stellar populations to

fusion within individual star cores?

Correctly answering these questions requires groundbreaking observations and the tool

kits to analyse their information content. In this thesis I provide vital tools for obtaining

unbiased inference from the latest pioneering astronomical surveys. I apply these tools to

answer questions about the spatial and velocity structure of stars in the Milky Way.

Before delving into the main content of the thesis, I provide a brief history of Milky

Way maps, introducing core concepts of astrometry, photometry and spectroscopy along

the way. I introduce the missions dominating the modern era of Milky Way astronomy.

Leveraging the data produced by these missions requires using statistical techniques which

are appropriate for the processes occurring in data collecting. I explain some of the key

statistical concepts which arise recurrently throughout the thesis such as Bayes’ theorem,

selection functions and statistical and systematic uncertainties.
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Introduction

If you learn something new along the way, I will consider my PhD to have been a

worthwhile endeavour. If you learn nothing, then you will be relieved to know I am moving

into Biology1.

1.1 A Census of the Sky

Astrometry is the science of measuring precise positions of sources on the sky and how

these positions change with time.

Human interest in positions and motions of celestial bodies has influenced our cultures

for millennia. From Stonehenge, aligned for solstices and still holding unresolved secrets

to this day2, to the entirely independent Aboriginal cultures using a sophisticated under-

standing of the sky for calendars and navigation (Norris, 2016), many of the developments

in ancient history still influence how astronomy is studied today.

The ancient Sumarians, dating to around 2000BCE, gave us the sexagesimal (base

sixty) counting system which we still use for angles today. We typically divide the circle

into 360 degrees and further still with 60 arcminutes to a degree and 60 arcseconds to

an arcminute. The Greek astronomer Erathosthenes developed the system of Equatorial

coordinates which is still the standard astronomical convention for on-sky position used

today.

Equatorial Coordinates:

Equatorial coordinates are aligned with the orbital axis of the Earth. Declination

provides the latitude of a source above the plane aligned with the Earth’s equator

whilst Right Ascension is the longitudinal angle measured Eastward from the Solar

position at the vernal equinox.3 I will use the standard notation for equatorial right

ascension, 𝛼, and declination, 𝛿.

Our on-sky coordinates can be rotated for convenience depending on the research being

undertaken. Take the map of the World. Conventionally latitude is measured from the

Equator and zero longitude is at the Prime Meridian. However, one could equally define a

coordinate system with zero latitude defined as the geodesic connecting Beijing and New

York and longitude zero’d on Alexandria (where Erathosthenes died c. 194 BCE). We

use the Equator to define our coordinates as it is aligned with the Earth’s rotation such

that the northern hemisphere has it’s longest day of the year around the 21st June and

southern hemisphere near the 21st December.

I will tend to provide figures in Galactic coordinates with longitude 𝑙 and latitude 𝑏

where the Galactic plane has 𝑏 = 0 and the center of the Milky Way is at the coordinates

𝑙 = 0, 𝑏 = 0. In Fig. 1.1 I show Mollweide projections of the apparent magnitude of stars

across the sky in Equatorial – aligned with the Earth’s equator, Ecliptic – aligned with

1As of October 2021, I will no longer be working in Astronomy but in Biostatistics for cancer research.
However I will be taking all of the statistical techniques I’ve learned with me.

2https://www.smithsonianmag.com/history/what-lies-beneath-Stonehenge-180952437/
3The Earth’s rotation axis is not stationary but slowly oscillates so in modern day astronomy we

instead use stars measured by Hipparcos (defining ICRS) or extragalactic radio sources (quasars) from
Gaia (defining Gaia-CRF2) to fix the equatorial coordinate system.
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Fig. 1.1 The apparent magnitude of the sky, calculated by summing 𝐺-band flux of
Gaia EDR3 sources in pixels and converting this to apparent magnitude. This is what
the sky might look like to the naked eye in perfect observing condition (e.g. from the
International Space Station). This is shown in Equatorial (top), Ecliptic (middle) and
Galactic coordinates (bottom). For reference, I also show the Galactic plane (white dotted
line) and great circle at 0 and 180 longitude (cyan dotted line) which cross at the Galactic
centre (red dot) and anticentre.
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Earth’s orbit around the Sun and Galactic – aligned with the Sun’s orbit around the Milky

Way.

Hipparchus produced one of the earliest known cosmic censuses which was developed

and published in Ptolomy’s Almagest (c.100 – c.170 CE, Toomer, 1984). This catalogue

measured star positions accurate to ∼ 1 degree across the sky.

Greek astronomers are credited with many more astronomical developments such as

determining the periodic motions of celestial bodies, inferring that the Earth is spherical

and measuring size of the Sun and Moon, however their legacy was that of a geocentric

Universe. In their view, the celestial spheres moved around the Earth with epicyclic

motions, a system which would take nearly two millennia to overcome across astronomical

research.

1.1.1 Renaissance of Astronomy

The astronomical perspective shifted with Copernicus’ explanation of planetary epicycles

through a Sun-centred Solar system. Kepler completed this explanation with the contribu-

tion of elliptical planetary orbits. Kepler’s astronomical achievements were only possible

in large part due to the precise catalogue of astrometric measurements made by Tycho

Brahe and published by Kepler as the Rudolphine Tables (Kepler et al., 1627). These

measurements achieved ∼ 20 arcsecond accuracy on the sky and are considered the last

developments in observational astronomy without using a telescope.

Copernicus’ discovery significantly opened the field of astrometry. The Earth was no

longer considered at the centre of the Universe and was free to move with respect to other

celestial bodies. This raised many possibilities for observing apparent motions of other

objects due to the Earth’s relative motion.

Halley 1717 noticed that stars were in different positions to those observed and measured

by ancient Greek astronomers. He used this to make the first measurement of stellar

proper motion, the apparent linear motion of a star across the sky due to its velocity

relative to the Solar system barycentre4. In Fig. 1.2, I show an image of the sky taken

with the Pan-STARRS1 survey in 2012 around Vega. The red dashed track in the first

inset shows the position of Vega as a function of time over the last 180 years which has an

approximately linear track due to the star’s high proper motion.

Proper Motion:

This is the apparent rate of change of position of a star on the sky due to its velocity

relative to the Solar system5. A star 30 light years (one ly is 9.46 × 1012 km) away

moving at 100km/s will track 2 arcseconds per year across the sky6. If the star

were 300 ly away, it would appear to move at a slower 0.2 arcseconds/y. That’s like

traversing the width of a hair placed at the opposite end of a football pitch each

4The barycentre is the centre of mass of the Solar system. The motion of the barycentre is unaffected
by the dynamics of planets and so it can be used to define the position of the Solar system.

5More specifically relative to the Solar system barycentre, the centre of mass of the Solar system.
6Proper motion: ` =

100km/s
30×9.46×1012km × 3×107s/y×(360×3600arcseconds)

2𝜋radians = 2arcseconds/y
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year. Proper motion in the equatorial right ascension and declination directions is

denoted by `𝛼 and `𝛿.

Bradley 1727 discovered the effect of aberration on source apparent positions. The

apparent direction of light reaching an observer changes from the observer’s perspective

depending on their velocity. The apparent position of stars on the sky likewise changes

due to the Earth’s changing velocity as we orbit the Sun. In addition to this, Bradley

1748 also discovered nutation, the oscillation of the Earth’s orbital axis relative to that

expected from precession alone.

However, the holy grail of astrometry at the time was to measure parallax.

Parallax:

The Earth’s motion around the Sun means that we observe the sky from different

positions at different times of year. Hold your thumb in front of you at arm’s length

and see what it covers in the background. Then shift your head one way or the other

whilst keeping your thumb stationary and notice how it appears to move relative

to the background. If you bring your thumb to a few inches in front of your face

you’ll notice the apparent motion is much larger. This is the case with parallax

motion. Stars move with respect to the background of distant objects. The closer

the star, the greater that apparent motion (or parallax). The apparent position of a

star 3.09 × 1013 km (or ∼ 3 ly) away will change by 1 arcsecond when observed from

the Earth relative to being observed from the Solar system centre. This distance is

called a parsec (1pc ≡ 3.09 × 1013km). Parallax is denoted as 𝜛.

However, it wasn’t until Bessel 1838, Henderson 1840 and von Struve 1840 that parallax

was finally measured for any stars. The reason for this is simple, the distance between

stars is vast.

If the Sun were the size of a tennis ball on Jesus Green in Cambridge, the Earth would

be no larger than a grain of sand. The nearest star system, Alpha Centauri, for which

Henderson measured the parallax, would be as far away as Bulgaria. Meanwhile, Bessel’s

star, 61 Cygni, would be the same distance as Qatar and von Struve’s, Vega, would be

in Indonesia. To measure the parallax shifts of these stars requires precision beyond one

tenth of an arcsecond. That’s 0.00003 degrees!

This level of astrometric precision was only possible thanks to the invention of the

telescope two centuries earlier and even then was incredibly challenging.

The second inset of Fig. 1.2 shows the position of Vega from the 25th July 2014 to the

28th May 2017, the time frame used for data published in the latest data release of the

Gaia mission. Proper motion causes the star to travel from the bottom left to the top

right of the panel and parallax motion produces the loops. The size of these loops gives

the parallax from which the distance to Vega can be inferred.

1.1.2 Beyond the Human Eye

Another revolution in astronomy came with the invention of photography with John

Whipple and George Bond taking the first photograph of Vega in 1850. The ability to

5
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Fig. 1.2 The top image, taken from the Pan-STARRS1 survey (PS1, Chambers et al., 2016),
shows a quarter of a square degree of the sky with Vega at the centre, approximately the
same as a finger nail placed at arms length. The red dashed line in the first inset shows
Vega’s position from 1840, when von Struve observed the star, to the present day where
the PS1 image was taken in 2012. Zooming in much further, the second inset shows the
motion of Vega over the Gaia time frame from the 25th July 2014 to 28th May 2017 where
the axes are in arcseconds relative to the position of Vega in 2000. The loops are the result
of apparent parallax motion of Vega due to the Earth’s orbit of the Sun changing our
perspective. This is the motion which von Struve measured in 1840 for Vega and which
Gaia measures for 1.5 billion sources on the sky.
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precisely record stellar positions which could then be analysed by a team of people led to

the production of large catalogues of stars. A noteable example being the Carte du Ceil

which recorded photographic measurements for over five million stars over nearly 60 years

of observations with the last exposure taken in 1950.

Photographic surveys led to a boom in parallax measurements with large catalogues

being produced. Key works include Schlesinger et al. 1935, Jenkins 1952 and van Altena

et al. 1995 which eventually recorded parallaxes for eight thousand sources.

Developments in electronics throughout the 20th century eventually led to the invention

of the charge-coupled device (CCD Boyle & Smith, 1970). An array of capacitors is

integrated onto a silicon sheet. Photons incident on the silicon liberate electrons which

are accumulated by the capacitors. A voltage applied across the array causes the charge

to be transferred between capacitors until it reaches the output node where the signal is

amplified, measured and digitized.

Several key advantages of CCDs are particularly relevant to astronomy. Firstly they

have high quantum efficiency, this is the proportion of incident photons which liberate

electrons and so contribute to the observation. This is extremely important for observing

incredibly faint sources. OGLE-1’s Ford-Loral 2048x2048 pixel CCD (Udalski et al., 1992)

had ∼ 37% peak efficiency whilst SDSS-I used an array of Tk2048E CCDs (Gunn et al.,

1998) with closer to 80%7.

Another key advantage is the digitization of the signal which makes the readout easy

to process. CCDs are also ideally designed for continuous scanning observing strategies.

In time-delay integration mode, the CCD charge is accumulated across the panel in-phase

with the image using integrated clocks. This has been a key aspect of SDSS and, as we

will see, is also a central feature of Gaia.

1.1.3 Escape from Earth

However big you make your telescope, there are several limitations with ground-based

astrometry measurements which are difficult to avoid.

The atmosphere distorts apparent positions of sources on the sky. Think about looking

at a fish swimming in a pond. If you’re looking at the pond from the side, a fish will

appear to be much closer to the surface than it actually is. This is because the change in

medium from the air to the pond refracts light. For the fish peering up out of the water,

we would appear to be higher up in the air than we actually are. The Earth’s atmosphere

causes similar distortions. We are like the fish, peering out of the atmosphere trying to

estimate the positions of celestial bodies. The temperature of the Earth also varies daily

and throughout the seasons. This causes the ground and any instruments to expand and

contract which flexes mirrors and marginally alters the orientation of the entire observatory.

We also have the issue that our field of view is limited. An observatory on the surface of

the Earth can only observe a limited portion of the sky at any point in time making it

more challenging to measure angles relative to reference stars.

7https://www.ing.iac.es/PR/wht info/opticalccds.html
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These problems can all be solved by using a satellite. In 1967, Pierre Lacroute proposed

the Hipparcos mission (HIgh Precision PARallax COllecting Satellite, Høg, 2011). This

was to be a continuously rotating satellite with two fields of view separated by a wide

angle enabling simultaneous measurements of separate regions of the sky. The mission

was launched in 1989 and proved to be incredibly successful producing measurements for

100,000 sources at better than milliarcsecond precision. This was a 50× improvement on

the previous best astrometry catalogues (Perryman et al., 1997).

Shortly after Hipparcos, the Hubble Space Telescope (HST) was launched in 1990 with

its impressive 2.4m mirror, an order of magnitude larger than the 29cm mirror on-board

Hipparcos. Hubble is capable of reaching 0.1 arcsecond resolution (Burrows et al., 1991),

however, Hubble only has a single field of view and is not designed to generate all-sky

astrometric catalogues.

The next major leap in astrometry would come 24 years later with the launch of

Gaia, a satellite capable of Hubble-like astrometry precision whilst scanning the entire

sky (Lindegren & Perryman, 1996). I will come on to Gaia a bit later but for now I will

introduce the two other core astronomy observations, photometry and spectroscopy.

1.1.4 Photometry

Photometry is the practice of measuring the apparent brightness of a star. Ptolomy

developed the first recorded brightness measurement system placing stars in six magnitude

categories measured by the time at which they ceased to be visible to the naked eye at

twilight (Miles, 2007).

Pickering used the visual photometer, which enabled the observer to compare sources

using a rotating Nicol prism which would attenuate polarised light according to Malus’ law,

to publish photometries for 9110 sources (Pickering, 1908). Over the course of the 19th

century, brightness measurements were standardised leading to the definition of apparent

magnitude.

Apparent Magnitude:

Apparent magnitude is the logarithm of the relative intensity of light from one source

relative to a reference source

𝑚 = −2.5 log10
(
𝐼

𝐼ref

)
(1.1)

(note that higher intensity means lower apparent magnitude). Intensity scales with

inverse square of distance, therefore doubling the distance to a source will increase

the apparent magnitude by 2.5 log10(4) = 1.5.

Human eyes operate logarithmically such that repeatedly doubling a source brightness

results in a linear change in the apparent brightness to us. Therefore the magnitude scale

was developed to reflect this with apparent magnitude as the logarithm of source intensity.

A scaling of 2.5 was introduced to fit measurements at the time which results in a similar

magnitude scaling to Ptolemy’s Almagest (Miles, 2007). In Fig. 1.1 I’ve estimated the
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visible apparent magnitude as a function of position on the sky by summing the flux of

individual sources in pixels and transforming this to apparent magnitude. Human sight is

limited to 𝐺 ≲ 6.5 so I’ve scaled these plots to be approximately what a human would see

under perfect observing conditions, for example from the International Space Station. You

can see that the Galactic plane becomes a single band of light for which it got the name

‘Milky Way’.

Photometry is a vital ingredient of Galactic astronomy. A key example is Henrietta

Leavitt’s discovery of the period-luminosity relation for Cepheid variables, incredibly

bright stars which radially pulsate (Leavitt & Pickering, 1912). This enabled significant

developments in our understanding of the Galaxy including Harlow Shapley’s measurement

of the size and shape of the Milky Way (Shapley, 1918) and Edwin Hubble’s resolution of

‘The Great Debate’ with the observation that ‘spiral nebulae’ are in fact distant galaxies

with properties similar to our own (Hubble, 1925).

1.1.5 Spectroscopy

When we look at stars in the sky, most appear white although some may be bluer or redder

than others.

In the mid 17th century, Newton discovered that apparently ‘white’ light from the Sun

could be split into a rainbow of colour, a spectrum, by passing it through a prism8. Light

from a star is made up of contributions from photons across the electromagnetic spectrum.

The relative contributions from different parts will determine the star’s colour.

· Hotter stars will have more flux at higher energies (shorter wavelengths) and so will

appear bluer (e.g. Vega).

· Cooler stars will have a larger contribution from lower energies (longer wavelengths)

and will appear redder (e.g. Betelgeuse).

Wollaston and Fraunhofer independently found that, buried within the continuum of

light in the Solar spectrum, narrow regions were missing. Photons generated in the star

pass through a cooler surface before escaping as starlight. Some photons are absorbed by

atoms in this surface layer, exciting them to higher energy states. This occurs when the

photon energy matches the atom’s transition energy. The removal of these photons from

the starlight leaves gaps in the spectrum characteristic of the atoms on the star’s surface.

In 1859, Kirchoff and Bunsen discovered the correspondence between these ‘Absorption

lines’ and the ‘Emission lines’ found by heating up elements in the laboratory.

The depth of an absorption line (the amount of flux that is absorbed) tells us the

abundance of the element responsible on the star’s surface. This mapping of chemical

abundances for stars throughout the Milky Way is hugely valuable for Galactic archaeology

- studying the history of the Galaxy through the footprints of stars. However, mapping

of chemical abundances is not the focus of my thesis. There is more we can learn from

spectral lines.

8This is indeed exactly what a rainbow is, although, in the case of a rainbow the light passes through
and internally reflects in the spherical water droplets of rain rather than a triangular prism.
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When a fire engine is driving towards you on the road with its siren blaring, it will

sound high pitched. As the fire engine passes, the pitch of the siren seems to drop. This is

the due to the Doppler Effect and you could use this to measure the fire engine’s speed

(radar speed guns – often used by police for monitoring vehicle speeds – use the Doppler

Effect in radio waves).

Doppler Effect:

Sound from the siren is emitted at a wavelenth _0 with speed 𝑐. Therefore the time

between successive wavefronts is Δ𝑡 = _0/𝑐. In that time the fire engine moving at

speed 𝑣 has moved Δ𝑥 = 𝑣Δ𝑡 away from us so it seems that the separation between

consecutive wavefronts is longer _ = _0 + Δ𝑥 = _0 + 𝑣_0/𝑐 which produces the lower

pitch. This is the Doppler Effect. The observed frequency of a wave emitted with

frequency 𝑓0 is

𝑓 =
𝑓0(

1 + 𝑣
𝑐

) (1.2)

in the observer’s frame of reference. The same applies to photons emitted from stars

where 𝑣 is the relative velocity between the star and observer and 𝑐 is the speed of

light9.

Absorption lines are be at characteristic wavelengths in the rest frame of the star

which we can predict from the elements which have produced them. Therefore, we can

measure the star’s velocity relative to our own from the wavelength at which we observe

the absorption lines

𝑣 =

(
_ − _0
_0

)
𝑐. (1.3)

If this is positive, the star is moving away from us and the light is red-shifted. If this is

negative, the star is moving towards us and the light is blue shifted.

Throughout this chapter I have introduced equatorial coordinates providing 2D position

on the sky, parallax providing the distance to source and proper motion providing 2D

transverse motion of a star across the sky. Doppler shifting of absorption spectroscopy

provides the source velocity in the radial direction. This is the last piece of the kinematic

puzzle. With these six pieces of data we can measure the 3D position and 3D velocity of

a star. I will use all of these six components in Chapter 2 when measuring the velocity

distribution of stars in the Solar neighbourhood.

1.2 Modern Observatories

My research has focused on understanding our Galaxy using large catalogues of stars. In

this section I introduce the key observatories which are the focus of my research.

9There are also relativistic corrections (see the relativistic Doppler Effect) however we don’t discuss
these here for brevity.
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1.2.1 Multi-fibre Spectrographs

As I’ve just discussed, spectroscopy is incredibly valuable for studying stellar dynamics in

the Milky Way, but how do we record stellar spectra in practice these days?

There are two challenges which make spectroscopy significantly harder than photometry

and astrometry, which both rely on 2D imaging of the sky.

We measure flux from stars by effectively counting photons arriving on a CCD pixel.

As we can project onto a 2D plane, this allows us to take 2D images, but spectra introduce

a new dimension, wavelength, which can be projected into space using a prism for example.

So the first problem is that we cannot simultaneously take 2D images and spectra in the

same way as we do for photometry and astrometry. In general, photographic surveys

are used to detect new sources on the sky which contribute to our map of the Galaxy.

Spectrographs are then targeted at a subset of sources-of-interest from the photographic

catalogue for follow-up.

Secondly, the precision with which we can measure a source’s properties is dependent

on the number of photons which are incident on a pixel. Fewer photons means larger ‘shot

noise’. By dispersing a star’s light into a spectrum, we divide the photons up among far

more bins and the signal per bin is much weaker. Therefore we’re more limited to bright

sources requiring longer exposures in order to get a significant signal.

The most common solution to these challenges is a multi-fibre spectrograph installed on

a large telescope. The telescope observes a small region of the sky. Light from the aperture

is projected onto the focal plane which contains an array of fibre heads strategically

positioned on the image locations of selected sources. Photons pass along the fibre-optic

cables and are dispersed into a spectrum which is projected onto a CCD panel.

The SDSS spectrograph (York et al., 2000), installed on the Apachee Point Observatory,

New Mexico, included ‘plug plates’ – ∼ 1m diameter alluminium sheets with holes drilled at

source locations – into which the fibre heads were inserted by hand by a team of technicians

throughout the day. Each plate could hold up to 640 fibres and each night up to 9 of these

plates would be used for their respective fields on the sky. Over the spectrograph’s 14 year

lifetime, thousands of plates were produced for SDSS observations.

By contrast 4MOST (de Jong et al., 2012), installed on the VISTA telescope in Chile’s

Atacama desert, employs 2436 fibres which can be robotically positioned in under two

minutes with a precision of 0.2 arcseconds on the sky. 4MOST recently saw first light and,

as one of many scientific goals, it will be tasked with collecting 18 million spectra of stars

in the Milky Way to complement the Gaia mission.

Between these two extremes are a plethora of historical missions (e.g. SEGUE Yanny

et al. 2009), ongoing projects (APOGEE Prieto et al. 2008, RAVE Steinmetz et al. 2006,

LAMOST Zhao et al. 2012, Gaia-ESO Gilmore et al. 2012a, GALAH De Silva et al. 2015)

and spectrographs soon to begin (WEAVE Dalton et al. 2012 , MOONS Cirasuolo et al.

2014).

In Chapter 2, I use the LAMOST DR4 value-added catalogue (Xiang et al., 2017)

to help model the velocity distribution of stars in the Solar neighbourhood. Chapter 3
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is devoted to developing a method for evaluating selection functions for any multi-fibre

spectrograph. The vast majority of this thesis, however, is concentrated on data from the

Gaia mission.

1.2.2 Gaia

The Gaia satellite was launched in 2013 and started operating seven months later (Gaia

Collaboration et al., 2016). Since then it has been collecting data on two billion sources

within and beyond the Milky Way resulting in the biggest leap forward in our understanding

of the Galaxy since Hipparcos.

The Gaia mission was designed with several key scientific objectives:

• Determine the structure and dynamics of the Milky Way by modelling the distribution

of stars throughout the Galaxy.

• Discover stellar companions (such as binaries and exoplanets) from the acceleration they

induce in their host stars from the centre of mass of the system (e.g. Belokurov et al.,

2020b; Penoyre et al., 2020).

• Constrain the star formation history of the Milky Way.

• Improve stellar models such as evolution tracks.

• Produce catalogues of variable stars and improve their luminosity calibration (e.g. Riello

et al., 2018).

The mission has many other notable objectives such as Solar system astrophysics, extra-

galactic source distributions and constraints on fundamental physics parameters. Full

details on Gaia’s objectives are provided in Perryman et al. 2001. My thesis is primarily

focused on using properties of the Gaia satellite in order to enhance our models of the

structure and kinematics of sources in the Milky Way. However, the tools I develop are

also valuable for binary systems, stellar models and any projects which involve modelling

distributions of sources.

The Gaia satellite started recording observations on 25th July 2014. Since then, three

data releases have been published spanning observation windows up to 16th September

2015 (DR1 Brown et al., 2016), 23rd May 2016 (DR2 Gaia Collaboration et al., 2018a)

and 28th May 2017 (DR3 Gaia Collaboration et al., 2021a). My thesis is based on both

DR2 (which was published 6 months before I started at Cambridge) and EDR3 (the early

part of the third data release, the rest of which will be published in 2022).

The Scanning Law

The Gaia satellite orbits the Earth-Sun second Lagrange point (L2) 1.5 million kilometers

from Earth. It is composed of a 3m diameter cylinder containing the optical equipment

mounted on a 10m Sun shield underneath which an antenna transmits data back to the

ground stations on Earth. I provide a brief explanation of how the space craft operates

focusing on aspects which are important to this thesis.

The satellite has three dominant components of rotation:

12



1.2 Modern Observatories

11 55 99 143 188

nscan

Fig. 1.3 The number of times Gaia scans each position on the sky produces a complex
intricate pattern due to the spinning, precessing and orbiting motion of the satellite. Here
we show the number of scans received in Galactic coordinates. The white dotted line
shows the Ecliptic plane. Gaia’s orbit around the Solar system means that its motion is
aligned in Ecliptic coordinates and the scanning law displays symmetries in this coordinate
system.

• Spin: The spacecraft spins around its axis of symmetry on a 6 hour period.

• Precess: Throughout Gaia’s operational lifetime, the spin axis is always at a 45 degree

Solar aspect angle (angle relative to the line connecting the Sun, Earth and L2). However,

the spin axis precesses around the Gaia-Sun vector on a 63 day period. Imagine Gaia

as a spinning top which has started to wobble. It is always at 45 deg to the table but

the orientation precesses whilst still spinning at a much higher frequency.

• Orbit: Gaia remains within ∼ 340, 000km of L2 and as a result orbits the Solar sytem in

phase with the Earth on a 365.25 day period. This means that Gaia-Sun vector around

which the satellite precesses is continuously changing direction throughout the year.

For a full description of the satellite’s position and dynamics see Section 5.5 of Gaia

Collaboration et al. 2016.

On the spacecraft’s cylinder are two windows referred to as the ‘fields of view’ (FoV)

which look out approximately perpendicular to the spin axis and at a basic angle of 106.5

degrees from one another. This enables two vastly different regions of the sky to be

simultaneously observed allowing a significant improvement in astrometric precision (the

motivation behind this is detailed in Section 3 of Gaia Collaboration et al., 2016).

Due to the satellite’s spin, the FoVs approximately follow one another with the preceding

FoV (pFoV) scanning a position on the sky followed by the following FoV (fFoV) around 2

hours later then pFoV again 4 hours after that. Due to the precession, the scans don’t

exactly coincide but usually overlap.
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Fig. 1.4 (Fig. 4, Gaia Collaboration et al., 2016) The Gaia focal plane consists of an
array of 106 CCDs. The majority of these are in the Astrometric Field (AF) and are used
to measure the position and 𝐺-band apparent magnitude of sources. As Gaia spins, the
telescope scans over the sky such that star images appear to travel across the focal plane
from left to right crossing a CCD in 4.2 seconds. Each CCD takes its own independent
source measurement such that, for example, three RVS spectra can be taken by the three
columns of RVS CCDs on a single scan.

The primary mirror for each FoV is a 1.45×0.5m rectangle with both windows projecting

onto a single panel of CCDs. The physical width of 0.5m corresponds to an angular with

of 0.7 degrees on the sky (Crowley et al., 2016). The position on the sky being observed

by Gaia as a function of time is the scanning law. In Fig. 1.3 I show the number of times

each position of the sky was scanned by Gaia in the DR3 time frame which produces an

intricate pattern on the sky. The times and directions of scans significantly affect whether

a source is published in the Gaia catalogues (which I analyse in detail in Chapter 4) and

the quality of the source’s astrometry (Chapter 5).

Data Processing

The light from both FoV projects onto the Gaia focal plane, an array of 106 CCDs shown

in Fig. 1.4 (Fig.4 of Gaia Collaboration et al., 2016). In this projection, stars enter the

focal plane from the left side as the satellite spins and are tracked across the entire CCD

panel.

I will briefly go through the main components and their importance.

• Sky Mapper (SM): The first two columns are the SM CCDs. Each SM column only

takes light from one of the FoVs and is used to provide an initial source detection. All

sources are measured in 2D and this is used to produce an initial 𝐺-band apparent

magnitude estimate.
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• Astrometric Field (AF): The following 7row × 9column panel of CCDs (minus the 4th

row 9th column CCD) are all of the same type as the SM. The first column has a special

assignment of confirming detections made by the SM. The AF CCDs all act in the

same way, each providing an independent measurement of a star’s position and apparent

magnitude. This means that a single scan of a source can produce up to nine 𝐺-band

apparent magnitude and position measurements.

• Blue and Red Photometers (BP & RP): The next two columns of CCDs provide apparent

magnitude measurements on the blue (BP) and red (RP) side of the 𝐺-band. This is

achieved through coatings on the CCDs and adjustments to the electrical properties

such as resistivity. These CCDs actually record low resolution spectra but these won’t

be published until next year so we treat BP & RP as pure photometric instruments.

• Radial Velocity Spectrograph (RVS): the final 4row × 3column panel records spectra

in the wavelength 847 − 874nm capturing the Calcium triplet for most sources. Before

being projected onto the CCDs, light passes through a slitless spectrograph composed

of a filter and two prisms sandwiching a diffraction grating (Section 4 of Cropper et al.,

2018).

There are also four CCDs, the Basic Angle Monitors (BAM) and Wavefront Sensors (WFS),

monitoring the performance of the satellite.

CCDs work optimally in Time Delay Integration (TDI) which is ideal for Gaia’s

observing strategy. As the image of a source travels across the CCD panel, the charge

accumulated under the image is transferred along the pixels. When the source reaches the

end of a CCD, the charge is accumulated and read out by the computer.

To avoid saturation (where pixels in the CCD panel reach their electron capacity whilst

the source is still being observed) the satellite introduces a set of different observation

types dependent on the apparent magnitude of the source measured by the SM CCDs.

These are Window Classes and Gates.

Three Window Classes are used by the satellite (Table 2 Carrasco et al., 2016):

• WC0: 𝐺 ≤ 13 - 2D observation window

• WC1: 13 < 𝐺 ≤ 16 - 18 pixel 1D observation window

• WC2: 16 < 𝐺 - 12 pixel 1D observation window.

Gates introduce a potential barrier on the CCD. Charge accumulated to that point is

drained away separately. Only charge accumulated after the barrier is used to generate

the source observation. All gate activations occur at 𝐺 < 13 with a separate set of

configurations for AF, BP and RP. This is shown by the saw-tooth measurement error

curve in Figure 14 of Riello et al. 2021.

As with any observatory, the Gaia satellite is not perfectly well behaved and a huge

amount of work is required to analyse, correct and calibrate for systematic issues in the

data, impressively performed by the Data Processing and Analysis Consortium (DPAC).

Some challenges relate to the orientation (attitude) of the satellite which can be perturbed

by micro clanks (structural changes in the spacecraft which can be generated by tempera-
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Fig. 1.5 The percentage of observations unavailable from the satellite (left) and rejected in
data processing (right) for pFoV (top) and fFoV (bottom) across the focal plane where I’ve
laid CCDs out in the same way as Fig. 1.4. The WFS CCD and SM1/2 CCD observations
were not used for source modelling which is why these appear as 100% rejection. Even so,
there is a reasonable amount of variation between the performance of CCDs particularly.
AF2 5 clearly has some issues as a significant fraction of its data was rejected.

ture changes or mechanical features of the optical system) and micro-meteoroids which

continuously bombard the satellite (Section 3.3 of Lindegren et al., 2018).

Decontamination and refocusing processes are also regularly required in order to keep

the optical system at optimal performance. During these events and for a myriad of other

reasons, there are periods of time when Gaia is unable to record usable data. I discuss

these more in Chapters 4 and 5.

Some CCDs even perform worse than others. In Fig. 1.5 I show the fraction of

observations in the two FoV which were not published in the epoch photometry (Holl

et al., 2018) because they were not available from the spacecraft or they were rejected

due to low quality in data processing. The variation in the astrometric field (AF), sky

mappers (SM1/2) and BP/RP panels demonstrates that not all CCDs are created equal.

Where data is available, 2D observations (WC0) are fit with a calibrated point spread

function (PSF) whilst 1D observations are fit with a line spread function (LSF). The fits

provide parameters of the images which describe the source flux and precise position. This

process, called Image Parameter Determination (IPD), is detailed in Rowell et al. 2021.

Finally a decision has to be made as to whether each source should be published in

the output catalogue which is a vital component of Chapter 4. A source is included if it

has a 2D position measurement from the astrometry pipeline, AGIS (Astrometric Global

Iterative Solution Lindegren et al., 2012). For Gaia EDR3 AGIS determines whether

to provide a 2D position measurement on two criteria10 (Section 4.4 of Lindegren et al.,

2021a):

10In DR2, an additional criterion, astrometric excess noise < 20mas, was used (Section 4.3 of
Lindegren et al., 2018).
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(i) astrometric matched transits ≥ 5

(ii) 𝜎pos,max < 100 mas

A further cut is made on the closeness of neighbours. In DR2, if two sources are within

0.4 arcseconds of one another, only one is kept in the sample (this was lowered to 0.18

arcseconds in EDR3, Section 2.1 of Gaia Collaboration et al., 2021a). The choice of source

is based on three priorities:

(i) Keep source included in Gaia reference frame.

(ii) Keep source with five parameter solution with smallest astrometric sigma5d max.

(iii) Keep source with two parameter solution with smallest astrometric sigma5d max.

A source with a two parameter astrometric solution only has position on the sky (𝛼, 𝛿)

published in the Gaia catalogue while sources with five parameter solutions also have

published parallax and proper motion (𝜛, `𝛼, `𝛿). astrometric sigma5d max relates

to the uncertainty of the astrometric fit which I discuss in much more detail in Chapter 5.

Sources which had a nearby neighbour which was removed due to proximity are flagged

with the duplicated source flag.

The result is a catalogue with 1,811,709,771 sources published in the Gaia EDR3 source

catalogue (1,692,919,135 sources were published in DR2). Of the sources in Gaia EDR3

1,467,744,818 have published parallax and proper motion and 7,209,831 have measured

radial velocities (although these are from DR2 data and the sample will be significantly

expanded in the full DR3 in 2022). In Chapter 4 I provide a full description of the selection

criteria used to select the subset of sources with astrometry and radial velocity. The

method used to evaluate the astrometry of sources in Gaia is discussed and modelled in

detail in Chapter 5.

1.3 The Milky Way from the Inside

The primary focus of this thesis is developing tools and techniques which enable the

structure and kinematics of the Milky Way to be modelled with all available data without

introducing biases. I provide a brief overview of our current understanding of the structure

and evolution of the Milky Way and the observations which have enabled this.

1.3.1 In Theory

From models of the cosmic microwave background, we understand that energy content of

the Universe may be decomposed into dark energy (69%), dark matter (26%) with only

the final 5% as baryonic matter which makes up all that we can see (Planck Collaboration

et al., 2020). It is through observations of baryonic content that we infer everything else.

As the Universe formed, regions collapsed under gravity to form nodes and filaments

including halos on a spectrum of scales. This initiated the process of hierarchical structure

formation where low mass halos collapse into high mass halos (Davis et al., 1985). This is a

highly nonlinear process but is well modelled by N-body simulations such as the Millenium

simulation suite (Springel et al., 2005) for which I’ve shown a snapshot in Fig. 1.6. This
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Fig. 1.6 A snapshot of the Millenium dark matter-only simulation (Springel et al., 2005)
at 𝑧 = 0 (present day equivalent) shows the node and filament structure of the Universe
formed from gravitational collapse.

implies that the Milky Way would have been formed through a combination of initial

gravitational collapse followed by a rich history of galaxy mergers (Bullock & Johnston,

2005).

Dark matter is unable to efficiently radiate away its energy and so maintains its

structure in large spheroidal halos. The dust and gas in the baryonic content collapses

further as particles collide and lose energy. By maintaining the total angular momentum,

thin disks are formed in the cores of dark matter halos. It is from this cool, high density

gas that stars are formed producing classical stellar galaxy disks like the Milky Way’s.

Whilst gas and dust are highly collisional, stars are well approximated as collisionless

particles. Dynamical processes between stars such as radial migration (Schönrich & Binney,

2009) mix the stellar populations. Whilst this is happening, satellite galaxies which have

formed their own stellar populations continue to merge into the Milky Way halo. The

gravitational effects of these accretion events also heats and thickens the disk (Kazantzidis

et al., 2008; Laporte et al., 2019).

The result is a thin disk of stars which have formed inside the Milky Way, a thick disk

which has been excited by dynamical interactions, a spheroidal halo of stars which have

been accreted through galaxy mergers and a spheroidal dark matter halo extending to

much larger distances.

So how do we work out the structure of the Milky Way?
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1.3.2 Positions

The simplest way to model the structure of the Galaxy is by counting stars. The number

density of stars as a function of 3D position throughout the Milky Way is a direct measure

of the structure of the Galaxy at a snapshot in time.

This method has enabled us to model the vertical structure of the Milky Way disk (Ak

et al., 2008; Bilir et al., 2006a,b; Jurić et al., 2008; de Jong et al., 2010). Picking out only

young Cepheid variable stars demonstrates that the Galactic disk is not well constrained

to a plane but is warped due to interactions with satellites such as the LMC (Skowron

et al., 2019).

Simple maps of the sky have shown that the Milky Way halo is composed of an

abundance of substructure as demonstrated by Belokurov et al. 2006’s ‘Field of Streams’,

consistent with the theoretical picture of hierarchical structure formation. Other models

average out the substructure and consider the halo as a smooth distribution determining

how the halo stellar content declines with distance from the Galactic centre (Fukushima

et al., 2019; Mateu & Vivas, 2018).

The spatial structure of the Milky Way is discussed in more detail in Chapter 6 where

I model the vertical tracer density of stars in the Galactic disk and halo using the tools I

develop throughout the thesis with Gaia data.

1.3.3 Velocities

Whilst the spatial model describes a snapshot of the Milky Way, kinematic information

describes how the stellar population dynamically evolves over time. Assuming that the

Galaxy is in dynamical equilibrium, i.e. the position-velocity (phase space) distribution

of sources doesn’t change with time, we can relate this distribution to the gravitational

potential and therefore to the mass distribution of the Milky Way.

Stars in the disk orbit the Milky Way centre (Kapteyn, 1922b) and the rotation curve

can be used to determine the mass distribution of the Galaxy (e.g. Dehnen & Binney,

1998). Rotation curves of galaxies, including the Milky Way, provided some of the earliest

evidence of dark matter (see de Swart et al., 2017, for full discussion).

The Collisionless Boltzmann Equation provides a more general relation between the

position-velocity distribution function of stars and the gravitational potential they expe-

rience (Binney & Tremaine, 2008). Integrating over velocity components, this provides

the Jeans equations (Jeans, 1922) which relate moments of the velocity distribution to

the potential. This has been used to evaluate the potential throughout the halo (Wegg

et al., 2019) and the local Solar neighbourhood (Nitschai et al., 2020). By subtracting off

the mass contribution from local baryonic matter, the local density of dark matter can be

estimated (Read, 2014; Silverwood et al., 2016; Sivertsson et al., 2018) with significant

implications for direct detection experiments.

These dynamical models all assume steady state equilibrium (i.e. the phase-space

distribution is constant as a function of time). However, within the Milky Way this turns

out to be a poor assumption. The structure of stars in the Solar neighbourhood in velocity
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space is complex and scarred by dynamical perturbations (Dehnen, 1998; Kawata et al.,

2018). Ripples in the velocity distribution of stars in the Solar neighbourhood describe an

oscillating Milky Way disk (Antoja et al., 2018; Widrow et al., 2012).

As I’ve already mentioned, the halo is also not a smooth distribution of stars but a

continually evolving mixture of merger remnants. A significant fraction of the halo stellar

population is dominated by a single merger event which occurred some eight billion years

ago (Belokurov et al., 2018; Helmi et al., 2018). This also splashed a significant amount of

material out of the disk into the halo (Belokurov et al., 2020a).

The dynamical models discussed are heavily dependent on unbiased source distance

estimates. In Chapter 2, I evaluate the velocity distribution of stars in the Solar neigh-

bourhood demonstrating the importance of distance systematics in the process. The Jeans

equations also require the tracer density of stars in the Milky Way which is the focus of

Chapter 6.

1.4 Statistical Methodology

My thesis is all about the application of sophisticated statistical techniques to model large

volumes of data. I briefly introduce some of the key concepts which come up regularly

throughout the chapters. Some more specific statistical models and derivations are provided

in Appendix A.

1.4.1 Statistical or Systematic Uncertainty?

A core theme of this thesis is the handling and minimization of systematic biases. In

particular I draw attention to the use of parallaxes for distance estimation and modelling

source distributions using incomplete catalogues. But what specifically does systematic

uncertainty mean and why is it a problem?

Statistical Uncertainty:

Statistical uncertainty is the random noise in taking measurements. For example,

in order to measure the position of a source, the Gaia collaboration is searching for

the peak of the flux distribution on the CCD panel. However, each independent

measurement finds a slightly different position depending on shot noise with photon

counts in pixels and of course limited by the width of a pixel. The error distribution

associated with statistical uncertainty is well understood and often quoted as the

measurement error.

Systematic Uncertainty:

Systematic uncertainty includes all sources of error which aren’t known statistical

uncertainty. Since the Gaia mirrors are not perfectly achromatic, depending on the

colour of a source, the position of the CCD image may shift. This introduces a

systematic error which is unknown at the point of measuring the source position.

An additional treatment is included the source astrometry fitting to account for

chromatic effects on-board Gaia.
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We typically refer to measurements with low statistical uncertainty as being precise.

Measurements with both low statistical and systematic uncertainty are accurate.

One of the ways in which Gaia has propelled astronomy research forward is to provide

an astrometry sample with unprecedented numbers of sources. This significantly reduces

the statistical uncertainty making Gaia a survey with unprecedented precision. As a result,

underlying systematic uncertainties become significant and these need to be modelled in

order to make Gaia optimally accurate.

1.4.2 Bayes’ Theorem

“If you did a rapid lateral flow test at a test site and the result was positive [...] get a PCR

test to confirm your result as soon as possible.”

NHS Advice, March 2021

The advice given by the NHS on lateral flow tests for COVID-19 may have led you to

wonder how effective these tests really are. Studies have shown that they have a very low

false positive rate so if I test positive, does this not mean it is highly likely that I have the

virus? Not quite, it depends on the prevalence of the virus.

Lateral flow devices have a 99.5% specificity (0.5% chance of testing positive despite

not being infected) and 72% sensitivity (28% chance of testing negative despite being

infected) (Griffin, 2021). In May 2021, around 1/1000 people in the UK had the virus at

any point in time P(𝐶) = 0.1%11. Take a random group of 100 000 people in May 2021, on

average 100 would have been infected. Of those 100, 72 would correctly test positive. Of

the remaining 99 900, 500 would incorrectly test positive. If you’ve tested positive, there’s

a 72/572 = 13% chance that you’re one of the people actually infected.

This brings me on to a simple piece of mathematics which can quantify your infection

chances, Bayes’ theorem.

The probability of two events, 𝐴 and 𝐵, happening is the product of 𝐴 given 𝐵 times

the probability of 𝐵:

P(𝐴, 𝐵) = P(𝐴 | 𝐵) P(𝐵). (1.4)

For example, the probability of Team GB coming fourth and collecting 65 medals in

Tokyo2020 is the probability of coming fourth given that they collect 65 medals times the

probability that they collect 65 medals.

The ordering of events can be switched without loss of generality so I can equally show

that

P(𝐴, 𝐵) = P(𝐵 | 𝐴) P(𝐴). (1.5)

I can equate Eq. 1.4 and 1.5 and rearrange to get

P(𝐴 | 𝐵) = P(𝐵 | 𝐴) P(𝐴)
P(𝐵) . (1.6)

11ONS COVID-19 Infection Surveys: https://www.ons.gov.uk/
peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/
coronaviruscovid19infectionsurveypilot/previousReleases
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This is Bayes’ theorem.

I want to know the probability that I had COVID (𝐶) given that I received a positive

test (✓) in May 2021. The probability of testing positive, P(✓) is the sum of the probability

that I test positive and I have the virus (𝐶) and the probability that I do not (𝐶)

P(✓) = P(✓, 𝐶) + P(✓, 𝐶)
= P(✓ |𝐶) P(𝐶) + P(✓ |𝐶) P(𝐶). (1.7)

The test sensitivity is P(✓ |𝐶) ≈ 72%. The false positive rate is P(✓ |𝐶) ≈ 0.5%. I can

use Bayes’ theorem to work out the probability of having the virus

P(𝐶 | ✓) = P(✓ |𝐶) P(𝐶)
P(✓)

=
P(✓ |𝐶) P(𝐶)

P(✓ |𝐶) P(𝐶) + P(✓ |𝐶) P(𝐶)

=
0.72 × 0.001

0.72 × 0.001 + 0.005 × 0.999

= 0.13. (1.8)

There’s only a 13% chance that I would have had the virus given a single positive lateral

flow test in May 2021. This is despite the impressively low 0.5% false positive rate.

By the start of August, the virus prevalence was closer to 1.3% in the UK. By

substituting this in to Eq. 1.8, I can work out that positive lateral flow test at that

time would correspond to a 65% chance of having the virus. This is a huge shift in the

probability despite the fact that the test I’ve used has not changed.

Bayes’ theorem comes up several times in this thesis. Usually it is in the form

P(𝜓 | 𝑑) = P(𝑑 | 𝜓) P(𝜓)
P(𝑑) . (1.9)

where 𝑑 is the data and 𝜓 are the parameters of my model. The four terms are:

• P(𝑑 | 𝜓): The likelihood (also written as L) is the probability that I would measure the

data given my hypothesis (or model). E.g. what is the probability that I test positive

given that I have COVID?

• P(𝜓): The prior provides our a priori knowledge of whether the model is probable or

not. e.g. what is the probability that I have COVID?

• P(𝑑): The evidence is the probability of obtaining my data, independent of the model.

Since this is independent of the model parameters, 𝜓, when trying to determine the best

model the evidence only acts as a normalisation constant which I can neglect.

• P(𝜓 | 𝑑): The posterior is what I want to know. This tells me how good my model is

given the observed data.

An application of Bayes’ theorem appears in the next section where I discuss a core

concept of this thesis, selection functions.
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1.4.3 Selection Functions

As observational astronomers, we use data from observatories such as the Gaia satellite

(Gaia Collaboration et al., 2016) to test our physical theories about stars, galaxies and

the Universe. However, to reliably test these theories we must understand our data and

control for any significant systematics.

No survey is 100% complete. Despite containing 1.8 billion sources, Gaia is only

capturing ∼ 1% of the stars in the Milky Way. Why is this a problem?

To demonstrate the issue let’s assume that the absolute magnitude distribution of stars

in the Milky Way is Gaussian distributed with mean 𝑀0 and variance 𝜎2 = 1 and we

want to evaluate 𝑀0. We measure the apparent magnitude of all stars to some brightness

limit 𝑚lim. Assuming we know the exact distance to these stars (which is often not the

case) we could calculate the mean absolute magnitude ⟨𝑀⟩ of our sample. If the Milky

Way has a uniform density of stars our mean absolute magnitude would be biased by

⟨𝑀⟩ − 𝑀0 = 1.382 mag. This is the Malmquist bias due to incompleteness of our survey

(Malmquist, 1922). To put this in context, the apparent magnitude uncertainty of the

faintest sources in Gaia EDR3 is only 0.01 mag (Riello et al., 2021), far smaller than the

bias.

This is just one example of how survey incompleteness can bias measurements but will

change depending on the nature of the sample limits (e.g. Lutz-Kelker bias related to

removing sources with negative measured parallax Lutz & Kelker, 1973) or the type of

measurement we’re trying to make (e.g. the luminosity function, shape of the Milky Way,

local density of stars etc.)

Understanding and accounting for incompleteness is critical for unbiased modelling of

populations. The significance of this problem increases with increasing volumes of data.

There are several ways in which a survey can be incomplete:

• Apparent magnitude: As per my example, sources are too dim to detect above background

noise (e.g. atmospheric noise for ground based surveys, photon count noise, CCD readout

noise...)

• Colour : Stars have different brightness in different wavebands according to their colour

so observatories in different wavebands select differently in colour. Spectrographs also

typically only have spectral templates in a limited effective temperature range (e.g.

Sartoretti et al., 2018).

• Position: Telescopes have a limited observation angle on the sky and cannot observe

anything outside this window. Since Gaia is continually scanning, this leads to a

particularly complex dependence of completeness on sky position. This was also the

case for Hipparcos and resulted in similar challenges when working with that catalogue

(Hernandez et al., 2000).

• Spatial resolution: The ability of a telescope to resolve individual sources is limited by

their spatial resolution. For a circular telescope, the minimum separation is ∼ 1.22_/𝐷
where 𝐷 is the diameter of the telescope collecting area.
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• Data rate: For both instrumental and data processing reasons, most observatories have

a limit on the rate at which they can take data. Multi-fibre spectrographs have limited

numbers of fibres to observe stars with at a given time and the Gaia satellite has limited

on-board data storage capacity.

Given that our source catalogues are not complete, we need to know what kinds of

sources could have been observed and what could not. This is achieved through a selection

function.

Selection Function:

The selection function of a catalogue is a probability which gives the chances of an

object with known parameters y being included in the catalogue (S)

P(S | y). (1.10)

For any catalogue of observed sources the selection function tells us “Given a real

or hypothetical object, what is the probability that the object would have been

successfully observed and included in the catalogue?”. A detailed exposition of

selection functions and their applications is provided in (Rix et al., 2021).

The choice of observable parameters, y, needs to be made. This depends on our prior

understanding of the observatory and how the catalogue has been constructed and the

types of problems we want to use the selection function to solve. More practically, it also

depends on the information we have available to model the selection function. I discuss

parameter choices when producing selection functions in Chapters 3 and 4.

There are three core approaches to estimating the survey selection functions depending

on the information available.

When the true distribution of sources is known, the selection function may be modelled

by comparing the observed number of sources in the catalogue to the number expected.

This true distribution may be theoretical (e.g. a simulation or mock Milky Way) or

empirical (e.g. comparing to a larger catalogue which is known to be more complete).

This is commonly used for spectrograph surveys by comparing with a larger photometric

surveys (e.g. Chen et al., 2018; Das & Binney, 2016; Mints & Hekker, 2019; Nandakumar

et al., 2017; Wojno et al., 2017) or assuming a true population (e.g. Schönrich et al., 2019).

The second method is when the observatory limitations are precisely known. It is

extremely rare that the behaviour of an observatory is well enough understood that this

may be done reliably for the entire population of observed stars. However, it is common to

take a limited sample of the full catalogue which occupies a region of observable parameter

space which is believed to be complete for the given observatory (Reid, 1982). Under

certain assumptions, such as a Gaussian absolute magnitude distribution, the effects of

selection biases can then be directly corrected (e.g. Reid & Gilmore, 1982).

The final method is a hybrid approach where information from the observatory is used

to provide some information on the selection function such as magnitude limits however
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the selection probability is also empirically measured against a complete sample (e.g. Bovy

et al., 2014; Stonkutė et al., 2016).

In Chapter 3 I present my method for generating selection functions for multi-fibre

spectrographs which is a true distribution comparison approach complemented with known

observatory field pointings. Chapter 4 includes the selection function I have developed for

the full Gaia catalogue which is an observatory limitations based method along with the

selection functions for subsamples of Gaia relative to the full Gaia catalogue.

Once we have evaluated the sample selection function, how do we use it? The aim

of my thesis is to model the distribution of sources in the Milky Way and I focus on

this application. To use the selection function to model a source distribution, one would

be tempted to take observed distribution of sources and divide through by the selection

function

a(®𝑥) = _(®𝑥)
S(®𝑥) (1.11)

where _ is the observed distribution, S the selection function and a the inferred underlying

distribution. However this breaks down whenever S is small. If the selection function in a

particular region of parameter space is zero, we don’t know what the true distribution of

sources is as we have no empirical data to work with.

The more self-consistent method is a forward modelling approach. The algorithm

would go as follows:

(i) Generate a model a(®𝑥 | ®𝜙) with model parameters ®𝜙.
(ii) Apply the selection function to the model to generate the observable distribution

_(®𝑥 | ®𝜙) = a(®𝑥 | ®𝜙)S(®𝑥).
(iii) Compare the observable distribution to the observed data, e.g. in the form of a

likelihood function.

(iv) Update model parameters based on their posterior probability evaluated from Bayes’

theorem.

(v) Repeat steps 1-4 until the parameters converge on a solution.

In step (iv), Bayes’ theorem is applied to generate the model posterior probability

P( ®𝜙 | 𝑑) = P(𝑑 | ®𝜙) P( ®𝜙)
P(𝑑) (1.12)

where 𝑑 represents the data, P(𝑑 | ®𝜙) is the likelihood evaluated in step (iii). P( ®𝜙) is

our prior model and P(𝑑) is the ‘evidence’ which provides the probability of measuring

the given data for any model parameters and acts as a normalisation constant as it is

independent of ®𝜙.
I apply this approach in Chapter 6 to estimate the vertical distribution of stars in the

Milky Way using the selection functions I have produced for Gaia and its subsamples.
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1.5 My Journey into the Gaiaverse

Over the course of my PhD, I have produced selection function models and developed and

applied methods to minimize the systematic uncertainty in fitting the distribution of stars

in the Milky Way with data from Gaia and complementary spectrographs. The chapters

of my thesis are composed of my submitted and published papers. For each chapter I give

a brief outline here and reference the relevant paper(s).

Chapter 2: The Tilt of the Local Velocity Ellipsoid.

My journey is motivated by a case study in modelling the distribution of the

velocity dispersions in the local ∼ 1 kpc of the Milky Way. I demonstrate how

incorrect use of distances leads to artefacts in the velocity distribution which

significantly change the inferred conclusions. Using distance distributions

from Schönrich et al. 2019 I produce a new and improved model of the local

velocity ellipsoid.

Everall, Evans, Belokurov & Schönrich 2019

Chapter 3: Selection Functions for Spectroscopic Surveys of the Milky Way.

Multifibre spectrographs, such as LAMOST, RAVE and APOGEE, are

hugely complementary to the Gaia data with several more seeing first light

in the next few years. I present my Bayesian Hierachical method to infer

selection functions of Milky Way multi-fibre spectrographs supplemented

with tools to combine multiple independent selection functions for unions

of samples. I also demonstrate how to transform selection functions from

observable coordinates (®𝑞) to intrinsic coordinates using isochrones.

Everall & Das 2020

Chapter 4: Completeness of the Gaiaverse.

Gaia itself has a myriad of samples with different data and classifications. I

introduce the full Gaia sample selection function which I’ve developed for

DR2 in collaboration with Dr Douglas Boubert and generalised to EDR3. I

then present the selection functions for Gaia EDR3 subsamples which have

been constructed relative to the full Gaia catalogue.

Everall & Boubert 2021

Chapter 5: The Astrometry Spread Function.

The Astrometry Spread Function (ASF) provides the expected astrometric

covariance for a simple point source observed by Gaia, a concept akin to

point/line spread functions. I reconstruct the ASF of Gaia DR2 which

reproduces the mean behaviour of published Gaia observations strikingly

well.

Everall, Boubert, Koposov, Smith & Holl 2021c
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Chapter 6: The Photo-Astrometric Tracer Density of the Milky Way.

I pull all components together to model the vertical distribution of Milky Way

sources. The likelihood is regulated by the integral over observable coordinate

space using the Gaia EDR3 astrometry selection function described in

Chapter 4 and I marginalise over parallax uncertainty to avoid distance

biases discussed in Chapter 2. Testing the method on a mock population

sampled from the Gaia selection function with errors drawn from the ASF, I

demonstrate unbiased inference of the input parameters for the mock model

showing no significant systematic uncertainty.

Everall, Evans, Belokurov, Boubert & Grand 2021a

Everall, Belokurov, Evans, Boubert & Grand 2021b
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2
The Tilt of the Velocity Ellipsoid

“I know of no more depressing thing in the whole domain of astronomy than to pass from

the consideration of the accidental errors of our star places to that of their systematic

errors.”

Kapteyn 1922a

Professor Jacobus Kapteyn is referring to the dominance of statistical vs systematic

errors. As a prominent researcher in a revolutionary era of astronomy, with the introduction

of photographic measurements, Kapteyn witnessed and contributed to vast improvements

in observational data. However, even at this time few stars had measured parallaxes and

those that did were hugely uncertain. Any spatial and kinematic data of stars in the Milky

Way would have been dominated by statistical uncertainties on distance.

Given his sentiments, Kapteyn may have been horrified to witness the Gaia era. In this

Chapter I will use the case study of the tilt of the local velocity ellipsoid to demonstrate the

significance of systematic uncertainties in parallax measurement with Gaia observations.

2.1 Spherical or Not?

Understanding the distribution of mass in the Milky Way is of great interest for constraining

our Galaxy’s formation history. Unfortunately, the majority of the mass does not emit

detectable electromagnetic radiation and so we are forced to use indirect methods. One

such method is to analyse the velocity dispersion of stars, as this is related to the Galactic

potential through the Jeans equations.

The sample of 7 224 631 stars seen by the Gaia Radial Velocity Spectrometer (hereafter

RVS, Gaia Collaboration et al., 2018a; Katz et al., 2019) provides a tempting dataset

to study the behaviour of the velocity dispersion tensor. A recent attempt to do so was

conducted by Hagen et al. (2019, henceforth H19). By augmenting the dataset with

multiple spectroscopic surveys, including LAMOST Data Release 4 (DR4, Cui et al., 2012),

APOGEE DR14 (Abolfathi et al., 2018) and RAVE DR5 (Kunder et al., 2017), H19

generated a sample of the Solar neighbourhood in excess of 8 million stars. They found

that the velocity ellipsoids of their sample were close to spherically aligned within the

Solar radius, but became cylindrically aligned at larger radii.

The results of H19 show comparable total misalignment to Binney et al. 2014 using

RAVE DR5 (Kunder et al., 2017). Both studies find that the tilt of the ellipsoids of their
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thin disc dominated samples deviate significantly from spherical alignment in the Solar

neighbourhood. The mismatch is significantly greater than found by Büdenbender et al.

2015 using SEGUE G dwarfs (Yanny et al., 2009). The disagreement is more striking when

compared to the halo population. A number of studies using Sloan Digital Sky Survey data

(Adelmam-McCarthy et al., 2008) found an almost spherically aligned velocity ellipsoid

for halo stars (Bond et al., 2010; Evans et al., 2016; Smith et al., 2009b). This seems

to be confirmed by the recent study of Wegg et al. 2019, who used a set of RR Lyrae

extracted from Gaia Data Release 2 to conclude that the potential of the halo is spherical.

This necessarily implies that the velocity ellipsoid is spherically aligned (An & Evans,

2016; Smith et al., 2009b). This is contrary to the results from H19, where the ellipsoid is

cylindrically aligned at large distances from the Galactic centre and high above the plane.

Here, I analyse the behaviour of the local velocity ellipsoid using the Gaia RVS,

complemented with LAMOST. I introduce the datasets in Section 2.2, paying careful

attention to distance errors and biases. I provide my algorithm in Section 2.3 and present

my results in Sections 2.4 and 2.5. I find that simple use of the reciprocal of parallax as a

distance estimator is dangerous and can produce misleading results. The local velocity

ellipsoid is always close to spherical alignment, and this remains true even for the thin

disc and halo populations separately. The only substantial misalignment occurs for star

samples at low latitudes and close to the Galactic centre, where the potential is strongly

disc dominated.

2.2 Data

2.2.1 The Gaia DR2 RVS Sample

The Gaia DR2 RVS sample is a subset of the main DR2 catalogue with radial velocities

derived from the on-board spectrograph (Gaia Collaboration et al., 2018a; Katz et al.,

2019). Although this provides six-dimensional phase space data for over 7 million stars, the

information on the distance is of course encoded as the parallax (an introductory discussion

how to infer distances from Gaia parallaxes can be found in Bailer-Jones, 2015a; Luri et al.,

2018). To recover the tilt of the velocity ellipsoid, special care needs to be taken with the

inferred distances. To convert the proper motions into the tangential velocities requires

the distance, and so poorly computed and noisy distances can overwhelm calculations of

the tilt. We thus face two central problems: i) the parallaxes of Gaia can be biased, and

ii) the method of inferring distances can be biased.

Concerning the parallax bias, Lindegren et al. 2018 used a sample of known quasars to

determine a zero-point parallax offset of 𝛿𝜛 = −29 `as, while they also showed that the

parallax uncertainties are underestimated by about 𝛿𝜎𝜛 = 43 `as, which are to be added

in quadrature. The offset is known to depend on colour and apparent magnitude, might

also depend on the object type and parallax, and hence is likely inappropriate for stellar

objects in the RVS catalogue. More appropriate to the RVS catalogue, but still restricted

to a particular subsets of stars, are a series of papers which found different parallax offsets:

Riess et al. 2018 constrained 𝛿𝜛 = −46 ± 13 `as for Cepheids, whilst Xu et al. 2019 found
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a value of −75 ± 29 `as using VLBI astrometry of YSOs and pulsars. Zinn et al. 2019 and

Khan et al. 2019 use asteroseismology for (mostly) red giants in the Kepler fields to get

parallax offsets ∼ −50 `as, depending on the field position. For the full Gaia DR2 RVS

sample, the parallax offset was calculated by Schönrich et al. (2019, henceforth S19) using

their statistical distance method. They find an average parallax offset of −54 ± 0.06 `as,

where the uncertainty comprises their systematic uncertainty with a negligible statistical

error.

The literature contains in principle four approaches to infer stellar distances:

(i) Simply setting the distance 𝑠 = 1/𝜛, as done by Hagen et al. 2019. This approach

should only be used in situations where the parallax uncertainty is negligible for

the problem, since it produces a three-fold bias: neglect of the selection function,

neglect of the spatial distribution of stars, and ignorance of the fact that 1/𝜛 is

not the expectation value of the probability distribution function P(𝑠). The latter

bias was already identified by Strömberg 1927 and, along with the cut required to

remove sources with negative measured parallax, became later well-known as the

Lutz-Kelker bias (Lutz & Kelker, 1973).

(ii) Performing Bayesian distance estimates with a set of generic assumptions about the

sample and the underlying Galactic density distribution, which eliminates the major

problems of 𝑠 = 1/𝜛, but leaves some uncertainties concerning the selection function.

A good example of this approach is Bailer-Jones et al. 2018.

(iii) Doing a full Bayesian estimate involving stellar models, such as the Anders et al.

2019 distances.

(iv) Doing a full Bayesian approach with a self-informed prior that estimates the selection

function from the data directly (Schönrich & Aumer, 2017; Schönrich et al., 2019).

Speaking generally, approaches (iii) and (iv) yield the most trustworthy results, though

they involve greater expenditure of effort.

The mean bias between the different 𝛿𝜛 estimates, and distance estimators is shown in

Fig. 2.1. The S19 distances deviate from a simple parallax reciprocal 1/𝜛 for distances

beyond ∼ 1 kpc. They also show substantially greater offset than would be accounted for

by the 29 `as correction. I also note that the distance deviation is smaller than if one were

to use the 54 `as offset and naively use 1/𝜛. Fig. 2.1 underscores the point that the crude

calculation of 1/𝜛 overestimates the distance.

Tangential velocities are calculated by multiplying the proper motion by the distance

whilst the spectroscopically determined radial velocities are independent of distance. If the

true distance is underestimated (or overestimated), then so will be the tangential velocities.

When inferring the velocity ellipsoid using spectroscopic radial velocities, this will tend to

lead to heliocentrically aligned velocity ellipsoids, i.e., the velocity ellipsoids will become

elongated (or compressed) towards the solar position. Fig. 2.1 demonstrates that using

𝑠 = 1/𝜛 overestimates distances therefore will enhance the tangential velocities and cause

the velocity ellipsoids to circularise around the Solar position. Notably, the result would

be a flattening of the tilt of the velocity ellipsoids at the Solar radius as observed by H19.
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Fig. 2.1 Running median of the distance offset from a naive parallax reciprocal. The green
curve is generated by corrections using the 29 `as parallax offset suggested by Lindegren
et al. 2018, whilst the red curve uses the 54 `as parallax offset suggested by S19. Finally,
the blue and orange curves show the difference between the parallax reciprocal and the
Bayesian distance estimates from S19 and A19 respectively. Using the reciprocal of the
parallax as a distance estimator is unwise beyond heliocentric distances 𝑠 ∼ 1 kpc.
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I use the Bayesian distance estimates derived by S19 for my RVS sample. The data set

includes corrected parallaxes and parallax uncertainties, which were also revised upwards

by S19, and which I use to make quality cuts when applying to this data. Following

common practice for parallax-based distance sets, I use 𝜛/𝜎𝜛 > 5 1. I select only stars

within 5 kpc of the Sun (𝜛 > 200 `as or 𝑠 < 5 kpc for the Bayesian distances). To remove

spurious line-of-sight velocity outliers, I apply 𝜎𝑣𝑟 < 20 km s−1 as well as |𝑣𝑟 | < 500 km s−1

and further follow the recommendations of Boubert et al. 2019, which remove stars with

less than 4 RVS transits and bright neighbours that can contaminate the measurements.

A concern with S19 distance estimates is that the kinematic model prior used to

calculate the distances assumed a spherically aligned velocity ellipsoid. If this assumption

was dominant in the distance inference, my results would be heavily biased towards finding

a spherically aligned velocity ellipsoid. I address this concern in two ways. First, I compare

S19 distance estimates with those found by Anders et al. (2019, henceforth A19) from

photo-astrometric distances using the StarHorse pipeline (Queiroz et al., 2018). The

potential biases between the S19 and A19 distances are very different. The latter set profits

in precision from stellar model priors, while it may also inherit biases from the stellar

models and have less well-defined distance uncertainties. These two datasets provide an

excellent mutual control for remaining biases on either side. To correct for the parallax

offset, A19 linearly interpolate as a function of G-band magnitude between the Lindegren

et al. 2018 value of 29 `as at 𝐺 = 16.5 and the 50 `as offset found by Zinn et al. 2019 at

𝐺 = 14. I place the same cuts to the dataset using A19 distances as described earlier,

but using a signal-to-noise cut of 𝑠/𝜎𝑠 > 5 on heliocentric distance rather than parallax.

The A19 distance estimates are also in Fig. 2.1. The estimates are similar to S19 within

3 kpc where the inference in both methods is dominated by parallax information with

low uncertainties. Outside 3 kpc, the distance estimates of A19 are systematically larger

by ∼ 0.1 kpc. It is unclear where this disagreement originates from, however, I find it to

be a small enough shift that my results are not significantly affected. In Section 2.4, I

calculate the tilt for RVS data from StarHorse distances and find it to be consistent with

that measured with S19.

Secondly, to truly quench any remaining uncertainty and to reinforce the use of 54 `as

offset, I test the effect of the velocity ellipsoid correction terms on distance bias found in

S19. This is shown in Fig. 2.2, where I plot the measured average distance bias versus

distance for the S19 distances calculated with and without the parallax offset. The dashed

lines show the “measured” distance bias, when I completely remove the velocity ellipsoid

correction (which is equivalent to the wrong assumption that the velocity ellipsoid has a

perfect cylindrical alignment).

Two things are obvious: i) Even with such a drastic error in assumptions, the change

to the distance statistics is less than a third of the overall correction. As a result, the

uncertainty in the velocity ellipsoid correction term is more than an order of magnitude

smaller than the measured value of the parallax offset in S19. This is also reflected in the

1S19 helpfully provide a 𝜛/𝜎𝜛 parameter with revised 𝜎𝜛 which I use to cut on parallax signal-to-noise
when applying their distance estimates.
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Fig. 2.2 A scan of the Gaia RVS for the fractional distance error 1 + 𝑓 versus distance 𝑠
with the quality cuts described in S19. Just as in S19, we move a mask of 12000 stars in
steps of 4000 stars over the sample. The green error bars show the distance statistics after
the distance correction, while the solid line shows the statistics when no parallax offset
correction is applied. For both values of 𝛿𝜛, we show with dashed lines the same statistics
when we completely remove the velocity ellipsoid correction term, which is equivalent to
the wrong assumption that the velocity ellipsoid is cylindrically aligned. The resulting
difference overestimates the actual uncertainty, but is still comparably small.

systematic uncertainty budget provided by S19. ii) When neglecting the velocity ellipsoid

correction term, I actually require a larger correction for the parallax offset. As subsequent

analysis will show, larger parallax offsets tend to flatten ellipsoids towards the Galactic

centre and increase the tilt of ellipsoids around and outside the Solar radius. Hence this

only strengthens my conclusion that the flattening of the tilt at the solar radius reported

by H19 is driven by biased distance estimates.

2.2.2 The LAMOST DR4 and Gaia DR2 Cross-match

I separately analyse the velocity ellipsoids generated from the combination of 5D phase

space information from Gaia DR2 (Gaia Collaboration et al., 2018a), together with radial

velocities from the LAMOST DR4 value added catalogue (Cui et al., 2012; Xiang et al.,

2017). This enables me to analyse the velocity ellipsoids with an independent catalogue of

stars. LAMOST also provides metallicity estimates, which I use to produce halo and thin

disc samples by cutting on [Fe/H] < −1.5 and [Fe/H] > −0.4 respectively, as done in H19.

I apply the same cuts to this dataset as for RVS, namely 𝜛/𝜎𝜛 > 5, 𝜛 > 200 `as,

𝜎𝑣𝑟 < 20 km s−1 and 𝑣𝑟 < 500 km s−1. In the region of overlap between Gaia RVS and

LAMOST, I use the radial velocity estimate with the least uncertainty.
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I should be cautious of the radial velocities in LAMOST due to the statistical analysis

performed by Schönrich & Aumer 2017. They determined that the LAMOST radial

velocities were offset high by ∼ 5 km s−1. Assuming this offset is global throughout the

dataset, it would shift my mean velocities without significantly impacting the velocity

dispersions. Hence, I do not include this offset in my analysis.

2.3 Method

To transform from heliocentric to Galactocentric coordinates, I need to fix some Galactic

constants. I assume a Solar position 2 in cylindrical polar coordinates of (𝑅⊙, 𝑧⊙) =

(8.27, 0.014) kpc (e.g., Binney et al., 1997). The circular velocity of the Local Standard of

Rest is taken as 𝑣𝑐 (𝑅⊙) = 238 km s−1 (Schönrich, 2012), whilst the Solar peculiar motion is

(𝑈⊙, 𝑉⊙,𝑊⊙) = (11.1, 12.24, 7.25) km s−1 (Schönrich et al., 2010).

I determine the velocity ellipsoid parameters using maximum likelihood estimation

on the bivariate Gaussian likelihood function convolved with Gaussian measurement

uncertainties similar to previous works (e.g., Bond et al., 2010; Evans et al., 2016, H19). I

resolve the velocities into Galactocentric spherical polar coordinates (𝑣𝑟 , 𝑣\ , 𝑣𝜙) and use a

likelihood function

logL = −1
2
log |2𝜋Λ| − 1

2

∑
𝑖

(𝒙𝑖 − 𝝁)TΛ−1(𝒙𝑖 − 𝝁). (2.1)

Here, 𝒙𝑖 = (𝑣𝑟.𝑖, 𝑣\,𝑖) are the velocity components of the 𝑖th star, and Λ = Σ + 𝑪, where Σ is

the velocity covariance matrix in (𝑣𝑟 , 𝑣\) and 𝑪 the measurement uncertainty covariance

matrix of the data. The data are binned in a 20 × 20 grid of Galactocentric cylindrical

polar coordinates (𝑅, 𝑧), such that each bin is approximately 500 × 500 pc. For every

bin, I analytically calculate the means and covariances of the contained populations

without measurement uncertainties. These parameters are used to initialise my likelihood

optimization in order to calculate a best fit model with the uncertainties. The algorithm

proceeds by optimizing the means and covariances for each bin independently.

For the measurement errors in the RVS sample, I take the standard deviation and

correlation parameters for parallaxes, radial velocities and proper motions from the Gaia

DR2 dataset. The challenge here is that my likelihood function is inherently Gaussian,

whilst, assuming parallax uncertainties are Gaussian, the distance uncertainty distribution

is inherently non-Gaussian. When using 1/𝜛 as my distance estimator, the parallax

uncertainty is propagated so I do not assume Gaussian distance uncertainties. However,

I do assume Gaussian velocity uncertainties when calculating the likelihood function.

When using distance estimates from S19, it is important to use the correct uncertainty

distribution. For the purposes of this work, I assume Gaussian distance uncertainties using

the second moment of distance given by S19 as the variance. For future work, it will be

important to understand the impact of the third and fourth moments of distance on my

velocity ellipsoids. I also assume here that the distance is uncorrelated with the remaining

2The effect of changing the Solar position is investigated in Section 2.5.1
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astrometric parameters. For the LAMOST cross-matched with Gaia sample, I assume

that radial velocities are uncorrelated with all the Gaia astrometric parameters.

I determine the parameter posteriors by using the MCMC python package emcee

(Foreman-Mackey et al., 2013). I find that initialising walkers in a small ball around my

analytically determined parameters allows the chains to converge within 50 iterations. I

run 20 walkers for 300 iterations and use the last 150 to calculate my posteriors.

2.4 Results

2.4.1 The Gaia DR2 RVS sample

For my analysis of the Gaia RVS sample, I compute the velocity ellipsoids for three different

assumptions to show the effects of distance errors:

(i) without any parallax correction and using 𝑠 = 1/𝜛,

(ii) with a parallax correction of 29 `as and using 𝑠 = 1/𝜛,

(iii) with the Bayesian distance estimates from S19, which use a parallax correction of

54 `as.

my total sample sizes after applying cuts are 5 375 902, 5 499 054, and 5 221 912 respectively.

The velocity ellipsoids produced using assumptions (i) and (ii) are shown in Fig. 2.3, whilst

those produced using (iii) are given greater prominence in Fig. 2.4. I only show ellipsoids

in bins with greater than 30 stars, as these still provide clean results and allow us to view

the distribution out to greater distances.

In the top panel of Fig. 2.3, I recover Figure 2 of H19. I see the same transition from

approximate spherical to cylindrical alignment across the Solar radius. I note that my

results are somewhat more noisy, since I have not augmented my data-set with spectroscopic

catalogues and so my sample is about 75% of the size of H19. This effect is consistent

with overestimates of the distances, and hence tangential velocities, as already discussed in

Section 2.1. The bottom panel of Fig. 2.3 shows the same results with a 29 `as correction.

The behaviour of the velocity ellipsoid is now much more consistent throughout the

meridional plane, without the awkward transition from spherical to cylindrical alignment

at the Solar circle. However, of course this correction is conservative and not physically

motivated for stars in the RVS sample.

Fig. 2.4 uses the Bayesian distance estimates from S19 and is the centrepiece of my

results. I note that the ellipsoids do not extend out as far as in the previous plots. The

reason for this is that S19 also revise the parallax uncertainty upwards. As a consequence,

when cutting on parallax uncertainty 𝜛/𝜎𝜛 > 5, I remove more stars, particularly at large

distances. Those bins which are no longer included do not contain a requisite number of

stars for us to plot the ellipsoids. I do observe a slight deviation of the spherical alignment of

the velocity ellipsoids at low elevation towards inner radii, tending to cylindrical alignment.

This is likely the effect of the contribution of the baryonic disc to the gravitational potential.

The same effect can be seen in the velocity ellipsoids of RR Lyrae in the halo in Wegg
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Fig. 2.3 Velocity ellipsoids generated from the Gaia RVS DR2 dataset with different
treatments of parallax bias. The size of the ellipsoid is proportional to the value of the
velocity dispersion in each bin. The short-dashed lines correspond to the orientation of a
spherically aligned velocity dispersion, while the colour bar gives the deviation in degrees
of the velocity ellipsoid orientation from this spherical alignment, with blue indicating a
flattening and red an over-tilting towards the disc. The black dashed lines show contours of
misalignment uncertainty. Top: Using distance as 1/𝜛 with no parallax offset correction.
Bottom: Distance as 1/𝜛 with 29 `as parallax correction.
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Fig. 2.4 Velocity ellipsoids generated from the Gaia RVS DR2 with Bayesian distance
estimates from S19 which include a parallax offset correction of 54 `as. This figure can
be compared to Fig. 2.3 which make inferior assumptions as to the distance estimates.
Black dashed contours give the ellipsoid orientation uncertainty for 0.5◦, 1◦, 2◦ and 4◦

respectively. Note that the artificial transition from spherical to cylindrical alignment at
the Solar circle visible in the upper panel of Fig. 2.3 has been removed.
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Fig. 2.5 Velocity ellipsoids generated from Gaia DR2 cross-matched with LAMOST with
[Fe/H] > −0.4 producing a thin disc sample. As usual, the size of the ellipse is related
to the value of the velocity dispersion in the given spatial bin. The short dashed lines
correspond to the direction of spherical alignment. The colour corresponds to the deviation
in degrees of the velocity ellipsoid orientation from spherical alignment. In other words,
grey implies spherical alignment whilst blue implies tending towards cylindrical alignment.
The black dashed contour shows the misalignment uncertainty. I use 1/𝜛 as a distance
estimator but with 29 `as correction (left panel) and 54 `as correction (right panel). These
bracket the range of possibilities, as the former overestimates and the later underestimates
the true distances.

et al. 2019, although most of the effect in their analysis occurs within 4 kpc of the Galactic

centre, outside of which the velocity ellipsoids appear to be spherically aligned.

Notice that the size of the velocity ellipsoids increases with elevation above and below

the plane. This is caused by the inclusion of three populations of stars, belonging to the

thin disc, thick disc and halo. It is interesting to look at the populations separately, and

for this I turn to the LAMOST and Gaia cross-matched sample, which has spectroscopic

metallicities.

2.4.2 The LAMOST DR4 and Gaia DR2 Crossmatch

Without Bayesian distances for this sample, I use 𝑠 = 1/𝜛 as my estimator with parallax

corrections 29`as and 54`as. I expect these to overestimate and underestimate distances

respectively, as indicated by Fig. 2.1. Therefore, my results on the tilt of the velocity

ellipsoid merely bracket the range of possibilities.

I split the sample into two separate populations, [Fe/H] > −0.4 as a thin disc sample

and [Fe/H] < −1.5 as a halo sample. Neither sample is completely pure, as the metallicity

cuts only approximately separate populations. After applying the cuts, my halo samples
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Fig. 2.6 As Fig. 2.5, but for the halo sample obtained from Gaia DR2 cross-matched with
LAMOST with [Fe/H] < −1.5.

contain 18 424 and 19 661 stars for 29 `as and 54 `as corrections respectively and the thin

disc samples contain 2 286 528 and 2 306 729 stars.

In Fig. 2.5, I present results for the thin disc sample. In the left plot, the flattening

of the tilt is still strong for the 29 `as correction, with cylindrical alignment particularly

prevalent at elevations above 2 kpc from the plane. In the right plot, with a 54 `as

correction, the majority of this signal has been removed. However, there appears to be a

small but significant deviation from spherical alignment remaining for heights |𝑧 | ∼ 2.5 kpc.

It is suggestive that there the thin disc population may not be exactly spherically aligned.

The results for the low metallicity halo sample are given in Fig. 2.6. This contains a

much smaller number of stars, which allows fewer bins and causes the results to appear

more noisy. However, in the left plot, with the conservative 29 `as correction, almost

cylindrical alignment can be seen for 𝑅 ∼ 10 kpc and 𝑧 ∼ 2 kpc which is completely removed

in the right hand plot for the 54 `as over-correction. I also note here that the scales of the

velocity dispersions are much more consistent across elevations which demonstrates the

effect of selection of the halo sample with only small impurities.

2.5 The Tilt of the Velocity Ellipsoid

Binney et al. 2014 and Büdenbender et al. 2015 introduced and exploited a compact way

to summarize results on the tilt of the velocity ellipsoids. They used a model in which

the angle between the Galactic plane and the direction of the longest axis of the velocity

ellipsoid is

𝛼 = 𝛼0 arctan |𝑧 |/𝑅. (2.2)
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Fig. 2.7 The upper panel shows fits for the tilt of the velocity ellipsoid using Eq. (2.2).
The blue points provide the posterior means and uncertainties of ellipsoids aggregated
in in |𝑧 |/𝑅 bins as evaluated in Eq. 2.3. Perfect spherical alignment corresponds to the
green line, whereas the black line is my result from the Gaia RVS sample with distances
from Schönrich et al. 2019. For comparison, I also show recent fits from Binney et al.
2014 (red) and Büdenbender et al. 2015 (pale blue). Notice that the binned datapoints
show a transition from below to above the best fit line, as the disc potential becomes less
dominant. The lower panel shows the deviation from spherical alignment.
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They fitted the binned data to the model to determine the best fit 𝛼0 parameter. A result

of 𝛼0 = 1 implies exact spherical alignment, whilst 𝛼0 < 1 means that the ellipsoids are

tilted towards cylindrical alignment.

I perform a least squares regression on all bins with 𝑛stars > 5 as these still contain

valuable information about ellipsoid alignment although with large uncertainties3. Bins

with fewer stars are almost randomly aligned. For the Gaia RVS sample with S19 distances,

I acquire a tilt value of 𝛼0 = 0.952±0.007. This is in significant disagreement with 𝛼0 ∼ 0.8

determined in Binney et al. 2014 from the local RAVE stars (Steinmetz et al., 2006). It is

in reasonable agreement with Büdenbender et al. 2015, who found a value of 0.90 ± 0.04

using the Segue G dwarf sample. As discussed in Section 2.2, I also calculate this parameter

for the distance estimates of A19 with the RVS sample and retrieve 𝛼0 = 0.956 ± 0.006, in

remarkably good agreement with the estimate from S19 distances.

I see no physical reason why this parameter should be constant across all populations of

stars and in all parts of the Galaxy. Under the hypothesis that tilt of the velocity ellipsoids

is controlled at least in part by the contribution of the baryonic disc to the potential, I

anticipate that 𝛼0 should be lowest near the plane and tend towards 1 at high elevation.

I also suggest that the flattening of the tilt should be more extreme in the inner radii.

To test this hypothesis, I compute 𝛼0 for subsets of my velocity ellipsoids. I find that for

|𝑧 | < 2 kpc, 𝛼0 = 0.950 ± 0.007 whilst for |𝑧 | > 2 kpc, 𝛼0 = 0.966 ± 0.018. I also find that at

𝑅 < 7 kpc, 𝛼0 = 0.917 ± 0.013 whilst for 𝑅 > 7 kpc, 𝛼0 = 0.963 ± 0.007. This is consistent

with the hypothesis that the effects of the disc potential are driving much of the deviation

from spherical alignment.

I also look at the tilt at large radii and high elevation. For |𝑧 | > 2 kpc and 𝑅 > 7 kpc, I

retrieve the result 𝛼0 = 0.986 ± 0.020, which is consistent with spherical alignment. This

is in good agreement with a number of studies of the velocity ellipsoids of halo stars in

SDSS (Bond et al., 2010; Evans et al., 2016; Smith et al., 2009b), as well as the recent

work of Wegg et al. 2019 who determined that the kinematics of the RR Lyrae in the halo,

extracted from Gaia DR2, imply a spherically symmetric halo potential.

In Fig. 2.7, I show the fit of the tilt of the velocity ellipsoids as a function of |𝑧 |/𝑅.
The green solid line shows the expected trend for spherical alignment (𝛼0 = 1). I plot my

best fit, as well as the earlier results from Binney et al. 2014 and Büdenbender et al. 2015.

I also group my velocity ellipsoids in |𝑧 |/𝑅 bins, where each bin is a cone annulus viewed

from the Galactic center, and estimate the posterior tilt of all ellipsoids within that bin. I

do this by assuming Gaussian uncertainties on individual ellipsoid inclinations in which

case the the posterior uncertainty and mean are given by

𝜎𝛼 =

√
1∑
𝑖 𝜎

−2
𝛼𝑖

, `𝛼 = 𝜎−2
𝛼

∑
𝑖

𝛼𝑖𝜎
2
𝛼𝑖 (2.3)

3In Section 2.4, I only use bins with 𝑛stars > 30 because the scatter in less populated bins make the
ellipsoid plots appear untidy and muddied the trends in behaviour.
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where the sums are over all ellipsoids in a given bin and 𝛼𝑖, 𝜎𝛼𝑖 are the mean and uncertainty

of tilt measured for ellipsoid 𝑖. These means, `𝛼, and standard deviations, 𝜎𝛼 are given by

the blue data points and error bars in Fig. 2.7. Notice that the binned datapoints show

an interesting pattern with respect to the best fit. The datapoints with high |𝑧 | mostly

lie just above the best fit, those with low |𝑧 | lie just below. This trend suggests that the

deviations from spherical alignment are induced by the disc potential.

I also compare ellipsoids above and below the plane. I find that above the disc

𝛼0 = 0.964 ± 0.009, whilst below the plane, 𝛼0 = 0.940 ± 0.009, showing 2𝜎 disagreement.

However, this asymmetry is far more stark when separating in-plane from high elevation

contributions. Considering only ellipsoids within 1 kpc of the plane, I find that 𝛼0 =

0.989± 0.014 above and 0.888± 0.013 below which has a 5𝜎 difference. Conversely outside

1kpc, 𝛼0 = 0.94 ± 0.01 and 0.99 ± 0.01 above and below respectively, in 3𝜎 disagreement

and opposite to the in-plane difference.

For an axisymmetric equilibrium that is reflexion symmetric about the Galactic plane,

results above and below the plane should be consistent. This apparent discrepancy

particularly in the disc may be caused by substructure and streams, buckling of the

Galactic bar (Saha et al., 2013), or by the effects of bending modes in the disc (e.g. Gómez

et al., 2013; Laporte et al., 2019; Williams et al., 2013; Xu et al., 2015), or by unrecognized

systematics in the data.

I analyse the thin disc and halo samples generated from the Gaia-LAMOST cross-match.

For the disc sample, I recover 𝛼 = 0.909 ± 0.008 for the 29 `as correction, which becomes

𝛼 = 1.038 ± 0.008 for the 54 `as correction. As anticipated, this straddles the RVS results

demonstrating the effect of overestimating and underestimating the distances. The same

effect is present in the halo sample with 𝛼 = 0.927 ± 0.035 and 𝛼 = 1.063 ± 0.036 for

corrections of 29 `as and 54 `as respectively.

2.5.1 The Solar Position

In the analysis, I assumed a Solar distance to the Galactic centre of 𝑅⊙ = 8.27 (Binney

et al., 1997) and neglected uncertainties on this estimate. This is mainly to ease comparison

with earlier work, especially H19. Recently, the Gravity Collaboration et al. 2018 reported

a high precision distance to Sagittarius A* of 8.127 ± 0.031 kpc, which is smaller than my

assumed value.

Adjusting the Solar position with respect to the Galactic centre does not change the

properties of velocity ellipsoids in Cartesian coordinates. The only impact is that I now

calculate the misalignment with respect to a new central point in the Galaxy.

For this change in 𝑅⊙, the shift in misalignment is small. In the most extreme cases of

velocity ellipsoids at (|𝑧 | ∼ 2, 𝑅 ∼ 4) kpc, the misalignment is reduced by 0.84◦ which falls

well within my uncertainties. On average, across all my ellipsoid positions, the induced

flattening is 0.33◦. The effect on any individual ellipsoid is negligible.

However, a change in 𝑅⊙ induces a coherent shift in all ellipsoid misalignments, and

so there is a somewhat larger effect on my inference of the tilt normalization parameter,

𝛼0. I find that using 𝑅⊙ = 8.127 kpc, the full RVS sample generates a tilt parameter of
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𝛼0 = 0.953±0.007. This shift is still within the original uncertainties. Similar calculations for

sub-samples of the ellipsoids prove even less significant due to their increased uncertainties.

2.6 Round Up

The tilt of the velocity ellipsoid of local stars is important for several reasons. First,

determinations of the local dark matter density are usually based on the vertical kinematics

of stars. The gravitational potential is inferred from the Jeans equations or distribution

functions, a calculation known to be sensitive to the tilt of the velocity ellipsoid (e.g.

Silverwood et al., 2016; Sivertsson et al., 2018). Secondly, the heating processes that

thicken discs include scattering by in-plane spiral arms and by giant molecular clouds.

These scattering processes can produce different signatures in the tilt of the thin disc

velocity ellipsoid (e.g., Sellwood, 2014). Thirdly, the alignment can give direct information

on the potential in some instances (e.g., Binney & McMillan, 2011; Eddington, 1915). For

example, the halo stars are believed to be close to spherical alignment, as judged by a

number of earlier studies of SDSS star samples (e.g., Bond et al., 2010). Exact spherical

alignment implies a spherically symmetric force field (An & Evans, 2016; Smith et al.,

2009b).

The Gaia Radial Velocity Spectrometer (RVS) sample comprises 7 224 631 stars with full

phase space coordinates. The main hurdle to overcome in exploiting this dataset to study

the tilt is the accurate and unbiased conversion of parallaxes 𝜛 to heliocentric distances 𝑠.

I find that the Bayesian distances of Schönrich et al. 2019, which incorporate a parallax

offset of 54 `as, give reliable results. I have checked that substitution of photo-astrometric

distances from Anders et al. 2019 using the StarHorse pipeline gives consistent results.

The Gaia RVS sample is consistent with nearly spherical alignment. The tilt is

accurately described by the relation 𝛼 = (0.952 ± 0.007) arctan( |𝑧 |/𝑅). If the normalising

constant were unity, then this would imply exact alignment with spherical polars. My

result is pleasingly close to that found by Büdenbender et al. 2015 from the Segue G dwarf

stars in the Solar neighbourhood. If the sample is restricted to stars at large Galactocentric

radii, or great distances above or below the plane, then the alignment becomes still closer

to spherical. The data support the conjecture that any deviation from spherical alignment

of the velocity ellipsoids is caused by the gravitational potential of the disc. Such deviations

occur at low |𝑧 | and close to the Galactic centre, whilst at |𝑧 | > 2 kpc and 𝑅 > 7 kpc the

ellipsoids are consistent with spherical alignment.

With subsamples from Gaia DR2 cross-matched with LAMOST, I study the disc and

halo populations separately. Even though Bayesian distances are not available for all

these stars, I can bracket the tilt of the velocity ellipsoids by making assumptions that

underestimate and overestimate the heliocentric distances. For thin disc stars, I find

𝛼 = (0.909−1.038) arctan( |𝑧 |/𝑅) and for halo stars 𝛼 = (0.927−1.063) arctan( |𝑧 |/𝑅). Both
populations are close to spherical alignment, with the only real deviations occurring in the

inner Galaxy near the Galactic plane.
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2.7 Systematic Dominance

The use of reciprocal parallax as a distance estimator produces artefacts in the local

velocity ellipsoid which can completely change the conclusions which one draws from the

data. In this instance, I have demonstrated that the dominant effect was the zero point

parallax offset in the Gaia data.

However, I have also discussed the importance of Bayesian distance estimates and

propagation of non-Gaussian uncertainties. Evaluating Bayesian distances require a

selection function for the given catalogue which can be used to estimate the observable

distribution of sources as a prior. In Chapters 3 and 4 I introduce methods for evaluating

selection functions of several different surveys and produce the selection functions for the

Gaia source catalogue and scientific subsets.
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Spectrograph Survey Selection Functions

“One who knows and knows that he knows. . .

...his horse of wisdom will reach the skies.

One who knows, but doesn’t know that he knows. . .

...he is fast asleep, so you should wake him up!

One who doesn’t know, but knows that he doesn’t know. . .

...his limping mule will eventually get him home.

One who doesn’t know and doesn’t know that he doesn’t know. . .

...he will be eternally lost in his hopeless oblivion!”

Ibn Yamin, Persian poet, c. 14thC

This quote, controversially popularised by Donald Rumsfeld in 2002, highlights a

challenge we face in astronomy. We are well practiced at discussing topics which we known

we know, and a huge amount of our research effort goes into transforming known unknowns

to known knowns. A much more challenging task is discovering the unknown unknowns.

For example, until 2007 the transient events referred to as fast radio bursts (FRBs) were

not known to exist. They were unknown unknowns, an observable which we didn’t know

we did not understand because there had been no confirmed detection. Observations of

the Lorimer burst (Lorimer et al., 2007) transformed these transient objects into known

unknowns, objects which we knew we didn’t understand. Since then vast effort has gone

into understanding the causes of these events.

Selection functions are hugely important for differentiating between what we know

or do not know from our observations. You are a football fan at the 2020 Euros final at

Wembley watching England play Italy. You want to estimate the number of people in the

stadium. This is easy in your block, you just turn around and count individuals. As you

start to look further away though it gets tough, on the other side of the stadium people

are all blurred together and with some standing whilst others sit, there are individuals

who are barely visible. The solution is simple, you count the people in your own block and

assume all other blocks have a similar number so you multiply by the number of blocks.

In this scenario, you observed all people in your block so the selection function here is

1, these are the known knowns. In all other blocks you have not counted any individuals so

the selection function is 0, the known unknowns. Because you understand your selection

function, you can achieve a reasonable estimate about the number of fans in the stadium.
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However, what if you had just tried to count as many people as possible without

keeping track of how much of the stand you were trying to count? Suddenly you do not

know your selection function and you only have a count for some unknown fraction of the

stadium. There are parts of the stadium where you did not count anyone but you do not

know if that’s because there truely is no-one there or because you were not able to count

that stand, there are unknown unknowns and you are lost in hopeless oblivion!

In this chapter, I demonstrate a method for estimating selection functions of multi-fibre

spectrographs. As I show in Chapter 6, selection functions are invaluable for estimating

the population and distribution of stars in the Milky Way, just as a football fan estimates

the number of spectators at Wembley.

3.1 Spectroscopic Surveys

Within the Milky Way, we are able to resolve stars out to large distances, but with

that privilege comes a bias. The most comprehensive spectroscopic surveys can typically

measure quantities for only a fraction of a percent of the stars in the Milky Way. The survey

or ‘observed’ selection function is the probability of a star being included in the survey

given its sky positions, colour and apparent magnitude. To make inferences regarding

the intrinsic chemodynamical structure of the Milky Way, knowledge is required of the

intrinsic selection function, i.e. the probability of a star being included in the survey given

its intrinsic coordinates: Galactic location, metallicity, mass, and age.

The second data release (Gaia Collaboration et al., 2018a) of the ESA’s Gaia mission

has pushed us far further than ever before, measuring photometry, positions, and proper

motions for over 1.3 billion stars. In parallel, several ground-based spectroscopic surveys

are measuring spectra for millions of these stars. Despite an often relatively simple nominal

selection in colour and apparent magnitude, taking cross-matches with other surveys or

selecting stellar type sub-samples result in a selection function that is no longer simple.

Furthermore, to convert the observed colour-magnitude selection function into an intrinsic

one that depends on distance, metallicity, mass, and age, one needs to engage with stellar

isochrones. In order to understand the bias generated by selecting subsamples, we must

calculate the selection functions for these surveys.

Many studies have developed survey selection functions, in which the completeness

along a line of sight is given by the ratio of the number of stars in the spectroscopic survey

to the number of stars in a photometric survey in the same region of colour and apparent

magnitude. Das & Binney (2016) and Das et al. (2016) use this method to construct

selection functions for halo blue horizontal branch stars and K giants in Sloan Extension for

Galactic Understanding and Exploration-2 (SEGUE-II, Xue et al., 2011). Similar methods

are used in determining the selection function for the Radial Velocity Experiment (RAVE,

Kordopatis et al., 2013) by Wojno et al. 2017 and for the Large Sky Area Multi-Object

Fibre Spectroscopic Telescope (LAMOST, Cui et al., 2012) Spectroscopic Survey of the

Galactic Anticentre (LSS-GAC, Xiang et al., 2017) by Chen et al. 2018. Stonkutė et al.
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2016 perform a similar analysis of the Gaia-ESO survey (Gilmore et al., 2012a), taking

into account the survey’s observing strategy.

Vickers & Smith 2018 generate a combined selection function for LAMOST (Zhao et al.,

2012), RAVE (Kunder et al., 2017) and the Tycho-Gaia Astrometric Solution (TGAS,

Michalik et al., 2015a) by binning the fields in colour, apparent magnitude, and distance

using a synthetic galaxy catalogue as the assumed complete sample. Bovy et al. 2012b and

Bovy et al. 2014 consider the dependence of the selection function on apparent magnitude

for G-type dwarfs in the Sloan Extension for Galactic Understanding and Exploration

(SEGUE, Yanny et al., 2009) survey and the Apache Point Observatory Galaxy Evolution

Experiment (APOGEE, Majewski et al., 2017). Their selection function along any line

of sight is assumed to be uniform in apparent magnitude with limits defined either by

the faintest star observed in a field or by the survey’s nominal magnitude limit. Bovy

et al. 2014 also present a selection function in distance that takes into account the dust

extinction along the line of sight.

Finally, Nandakumar et al. 2017 and Mints & Hekker 2019 determine selection biases

for a large number of spectroscopic surveys by binning the sample in colour-magnitude

space, either using a regular grid or a specialised median binning algorithm, and comparing

with the 2-Micron All Sky Survey (2MASS, Skrutskie et al., 2006).

Amongst all previous works, fundamental aspects of the methodology remain the same.

The dependence of the selection function on colour and magnitude is treated as a ratio

of number counts of stars between the spectroscopic and a given photometric survey or

a synthetically generated population, which is assumed to be complete. Uncertainties in

measurements in colour and apparent magnitude are not used in the calculation. The effects

of overlapping coordinate fields on the selection function are not considered. Selection

functions are largely constructed as a function of colour and magnitude and not converted

to intrinsic coordinates, with the exception of Das & Binney (2016), Das et al. (2016), and

Sanders & Binney (2015). With the exception of Vickers & Smith 2018, no methods are

presented for combining selection functions.

In this chapter, I build on previous work to create seestar1, a Python code that

can be applied to any multi-fibre spectroscopic survey, independent of its footprint on the

sky, the number of stars observed, and the selection criteria of the survey. I construct an

algorithm to treat the limitations of Poisson noise when bins have small numbers of stars

by using a Poisson point process, whose parameters I determine using maximum likelihood

estimation. I propose how the uncertainties in colour and magnitude measurements may

be incorporated into this. I include a method for calculating the union of overlapping

field probabilities, which also enables selection functions of independent surveys to be

combined. I use isochrones to convert the selection function depending on colour and

apparent magnitude to one that depends on distance, metallicity, mass, and age. This

is an essential component of chemodynamical models of the Milky Way (Das & Binney,

2016; Sanders & Binney, 2015; Schönrich & Binney, 2009).

1https://github.com/aeverall/seestar
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In Section 3.2, I demonstrate how to calculate the selection function in observable

coordinates (colour and apparent magnitude) and intrinsic coordinates (distance, metallicity,

mass, and age), and how to determine the dependence on sky position. The results of

tests on a mock catalogue are presented in Section 3.3. Finally, I discuss my results and

potential future developments and applications of this method in Section 3.4. Section 3.2 is

rather technical in nature, and I therefore advise readers only interested in the performance

of the selection function package to skip to the results.

3.2 Method

The selection function P(S | x) of a stellar survey is the probability of a star being in the

survey, S, given the star’s coordinates x. The coordinates may be observed (sky positions,

apparent magnitude, and colour) or intrinsic quantities (galactic location, metallicity, mass,

and age). I assume that for the spectroscopic survey, there is a photometrically selected

catalogue of stars which is complete in the region of colour and apparent magnitude

observable by the spectrograph. Throughout this chapter, I use the superscript ‘spec’ to

refer to the spectroscopic sample and ‘phot’ to refer to the photometric sample. By Bayes’

theorem

P(S | x) = P(x | S)P(S)
P(x) . (3.1)

P(x)d𝑛𝑥 ≡ 𝑓 (x)d𝑛𝑥 is the probability that a star chosen at random has coordinates

within the volume element, d𝑛𝑥, where 𝑓 (x) is the distribution function of stars in the Milky

Way. P(x | S)d𝑛𝑥 ≡ 𝑓 spec(x | S)d𝑛𝑥 is the probability that a star picked at random from

the survey has coordinates in d𝑛𝑥, where 𝑓 spec(x) is the distribution function of observed

stars. Finally, P(S) = E [𝑁spec] /E [𝑁] is the probability of a star entering the survey and

is given by the ratio of the expected number of stars in the survey to the expected total

number of stars in the Milky Way. Under the assumption that the photometric sample is

complete within the given range of observable coordinates, I denote 𝑓 phot(x) = 𝑓 (x) and
𝑁phot = 𝑁 and substitute into Equation (3.1).

P(S | x) = 𝑓 spec(x)E [𝑁spec]
𝑓 phot(x)E

[
𝑁phot

] =
E [𝑛spec(x)]
E

[
𝑛phot(x)

] , (3.2)

where E [𝑛spec(x)] and E
[
𝑛phot(x)

]
are the expected number densities of stars in the

spectroscopic and photometric surveys respectively, at coordinates x.

The observation of a star is dependent on the star’s observable properties, x = (𝑙, 𝑏, 𝑐, 𝑚)
where (𝑙, 𝑏) are the star’s coordinates on the sky and (𝑐, 𝑚) the colour and apparent

magnitude of the star. For ease of notation I group these into positional coordinates,

𝜽 = (𝑙, 𝑏) and photometric properties, v = (𝑐, 𝑚).
The positional coordinates indicate which region of the sky or ‘patch’ the star belongs

to. The best method to characterize the dependence of the selection function on these

patches depends on the survey design. This is described in Section 3.2.2. On each

patch, the selection function is calculated as a function of v as described in Section 3.2.3.
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𝒎0, _,𝚿, a 𝛼 m̃0, _̃, �̃�, ã
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{
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}
U[−∞,∞]

{ ˜̂𝑘 }

lnLphot (x) lnLspec (x)

{𝑋phot} {𝑋spec}

Fig. 3.1 Bayesian network (directed acyclic graph) of the model described in this chapter
as a function of colour and apparent magnitude for a single field. The network describes
a method for determining the posterior of photometric density and selection function
parameters where both are parameterised GMMs.

In Section 3.2.4, the observed coordinates are transformed into intrinsic coordinates,

v(𝑠, [M/H],Mini, 𝜏), where 𝑠, [M/H],Mini, 𝜏 are distance, metallicity, initial mass, and

age respectively. These coordinates underpin the description of the chemodynamical

distribution of stars in the Milky Way.

3.2.1 Model Parameters

In Table 3.1 I provide short descriptions of the notation followed in this chapter to help

with following the method.

Fig. 3.1 is a Bayesian network (or acyclic directed graph) representation of the method

for calculating the selection functions for each field as a function of colour and apparent

magnitude. Red boxes contain parameters and hyperparameters of the model. Green

ellipses are conditional probabilities from which parameters and data are sampled. The

blue double circles are the observable data.

In summary, the method consists of maximising the product off all probability distribu-

tions in green ellipses. The best fit hyperparameters then define the posterior parameters

of the photometric density and selection function GMMs. In my method this is achieved

as a two stage process, first fitting the photometric data to determine posterior GMM

parameters for the photometric density. Subsequently the photometric GMM parameter

posteriors are provided as priors to the spectroscopic likelihood function.
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x = (𝜽 , v) Full coordinates of the star.{
𝑋phot

}
(
{
𝑋spec

}
) Sample of photometric (spectroscopic) data.

𝜽 = (𝑙, 𝑏) Galactic coordinates.

v = (𝑚, 𝑐) Observable coordiantes: colour and apparent magnitude.

𝜏, [M/H],Mini, 𝑠 Intrinsic coordinates: age, metallicity, initial mass and distance

M̃ini Initial mass scaled to the range M̃ini ∈ [0, 1].

Θ𝑖 Event that a star is on field 𝑖.

S Event that a star is selected in the spectroscopic catalogue.

S𝑖 Event that a star is selected on field 𝑖 of the spectrosopic catalogue.

𝑓phot( 𝑓spec) Distribution function (spectroscopic distribution).

𝑛phot(𝑛spec) Density of stars in the photometric (spectrosopic) sample.

𝑁phot(𝑁spec) Number of stars in the photometric (spectrosopic) sample.

𝑔DF(𝑔SF) GMM for the distribution function (selection function).

𝜖 (�̃�) Parameters of the distribution function (selection function).

𝛼𝑘 Dirichlet concentration parameters for the photometric density
GMM.

𝑤𝑖𝑘 , 𝝁𝑖𝑘 ,𝚺𝑖𝑘 Parameters of field 𝑖, component 𝑘 of the photometric density GMM.

𝜋𝑖𝑘 Normalised component loadings of the photometric density GMM.

𝑁 Normalisation of the photometric density GMM.

𝑤𝑖𝑘 , �̃�𝑖𝑘 ,𝚺𝑖𝑘 Parameters of field 𝑖, component 𝑘 of the selection function GMM.˜̂𝑖𝑘 logit transform of the component weights of the selection function
GMM.

Lphot(Lspec) Likelihood function for the photometric density (spectroscopic den-
sity) fit.

𝑀 Number of fields or patches.

𝐾 Number of GMM components in photometric density.

𝐾 Number of GMM components in selection function.

GMM Gaussian Mixture Model, Eq. 3.11.

NIW Normal Inverse Wishart distribution, Eq. 3.14.

DIR Dirichlet distribution, Eq. 3.15.

U Uniform distribution.

Table 3.1 Notation followed in this chapter.
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3.2.2 Dependence of Selection Function on Sky Positions

To determine the dependence of the selection function on positional coordinates, I bin the

sky into independent regions called patches across which the selection function does not

vary directly as a function of sky position. Therefore I can denote Θ𝑖 as the event that the

star’s coordinates are located on patch 𝑖. Using this notation, I can define the probability

of a star being located on a field given the star’s sky positions as

P(Θ𝑖 | 𝜽) =

1 if 𝜽 is located on patch 𝑖,

0 otherwise.
(3.3)

Defining a Patch

I assume that the selection function given v is independent of 𝜽 across any patch. This

motivates us to divide the sky into smaller patches particularly in locations where I expect

rapid changes in the selection function with respect to sky positions. However, using

smaller patches reduces the number of stars per patch, which amplifies the effects of

Poisson noise. A sufficient coarseness is required such that the effects of Poisson noise are

limited but fine enough such that the dependence of the selection function on sky positions

is small.

Before continuing, I should briefly explain what I mean by Poisson noise and why it

is so central to this work. Detections and recordings of stars in stellar catalogues can be

considered as independent events which are randomly sampled from a distribution over

observed coordinates. Thus the detection of stars by stellar surveys is well modelled by a

Poisson point process. The signal-to-noise ratio for a Poisson point process scales with

the square root of the mean signal strength, S
N ∼

√
_ where _ is the expected number of

events per interval of observed coordinate space. Therefore the larger the number of events

per interval, the stronger the signal-to-noise ratio. This is why reducing the number of

stars per patch in order to increase the spatial resolution also leads to a reduction in the

signal-to-noise ratio.

A multi-fibre spectroscopic survey is constructed by placing fibres on a plate so that

each fibre is at the image of a star. The plate covers a solid angle on the sky. The solid

angle of sky observed by each plate is here referred to as a field, and the coordinates of

the centre of the field define the field pointing. The distributions of fields for APOGEE

and RAVE in sky positions are shown in Fig. 3.2 where each coloured circle represents the

extent of a different field, and the field pointings are located at the centre of each circle.

For multi-fibre spectroscopic surveys I define a patch as the region of sky covered by a

field. From here on I refer to patches as fields.

For a point on a single field, the selection function is the probability that the star is

observed by that field given the star’s photometric properties, v. If a coordinate does not

lie in a field, the selection function is 0.
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Fig. 3.2 Individual fields in APOGEE DR14 (top) and RAVE DR5 (bottom), shown here in
Galactic coordinates, have substantial overlap within each survey. Despite being northern
and southern hemisphere surveys respectively, their footprints overlap particularly in the
equatorial plane.
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The selection function for field 𝑖 is given by

P(S𝑖 | 𝜽 , v) = P(S𝑖 | Θ𝑖, v)P(Θ𝑖 | 𝜽) (3.4)

where S𝑖 is the event that a star is selected by field 𝑖.

In many spectrograph surveys, as can be seen for APOGEE and RAVE in Fig. 3.2,

fields may heavily overlap leading to a single coordinate being observed multiple times on

different fields. The selection function is the probability that at least one field selects the

star. This is given by the union of the event of each field selecting the star

P(S | 𝜽 , v) = P

(
𝑀⋃
𝑖=1

S𝑖
���� 𝜽 , v) (3.5)

where 𝑀 is the total number of fields employed. This is calculated using all observations

made on field 𝑖, even if the same star is observed on another field. The probability of the

union of being on either of the two fields is the probability that one or the other occurs. I

expand this in terms of the selection by individual fields

P

(
𝑀⋃
𝑖

S𝑖
���� 𝜽 , v) =

𝑀∑
𝑘=1

(−1)𝑘+1
[ ∑
1≤𝑖1<...<𝑖𝑘≤𝑀

P(S𝑖1 ,S𝑖2 ...S𝑖𝑘 )
]

(3.6)

where

P(S1,S2, ...) =
∏

𝑖=1,2,...

P(S𝑖 | Θ𝑖, v)P(Θ𝑖 | 𝜽). (3.7)

assuming the events S1,S2... are independent. Appendix A.1 provides a detailed

explanation of this expansion.

As mentioned earlier, many surveys contain multiple observations of the same positional

coordinates. These can be observations taken on separate days to different magnitude

depths. For Equation (3.7) to be appropriate, different observations of the same field

should only be considered as separate fields if the observations are independent, i.e. if the

probability of a star being selected by one observation is independent of whether the star is

selected by the other observation. If the observations are dependent, as is the case if stars

in one observation are chosen deliberately to be exclusive or inclusive of those observed

in another observation, then the observations should be combined to form a single field

in the selection function. In my method I combine all observations with the same field

pointing as a single field.

In the following sections, I examine the dependence of the selection function on v.

These are calculated for a given field, 𝑖. Having calculated the selection function for each

field as a function of v, they are combined using the method above to achieve the full

selection function for the entire survey.
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3.2.3 Selection function in Observable Coordinates

The probability of a star being selected by field 𝑖 given v, and given that the star lies on

the field (i.e. P(Θ𝑖 | 𝜽) = 1) is

P(S𝑖 | v,Θ𝑖) =
P(v | S𝑖,Θ𝑖)P(S𝑖 | Θ𝑖)

P(v | Θ𝑖)
. (3.8)

P(v | Θ𝑖)dv ≡ 𝑓 (v | Θ𝑖)dv is the probability that a star chosen at random on field 𝑖 has

coordinates within the dv volume element, where 𝑓 (v | Θ𝑖) is the distribution of stars in

the Milky Way inside the cone projecting onto field 𝑖.

P(v | S𝑖,Θ𝑖)dv ≡ 𝑓 spec(v | Θ𝑖)dv is the probability that a star observed on field 𝑖 of

the spectroscopic survey has coordinates within the dv volume element. Finally, P(S𝑖) =
E

[
𝑁

spec
𝑖

]
/E [𝑁𝑖] is the probability of a star on field 𝑖 entering the survey, and is given by

the ratio of the number of stars in the survey on field 𝑖 to the total number of stars in the

Milky Way inside the cone projecting onto field 𝑖. Assuming that the photometric sample

is complete within the given range of observable coordinates 𝑓 phot(v | Θ𝑖) = 𝑓 (v | Θ𝑖)
and 𝑁phot

𝑖
= 𝑁𝑖. Substituting into Equation (3.8)

P(S𝑖 | Θ𝑖, v) =
𝑓
spec
𝑖

(v | Θ𝑖)E
[
𝑁

spec
𝑖

]
𝑓
phot
𝑖

(v | Θ𝑖)E
[
𝑁

phot
𝑖

] =
E

[
𝑛
spec
𝑖

(v | Θ𝑖)
]

E
[
𝑛
phot
𝑖

(v | Θ𝑖)
] , (3.9)

where 𝑛spec
𝑖

(v | Θ𝑖) = 𝑓
spec
𝑖

(v | Θ𝑖)𝑁spec
𝑖

is the number density of stars observed by the

survey on field 𝑖 and 𝑛phot
𝑖

(v | Θ𝑖) = 𝑓
phot
𝑖

(v | Θ𝑖)𝑁phot
𝑖

is the number density of stars in

the Milky Way on the cone projecting onto field 𝑖.

Number density of photometric sample

I start by calculating the expected number density of stars in the Milky Way on field 𝑖,

E
[
𝑛
phot
𝑖

(v | Θ𝑖)
]
. The choice of photometric survey is discussed in Section 3.4.

The stars in the photometric survey represent a Poisson realisation of the smooth

underlying number density function, 𝑛phot. The aim is to use the observed stars to estimate

the true smooth number density function. I assume this function can be parameterised

as a bivariate Gaussian Mixture Model (GMM) for each field 𝑖. Each bivariate Gaussian

component is given by

𝐺 (v | 𝝁,𝚺) = 1√
| 2𝜋𝚺 |

exp

(
− (v − 𝝁)𝑇𝚺−1(v − 𝝁)

2

)
, (3.10)
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where 𝝁 ∈ R2 is the mean of the bivariate Gaussian in colour and magnitude and 𝚺 ∈ R2×2

is the symmetric covariance matrix. Using this, I can write

𝑛
phot
𝑖

(v | 𝝐 𝑖,Θ𝑖) =
𝐾∑
𝑘=1

𝑤𝑖𝑘𝐺 (v | 𝝁𝑖𝑘 ,𝚺𝑖𝑘 ), (3.11)

where 𝝐 𝑖 ∈ R𝐾×6 for the 𝐾 components of the GMM, each with six parameters defining the

bivariate Gaussian component 𝑤, `0, `1, Σ00, Σ11 and Σ01 (𝚺 is symmetric so Σ10 = Σ01).

I then find the parameters 𝝐 𝑖 by maximising the likelihood of the photometric catalogue

stars. The Poisson likelihood is derived from Poisson count probabilities to give

ln(Lphot(𝑋phot
𝑖

|𝝐 𝑖)) = −
∫

dv 𝑛phot
𝑖

(v | 𝝐 𝑖,Θ𝑖) +
𝑁
phot
𝑖∑
𝑗=1

log
(
𝑛
phot
𝑖

(v 𝑗 | 𝝐 𝑖,Θ𝑖)
)
, (3.12)

where v 𝑗 are the colour and apparent magnitude of star 𝑗 in the photometric catalogue on

field 𝑖 (see Appendix A.2).

I reparameterise the weights as normalised ‘loadings’, 𝜋𝑖𝑘 = 𝑤𝑖𝑘/𝑁 where 𝑁 =∑𝐾
𝑘=1 [𝑤𝑖𝑘 ].

ln(Lphot(𝑋phot
𝑖

|𝝐 𝑖)) ∝ −𝑁 + 𝑁phot
𝑖

ln(𝑁) +
𝑁
phot
𝑖∑
𝑗=1

ln
(
𝑛
phot
𝑖

(v 𝑗 | 𝝐 𝑖,Θ𝑖)
)
, (3.13)

where 𝑛phot
𝑖

= 𝑛
phot
𝑖

/𝑁 . The normalisation, 𝑁 is now a parameter of the model whilst the

loadings provide 𝐾 − 1 free parameters under the constraint
∑𝐾
𝑘=1 𝜋𝑖𝑘 = 1.

To obtain the posterior probabilities on each of my parameters I need priors. The prior

on the normalisation 𝑁 is uniform, 𝑁 ∼ 𝑈 [0,∞]. For the mean and covariance of the

Gaussian components, I employ a Normal Inverse Wishart (NIW) prior.

NIW(𝝁,𝚺 | m0, _,𝚿, a) ∝ N
(
𝝁 | m0,

1

_
𝚺

)
|𝚺 |−

(a+𝑝+1)
2 exp

[
−1
2
Tr

(
𝚿𝚺−1

)]
, (3.14)

where 𝑝 is the number of degrees of freedom of the system, in my case two (colour and

apparent magnitude). The Normal and Inverse Wishart distributions are the conjugate

priors for the mean and covariance of a multivariate Gaussian distribution respectively.

As a result, the posterior on 𝝁 and 𝚺 is also represented by a NIW distribution. The

chosen hyperparameters (m0, _,𝚿, a) are dependent on the prior information about the

data. Choosing small values of _ and setting a = 𝑝 provides a least informative prior on the

parameters. I discuss a good choice of hyperparameters in my mock tests in Section 3.3.

The loadings are evaluated with a Dirichlet prior,

DIR(𝜋1, 𝜋2...𝜋𝐾 |𝛼1, 𝛼2...𝛼𝐾) ∝
𝐾∏
𝑘=1

𝜋
𝛼𝑘−1
𝑘

(3.15)
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which satisfies the constraint
∑𝐾
𝑘=1 [𝜋𝑖𝑘 ] = 1. The Dirichlet distribution is the conju-

gate prior for membership probability of a categorical variable. Setting concentration

hyperparameters 𝛼𝑖 = 𝛼 = 1/𝐾 ∀ 𝑖 provides a least informative prior.

For a given number of components, 𝐾 I determine the posteriors on parameters of

the normalised GMM using the BayesianGaussianMixture module from scikit-

learn (Pedregosa et al., 2011) with parameters initialised by 𝑘-means clustering. This

module iterates using a Variational Inference algorithm which alternates between assigning

component membership probabilities and fitting the individual components. I recover the

best fit hyperparameters of the posterior Dirichlet and NIW distributions 𝛼′
𝑘
,m′

0𝑘 , _
′
𝑘
,𝚿′

𝑘

and a′
𝑘
where 𝑘 is the Gaussian mixture component. These hyperparameters define the

posterior distribution of parameters for the GMM. The posterior on the normalisation, 𝑁

is given by the first two terms of the right hand side of Equation (3.13) where the uniform

prior doesn’t provide a contribution. This is proportional to a Poisson distribution with

mean 𝑁phot
𝑖

.

To determine the number of components I fit my GMM with 𝐾 = 1 up to a maximum

of 𝐾 = 20 components and calculate the Bayesian information criterion (BIC, Schwarz,

1978) for the best fit parameters (taken as the expected values of the posteriors)

BIC = ln(𝑁phot
𝑖

)𝑑 − 2 ln(Lphot
max ) (3.16)

where 𝑑 = 𝐾 × 6 (the number of parameters in my model) and Lphot
max is the likelihood

corresponding to the best fit parameters. My final model for the photometric sample

colour-apparent magnitude function is the model which minimizes the BIC.

Selection function in observed coordinates

The selection function in observed coordinates for field 𝑖 is P(S𝑖 | v,Θ𝑖). The stars in the

spectroscopic catalogue represent a Poisson realisation of the product of the distribution

function and the selection function

𝑛
spec
𝑖

(v | Θ𝑖) = 𝑛phot𝑖
(v | Θ𝑖) × P(S𝑖 | v,Θ𝑖). (3.17)

Therefore, I can once more use the Poisson likelihood in Equation (3.12), replacing

𝑛phot(v | Θ𝑖) with 𝑛spec(v | Θ𝑖).
I parameterise the selection function P(S | v,Θ𝑖) also as a bivariate GMM in colour-

magnitude space with parameters 𝝐 𝑖

𝑔SF𝑖 (v | 𝝐 𝑖,Θ𝑖) =
𝐾∑
𝑘=1

𝑤𝑖𝑘𝐺 (v | �̃�𝑖𝑘 ,𝚺𝑖𝑘 ). (3.18)
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The log likelihood is then given by

ln(Lspec(𝑋spec
𝑖

|𝝐 𝑖, 𝝐 𝑖)) ∝ −
∫

dv 𝑛phot
𝑖

(v | 𝝐 𝑖,Θ𝑖) 𝑔SF𝑖 (v | 𝝐 𝑖,Θ𝑖)

+
𝑁
spec
𝑖∑
𝑗=1

log
(
𝑛
phot
𝑖

(v 𝑗 | 𝝐 𝑖,Θ𝑖) 𝑔SF𝑖 (v 𝑗 | 𝝐 𝑖,Θ𝑖)
)
.

(3.19)

As the selection function is a probability distribution, it must fall in the range 𝑔SF
𝑖

(v |
𝝐 𝑖,Θ𝑖) ∈ [0, 1] for all v. I reparametrise the selection function component weights as˜̂𝑖𝑘 = logit

(
𝑤𝑖𝑘√
|2𝜋𝚺𝑖𝑘

)
with a uniform prior ˜̂𝑖𝑘 ∼ U[− inf, inf]. This constrains the component

weights to the range 𝑤𝑖𝑘 ∈
[
0,

√
|2𝜋𝚺𝑖𝑘 |

]
such that the maxima of any Gaussian component

is less than or equal to one. The sum of selection function Gaussian mixture components

must also be less than or equal to one everywhere. Since the maxima of a GMM is

non-analytic, I find the roots of the gradient of the GMM using the hybr method from

MINPACK-1 (More et al., 1980) implemented in scipy initialising at the mean of each

GMM component. If the value of the GMM at any root is greater than one, the posterior

probability is set to zero.

A NIW prior is used for �̃�𝑖𝑘 ,𝚺𝑖𝑘 of the selection function.

I fit simultaneously for both the selection function parameters, 𝝐 𝑖 and photometric

density parameters, 𝝐 𝑖 where the prior distributions on 𝝐 𝑖 are the posteriors of the fit to

the photometric sample in Section 3.2.3.

Combining Equation (3.19) with the priors on all parameters the posterior is given by

ln(P(𝝐 𝑖, 𝝐 𝑖 |𝑋spec
𝑖

)) = ln(Lspec(𝑋spec
𝑖

|𝝐 𝑖, 𝝐 𝑖))−𝑁 + 𝑁phot
𝑖

ln(𝑁)
+DIR(𝜋1, 𝜋2...𝜋𝐾 |𝛼′1, 𝛼′2...𝛼′𝐾)

+
𝐾∑
𝑘=1

[
NIW(𝝁𝑖𝑘 ,𝚺𝑖𝑘 |m′

0𝑖𝑘 , _
′
𝑖𝑘 ,𝚿

′
𝑖𝑘 , a

′
𝑖𝑘 )

]
+

𝐾∑
𝑘=1

[
NIW( �̃�𝑖𝑘 ,𝚺𝑖𝑘 |m̃0, _̃, �̃�, ã)

]
.

(3.20)

To fit the selection function, I need to find argmin𝝐 𝑖 ,̃𝝐 𝑖 (− ln P). All terms in the posterior

probability are analytically differentiable so I employ the ‘Truncated Newton’ method in

scipy which uses the gradient of the probability distribution to converge on the minima.

Parameters of the photometric density, 𝝐 𝑖 are initialised at the mean values of the prior

distribution. The selection function parameters are initialised using two methods:

• 𝑘-means clustering with each spectroscopic sample star providing a weighted contribution

of 1

𝑛
phot
𝑖

(v 𝑗 |𝝐 𝑖 ,Θ𝑖)
. The reweighting is akin to approximating the selection function as

𝑛spec/𝑛phot.
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• Fit a GMM directly to the spectroscopic data using BayesianGaussianMixture with

least informative Dirichlet and NIW priors.

The parameters are optimised for both initialisations and the one which leads to the largest

posterior probability is used as the best fit. This helps to avoid some local optima in the

posterior distribution.

In order to determine the optimal number of Gaussian components to use for the

selection function, the algoritm is run for 𝐾 = [1, 𝐾] components. I do not allow more

components than the photometric density GMM as this would likely result in overfitting

of the selection function. I use the number of components which minimizes the BIC

BIC = ln(𝑁spec
𝑖

)𝑑 − 2 ln(Lspec
max) (3.21)

where the number of degrees of freedom 𝑑 = (𝐾 + 𝐾) × 6 and Lspec
max is the likelihood

corresponding to the best fit parameters. To generate a full posterior on the parameters of

the photometric density and selection function, I run a set of 6 × (𝐾 + 𝐾) × 2 chains for

2000 iterations with emcee (Foreman-Mackey et al., 2013) initialising from a small ball

around the best fit parameters. For every optima of the posterior distribution, there are a

set of 𝐾! degenerate optima generated by reordering components. For finding the best fit

parameters, it is unimportant which of the optima I sample around, however the posterior

on the parameters should not be degenerate. I constrain the means of the photometric

density and selection function components to maintain their respective orders in colour

and apparent magnitude throughout the emcee iterations.

The models, their parameters and the prior distributions are summarised in Table 3.2

for reference. The choice of model hyperparameters is discussed further in Section 3.3.3.

3.2.4 Intrinsic Coordinates

Chemodynamical models of the Milky Way make predictions for the metallicities, masses,

and ages of stars at different positions. In order to test these models against observations,

the selection function is required to account for the observation biases of the survey. To use

the selection function, I require a transformation between observable coordinates (colour

and apparent magnitude) and intrinsic coordinates (distance, metallicity, mass, and age).

The selection function in terms of the intrinsic coordinates of the stars is

P(S | 𝑠, [M/H],Mini, 𝜏, 𝜽), (3.22)

where 𝑠 is the heliocentric distance, and [M/H], Mini, and 𝜏 are the star’s metallicity,

initial mass, and age respectively.

Here I follow a similar method for transforming between observable and intrinsic

coordinate systems as described in Sanders & Binney (2015) and Das & Binney (2016).

Any combination of [M/H], Mini, and 𝜏 maps to a single set of coordinates, (𝑐, 𝑀), which
are the colour and absolute magnitude of the star. Any values of 𝑀 and 𝑠 uniquely define 𝑚,

the apparent magnitude of the star. Therefore any intrinsic coordinates, (𝑠, [M/H],Mini, 𝜏)
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map to observable coordinates, (𝑐, 𝑚) and to a single value of the selection function,

P(S | v, 𝜽). The selection function in intrinsic coordinates for a star on field 𝑖 is therefore

given by

P(S | 𝑠, 𝜏, [M/H],Mini, 𝜽) = P(S | v(𝑠, 𝜏, [M/H],Mini), 𝜽) (3.23)

where v = (𝑐, 𝑚). The maps are given by

𝑚 = 𝑀 + 5 log10

(
𝑠

10pc

)
(3.24)

and

(𝑐, 𝑀) = 𝐹 iso(𝜏, [M/H],Mini), (3.25)

where 𝐹 iso is the mapping introduced by the isochrones.

There are a variety of methods for generating the 𝐹 iso map. The most common method

is to adopt the nearest isochrone to the values of age and metallicity provided. For

this work, I linearly interpolate between isochrones, which improves the accuracy of the

transformation.

I use the PARSEC isochrones (Bressan et al., 2012) on a grid of 353 ages and 57

metallicities. Ages in the range −2.40 ≤ log10 (𝜏/Gyr) ≤ 1.12 with a spacing of 0.01 dex,

and metallicities in the range −2.192 ≤ [M/H] ≤ 0.696 with a spacing of 0.051 dex, were

considered.

Every isochrone has a maximum initial mass above which a star of the given age and

metallicity cannot exist. I generate a scaled initial mass coordinate so that each isochrone

varies from M̃ini ∈ [0, 1],

M̃ini =
Mini −Mmin

ini

Mmax
ini −Mmin

ini

, (3.26)

where Mmax
ini (𝜏, [M/H]) is the maximum initial mass value for a star of a given age and

metallicity which I determined by linearly interpolating between maximum initial mass of

isochrones as a function of 𝜏, [M/H]. Likewise for Mmin
ini (𝜏, [M/H]).

The scaled mass is linearly interpolated along each isochrone. A single set of M̃ini

values is drawn for all isochrones which samples most heavily where the curvature of the

isochrone in colour-apparent magnitude space is greatest. This parameterisation enables

us to interpolate colour and absolute magnitude on a regular 𝜏 − [M/H] − M̃ini grid. The

interpolation is the mapping 𝐹 iso(𝜏, [M/H], M̃ini(Mini)).

3.3 Mock Tests

To test the performance of the method presented in Section 3.2, I apply it to mock samples

with known selection functions.
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3.3.1 Galaxia Mock Catalogue

I generate my mock catalogue using the Galaxia code (Sharma et al., 2011). The thin disk

is generated from the analytic Besançon model (Robin et al., 2003). Non-circular motions

in the plane of the disk are introduced through the Shu 1969 DF, and the Bullock &

Johnston 2005 N-body models simulate any substructure in the halo. The code synthesises

a population of stars with coordinates, trajectories and intrinsic properties including

age, metallicity and mass. Given the age, metallicity, initial mass and distance, Galaxia

also calculates the colour and apparent magnitude of stars as observed from the Sun by

employing the nearest Padova isochrone (Marigo et al., 2008) from a grid of 182 ages and 34

metallicities. The PARSEC (Bressan et al., 2012) isochrones however present a significant

update on the Padova isochrones in terms of revisions to major input physics such as the

equation of state, opacities, nuclear reaction rates, and inclusion of the pre-main sequence

phase. The nearest isochrone calculation method is also less accurate than the interpolation

method I employ with PARSEC isochrones discussed in Section 3.2.4. For these reasons, I

recalculate the Galaxia apparent magnitudes and colours using my method.

I sample from Galaxia with an 𝐻-band magnitude limit, 𝑚H < 15, similar to the

limitations of the 2MASS survey (Skrutskie et al., 2006). The 𝐻-band magnitude limit

was placed using Galaxia such that stars were filtered out based on the built-in Padova

magnitudes. The difference between this and my own magnitude calculation leads to

some stars dimmer than the magnitude cut being included and some brighter stars being

excluded. This does not significantly affect my tests.

I refer to this catalogue as the photometric sample.

3.3.2 Imposed Selection Function

The selection function is applied across two fields with coordinates

𝑙, 𝑏 =


30, 60 (Field 1),
30, 61 (Field 2).

(3.27)

Each field has a half-opening angle of 2 degrees and hence a solid angle of 12.6 degrees2.

The locations of the fields in galactic coordinates are given in Fig. 3.3 where the red and

green shaded regions are fields 1 and 2 respectively and the greyscale background shows

the number density of stars in the photometric sample.

For each field I apply three different selection functions:

• Flat: Selection boundaries of 𝑚𝐻 < 13.5 and 𝐽 − 𝐾 > 0.5. The value of the selection

function is 0.1 within the boundaries and 0 outside.

• tanh:

P(𝑆 |𝑚𝐻 , 𝐽 − 𝐾) = 0.1 ×
(
1 − tanh

(
𝑚𝐻 − 13.5

𝑒−2

))
/2

×
(
1 − tanh

(
𝐽 − 𝐾 − 0.5

𝑒−2

))
/2.

(3.28)
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Fig. 3.3 The mock Galaxia model uses two fields offset by 1 deg latitude represented here
by the red and green shaded regions. The grey scale bins give the number density of
stars in the photometric sample which systematically decreases further from the plane.
Applying the Flat selection function returns the stars represented by red points and green
circles for fields 1 and 2 respectively. In the region of overlap there are cases where stars
are selected on both fields.

This is of a similar form to the selection function proposed for SEGUE G-dwarfs by

Bovy et al. 2012b.

• RAVE: I take 10 randomly selected fields from the RAVE survey (Kordopatis et al.,

2013) along with any 2MASS (Skrutskie et al., 2006) stars on the same fields, bin the

stars in 𝑚𝐻,2MASS − (𝐽 − 𝐾)2MASS and use the ratio of RAVE to 2MASS stars in each

bin as the selection function probability.

The three applied selection functions are plotted in top panels of Fig. 3.4. The red and

green scatter points in Fig. 3.3 are the stars selected by the Flat selection function to

demonstrate the setup.

In the region of overlap of the fields, stars may be selected by either or both of the

fields. I include every star selected by at least one field however I also record which fields

each star was selected by as this is important for calculating the selection function. For

instance, when deriving the selection function for field 1, I must use all stars which were

selected by field 1 even if they were also selected by field 2. Likewise for field 2, I must

include all stars selected by field 2 even if they were also selected by field 1. The effective

double counting of selection functions in overlapping regions is accounted for by the union

calculation as described in Section 3.2.2.

64



3.3 Mock Tests

Fig. 3.4 I apply three different selection function models to the Galaxia mock sample,
Flat (left), tanh (middle) and RAVE (right). Top: The models are defined as a function of
colour and apparent magnitude. Bottom: Using the BIC as my model selection criteria,
two GMM components are fit for each model shown by the contours. The model broadly
recovers the form of the imposed selection function in regions occupied by the selected
samples which are shown as black points.

3.3.3 Results

The Galaxia photometric and spectroscopic catalogues are used to calculate the se-

lection functions in observable coordinates, P(S | 𝜽 , 𝑐, 𝑚), and intrinsic coordinates,

P(S | 𝜽 , 𝑠, [M/H],Mini, 𝜏) following the methods described in Section 3.2.

I first discuss the values of hyperparameters used for the GMM priors. I present and

test the posterior for field 1 as a function of colour and apparent magnitude. I then show

the fit to both fields in observable coordinates and position on the sky which tests how

the model handles overlapping fields. Finally I present the selection function in intrinsic

coordinates.

Prior Hyperparameters

For the prior distributions on the photometric density and selection function I require

hyperparameter values which encode my prior knowledge about the distribution. I assume

that I know all data falls within the apparent magnitude and colour ranges 𝑚𝐻 ∈ [4, 15]
and 𝐽 − 𝐾 ∈ [−0.1, 1.2].

For the NIW hyperparameters on the photometric density fit I use

m0 = med [vmin, vmax] = (9.5, 0.55) which is at the centre of my prior range. I set _ = 10−4.

By choosing a small value for _ I ensure that the prior is extremely uninformative on the

mean. For the covariance I choose 𝚿 = diag(( vmax−vmin
2 )/5)2) = diag(1.21, 0.0169) such

that the standard deviation is 1/5 the prior range in 𝑚𝐻, 𝐽 − 𝐾. The precise choice of
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1/5 is somewhat arbitrary and chosen as it leads to reasonable numbers of Gaussian

components in the photometric density and selection function GMMs in all cases. The

degrees of freedom is chosen as a = 2 which is the most uninformative choice. For the

Dirichlet prior I choose a concentration prior of 𝛼𝑘 = 1/𝐾 for all components which is the

least informative prior.

I use the same hyperparameters for the NIW prior on the selection function as those

used for the photometric density fit. This is because I have no more information about

the selection function than I did about the photometric density other than that it is only

important in the given colour and magnitude range. Having found the best fit parameters,

I also run a set of emcee chains as discussed in Section 3.2.3 to generate posterior samples

on all of the photometric density and selection function parameters.

The choices of hyperparameter values are summarised in the right-hand column of

Table 3.2.

Observable Coordinates

In this section I demonstrate the selection function fit to field 1 of the mock sample in

colour-apparent magnitude space. To minimize the BIC, the optimal number of photometric

density GMM components was 14 whilst the Flat, tanh and RAVE selection functions

were fit with 2, 2 and 1 components.

For the RAVE mock, the distribution of photometric and spectroscopic points and

the GMM distribution fits are given in Fig. 3.5. For a successful fit I would expect the

centres of 68% of histogram bins to fall within the Poisson uncertainties of the model and

I see that this appears to be the case for my fit to the RAVE selection function against

both colour and apparent magnitude. The same number density distributions for all three

mock selection functions are shown in Fig. 3.6. For the Flat model (top panel) the smooth

GMM selection function fails to correctly fit the sharp cuts at 𝑚𝐻 = 13.5 and 𝐽 − 𝐾 = 0.5.

This is a predictable limitation of attempting to fit a discontinuous model with a smooth

function. In all other cases the histograms of the spectroscopic sample mostly fall within

the Poisson noise uncertainties of the products between my fits to the photometric density

and selection function. This provides a qualitative demonstration that the method is

providing reasonable results.

For a more quantitative assessment I use the Kolmogorov-Smirnov (KS) test. I randomly

draw 1000 samples from the last 500 iterations of each emcee fit to the spectroscopic sample.

The KS probability (p-value of the KS test) is the probability that the spectroscopic sample

is consistent with being drawn from the given probability distribution, in this case the

product of the photometric and selection function GMMs which is itself a GMM with

𝐾 × 𝐾 components.

The KS statistics are computed in 1D as a function of colour and apparent magnitude

separately. For a good fit to the data, the KS probabilities are uniformly distributed in

the range [0, 1]. If the probability is skewed towards 0, the method has underfit or failed

to fit the data. If the probability is skewed towards 1, the method has overfit the data and

hence the selection function would not generalise well to a new dataset. The most extreme
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Fig. 3.5 The selection function selects a subset (blue circles) of the photometric sample
(green points) to be included in the spectroscopic catalogue where in this case I am showing
the RAVE mock applied to field 1. The model fits 14 GMM components to the photometric
sample for which purple dashed lines show the 1D projection. The photometric sample
distribution (green solid histograms) mostly fall within Poisson noise uncertainty (purple
shaded region) of the GMM fit. The selection function is fit with 2 GMM components
such that the spectroscopic sample is modelled by the 28 component product of the two
GMMs, represented by the orange dashed line. The spectroscopic subsample (blue solid
histogram) largely falls within the Poisson noise uncertainty (orange shaded region) of the
model fit.
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Fig. 3.6 The same as the side panels of Fig. 3.5 for the Flat (top), tanh (middle) and
RAVE (bottom) models applied to field 1 of the Galaxia mock. In the majority of cases
the spectroscopic model, given by the product of the photometric sample and selection
function GMMs, traces the spectroscopic samples within Poisson noise uncertainty. The
noticeable limitation is in the Flat model (top panels) where the smooth GMM cannot
reproduce the sharp cut-off in colour (𝐽 − 𝐾 = 0.5) and apparent magnitude (𝑚𝐻 = 13.5).
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Fig. 3.7 The 1D one sample KS probability is evaluated for the field 1 spectroscopic sample
against the GMMs of 1000 random draws from the emcee chains. In apparent magnitude
(left) the Flat selection function shows underfitting (blue solid) as the distribution of
probabilities (top) is biased towards 0 and the CDF (bottom) sits well above a uniform
distribution (black solid). In colour (right) the RAVE sample has overfit the data (green
dot-dashed) as the KS probabilities are biased towards 1. The remainder of the tests are
closer to uniformly distributed and demonstrate reasonable fits to the data against the
given coordinates.

example of this would be placing delta functions on every star which would achieve a KS

probability of 1.

I expect that the KS statistic should demonstrate some overfitting since the test does

not consider the prior information provided by the photometric sample.

Histograms and cumulative distributions of the KS tests for field 1 against colour and

apparent magnitude are shown in Fig. 3.7. Due to the sharp cut off in the Flat model, the

KS probabilities demonstrate that the GMM underfits the selection function as a function

of magnitude. Curiously, the same problem is not seen as a function of colour where the

Flat model is almost perfectly fit. KS tests are only weakly sensitive to the wings of the

distribution and I postulate that this is why the sharp cutoff issue is not picked up in

colour space. The RAVE and tanh models provide reasonable fits as a function of apparent

magnitude however the RAVE model is heavily overfit as a function of colour. The cause

of this overfitting is unclear.

To test the normalisation of the photometric density and selection function I compare

the integral over colour and apparent magnitude of the GMMs with the number of objects

in the spectroscopic sample. For large samples, I would expect the difference between

the integral and true count to be Gaussian distributed with variance equal to the size

of the sample. Fig. 3.8 shows the distribution of these integrals from the 1000 emcee
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Fig. 3.8 The integrals over the GMM fits are compared to the number of stars in
the spectrograph subsample. A well-fit model would be normally distributed around∫
𝑛specdv =

√
𝑁spec with dispersion

√
𝑁spec demonstrated by the red solid line. The Flat

model fit (blue solid) accomplishes this whilst the tanh (orange dashed) and RAVE (green
dot-dashed) fits show a tighter distribution indicative of overfitting.

parameter draws re-centred and re-scaled by the spectroscopic sample number counts. All

distributions are centred around zero which implies that the fits are well normalised. The

fits to the RAVE model show a tight distribution which is another indication of overfitting

to the spectroscopic data.

Overlapping Fields

On field 2 the photometric density is fitted with 14 GMM components and the Flat, tanh

and RAVE selection functions with 2, 3 and 1 components respectively to minimize the

BIC. I now only consider the selection function resulting from the combination of fields 1

and 2.

The selection function is now a superposition of two GMMs as a function of galactic

coordinates. As such the KS one-sample statistic can no longer be used as I do not have an

analytic distribution to fit. Instead I draw random samples from the photometric catalogue

with the probability of inclusion given by the model selection function as a function

of galactic coordinates, colour and apparent magnitude. I compute the two-sample KS

probability against the spectroscopic catalogue which gives the probability that samples

are drawn from the same probability distribution.

In Fig. 3.9 I show the distribution of KS probabilities for fields 1 and 2 with all

combinations of the Flat, tanh and RAVE selection functions applied. The Flat+Flat

model (blue solid line) systematically underfits the data in both apparent magnitude and

colour which, as discussed earlier, is caused by the sharp cuts in the selection function

which a smooth GMM cannot correctly reproduce. All other combinations of fields produce
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Fig. 3.9 Two sample KS tests are used for fields 1 and 2 combined as the distributions are
non-analytic. 1000 sets of selection function parameters are drawn from the emcee chains
and applied to generate subsamples of the photometric catalogue. Six combinations of
the three selection functions are used for the two fields and most show close to uniform
probability distributions with some weak overfitting against galactic longitude (top left)
and latitude (top right). The most significant deviation is the Flat+Flat model (blue solid)
which is underfit in apparent magnitude (bottom left) and colour (bottom right).
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Fig. 3.10 By taking the sum of probability of selection of all stars in the photometric sample
for a given selection function, I obtain an estimate of the integral over the spectroscopic
distribution. All models are normally distributed with widths similar to that expected by
Poisson noise of the spectrograph sample and the means of the distribution (vertical lines)
are correctly centred on zero. The red solid line is a normal distribution with zero mean
unit variance for comparison. Only the Flat+tanh model (blue dashed) systematically
overestimates the normalisation by approximately one standard deviation.

close to uniform distributions of KS probabilities with weak under and overfitting against

different coordinates.

To test the normalisation of the selection function I compare the sum of the selection

function over the stars in the photometric sample with the number in the spectroscopic

sample. This sum is the mean sample size which would be produced by drawing many

selection function weighted samples from the photometric catalogue. The re-centred and

re-scaled distributions for all field combinations are shown in Fig. 3.10. I see significantly

less overfitting here with all distributions reproducing the expected Poisson noise. Only the

Flat+tanh model (blue dashed) systematically overestimates the normalisation however

the offset is only at the one standard deviation level so I do not consider this to be a

significant issue.

These tests demonstrate the effectiveness of the union method described in Section 3.2.2

for evaluating the selection function of overlapping fields of the spectroscopic survey. This

also shows that the method provides good fits to selection functions with very different

properties. A caveat is that the GMM is not perfectly suited to fitting selection functions

with discontinuous changes however even in these cases reasonable fits can still be achieved.

I also show here the power of my method for calculating selection functions of combined

surveys. For example I could apply this method to generate a single selection function for

the combined APOGEE and RAVE catalogues given their individual selection functions.
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Fig. 3.11 Similar to Fig. 3.6 now for intrinsic coordinates, the distributions of stars in the
photometric sample (green solid) and spectroscopic sample (blue solid) compared to the
sum of selection function probabilities of the photometric sample in bins (orange dashed).
For this example, field 1 and 2 have been used with tanh and RAVE selection functions
applied respectively. For the majority of bins the spectroscopic sample falls within Poisson
noise uncertainty (orange shaded) of the model fit.

Intrinsic Coordinates

My final test is on the selection function as a function of intrinsic coordinates (age,

metallicity, mass and distance) using the mapping laid out in Section 3.2.4. I test the

selection function for the two field sample with the tanh and RAVE selection functions

applied to fields 1 and 2 respectively. A histogram for the model fit is generated by taking

the binned sum of the selection function probabilities of the photometric sample and

is shown by the orange dashed histogram in Fig. 3.11. The blue solid line shows the

histogram for the spectroscopic sample and this falls within Poisson noise uncertainties of

the model in the majority of bins.

Similar to Section 3.3.3, I generate 1000 mock samples from the photometric catalogue

weighted by the inferred selection function and calculate the goodness of fit from the

two-sample KS statistic. The distribution of KS probabilities is given in Fig. 3.12. As I

saw in observable coordiantes, the distribution of KS probabilities is near uniform with

very weak under fitting against distance and overfitting in initial mass and metallicity.

This demonstrates that my method is also well suited to determining selection functions

in intrinsic coordinates.
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Fig. 3.12 As in Fig. 3.9, the two sample KS test is applied but here as a function of each
intrinsic coordinate with the tanh and RAVE selection functions applied for fields 1 and 2.
Much of the over and underfitting seen in Fig. 3.9 is averaged out in these coordinates and
the models demonstrate extremely good fits to the data.

74



3.4 Discussion

3.4 Discussion

In this chapter, I have introduced a novel method for deriving selection functions of

spectroscopic surveys. I have also demonstrated the success of this method on a set of test

cases using Galaxia. In this section, I discuss some key points to consider when applying

the method, and detail potential improvements to come.

3.4.1 Choice of Photometric Catalogue

When calculating the selection function of any spectroscopic survey, a photometric survey

needs to be specified which may be assumed complete in the region of the colour-apparent

magnitude space explored. The choice of photometric catalogue is dependent on the

characteristics of the survey. The photometric catalogue should cover the whole footprint

of the spectrograph or else a combination of photometric catalogues should be used. It

is beneficial to use a photometric catalogue with observing bands closely matching the

spectrograph wavelength range as this enables prior information on the spectrograph’s

selection limitations to be applied more easily.

That said, particularly for low-latitude observations, dust attenuation is a significant

factor, which suggests that infrared photometric surveys may be more appropriate. I

discuss the inclusion of dust attenuation to the intrinsic selection function in Section 3.4.3.

Gaia DR2 (Gaia Collaboration et al., 2018a) represents the largest survey of the Milky

Way to date and is a complete photometric survey for the magnitude ranges of many

spectrographs, particularly in high latitude fields. The selection of Gaia DR2 as a function

of 𝑙, 𝑏, 𝐺 is the subject of (Boubert & Everall, 2020) and can be used to test whether it is

complete in the required magnitude range.

3.4.2 Error Convolution

The selection function I have derived here is the probability of selection given measured

properties of the stars. By convolving the likelihood with the measurement uncertainty

of the photometries of each star, I can in principle derive the selection function given

true properties of the stars. By virtue of defining the selection function as a GMM in

colour-apparent magnitude space the convolution is analytic and as such the calculation is

computationally feasible.

I do not present this here, but consider it as a potential avenue to pursue in the future.

3.4.3 Dust Attenuation

In this work I have not considered the impact of interstellar dust on the derived selection

function. The observable selection function is dependent on dust attenuation only through

its effect on colour and apparent magnitude. My inferred selection function given colour

and apparent magnitude is unchanged.

Dust attenuation changes the mapping from intrinsic coordinates to observable coordi-

nates discussed in Section 3.2.4. The effect of dust on the transformation from absolute to

75



Spectrograph Survey Selection Functions

apparent magnitude of the star is given by

𝑚𝑥 = 𝑀𝑥 + 5 log10

(
𝑠

10pc

)
+ 𝐴𝑥 (𝑙, 𝑏, 𝑠), (3.29)

where 𝑥 represents the observation band being used for apparent magnitude in the selection

function. Likewise the colour will also need to be corrected for dust reddening in the

mapping from intrinsic coordinates to observables.

This will be an especially important consideration for low-latitude fields. To do this, I

require an adequate 3D all-sky dust map.

Bovy et al. 2016a construct a composite map that patches together maps of Marshall

et al. 2006, Sale & Magorrian 2014 and Green et al. 2015. A significant improvement on

this is provided by Green et al. 2019 for dec > −30 degrees.
I can include these maps in my model as an extinction and reddening term in the

intrinsic to observable coordinate mapping described in Section 3.2.4.

3.5 Summary of Spectrograph Selected Sources.

I have developed a Bayesian model for empirically determining the selection function of

multi-fibre spectrographs, where there exists a complete photometric survey in the same

region of observable (colour-apparent magnitude) parameter space.

The method improves on previous works by modelling the selection function with a

Gaussian mixture model that is fit to the data through a Poisson likelihood function. This

generates a selection function which accounts for Poisson noise in low-count data. This

approach also allows us to define the uncertainties in my selection function by analysing

the posterior distribution on the model parameters.

I further incorporate a union calculation which allows the selection function to be

calculated in regions of sky where fields partially or fully overlap. This can be applied

to merged catalogues of independent surveys to produce a combined selection function.

In an era where large amounts of spectroscopic data are becoming available from many

independent observatories, each with their own observational limitations, combining surveys

can hugely enhance our understanding of the Milky Way. I can also apply my method to

subsamples of any catalogue if analysis is being done on a more specific or constrained

stellar population.

Finally, I present a method of translating selection functions from observable colour-

apparent magnitude coordinates into intrinsic coordinates of age, metallicity, mass and

distance using the PARSEC isochrones (Bressan et al., 2012). This allows a deeper insight

into the effects of the selection function on stellar parameters.

I have demonstrated the effectiveness of my method on a mock catalogue generated

using the Galaxia (Sharma et al., 2011) population synthesis code. I am successful in

reproducing the applied selection function within Poisson noise uncertainty. Using KS tests

in one dimension I show that my method produces good fits to the data only struggling

where the model selection functions undergo large discontinuous transitions.
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My code is made publicly available as a Python repository at https://github.com/

AndrewEverall/seestar.git.

3.6 End of story?

Betteridge’s law states that “Any headline that ends in a question mark can be answered

by the word no”, that is indeed the case here. If you have made it through this chapter

taking in every word and equation, I commend you, this is no mean feat. However, as I

have discovered to my own pain, this is not the end of the story, nor is it the most effective

way to reach a satisfactory conclusion.

For one, there is no sample which is complete in all regions of parameter space that

Gaia observes so this method cannot be directly applied to the Gaia source catalogue.

Fortunately Gaia’s observing strategy provides a far more satisfyingly simple approach

which I will introduce in the next chapter.

My method of hierarchical Poisson modelling is also not necessarily the most effective

way to model the selection function of a subset of a more complete catalogue. This is

because I haven’t used a valuable piece of information – all objects in the spectroscopic

survey’s catalogue are also in the complete catalogue. This is not two independent samples,

one of which is smaller than the other. The smaller sample is a subset drawn from the

larger sample. In the next chapter I will use this additional information to evaluate the

selection functions of science subsets of the Gaia EDR3 source catalogue.
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4
Completeness of the Gaia-verse

“There’s a star map waiting in the sky... we would like you to come and meet it... it is

stored in the Gaia Archive...

Let the scientists search it... let the scientists use it... let the scientists boogie...”

Gaia website

The Gaia archive indeed provides a map of 1,811,709,771 sources in the sky. As I

discussed in previous chapters, knowing the observing limits of our data is hugely important

for modelling the spatial structure of the Milky Way. In this chapter I explain how I

evaluate the selection function for the Gaia EDR3 source catalogue and several science

subsets.1

4.1 Gaia Source Catalogue Selection Function

The Gaia DR2 source catalogue selection function has been modelled in (Boubert &

Everall, 2020). I give a brief summary of the method and explain how I have updated this

selection function for Gaia EDR3.

4.1.1 Rolling a Six, Fifty Billion Times.

A maths teacher wants to do a class on probability distributions so she acquires a box of

loaded dice. She instructs the students in the class to roll their dice as many times as they

can in ten minutes and record whether each roll was a six or not.

Some industrious students manage one hundred rolls, others managed only a few. She

decides that those who recorded fewer than five sixes have clearly not had enough attempts

and tells them they will need to report to detention later where they can continue rolling

the dice. She is left with the dice of more diligent (or luckier) pupils who managed at least

five sixes. To her astonishment, over all of the dice, 95% of the rolls came out as a six.

These dice really are loaded.

1Chapters 4 and 5 are composed of research form the “Completeness of the Gaia-verse” project for
which I have had the privilege of working along side Dr Douglas Boubert as co-PI. Section 4.1 includes
content from Boubert & Everall 2020 whilst the rest of the chapter is taken from Everall & Boubert 2021.
Chapter 5 is from Everall et al. 2021c.
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Assuming that all dice are equally loaded with some probability, \ of landing a six, the

number of sixes each student gets would be drawn from a Binomial distribution

𝑘 ∼ Binomial(𝑛, \) (4.1)

where 𝑛 is the number of rolls the student managed in the ten minute window. Therefore

the likelihood of getting the 𝑘 sixes measured by the student is

P(𝑘 | 𝑛, 𝑝) =
(
𝑘

𝑛

)
\𝑘 (1 − \)𝑛−𝑘 . (4.2)

However the teacher now realises an issue. She has removed any dice with fewer than

five sixes which will bias the result, so this needs to be correct for. This is achieved by

renormalising the likelihood

P(𝑘 | 𝑛, 𝑝, 𝑘 ≥ 5) =


1
P(𝑘≥5 | 𝑛,\)

(𝑘
𝑛

)
\𝑘 (1 − \)𝑛−𝑘 𝑘 ≥ 5

0 otherwise.
(4.3)

This scenario is entirely analogous to the Gaia source catalogue. Each time a star is

scanned by Gaia there is some probability of recording a detection2. A source needs least

5 detections to be included in the Gaia source catalogue (Lindegren et al., 2021a). I refer

to the probability of a transit successfully producing an observation which is used in the

astrometric solution as the efficiency, \. The number of successful scans is recorded in the

Gaia catalogue as astrometric matched transits and this provides the key to the

Gaia source catalogue selection function.

4.1.2 A Thunderstorm over Madrid

astrometric matched transits is the number of successful transits for each source

analogous to the number of sixes recorded for each dice, 𝑘 . The other piece of the puzzle I

need is the total number of transits, like the total number of dice rolls, 𝑛. This is helpfully

provided by the scanning law which I introduced in Chapter 1.

DPAC provide the nominal scanning law for Gaia DR23 and Gaia EDR3 however this

is only accurate to 30 arcsec. Furthermore, the satellite is not always taking data. There

are three types of missing data which are important for my purposes.

• Gaps are stretches of time where the satellite produced no observations which were

subsequently used in the astrometric solution. Causes of these include mirror decontam-

ination, refocusing, micro meteoroid impacts and many more technical satellite issues

(see Table 1 Lindegren et al., 2021a). Gaps are source-independent, no data was taken

for any source in these time periods.

258,217,094,919 transits were used for the astrometric solutions in Gaia EDR3. That might have taken
a while for our maths class rolling dice.

3DR2 nominal scanning law: https://www.cosmos.esa.int/web/gaia/scanning-law-pointings
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• Deletions take place due to memory limitations on-board the spacecraft. When the

satellite continuously scans high source density regions of the sky and is not able to

transmit the data to Earth fast enough, the on-board memory can run out. In this

circumstance data is deleted according to a scheme which tends to prioritize brighter

objects but also specific calibration magnitude bins (Section 1.3.3 of de Bruijne et al.,

2018). This produces time periods with magnitude-dependent missing data.

• There were also periods of time where poor data was recorded and was less likely to be

used in the final solution. These are not empty gaps but rather low efficiency periods. I

discuss one of these and the cause in this section.

In Boubert et al. 2020 we used the Gaia DR2 epoch photometry to find the gaps

as well as calibrating the scanning law using source astrometry. We performed a more

detailed analysis in Boubert et al. 2021b to model the deletion periods and further calibrate

scanning law to sub arcsec accuracy. Here I briefly detail one problematic time window

in Gaia DR2 which demonstrates the challenges associated with management of such an

impressive mission.

99.865% of the sources in Gaia DR2 are brighter than 𝐺 = 21.3 (Gaia Collaboration

et al., 2018a), but there is a tail of fainter sources out to 𝐺 = 23.5 which is shown in

the top panel of Fig. 4.1. These sources are likely to be spurious because Gaia is not

sufficiently sensitive to detect sources this faint in the short time in which sources transit

the focal plane. The drop-off in the number of sources at each magnitude shows a change

in behaviour at around 𝐺 = 21.7 and I conjecture that the magnitudes of most of the

sources fainter than 𝐺 = 22 are likely to be spurious. The on-sky distribution of the 1 869

stars fainter than 𝐺 = 22 in Galactic coordinates are shown in the middle panel of Fig.

4.1. Almost all of these sources lie along two narrow strips and thus can be attributed

to specific periods of the Gaia scanning law. Using a new tool developed in Holl et al.

(in prep.) for this use-case, I identified two rough time ranges which I label Period 1

(OBMT = 1388−1392 rev) and Period 2 (OBMT = 2211−2215 rev), and I illustrate where

Gaia was scanning during these periods in the bottom panel of Fig 4.1. Curiously, Period 1

aligns with the drop in the colour photometry efficiency mentioned in Section 2.3 of Boubert

et al. 2020.

We queried the Gaia Helpdesk about this period and the following italicised text is an

abridgement of their response.

On Saturday evening 11 October 2014, around 18:55 UTC, while Gaia was transmitting

data to the Cebreros ground station near Madrid, a thunderstorm developed over the Madrid

sky-line and heavy rain started falling. As a result, contact with the spacecraft was lost until

19:04 UTC. However, during these 9 minutes, Gaia kept on transmitting its data to ground

not knowing it would not be recorded. Whereas the bulk science data transmitted during this

short interval was permanently lost, so-called critical auxiliary science data (ASD) packets

that were lost were re-transmitted to ground the following day. This, however, was too late

to use these packets in the regular, semi-live initial data treatment (IDT), which forms the

first step in the astrometric and photometric (pre-)processing chains. As a result of the

missing data, critical background information has been absent in the Gaia DR2 photometric
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(a) Faint magnitude distribution of all sources in Gaia DR2 (blue), of sources predicted to have
been observed at least once during the two time periods identified in the main text (red), and
of those sources with no predicted observation during those periods (green). Almost all of the
extremely faint sources can be traced to those time periods.
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(b) Galactic coordinate distribution of stars fainter than 𝐺 > 22. Almost all of the stars lie along
two narrow tracks which correspond to the strips of sky observed by Gaia during small time
windows.
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(c) I identified the time windows corresponding to each of the two strips and show where Gaia
was looking during these windows.

Fig. 4.1 There are sources in Gaia with reported mean 𝐺-band magnitudes as faint as
𝐺 = 23.5. I identified that an overwhelming majority of these sources were observed
during two narrow time windows and so are likely due to missing calibration data packets
preventing an accurate magnitude determination.
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processing for faint, one-dimensional windows (𝐺 ≥ 13) for short stretches of time. The

affected intervals (in OBMT revolutions) are 1389.7-1391.7 for row 2, 1389.2-1391.7 for

row 3, 1389.2-1391.7 for row 4, 1389.2-1391.7 for row 5, 1389.2-1391.7 for row 6, and

1389.2-1391.3 for row 7; row 1 was not affected. The Gaia DR2 photometric calibration has

“solved” the absence of background information by linearly interpolating between existing

data (see Section 4.2 in Riello et al., 2018). This interpolation has, in this case, not worked

perfectly and has failed to catch several straylight-induced peaks in the background. As a

result, the photometry collected during these few revolutions is systematically biased and

not reliable. In fact, the entire stretch from OBMT 1388.0 to 1392.0, which corresponds

to the relevant calibration time interval, is indirectly affected by this issue. On the bright

side: for Gaia (E)DR3, there is hope that this issue will be gone. Not only will gaps at

IDT level have been fixed by the raw data reprocessing that has been undertaken, there has

also been an update to the computation of the local background and this new feature should

perform significantly better in periods with missing data.

In summary, the miscalibration is caused by a break of communication with the

spacecraft which resulted in the loss of some scientific data and the delay in transmission

of critical auxiliary science data (ASD) which was then not used in Gaia DR2 processing.

There were several stray light peaks within the down-time which were therefore missed

by the calibration and instead interpolated over. This directly affected measured fluxes

of many of the sources observed in the range OBMT=1389.2-1391.7, which resulted

in 𝐺BP and 𝐺RP observations not being included in the epoch photometry as seen in

Fig. 8 of Boubert et al. 2020. Gaia’s photometric calibration occurs in one day time

intervals which in this case corresponds to the interval OBMT = 1388.0−1392.0 rev. Those

observations within the range OBMT = 1389.2−1391.7 rev which were directly affected

received overestimated fluxes due to the unobserved stray-light peaks. Observations within

the calibration interval but not directly affected by the down-time received underestimated

fluxes due to the calibration process effectively averaging out the observed error. It is

these stars which appear as extremely dim sources in Period 1. Period 2 is also likely a

result of background interpolation issues however I do not have an explanation of the exact

cause of this particular event.

4.1.3 Selection Function Probability

I now have all I need to evaluate the source catalogue selection function. For each source

the number of transits can be estimated by the number of times Gaia scanned the source’s

position on the sky. The number of these transits which are successful observations, 𝑘 is

given by astrometric matched transits.

Equation 4.3 gives the likelihood of 𝑘 observations but I want the probability distribution

for observation efficiency, \. So I apply Bayes’ theorem

P(\ | 𝑘, 𝑛, 𝑘 ≥ 5) ∝ P(𝑘 | \, 𝑛, 𝑘 ≥ 5) P(\). (4.4)
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In Boubert & Everall 2020 we show that the Beta prior is appropriate for this task and

show the posterior efficiency as a function of apparent magnitude in the top panel of Fig. 5

in that paper.

Given \, evaluation of the selection function is incredibly simple. The probability of

a source being included in the Gaia source catalogue is the probability that at least five

detections are made

P(Ssource | 𝑛, \) =
𝑛∑
𝑘=5

P(𝑘 | 𝑛, \). (4.5)

In Boubert & Everall 2020 we make this more sophisticated by modelling the parameters

of the Beta distribution which gives the distribution of \ rather than directly modelling \.

The final selection probability is then marginalised over \ for the given apparent magnitude.

The results are shown in the lower panel of Fig. 5 in Boubert & Everall 2020.

One final complexity to add is that I neglect the impact of crowding on Gaia observations.

In crowded regions, Gaia is less likely to detect sources due to the challenges in assigning

independent windows on-board the space craft. We applied the model described above

at multiple crowding levels in Section 4 of Boubert & Everall 2020. The impact on the

inferred efficiency is shown in Fig. 7 and the final results as a function of position on the

sky are given in Fig. 8.

4.1.4 Gaia EDR3 Source Catalogue

Whilst 2020 will be remembered for some events more than others, one thing the year did

provide us with was the early third data release of the Gaia satellite, EDR3.

The method presented for the Gaia DR2 source catalogue selection function required

precise predictions of the number of occasions on which the source could have been

detected from the scanning law. The scanning law was calibrated using the Gaia DR2

epoch photometry (Boubert et al., 2020, 2021b). However epoch photometry for the EDR3

baseline will not be published until the full data release in 2022 which prevents me from

calibrating the EDR3 scanning law and repeating the method previously used for DR2.

Work is currently underway to produce a significantly more impressive selection function

for the EDR3 source catalogue (Boubert et al., 2021a; Fraser et al., 2021). For now, I

provide a simple estimate for the EDR3 selection function based on Boubert & Everall

2020 but emphasise that this will be superseded when the new results are published.

The Gaia EDR3 source catalogue contains about 7% more sources than Gaia DR2.

Fig 4.2 shows the ratio of source density across the sky between EDR3 and DR2. A striking

feature of this is that the increase in source density follows patterns of the scanning law.

Regions of the sky which were under-scanned in DR2 but received more transits in the

extra 14 months of data to EDR3 have the biggest increase in content.

Motivated by this, I propose a very simple adjustment to evaluate the EDR3 selection

function. I assume that the detection efficiency Gaia EDR3 is the same as in DR2.

Therefore I use the results from Fig. 7 of Boubert & Everall 2020 to evaluate the detection

efficiency as a function of apparent magnitude and source density. The number of times a
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1.0 1.2 1.4 1.7
Source Density ratio: EDR3

DR2

0.7 1.6 3.8 9.0
Scan ratio: EDR3

DR2

Fig. 4.2 The increase of sources in the Gaia source catalogue between DR2 and EDR3
is driven by new scans. In the top panel I show the ratio of source density in HEALPix
pixels between EDR3 and DR2 showing clear structure of the scanning law. The bottom
panel is the approximate ratio of number of scans between the data releases using the
calibrated DR2 scanning law and nominal scanning law for EDR3. Regions which received
few observations in DR2 with many more in EDR3 saw large increase in number of objects
in the Gaia source catalogue.

source was transited is evaluated from the uncalibrated Gaia EDR3 nominal scanning law.

Therefore the selection function is (Eq. C1, Boubert & Everall, 2020)

P(Ssource |𝐺, 𝑙, 𝑏) = 1 −
4∑

𝑚=0

(
𝑛

𝑚

)
Beta(𝐴 + 𝑚, 𝐵 + 𝑛 − 𝑚)

Beta(𝐴, 𝐵) (4.6)

where 𝐴, 𝐵 are the DR2 Beta distribution parameters of the efficiency as a function of

source density and apparent magnitude. 𝑛 is the number of times a source was transited

in EDR3 according to the EDR3 scanning law.

The numbers of transits in DR2 and EDR3 from (Boubert et al., 2021b) and the EDR3

nominal scanning law respectively are shown in the top panels of Fig. 4.3. In the bottom

panels I show the selection function probability at 𝐺 = 21. The selection probability has

increased across the majority of the sky but most significantly in the ecliptic plane regions

where there were few transits in DR2 such as the West side of the Galactic bulge.

This result provides a first estimate of the Gaia EDR3 selection function but should

be used with caution. There are three limitations to this model.

· I have assumed that the pipeline of DR2 and EDR3 will lead to the same source detection

efficiency in both catalogues. With each new data release, the data processing pipeline

is rerun with improved source calibration which can change whether individual source

observations are used in the astrometric solution.

· In Gaia DR2, when two sources were observed to be within 0.4 arcseconds of one

another, the lower priority source was removed from the source catalogue. In EDR3,

this threshold was reduced to 0.18 arcseconds (Gaia Collaboration et al., 2021a; Torra

et al., 2021) so EDR3 will be more complete in crowded regions independent of the

scanning law.
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DR2 EDR3

20 40 60 80 100 120 140 160 180

nscan

−6.9 (0.1%) −3.5 (3.0%) 0.0 (50.0%) 3.5 (97.0%) 6.9 (99.9%)
x = logit(P(S|G = 21.0))

Fig. 4.3 A simple estimate of the Gaia EDR3 selection function is achieved by updating
the DR2 selection function with the nominal scanning law for EDR3. In the top row I show
the number of scans received as a function of position on the sky in Galactic coordinates
for DR2 (left) and EDR3 (right). The inferred Gaia source catalogue selection function
probability at 𝐺 = 21.0 is shown in the bottom panel where regions which have received
more scans in EDR3 have significantly higher selection probability.
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· The EDR3 nominal scanning law has not been calibrated directly against the data and

will deviate from Gaia’s true scanning history by up to 30 arcseconds at any point in

time. Therefore the predicted observations in this model will be marginally off the true

numbers over small regions of sky.

Details on how to access the Gaia EDR3 source catalogue selection function are provided

in Section 4.8.

4.2 Science Subsets

The Gaia DR2 selection function, modelled in Boubert & Everall 2020, has enabled us to

answer the question “What is the probability that a source was observed and recorded in

the Gaia DR2 source catalogue?”. However, additional information is provided for subsets

of objects in the Gaia source catalogue which are vital for answering certain scientific

questions. For example, the sample with measured parallax and proper motion (Lindegren

et al., 2018, 2021a) is enabling us to study and understand the structure and kinematics of

the Milky Way, whilst the sample with radial velocities (Gaia Collaboration et al., 2018b)

includes the final dimension of kinematic data for a smaller, but no less impressive, set of

objects.

Usually selection functions are estimated by comparing the sample to a more complete

source catalogue. For the Gaia source catalogue, there is no more complete sample to

compare against. Therefore we had to use our understanding of the observing strategy of

Gaia to model the selection function. However, for subsets of Gaia, the source catalogue

provides a sample which we know is more complete in all areas of parameter space. Previous

attempts at selection functions for samples where a more complete catalogue is available

involve taking the ratio of objects in the subset to source catalogue in carefully chosen

on-sky position-colour-apparent magnitude bins (Bovy et al., 2012b; Mints & Hekker, 2019;

Wojno et al., 2017, e.g. ). This requires a selection function which can be defined discretely

with enough objects in each bin of the subset and source catalogues such that the ratio is

approximately equal to the expected completeness. This is not the case for subsets of Gaia

which have complex selection criteria within the processing pipeline relating to satellite

performance and the scanning law (Boubert et al., 2020, 2021b).

A strong example of this is the Gaia DR2 radial velocity catalogue (which I will address

in this chapter). Rybizki et al. 2021b attempted to evaluate the selection function for

this sample relative to the Gaia source catalogue using number count ratios in colour-

magnitude-sky bins. However, as they demonstrate, the selection function has a strong

dependence on sky position over small scales due to the scanning law, crowding limitations

and the Initial Gaia Source List (IGSL, Smart & Nicastro, 2014). Poisson noise prevented

them from going to sufficient resolution to model this structure without running out of

objects in Gaia.

In Chapter 3 I went beyond simple count ratios by modelling the source catalogue

and subset CMDs as continuous Poisson count processes with Gaussian Mixture Models.
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Whilst this model was well-suited to multi-fibre spectrographs with well defined fields, a

significant improvement was needed to fit the all-sky selection function of Gaia catalogues.

This major step forward has come from Boubert & Everall 2021 which presents a

general approach to estimating selection functions for subsets of catalogues. We model the

selection function as a sum of well-localised spherical needlets on the sky with weights

drawn from a Gaussian Process across colour and apparent magnitude. We also use the

formally correct Binomial likelihood function to fit the model.

In this work I will apply the Boubert & Everall 2021 model to three subsets of Gaia

EDR3:

(i) Astrometry: the sample with published parallax and proper motion.4

(ii) RUWE: Renormalised unit weight error specifies the goodness of fit of an astrometric

solution and is often used to filter out poorly fit sources. I provide selection functions

for the sample with RUWE < 1.4.

(iii) RVS: The sample with published radial velocities from the radial velocity spectro-

graph (RVS).

I provide a brief review of the model developed by Boubert & Everall 2021 in Section 4.3

and explain how binomial statistics are used to fit the likelihood function and test the

results in Section 4.4. Readers primarily interested in the results may wish to skip this and

go directly to Section 4.5 where the selected samples are described. I present my results in

Section 4.6. Before concluding I also discuss other Gaia catalogues which have not been

investigated here due to additional complexities but which should be a key goal for future

work in this field.

4.3 Methodology

An in-depth description of the method for constructing sub-sample selection functions for

astronomical surveys is given in Boubert & Everall 2021. Here I provide a brief summary

of the key points which I will apply in this chapter.

My aim is to estimate the selection probabilities of subsets of the Gaia EDR3 relative

to the source catalogue. e.g. ‘What is the probability that a source in Gaia EDR3 has

parallax and proper motion?’. This selection function may be written down as

P(Ssubset | Ssource, y) (4.7)

where y are the observables (or functions of observables) over which the selection function

is defined and ‘source’ refers to the more complete catalogue, in this case the Gaia source

catalogue. The probability of any object being included in the subset is

P(Ssubset | y) = P(Ssubset | Ssource, y) · P(Ssource | y) (4.8)

4In Gaia EDR3 this is the combined sample with 5D or 6D astrometric solutions. I note that sources
without parallax and proper motions in Gaia still received 2D astrometric solutions however I refer to the
sample with 5/6D solutions as the astrometry sample for brevity.
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where the source catalogue selection function, P(Ssource | y), is the probability that a source

is included in the Gaia source catalogue which I introduced in Section 4.1.4.

All selection functions estimated here will be over the variables y = (𝑙, 𝑏, 𝐺) with the

RUWE and RVS selection functions additionally a function of 𝐺 − 𝐺RP. These are the

dominant variables in selecting sources to enter the samples. The scanning law produces

complex selection patterns across the sky generating a heavy dependence on (𝑙, 𝑏). Whether

individual observations are used in the Gaia data is dependent on the on-board estimated

apparent magnitude of the source (scientific measurements of a source are only made

if 𝐺onboard < 20.7, Gaia Collaboration et al., 2016), for which 𝐺 is a reasonable proxy.

The publication of measured radial velocity for any source in Gaia is contingent on an

estimated RVS magnitude (𝐺RVS) calculated using the IGSL (See Section 2.1 in Sartoretti

et al., 2018). As will be discussed later, 𝐺RVS is more similar to 𝐺RP than 𝐺 which means

the magnitude limit in 𝐺 will be a function of 𝐺 − 𝐺RP. Finally, the selection criteria for

the RVS sample is explicitly dependent on source temperature and RUWE is implicitly

dependent on colour. Making my selection function dependent on 𝐺 − 𝐺RP allows me

to capture these dependencies. I choose to use 𝐺 − 𝐺RP rather than 𝐺BP − 𝐺RP due to

calibration issues at the faint end of 𝐺BP (Riello et al., 2021). The drawback of this is

that the 𝐺RP uses larger spatial windows than 𝐺 which means that our colours will be

extremely red for extended sources with high excess flux (see Section 9.4 Riello et al.,

2021).

The selection function, as described in Boubert & Everall 2021, is composed of a sum

of spherical needlets across the sky with coefficients subject to a Gaussian Process prior

in apparent magnitude and colour. This is fit to the data using a Binomial likelihood

function in HEALPix-apparent magnitude-colour bins. In the following subsections, I

briefly describe the maths of each of these components.

4.3.1 Logit Probability

My model will estimate the probability, 𝑞 ∈ [0, 1] that an object will be included in the

subset given the observables and that it is in the source catalogue. My model is defined in

an infinite domain so I directly model 𝑥 ∈ [−∞,∞], the logit-transformed probability

𝑥 = logit(𝑞) = log

(
𝑞

1 − 𝑞

)
. (4.9)

This is then inverse transformed to retrieve the selection probability

𝑞 = logit−1(𝑥) = 1

1 + exp(−𝑥) (4.10)

which is also referred to as the ‘expit’ function. All figures in this chapter are given in

terms of 𝑥 but I provide values of 𝑞 in the axes to help with interpretation.
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4.3.2 Needlets

Spherical harmonics provide an orthonormal basis for functions on the sphere and so are

commonly-used to model distributions over a spherical surface. However, since individual

spherical harmonics are not localised on the sky, a small change in the function at one

location changes the coefficients of all the harmonics. This can be overcome by using a

convolution of spherical harmonics called a ‘needlet’ (Marinucci et al., 2008)

𝜓 𝑗 𝑘 =
√
_ 𝑗 𝑘

ℓmax∑
ℓ=0

𝑏ℓ ( 𝑗)
2ℓ + 1

4𝜋
𝑃ℓ (cos(𝜙 𝑗 𝑘 (𝑙, 𝑏))), (4.11)

where 𝑃𝑙 are the Legendre polynomials and 𝜙 𝑗 𝑘 (𝑙, 𝑏) is the great arc separation between

the coordinates (𝑙, 𝑏) and the Needlet centre. Localisation of the Needlets is achieved

through the window function, 𝑏( 𝑗). For this I use the ‘Chi-square’ Needlets5 described in

Geller & Mayeli 2010 and Scodeller et al. 2011

𝑏ℓ ( 𝑗 |𝐵, 𝑝) =
(
𝑗

𝐵 𝑗

)2𝑝
exp

(
− ℓ2

𝐵2 𝑗

)
. (4.12)

In order to satisfy the reconstruction formula for spherical Needlets, the window function

must satisfy (Baldi et al., 2006)
∞∑
𝑗=0

𝑏( 𝑗)2 ≡ 1. (4.13)

This is not generally true for the window function in Eq. 4.12 so I numerically renormalise

the window functions for each 𝑙 summing for 𝑗 up to 1000 to guarantee the relation is

satisfied.

The needlets are centred on HEALPix pixels (Górski et al., 2005) such that

𝑥 =

𝑗max∑
𝑗=0

𝑁 𝑗∑
𝑘=0

𝛽 𝑗 𝑘 𝜓 𝑗 𝑘 (𝑙, 𝑏) (4.14)

where 𝑗max is the maximum HEALPix level used and 𝑁 𝑗 = 12× 22 𝑗 is the number of pixels

in a given HEALPix level.

The selection probabilities as a function of position on the sky are then given by

𝑞 = logit−1(𝑥).

4.3.3 Gaussian Process Prior

The free parameters 𝛽 𝑗 𝑘 are modelled as a function of apparent magnitude 𝐺 and colour

𝐶 = 𝐺−𝐺RP. This is performed in discrete colour-magnitude bins with a Gaussian Process

prior placed on each dimension independently

{𝛽 𝑗 𝑘 }𝑚𝑐 ∼ GP ({𝐺}𝑚, {𝐶}𝑐) (4.15)

5Referred to in those works as ‘Mexican’ Needlets.
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where I use an independent Squard Exponential kernel for each of apparent magnitude

and colour,

𝐾 (𝐺,𝐶, 𝐺′, 𝐶′) = 𝜎2 exp

(
− (𝐺 − 𝐺′)2

2𝑙2𝑚

)
exp

(
− (𝐶 − 𝐶′)2

2𝑙2𝑐

)
, (4.16)

with apparent magnitude and colour length-scales 𝑙𝑚 and 𝑙𝑐.

4.4 Binomial Statistics

The selection function fit is based on the Binomial likelihood. For each bin, the number of

sources in the sub-sample 𝑘 is assumed to be drawn from a Binomial distribution, given

the number of sources which could have been selected from the source catalogue in the

given bin 𝑛 and the selection probability 𝑞.

In this section I briefly revise the likelihood function and describe the Beta-Binomial

expected value and p-value test which will be used for analysing the results.

4.4.1 Binomial Likelihood

The source catalogue and subset are counted in HEALPix-colour-apparent magnitude bins.

The overall likelihood is given by

L =
∏

𝑖=𝑝,𝑚,𝑐

Binomial(𝑘𝑖 | 𝑛𝑖, 𝑞𝑖)

=
∏

𝑖=𝑝,𝑚,𝑐

(
𝑛𝑖

𝑘𝑖

)
𝑞
𝑘𝑖
𝑖
(1 − 𝑞𝑖)𝑛𝑖−𝑘𝑖 (4.17)

where 𝑝, 𝑚, 𝑐 is the HEALPix-magnitude-colour bin index and 𝑞𝑖 is the model probability

at the bin centre (Eq. 4.14). Since the Binomial coefficient is independent of the selection

probability, this can be dropped out as a constant and the log likelihood simplifies to

logL ∼
∑

𝑖=𝑝,𝑚,𝑐

𝑘𝑖 log(𝑞𝑖) + (𝑛𝑖 − 𝑘𝑖) log(1 − 𝑞𝑖) (4.18)

To optimize the likelihood function in terms of model parameters, 𝛽 𝑗 𝑘 , I use the

L-BFGS-B algorithm (Zhu et al., 1997) implemented in scipy. The boundaries are placed

at [−50, 50] for the unscaled parameters for which the prior distribution is a unit variance

Gaussian. In other words, a parameter would have to be a 50-sigma outlier from the prior

to reach the optimization boundaries.

4.4.2 Beta-Binomial Posterior

For each bin, I can independently estimate the posterior distribution of 𝑞 which will be

useful when testing the results. This is not used to fit my model but instead to help

understand the results.
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Consider the stars in one bin to be like identical marbles in a bag. You get handed

the marbles one by one and choose whether keep the marble or give it away. Eventually,

of the original bag of 𝑛 marbles, you’re left with 𝑘 in your hand. What is the expected

probability of any marble being selected?

The Binomial distribution gives the likelihood of choosing 𝑘 marbles given the selection

probability 𝑞,

P(𝑘 | 𝑛, 𝑞) = Binomial(𝑘 |𝑛, 𝑞)

=

(
𝑛

𝑘

)
𝑞𝑘 (1 − 𝑞)𝑛−𝑘 . (4.19)

To evaluate the posterior probability distribution of 𝑞, I apply Bayes theorem but first I

need a prior. The Beta distribution is mathematically sensible as it is the conjugate prior

of the Binomial distribution. Even more appealing, a Beta distribution with 𝛼0 = 𝛽0 = 1

is equivalent to a uniform distribution, U[0, 1]. The posterior probability distribution is

P(𝑞 | 𝑛, 𝑘) = Binomial(𝑘 |𝑛, 𝑞) Beta(𝑞 |𝛼0, 𝛽0)
P(𝑘 | 𝑛)

= Beta(𝑞 |𝑘 + 𝛼0, 𝑛 − 𝑘 + 𝛽0). (4.20)

This is the Beta-Binomial distribution with an expected 𝑞 of

E[𝑞] = 𝛼

𝛼 + 𝛽 (4.21)

=
𝑘 + 𝛼0

𝑛 + 𝛼0 + 𝛽0
. (4.22)

For a uniform prior this equates to (𝑘 + 1)/(𝑛 + 2). This formula is more commonly known

as the “rule of succession” and was written down by Laplace more than two hundred years

ago (Laplace, 1921).

This might not be quite what one expects. Naively 𝑘/𝑛 is often used as the expected

value of the selection probability given 𝑘 objects drawn from a sample of 𝑛. It is worth

noting that the expected value is 1/2 when 𝑘 = 𝑛 = 0, which is the expected value of a

uniform distribution. If there are no stars in a bin then I have no information to work

with and the posterior reverts to the prior. This can be seen happening in the brighter

bins in Figs. 4.9 and 4.12.

4.4.3 p-value Test

I can test the veracity of a selection probability model using a p-value test (in this case I use

a one-tailed p-value). This answers the question ‘Given the model, what is the probability

that a measurement of an observable would not be larger than the given value?’. For a

Binomial distribution, the question is ‘What is the probability that less than 𝑘 sources out

of 𝑛 are observed in this bin given the bin’s selection probability?’. The Binomial p-value
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is given by

𝑃 ∼ U

[
𝑘 ′=𝑘−1∑

0

Binomial(𝑘′ | 𝑛, 𝑞),
𝑘 ′=𝑘∑
0

Binomial(𝑘′ | 𝑛, 𝑞)
]
. (4.23)

which I explain in more detail in Appendic A.3. Note that p-value is not a deterministic

value but a stochastic variable. For example, if I have no data in a bin (𝑘 = 𝑛 = 0) the

p-value simplifies to 𝑃 ∼ U [0, 1].
As in any one-tailed p-value test, if the model has successfully reproduced the data, the

set of p-values for all data points will be uniformly distributed between 0 and 1. This test

will be used with all of my inferred selection functions to check that they have accurately

captured the information in the bins.

4.5 Data

The selection function is estimated for three samples: Astrometry, RUWE and RVS. Here

I provide a brief description of each sample and how it can be accessed from the Gaia

archive.

4.5.1 Astrometry

The astrometry sample is the subset of Gaia EDR3 with published parallax and proper

motions from the Astrometric Global Iterative Solution (AGIS, Lindegren et al., 2012).

There are three criteria for a source having published parallax and proper motion (Lindegren

et al., 2021a):

• 𝑁VPU ≥ 9

• 𝐺DR2 < 21.0

• 𝜎5Dmax < 1.2mas × 𝛾(𝐺).

The VPU (visibility periods used) cut depends on the number of observations a source

has received and their distribution in time. This produces a strong dependence of the

selection function on position on the sky. The apparent magnitude cut is performed on

DR2 apparent magnitudes and all magnitudes have been recomputed in EDR3. Therefore

the 𝐺DR2 cut doesn’t produce a discontinuous change in the selection function with 𝐺

however it will still lead to a distinct drop-off towards the faint end. Finally, the cut on

𝜎5Dmax (astrometric sigma5d max) will depend on position on the sky and apparent

magnitude, because both contribute to the expected astrometric uncertainty for any source

(I discuss the individual effect of the 𝜎5Dmax cut in Chapter 5). The effects of these cuts

will be empirically modelled in this chapter without directly considering the effects of each

cut on their own.

The distribution of sources as a function of colour and apparent magnitude is shown in

Fig. 4.4 and as a function of position on the sky in Fig. 4.5. The SQL query for accessing

the data is as follows.
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Fig. 4.4 The number of Gaia EDR3 sources in each colour-magnitude bin is shown for the
full sample (left) astrometry sample (middle left) astrometry with RUWE < 1.4 sample
(middle right) and sample with DR2 radial velocity pubilshed in the EDR3 catalogue
(right). The astrometry selection removes sources from the dim end whilst RVS is cut on
𝐺RVS producing an extended drop-off in 𝐺 as can be sen from the histogram on the right.
Red dashed lines show the region of parameter space used to fit the selection functions.

SELECT *

FROM gaiaedr3.gaia_source

WHERE

astrometric_params_solved>3

AND phot_g_mean_mag between 1.6 and 22

There are no sources in Gaia EDR3 with apparent magnitude brighter than 𝐺 = 1.6

and none with parallax or proper motion fainter than 𝐺 = 22. This results in a sample of

1 465 211 050 sources out of a total 1 806 195 366 in Gaia EDR3 with 1.6 < 𝐺 < 22.

4.5.2 RUWE

When using Gaia astrometry, various cuts are often placed on the sample to generate a

subset with maximal information and minimal systematics. One such cut recommended by

DPAC is RUWE < 1.4 (Gaia Collaboration et al., 2021a). Sources with large RUWE have

scatter between astrometric measurements which is poorly fit by the linear astrometry

model. A common cause of this is binary motion (Belokurov et al., 2020b; Lindegren et al.,

2018; Penoyre et al., 2020) however this can also be generated by source contamination in

crowded regions and possibly even astrometric microlensing (McGill et al., 2020). Whilst

these sources can be astrophysically interesting, they introduce systematic errors in the

AGIS pipeline and it is recommended to remove the more extreme cases in order to clean

the sample.
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There have been other recommended cuts for removing spurious astrometric solutions

on ipd gof harmonic amplitude (Fabricius et al., 2021) or astrometric gof al

(Lindegren et al., 2021a) however RUWE < 1.4 is commonly used in the community so I

keep to this single cut here.

Whilst an ideal telescope would have an entirely symmetric point spread function, it is

slightly asymmetric on the CCD panel of Gaia introducing chromatic behaviour to the

inferred centroid location (for full discussion see Lindegren et al., 2021a, Section 2.3). This

propagates through to the astrometric solution where the unit weight error has a colour

dependence. RUWE is the renormalised unit weight error where the renormalisation is to

the 41st percentile of the unit weight error as a function of colour and apparent magnitude6.

As a result, the 41st percentile is achromatic however the spread of RUWE through the

observed population will still have a residual colour dependence as will the fraction of

sources with RUWE>1.4. Therefore colour dependence is an important aspect of the

RUWE<1.4 selection function.

The problem with modelling RUWE as a function of colour is that I require all sources

to have published colour. Approximately 88% of sources in the Gaia EDR3 catalogue

have published 𝐺RP. Therefore the selection function I will actually be modelling is

P(RUWE < 1.4 | SGaia ,S𝐺RP). If the event that a source has RUWE < 1.4 is entirely

independent of the the event that it has published 𝐺RP, this probability is the same as

P(RUWE < 1.4 | SGaia ).
Within the apparent magnitude range 1.6 < 𝐺 < 22, there are 1.81 billion sources

in Gaia, 1.40 billion of which have RUWE < 1.4 (P(RUWE < 1.4 | SGaia ) ∼ 77.6%). 1.55

billion sources in Gaia have published 𝐺RP, 1.29 billion of which have RUWE < 1.4

(P(RUWE < 1.4 | SGaia ,S𝐺RP) ∼ 83.3%). Therefore, whether a source has published 𝐺RP

affects the probability that the source will have RUWE < 1.4.

I show this as a function of apparent magnitude in Fig. 4.6 where I give the median and

16th − 84th percentile ranges of the probability of a source having 𝐺RP from the full sample

or given the source satisfies the RUWE cut. For 16 < 𝐺 < 21, a source is significantly

more likely to have 𝐺RP if the source has published RUWE < 1.4.

Therefore I advise that the colour-dependent RUWE selection function should only be

used in conjunction with the 𝐺RP selection function

P(SRUWE,S𝐺RP | SGaia , y) (4.24)

= P(SRUWE | S𝐺RP ,SGaia , y) · P(S𝐺RP | SGaia , y),

which is the probability of a source in EDR3 having both RUWE < 1.4 and published

𝐺RP. Since the selection function for 𝐺RP is not known, and for cases where one wishes to

fit a model to Gaia data without colour dependence, I also fit a magnitude-only selection

function to the RUWE data including all sources with published 𝐺 independent of whether

𝐺RP was published. By evaluating this, I am implicitly marginalising over the colour

6http://www.rssd.esa.int/doc fetch.php?id=3757412
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Fig. 4.6 The probability of a source having 𝐺RP is evaluated from the Beta-Binomial
posterior distribution in Equation 4.22. Beyond 𝐺 ∼ 15 there are few enough sources
in RVS that this isn’t significantly different to the full sample probability however for
16 ≲ 𝐺 ≲ 21 the RUWE 𝐺RP probability changes strongly from the full sample which
could lead to significant biases in the RUWE colour selection function if not used with a
correct 𝐺RP selection function.

distribution of sources

P(SRUWE | SGaia , y) =
∫

d𝐶 P(SRUWE | SGaia , y, 𝐶) · P(𝐶 | SGaia , y) (4.25)

where P(𝐶 | SGaia , y) is the distribution of source colours in the Gaia source catalogue at

the given position on the sky and apparent magnitude, y.

The distributions of all Gaia sources and those with RUWE < 1.4 as a function of

𝐺 and 𝐶 are shown in the first and third panels of Fig. 4.4 respectively. Comparing

with the Gaia Catalogue of Nearby Stars (Gaia Collaboration et al., 2021b) there are

sources extending out to the blue (𝐺 −𝐺RP < −1) and red (𝐺 −𝐺RP > 3) extremes of the

colour distribution. The red sources will likely be extended sources or stars in crowded

regions with high excess flux as mentioned in Section 4.3. The blue sources are very low

in numbers and only appear at the faint end suggesting they are driven by photometric

measurement errors for faint sources. We will only fit the colour-dependent selection for

the range −1 < 𝐺 − 𝐺RP < 7 which contains sources with well measured colours including

those with high excess flux.
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SELECT *

FROM gaiaedr3.gaia_source

WHERE

ruwe<1.4

AND phot_rp_n_obs>0

AND phot_g_mean_mag BETWEEN 1.6 AND 22

AND phot_g_mean_mag-phot_rp_mean_mag BETWEEN -1 AND 7

The RUWE sample has 1 292 152 210 sources out of a total 1 550 860 236 in the Gaia

EDR3 source catalogue with colours and apparent magnitudes in the given range.

For the colour-independent selection function, the RUWE sample is composed of

1 400 803 102 sources out of 1 806 195 366 in the same magnitude range in the Gaia source

catalogue which can be retrieved with the following query.

SELECT *

FROM gaiaedr3.gaia_source

WHERE

ruwe<1.4

AND phot_g_mean_mag BETWEEN 1.6 AND 22

The source counts are shown as a function of position on the sky in Fig. 4.5 and

predominantly trace the Milky Way stellar distribution.

4.5.3 RVS

The Gaia radial velocity sample is incredibly important to dynamical studies of the Milky

Way (e.g. Nitschai et al., 2020). Radial velocities are measured by the Gaia satellite’s

on-board spectrograph using the calcium triplet. Radial velocities have not yet been

released for Gaia DR3, however the DR2 sample of 7 million RVS stars is still by far

the largest sample of stellar radial velocities available from any single observatory. The

selection criteria used to produce the DR2 sample is given in Gaia Collaboration et al.

2018b. These are some of the main cuts:

• 𝐺ext
RVS < 12 or 𝐺 int

RVS < 14

• 3550 < 𝑇eff < 6900

• No double line spectroscopic binaries or emission line stars.

𝐺ext
RVS is the apparent magnitude estimated through photometric transformations of obser-

vations from ground-based observatories in the Initial Gaia Source List (IGSL, Smart &

Nicastro, 2014). 𝐺 int
RVS is directly estimated from the Gaia spectroscopy data in the radial

velocity pipeline. In either case, 𝐺RP provides a better approximation to 𝐺RVS than 𝐺.

However since the Gaia source catalogue selection function is modelled as a function of 𝐺,

I keep to that here in the interests of simplicity and usability.

Selection on IGSL-measured 𝐺RVS produces substantial structure across the sky as

shown in the right-hand panel of Fig. 4.7 with vertical lines in the East due to SDSS

IGSL sources and a grid pattern around the South equatorial pole from the Guide Star

Catalogue. This is demonstrated and discussed in more detail in Rybizki et al. 2021b.
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Motivated by Boubert et al. 2019, additional analysis and cleaning of the DR2 sample

took place for the RVS sources published with EDR37. 3 876 sources with incorrect radial

velocities due to nearby neighbours were removed and 10 924 could not be successfully

crossmatched with any source in Gaia EDR3. I also apply the cut rv nb transits ≥ 4

recommended by Boubert et al. 2019 to clean out spurious radial velocity measurements.

The distribution of RVS sources as a function of apparent magnitude and 𝐺 − 𝐺RP

colour is shown in the fourth panel of Fig. 4.4. The RVS sample occupies a very narrow

colour range and is heavily magnitude-limited at the dim end. Only the range of colour and

apparent magnitude containing radial velocity sources is used for the RVS sample, namely

−0.6 < 𝐺 − 𝐺RP < 2.6 and 1.6 < 𝐺 < 17.4, where I have applied the same bright-end cut

as in the astrometry sample.

Once again, I am faced with the same issue as in the RUWE selection where not all

RVS sources have published 𝐺RP. However the RVS selection function is only non-zero

at brighter magnitudes where 𝐺RP is much more complete. For 1.6 < 𝐺 < 17.4, 6.2

out of 206 million sources, or 3.00%, have published DR2 radial velocities which rises to

3.04% of sources with published 𝐺RP. The RVS selection function has a much weaker

dependence on 𝐺RP selection than is the case for RUWE. By using the colour-dependent

RVS selection function without accounting for the 𝐺RP selection probability, a ∼ 1%

systematic uncertainty would be introduced to the results. This is also shown in Fig. 4.6

where a dotted blue line and shaded blue regions show that the 𝐺RP probability is very

high out to 𝐺 ∼ 16 at which point I start to run out of RVS sources so the uncertainties

become large.

SELECT *

FROM gaiaedr3.gaia_source

WHERE

dr2_rv_nb_transits>=4

AND phot_rp_n_obs>0

AND phot_g_mean_mag BETWEEN 1.6 AND 17.4

AND phot_g_mean_mag-phot_rp_mean_mag BETWEEN -0.6 AND 2.6

The RVS sample within the given colour-apparent magnitude range contains 6 186 950 out

of a total 203 513 110 objects in the source catalogue within the same colour-magnitude

range with published 𝐺RP.

For RVS, the distribution on the sky (shown in the right panel of Fig. 4.5) is no longer

solely dominated by the Milky Way source distribution. Aspects of the Gaia scanning law

and features of the IGSL are visible in the on-sky distribution.

4.5.4 Power Spectrum

The Gaussian Process prior requires a dispersion parameter 𝜎 which needs to be well

chosen for the problem. The expected variance will depend on the Needlet scale.

7https://gea.esac.esa.int/archive/documentation/GEDR3/Data processing/chap
cu6spe/sec cu6spe intro/ssec cu6spe nonewdata.html
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I start from the expected selection probability across the sky, E[𝑞] = 𝛼
𝛼+𝛽 = 𝑘+1

𝑛+2

(see Section 4.4.2). The distribution of logit
(
𝑘+1
𝑛+2

)
is plotted across the sky for each of

the samples in Fig. 4.7. A spherical harmonic model can be directly estimated for the

distribution from the HEALPix values using

𝑎ℓ𝑚 ∼ 4𝜋

𝑁pix

𝑁pix−1∑
𝑝=0

𝑌 ∗
ℓ𝑚 (𝑙𝑝, 𝑏𝑝)𝑥𝑝 (4.26)

where 𝑥𝑝 are the pixel values. The power spectrum is then estimated by taking the square

mean of mode amplitudes

𝐶ℓ =
1

2ℓ + 1

ℓ∑
𝑚=−ℓ

|𝑎2ℓ𝑚 |. (4.27)

This is done for each sample with the power-spectra shown by the black lines in Fig. 4.8.

The power spectrum gives the expected variance of spherical harmonic coefficients. I

model the power spectra with a single power-law distribution

𝐶ℓ = 𝐴(ℓ + 1)𝛾 (4.28)

where 𝛾 describes how the power decays for smaller scales.

The sum of square spherical harmonic coefficients renormalised by their uncertainty is

chi-square distributed with 2ℓ + 1 degrees of freedom.

ℓ∑
𝑚=−ℓ

|𝑎2
ℓ𝑚
|

𝜎2
ℓ

∼ 𝜒2(2ℓ + 1) (4.29)

where 𝜎2
ℓ
= 𝐶ℓ is the expected coefficient variance. Therefore I can use this to derive the

likelihood of the given power spectrum model

P(𝐶ℓ |𝐶ℓ) ∝ 𝑥
2ℓ+1
2 −1 exp

(
−𝑥
2

)
(4.30)

where 𝑥 =
(2ℓ+1)𝐶ℓ

𝐶ℓ
. The 16th − 84th percentiles of this distribution provide the shaded

regions in Fig. 4.8.

This is maximized with respect to 𝐴 and 𝛾 in Eq. 4.28 to determine the best fit

parameters using gradient descent with the Newton Conjugate Gradient method as

implemented in scipy. I only use data with ℓ < 135 as this is the smallest scale spherical

harmonic used in the Needlets and corresponds to a scale length on the sky ∼ 1 degree

which is the approximate pixel size of the data I will be using with HEALPix nside = 64.

The best fit power law profiles are shown by the red dashed lines in Fig. 4.8 for the

Astrometry, RUWE (magnitude-only) and RVS samples respectively with parameter values

given in Table 4.1.

Given the power spectrum of spherical harmonics, I want to work out what this implies

for the variance of Needlet coefficients. From Appendix B of Boubert & Everall 2021, the
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Fig. 4.8 The power spectrum for each sample, evaluated using the spatial (𝑘 + 1)/(𝑛 + 2)
distribution from Fig. 4.7 shown by the black lines with grey 16th − 84th percentile
uncertainties, declines strongly with increasing ℓ in all samples. The red dashed line shows
a power law fit for each sample out to ℓ = 135 which is the maximum ℓ set of spherical
harmonics used to construct the needlets.

102



4.5 Data

A
st
ro
m
et
ry

R
U
W

E
<
1
.4

(𝐺
on

ly
)

R
U
W

E
<
1
.4

R
V
S

S
am

p
le

∑ 𝑖
𝑛
𝑖

1,
80
6,
19
5,
36
6

1,
80
6,
19
5,
36
6

1,
55
0,
86
0,
23
6

20
3,
51
3,
11
0

∑ 𝑖
𝑘
𝑖

1,
46
5,
21
1,
05
0

1,
40
0,
80
3,
10
2

1,
29
2,
15
2,
21
0

6,
18
6,
95
0

𝐺
ra
n
ge

[1
.6
,2
2]

[1
.6
,2
2]

[1
.6
,2
2]

[1
.6
,1
7.
4]

𝐺
−
𝐺

R
P
ra
n
ge

-
-

[-
1,
7]

[-
0.
6,
2.
6]

B
in
s

H
E
A
L
P
ix

n
si
d
e

64
64

64
64

𝐺
b
in
s

0.
2

0.
2

0.
2

0.
2

𝐺
−
𝐺

R
P
b
in
s

-
-

2.
0

0.
4

P
ow

er
S
p
ec
tr
u
m

lo
g
𝐴

-0
.2
93
7

-0
.6
20
6

-0
.2
03
2

0.
09
37

𝛾
-2
.3
98
5

-2
.3
55
2

-2
.4
84
5

-2
.2
76
1

M
o
d
el

𝑗 m
a
x

5
5

5
5

𝑙 𝐺
0.
3

0.
3

0.
3

0.
6

𝑙 𝐺
−𝐺

R
P

-
-

3.
0

1.
2

𝐵
2.
0

2.
0

2.
0

2.
0

T
ab

le
4.
1
F
or

ea
ch

G
ai
a
su
b
-s
am

p
le

se
le
ct
io
n
fu
n
ct
io
n
,
I
p
ro
v
id
e
th
e
ke
y
p
ar
am

et
er
s
d
es
cr
ib
in
g
th
e
d
at
a
an

d
m
o
d
el
.

103



Completeness of the Gaia-verse

variance of the Needlet coefficients as a function of the power spectrum is given by

⟨|𝛽2𝑗 𝑘 |⟩ = _ 𝑗 𝑘
ℓmax∑
ℓ=0

𝑏2ℓ ( 𝑗)𝐶ℓ
(2ℓ + 1)

4𝜋
(4.31)

where 𝐶ℓ is taken from Eq. 4.28 using the best fit parameters and the normalisation

constant is the area per pixel, _ 𝑗 𝑘 =
4𝜋
𝑁 𝑗
.

The reader should be concerned that I have done something uncomfortably non-

Bayesian. I used the data to determine the appropriate prior for my model. There

are two reasons why I can get away with this. Firstly, I used the data aggregated over

colour-apparent magnitude space and only used this to estimate two parameters of a

simple power spectrum such that the vast amount of information is hidden from my prior

model decision. Secondly, and more importantly, I am not attempting to infer a posterior

distribution for my model. Using data to infer the prior would lead to an underestimation

of posterior uncertainties as data has implicitly been double counted, however, I am only

inferring the best fit selection function model.

The reason I used the power spectra as described is that it makes the optimization

significantly more computationally efficient as I am using an informed start point.

4.6 Results

When estimating each of the selection functions I used a Needlet model with 𝑗max = 5

and fit to data at HEALPix level 6 (nside = 64) resolution. This gives a total of 16 381

Needlets with ∼ 2 degree resolution fit to 49 152 pixels. Details about the samples, binning

schemes and model parameters are listed in Table 4.1.

In this Section, I show the results of the fits as a function of sky position, apparent

magnitude and colour. To test the veracity of the fits given the data, I use the Binomial

p-value test explained in Section 4.4.3.

4.6.1 Astrometry

The astrometry is fit in 0.2 mag bins with a magnitude scale length of 0.3 mag - long

enough that neighbouring bins are correlated, but short enough that the data can produce

sharp changes in the model.

The astrometry selection function across the sky is shown in the middle row of Fig. 4.9.

The top row shows (𝑘 + 1)/(𝑛 + 2) for the given magnitude bins, which, as discussed in

Section 4.4.2, is the expected selection probability in the given magnitude bin independent

of all others. High source density regions show much stronger selection limitations,

particularly at the dimmer magnitudes. This is apparent through the white spots at

𝐺 = 17.5 which are centred on globular clusters such as 𝜔 Centauri and dwarf galaxies

such as the LMC and SMC.

The bottom row of Fig. 4.9 shows the results of the p-value test discussed in Section 4.4.3.

At brighter magnitudes, p-value is distributed completely randomly demonstrating that
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Completeness of the Gaia-verse

Fig. 4.10 For all four models, the Binomial p-values of HEALPix-colour-magnitude bins
are uniformly distributed at almost all magnitudes. This demonstrates that the model has
fit the data exceptionally well. The minor exceptions are some flaring of the wings in the
faintest bins of each sample which is caused by the lack of spatial resolution of the model
which isn’t able to pick up structure on scales under 2 degrees.
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the model has been successfully fit. Shifting to fainter magnitudes the selection function

probability is reduced in regions of the sky with fewer scans. These ‘holes’ in the scanning

law are prominent due to the selection cuts on 𝑁vpu and 𝜎5Dmax used for the EDR3

astrometry sample.

Structure also appears particularly around 𝜔 Centauri and the disk and LMC. This is

where the selection function changes on scales smaller than the model can resolve. For

example, the half-light radius of 𝜔 Centauri is ∼ 4.8 arcminutes (van de Ven et al., 2006)

however the Needlets can only resolve structure on 2 degree scales. Therefore the reduction

in selection probability due to the globular cluster is spread out over a wider area by

the Needlet. At the core, in the pixel which contains the globular cluster, the selection

probability is overestimated whilst being underestimated in any neighbouring pixels. There

is a further-out halo of overestimated probability due to the structure of the Needlets

which go negative before returning to zero (see Fig.1 Boubert & Everall, 2021).

I provide a histogram of p-values in the top panel of Fig. 4.10 where I only include

bins where 𝑛 > 0 as bins with 𝑛 = 0 have a uniformly distributed p-value independent of

the model. The histogram for all bins is offset by a factor of 4 to make it clearer. For

the vast majority of the data, I see well-behaved solutions with uniformly distributed

p-values however, at the faint end, there are over-densities at 𝑃 = 0, 1 where the resolution

limitations become significant and I am under-fitting to the data.

The astrometry selection function as a function of magnitude is shown in the top panel

of Fig. 4.11. I group level 6 HEALPix pixels by number of sources in the pixel in the Gaia

source catalogue with 1.6 < 𝐺 < 22. The selection function is the count-weighted mean of

the selection functions in the given pixels. For 𝐺 ≲ 17, the Astrometry sample is ∼ 99%

complete however this drops off quickly in high source density regions. Low density regions

stay close to complete out to 𝐺 ∼ 19 before also falling rapidly. By 𝐺 ∼ 20, less than 1%

of sources from the Gaia source catalogue are included in the astrometry sample.

For 𝐺 < 1.6 I am not able to say anything informative about the selection function

probability as there is no data in the source catalogue here to use. For 𝐺 > 22 the selection

function should be taken as zero.

For the astrometry sample I have shown that the selection function model reproduces

the observed data down to Needlet scales of ∼ 2 degrees. At high latitudes, the astrometry

sample can be complete out to 𝐺 ∼ 19 and significantly drops at 𝐺 ∼ 21 due to the cut

placed on DR2 apparent magnitude. However the selection probability declines much

brighter for crowded regions or where there are very few scans in EDR3.

4.6.2 RUWE

As discussed in Section 4.5, I evaluate the RUWE selection function in terms of sky-position

and apparent magnitude against all sources in Gaia EDR3 and separately also as a function

of 𝐶 = 𝐺 − 𝐺RP for sources where 𝐺RP is published.

Both RUWE selection functions are fit to 0.2 mag bins in 𝐺 with a magnitude scale

length of 0.3. The colour dependent model includes four colour bins each 2 mag wide with
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Completeness of the Gaia-verse

Fig. 4.11 The selection function probability is strongly dependent on source density in
all samples. By splitting pixels according to the source density in the full Gaia sample, I
evaluate the selection function probability using the count-weighted average of all pixels
within the given density bin. For the astrometry sample (top) the selection function
drops at brighter magnitudes for higher source density regions. The RUWE < 1.4 colour-
independent selection function (middle panel), shows a slightly different behaviour as
much brighter sources are more likely to be cut out due to excess noise however the
faint end shows similar behaviour to the astrometry. The RVS sample (bottom panel) at
𝐺 − 𝐺RP = 0.5 shows a more complicated pattern. At the bright end, as expected, the
selection function is lower in high source density regions. However this flips at 𝐺 ∼ 13.
This is because RVS is limited in 𝐺RVS ∼ 𝐺RP and hence is more complete for redder
sources as shown by Fig. 4.15 which will largely be bulge fields due to dust extinction. In
all samples, the model reverts to the prior mean (𝑥 = 0) for 𝐺 ≲ 3 due to a lack of data in
the source catalogue.
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Completeness of the Gaia-verse

a scale length of 3 mag which enables broad changes in the selection function probability

as a function of 𝐶.

The results of the colour-independent model are shown in Fig. 4.12. At the faint end

the behaviour is similar to the astrometry selection function and the binomial p-value also

shows that the fits are struggling to resolve features in crowded regions at faint magnitudes.

For 𝐺 = 17.5 and brighter, however, the RUWE < 1.4 cut removes significant numbers

of sources which have published astrometry. The selection probability is lower and for

𝐺 = 11.5 the scanning law is highlighted as heavily scanned regions are more likely to be

removed by the cut on RUWE.

The magnitude-dependent behaviour is shown more clearly in the middle panel of

Fig. 4.11 where the RUWE < 1.4 selection probability actually peaks near the faint end

before declining and shows the same crowding dependence as the astrometry selection.

However, the bright end has significantly reduced selection probability particularly in

non-crowded regions. My interpretation is that astrometric measurements have lower

variance for bright sources and therefore sources with genuine intrinsic noise (such as binary

systems) would have a more significant excess noise and be removed by the RUWE < 1.4

cut. For 𝐺 ≲ 3 the selection probability picks up again which is likely an artefact of the

prior as there is very little data in the source catalogue at these magnitudes.

The colour-dependent selection function for RUWE < 1.4 across the sky for four

colour and apparent magnitude bins is given in Fig. 4.13. Because RUWE is a measure

of the astrometric error above the expected uncertainty, areas with high RUWE aren’t

necessarily those where Gaia performs worst but rather those where the satellite struggles

unexpectedly. The selection function for 𝐶 = 0 at the dim end shows a similar structure

to the astrometry selection suggesting that the astrometry sample cuts are the limiting

factor in this region of colour space. As I shift towards redder sources the picture changes

significantly. For redder sources, the low RUWE sample is more complete in the galactic

plane and significantly less so in un-crowded regions. This inversion appears to be more

extreme at brighter magnitudes. A possible explanation is that the Gaia attitude error

model either overestimates measurement uncertainties for bright sources in Galactic plane

or underestimates those at high latitudes. This would result in higher RUWE for high

latitudes and explain the observed selection pattern. I show a systematic issue with a

similar structure in Chapter 5.

Fig. 4.14 shows the p-values in four magnitude bins across the sky for the 𝐶 ∈ [1.0, 3.0]
colour bin. As in the astrometry selection, the bright bins have very successfully modelled

the data however at the faint magnitudes, spatial resolution becomes important in the

Galactic plane. Once again we see a rippling effect on scales which the Needlets aren’t able

to fully resolve. The second panel of Fig. 4.10 gives the distribution of all p-values from

which we can see that the resolution issues are confined to dim magnitudes and overall the

model still fits the data extremely well.

The selection function probability for the RUWE sample across the CMD is shown in

Fig. 4.15. For the highly crowded bulge region (top panel) the selection probability peaks

at 𝐺 ∼ 18 in the blue and 𝐺 ∼ 11 in the red before declining towards fainter magnitude
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particularly for redder sources before cutting off sharply at 𝐺 ∼ 20.5. In a low-density

field (bottom), there is a stronger bimodality with selection function peaks at 𝐺 ∼ 7 and

𝐺 ∼ 20. This structure is likely connected to the different types of observations taken

onboard Gaia with 1D windows for 𝐺 > 13 sources and 2D windows 𝐺 < 13 with window

gating happening at still brighter magnitudes (Evans et al., 2018).

The overall trends with apparent magnitude for bluer sources are similar to the results

from the colour-independent model shown in the middle panel of Fig 4.11. The cause of

the drop-off in selection probability for faint red sources is unknown but may be related

to chromaticity of the astrometric solution. An alternative explanation is that redder

sources have lower 𝐺RP and as such are more likely to have a measured 𝐺RP in the source

catalogue. This could push the selection function down at these colours. In this region

of parameter space, one should make sure that the 𝐺RP selection function is used in

conjunction with RUWE < 1.4 as discussed in Section 4.5.

As in the magnitude-only model, the RUWE selection probability picks up for 𝐺 ≲ 3

due to lack of data in the source catalogue.

4.6.3 RVS

The RVS sample is binned in 0.2 mag bins in colour and 0.4 mag bins in 𝐺 − 𝐺RP. I use

a scale length of 0.6 in apparent magnitude and 1.2 in colour. I opt for higher colour

resolution than I did for RUWE because RVS selection will be closely related to 𝐺RP

which will generate strong 𝐶 = 𝐺 − 𝐺RP dependence in the selection function.

The radial velocity sample is dependent on CCD observations from the on-board spec-

trograph which occupies four out of seven CCD rows on the Gaia focal plane. Depending

on the 𝐺RVS apparent magnitude evaluated for the source, a variety of window classes will

be used as described in Section 7.1 of Cropper et al. (2018). Sources with 𝐺RVS < 7 (Class

0) received a full 2D windows whilst fainter sources only received 1D windows (Class 1

or 2). In crowded regions, Class 1 and 2 sources with overlapping windows would have

their windows truncated in the region of overlap often leading to non-rectangular windows.

These observations were not used in DR2 data processing as explained in Sartoretti et al.

2018 leading to 40% of spectra being removed and a much higher percentage in crowded

regions.

This process is manifested in the RVS selection function. The third panel in Fig. 4.11

shows that the RVS selection function for 𝐺 ≲ 8 (corresponding to approximately 𝐺RVS ≲ 7)

is source density independent whereas sources in crowded regions are much less likely to

be selected with 8 ≲ 𝐺 ≲ 12.5.

For 𝐺 ≳ 12.5, this behaviour changes significantly. At dimmer and redder magnitudes,

the RVS population traces the distribution of dust with high completeness in regions of the

sky with significant extinction. I do not know the precise cause of this however there are

some plausible explanations. The RVS catalogue filters out stars cooler than 𝑇eff = 3550K

which corresponds to 𝐺 − 𝐺RP ≳ 1.2 (see Fig.3 Andrae et al., 2018). However, in regions

with high dust extinction I will have hotter stars appearing with higher 𝐺 − 𝐺RP due to

reddening. Therefore, for redder colours, the RVS cut on 𝑇eff will be more strict where
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Completeness of the Gaia-verse

Fig. 4.15 The RUWE selection function (left) is highest at faint blue magnitudes (𝐺 ∼
18 − 20, 𝐺 − 𝐺RP ∼ 0) and drops significantly at both the brightest and faintest ends for
the crowded bulge field (top) and uncrowded Galactic pole field (bottom). There is also a
strong gradient to lower selection probability for redder sources. This may be related to
chromaticity of astrometric fits or relatively high completeness of 𝐺RP at these colours.
RVS has a narrow range of colours with significant selection probability which is likely the
result of the 𝑇eff selection used in the RVS pipeline (Sartoretti et al., 2018). At the faint
end, the probability rapidly reduces but correlated with colour such that redder sources
are observed to fainter magnitudes. This is due to the fact that RVS observes in the red
part of the Gaia waveband and so the true RVS limit is closer to a 𝐺RP cut. This produces
the nice diagonal cut in 𝐺 vs 𝐺 − 𝐺RP corresponding to 𝐺RP ∼ 12.5.
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4.6 Results

there is less extinction and produce a higher selection probability in dusty regions of the

sky.

As discussed earlier, the RVS sample is selected on proxies for the apparent magnitude

in the RVS waveband, 𝐺RVS. This is quite close to the 𝐺RP waveband. A sharp cut in

𝐺RP will lead to a correlated cut between 𝐺 and 𝐺 − 𝐺RP. This is exactly what we see

at the faint end of Fig. 4.15. For the bulge line of sight, the selection probability also

drops off at much brighter magnitudes due to the crowding limits of the spectrograph.

The narrow range of colour with non-zero selection probability is reflective of the RVS

cuts on source effective temperature. The effect of the 𝐺RVS cut is most distinctive in the

third row, second column of Fig. 4.16 where the complex structure of the IGSL is very

prominent.

The p-value test, shown across the sky in Fig. 4.17 for 𝐺 − 𝐺RP = 0.8, demonstrates

that the model is correctly representing the data across most magnitudes. The third panel

of Fig. 4.10 also shows this with only one magnitude bin showing any poorly fit pixels with

𝐺 ∼ 14. This may be the model struggling to reproduce sharp changes in the behaviour of

the IGSL.

As I saw for the RUWE model, the RVS selection function shoots up at 𝐺 ≲ 3 which

can be seen in both Fig. 4.11 and Fig. 4.15 due to a lack of objects in the source catalogue.

Users should be wary of this when applying the selection functions at these magnitudes.

4.6.4 RVS and Astrometry or RUWE

As well as individual subsets, various science cases will also require the intersection of

subsets. For example, if one wanted full 6D phase space information for all objects in their

sample, they’d want the subset of Gaia which has both published radial velocities and

proper motion and parallax.

The selection function for the intersection of two subsets is given by

P(Ssubset1,Ssubset2 | Ssource, y) = P(Ssubset1 | Ssubset2,Ssource, y) · P(Ssubset2 | Ssource, y).
(4.32)

The RUWE sample only contains sources with parallax and proper motion. Therefore

P(SAstrometry | SRUWE) = 1 and the selection function for Astrometry and RUWE is equal

to the RUWE selection function as expected.

If subset 1 and subset 2 are independent

P(Ssubset1 | Ssubset2,Ssource, y) = P(Ssubset1 | Ssource, y) (4.33)

and I can take the selection function for the intersection to be the product of the two

individual selection functions.

I do this for the RVS sample where parallax and proper motion are provided and where

RUWE < 1.4. There are 6 162 273 in Gaia EDR3 with both RVS and parallax and proper

motion where 5 303 693 of these also have RUWE < 1.4.
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Fig. 4.18 Distribution of p-values for samples with both RVS and Astrometry (top) and
RUWE < 1.4 (bottom) compared with the model assuming independent samples is close
to uniform suggesting that this is a reasonable assumption. In this case I’ve only included
bins where 𝑛 > 0.
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I take the product of the RVS position-colour-magnitude selection function defined in

the previous section with the colour-independent selection functions for Astrometry

P(SRVS,SAstrometry | SGaia , y) = P(SRVS | SGaia , y) · P(SAstrometry | SGaia , y) (4.34)

and RUWE

P(SRVS,SRUWE | SGaia , y) = P(SRVS | SGaia , y) · P(SRUWE | SGaia , y). (4.35)

I can then test this against the data. Fig. 4.18 shows the distribution of p-values for

this sample where I only include bins with 𝑛 > 0 as bins with 𝑛 = 0 give a uniformly

distributed p-value independent of the model (see Appendix A.3). There is on significant

sign of underfitting so I conclude that it is reasonable in this case to assume that RVS

and Astrometry or RUWE samples are independent and therefore use the product of

probabilities.

4.7 Other Samples

In this chapter I have produced selection functions for three scientifically important sub-

samples of the Gaia mission. However there are many catalogues in the Gaia-verse which

are used by the astronomy community for a wide range of exciting research. Here I list

some which were considered but which, due to additional complexity, I was not able to

evaluate with the current method.

4.7.1 Variables

Variable sources are incredibly important as standard candles allowing us to measure precise

distances to sources and systems across the Milky Way and in external galaxies (Muraveva

et al., 2018; Riess et al., 2019). This has enabled detailed maps of the distribution of stars

throughout the Milky Way disk and halo (Iorio & Belokurov, 2019; Skowron et al., 2019).

Holl et al. 2018 describes the Gaia DR2 variable sample following the processing

detailed in Eyer et al. 2017. As discussed in Holl et al. 2018, overall completeness was not

an aim of the DR2 variables sample. Considering only the lower limits placed on number

of successful FoV transits required for variable processing they estimate that the average

completeness is ∼ 80% for the FoV ≥ 12 pipeline and as low as ∼ 51% for FoV ≥ 20. This

varies heavily across the sky due to the scanning law and crowding effects. Therefore a

selection function for this sample would be hugely valuable for models of the Milky Way.

There are several reasons why the method I have applied here would not be directly

applicable to variable samples. Firstly we need to consider what question we’re asking. We

want to know e.g. “Given that a source with 𝑙, 𝑏, 𝐺 is an RRLyrae, what is the probability

that Gaia would publish this source classified as an RRLyrae?”. Written as a probability,

this is

P(SRRLyrae | 𝑙, 𝑏, 𝐺, 𝑋RRLyrae) (4.36)

119



Completeness of the Gaia-verse

where 𝑋RRLyrae is the event that the source is an RRLyrae-type star. Were I to naively

use the approach I’ve used in this chapter for other samples, I would actually evaluate the

probability that a source is selected and it is an RRLyrae

P(SRRLyrae, 𝑋RRLyrae | 𝑙, 𝑏, 𝐺). (4.37)

This is because I would be comparing the population of classified RRLyraes against the

full sample of Gaia sources the vast majority of which are not RRLyrae stars. To model

the selection function for variable samples, I would need to know which sources in Gaia

would have been classified as a variable had they actually been one.

The second issue is in choosing the observables over which to define the selection

function. The selection function for variable sources will be highly dependent on variability

amplitude and period. Gaia observes stars with certain dominant frequencies due to the

spin, precession and orbital dynamics of the satellite. This would make some variability

periods harder to detect than others. The apparent 𝐺-band magnitude is also highly

unreliable for variable sources (see Section 5.4 of Arenou et al., 2018). Improved apparent

magnitudes may be determined from the time series however this adds another layer of

complexity when comparing against the full Gaia dataset.

Finally, there are also many individual variable samples, such as RRLyrae, Cepheids

and Long Period Variables, which are each used for separate science aims. A full study

of the selection functions of variable sources in Gaia should aim to construct selection

functions for each population.

The variables selection function for the Gaia mission is a significant, complex project

worthy of dedicated further study.

4.7.2 Parallax SNR

1/𝜛 is often used as a distance estimate for sources with Gaia astrometry. However, for

sources with low parallax signal-to-noise (SNR) the distance uncertainty distribution can

be highly asymmetric and the measured parallax is negative for many sources in Gaia

EDR3 (see Bailer-Jones, 2015b; Luri et al., 2018, for full discussion).

A common selection to avoid this is taking only sources with 𝜛/𝜎𝜛 > 𝑋 where

commonly used values for 𝑋 are 5 or 10 depending on the scientific aims. This choice

significantly affects the selection function as a function of distance and as a result, the

inferred distance to sources can be heavily biased (see Schönrich & Aumer, 2017, for a

detailed discussion).

One solution to this was demonstrated by Schönrich et al. 2019 who infer a distance-

dependent selection function for the Gaia DR2 RVS sample. The limitations of the method

used here is that they must assume an a-priori model for the distribution of sources in the

Milky Way. As a result, their selection function is not model independent. Their selection

function is also sky-averaged for the entire sample and doesn’t look to quantify any of the

complex variation of the selection function on small spatial scales.
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I could use the method from Boubert & Everall 2021 directly on the 𝜛/𝜎𝜛 > 5 sample

as a subset of the Gaia catalogue and evaluate the selection function as a function of

𝐺,𝐺 −𝐺RP, 𝑙, 𝑏. Indeed, 𝜎𝜛 is a strong function of position on the sky due to the scanning

law and a function of 𝐺 due to CCD photon noise as I will show in Chapter 5.

However the selection is also directly dependent on 𝜛 so any selection function for a

parallax SNR selected sample would need to feature measured 𝜛 or observables which are

directly dependent on it. For this reason, I do not attempt to model the parallax SNR

selection function here.

4.8 Accessing the Selection Functions

The selection functions are accessibly through the GitHub repository selectionfunctions

(https://github.com/gaiaverse/selectionfunctions). Here I provide a brief example of how

to load the EDR3 source catalogue and RVS subsample selection functions to estimate the

probability that S5-HVS1 (Koposov et al., 2020) could have been observed in Gaia EDR3

with radial velocity measure from DR2. The inferred probability is ∼ 3 × 10−9 and indeed

S5-HVS1 does not have published radial velocity.

import selectionfunctions.cog_v as CoGV

import selectionfunctions.cog_ii as CoGII

from selectionfunctions.source import Source

# Load DR3 selection function

dr3_sf = CoGII.dr3_sf(version='modelAB',crowding=False)

# Load RVS selection function

rvs_sf = CoGV.subset_sf(map_fname='rvs_cogv.h5')

# Introduce source

s5_hvs1 = Source('22h54m51.68s',
'-51d11m44.19s',
photometry={'gaia_g':16.02,

'gaia_bp_gaia_rp':-0.008},
frame='icrs')

# Selection probability

print(dr3_sf(s5_hvs1) * rvs_sf(s5_hvs1))

4.9 Summary of an incomplete Gaia-verse

I have introduced the selection function for the Gaia source catalogue and provided a

first-order estimate of the Gaia EDR3 selection function to be used with the subset selection

functions.
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I have evaluated the selection functions for three subsamples of the Gaia EDR3 data

release: sources with published parallax and proper motion, the subset with RUWE < 1.4

and sources with DR2 radial velocities published in the EDR3 source catalogue.

The astrometry and RUWE selection functions are evaluated as a function of apparent

magnitude and position on the sky showing a strong dependence on crowding and features

of the Gaia scanning law. I also evaluated the RUWE and RVS selection probabilities as a

function of 𝐺 −𝐺RP colour relative to the Gaia sample with published 𝐺RP. For RVS, the

effects of temperature cuts on the sample and selection on 𝐺RVS using IGSL magnitudes

heavily impact the selection function.

In all samples the model is able to reproduce the data down to scales ∼ 2 degrees. The

only areas in which the model breaks down are where the selection probability varies on

smaller scales and my spatial model doesn’t have the flexibility to reproduce the data.

This is an issue in the Milky Way bulge and around globular clusters.

In Chapter 6 I demonstrate the immense value of these selection functions for estimating

the vertical structure of the Milky Way. Before that, there is one remaining piece of

the puzzle to fit. I need to understand the principles and systematics of the astrometric

solutions provided by Gaia.
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The Astrometric Spread Function

“The Gaia astrometric processing must relate individual visits to positions, proper motions

and parallaxes by linear regression, otherwise we’re hosed.”

David Hogg 2021

This was David Hogg’s response when I mentioned that the astrometric solution used

in the Gaia’s pipeline, was, in fact, not pure linear regression but rather iterative linear

regression. In spite of this, we can make some interesting statistical predictions of the

astrometric uncertainties under the assumption of pure linear regression, which is the

subject of this chapter.

5.1 What is an Astrometry Spread Function?

Gaia has initiated an era of large scale Milky Way dynamical modelling by providing 5D

astrometry (position, proper motion and parallax) for more than 1.3 billion stars (Gaia

Collaboration et al., 2016, 2018a; Lindegren et al., 2018). The Gaia satellite measures

source positions at multiple epochs over the mission lifetime. These epoch astrometry

measurements are the inputs of the Astrometric Global Iterative Solution (AGIS Lindegren

et al., 2012) which iteratively solves for the spacecraft attitude, geometric calibration of

the instrument, global parameters, and 5D astrometry of each source: the right ascension

and declination (𝛼0, 𝛿0), the proper motions (`𝛼, `𝛿) and the parallax (𝜛). Alongside the

source astrometry, Gaia also publishes the 5D astrometric measurement covariance and

various statistics of the astrometric solution for all sources which meet the quality cuts.

The 5-parameter astrometric model of AGIS assumes sources are point-like with apparent

non-accelerating uniform motion relative to the solar system barycentre which I refer to as

‘simple point sources’.

Both resolved and unresolved binary stars accelerate due to their orbits around the

common centre of mass which shifts the centroid off a uniform motion trajectory. Using

this shift, it is expected that Gaia can characterise the orbits of stars with brown dwarf

companions out to 10 pc and black hole companions out to more than 1 kpc when

considering tight constraints of the uncertainty on the mass function 𝑀3
2𝑀

−2
tot (Andrews

et al., 2019). When one is interested in (the less constraining) orbital parameter recovery

with ∼ 10% precision, Gaia might detect a staggering 20 k brown dwarfs around FGK-stars

out to many tens up to a few hundreds of pc for the longer period objects (100-3000 d),
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which could reach even 50 k out to several hundred pc when one is only interested in the

detection of BD candidates e.g. for follow-up studies (Holl et al., 2021), with black hole

companions being detectable out to several kpc.

Similarly exoplanet orbits pull their host stars away from uniform motion although

with a much smaller amplitude due to the lower companion mass. From simulations it is

expected that Gaia is capable of detecting 21,000 long-period, 1-15 Jupiter mass planets

during the 5 year mission (Perryman et al., 2014), more than 4 times the number of

currently known exoplanets. Ranalli et al. 2018 have further demonstrated that the 5 year

Gaia mission will be able to find Jupiter-mass planets on 3 au orbits around 1𝑀⊙ stars out

to 39 pc and Neptune-mass planets out to 1.9 pc. Not only will the presence of planets

be detectable but it is expected that ∼ 500 planets around M-dwarfs will receive mass

constraints purely from Gaia astrometry (Casertano et al., 2008; Sozzetti et al., 2014).

Microlensing occurs when the light from a background source is gravitationally lensed by

a foreground lensing star causing a shift in the apparent position of the source, detectable

by high precision astrometric surveys (Miralda-Escude, 1996). The deflection can be used

as a direct measurement of the lens mass as demonstrated by Kains et al. 2017 using

HST observations. A signficant amount of work has gone towards predicting microlensing

events using Gaia proper motions (Bramich, 2018; Klüter et al., 2018; McGill et al., 2019)

with 528 events expected in the extended Gaia mission ∼ 39% of which pass astrometry

quality cuts (McGill et al., 2020). For a small number of these events Gaia will be able to

determine the lens mass to < 30% uncertainty (Klüter et al., 2020).

Extended sources such as galaxies will have a reduced astrometric precision from each

Gaia observation due to the increased spread of flux. Gaia scans a source in many different

directions over the mission lifetime from which the source shape can be reconstructed

(Harrison, 2011). With the Gaia epoch astrometry for the 5 year mission, Gaia will be

able to distinguish between elliptical and spiral/irregular galaxies with ∼ 83% accuracy

(Krone-Martins et al., 2013). These classifications would be incredibly valuable for galaxy

morphology studies.

The Gaia epoch astrometry will be first released in DR4, several years from now.

However, a (very) condensed form of this large amount of information is stored in the

summary statistics of the astrometric solution currently published in Gaia DR2 and

updated in EDR3. Binary stars, exoplanet hosts, microlensing events and extended sources

will induce an excess noise in the astrometric solution as they are not well described by

simple point sources. This excess noise has been modelled for binaries (Penoyre et al.,

2020; Wielen, 1997) and already Belokurov et al. 2020b has found many binaries in Gaia

DR2 using the renormalised unit weight error statistic, RUWE, that is the re-normalised

square root of the reduced 𝜒2 statistic of the astrometric solution.

RUWE is a 1D summary statistic of the residuals of the 5-parameter astrometric

solution of a source relative to the Gaia inertial rest frame. But we can glean even more

information on the excess noise from the 5D uncertainty of the astrometric solution. The

uncertainty in the 5D astrometric solution for a source in Gaia can be expressed as the

convolution of Gaia’s astrometric measurement uncertainty expected for a simple point
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source and excess noise. I term Gaia’s expected astrometric measurement uncertainty the

Astrometry Spread Function (ASF) defined as the probability of measuring a simple point

source to have astrometry r′ ∈ R5 given the true source astrometry r ∈ R5 and apparent

magnitude 𝐺

ASF(r′) = P(r′ | r, 𝐺). (5.1)

The excess noise will be driven by un-modelled source characteristics such as binary motion,

exoplanet host motion, microlensing or extended source flux as well as any calibration noise

which is not accounted for in the ASF. In this work, I assume that all significant calibration

effects are included in the ASF such that the excess noise is dominated by un-modelled

source characteristics. However this assumption breaks down in some regimes, particularly

for bright sources in crowded regions where CCD saturation becomes a significant issue.

Possible un-accounted calibration effects should be considered when using Gaia astrometry

to search for excess noise due to genuine un-modelled source characteristics.

Since the astrometric solution is evaluated using least squares regression, the ASF is

Gaussian distributed

ASF(r′) = N(r′ ; r,Σ(𝑙, 𝑏, 𝐺)) (5.2)

where Σ(𝑙, 𝑏, 𝐺) ∈ R5×5 is the expected covariance for a simple point source with position

𝑙, 𝑏 and apparent magnitude 𝐺 as measured by Gaia. The astrometric calibration is also

a function of source colour which was either estimated from 𝐺BP − 𝐺RP or added as a

sixth parameter of the astrometric solution, astrometric pseudo colour. As colours

are only published for a subset of the Gaia catalogue and the astrometric correlation

coefficients for pseudo-colour are not published in DR2, I neglect colour dependence of the

astrometric solution in this work. For EDR3, all pseudo-colour correlation coefficients are

published and it is worth considering how this impacts the ASF.

Given the ASF and published astrometric 5-parameter model uncertainties I can

reconstruct the 5D excess noise and use it to characterise binary systems, exoplanet orbits,

microlensing events and extended sources in Gaia without requiring the epoch astrometry.

The focus of this chapter is to construct the ASF for Gaia DR2.

This builds on analysis of the scanning law from Boubert et al. 2020 and Boubert et al.

2021b and is used, in conjunction with the results of Boubert & Everall 2020 to determine

the selection function for the subsample of Gaia DR2 with published 5D astrometry.

In Section 5.2 I provide a whistle-stop tour of the Gaia spacecraft, scanning law and

how this translates to constraints on the position, proper motion and parallax of sources.

This chapter is focused on Gaia DR2 for which I estimate the ASF, although I note that

the method is be directly applicable to Gaia EDR3. The method for constructing the ASF

of Gaia is derived in Section 5.3 and the results compared with the astrometry sample are

shown in Section 5.4. I also use the ASF for an alternative derivation of the Unit Weight

Error demonstrating the applicability of the method in Section 5.5.

As a secondary motivation, the Gaia DR2 5D astrometry sample is selected from

the full catalogue with a cut on the parameter astrometric sigma5d max which is a

function of the astrometric covariance matrix. In predicting the astrometric covariance for
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simple point sources, I can also estimate the contribution from this cut to the astrometric

selection function which I present in Section 5.6. Finally I discuss applications of the ASF

in Section 5.7.

5.2 Astrometry with Gaia

5.2.1 The Scanning Law

The Gaia spacecraft is in orbit around the Lagrange point 2 (L2), orbiting the Sun in

phase with the Earth. The spacecraft spins with a 6 hour period around a central axis

which precesses with an aspect angle of 45 degrees around the pointing connecting the

satellite and the Sun, with a 63 day period. This is similar to a spinning top which has

been left long enough to wobble. The orbit of the spacecraft around the sun adds a third

axis of rotation.

Perpendicular to the spin axis, two fields of view (FoV) observe in directions separated

by 106.5 deg. The direction in which each FoV is pointing at any point in time throughout

Gaia’s observing period is the scanning law.

The Gaia DR2 observing period runs from July 25 2014 (10:30 UTC) until May 23 2016

(11:35 UTC). The scanning law for DR2 is published by DPAC and refined by Boubert

et al. 2020 and Boubert et al. 2021b. Whilst this tells us where Gaia was pointing, it

doesn’t tell us whether Gaia was obtaining useful scientific measurements that contributed

to the published data products. Many time periods in the DR2 window did not result in

measurements which contributed to the Gaia astrometry as discussed in Boubert et al.

2021b.

In this chapter I only include the scanning law in the OBMT1 interval 1192.13–3750.56

rev (Lindegren et al., 2018, hereafter L18) which removes the Ecliptic Polar Scanning Law,

an initial calibration phase of Gaia which contributed to the published photometry but not

astrometry. DPAC have published a series of additional gaps in astrometry data taking2.

I remove any time spans of the scanning law for which the gap is flagged as ‘persistent’.

Using the published Epoch Photometry for 550 737 variable sources (Evans et al., 2018;

Holl et al., 2018; Riello et al., 2018), Boubert et al. 2020, 2021b constrained additional gaps

which are persistent across all data products of Gaia DR2 which I also remove from the

scanning law. Finally, Boubert et al. 2021b determines the probability of an observation

being recorded and used in Gaia DR2 in 19 magnitude bins (the deletions discussed in

Chapter 4). These observation probabilities are be used to weight observations in the ASF

in Section 5.3.3.

1Onboard Mission Time (OBMT) is the timing system used in Gaia and is normalised such that OBMT
is 0 in October 2013 and increments by 1 for every revolution of the Gaia satellite which corresponds to 6
hours

2https://www.cosmos.esa.int/web/gaia/dr2-data-gaps
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5.2 Astrometry with Gaia

5.2.2 Taking Observations

Both FoVs project source images onto a single panel of CCDs called the focal plane. On

the focal plane there are 9 columns and 7 rows of CCDs, referred to as the astrometric field

(AF), which measure the position of a source although the middle row only has 8 CCDs

(because one of the 9 CCD positions is taken by a wave front sensor). As the spacecraft

spins, stars track across the CCD panel in the along-scan direction and are observed with

up to 9 astrometric CCDs during a single FoV transit (see e.g. Fig. 1 of Lindegren et al.,

2016). Individual CCD measurements are referred to as observations whilst a full track

across the CCD panel is a scan (also referred to as a FoV transit). Before the AF, sources

pass over the ‘Sky Mapper’ (SM) CCD which triggers the initial detection and needs to be

confirmed by the first AF CCD in order for any observations within the scan to successfully

provide a measurement. Each observation records the position and apparent brightness of

the source. If the source is recorded with 𝐺 < 13 by the SM, a 2D observation window is

assigned measuring position in the along-scan (AL) direction and orthogonal across-scan

(AC) direction. For fainter stars with 𝐺 > 13, only the AL position is recorded.

Observations are saved on-board Gaia in ‘Star Packets’ grouped by apparent magnitude

in 19 bins (Table 1.10, Section 1.3.3 in de Bruijne et al., 2018). The majority of data

is uploaded to Earth, however some can be lost or deleted (see Section 3.3 of Gaia

Collaboration et al., 2016) changing the scanning law sampling for stars in different Star

Packet magnitude bins.

After a first process of CCD signal level, background, and PSF/LSF calibration, the

data is input to the AGIS pipeline (Lindegren et al., 2012) which uses an iterative linear

regression algorithm to simultaneously fit the attitude of the spacecraft, a large number of

calibration parameters, and the position, proper motion and parallax of all sources in Gaia

DR2. I here provide a general description of how position, proper motion and parallax can

be understood to depend on the nature of the observations a source receives, though in

Gaia they are simultaneously solved from the offsets of all source observations with respect

to its (iteratively improved) internal reference system.

The precision with which position, proper motion and parallax of a source can be mea-

sured is heavily dependent on magnitude (beyond 𝐺 > 13 the uncertainties monotonically

increase with magnitude), the number of observations taken, the scan directions of these

observations and their distribution in time. More observations produce a greater precision

therefore sources in regions of the sky with the most scans as shown in Fig. 5.1a have the

best constrained astrometry. Notably, the Galactic centre in the middle of the plot has

received only ∼ 10 scans whilst the best observed regions of the sky are scanned over 100

times.

For the vast majority of sources, Gaia only measures position in the AL direction and

even for 2D observations, the AL position constraint is much tighter than the AC mea-

surement (Lindegren et al., 2012). Therefore North-South scans in equatorial coordinates

constrain declination, 𝛿 whilst East-West scans constrain right ascension, 𝛼. Fig. 5.1b gives

the mean direction of Gaia DR2 scans modulo 𝜋 such that a North-South and South-North
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(b) Gaia produces stronger measurements in
the AL direction therefore the astrometry
is better constrained in the mean scan di-
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(c) The significance in the difference in direc-
tional constraints is reflected by the clustering
of scan directions. Heavily clustered scan di-
rections (light yellow) produce a much stronger
constraint in the mean scan direction than the
perpendicular direction.
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(d) The spread of scan times, shown here by the
standard deviation of times at which a position
on the sky was observed, determines how well
the proper motion can be estimated. A small
spread in observation times (dark blue) provide
weaker proper motion constraints.
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(e) Measuring parallax requires position mea-
surements throughout the year. Scans clus-
tered at one time of year (light yellow) produce
a weaker parallax measurement than a spread
of scans through the year (dark purple).

Fig. 5.1 The precision with which Gaia measures 5D astrometry is heavily dependent on
the number of FoV transits, scan times and directions, obtained from the scanning law.
The plots provide some central summary statistics of the scanning law as a function of
position on the sky in Galactic coordinates on HEALPix level 7.
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scan appear the same with ⟨𝜙⟩ = 0. The mean direction is estimated from the argument of

the mean vector

⟨𝜙⟩ = 1

2
arg [⟨exp(2𝑖𝜙)⟩] . (5.3)

This statistic is published for sources in Gaia EDR3 as scan direction mean k2.

Darker areas have stronger 𝛿 constraints whilst lighter areas constrain 𝛼 more tightly.

The difference in accuracy in right ascension and declination depends on the clustering of

scan directions. The absolute value of the mean scan vector, |⟨exp(2𝑖𝜙)⟩| which is ∼ 1 for

heavily clustered scans and ∼ 0 for a spread of scan directions. This is shown in Fig. 5.1c

where light areas strongly constrain position in the mean scan direction but only provide a

weak constraint in the perpendicular direction whilst dark regions have a spread of scan

directions and therefore won’t show a strong direction preference. This statistic is also

published in Gaia EDR3 as scan direction strength k2.

Constraints on the source proper motion come from measuring the position of a source at

multiple different epochs and estimating the rate of change. A larger spread of observation

times produce a tighter proper motion constraint. Fig. 5.1d shows the standard deviation

of observation times with light regions producing tighter proper motion constraints whilst

dark regions produce a weaker constraint.

Finally, source parallax is estimated from the apparent motion of a source relative to

the background of distant sources due to Gaia’s motion around the sun on a one year

period. A larger spread of observations throughout the year produce a tighter constraint

on the source parallax. The position of an observation in the yearly solar orbit is described

by the complex vector exp(2𝜋𝑖𝑡). As with the scan direction, the clustering of observations

in the year is estimated from the absolute value of the mean vector |⟨exp(2𝜋𝑖𝑡)⟩|. If

observations are heavily clustered at one time of year the absolute mean is close to 1,

shown by lighter areas of Fig. 5.1e, and only a weak constraint on parallax are achieved.

Values close to 0 have well spread observations throughout the year and therefore provide

a stronger constraint on parallax.

5.2.3 Data

The previous sections have provided a qualitative prediction of Gaia’s expected performance

as a function of position on the sky. In the following sections I produce a quantitative

estimate of the predicted precision with which Gaia can measure source astrometry as a

function of position on the sky and apparent magnitude.

Gaia DR2 (Gaia Collaboration et al., 2016, 2018a) provides 5D astrometry for

1 331 909 727 of the 1 692 919 135 source in the full DR2 catalogue. To test my predictions,

I use the full Gaia DR2 source catalogue and 5D astrometry sample.

5.3 Method

As input AGIS takes the 1D measurement of the position of each source in the AL and,

for bright sources, also AC direction. For bright sources, Gaia produces a 2D observation
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however AGIS assumes the constraints in the AL and AC directions are uncorrelated

treating them as independent 1D observations. I make the same assumption in this work.

This is a gross simplification of all the steps which AGIS takes – for instance, calibrating

the satellite attitude noise – however it allows for a very appealing and tractable derivation

of the ASF from the available data.

I proceed with four key assumptions:

• The 1D position measurement uncertainty is Gaussian.

• Individual measurements, including AL and AC measurements from the same observation,

are independent and uncorrelated. As the AGIS pipeline uses the same assumption, this

produces no discrepancy between my predictions and the published Gaia astrometry.

• The position measurement uncertainty is a function of source apparent magnitude at the

time of observation only. Any dependence of the observation precision of the satellite

as a function of time for a given apparent magnitude is neglected which I justify in

Section 5.3.1. This also assumes that the measurement uncertainty is colour independent.

• Astrometric parameters of different sources are assumed to be independent. In reality

measurements of different sources can be considered independent, however due to the joint

estimation of the attitude and geometric calibration from the same set of observations,

the posterior astrometric parameters are correlated. Pre-launch estimates by Holl et al.

2010 predicted correlations of only a fraction of a percent for sources separated by less

than one degree (in a fully calibrated AGIS solution dominated by photon noise). DR1

(see Section D.3 of Lindegren et al., 2016) seems to be well above that with correlation

as high as perhaps 0.25 at separations up to 1 degree, though much smaller on longer

scales. Studies on the quasar sample in DR2 (see Section 5.4 of Lindegren et al., 2018)

show still very large covariances as small spatial scales (< 0.125 deg) and milder effects

over larger spatial scales. With each successive data release it is expected that these

spatial correlations will shrink, though they will never be zero, especially at small scales.

Throughout this chapter I also only consider sources with constant magnitude to keep

the results simple and tractable however the formalism is easily generalisable to variable

sources. Over this section I derive the ASF of Gaia DR2. As many different variables are

introduced, I refer the reader to Table 5.1 to clarify my notation.

5.3.1 Time Dependence

To estimate the Gaia astrometric precision, I have assumed that all observations at the

same apparent magnitude have the same precision. This assumption breaks down if the

precision of Gaia is time dependent.

Without any epoch astrometry, it is challenging to assess the scale of the impact of this

time dependence on the posterior precision. We are however provided epoch photometry

for 550 737 sources. The astrometric uncertainty should scale with 𝜎AL ∼ 𝜎 𝑓 / 𝑓 where

𝑓 is the observed flux of the source as both are dominated by photon count noise. The

centroid is actually mainly sensitive to the slope of the wings of the LSF/PSF while the
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x R𝑁 True AL position of source at observation time.

x′ R𝑁 Measured AL position of source at observation time.

r R5 Source astrometry.

M R𝑁×5 Design matrix of astrometric solution.

K R𝑁×𝑁 Expected measurement covariance.

C R5×5 Published astrometry covariance.

Σ R5×5 Expected astrometry covariance (Σ = 𝜌Φ).

𝜌 R Magnitude dependence of ASF.

Φ R5×5 Spatial dependence of ASF from scanning law.

Table 5.1 Notation followed in linear regression.

Fig. 5.2 The relative flux error as a function of magnitude for all observations in the
Gaia epoch photometry (Evans et al., 2018; Holl et al., 2018; Riello et al., 2018) (black
histograms, log normalised) shows complex structure due to changes in window class
configurations (Riello et al., 2018). The running median (blue solid line) shows similar
structure to 𝜎AL in Fig. 5.4 with both dominated by photon count noise.
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Fig. 5.3 The relative flux error, recentred and renormalised by the median as a function of
magnitude from Fig. 5.2, varies as a function of time throughout Gaia DR2 due to mirror
contamination, micro-meteoroid impacts and variations in background flux. Data taken
during the Ecliptic Polar Scanning Law (green) and decontamination events (pink) are not
used in the Gaia DR2 astrometry. The running median (blue solid) of the observations
does not vary significantly from zero relative to the variance in individual measurements.
This justifies the assumption that the astrometric measurement uncertainty is not a strong
function of time.
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flux measurement to the core (as there is the most signal), but to first degree this relation

should hold to understand how the centroid uncertainty depends on magnitude and time.

I take all 17 712 391 observations in the epoch photometry and find the median 𝜎 𝑓 / 𝑓
in 0.2 mag bins shown in Fig. 5.2. I subtract the median off all data leaving the residuals.

The distribution of residual errors against observation time is given in Fig. 5.3 for each

Gaia field-of-view (FoV). As Gaia operates, material from the satellite condenses and

accumulates on the mirrors scattering light and reducing the precision of observations.

To mitigate this, the spacecraft was heated up to evaporate the condensation and clean

the mirrors (see Section 4.2.1 Gaia Collaboration et al., 2016). These decontamination

events (pink shaded regions) have taken place twice in Gaia DR2 (L18). The impact of

the first decontamination event on the flux error is significant however at later times, the

measurement precision does not degrade appreciably. In fact, any longer term trends are

insignificant compared to the short term fluctuations on 10 rev timescales.

The epoch flux supports the conjecture that the measurement precision of Gaia does

not significantly change with time.

5.3.2 Astrometry from Linear Regression

Gaia’s goal for each source in the astrometry catalogue is to measure the five parameter

astrometric solution, r ∈ R5, consisting of the positions, proper motions and parallax.

The AGIS pipeline estimates the astrometry of sources through linear regression on all

observations of a single source in a step called source update (see Section 5.1 of Lindegren

et al., 2012). I use the same technique to determine the expected precision for a simple

point source as a function of apparent magnitude and position on the sky.

Take 𝑁 observations of a source at times 𝑡𝑖 with the scan direction 𝜙𝑖 where 𝑖 ∈
{1, . . . , 𝑁}. The on-sky positions of the source at times 𝑡𝑖 in ICRS coordinates are (𝛼𝑖, 𝛿𝑖).
The source position relative to the solar system barycentre at the reference epoch (J2015.5

for Gaia DR2 L18) is 𝛼0, 𝛿0. The position at time 𝑡𝑖 is a linear combination of the position

at a reference epoch with the proper motion and parallax motion. The offset due to

parallax motion is given by

Δ𝛼𝑖 cos 𝛿𝑖 = −𝜛 (−𝑋𝑖 sin𝛼0 + 𝑌𝑖 cos𝛼0) = 𝜛Π𝛼𝑖 (5.4)

Δ𝛿𝑖 = −𝜛 (−𝑋𝑖 cos𝛼0 sin 𝛿0 − 𝑌𝑖 sin𝛼0 sin 𝛿0 + 𝑍𝑖 cos 𝛿0) = 𝜛Π𝛿𝑖 (5.5)

where 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 are the barycentric coordinates of Gaia at time 𝑡𝑖 and 𝜛 is the parallax of

the source. I have assumed the parallax and proper motion are small enough such that

the parallax ellipse is only dependent on the source reference epoch position which keeps

the system of equations linear.

Therefore the position of the source at time 𝑡𝑖 is given by

𝛼∗𝑖 = 𝛼
∗
0 + `𝛼∗𝑡𝑖 +𝜛Π𝛼𝑖 (5.6)

𝛿𝑖 = 𝛿0 + `𝛿𝑡𝑖 +𝜛Π𝛿𝑖 (5.7)
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where `𝛼, `𝛿 is the source proper motion, 𝑡𝑖 is the time relative to the reference epoch and

I use the notation 𝛼∗ = 𝛼 cos(𝛿) and `𝛼∗ = `𝛼 cos(𝛿).
Writing this set of linear equations out in matrix notation:

𝛼∗1

𝛿1

...

𝛼∗
𝑁

𝛿𝑁


=



1 0 Π𝛼1 𝑡1 0

0 1 Π𝛿1 0 𝑡1

...

1 0 Π𝛼𝑁
𝑡𝑁 0

0 1 Π𝛿𝑁 0 𝑡𝑁





𝛼∗0

𝛿0

𝜛

`𝛼∗

`𝛿


. (5.8)

Our measurables are 1D positions in either the AL or AC direction of the Gaia focal

plane. This is given by 𝑥𝑖 = 𝛼
∗
𝑖
sin 𝜙𝑖 + 𝛿𝑖 cos 𝜙𝑖 where the scan position angle, 𝜙𝑖 is the

scan direction of Gaia at the observation time for AL observations (shifted by 𝜋/2 for AC

observations) and is defined such that 𝜙 = 0◦ in the direction of local Equatorial North,

and 𝜙 = 90◦ towards local East3.

Substituting 𝑥𝑖 into Eq. 5.8:



𝑥1

𝑥2

...

𝑥𝑁


=



𝑠1 𝑐1 Π𝛼1𝑠1 + Π𝛿1𝑐1 𝑡1𝑠1 𝑡1𝑐1

𝑠2 𝑐2 Π𝛼2𝑠2 + Π𝛿2𝑐2 𝑡2𝑠2 𝑡2𝑐2

...

𝑠𝑁 𝑐𝑁 Π𝛼𝑁
𝑠𝑁 + Π𝛿𝑁 𝑐𝑁 𝑡𝑁 𝑠𝑁 𝑡𝑁𝑐𝑁





𝛼∗0

𝛿0

𝜛

`𝛼∗

`𝛿


= Mr (5.9)

where 𝑐𝑖 = cos 𝜙𝑖 and 𝑠𝑖 = sin 𝜙𝑖, M ∈ R𝑁×5 is the design matrix for the linear equations

and r ∈ R5 is the vector of astrometric parameters.

Assuming Gaussian measurement uncertainty for both AL and AC measurements and

assuming all observations are independent, the observed source positions are distributed

x′ ∼ N (x,K) where the covariance matrix K = diag
[
𝜎2
1 , . . . , 𝜎

2
𝑁

]
. This measurement

covariance implicitly assumes all observations are independent and uncorrelated, one of

my key assumptions also adopted in AGIS.

Following standard linear least squares regression (Hogg et al., 2010), the astrometric

uncertainty covariance matrix of the inferred r is given by

Σ−1 = MTK−1M. (5.10)

3https://www.cosmos.esa.int/web/gaia/scanning-law-pointings
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Expanding this out in terms of all scan angles, the full inverse covariance matrix is given

by

Σ−1 =
𝑁∑
𝑖=1

1

𝜎2
𝑖

A𝑖 (5.11)

with

A𝑖 =



𝑠2
𝑖

𝑠𝑖𝑐𝑖 𝑠𝑖Π𝑖 𝑠2
𝑖
𝑡𝑖 𝑠𝑖𝑐𝑖𝑡𝑖

𝑠𝑖𝑐𝑖 𝑐2
𝑖

𝑐𝑖Π𝑖 𝑐𝑖𝑠𝑖𝑡𝑖 𝑐2
𝑖
𝑡𝑖

𝑠𝑖Π𝑖 𝑐𝑖Π𝑖 Π2
𝑖

𝑠𝑖𝑡𝑖Π𝑖 𝑐𝑖𝑡𝑖Π𝑖

𝑠2
𝑖
𝑡𝑖 𝑠𝑖𝑐𝑖𝑡𝑖 𝑠𝑖𝑡𝑖Π𝑖 𝑠2

𝑖
𝑡2
𝑖

𝑠𝑖𝑐𝑖𝑡
2
𝑖

𝑠𝑖𝑐𝑖𝑡𝑖 𝑐2
𝑖
𝑡𝑖 𝑐𝑖𝑡𝑖Π𝑖 𝑠𝑖𝑐𝑖𝑡

2
𝑖

𝑐2
𝑖
𝑡2
𝑖


(5.12)

where Π𝑖 = Π𝛼𝑖 𝑠𝑖 + Π𝛿𝑖𝑐𝑖.

Eq. 5.11 assumes that every scan of a source produces a detection which contributes to

the astrometric solution. Even after removing gaps in the scanning law, there are periods

of time and magnitudes which are less likely to result in good astrometric observations. I

need to account for the efficiency of Gaia observations.

5.3.3 Scan Weights

As Gaia scans a source, up to 9 observations are taken with the 9 astrometric-field

CCD columns. There are two ways in which observations may not be propagated to the

astrometric solution. If a source is not detected and confirmed by the SM and first AF

CCDs and allocated a window, none of the CCDs in the scan produce a successful detection.

Secondly, an individual CCD observation may either not be taken or the measurement

may be down-weighted in the astrometric solution. There are many reasons why this

might happen such as stray background light, attitude calibration or the source simply

passing through the small gaps between CCD rows. Accounting for these processes, the

astrometric precision matrix may be approximated as

Σ−1 =
𝑁∑
𝑖=1

𝑦𝑖

𝜎2
𝑖

A𝑖 (5.13)

where 𝑦𝑖 ∼ Bernoulli(b𝑖) × Binomial(9, \𝑖) where b𝑖 is the fraction of scans used in the

astrometric solution and \𝑖 is the probability of a CCD producing a successful observation.

The binomial distribution assumes that a CCD observation is either successful or not

therefore only allowing a full weight or zero weight. The weight formula in the AGIS

pipeline (Eq. 66, Lindegren et al., 2012) does allow for non-discrete weights however
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I anticipate that this have a small effect on my results. Assuming that the event of a

successful scan or observation are independent events, the expected value of the weights is

given by

𝑤𝑖 = E [𝑦𝑖] = E [Bernoulli(b𝑖)] × E [Binomial(9, \𝑖)]
= b𝑖 × 9\𝑖 . (5.14)

Therefore the expected astrometric precision is given by

E
[
Σ−1] = 𝑁∑

𝑖=1

𝑤𝑖

𝜎2
𝑖

A𝑖 . (5.15)

For sources with 𝐺 > 13, Gaia only measures a 1D position in the AL direction however

for bright sources, 𝐺 < 13 and AC measurement is also taken. Following the method in

Lindegren et al. 2012, I treat the AL and AC observations as independent 1D measurements

such that Eq. 5.15 expands out to

E
[
Σ−1] = 𝑁AL∑

𝑖=1

𝑤AL
𝑖

𝜎2
AL,𝑖

A𝑖 +
𝑁AC∑
𝑖=1

𝑤AC
𝑖

𝜎2
AC,𝑖

A𝑖 . (5.16)

In Boubert et al. 2021b the fraction of scans, 𝑓 (𝑡𝑖) which contribute to the Gaia

photometry is estimated in Star Packet magnitude bins as a function of time in DR2. Due

to their separate pipelines, the probability of an observation contributing to the astrometric

solution differs from the photometry. To determine the astrometry weights, I renormalise

the photometry scan fraction using the published number of astrometric detections used,

astrometric n good obs al

𝑤AL
𝑖 = 9 × 62

63
𝑓 (𝑡𝑖)

〈
astrometric n good obs al

9 × 62
63

∑𝑁scan

𝑖=1 𝑓 (𝑡𝑖)

〉
𝐺

= 𝜐 𝑓 (𝑡𝑖) 𝑓good(𝐺). (5.17)

where 𝑤AL
𝑖

is the weight for AL source observations since I have renormalised by the

number of good AL observations used in the astrometry. The multiplication of the scan

fraction by 𝜐 = 9 × 62
63 converts the scan fraction to average number of observations. There

are 9 columns and 7 rows of CCDs in the astrometric field of Gaia however one CCD is

replaced by a wave front sensor hence only 62 are left. 𝑓good(𝐺), shown in the middle

panel of Fig. 5.4, is above 90% across most magnitudes and only significantly deviates

from 100% at the bright end.

For a given source, the number of AL and AC observations is published in Gaia DR2 as

astrometric n obs al and astrometric n obs ac. These statistics do not account

for down-weighting of observations in the astrometry pipeline, however, assuming the AL

and AC measurements of the same observations are equally likely to be down-weighted,

the ratio between the numbers is unaffected. 𝑅 = astrometric n obs ac
astrometric n obs al gives the fraction
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of observations which produce an AC measurement. The bottom panel of Fig. 5.4 shows

that observations with 𝐺 < 13 produce AC measurements whilst 𝐺 > 13 do not. I use this

fraction to relate the observation weights 𝑤AC
𝑖

= 𝑅(𝐺)𝑤AL
𝑖

. In truth, the scan fraction,

𝑅, may be a weak function of position on the sky at bright magnitudes due to crowding

causing problems with window assignment. However, as we’ll see in the following section,

the contribution from AC observations to the astrometric precision is ∼ 3% compared to

the AL contribution and so any weak uncertainty in 𝑅 has a small impact on the estimated

precision.

5.3.4 Centroid Error

The centroid error in the AL and AC directions, 𝜎AL
𝑖
, 𝜎AC

𝑖
is a function of the spacecraft

instrumentation and apparent brightness of the source due to photon shot noise. For the

remainder of this section, I assume that all CCDs in the astrometric field of the CCD panel

have similar noise properties. I also assume that this performance is time independent and

does not depend on the position of the source on the plane. Changes to the spacecraft such

as mirror condensation and micrometeoroid impacts mean that the performance of the

space craft is not perfectly time independent, however, as I demonstrated in Section 5.3.1

the dependence is small compared to the scatter of individual measurements using the

epoch photometry.

Therefore I assume that all AL observations of a single source have the same precision

and likewise for all AC observations such that Eq. 5.16 becomes

E
[
Σ−1] = 1

𝜎AL(𝐺)2
𝑁AL∑
𝑖=1

𝑤AL
𝑖 A𝑖 +

1

𝜎AC(𝐺)2
𝑁AC∑
𝑖=1

𝑅(𝐺)𝑤AL
𝑖 A𝑖 (5.18)

Table 1 of Lindegren et al. 2012 gives the ratio of AC to AL error for bright sources

as typically 𝜓 = 520/92 such that 𝜎AC = 𝜓𝜎AL, although I note that this was only a

pre-launch estimate and the true calibrated uncertainty is likely marginally different.

Substituting into the expected precision

E
[
Σ−1] = 1

𝜎AL(𝐺)2

(
1 + 𝑅(𝐺)

𝜓2

) 𝑁AL∑
𝑖=1

𝑤AL
𝑖 A𝑖 . (5.19)

The final unknown in Eq. 5.22 is 𝜎AL, the astrometric centroid error of AL observations.

𝜎AL was estimated from the Gaia published astrometry by Belokurov et al. 2020b using

the formula 0.53
√
𝑁𝜎𝜛 where 𝑁 was the number of AL observations used for the source

astrometry published as astrometric n good obs al. 0.53 was used as this empirically

matched the published distribution in Fig.9 of L18. However
√
𝑁𝜎𝜛 is a strong function

of position on the sky depending on scan directions and spread of observations throughout

the year. This means that the running median as a function of magnitude is heavily

affected by where the given stars lie on the sky.
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For this work, I find a more mathematically motivated route to the scan variance. By

summing up the first two diagonal terms of the inverse covariance matrix from Eq. 5.12,

the dependence on the scan angle 𝜙𝑖 disappears.

E
[
Σ−1]

𝛼,𝛼
+ E

[
Σ−1]

𝛿,𝛿
=

1

𝜎𝐴𝐿 (𝐺)2

(
1 + 𝑅(𝐺)

𝜓2

) 𝑁∑
𝑖=1

𝑤AL
𝑖 (𝑠2𝑖 + 𝑐2𝑖 )

=
1

𝜎𝐴𝐿 (𝐺)2

(
1 + 𝑅(𝐺)

𝜓2

) 𝑁∑
𝑖=1

𝑤AL
𝑖 (5.20)

Therefore the AL astrometric error can be determined independent of position on the sky

by substituting Σ for the published covariance 𝐶 and rearranging in terms of 𝜎AL.

𝜎2
𝐴𝐿 (𝐺) =

(
1 + 𝑅(𝐺)

𝜓2

) 〈
astrometric n good obs al

(C−1)𝛼𝛼 + (C−1)𝛿𝛿

〉
𝐺

(5.21)

where
∑𝑁
𝑖=1 𝑤

AL
𝑖

= astrometric n good obs al. As I discuss in more detail in Sec-

tion 5.6, the selection of the Gaia 5D astrometry sample included a cut on astromet-

ric sigma5d max. Sources with large astrometric uncertainty would not receive 5D

astrometry and therefore, particularly at the dim end, 𝜎AL would be biased low. To

mitigate this, I calculate 𝜎AL(𝐺) using all stars in Gaia DR2 with at least 6 visibil-

ity periods used. For sources without 5D astrometry I use the inverse of the published

2D astrometry covariance matrix as a proxy. This is a rough approximation and therefore

I suggest that my results are only trusted out to 𝐺 ≲ 20.5 at which point the cut on

astrometric sigma5d max becomes significant (see Section 5.6).

The distribution of 𝜎AL is shown in the top panel of Fig. 5.4 demonstrating a relatively

flat behaviour for 𝐺 < 13 where 2D observations are taken and time windows are truncated

to avoid saturation. For 𝐺 > 18 the variance grows with magnitude due to photon shot

noise. The red line gives the median value in 0.1mag and I linearly interpolate this as a

function of magnitude to estimate 𝜎AL(𝐺). For reference, the grey-scale histograms are

the 𝜎AL for 5D astrometry sources where the truncation for 𝜎AL ∼ 10 mas is caused by

the astrometric sigma5d max cut. The blue line in the top panel of Fig. 5.4 is the

blue line from Fig. 9 of L18. Across most of the magnitude range, my estimate is lower

than L18 by ∼ 10%. This is expected because we’re actually calculating slightly different

statistics. L18 used the residuals of all AL observations relative to the best fit astrometric

solution. In calculating the source astrometry, observations are assigned weights as a

function of their residuals which disfavoured observations with large residuals from being

used in the astrometric solution. Therefore the value of 𝜎AL inferred by L18 is higher than

mine which has implicitly ignored large outliers. As my task in this chapter is to predict

the published 5D astrometry uncertainties, my formula for 𝜎AL is the appropriate one to

use.
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Fig. 5.4 The magnitude dependence of the ASF is a function of the AL astrometric
uncertainty 𝜎AL (top), the fraction of photometric observations which generate good
astrometric observation used in the AGIS pipeline 𝑓good (middle) and the ratio of AC to
AL observations 𝑅 (bottom). In all cases the median and 16th to 84th percentiles of the
Gaia DR2 astrometry sample are given by the red sold line and shaded area respectively.
The distribution of 𝜎AL (black histograms, log normalised) extends high above the median
due to source excess noise.
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Finally, I can substitute in 𝑤AL
𝑖

from Section 5.3.3.

E
[
Σ−1] = 1

𝜎AL(𝐺)2

(
1 + 𝑅(𝐺)

𝜓2

)
𝑓good(𝐺)

𝑁AL∑
𝑖=1

𝜐 𝑓 (𝑡𝑖)A𝑖

=𝜌(𝐺)Φ(𝑙, 𝑏) (5.22)

where I have defined

𝜌(𝐺) ≡ 1

𝜎AL(𝐺)2

(
1 + 𝑅(𝐺)

𝜓2

)
𝑓good(𝐺) (5.23)

as the magnitude dependent normalisation and Φ(𝑙, 𝑏) ≡ ∑𝑁AL

𝑖=1 𝜐 𝑓 (𝑡𝑖)A𝑖 as the scanning

law dependent matrix. Φ has a weak magnitude dependence as the fractions 𝑓 (𝑡𝑖) change
between the magnitude bins in which Gaia downloads data however, within any download

bin, it is independent of magnitude.

5.3.5 Astrometry Spread Function

In the previous sections I have derived the expected precision, E
[
Σ−1] for simple point

sources as observed by Gaia. The DR2 data has been used to estimate 𝜎AL(𝐺), 𝑅(𝐺)
and 𝑓good(𝐺) as running medians as a function of magnitude. Φ(𝑙, 𝑏) = ∑𝑁AL

𝑖=1 𝑓 (𝑡𝑖)A𝑖 is a
function of the scanning law only and has no dependence on the Gaia astrometry data.

For the remainder of this chapter, I simplify the notation taking Σ = E
[
Σ−1]−1 as the

expected 5D astrometry covariance for a simple point source in Gaia.

For a point source moving without acceleration with true astrometric coordinates r

observed in Gaia DR2, the expected measured astrometric coordinates are drawn from a

multivariate normal distribution with covariance Σ,

r′ ∼ N(r,Σ(𝐺, 𝑙, 𝑏)). (5.24)

This normal distribution is the Astrometry Spread Function where 𝐺, 𝑙, 𝑏 are the apparent

magnitude and position of the source on the sky.

To demonstrate how the astrometry is fit in practice, I show the expected observations

and astrometric uncertainty for a hypothetical source at 𝑙 = 30 degrees, 𝑏 = 10 degrees with

apparent magnitude 𝐺 = 16 in Fig. 5.5. The source is given proper motion `∗𝛼 = 20mas/y,
`𝛿 = 20mas/y which produces a trajectory from South East to North West. Adding the

parallax ellipse for 𝜛 = 12 mas generates a spiralling apparent position observed by Gaia

throughout DR2 given by the black-dashed line in the top panel of Fig. 5.5.

Gaia scans this region of the sky 15 times in DR2 given by the blue and red arrows for

scans from FoV1 and FoV2 respectively. Each scan improves the constraint on each of

the five astrometry parameters the uncertainties for which are given in the bottom panel

of Fig. 5.5. Gaia selects sources for the 5D astrometry catalogue which have at least 6

visibility periods used where a visibility period is a group of observations separated

by less than four days. Where fewer than 6 visibility periods have been observed the

AGIS pipeline places priors on the astrometry derived in Michalik et al. 2015b and only
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Fig. 5.5 Top: Observed from L2, any source on the sky follows a curved track given by the
combination of source proper motion and apparent parallax ellipse as represented here
by the black-dashed line for a source with `∗𝛼 = 20mas/y, `𝛿 = 20mas/y and 𝜛 = 10mas
located near the galactic bulge with 𝑙 = 30, 𝑏 = 10. Gaia scans this position on the sky 15
times in the DR2 time frame shown by blue and red arrows for FoV1 and FoV2 respectively.
Bottom: Each scan, marked by the vertical red and blue dashed lines, contributes to
the 5D astrometry constraints. The expected uncertainty on each astrometry parameter
is shown for a source with 𝐺 = 16 and therefore 𝜎AL = 0.37 mas and reduce with each
subsequent scan. When fewer than 6 visibility periods are observed, only 𝛼∗0 (green solid)
and 𝛿0 (purple solid) are shown with priors placed on all parameters. With at least 6
visibility periods, uncertainties are also given for `∗𝛼 (green dashed), `𝛿 (purple dashed)
and 𝜛 (red dotted).
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the 2D position constraints are published. I replicate this using the same priors and only

providing uncertainties for the 𝛼∗0 (green solid) and 𝛿0 (purple solid) parameters before

the sixth visibility period (9th scan).

After the sixth visibility period, the priors were dropped and the uncertainties on `∗𝛼
(green dashed), `𝛿 (purple dashed) and 𝜛 (red dotted) parameters are also shown. For

simplicity, this demonstration assumes all observations were successful and equally likely

to contribute to the astrometry however as discussed in Section 5.3.3, this is not always

the case and this is corrected for by weighting observations.

5.4 Results

To test that my method is producing reasonable covariance matrices, I compare my

predictions with the published 5D astrometry covariances. From the Gaia DR2 astrometry

sample I determine the median published covariance on a level 7 HEALPix grid (Górski

et al., 2005) in the magnitude range 𝐺 ∈ [18.1, 19.0] which represents a single Star Packet

bin in which the scan fractions, 𝑓 are unchanged.

I estimate the predicted covariance using the formula in Eq. 5.22 where 𝐺 is taken as

the median apparent magnitude of stars in the given magnitude bin and HEALPix pixel.

The scan angles and times are inferred at the central coordinates of the HEALPix pixel.

The diagonal elements of both the median observed and predicted covariance matrices

are shown in Fig. 5.6 demonstrating excellent agreement down to degree scales in all

components. In all coordinates the variance is significantly enhanced in regions which

have been scanned less in DR2, most notably around the Galactic bulge. Thin streaks of

boosted variance on the sky correspond to time periods in Gaia DR2 where data was not

taken due to mirror decontamination or other disruptive processes.

In Fig. 5.7 I compare the correlation coefficients by dividing the off-diagonal covariance

elements by the square root of the products of their respective variances. Correlation

coefficients are less dependent on the number of observations, which has largely been

divided out, and more on the scan directions and time variance leading to a more complex

and varied structure on the sky. The observed correlation (upper right triangle) and

predicted correlation (lower left) show excellent agreement down to small scale variations.

In Fig. 5.8, diagonal elements give the ratio of predicted to observed variance. Across

the vast majority of the sky, there is strong agreement with noise dominating in under-

scanned regions. Two features stand out. A streak of scans in the South East and North

West show underestimated uncertainties from the model. The scans in Gaia responsible

for this are constrained and discussed in Section 5.6. The Galactic bulge also shows a

significant systematic underestimate against the observed variance. This is not unexpected

as high source crowding can cause single windows to be allocated to multiple sources

generating spurious centroid positions. The third panel in L18 shows the same issue but

manifested in the astrometric excess noise of the source fits.

I demonstrate this issue in Fig. 5.9 where I show the median 𝜎AL(𝐺, 𝑙, 𝑏) evaluated
using Eq. 5.21 with the median taken in every 0.1 mag magnitude bin and HEALPix level
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0 1 2 3 4 5
Fraction Before First Decontamination (%)

Fig. 5.10 The fraction of scans of any position on the sky which occurred before the
first decontamination event, shown here as a percentage in HEALPix 7 bins in Galactic
coordinates, corresponds to regions of the sky with enhanced measurement uncertainty.

7 pixel divided by 𝜎AL(𝐺) evaluated at the median magnitude of stars in the HEALPix

pixel. From Section 5.3.4, I expect 𝜎AL to be independent of position on the sky which is

a key assumption in my model. Across the sky 𝜎AL shows only weak dependence on the

scanning law at less than 10%. However, particularly for brighter magnitude bins, 𝜎AL is

significantly higher in regions of the disc and bulge with the highest source density. This

issue is further exacerbated for the bulge as it happens to reside in a region of the sky

which has been scanned very few times in Gaia DR2 whereas the LMC and SMC, which

have been scanned more heavily, show no clear signal. In future Gaia data releases, the

Galactic bulge will receive significantly more scans reducing this issue.

Fig. 5.9 also shows residual scanning law structure which is likely caused by the 20%

variation in the instrument precision discussed in Section 5.3.1. For example, the green

strips in the North East and South where 𝜎AL is systematically higher correspond to

areas which received many observations before the first decontamination when the satellite

measurement precision was at its worst as shown in Fig. 5.3. Fig. 5.10 shows the percentage

of observations which took place before the first decontamination event in DR2 for which

the highest regions match exactly with regions of the sky in Fig. 5.9 with enhanced

𝜎AL. The diagonal elements of Fig. 5.8 show that these features are comparable to the

background noise level and so are not of significant concern.

The off-diagonal elements of Fig. 5.8 show the difference between predicted and observed

correlation coefficients. The structure of the scanning law can be seen in white as the

regions which are most heavily scanned have the lowest uncertainty. There is some marginal

bias in the 𝛼∗ and 𝛿 components but this is small compared with the overall signal seen in

Fig. 5.7.

From these results, I demonstrate that the ASF is accurate across the majority of the

sky across all magnitudes at the 10% level. However for bright sources (𝐺 ≲ 18) close
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in crowded regions (|𝑏 | ≲ 5 degrees) un-corrected calibration effects become significant

inflating the systematic uncertainties. When using Gaia DR2 astrometry to search for

excess noise from genuine source characteristics, these systematic uncertainties should be

taken into account.

5.5 Unit Weight Error

Unit Weight Error (UWE) is the reduced chi-squared statistic of the astrometric fit to

observations.

UWE =

√
1

a
(x′ − x)TK−1(x′ − x) (5.25)

where x′ and x are the measured and expected position measurements of a source, K =

diag[𝜎2
1 , 𝜎

2
2 ...𝜎

2
𝑁
] is the measurement covariance and a = 𝑁 − 5 is the number of degrees

of freedom.

For simple point sources UWE is drawn from a Gamma distribution, UWE ∼
Γ [a/2, a/2] such that the expected value is 1 and the variance is inversely proportional to

the degrees of freedom. However any excess stellar motion or an extended flux distribution

introduces an excess UWE above 1 as happens for binary systems (Penoyre et al., 2020) or

astrometric microlensing events (McGill et al., 2020). Gaia publishes 𝜒2 and the degrees

of freedom a = 𝑁 − 5 for all stars with 5D astrometry in DR2 from which UWE can be

calculated. However, the published 𝜒2 is plagued by the DoF bug which makes values

unreliable to use for estimating the excess noise (L18, provides a full description of the

DoF bug which I have summarised in Appendix B.1).

This can be remedied by renormalising the published UWE as a function of colour

and apparent magnitude to produce a new statistic, RUWE4. RUWE is normalised such

that the 41st percentile is 1 as this was found to represent well behaved sources where the

median showed significant contamination from sources with excess error. This works well at

face value and produces a usable statistic however there are two limitations. Firstly RUWE

does not follow a well defined 𝜒2 distribution as would be expected from UWE, therefore

estimating the significance of excess noise is challenging. Secondly, in cases where excess

noise is not equally likely in all colours and apparent magnitudes, the renormalisation

can hide some of the expected excess. This would be problematic when establishing the

binary fraction as a function of colour and absolute magnitude which is expected to vary

considerably between stellar populations (Belokurov et al., 2020b; Price-Whelan et al.,

2020).

An alternative of UWE for a source with measured 5D astrometry is given by

UWE =

√
1

𝑛
E[𝜹TΣ−1𝜹] (5.26)

4http://www.rssd.esa.int/doc fetch.php?id=3757412
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where 𝑛 = 5 is the dimensionality of the astrometry. Given 𝜹 = (r′ − r) ∼ N (0,C)

E[𝜹TΣ−1𝜹] =
∫

1

(2𝜋)𝑛/2
√
| |C| |

(𝜹TΣ−1𝜹) exp
(
−1
2
(𝜹TC−1𝜹)

)
d𝜹

=

∫
1

(2𝜋)𝑛/2
(yT

√
C
T
Σ−1√Cy) exp

(
−1
2
(yTy)

)
dy (5.27)

where y =
√
C−1𝜹 and dy

d𝜹 =
√
| |C| |. Letting W =

√
C
T
Σ−1√C

E[𝜹TΣ−1𝜹] =
∫

1

(2𝜋)𝑛/2
(yTWy) exp

(
−1
2
(yTy)

)
dy. (5.28)

All off-diagonal elements of W produce antisymmetric integrands in y leaving only the

diagonal elements

E[𝜹TΣ−1𝜹] =
𝑛∑
𝑖=1

∫
1

(2𝜋)𝑛/2
W𝑖,𝑖y

2
𝑖 exp

(
−1
2
y2𝑖

)
dy

=

𝑛∑
𝑖=1

W𝑖,𝑖 . (5.29)

Substituting Σ back into this I have UWE in terms of the published covariance C

UWE =

√
1

5
Tr(

√
CΣ−1

√
C)

=

√
1

5
Tr(CΣ−1). (5.30)

Using this formula, I estimate UWE for all stars with 5D astrometry in Gaia DR2.

The distribution of UWE as a function of magnitude, shown in the Fig. 5.11, is uniform

with the median ⟨UWE⟩ ≳ 1. The fact that the median UWE sits slightly higher than 1

is due to the contribution from sources with excess noise. The spread of UWE which is

greatest at 𝐺 ∼ 13 and narrows to fainter magnitude is a clear signature of excess error

which is resolvable at brighter magnitude but becomes increasingly dominated by photon

count noise for fainter sources.

Our estimate is compared with the published UWE for sources with 𝐺 ∈ [18.1, 19.0]
in Fig. 5.12. At these dim magnitudes, the impact of the DoF bug is small. Across the

sky, my estimate of UWE is in excellent agreement with the published value producing no

systematic residual signal in the right hand panel down to 10% uncertainty.

In Gaia EDR3, the DoF bug is fixed and my estimate of UWE is superseded by the

published value. However, the fact that my measurement is in good agreement with the

published UWE is indicative that the published covariance alongside my prediction of the

ASF contains all of the information contained in UWE and more. Whilst UWE can be

used to determine the probability and amplitude of any excess variance, the ASF has the

potential to decode the orientation and time variation of excess noise.
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Fig. 5.11 The reduced 𝜒2 of the astrometric solution, UWE, is estimated from the published
covariances using the predicted covariance for simple point sources producing a distribution
with median ∼ 1 (red solid). The distribution of source (black histogram, log normalised)
extends out to high values of UWE due to sources with high excess noise.

5.6 Astrometric Selection

In order to construct unbiased dynamical models of the Milky Way, it is critically important

that we have a strong understanding of the completeness of the sample. In Chapter 4 I

introduced the selection functions for the Gaia source catalogue and science subsets. In

this section I investigate one aspect of the astrometry selection function in more detail

to understand the impact of source variance and demonstrate another application of the

ASF. As a brief reminder, the Gaia DR2 5D astrometry sample is the subset of the full

sample that satisfies the cuts (L18, Section 4.3):

• 𝐺 < 21

• visibility periods used > 5

• astrometric sigma5d max > 1.2 × 𝛾(𝐺)

where 𝛾(𝐺) = max
[
1, 100.2(𝐺−18)

]
.

To construct the selection function for the 5D astrometry sample I can combine the

effect of these cuts with the full sample selection function

P(S5Dast) = P(S5Dast |SDR2)P(SDR2) (5.31)

where S5Dast is the event that a source is published with 5D astrometry and SDR2 is the

event that a source is included in DR2 with or without 5D astrometry. P(SDR2) is the
full Gaia DR2 selection function estimated in Boubert & Everall 2020. The probability

of a star in DR2 receiving 5D astrometry, P(S5Dast |SDR2), is governed by the three cuts

outlined above.
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The Astrometric Spread Function

The second cut on visibility periods used (𝑘VP) is a complex function of the

scanning law.Here I focus on the astrometric sigma5d max (𝜎5Dmax) cut.

𝜎2
5Dmax is the maximum eigenvalue of the scaled astrometric covariance matrix

𝜎2
5Dmax = _max [𝑆 𝐶 𝑆] (5.32)

where 𝐶 ∈ R5×5 is the published 5D covariance matrix and 𝑆 = diag[1, 1, sin (b), 𝑇/2, 𝑇/2]
where b = 45 deg is the solar aspect angle of the Gaia satellite and 𝑇 = 1.75115 yr is the

time window of observations used in Gaia DR2 (see Section 4.3 L18).

My aim is to estimate the contribution to the selection function solely from the cut on

𝜎5Dmax,

P(𝜎5Dmax < 1.2𝛾 | 𝑘VP > 5, 𝐺, 𝑙, 𝑏). (5.33)

𝜎5Dmax and 𝑘VP are published for all sources in Gaia DR2 so this could be approximated

by taking the ratio of number of sources with 𝜎5Dmax < 1.2𝛾(𝐺) and 𝑘VP > 5 to only

those with 𝑘VP > 5 as a function of apparent magnitude and position on the sky

P(𝜎5Dmax < 1.2𝛾 | 𝑘VP > 5, 𝐺, 𝑙, 𝑏) = 𝑁 (𝜎5Dmax < 1.2𝛾, 𝑘VP > 5, 𝐺, 𝑙, 𝑏)
𝑁 (𝑘VP > 5, 𝐺, 𝑙, 𝑏) .

This approach is limited by Poisson count noise. To resolve scanning law variations, one

would need to resolve the sky to at least HEALPix level 7. Using 200 magnitude bins, this

results in an average of ∼ 30 stars with astrometry per bin which is dominated by the

Milky Way disc. At high latitudes the inference is entirely dominated by Poisson noise.

I could apply the method introduced in Chapter 4 which provides very impressive

results for the astrometry and RVS selection function. But given the ASF, can I do better?

Instead, I can use Gaia’s predicted covariance as a function of position on the sky

given in Section 5.3. This enables me to reach unlimited resolution on the sky without

HEALPix binning the data. I can predict 𝜎5Dmax for any source in Gaia as a function of

magnitude and position on the sky

𝜎5Dmax =
√
_max [𝑆Σ𝑆] =

1√
𝜌(𝐺)

√
_max

[
𝑆Φ−1𝑆

]
. (5.34)

where I have used the substitution Σ−1 = 𝜌(𝐺)Φ from Eq. 5.22 and 𝜌(𝐺) is defined in

Eq. 5.23. A comparison of the running median of the predicted 𝜎5Dmax (red dashed)

and observed astrometric sigma5d max (blue solid) in Fig. 5.13 shows that the

prediction overestimates for 𝐺 < 13 and underestimates for 13 < 𝐺 < 16. The cause of

this is the ‘DoF’ bug detailed in Appendix A of L18. My predicted 𝜎5Dmax has been

corrected for the DoF bug whilst the published values, on which the astrometry was

selected, had not been corrected. The DoF bug is de-corrected from my prediction dividing

through by a factor 𝐹 from Eq. B.1 to produce the red solid line, in good agreement

with the published 𝜎5Dmax as a function of magnitude. The predicted value marginally

systematically underestimates 𝜎5Dmax across all magnitudes by ∼ 10% which I conjecture
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5.6 Astrometric Selection

Fig. 5.13 Predicted 𝜎5Dmax after correcting for the DoF bug (red solid) as a function of
magnitude for all sources in the Gaia DR2 astrometry shows strong agreement with the
published values (median - blue solid, 16th − 84th percentiles - blue shaded). The model
before correcting for the DoF bug (red dashed) shifts at 𝐺 ∼ 13 the magnitude at Gaia
switches from 2D to 1D observations. The systematic underestimate of the prediction
against the median published astrometry is expected to be due to remaining calibration
uncertainties which I have not fully accounted for.

may be linked to time dependence of 𝜎AL which produces systematic uncertainties at the

same level however the exact cause of this discrepancy for 𝜎5Dmax is unclear.

The predicted and observed distribution of 𝜎5Dmax on the sky are shown in Fig. 5.14

with the right panel showing strong agreement across the majority of the sky. Some

residual streaks still persist in the South East and North West regions of the sky which

match those seen in Section 5.4 when comparing the predicted and observed astrometry

variances. These correspond to broken scans in Gaia DR2 which have not previously been

diagnosed. I use the HEALPix time extractor tool (Holl, 2021) to constrain the times at

which these scans happened in DR2. The clearest time ranges are given in Table 5.2 where

the time range OBMT= 1556− 1560rev is the direct cause of the residual streaks discussed

above.

𝜎5Dmax is published for all sources in Gaia DR2 whether or not they have published

5D astrometry. I can therefore use the published 𝜎5Dmax to estimate 𝜌 for all stars in DR2

𝜌 =
_max

[
𝑆Φ−1𝑆

]
𝜎2
5Dmax

. (5.35)
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5.6 Astrometric Selection

Start End Magnitudes

1447 1449 19.05 - 19.95

1453 1457 20.00 - 21.00

1556 1560 18.10 - 21.00

1730 1732 20.00 - 21.00

Table 5.2 Time periods producing un-modelled scan features in astromet-
ric sigma5d max. All times are given in OBMT (rev).

Fig. 5.15 𝜌 encodes the magnitude dependence of the predicted astrometric precision of
Gaia DR2. 5D astrometric covariance is only published for the subset of DR2 with 5D
astrometry however 𝜎5Dmax is published for all sources in DR2. I estimate 𝜌 for all sources
in DR2 with 𝑘VP > 5 using Eq. 5.35 shown here as a function of magnitude.

The distribution of 𝜌 as a function of magnitude is shown in Fig. 5.15 where the

distribution is largely flat at brighter magnitudes whilst declining for 𝐺 > 13 due to low

photon count noise. The spread to lower values is driven by excess noise due to binaries

and other accelerating or extended sources.

In every 0.1 mag bin I fit a two component Gamma mixture model (ΓMM) to model

the distribution of 𝜌,

P(𝜌) = 𝜋1 Γ(𝜌;𝛼1, 𝛽1) + 𝜋2 Γ(𝜌;𝛼2, 𝛽2). (5.36)

One component of the mixture model fits the peak of the distribution which is dominated

by well behaved simple point sources whilst the second component has an extended tail to

low 𝜌 which accounts for sources with significant excess noise. Examples of these fits in

four magnitude bins are shown in Fig. 5.16 demonstrating reasonable agreement at dim

magnitudes whilst somewhat cutting through the low 𝜌 tail at bright magnitudes. At dim

magnitudes, there is also a small excess of sources at large 𝜌. The precise cause of this
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5.6 Astrometric Selection

log(𝛼) U[−∞,∞]

log(𝛽) U[−∞,∞]

𝜋 Dirichlet(𝑎 = [2, 2])
Table 5.3 Priors used for ΓMM fit to 𝜌 distribution.

tail is unclear but since any cuts on 𝜎5Dmax are on the low 𝜌 end, the fact that I have not

correctly modelled the high 𝜌 tail would only generate a < 1% systematic uncertainty in

the inferred selection function. Priors used for each of the parameters in the ΓMM are

given in Table 5.3. The parameters are fit using expectation maximisation and posterior

distributions produced using emcee (Foreman-Mackey et al., 2013).

The behaviour of the ΓMM parameters as a function of magnitude is modelled with a

single Gaussian Process. For values of the same parameter at different magnitudes, the

GP uses a square exponential kernel with variance 𝑠 and scale length 𝑙. For different

parameters, I assume no intrinsic correlation, however, correlations are introduced between

different parameters of the same magnitude bin through the covariance of MCMC samples.

Applying 𝑘-fold cross validation with 𝑘 = 5 I infer hyperparameter values of 𝑙 = 0.224,

𝑠 = 2.578. The posterior GP is shown in Fig. 5.17 where the blue solid and red dashed

lines are the two components for each parameter. Due to a lack of bright sources in Gaia

DR2 astrometry, the GP at the bright end is dominated by the prior from the kernel.

Since a negligible proportion of stars are influenced by the 𝜎5Dmax cut at these magnitudes,

this is not a significant issue for the model.

Using the ΓMM as a function of magnitude, the selection function probability is given

by

P(𝜎5Dmax < 1.2𝛾(𝐺) |𝑘VP > 5) =
∫ ∞

𝜌min

2∑
𝑗=1

𝜋 𝑗 (𝐺)Γ
[
𝜌;𝛼 𝑗 (𝐺), 𝛽 𝑗 (𝐺)

]
d𝜌

where 𝜌min =
_max [𝑆Φ𝑆]
(1.2𝛾(𝐺))2 from substituting 𝜎5Dmax = 1.2𝛾(𝐺) into Eq. 5.35.

The selection probability is given at three magnitudes in Fig. 5.18 demonstrating that

the cut only has a significant effect for 𝐺 > 20. At the faintest magnitudes, regions of the

sky which have been only sparsely scanned in Gaia DR2 are most likely to be removed

due to the cut on 𝜎5Dmax. In the most extreme cases such as in the Milky Way bulge, this

can result in < 1% completeness in the Gaia DR2 astrometry sample.

Due to the simplicity of my 2 component ΓMM, the fits to the distribution of stars can

produce significant offsets from the true distribution of data at the low 𝜌 tail as is seen in

the fourth panel of Fig. 5.16. The overestimate of the number of sources at low 𝜌 in this

case leads to a significant overestimate of the number of stars with high 𝜎5Dmax which

subsequently get cut from the 5D astrometry sample. For now I consider the method a

proof of principle for applying the ASF in order to derive the selection function.
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The Astrometric Spread Function

Fig. 5.17 The five parameters of the two component ΓMM are fit with with a single GP
as a function of magnitude with a square exponential covariance kernel for matching
parameters using the posterior MCMC samples from each magnitude bin. Small volumes
of data at the bright end mean that the GP is dominated by the prior with mean 0 and
variance 𝑠 = 2.578.
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5.7 Discussion

5.7.1 Excess Covariance

In this chapter I derived and discussed the importance of the ASF for analysing simple

point sources in Gaia DR2. However I have not established how to use the ASF to estimate

the excess covariance or precisely how this can be interpreted.

Consider a source with true 5D astrometry, 𝑟. However the source is not a simple point

source such that the apparent position as a function of time is not well modelled by the

5D astrometric solution. If the excess noise may be parameterised by a 5D covariance, E,

the probability of measuring the apparent 5D astrometry as r𝐸 is given by

P(r𝐸 ) = N(r𝐸 ; r,E). (5.37)

If one attempts to measure this source, the uncertainty with which the 5D astrometry is

measured is given by the ASF

P(r′) = N(r′ ; r𝐸 ,Σ). (5.38)

By multiplying the two distributions together and marginalising over r𝐸 , I can determine

the probability distribution of the measured 5D astrometry

P(r′) =
∫

d5r𝐸 N(r′ ; r𝐸 ,Σ) N (r𝐸 ; r,E) (5.39)

= N
(
r′ ; r,

(
Σ−1 + E−1

)−1)
= N(r′ ; r,C).

Therefore, in this vastly oversimplified situation, the final measurement uncertainty for

the 5D astrometry is given by the convolution of the excess noise and the ASF (providing

the contribution from the observation measurement uncertainty).

There are two significant issues with this interpretation when considering the astrometry

published by Gaia. Firstly, the AGIS pipeline does not formally infer the measurement

uncertainty induced by excess noise. Residuals beyond simple point source astrometry

are absorbed into a 1D excess noise parameter for each source as well as impacting the

weights used for the given observations. The second problem is that source excess noise

can disguise itself as a shift in the simple point source astrometry. As shown in Penoyre

et al. 2020, excess binary motion can have complex effects on the posterior astrometry

from Gaia including a phenomenon called the proper motion anomaly (Kervella et al.,

2019). Interpretation of the excess covariance requires simulating stellar populations and

emulating the AGIS pipeline in order to forward model how the intrinsic properties of the

source relate to the posterior excess.
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5.7.2 Mock Observations

Whilst I have entirely focused on the implications of the ASF for constraining excess

source noise, it is also directly applicable to simulations in order to generate mock Gaia

catalogues for Milky Way analogues.

Recent simulations such as Auriga (Grand et al., 2017) and VINTERGATAN (Agertz

et al., 2020) have demonstrated the ability of the latest generation of cosmological simula-

tions to produce Milky Way analogues which are excellent tools for studying the physical

processes which govern the evolution of our galaxy. Performing a direct comparison with

Gaia observations requires the Gaia selection functions and measurement uncertainty. The

ASF provides the expected uncertainty of 5D astrometry for a simple point source. Given

a simulated star with astrometry r as observed from the sun, the astrometry that would

be measured by Gaia, r′ can be inferred by sampling from the ASF

r′ ∼ N(r,Σ(𝐺, 𝑙, 𝑏)). (5.40)

5.8 Summary of Uncertainty

The Astrometry Spread Function is the astrometric uncertainty distribution which would

be expected for a point source with linear motion relative to the solar system barycentre

(simple point source) given the source apparent magnitude and position on the sky. Gaia’s

DPAC estimate the astrometric solution using an iterative linear regression algorithm.

Given the uncertainty of individual observations and the scanning law, I have been able to

reconstruct the astrometric covariance that would be expected for a simple point source

observed by Gaia DR2. The ASF is a 5D multivariate Gaussian distribution with mean 0

and covariance Σ ∈ R5×5 where I have formally derived Σ(𝐺, 𝑙, 𝑏).
Assuming the bulk of stars in the Gaia DR2 5D astrometry sample are simple point

sources down to Gaia’s detection limit, I compare my result with the published covariances

and find extremely good agreement down to sub-degree scales on the sky. The only regions

with marginal disagreement are the highest source density regions of the bulge where the

combination of source crowding and few scans in Gaia DR2 invalidate my assumptions.

Therefore I caution the use of the ASF in highly crowded regions with low scan counts.

I have outlined three core applications of the ASF relevant to studies of the content

and kinematics of the Milky Way.

(i) The ASF can be used to find sources with excess astrometric error indicitave of

binary systems and extended sources. I used the ASF in combination with the

published covariance to infer unit weight error for Gaia DR2 sources. The strong

agreement with the published UWE demonstrates that the ASF can be used to find

the excess error in Gaia observations due to physical source characteristics. The

ASF is a valuable tool for exploiting Gaia data to model binary stars, astrometric

microlens events and extended sources.

(ii) I applied the ASF to predict the selection function contribution from the cut on

astrometric sigma5d max used to generate the Gaia DR2 5D astrometry sample.
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This is a key component of the full astrometry selection function which is a vital tool

for unbiased modelling of Milky Way kinematics from Gaia’s 5D astrometry. Whilst

my application here produced less reliable results than I achieved in Chapter 4,

I have demonstrated that I can reach much greater spatial resolution using the

scanning law so this is an avenue worth pursuing further.

(iii) The ASF can be used to generate Gaia-like astrometric solutions for mock catalogues

produced from simulations such as Auriga (Grand et al., 2017) and synthetic

population generators such as Galaxia (Sharma et al., 2011).

The final point comes in handy in the following chapter where I demonstrate the

efficacy of Milky Way structure inference on a mock Gaia sample.

5.9 Accessing the ASF

The ASF is accessible through the Python package scanninglaw (https://github.com/

gaiaverse/scanninglaw) (Boubert et al., 2021b). The user can ask the question ‘What

astrometric covariance would Gaia have published if my star was a simple point source?’.

I demonstrate this by determining the ASF covariance of the fastest main-sequence

star in the Galaxy (S5-HVS1, Koposov et al., 2020) for Gaia DR2. The diagonal elements

of the output covariance give the variance in 𝛼∗0, 𝛿0, 𝜛 (mas2), `∗𝛼, `
∗
𝛿
(mas2/y2).

import scanninglaw.asf as asf

from scanninglaw.source import Source

dr2_sl = asf.dr2_asf(version='cog')
s5_hvs1 = Source('22h54m51.68s',

'-51d11m44.19s',
photometry={'gaia_g':16.02},
frame='icrs')

Sigma = dr2_sl(s5_hvs1)

print('ASF Covariance: \n', Sigma)

>> ASF Covariance Position:

[[ 0.0005, 0.0004, -0.0005, 0.0003, 0.0006],

[ 0.0004, 0.0029, -0.0023, 0.0016, 0.0013],

[-0.0005, -0.0023, 0.0057, -0.0026, -0.0034],

[ 0.0003, 0.0016, -0.0026, 0.0038, 0.0017],

[ 0.0006, 0.0013, -0.0034, 0.0017, 0.0096]]
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6
Photo-Astrometric Tracer Density of the

Milky Way

Obi-Wan Kenobi Jocasta Nu

“It should appear in this quadrant here, just south of the Rishi maze.”

“It looks like the system you’re searching for doesn’t exist.”

“Impossible, perhaps the archives are incomplete.”

“If an item does not appear in our records, it does not exist.”

Star Wars, Attack of the Clones

I’m not aware of how many systems are supposedly stored in the Jedi archive but the

Gaia archive holds data on 1 811 709 771 sources which we believe is a small fraction of the

number of stars in the Milky Way. If there are no stars in a given region of space, such

as just south of Obi-Wan’s “Rishi maze”, is that because no stars exist in that region or

because they couldn’t be observed? And if stars in that region of parameter space couldn’t

be observed, what is the likelihood that there’s anything there?

I’ve produced selection functions for the Gaia source catalogue and subset of 1.5 billion

objects with measured parallax. For any region of parameter space, this tells me “If there

were a source here, what is the probability it would be in the Gaia catalogue with measured

parallax?”. By defining and fitting a model to the observed data, I can interpolate and

extrapolate to regions of parameter space which Gaia was unable to observe and therefore

infer the expected number density of sources in that region. Constructing and fitting such

a model to the vertical distribution of Milky Way stars is the subject of this chapter.

6.1 Complications when Fitting 1.5 Billion Sources

The 3D distribution of stars throughout the Milky Way is vital for understanding the

formation history of our Galaxy. This ‘tracer density’ is also a key ingredient in methods

attempting to estimate the distribution of dark matter in the Milky Way with important

implications for both cosmological models and direct detection experiments (Read, 2014).

The primary aim of the Gaia mission is to measure the three-dimensional spatial

and three-dimensional velocity distribution of stars (Gaia Collaboration et al., 2016) of
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which I focus on the spatial part. To achieve this, Gaia DPAC1 have published parallax

measurements for 1,467,744,818 sources (Gaia Collaboration et al., 2021a) with precisions

down to 10−2 mas (Lindegren et al., 2021a) providing geometric distance estimates with

no assumptions about source intrinsic brightness. Given this quality of data, one would be

forgiven for thinking a detailed 3D map of the Milky Way would be a trivial task. Inferring

spatial distributions of sources from Gaia data is a complex statistical problem for two

key reasons.

(i) Until recently, the completeness limits of the Gaia catalogues were largely unknown.

The observation strategy of the mission results in a completeness which varies

significantly across the sky on sub-degree scales. Without a selection function, it is

impossible to generate an unbiased map of the Milky Way using the full power of

the Gaia data.

(ii) The second reason is that parallax-based distances are statistically awkward to work

with. Much of our statistical methodology is constructed around the assumption

of Gaussian measurement uncertainties motivated by the central limit theorem.

Parallax uncertainties are Gaussian distributed which means that distances are

reciprocal Gaussian distributed. This is a highly asymmetric distribution which,

under an improper uniform prior, cannot be normalised. As such the distribution

has no finite mean. Detailed discussions on how to use Gaia parallaxes for distance

inference on individual stars are given in Bailer-Jones 2015b and Luri et al. 2018.

In spite of these hurdles, the structure of the Milky Way has been studied in detail,

more often than not without Gaia data. A work-around to the challenges of parallax

uncertainties is to focus on particular stellar populations for which the intrinsic brightness

can be modelled. The distance can then be inferred from the measured apparent brightness.

In some cases simple stellar colour-absolute magnitude relations are used for either a large

population of sources across the CMD (e.g. Bilir et al., 2006a; Dobbie & Warren, 2020)

or a small subset (e.g. horizontal branch stars, Fukushima et al., 2019). This approach

has been taken further by using full stellar evolution models to infer intrinsic source

brightness (de Jong et al., 2010). Period-luminosity relations for certain variable sources

are also incredibly valuable distance indicators. Ak et al. 2008 used cataclysmic variables

to estimate the vertical profile of the Milky Way disc whilst Mateu & Vivas 2018 used

RRLyrae to determine the structure of the old thick disc and radial profile of the halo.

Some of these approaches apply uncertain colour-magnitude relations to large pop-

ulations across the CMD leaving the results susceptible to systematic biases. Other

approaches use more carefully chosen sub-samples of specific stellar types such that only

a small fraction of the data are used. Many choose not use Gaia data at all (Dobbie &

Warren, 2020; Fukushima et al., 2019; Mateu & Vivas, 2018).

Thanks to the results of Chapter 4, I have selection functions for the subsample of Gaia

with measured parallax. In this chapter, I develop a method to overcome the challenges of

1DPAC is the Gaia Data Processing and Analysis Consortium who we have to thank for producing the
exquisite quality of data.
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directly using Gaia parallaxes and demonstrate its veracity on a Gaia-like mock sample

with a known ground-truth. I limit the scope of this work to a high latitude region of the

sky for statistical and computational reasons and due to the challenge of dust extinction

which I do not attempt to solve here. I leverage this method to estimate the scale height

of the Milky Way thin and thick discs, the radial profile of the halo and the local number

density of stars for each component.

In Section 6.2 I show the likelihood optimization method used for this work followed by

a full description of the model in Section 6.3. The Gaia-like mock sample is explained in

Section 6.4 where I demonstrate the application of the method in Section 6.5. In Section 6.6

I introduce the Gaia EDR3 sample and describe the cuts used to remove a small number

of contaminants. The model is fit to the Gaia data and I publish the results in Section 6.7.

There are various simplifications and approximations used in the method and model which

could, in principle, bias the parameter fits. These are discussed and tested in Section 6.8

and I explain how my tests are used to quantify statistical and systematic uncertainties

in Section 6.9. Finally, I discuss the results in comparison to the literature along with

additional considerations for this method such as source astrometric excess noise and the

importance of kinematic information (which is not included in this work) in Section 6.10.

6.2 Method

The probability of drawing a population of objects {x𝑖} from a density profile _(x) is given
by the Poisson likelihood function (for which the derivation is given in Appendix A.2),

logL =

𝑁∑
𝑖=1

log (_(x𝑖)) −
∫

dx_(x). (6.1)

The observed population of objects is drawn from the true underlying distribution of

sources multiplied by a selection function which gives the probability of a source being

included in the survey. Therefore I can substitute _(x) = 𝑓 (x,𝝍)S(x) where S is the

selection function and 𝑓 is the true underlying source density with model parameters 𝝍,

logL =

𝑁∑
𝑖=1

log ( 𝑓 (x𝑖,𝝍)S(x𝑖)) −
∫

dx 𝑓 (x,𝝍)S(x). (6.2)

The aim of density estimation is to fit the parameters of the true underlying distribution,

𝝍. Since the selection function is independent of the model parameters, it can be dropped

out of the first term in the likelihood function,

logL ∼
𝑁∑
𝑖=1

log ( 𝑓 (x𝑖,𝝍)) −
∫

dx 𝑓 (x,𝝍)S(x). (6.3)

The source properties, x, need to be chosen according to the dependencies of the model

and selection function.
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Mateu & Vivas 2018 use this method on a sample of RR Lyrae to constrain the

structure of the thick disc and halo considering only spatial dimensions, while Bovy et al.

2012b apply a more complex model to a population of G-dwarfs to fit the Milky Way disc

using measured apparent magnitude, colour and metallicity. The aim of this work is to

model the purely spatial distribution of sources, however the selection function, which I

discussed in Chapters 3 and 4, is a function of position on the sky and apparent magnitude.

Therefore, I must also consider the intrinsic brightness of a source, so my source properties

are x = (𝑙, 𝑏, 𝑠, 𝑀𝐺).
An additional complexity I introduce beyond previous works is accounting for parallax

measurement uncertainties, which is vital when working with Gaia astrometry. Suppose

instead that x are the measured source properties and 𝑓 (x,𝝍) is the expected distribution

of measured source properties given the model. Source measurements are drawn from

an uncertainty distribution, P(x | xT) where xT are the underlying true source properties.

The measured model ( 𝑓 ) is given by a convolution between the true underlying model ( 𝑓T)

and the measurement error distribution,

𝑓 (x,𝝍) =
∫

dxT P(x | xT) 𝑓T(xT,𝝍). (6.4)

Substituting this into the likelihood, I get

logL ∼
𝑁∑
𝑖=1

log

(∫
dxT P(x𝑖 | xT) 𝑓T(xT,𝝍)

)
−

∫
dxT 𝑓T(xT,𝝍)

∫
dxP(x | xT) S(x) (6.5)

where I have reversed the order of integration in the second term and brought 𝑓T outside

the integral over measured parameters.

My measured source properties are x = (𝑙, 𝑏, 𝐺, 𝜛), or Galactic longitude and latitude,

apparent magnitude and parallax. In this work, I consider parallax error as the only

significant measurement uncertainty. Positional uncertainties in (𝑙, 𝑏) are extremely small

and I test the impact of neglecting error in 𝐺 in Section 6.8. Therefore, the error term

becomes

P(x | xT) = 𝛿(𝑙 − 𝑙𝑇 ) 𝛿(𝑏 − 𝑏𝑇 ) 𝛿 (𝐺 − 𝐺𝑇 (𝑠, 𝑀𝐺)) P(𝜛 | 𝑠). (6.6)

I integrate over all delta functions in the first term of the likelihood function∫
dxT P(x𝑖 | xT) 𝑓T(xT,𝝍) =

∫
d𝑠P(𝜛𝑖 | 𝑠) 𝑓T(𝑙𝑖, 𝑏𝑖, 𝐺𝑖, 𝑠,𝝍). (6.7)

The selection function is a function of 𝑙, 𝑏 and 𝐺 only; there is no dependence on

measured parallax (see Chapter 4). This makes it easy to integrate over∫
dxP(x | xT) S(𝑙, 𝑏, 𝐺) = S (𝑙𝑇 , 𝑏𝑇 , 𝐺𝑇 (𝑠, 𝑀𝐺)) . (6.8)
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Finally, I can substitute this into the likelihood function,

logL ∼
𝑁∑
𝑖=1

log

(∫
d𝑠P(𝜛𝑖 | 𝑠) 𝑓T(𝑙𝑖, 𝑏𝑖, 𝐺𝑖, 𝑠,𝝍)

)
−

∫
dxT 𝑓T(𝑙𝑇 , 𝑏𝑇 , 𝑀𝐺 , 𝑠,𝝍) S (𝑙𝑇 , 𝑏𝑇 , 𝐺𝑇 (𝑠, 𝑀𝐺)) . (6.9)

This is the likelihood function which I use to fit the model parameters, 𝝍, to the observed

data. For the remainder of the chapter, I drop the subscript 𝑇 with 𝑓 always referring to

the true underlying source distribution.

6.2.1 Parallax Error Integration

The biggest numerical challenge for my method is the parallax error convolution. I need

to integrate over parallax for every source at every proposed set of model parameters. In

this section I use slightly different notation where 𝜛 = 1/𝑠 is the true parallax distance

which I am marginalising over, and 𝜛𝑖 is the measured parallax for source 𝑖. The integral

I need to evaluate is∫ ∞

0
d𝑠P(𝜛𝑖 | 𝑠) 𝑓 (𝑙𝑖, 𝑏𝑖, 𝐺𝑖, 𝑠,𝝍) =

∫ ∞

0
d𝜛𝜛−2N(𝜛;𝜛𝑖, 𝜎𝜛,𝑖) 𝑓 (𝑙𝑖, 𝑏𝑖, 𝐺𝑖, 𝑠,𝝍)

≡
∫ ∞

0
d𝜛 𝐼 (𝜛) (6.10)

where 𝜎𝜛,𝑖 is the parallax error of source 𝑖. In Section 6.3 I introduce the absolute

magnitude model which is broken into sections with an upper absolute magnitude limit

(minimum brightness) for the model. I can then write the integral as a sum of definite

integrals ∫ ∞

0
d𝜛 𝐼 (𝜛) =

∑
𝑗

∫ 𝜛 𝑗+1

𝜛 𝑗

d𝜛 𝐼 (𝜛) (6.11)

where

𝜛 𝑗 = 10(𝑀 𝑗+10−𝐺𝑖)/5 (6.12)

and 𝑀 𝑗 are the magnitude boundaries of the sections. For an unconstrained lower absolute

magnitude limit, 𝜛0 = 0.

I numerically evaluate the integral of each section using the following five step recipe.

(i) Transform into logit-parallax space using the substitution

𝑥′ = log

(
𝜛 −𝜛 𝑗

𝜛 𝑗+1 −𝜛

)
. (6.13)

This gives ∫ 𝜛 𝑗+1

𝜛 𝑗

d𝜛𝐼 (𝜛) =
∫ ∞

−∞
d𝑥′

𝐼

𝐽
(6.14)
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where the Jacobian is

𝐽 =

���� 𝜕𝑥′𝜕𝜛

���� = 𝜛 𝑗+1 −𝜛 𝑗

(𝜛 −𝜛 𝑗 ) (𝜛 𝑗+1 −𝜛) . (6.15)

(ii) Find the peak of the logit-transformed integrand by solving

𝜕

𝜕𝑥′

(
𝐼

𝐽

)
= 0 (6.16)

using the bisection algorithm with respect to 𝜛 initialising at the integration

boundaries, 𝜛 𝑗 , 𝜛 𝑗+1. Transform the parallax of the peak into logit space giving us

the mode, 𝑥′0.

(iii) Estimate the width of the peak from the curvature around 𝑥′0,

𝜎𝑥 ′ =

(
𝜕2𝐼/𝐽
𝜕𝑥′2

)−1
2
����
𝑥 ′=𝑥 ′0

. (6.17)

(iv) Recentre and rescale via

𝑥 =
𝑥′ − 𝑥′0√
2𝜎𝑥 ′

, (6.18)

such that the integrand is approximately 𝐼 ∼ exp
(
−𝑥2

)
around the peak.

(v) Apply Gauss-Hermite quadrature in 𝑥-space which gives∫ 𝜛 𝑗+1

𝜛 𝑗

d𝜛 𝐼 =
∑
𝑘

𝑤𝑘

√
2𝜎𝑥 ′ 𝐼 (𝜛(𝑥𝑘 ))
𝐽 (𝜛(𝑥𝑘 ))

exp
(
𝑥2𝑘

)
. (6.19)

In my application of the method, I use Gauss-Hermite quadrature with 11 sample points.

Increasing the number of sampling points has no appreciable effect on my inferred likelihood.

A major limitation of this method is that it cannot accurately integrate multimodal

integrands. The integrand must be unimodal such that I can integrate around the single

peak. I discuss the implications of this in Section 6.3 when introducing my model. However,

since this is purely a numerical rather than conceptual challenge, I hope future work can

improve on my method to allow for more general models to be evaluated and with greater

computational efficiency.

6.3 Model

For this work, I only consider high latitudes, |𝑏 | > 80◦. There are several reasons for this:

• Dust extinction is negligible at high latitudes. Modelling the 3D distribution of dust

throughout the Milky Way is a complicated problem on its own (Green et al., 2014;

Marshall et al., 2006). I quantify the impact of dust extinction on my results in

Section 6.8.

• The in-plane structure of the Milky Way disc is complex with waves, spiral arms and

the bar which add vast numbers of free parameters to any spatial model.
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• Parallax integration is computationally expensive and scales linearly with the number

of sources. By focusing on a subset of Gaia data, I am left with a computationally

tractable problem.

The aim of this work is to demonstrate how Gaia parallax information can be used to

obtain an unbiased model of the Milky Way’s stellar content. The vertical distribution at

the Solar neighbourhood is a tractable first step in this direction.

The vertical distribution of sources is assumed to be a mixture of three distinct

components: thin disc, thick disc and halo. This canonical model has been used for

decades since the addition of the second disc component by Gilmore & Reid 1983. More

recent work has shown that – rather than a dichotomy into thin and thick discs – there may

be a continuous evolution of disc height with stellar metallicity (Bovy et al., 2012a, 2016b).

However, since metallicity is not an observable in my sample, I keep to the canonical

distinct thin and thick disc model.

Within each component, I assume the spatial and absolute magnitude distributions are

separable such that

𝑓 (𝑙, 𝑏, 𝜛, 𝑀𝐺) =
∑

𝑐={Tn,Tk,H}
𝑤𝑐 a𝑐 (𝑙, 𝑏, 𝜛,𝝍a) 𝜙𝑐 (𝑀𝐺 ,𝝍𝜙). (6.20)

This is a significant assumption. The thin disc has undergone star formation over long

periods and will have correlations between age and metallicity and the vertical and radial

dispersion of orbits (e.g. Ivezić et al., 2008; Martig et al., 2016; Recio-Blanco et al., 2014;

Snaith et al., 2015). Likewise, the halo is made of multiple stellar populations from in situ

star formation and historical merger events (e.g. Belokurov et al., 2018; Belokurov et al.,

2020a; Helmi et al., 2018). Nonetheless, I maintain this assumption here in the interests of

keeping a simple and tractable model. Note that 𝑤𝑐 is a free parameter of the model for

each component and gives the total number of stars for that component within the given

region of the sky and absolute magnitude range.

6.3.1 Spatial Distributions

I consider the thin and thick discs to have exponential profiles vertically a𝑐 ∝ exp
(
− |𝑧 |
ℎ𝑐

)
similar to previous work (e.g. Bovy et al., 2012b, 2016b; Jurić et al., 2008). Other

possibilities include sech or sech2 profiles, but there is a moderate preference in the data

for an exponential profile (Dobbie & Warren, 2020).

Since I am only considering high latitudes, I neglect any radial dependence of the

vertical density profile. This makes the numerical integral described in Section 6.2.1

significantly more tractable. The complexity introduced by adding radial dependence is

explained in more detail in Section 6.3.3. The impact of this simplification on the results

is tested and quantified in Section 6.8.
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Transforming into heliocentric coordinates 𝑧 = 𝑠 sin(𝑏) and normalising I get the density

distribution

a𝑐 (𝑙, 𝑏, 𝑠)d𝑉 =
tan2( |𝑏 |min)

2𝜋 ℎ3𝑐
𝑠2 exp

(
− |𝑠 sin 𝑏 |

ℎ𝑐

)
d𝑙 d sin(𝑏) d𝑠, (6.21)

where |𝑏 |min = 80◦ is the on-sky latitude limit of my sample. In Section 6.7 I consider

the northern and southern high latitude samples independently; however here, I assume a

Milky Way symmetric about the Galactic plane, in which the Sun lies. This introduces a

∼ 20.8pc systematic offset into my results (Bennett & Bovy, 2019), whose effect on the

posterior distributions is quantified in Section 6.8.

For the spatial distribution of the halo, I use a spherically symmetric single power law

profile centred on the Galactic centre, aH(𝑟)d𝑉 ∝ 𝑟−𝑛H . Many other works also include a

free parameter for the halo axis ratio (Jurić et al., 2008; Mateu & Vivas, 2018), however, as

I am only using a narrow window on the sky, there is limited information to independently

constrain the profile and axis ratio of the halo. Furthermore, previous works have either

implicitly or explicitly truncated the halo or included a broken power-law profile. The halo

profile used in this work is assumed to extend infinitely so we constrain 𝑛H > 3 to maintain

a finite halo normalisation. This is in tension with Deason et al. 2014 and Fukushima

et al. 2019 who find a steeper halo profile beyond 𝑟 ∼ 50 kpc and 160 kpc respectively.

This corresponds to a parallax 𝜛 < 0.02 mas which is pushing the precision limit of Gaia

parallaxes even for bright sources (see Fig. 7 of Lindegren et al., 2021a). Therefore, my

model should not be significantly sensitive to this shift.

As I did for the disc profile, I neglect cylindrical radius dependence for the halo by

placing all sources at the Solar radius such that

𝑟2 = 𝑠2 sin2(𝑏) + 𝑅2
⊙ . (6.22)

Again this is only valid at high latitudes. The dependence of the source distribution on

Galactic longitude can then be neglected. This may lead to systematic biases which are

tested in Section 6.8. The spatial model of the halo is given by

aH(𝑙, 𝑏, 𝑠)d𝑉 = NaH𝑠
2
(
𝑠2 sin2 𝑏 + 𝑅2

⊙

)− 𝑛H
2

d𝑙 d sin 𝑏 d𝑠 (6.23)

where

NaH =
1

2𝜋

8 tan2(𝑏min)√
𝜋𝑅3−𝑛

⊙

Γ (𝑛/2)
Γ (𝑛/2 − 3/2) . (6.24)

This spatial distribution adds three parameters to the model: the exponential scale height

of the thin and thick discs (ℎTn and ℎTk) and the power-law index of the halo (𝑛H).

6.3.2 Luminosity Functions

The luminosity distribution function of stars in the Milky Way is an intricate function of

the star formation history, accretion history and dynamical evolution of the Galaxy. The
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Fig. 6.1 HR diagram showing the isochrones used for my mock model of Milky Way sources,
with ages 𝜏 = 6.9, 7.8, 12.5 Gyr and metallicities [Fe/H] = −0.3,−0.7,−1.5 for the thin
disc, thick disc and halo respectively (orange, green and purple). The grey dashed line
shows the minimum absolute magnitude of my model – 𝑀𝐺 = 12.

aim of this work is to derive the spatial distribution of sources in the Galaxy - independent

of stellar populations - and so the magnitude distribution is only included in order to

formally account for the survey selection function. In this section, I explain how to derive

an adequate parameterisation for the luminosity function for each Milky Way component.

Each of the three Milky Way components is assumed to be a single mono-age, mono-

abundance stellar population. Using the results of Kilic et al. 2017 from white dwarf

populations, the ages used for the thin disc, thick disc and halo are 6.9 Gyr, 7.8 Gyr and

12.5 Gyr respectively. Using SDSS spectroscopy, Ivezić et al. 2008 derived halo and thick

disc metallicities of [Fe/H] = −1.5,−0.7 respectively, whilst Recio-Blanco et al. 2014 used

the Gaia-ESO survey (Gilmore et al., 2012b) to find the thin disc metallicity fell in the

range [−0.8, 0.2] and the thick disc between [−1.0,−0.25]. Combining these results, I

assume the thin disc, thick disc and halo have metallicities of −0.3,−0.7 and −1.5. The
HR diagram in Fig. 6.1 shows the three isochrones which are taken from PARSEC v1.2s

(Bressan et al., 2012; Chen et al., 2014, 2015; Tang et al., 2014).

I then draw a random sample from the broken power law initial mass function (IMF) of

Kroupa 2001 for initial masses greater than 0.09M⊙ with Mini ∼ M−1.3
ini for Mini < 0.5M⊙

and Mini ∼ M−2.3
ini otherwise. This is shown in the top panel of Fig. 6.2. The individual
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Fig. 6.2 The thin disc, thick disc and halo isochrones (orange, green and purple) are
used to transform a mock sample of stars from initial mass (Mini) to absolute magnitude
(𝑀𝐺). The initial mass (top panel) is drawn from a Kroupa IMF (Kroupa, 2001) with
Mini > 0.09M⊙ where the vertical grey dotted line is the break mass 0.5M⊙. This produces
the absolute magnitude distribution shown in the right hand panel. The horizontal grey-
dashed line shows the maximum absolute magnitude as my model only includes sources
with 𝑀𝐺 < 12.

component isochrones, shown in the middle panel, are then used to transform the IMF into

an absolute magnitude distribution which is shown in the right hand panel. This sample

is not used as my mock catalogue, it is only for deriving my model absolute magnitude

distribution.

The absolute magnitude distributions of the three components from the right hand

panel of Fig. 6.2 are shown as shaded histograms in Fig. 6.3. They are made up of four

regimes. At the bright end (𝑀𝐺 ≲ 3), sources evolve much faster along the giant branch

than the main sequence (MS), generating a sharp drop at the turn-off above which the

number density of sources falls quickly aside from a spike at the red clump (𝑀𝐺 ∼ 0). The

MS has three components, a relatively shallow upper sequence for 𝑀𝐺 ∼ [3, 7], a steeper

section for 𝑀𝐺 ∼ [7, 9] where the slope of the main sequence in Fig. 6.1 shifts which is also

around the power-law break of the IMF (I refer to this section as the ‘gap’), and a very

flat lower MS for 𝑀𝐺 ≳ 9. Sources continue fainter to the brown dwarf regime; however,

stellar models in these regions of parameter space are poorly constrained by observations
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Fig. 6.3 The mock distributions produced by transforming the Kroupa IMF through
isochrones from Fig. 6.1 (shaded histograms) are fit with the approximate absolute
magnitude distribution used for the model (dashed lines).

as there are few stars this dim yet bright enough for current observatories. For this reason,

I only consider sources with 𝑀𝐺 < 12 in this work. This is especially beneficial when I

model the Gaia data in Section 6.7 as the majority of sources with spurious astrometric

solutions as classified by Rybizki et al. 2021a and Gaia Collaboration et al. 2021b have

absolute magnitudes fainter than 𝑀𝐺 = 12.

If one takes a population of sources with a power-law mass distribution and power-

law mass-luminosity relation, the absolute magnitude distribution of the population is

exponentially distributed. I assume each component of the absolute magnitude distribution

is modelled by an exponential distribution. The absolute magnitude is drawn from a

broken exponential distribution,

𝑀𝐺 ∼ exp(−𝛼𝑀𝐺), (6.25)
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with four components

𝛼 =



𝛼1 9 < 𝑀𝐺 < 12 (LowerMain Sequence)
𝛼𝑔 7 < 𝑀𝐺 < 9 (Main Sequence ‘gap′)
𝛼2 𝑀TO < 𝑀𝐺 < 7 (UpperMain Sequence)
𝛼𝐺 𝑀𝐺 < 𝑀TO (Giants)

(6.26)

where 𝑀TO is the turn-off magnitude.

The distribution is continuous everywhere other than the turnoff where the discontinuous

change in the gradient of the magnitude-initial mass relation leads to a discontinuity in

the magnitude distribution. Continuity conditions at 𝑀𝐺 = 7, 9 constrain the exponential

profile 𝛼𝑔 and the normalisation 𝐴𝑔 of the gap profile

𝛼𝑔 =

log
(
𝛼1 (𝜖2−1)
𝛼2 (𝜖1−1)

)
− 𝛼1(𝑀MS − 9) + 𝛼2(𝑀MS − 7)

9 − 7
(6.27)

𝐴𝑔 = − 2.5𝛼1
log(10) (𝜖1 − 1) exp

(
(𝛼𝑔 − 𝛼1) (𝑀MS − 9)

)
(6.28)

where 𝑀MS = 8 is the magnitude of the transition from the lower to upper main sequence

and 𝜖1 = 1.3, 𝜖2 = 2.3 are the power law profiles of the Kroupa 2001 IMF.

The full magnitude distribution is given by

𝑓 (𝑀)d𝑀 =



(1 − 𝑓𝐺)N𝐷
1
𝑎1

exp (−𝛼1(𝑀 − 𝑀MS)) d𝑀 9 < 𝑀 < 12

(1 − 𝑓𝐺)N𝐷𝐴𝑔 exp
(
−𝛼𝑔 (𝑀 − 𝑀MS)

)
d𝑀 7 < 𝑀 < 9

(1 − 𝑓𝐺)N𝐷
1
𝑎2

exp (−𝛼2(𝑀 − 𝑀MS)) d𝑀 𝑀TO < 𝑀 < 7

𝑓𝐺N𝐺 exp(−𝛼𝐺 (𝑀 − 𝑀TO))d𝑀 𝑀 < 𝑀TO

(6.29)

where N𝐷 and N𝐺 are the normalisations of the dwarf and giant magnitude distributions

respectively.

The magnitude distribution introduces five parameters: 𝛼1, 𝛼2, 𝑀TO, 𝛼𝐺 and 𝑓𝐺 , the

fraction of the population which are giants, which constrains the size of the discontinuity

at the turn-off. I could fix all parameters using the IMF-isochrone sample just constructed,

however, this is only an approximate representation of the magnitude distribution which

may introduce large systematics. To avoid this problem, I free up 𝛼1, 𝛼2 and 𝑓𝐺 to be

constrained by the real data. 𝛼1 and 𝛼2 are assumed to be the same for all populations

as the MS is dominated by older stars which show a similar distribution independent of

population parameters.

The position of the turn-off, 𝑀TO, defines a discontinuity for the model. Depending

on the location of individual sources in relation to the turnoff, this can generate sample-

dependent local optima in the likelihood space which is challenging for optimization.

For this reason, I fix 𝑀TO = 3.1 for all models and address the implications of this in

Section 6.8. 𝛼𝐺 has a strong degeneracy with 𝑓𝐺 as both control the number of sources
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at bright magnitudes. I fix 𝛼𝐺 to values which are discussed in Section 6.4 to avoid this

degeneracy. All free parameters are listed in Table 6.2 with their respective components.

This fully defines the model which I fit to the Gaia data. In total, there are 11 free

parameters of the model.

6.3.3 Integrand Limitations

In Section 6.2.1 I stated that the integral over parallax uncertainty becomes intractable

for more complex models, I briefly justify that statement here where I use the example of

the exponential disc model to demonstrate.

The integrand including 𝑅-dependence is

𝐼 d𝜛 ∝ 𝜛−4 exp

(
− 𝑧
ℎ
− 𝑅

𝐿

)
exp

(
(𝜛 −𝜛𝑖)
2𝜎2

𝜛𝑖

)
d𝜛 (6.30)

where ℎ and 𝐿 are the scale height and length of the disc being considered. The Jacobian

for the logit transformation I applied is

𝐽 ∝ 1

(𝜛 𝑗+1 −𝜛) (𝜛 −𝜛 𝑗 )
. (6.31)

Taking the gradient of 𝐼/𝐽, setting to zero (as in Eq. 6.16) and simplifying down, I am left

with

− 4

𝜛
− 1

ℎ

𝜕𝑧

𝜕𝜛
− 1

𝐿

𝜕𝑅

𝜕𝜛
− (𝜛 −𝜛𝑖)

𝜎2
𝜛𝑖

+ 1

(𝜛 𝑗+1 −𝜛) −
1

(𝜛 −𝜛 𝑗 )
= 0 (6.32)

where

𝑧 =
sin 𝑏

𝜛
and 𝑅2 = 𝑅2

⊙ +
(
cos 𝑏

𝜛

)2
− 2𝑅⊙ cos 𝑏 cos 𝑙

𝜛
. (6.33)

In my application, I have assumed no R-dependence, i.e. setting 𝐿 = ∞. I have

𝜕𝑧

𝜕𝜛
= −sin 𝑏

𝜛2
(6.34)

and Eq. 6.32 simplifies to a quintic polynomial in terms of 𝜛. I know that at least two

solutions of the quintic are outside [𝜛 𝑗 , 𝜛 𝑗+1] since

𝐼

𝐽


= 0 for 𝜛 = 𝜛 𝑗 , 𝜛 𝑗+1

< 0 for 𝜛 ≲ 𝜛 𝑗 , 𝜛 ≳ 𝜛 𝑗+1

= 0 for 𝜛 = 0,∞

(6.35)

so there must be a stationary point above and below the boundaries. This leaves three

stationary points in the integration range corresponding to two peaks or modes. My model

is equivalent to the exponentially-decreasing square distance prior used by Section 7 of

Bailer-Jones 2015b and they also find the same two modes. However two of the roots

are often either complex, or, for 𝜛𝑖 < 0, there is a mode with negative parallax which

is outside the integration limits. Whilst I cannot guarentee that the integrand is always
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Fig. 6.4 The selection function probability at 𝑏 = 90◦ for the Gaia EDR3 source catalogue
(green dashed) drops off at bright magnitudes (𝐺 < 2, due to CCD over-saturation) and
faint magnitudes (𝐺 ≳ 21) however remains high across the rest of apparent magnitude
space. The Gaia EDR3 astrometry with RUWE < 1.4 relative selection function (blue
dashed) is more restrictive over the entire magnitude range and dominates the total
selection function (red solid). The cut-off at 𝐺 < 5 is deliberately imposed to remove
regions of apparent magnitude with poor astrometry calibration.

unimodal, Section 6.5 demonstrates that this does not have a measurable affect on my

results.

If, however, I include 𝑅-dependence and have 𝐿 of order unity (kpc), then the integrand

significantly changes. Eq. 6.32 now includes

𝜕𝑅

𝜕𝜛
=

1

𝑅

(
−cos

2 𝑏

𝜛3
+ 𝑅⊙ cos 𝑏 cos 𝑙

𝜛2

)
(6.36)

where 𝑅 is given in Eq. 6.33. Expanding this out, Eq. 6.32 is now an 11th order polynomial

in 𝜛. Again, two of the stationary points are outside the integration bounds due to the

logit transformation but that leaves 9 stationary points meaning up to 5 modes in the

integrand.

One simplification I could take which would avoid adding any more modes to the

integrand is

𝑅 ≈ 𝑅⊙ − 𝑋 = 𝑅⊙ − 𝑠 cos 𝑙 cos 𝑏. (6.37)

This would provide a slight improvement on my previous models however also makes the

model normalisation non-analytic which adds another layer of complexity. This may be an

avenue worth pursuing however I consider it beyond the scope of this work.
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6.3.4 Selection Function

A major obstacle to using a catalogue of sources to fit a distribution is the selection

function. Many surveys have complex and unknown observation limitations which are a

strong function of observatory properties and observing conditions. Gaia is no exception

due in part to the complexity of the scanning law (Boubert et al., 2020, 2021b).

In most previous works, the sample is either assumed to be magnitude complete to

some limit (e.g. Ak et al., 2008; Bilir et al., 2006a; Jurić et al., 2008), or the sample

is bright and nearby for which there are larger, complete catalogues against which the

selection function has been estimated (e.g. Bennett & Bovy, 2019; Bovy, 2017; Mateu &

Vivas, 2018). Gaia is neither complete in position on the sky or apparent magnitude, nor is

there a larger, more complete sample against which to compare the Gaia source catalogue.

Fortunately, a solution for the Gaia source catalogue selection function has been

developed and applied to Gaia DR2 (Boubert & Everall, 2020). Section 4.1 provides a

simple extension to model the selection function of the Gaia EDR3 source catalogue using

the nominal EDR3 scanning law. This may have some limitations in crowded regions

due to changes in Gaia’s data processing pipeline. However, since I am only considering

high latitude fields, it should be sufficient for my purposes. The selection probability as a

function of apparent magnitude for 𝑏 = 90◦ is given by the green dashed line in Fig. 6.4

showing that the source catalogue is nearly complete for 3 < 𝐺 < 21.

Given the source catalogue selection function, the selection functions of subsets can be

estimated by comparison (Boubert & Everall, 2021). In Section 6.6, I introduce the Gaia

astrometry catalogue with RUWE < 1.4 where apparent 𝐺-band magnitude is available.

The selection function for this dataset is given by the product of the source catalogue and

subset selection functions

Ssubset(𝑙, 𝑏, 𝐺) = P(Ssubset | Ssource, 𝑙, 𝑏, 𝐺) P(Ssource | 𝑙, 𝑏, 𝐺) (6.38)

where P(Ssource | 𝑙, 𝑏, 𝐺) is the probability of selection in the Gaia source catalogue with

published 𝐺 and P(Ssubset | Ssource, 𝑙, 𝑏, 𝐺) is the probability of an object in the source

catalogue having published parallax with RUWE < 1.4, modelled in Chapter 4, as a

function of 𝐺 and position on the sky only. When fitting the model parameters to data,

Eq. 6.38 is substituted into Eq. 6.9.

The results are applied in 0.2 mag bins in 𝐺 in nside = 64 HEALPix pixels (Górski

et al., 2005) across the sky. The selection probability for 𝑏 = 90◦ is given by the red line

in Fig. 6.4. Due to the challenges of modelling sources which saturate the Gaia CCDs at

the bright end of the magnitude distribution I use a selection function which truncates at

𝐺 = 5. My sample also only includes those sources with 𝐺 > 5.

6.4 Mock

To test and demonstrate the efficacy of the method, I generate a mock catalogue from my

model with realistic parameters. Information on the true parameters is then removed, the

177



Photo-Astrometric Tracer Density of the Milky Way

C
om

p
on

en
t

P
aram

eter
In
p
u
t

F
u
ll

S
F

S
F
&
𝜎
𝜛

T
h
in

d
isc

log
1
0 (𝑤

)
4
.0792

4
.0700 +

0
.0
1
9
4

−
0
.0
1
9
1

4
.0637 +

0
.0
3
3
1

−
0
.0
3
5
9

3
.9816 +

0
.0
5
8
6

−
0
.0
6
5
7

ℎ
T
n

0
.300

0
.301 +

0
.0
0
7

−
0
.0
0
6

0
.301 +

0
.0
1
0

−
0
.0
1
0

0
.281 +

0
.0
1
5

−
0
.0
1
5

𝑓𝐺
4
.50

×
10 −

3
3
.73 +

1
.0
0

−
0
.9
9 ×

10 −
3

3
.91 +

1
.2
3

−
1
.2
2 ×

10 −
3

3
.76 +

1
.4
3

−
1
.3
0 ×

10 −
3

𝑀
T
O

3.1

𝛼
3

-0.6

T
h
ick

d
isc

log
1
0 (𝑤

)
4
.6335

4
.6249 +

0
.0
0
5
1

−
0
.0
0
5
0

4
.6253 +

0
.0
0
9
2

−
0
.0
0
9
3

4
.6221 +

0
.0
2
0
0

−
0
.0
1
9
8

ℎ
T
k

0
.900

0
.891 +

0
.0
1
2

−
0
.0
1
1

0
.884 +

0
.0
2
9

−
0
.0
2
8

0
.812 +

0
.0
5
2

−
0
.0
4
5

𝑓𝐺
5
.40

×
10 −

3
5
.76 +

0
.5
4

−
0
.5
2 ×

10 −
3

5
.80 +

0
.6
4

−
0
.6
0 ×

10 −
3

5
.83 +

0
.6
9

−
0
.6
6 ×

10 −
3

𝑀
T
O

3.1

𝛼
3

-0.77

H
alo

log
1
0 (𝑤

)
5
.9754

5
.9759 +

0
.0
0
0
5

−
0
.0
0
0
5

5
.9662 +

0
.0
1
0
6

−
0
.0
1
0
5

5
.9450 +

0
.0
2
4
7

−
0
.0
2
2
9

𝑛
H

3
.740

3
.745 +

0
.0
0
1

−
0
.0
0
1

3
.753 +

0
.0
2
0

−
0
.0
2
0

3
.812 +

0
.0
6
8

−
0
.0
6
6

𝑓𝐺
3
.50

×
10 −

3
3
.47 +

0
.0
6

−
0
.0
6 ×

10 −
3

3
.49 +

0
.1
0

−
0
.0
9 ×

10 −
3

3
.48 +

0
.1
5

−
0
.1
5 ×

10 −
3

𝑀
T
O

3.1

𝛼
3

-0.64

S
h
ared

𝛼
1

−
0
.1100

−
0
.1109 +

0
.0
0
0
3

−
0
.0
0
0
4

−
0
.1094 +

0
.0
0
1
4

−
0
.0
0
1
5

−
0
.1098 +

0
.0
0
2
0

−
0
.0
0
2
0

𝛼
2

−
0
.2500

−
0
.2524 +

0
.0
0
2
0

−
0
.0
0
1
9

−
0
.2534 +

0
.0
0
4
5

−
0
.0
0
4
6

−
0
.2521 +

0
.0
0
8
9

−
0
.0
0
8
4

T
ab

le
6.1

T
h
e
in
p
u
t
p
aram

eters
for

th
e
m
o
ck

sam
p
le

catalogu
e
gen

eration
an

d
th
e
resu

lts
of

th
e
fi
t
to

th
e
d
ata

are
sh
ow

n
w
h
en

u
sin

g
th
e
fu
ll

sam
p
le

w
ith

n
o
ob

servation
al

errors
(”F

u
ll”),

th
e
selection

fu
n
ction

w
ith

n
o
ob

servation
al

errors
(”S

F
”)

an
d
th
e
sam

p
le

w
ith

b
oth

th
e
selection

fu
n
ction

an
d
th
e
ad

d
ed

p
arallax

errors
(”S

F
&
𝜎
𝜛
”).

F
or

all
p
aram

eters
I
p
rov

id
e
th
e
m
ed
ian

an
d
16

th
an

d
84

th
p
ercen

tile
u
n
certain

ties.

178



6.4 Mock

Gaia selection function and Gaia-like parallax uncertainties are applied, and I attempt to

infer the input parameters from the mock sample. I note that this only tests the method.

Because the data is drawn from the same model which is being refit, any inconsistencies

between the model and true Milky Way distribution of stars do not show up here. These

inconsistencies are discussed, tested and quantified in Section 6.8.

6.4.1 Input Parameters

Parameters for the scale heights and power law indices of the discs and halo respectively

are taken from the literature. For the thin disc ℎTn = 300pc and thick disc ℎTk = 900pc

(Jurić et al., 2008). The power law index used is 𝑛H = 3.74 from Fukushima et al. 2019.

The relative stellar mass density of the discs is 𝜌Tk/𝜌Tn = 0.12 and 𝜌H/𝜌Tn = 0.005

(Jurić et al., 2008). Instead of local mass density, my model fits the total number of sources

in each component with |𝑏 | > 80◦. To convert mass density to number density in the Solar

neighbourhood, I divide by the mean mass of a star. The mean mass is estimated using

the IMF-isochrone sample in Section 6.3.2 as M ∼ 0.413, 0.369, 0.308M⊙ for the thin disc,

thick disc and halo respectively. I then divide the number density by the value of the

normalised component at 𝑠 = 0 to get the total number of sources in each component.

The result is that 𝑤Tn/𝑤Tk = 0.275 and 𝑤Tn/𝑤H = 0.0127. The halo dominates the total

counts because my observing volume is a cone with |𝑏 | > 80◦. This significantly reduces

the relative contribution from the disc to the sample.

The absolute magnitude distributions for each Milky Way component are shown by the

shaded histograms in Fig 6.3. To estimate magnitude parameters for the luminosity function

described in Section 6.3.2, I directly fit the parameters to the magnitude distributions.

For each component, the turn-off magnitude is at 𝑀𝐺 ∼ 3.1. 𝑓𝐺 is approximated from

the ratio of sources with 𝑀𝐺 < 3.1 to those with 𝑀𝐺 > 3.1. For 𝑀𝐺 < 3.1 I fit a power

law profile to each component independently using the Poisson likelihood function from

Eq. 6.1. This gives 𝛼3 = −0.60,−0.77,−0.64 and 𝑓𝐺 = 0.0045, 0.0054, 0.0035 for the thin

disc, thick disc and halo respectively.

The lower main sequence is dominated by old, long-lived stars which evolve slowly on

the HR diagram. Therefore, I assume that the main sequence profiles are similar between

different Milky Way components such that the values of 𝛼1, 𝛼2 are shared between profiles.

I draw a sample of sources from each of the components according to the component’s

respective weight and fit the main sequence profiles to the sources with 𝑀𝐺 > 3.1, which

gives 𝛼1 = −0.12, 𝛼2 = −0.26. The dashed lines in Fig. 6.3 give the absolute magnitude

distributions implied by the parameters I have just derived.

All selected and evaluated parameter values are listed as ‘Input’ in Table 6.1.

6.4.2 Parallax Error

To generate a realistic mock, I also need to sample measurement uncertainties. Since the

Gaia astrometry was fit using an iterative linear regression process, the covariance may be

estimated from information theory (neglecting excess noise) using only the scanning law
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and individual observation centroid uncertainties. This process is performed in Chapter 5

for Gaia DR2 and I use the Gaia EDR3 nominal scanning law to extend this to the EDR3

baseline.

The covariance estimates break down for sources with significant excess noise, such

as in heavily crowded regions and for sources with intrinsic astrometric variability like

binaries. Since I only consider sources with |𝑏 | > 80◦, crowding is negligible. By focusing

on the sample with RUWE < 1.4, I expect to have removed sources with observable binary

motion.

6.4.3 Mock Samples

A sample of one million sources with distance, latitude and absolute magnitude is drawn

from the model using MCMC sampling (Foreman-Mackey et al., 2013). Since all sources

are assumed to be at the Solar Galactocentric cylindrical radius, the full model is Galactic

longitude-independent so the longitude is drawn from a uniform distribution 𝑙 ∼ U[0, 2𝜋].
The distribution of drawn sources as a function of distance from the Galactic disc and

absolute magnitude is given by the blue histograms in the top panels of Fig. 6.5.

The selection function probability is evaluated for all sources given their position on

the sky and apparent magnitude as described in Section 6.3.4. To generate the mock Gaia

astrometry with RUWE < 1.4 sample, the event of a source being included is drawn from

a Bernoulli distribution with the given selection probability S𝑖 ∼ Bernoulli(S(𝑙𝑖, 𝑏𝑖, 𝐺𝑖))
where S𝑖 = 0, 1. Of the 1 000 000 source in the full sample, 73 132 survive the selection cuts,

shown by the red histograms in the middle and bottom panels of Fig. 6.5.

Parallax error is evaluated from the Astrometric Spread Function described in Section 5.

The observed parallax is drawn from a Gaussian distribution with the given error for each

source 𝜛 ∼ N(1/𝑠, 𝜎𝜛). The red histograms in the bottom panels of Fig. 6.5 show the

distribution of measured 𝑧 = sin(𝑏)/𝜛, 𝑀𝐺 = 𝐺 − 10 + 5 log10(𝜛/mas) after sampling 𝜛

from the parallax error. This significantly affects the distributions, demonstrating the

importance of properly accounting for parallax uncertainty when modelling the structure

of the Milky Way from Gaia data.

This produces three samples which can each be used to independently fit the model

parameters demonstrating each stage of the method:

(i) Full sample fit with Eq. 6.1: 𝑙𝑖, 𝑏𝑖, 𝑠𝑖, 𝐺𝑖 ∀ 𝑖,
(ii) SF sample fit with Eq. 6.3: 𝑙𝑖, 𝑏𝑖, 𝑠𝑖, 𝐺𝑖 ∀ 𝑖 where 𝑆𝑖 = 1,

(iii) SF & 𝜎𝜛 fit with Eq. 6.9: 𝑙𝑖, 𝑏𝑖, 𝜛𝑖, 𝐺𝑖 ∀ 𝑖 where 𝑆𝑖 = 1.

To be clear, in sample (iii) the selection function is not dependent on measured parallax

or parallax error as discussed in Section 6.2. I simply mean that the selection function is

applied and parallax error on sources is also included. Samples (ii) and (iii) contain the

exact same subset of sources from the mock catalogue. Sample (ii) has no parallax error,

whilst measured parallaxes in (iii) have been drawn from the parallax uncertainties.
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6.5 Parameter Inference

In this section I use the method introduced in Section 6.2 to fit the model parameters to

the three mock samples described in Section 6.4.

6.5.1 Priors

Priors for all free parameters of the fits are given in Table 6.2. As is common with mixture

model fits to density distributions, the likelihood space is strongly multi-modal. For the

thin and thick discs there is of course a complete degeneracy where the components can

be switched, but there are also problematic modes where, for example, a single component

is expanded to fit the full data-set whilst remaining components are suppressed.

Priors are chosen specifically to avoid local optima in the model. All weights are assumed

to be drawn from a Dirichlet distribution with 𝑎 = 2 to remove modes where any component

is completely suppressed relative to the others. To avoid the disc degeneracy, the possible

disc scale heights are limited to non-overlapping ranges with ℎTn ∼ U[0.1kpc, 0.6kpc] and
ℎTk ∼ U[0.6kpc, 3.0kpc]. The power-law index of the halo is also limited to 𝑛H ∼ U[3.0, 7.3]
as 𝑛𝐻 < 3.0 would produce an unnormalised halo and 𝑛𝐻 > 7.3 produces an incredibly

steep halo profile which can mimic the exponential discs (for 𝑛𝐻 = 7.3 the mean halo

source distance is the same as an exponential profile with ℎ = 3.0 kpc).

For numerical stability, the fits are made on the transformed parameters where trans-

formations are given in Table 6.2. The transformations scale parameters to the range

[−∞,∞] in all cases. For logit transformed parameters, I include a logistic prior in logit

space which is equivalent to a uniform prior in untransformed space. Therefore the logit

transformation has no effect on the prior.

The L-BFGS-B algorithm requires boundaries on all parameters which are given in the

final column of Table 6.2. The boundaries are chosen to avoid regions of parameter space

which suffer from numerical precision issues. None of the parameter posterior distributions

push up against the boundaries.

6.5.2 Optimization

The likelihood optimization is performed in three stages. All MCMC processes used emcee

(Foreman-Mackey et al., 2013). First, a set of samples is drawn from the parameter priors

using MCMC with 44 walkers (this is 4× the number of free parameters in my model),

with 100 step burn-in and 100 steps of sampling. Secondly, ten samples are randomly

selected from the prior samples as initialisation for gradient descent using L-BFGS-B (Zhu

et al., 1997) as implemented in scipy. Finally, the maximum likelihood estimate with

the highest likelihood is taken as the best fit solution. A secondary MCMC process is

initialised with 44 walkers drawn from a Gaussian ball around the maximum likelihood

estimate with variance of 10−10 times the boundary width. These walkers were run with

the likelihood × prior for 5000 steps. The latter 2 500 steps are used at 5 step intervals as

the posterior samples. This process is used for fitting all mock samples and the real Gaia

data in the rest of thus chapter.
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Component Parameter Prior Transformation Bounds

Thin disc 𝑤 Dirichlet(𝑎 = 2) log(𝑤) [-10,50]

ℎTn U[0.1, 0.6] logit
(
ℎ−0.1
0.6−0.1

)
[-10,10]

𝑓𝐷 U[0, 1] logit( 𝑓𝐷) [-10,10]

Thick disc 𝑤 Dirichlet(𝑎 = 2) log(𝑤) [-10,50]

ℎTk U[0.6, 3.0] logit
(
ℎ−0.6
3.0−0.6

)
[-10,10]

𝑓𝐷 U[0, 1] logit( 𝑓𝐷) [-10,10]

Halo 𝑤 Dirichlet(𝑎 = 2) log(𝑤) [-10,50]

𝑛H U[3, 7.3] logit
(
ℎ−3
7.3−3

)
[-10,10]

𝑓𝐷 U[0, 1] logit( 𝑓𝐷) [-10,10]

Shared 𝛼1 −𝛼1 ∼ log U[e−5, e3] log(−𝛼1) [-5,3]

𝛼2 −𝛼2 ∼ log U[e−5, e3] log(−𝛼2) [-5,3]

Table 6.2 The 11 free parameters used to model the spatial and absolute magnitude
distributions of sources along with their priors. The method fits directly to the parameters
under the given transformations where logistic priors are also included to correct for the
logit transform. The bounds are applied to the transformed parameters for numerical
stability of the optimization.

6.5.3 Results

The ‘Full’ sample posteriors, given by the blue contours in Fig. 6.6, provide tight solutions

around the input parameter values which are shown by the black dot. A more quantitative

comparison can be made from Table 6.1 which shows that the majority of input parameters

fall within the 16 − 84th percentile range of the posterior distribution. The top panels of

Fig. 6.5 compare the ground truth input model, shown with dotted lines, to the refit model,

shown by the narrow shaded regions. To produce the shaded posteriors in Fig. 6.5 I draw

100 samples from the posterior parameter distributions and plot the 16 − 84th percentile

range as a function of 𝑧, 𝑀𝐺 and 𝐺. The posteriors are so tight in most cases that the

shaded regions appear as lines perfectly tracking the input model and the total of the

components in black sits exactly on top of the blue histograms which show the distribution

of the data in the sample.

The ‘SF’ sample, fit to only 73 132 of the initial one million mock sources, has a

significantly less tight constraint around the true parameters, shown by the red contours

in Fig 6.6, but the parameters show no significant bias. The fits to the halo parameters

are slightly shifted from the true values but all parameters are well within 2𝜎 of the input

so this can be well explained by correlated noise, particularly considering the negative

correlation between the halo weight and power-law index, 𝑛H. The red histograms in the

middle panels of Fig. 6.5 show the selection-limited sample which drops significantly at
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Full

Gaia SF

Gaia SF, σ$
−0
.8
−0
.4

0.
0

lo
gi

t(
h

T
n
−

0.
1

0.
6−

0.
1
)

−1
0

−8
−6

lo
gi

t(
f G

)

10
.5

0
10
.6

5
10
.8

0

lo
g(
w

)

−3
.2
−2
.4
−1
.6

lo
gi

t(
h

T
k
−

0.
6

3.
0−

0.
6
)

−5
.7
−5
.4
−5
.1
−4
.8

lo
gi

t(
f G

)

13
.5

013
.6

513
.8

013
.9

5

lo
g(
w

)

−1
.8
−1
.5
−1
.2

lo
gi

t(
n

H
−

3.
0

7.
3−

3.
0)

−5
.8

5
−5
.7

0
−5
.5

5

lo
gi

t(
f G

)

−2
.2

5−2
.2

0−2
.1

5

lo
g(
−
α

1)

8.
8

9.
2

9.
6

log(w)

−1
.5

2−1
.4

4−1
.3

6−1
.2

8

lo
g(
−
α

2)

Thin disc

−0
.8
−0
.4 0.

0

logit(hTn−0.1
0.6−0.1)

−1
0 −8 −6

logit(fG)

10
.5

0
10
.6

5
10
.8

0

log(w)

Thick disc

−3
.2
−2
.4
−1
.6

logit(hTk−0.6
3.0−0.6)

−5
.7
−5
.4
−5
.1
−4
.8

logit(fG)

13
.5

0
13
.6

5
13
.8

0
13
.9

5

log(w)

Halo

−1
.8
−1
.5
−1
.2

logit(nH−3.0
7.3−3.0)

−5
.8

5

−5
.7

0

−5
.5

5

logit(fG)
−2
.2

5

−2
.2

0

−2
.1

5

log(−α1)

Shared

−1
.5

2

−1
.4

4

−1
.3

6

−1
.2

8

log(−α2)

Fig. 6.6 The posterior distributions for all mock samples are shown as a function of
transformed parameters which are fit to the data. The Full sample fits (blue), selection
function sample (red) and selection function with parallax error (purple) all show strong
agreement with one another and the input parameters (black lines). The enhancement
of the statistical uncertainty by introducing parallax error can clearly be seen by the
increased spread of the posterior for the purple contours.
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large vertical heights and faint apparent magnitudes demonstrating how much the model

has to extrapolate using the selection function. Again, the model posteriors sit perfectly

on the input model shown by the dotted lines.

For the apparent magnitude distribution in the middle right panel of Fig. 6.5 I show

the model multiplied by the selection function probability. The total model (black) sits

perfectly on top of the red sample histograms demonstrating how successfully the model is

fit to the data. This distribution will be especially important when analysing fits to the

real Gaia data when I cannot directly infer the distance of stars from the Galactic plane

or their absolute magnitudes due to significant parallax uncertainties.

The ‘SF & 𝜎𝜛’ posterior, given by the purple contours in Fig. 6.6, has significantly

enhanced uncertainty compared with the solely selection function limited data. This

demonstrates how much information is held in the parallax and how information is lost

when realistic Gaia parallax uncertainties are included. In spite of this, the input parameters

are still recovered with reasonable precision and good accuracy. In the bottom panels of

Fig. 6.5, the posterior samples produce a clearer spread around the input distribution.

This time the thin and thick discs have not been perfectly fit within the posteriors however

the difference is still small enough to be well explained by statistical noise.

These results demonstrate that the Poisson-likelihood method accounting for the Gaia

selection function and parallax error is a powerful tool for recovering the spatial distribution

of sources in the Milky Way. However this only tests the self-consistency of the method; the

results may still be susceptible to systematic uncertainties if the model does not represent

the real Milky Way. These systematics are tested and quantified in Section 6.8.

6.6 Data

My initial sample of Gaia sources consists of all objects in EDR3 with |𝑏 | > 80◦, published

parallax with RUWE < 1.4 and published 𝐺-band apparent magnitude with 𝐺 > 5.

Brighter sources saturate the Gaia CCDs which significantly affects the reliability of

astrometric solutions. My sample is extracted with the following query which returns

673 926 sources in the Galactic north and 702 599 in the south.

select ra, dec, parallax, parallax_error, phot_g_mean_mag

from gaiaedr3.gaia_source

where (b<-80 or b>80)

and parallax is not NULL

and phot_g_mean_mag>5

and ruwe<1.4

A recurring challenge with Gaia astrometry is the zero-point parallax offset, which leads

to a small bias for any individual source but can significantly bias models fit to an entire

population (e.g. see Everall et al., 2019). I apply the zero-point correction recommended

in Lindegren et al. 2021b for sources with 5 and 6 parameter astrometric solutions. Many

other groups have attempted to measure the zero point parallax offset from Cepheid

variables (Riess et al., 2021), Red Clump stars (Huang et al., 2021), eclipsing binaries
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(Ren et al., 2021; Stassun & Torres, 2021) and quasars (Groenewegen, 2021) (although

the Lindegren et al., 2021b model was constructed using quasars so it is unsurprising that

these results match well). The conclusions are that for the majority of sources, the parallax

offset is reduced to under 10 `as. Zinn 2021 and Riess et al. 2021 find the parallaxes of

sources brighter than 𝐺 = 10.8 are overestimated by ∼ 15 `as after the correction, so I

adjust the offset for the small portion of my sample with 𝐺 < 10.8. I test and discuss the

effect of any residual offset in Section 6.8.

Parallax errors in Gaia are found to be typically underestimated when considering

globular clusters (Vasiliev & Baumgardt, 2021) and wide binaries (El-Badry et al., 2021).

I use the model from Equation (16) of El-Badry et al. 2021 to revise the parallax errors of

my Gaia sample, as this is appropriate for uncrowded fields which broadly applies to my

sample.

The Gaia G-band apparent magnitude also has some small systematic bias for sources

with 6-parameter astrometric solutions. I apply the apparent magnitude correction

recommended in Riello et al. 2021 to the sources where 𝐺BP − 𝐺RP colour is available.

One issue this raises is that the 𝐺-band apparent magnitude used for the data is subtly

different from the measurements used to derive the Gaia selection function. However,

the magnitude correction is at most −0.025 mag which is much smaller than my 0.2 mag

resolution of the selection function. Therefore this inconsistency will have a negligible

effect on the results.

As I am only using objects at high Galactic latitude, there is likely to be a sizable

contamination from extragalactic sources (both quasars and distant galaxies). If left in

the sample, these would bias the inferred distribution of stars towards larger distances.

Classifiers have been constructed to determine the probability of a source being

extragalactic based on Gaia astrometry and photometry complemented with other surveys

(Bailer-Jones et al., 2019; Shu et al., 2019). The issue is that these classifications are not

100% pure and will likely remove dim stars with low parallaxes which are misclassified

as extragalactic. This is particularly clear in Fig. 10 of Bailer-Jones et al. 2019 where

the ‘quasar’ population is dominated by the LMC, SMC and particular scans. The most

prominent scans are the same as those found in Section 4.1.2 which were caused by missing

calibration data in the Gaia photometric processing pipeline. To avoid introducing a bias

to my data when removing extragalactic sources I avoid selecting on apparent magnitude

and astrometry.

Galaxies have an extended flux distribution on the sky. Due to the larger window

size used to measure BP and RP on-board Gaia, galaxies will typically produce an

excess flux in these bands over the 𝐺-band (see Fig. 21 Riello et al., 2021). The flux

ratio between the combined BP and RP measurements and the 𝐺-band is published as

phot bp rp excess factor in the Gaia archive (Evans et al., 2018). The published

excess flux has some residual colour-dependence which needs correcting. I use the formula

provided in Section 6 of Riello et al. 2021 to estimate the corrected flux excess 𝐶∗. Galaxies

are selected as sources with 𝐶∗ > 1.8. The distribution of sources in excess flux vs
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𝐺BP − 𝐺RP is shown in the left panel of Fig. 6.7 with the red dashed line showing the

Galaxy cut.

Quasars are well distinguished using the WISE photometry’s 𝑊1 −𝑊2 colour (e.g.,

Shu et al., 2019). I crossmatch my sample with the unWISE sample which has improved

resolution over the original WISE catalogue (Lang, 2014). Taking the nearest object within

2 arcseconds correcting for proper motions with the Gaia epoch set to 2016 and unWISE

to 2010 produces a successful match for 88% of sources in my sample. Quasars are removed

from my sample using the colour-colour cut

𝑊1 −𝑊2 > 0.5 & 𝐺BP − 𝐺RP < 0.7(𝑊1 −𝑊2) (6.39)

which is shown by the blue dashed line in the middle panel of Fig. 6.7.

These cuts select 2 933 galaxies and 50 726 quasars with 553 sources classified as both

a galaxy and quasar. However, this does not tell us how successful my selection has been.

For this, I crossmatch with spectroscopically classified sources in SDSS-IV (Blanton et al.,

2017). I again use a proper motion corrected crossmatch for sources within 2 arcseconds

with the SDSS epoch set at 2000. In this case, only 1.8% of my sample receive SDSS

spectra, the vast majority of which are in the northern field. The objects classified as

galaxies and quasars by SDSS are shown as the red and blue points respectively in the left

and middle panels of Fig. 6.7.

Of those with successful crossmatches, 8 900 are classified as galaxies or quasars by

SDSS whilst my cuts select 8 275 sources, of which 8 114 are classified as extragalactic by

both. This implies that my selection criteria correctly classifies 91.2% of extragalactic

sources with only 1.7% of Milky Way sources incorrectly classified as extragalactic. The

remaining 8.8% of missing sources account for ∼ 0.3% of my final sample, so I consider

this completeness to be sufficient.

Extragalactic sources are far too distant for Gaia parallax measurements therefore

the measured parallax signal to noise will be distributed as 𝜛/𝜎𝜛 ∼ N(0, 1). I show

this distribution in the right hand panel of Fig. 6.7 for galaxies (red), quasars (blue) and

the remainder of the sample (purple). The extragalactic sources are close to normally

distributed. The galaxy sample has a small amount of stellar contamination which

marginally enhances the +𝜛 wing, but overall this shows that my classification has

performed well.

The number density of sources in pixels around the north and south Galactic poles

is shown in the top panels of Fig. 6.8. For the most part, the distribution is reasonably

smooth and noise dominated which is good when fitting a smooth model. However, the

south field has two significant overdensities. The overdensity close to the south Galactic

pole is the globular cluster NGC 288 which sits at a distance of approximately 9 kpc

from the Sun with a scale radius of ∼ 3 arcminutes (Vasiliev & Baumgardt, 2021). The

other overdensity at slightly higher latitudes east of the Galactic Centre direction is

the Sculptor dwarf spheroidal at 𝑙 = 288◦, 𝑏 = −83◦ with a half-light radius of ∼ 11.3

arcminutes (McConnachie, 2012).
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6.6 Data

Fig. 6.8 Top: The number density of sources in HEALPix pixels across the north (left)
and south (right) regions of the sky with |𝑏 | > 80◦ is mostly uniform. The two clear
exceptions are NGC 288 at the south Galactic pole and the Sculptor dwarf spheroidal at
(𝑙, 𝑏) = (288◦,−83◦) both appearing in the upper right panel. Bottom : After masking
these contributions I am left with the bottom panels which are almost uniform with a slight
number density gradient from towards the Galactic centre at the top to the anticentre at
the bottom.
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To prevent these objects from contaminating my smooth models, I mask the regions of

the sky occupied by the structure out to four scale radii. I then renormalise the pixels

by the fraction of the area which remains unmasked. This is the same treatment that I

apply to pixels sitting on the edge of the 10◦ radius fields. The resulting source density

after masking NGC 288 and Sculptor is given by the bottom panels in Fig. 6.8, showing

no further significant residual substructure. The gradient of the source density from the

Galactic Centre (top of the figure) to the outer galaxy can now be seen. This shows the

cylindrical radius dependence of the Milky Way distribution of stars which is not factored

into my model, but I discuss its impact in Section 6.8.

The absolute magnitude model defined in Section 6.3 is limited by 𝑀𝐺 < 12 in order

to avoid use of uncertain stellar evolutionary models. The Gaia sample may still contain

sources dimmer than this limit, which are nonetheless near enough that Gaia is able to

detect them. The issue is that I cannot directly measure absolute magnitude and parallax

error is large enough for many sources that they will be scattered to that region of absolute

magnitude space independent of their true brightness. My compromise is to cut out sources

which are likely to be fainter than 𝑀𝐺 = 12 by one sigma uncertainty in parallax. In other

words, removing all sources with greater than 84% likelihood of 𝑀𝐺 > 12. This means

only keeping sources with

𝜛 − 𝜎𝜛 < 10
22−𝐺

5 . (6.40)

The effect of this cut is shown in Fig. 6.9. The left panel shows the naive absolute

magnitude distribution calculated with 𝑠 = 1/𝜛. The cut removes a large fraction of

objects which fall outside the boundary. Importantly, from the middle and right panels,

all of the sources removed from the sample are measured with 1/𝜛 within 400pc of the

Sun with a parallax signal-to-noise ratio (SNR) greater than 1.4. Any error in this cut

will introduce a dependence of the selection function on measured parallax and parallax

error. However, given the high parallax SNR of the removed sources, I expect that this

dependence should be negligibly small. An added benefit of the cut I have placed here is

that it will likely remove sources with poor astrometric solutions as classified by Rybizki

et al. 2021a and Gaia Collaboration et al. 2021b which are typically fainter than 𝑀𝐺 = 12.

This cut removes a further 13 792 and 13 731 sources from the north and south fields

respectively.

After all of the cleaning, I am left with 633 289 north and 640 072 south sources in my

sample. I emphasise that, through all of these cuts, I remove less than 11% of the sample

with published parallax, 𝐺 apparent magnitude and RUWE < 1.4. By comparison, a cut

on 𝜛 > 0 alone (which is a serious crime, according to Luri et al. 2018) removes over 15%

and a signal-to-noise cut of 𝜛/𝜎𝜛 > 4 removes over 61%. I am modelling the vast majority

of Gaia sources using the reliable astrometric and photometric data that is available.
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(b) 𝑠 < 160 kpc

Fig. 6.10 Fitted models and sample number densities per unit 𝑧 (kpc, left), 𝑀𝐺 (middle) and
𝐺 (right) for the thin disc (orange) and thick disc (green) and halo (purple) and their sum
total (black). Lines show the median model fits with shaded regions providing the 1st−99th

percentile range of the posterior fits to the Gaia data. In most cases the posterior is so
tightly constrained that the uncertainties cannot be picked out in these plots. a: For the
infinite halo model there is qualitative agreement between south (top) and north (bottom)
disc samples with a steeper northern halo profile. Due to the large total normalisation
of the infinite halo within 𝑏 > 80◦, the halo dominates the absolute magnitude profile
and it sits directly under the total profile. b: The model with halo truncated such that
𝑠 < 160 kpc also has similar north and south profiles with a marginally steeper south halo.
For both models the red histograms in the left panels show the distribution sin( |𝑏 |)/𝜛
which is significantly different to the fit model due to a combination of the selection
function and parallax error which I have demonstrated need to be treated properly (∼ 14%
of the sample has negative parallax and cannot even be plotted). Red histograms in the
right column show the 𝐺 distribution of the data which agrees very well with the product
of my model with the selection function (black dotted line). At the bright end the model
slightly overestimates the data which is likely because my model does not truncate at the
tip of the red giant branch (see Fig. 6.3).
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6.7 Results

The model is independently fit to the northern and southern Gaia samples. This halves

the sample size in either fit but means I can draw a comparison between the Milky Way

structure above and below the disc. The method is described in detail in Section 6.2.

The resultant model is shown in Fig. 6.10a. Solid lines and shaded regions show the

median and 1st − 99th percentile ranges for the fits to the individual components and sum

total. I evaluate this by drawing 1000 samples from the MCMC posterior, evaluating the

model and taking the percentiles as a function of 𝑧, 𝑀𝐺 and 𝐺. Each of the three Galaxy

components are well constrained with the thin disc dominating the model for 𝑧 < 0.5 kpc,

the thick disc being the main contribution for 0.5 < 𝑧 < 5 kpc and the halo taking over

at large distances. The thin and thick disc profiles are qualitatively very similar between

the north and south samples however the halo profile in the south fit declines much more

slowly with distance.

In the left panels of Fig. 6.10a red histograms show the number density of stars as a

function of 𝑧 = sin(𝑏)/𝜛, which provides a biased estimate of height above the Milky Way

disc. The distribution is significantly lower than my model at large scale heights both

due to the selection function and because parallax uncertainty scatters measurements to

either larger positive or negative observed parallax. Faint sources in Gaia have typical

parallax uncertainties 𝜎𝜛 > 0.1 mas and so measuring 0 < 𝜛 < 0.1 mas (which corresponds

to 𝑧 > 10 kpc) is unlikely due purely to measurement noise. Some of these sources are

scattered up in parallax and down in distance generating the excess of sources with

measured 𝑧 ∼ 0.4 kpc. This can also be seen in Fig. 6.5 where the imposed Gaia-like

selection function and parallax uncertainties have the same effect on the naive distribution

of 𝑧 = sin(𝑏)/𝜛. The point I am making here is that one must account for both parallax

uncertainty and the Gaia selection function to obtain an unbiased model of the Milky Way

distribution of stars.

Unlike several previous works such as Jurić et al. 2008 and Mateu & Vivas 2018, my

model extends to infinity so I require 𝑛H > 3 to keep the model normalisable. However,

this is not a physical constraint and other studies have shown that the halo drops off

much steeper beyond 𝑟 ≳ 50 kpc (Deason et al., 2014) or 𝑟 ∼ 160 kpc (Fukushima et al.,

2019). My model is dominated by information from the inner, shallower component of

their profiles. This leads to an overestimate of the overall halo normalisation, which

consequently are untrustworthy.

To obtain a more realistic halo normalisation, I rerun the fits truncating the parallax

integral and halo normalisation with 𝑠 < 160 kpc (i.e. 1/𝑠 > 6.25 `as) and changing the

halo exponent prior to 𝑛H ∼ U[2, 7.3]. The spatial and absolute magnitude profiles are

shown in Fig. 6.10b. In this case, the north and south halo profiles are both significantly

steeper.

The right hand panels of Figs. 6.10a and 6.10b show the apparent magnitude distribution

marginalised over position on the sky and distance. I weight the total distribution by

the selection function which produces the black dotted line. This sits directly on the red
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histograms which give the apparent magnitude distribution of the Gaia data. The model

slightly overestimates the apparent magnitude distribution at the bright end (𝐺 ≲ 7) which

I expect is due to the truncation of the absolute magnitude distribution at the tip of the

red giant branch which can be seen at 𝑀𝐺 ∼ −3 in Fig. 6.5 but which I do not account for

in my model.

The posteriors on each parameter are shown in Fig. 6.11 for the north and south samples

(blue and red respectively) with distance truncated fits shown with dashed contours. Across

all parameters there are systematic differences between the results from the north and

south samples. For the thin and thick disc parameters these differences are small. However,

in the case of the halo, the effect is far more substantial. Transitioning from an infinite

to a truncated halo also significantly modifies the halo parameters with small knock-on

effects to the disc. Given previous work (Deason et al., 2014; Fukushima et al., 2019), I

consider the truncated model to be the more appropriate and will use those fits for my

final results.

The posterior median, 16th and 84th percentiles for all components and parameters in

each of the runs are given in Table 6.3.

6.7.1 Stellar Mass Density

My parameterisation, in particular the component normalisation (𝑤𝑐), is specific to this

sample as it is the total number of source with 𝑀𝐺 < 12 within the cone |𝑏 | > 80◦. The

local stellar mass density (𝜌∗
local

), local surface density (Σ∗
local

) and halo total stellar mass

(𝑀∗
Halo

) are more generally interesting to the Galactic dynamics community and can be

estimated from my results as I explain here.

The number density of sources in the Solar neighbourhood with 𝑀𝐺 < 12 is given by

𝑤𝑐 · a𝑐 (𝑠 = 0) where subscript 𝑐 refers to each of the three Milky Way components. I can

inflate this to include main sequence sources with 𝑀𝐺 > 12 using the isochrones from

Section 6.3 and the IMF. The isochrones translate 𝑀𝐺 = 12 to a minimum initial mass

of sources in my sample for each component, giving Mini,min = 0.177, 0.147, 0.115M⊙ for

the thin, thick disc and halo respectively. The maximum initial mass of stars before they

reach the post-AGB evolution phase – eventually leading to a compact object remnant and

thus disappearing from my sample – is Mini,max = 1.083, 0.980, 0.801M⊙. To get the total

pre-compact object local number density of sources, I inflate my local number density by

a factor

𝑋𝑐 =

∫ Mini,max

0
b (Mini)dMini∫ Mini,max

Mini,min
b (Mini)dMini

(6.41)

where b (Mini) is the IMF (I use Kroupa 2001). This gives 𝑋𝑐 = 3.167, 2.785, 2.398 for the

three components.

To estimate the local stellar mass density, I need the mean mass of sources in the

population. I can use the IMF again for this however I need to account for stellar mass

loss. I use the three component isochrones to transform from initial mass to current stellar

mass, M(Mini). The stellar evolution models do not extend all the way to zero mass so I
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Fig. 6.11 The posterior distributions for the north (red solid contours) and south (blue solid
contours) sample fits show a small but significant disagreement across most parameters
suggesting a weak asymmetry. Constraining the model to 𝑠 < 160 kpc (dashed contours)
has a small impact on disc parameters however the halo model is much more significantly
affected. Notably, the halo power-law index, which pushes close to the lower bound for
an un-truncated model, is fit with a significantly steeper profile when the truncation is
applied. The truncated model is better suited to the Milky Way for which the halo will
not extend indefinitely.
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6.8 Systematic Errors

assume any stars with Mini < 0.1 experience negligible mass loss in their lifetimes such

that M(Mini) = Mini. The mean mass of all non-compact object stars is

⟨M⟩𝑐 =
∫ Mini,max

0
M(Mini) b (Mini) dMini∫ Mini,max

0
b (Mini) dMini

which gives ⟨M𝑐⟩ = 0.174, 0.168, 0.155 for the three components. Finally, the local mass

density of non-compact object stars is

𝜌∗local,𝑐 = 𝑤𝑐 a𝑐 (𝑠 = 0) · 𝑋𝑐 · ⟨M⟩𝑐 . (6.42)

A critical assumption I have made is that any stars born with an initial mass larger

than Mini,max will not appear in my sample. In reality, the White Dwarf sequence extends

up to 𝑀𝐺 ∼ 8 (see Rix et al., 2021) and so there may be many White Dwarfs in my

sample. However, these will be dominated by the main sequence dwarfs of the same

absolute magnitude and will only provide a severely sub-dominant contribution to the

number density (see Fig. 2 Gaia Collaboration et al., 2021b).

I estimate the surface densities by integrating my components with respect to 𝑧. Since

my power-law halo has 𝑛 > 3, the total halo stellar mass is not well normalised at 𝑟 = 0.

I estimate the total halo mass, 𝑀∗
Halo

, by integrating my halo profile for 𝑟 > 1 kpc and

taking 𝑛𝐻 = 2 (uniform density) inside. As a result, the halo mass is largely dominated by

stars inside the Solar radius and is an extrapolation of the local halo stellar mass density

so this should be taken with caution.

The means and standard deviations of these parameters using the 𝑠 < 160 kpc fits are

`North and `South in Table 6.4.

6.8 Systematic Errors

There are various aspects of the model which may lead to systematic errors in the posterior

parameter fits. In most cases, these originate from simplifications to make the optimization

computationally tractable. Here, I address some of the aspects which are capable of biasing

the results and test the significance of their impact on the inferred parameters.

The tests are all performed using mock catalogues. The first four systematic tests

(Sections 6.8.1-6.8.4) use the exact same sample as Section 6.4, but resampling from the

selection function where apparent magnitudes are altered. In Fig. 6.12 and Table 6.5 I have

provided the posteriors of the “SF & 𝜎𝜛” fit from Section 6.5 for comparison and labeled

it “Good” as this was fit under ideal circumstances where the data correctly represents

the model. The tests in Sections 6.8.5 and 6.8.6 use re-sampled catalogues applying the

same method as Section 6.2 including parallax uncertainties from the Astrometric Spread

Function (see Chapter 5). There is a level of statistical error in population sampling which

affects the posteriors for tests when a new catalogue is generated.
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6.8 Systematic Errors

6.8.1 Solar Vertical Offset

In my model, I assume that the Sun sits directly on the mid-plane of the Milky Way and

as such I have a symmetric view of the Galaxy towards the north and south. In fact,

the Sun is slightly vertically offset from the Galactic plane to the north by ∼ 14 − 21pc

(Bennett & Bovy, 2019; Binney et al., 1997; Joshi, 2007; Widmark & Monari, 2019). As a

result, my model assumes the distribution of stars in the south is closer than it actually is

and in the north, too far away. This may impact the inferred scale height of the discs.

To test the significance of this assumption, I use my mock sample and introduce a

vertical shift to the effective Solar position. This is done for stars assuming the sample

is entirely in the north. The vertical position is changed for all stars such that the new

coordinate, 𝑧′ is given by

𝑧′ = 𝑧 − 𝑧⊙, (6.43)

with 𝑧⊙ = 21 pc – towards the upper end of estimates of the Solar position offset from the

Galactic plane. This reduces both the latitude and distance of sources and therefore also

reduces the apparent magnitudes

tan 𝑏′ =
𝑠 tan 𝑏 − 𝑧⊙ sec 𝑏

𝑠
(6.44)

𝑠′ = 𝑠
[
1 + 𝑧⊙

𝑠

( 𝑧⊙
𝑠

− 2 sin 𝑏
)] 1

2
. (6.45)

My latitude cut is applied on the updated latitudes, |𝑏′| > 80. I do not use the southern

population, as this requires re-sampling the mock outside the original selection bounds

which would be more complicated to interpret. For the north sample, this cut simply

removes some sources from the original data set. The source apparent magnitudes are

then recomputed from their original absolute magnitudes and the new distances, after

which the selection function is applied to the sample and finally observed parallaxes are

re-sampled from the expected uncertainties. The sample size is reduced by ∼ 1.8% over

the original.

The results of the parameter fits to the new sample are given in Table 6.5 and shown

by the blue dashed contours in Fig. 6.12. The shifts of parameters from the true values

are marginally significant in some cases. Specifically, the scale height of the thin disc is

slightly increased which may be considered counter intuitive given that I am effectively

pushing the Sun closer to sources. However, pairing this with the increased weight of the

thin disc and reduced weight of the thick disc it suggests the thin disc is taking on some

thick disc sources. Overall, these results suggest that the simplification to the model of

setting 𝑧⊙ = 0 is only likely to have a marginal effect on parameter estimates.

6.8.2 Dust Extinction

Extinction due to inter-stellar dust causes stars to appear dimmer than they would

otherwise be at a given distance and absolute magnitude. This is one of the motivations

behind narrowing the sample to high-latitude regions. In these areas, the effects of dust
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Fig. 6.12 Posterior parameter fits to the mock sample from Section 6.4 for the thin disc
parameters (a, top left), thick dick (b, top right) and halo (c, bottom) under alterations to
the data which could introduce systematic errors. The purple solid “Good” contours in
all panels show the posteriors from Section 6.5, fit to the sample without any imposed
systematics and black dot and lines show the input parameters used to generate the sample.
Adding a 𝑧⊙ offset (blue dotted) has only a marginal impact on most parameter estimates.
Gaia-like magnitude error (𝜎𝐺 , red dot-dashed) leads us to underestimate the thin disc
giant fraction. Extinction from Bayestar (𝐴𝑉 , orange solid) biases the model towards an
overly steep halo whilst a −10 `as parallax offset (Δ𝜛, cyan dotted) has the opposite effect.
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extinction are small for any individual star. However, since this systematically affects all

sources in the same direction, there can still be a sizable affect on the model parameter

estimates.

Why don’t I use the published dust maps to de-redden the sources in the Gaia samples

in the first place? At first glance, this is an appealing suggestion, but there is a subtle

issue here which would lead to an underestimate in uncertainties. Because the Green

et al. 2019 extinction map is evaluated using Gaia parallax information, as is my model,

there would be a double counting of information. The formally correct way to handle this

problem is to simultaneously fit the structure of the Milky Way and the extinction map.

One immediate challenge is a strong degeneracy between extinction, distance and absolute

magnitude of sources. This is a significantly more complex problem and well beyond the

scope of my thesis.

Nonetheless, I can gauge the impact of extinction by applying a Milky Way extinction

map to the mock catalogue, re-sample the selection function from the new observed

apparent magnitudes and fit the model parameters to this.

The most detailed 3D extinction map to date for the Milky Way is that of Green et al.

2019. This uses apparent magnitudes from a wide range of pass-bands throughout the

optical and infra-red to estimate stellar reddening, whilst Gaia parallaxes are used to

provide distance information to the model. Using the dustmaps Python module (Green,

2018), I take a single sample of the extinction parameter for each source. As a proxy for

the reddening vector component in the Gaia 𝐺 band, I use the Pan-STARRS’ 𝑔-filter value

of 3.518 (Table 1 of Green et al., 2019). The mean extinction for sources in the selected

sample is ⟨𝛿𝐺⟩ ∼ 0.01.

The addition of stellar extinction from Green et al. 2019 has a marginally significant

effect on parameter estimates shown by the orange contours in the posteriors in Fig 6.12

and more quantitatively in the 𝐴𝑉 column of Table 6.5. The scale height and normalisation

of the discs and halo are pushed down and the halo is too steep. Stars further away

will be more obscured by dust and less likely to be included in my sample. My method

doesn’t account for this so I instead fit a marginally steeper model than is actually the

case. At high latitudes, this is a small effect but if I widened my on-sky sample, this could

dramatically impact the results.

6.8.3 Magnitude Uncertainty

The method used to fit the model assumes no apparent magnitude measurement uncertainty.

Of course this is not the case and Gaia has uncertainties on all apparent magnitude

measurements. To estimate the systematic effect of this uncertainty, I re-sample the

mock apparent magnitudes from Gaia-like uncertainties and apply the method to the new

sample.

For any source in the Gaia catalogue, the apparent magnitude in the 𝐺-band is

estimated up to nine times whenever it is scanned by the nine columns of CCDs in the

field of view. The set of all apparent magnitude measurements, which can number in the

hundreds, is used to estimate the magnitude uncertainty. I reverse engineer this process to
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Fig. 6.13 The distribution of 𝐺-band flux error amplitude (uncertainty per observation)
of all sources in Gaia EDR3 is shown by the log-normalised grey-scale histograms. The
yellow line and shaded regions provide the median and 16th − 84th percentile range in
0.1mag bins. The median is used with the scanning law to estimate the expected apparent
magnitude error for sources in Gaia as a function of position on the sky and apparent
magnitude.

estimate the apparent magnitude uncertainty per observation. The amplitude of apparent

magnitude measurement uncertainty is given by

b𝐹𝐺 =
√
𝑁
𝜎𝐹𝐺

𝐹𝐺
(6.46)

where 𝐹𝐺 is the measured source flux and b𝐹𝐺 is the flux error per observation (Eq. 2

Belokurov et al., 2017). I estimate this for all sources in Gaia EDR3 and take the median

as a function of apparent magnitude shown in Fig. 6.13.

To estimate apparent magnitude errors for sources in the mock sample, I then replicate

Gaia’s observations for those sources again. The error per observation is taken from the

median in Fig. 6.13 and the number of scans of the source is given by the number of scans

of that position on the sky in the EDR3 nominal scanning law2. Ideally, on average, 62/7
observations are taken with each scan as there are nine CCD columns but in one of the

seven rows, a CCD is replaced by a wave-guide sensor (Gaia Collaboration et al., 2016).

However, Gaia is not 100% efficient and not all observations are successfully recorded or

make it through the data processing pipeline. To account for this, I also multiply by the

efficiency at a given magnitude taken from Boubert & Everall 2020. Whilst this efficiency

is estimated from Data Release 2 (DR2), it should give a rough approximation of the

2Gaia EDR3 nominal scanning law: http://cdn.gea.esac.esa.int/Gaia/gedr3/auxiliary/
commanded scan law/
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behaviour in EDR3. Eq. 6.46 is now reversed to estimate the flux error

𝜎𝐹𝐺 =
√
𝑁 (𝑙, 𝑏, 𝐺) b𝐹𝐺 (𝐺) 𝐹𝐺 (𝐺). (6.47)

where 𝑁 (𝑙, 𝑏, 𝐺) is the product of the number of scans at the given position on the sky

and 62/7 times the observation efficiency. This is used to sample an observed flux 𝐹′
𝐺
∼

N(𝐹𝐺 , 𝜎𝐹𝐺 ). The mean magnitude change for all sources in my sample is ⟨|𝛿𝐺 |⟩ ∼ 0.003.

Finally, I apply the selection function to the newly estimated magnitudes which replicates

the fact that the selection function was estimated as a function of measured apparent

magnitude.

The introduction of apparent magnitude error has marginal effects on some parameter

posteriors, shown by the red dot-dashed contours in Fig. 6.12 and included in Table 6.5 as

𝜎𝐺 , with the most significant being the thin disc dwarf fraction. This may be explained

by a blurring of the sharp dwarf-giant absolute magnitude boundary which, given the low

giant fraction in the thin disc, will lead to more dwarfs being estimated as giants than

vice versa and reduce the dwarf fraction.

6.8.4 Parallax Offset

As discussed in Section 6.6, a significant amount of work has been devoted to constraining

the zero-point parallax offset of the Gaia astrometry sample. However, most tests are

applied on sources at the bright end of the Gaia magnitude range. At the faint end, the

correction from Lindegren et al. 2021b reduces the parallax bias to ∼ a few micro-arcseconds

as a function of apparent magnitude. However, as can be seen in the third panel of Fig. 2

in Lindegren et al. 2021b, there are variations over the sky of ∼ 10 `as towards the north

and south Galactic poles.

To test the impact of a residual parallax offset, I subtract 10 `as from the parallax

measurements in my mock sample and rerun the fits without correcting for this. The

posteriors are shown in the final column of Table 6.5 and with cyan dotted contours in

Fig. 6.12. The parallax bias has no significant impact on the thin disc and thick disc

parameters however the impact on the halo is considerable. Because this is tested using

the same sample as the “Good” fits, I am comparing with those posteriors rather than the

input parameters. In the Fig. 6.12c I can see how much the parallax offset shifts the halo

parameter posteriors away from the “Good” results towards a shallower, more extended

halo profile. This is not too surprising – a constant parallax offset is small compared to the

true source parallax for nearby sources, but becomes much more significant with increasing

distance.

A similar effect was found in Everall et al. 2019 when measuring the local velocity

ellipsoid with Gaia DR2. As I stray further from the Solar neighbourhood, the impact

of a negative parallax offset becomes more significant, systematically overestimating the

distances to sources. In my case, this causes an overestimate of the radial extent of the

halo.
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6.8.5 Turn-off Magnitude

When setting up the model, I fixed some parameter values. The most notable is the

main-sequence turn-off which determines the absolute magnitude at which the population

transitions from dwarf-dominated to giant-dominated. For all populations, I set this to

𝑀𝐺 = 3.1 motivated by the theoretical isochrones, however, the turn-off magnitude is

a function of stellar age. I used a thin disc model with 𝜏 = 6.9 Gyr, but this is only

approximately the mean age of the thin disc. The disc has formed over a long period of

time and so is made up of sources with a wide range of ages (Fantin et al., 2021; Katz

et al., 2021; Snaith et al., 2015). This leads to a main sequence turn-off which is extended

over a range of magnitudes.

Ruiz-Lara et al. 2020 demonstrated that there was a large burst of star formation in

the thin disc ∼ 5.9 Gyr ago which, by inspection of isochrones, corresponds to a turn-off

magnitude of 𝑀TO = 2.9. To test this, I generate a new mock Gaia-like catalogue with

the same input parameter values as described in Section 6.4 except that 𝑀TO = 2.9 for

the thin disc population. I then refit this incorrectly assuming a fixed 𝑀TO = 3.1 for all

components.

The results are provided in Table 6.6 and shown by the blue solid contours in Fig. 6.14.

This systematic error increases the giant fraction of the thin disc, whilst not significantly

affecting any other parameter. By moving 𝑀TO lower and fitting with a higher value, I am

classifying many dwarfs as giants in the model. Therefore, the effect on 𝑓G is unsurprising

but it is reassuring to see that the remaining parameters are not sensitive to small changes

in the absolute magnitude distribution.

6.8.6 Galactocentric Radius and an Oblate Halo

The model used in this work has no dependence on Galactocentric cylindrical radius

or azimuth. Due to the complexity of the model integration, I made the simplifying

assumption that all sources have the same cylindrical radius as the Sun, 𝑅⊙. For a detailed

discussion of this, see Section 6.3.3.

For the thin and thick disc profiles, this means approximating the Milky Way disc as a

uniform sheet. In the most extreme case, where sources are against the edge of the cone

with 𝑙 = 0◦ or 180◦, the cylindrical radius is incorrect by

𝛿𝑅 = 𝑧/tan 80◦ = 0.176 𝑧. (6.48)

Whilst this maximum offset is significant, it does not provide much information on how

the disc profile will affect the results. For that, I examine the mean cylindrical radius

offset integrating over the disc profile. Using radial scalelengths of 𝐿Tn = 2.6 kpc and

𝐿Tk = 3.6 kpc for the thin and thick disc respectively from Jurić et al. 2008, I draw a

sample within my |𝑏 | > 80◦ cone at fixed 𝑧 for a thin and thick disc weighted by exp(−𝑅/𝐿)
and estimate the mean 𝑅. For the thin disc, I get 𝛿𝑅 ∼ 0.2 pc at 𝑧 = 0.3 kpc, whilst the

thick disc produces 𝛿𝑅 ∼ 1.7 pc at 𝑧 = 0.9 kpc. Therefore, the average offset of sources

from their true position is small.
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Fig. 6.14 Posterior distributions for parameters fit to mock samples with systematic
differences to the type of model assumed in the fitting procedure. Ground truth input
parameters for the mock sample are shown by the black lines and points for the thin
disc (a, top left sub-figure), thick disc (b, top right sub-figure) and halo parameters (c,
bottom sub-figure). The fits to the mock sample with a shifted thin disc turn-off (𝑀Tn

TO,
blue contours) overestimate the population of thin disc giants which is unsurprising as the
fits assume a giant is any source with 𝑀𝐺 < 3.1. Orange dashed contours are the fits to
a mock sample with cylindrical radius dependence and an oblate halo (𝑞 = 0.9, orange
dashed). This significantly impacts all parameters producing extended thin and thick discs
with overestimated scale heights and an overly-steep halo.
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Component Parameter Input 𝑀Tn
TO = 2.9 𝑅-free, 𝑞 = 0.9

Thin disc 𝑤 1.20 1.15+0.13−0.13 × 104 1.41+0.15−0.17 × 104

ℎTn 0.300 0.294+0.013−0.013 0.323+0.014−0.015

𝑓𝐺 4.50 7.34+1.56−1.39 × 10−3 4.93+1.12−1.01 × 10−3

Thick disc 𝑤 4.30 4.34+0.25−0.23 × 104 5.05+0.49−0.41 × 104

ℎTk 0.900 0.901+0.061−0.055 1.049+0.099−0.085

𝑓𝐺 5.40 5.99+0.75−0.73 × 10−3 5.58+0.71−0.69 × 10−3

Halo 𝑤 9.45 8.78+0.59−0.48 × 105 8.39+0.48−0.40 × 105

𝑛H 3.740 3.791+0.070−0.070 3.957+0.086−0.089

𝑓𝐺 3.50 3.53+0.15−0.15 × 10−3 3.58+0.16−0.16 × 10−3

Shared 𝛼1 −0.110 −0.108+0.002−0.002 −0.111+0.002−0.002

𝛼2 −0.250 −0.249+0.009−0.008 −0.238+0.008−0.008

Table 6.6 I provide the median parameter estimate with 16th − 84th percentiles for the
mock sample fits with thin disc 𝑀TO = 2.9 and the cylindrical radius dependent sample
with halo oblateness 𝑞 = 0.9.

The halo spatial distribution is defined as a power-law profile of Galactocentric spherical

radius. An incorrect cylindrical radius leads to an incorrect spherical radius. The spherical

radius will be incorrect by

𝛿𝑟 =

√
𝑧2 + 𝑅2

⊙ −
√
𝑧2 + 𝑦2 + (𝑅⊙ − 𝑥)2, (6.49)

where 𝑥, 𝑦, 𝑧 are the standard Galactic Cartesian coordinates with 𝑥 positive towards the

Galactic centre. At the edges of my cone with 𝑙 = 0◦ and 180◦ with 𝑧 = 1 kpc, this

corresponds to 𝛿𝑟 ∼ +0.175 and −0.175 kpc respectively. This increases to 𝛿𝑟 ∼ +1.05 and

−1.19 kpc for 𝑧 ∼ 10 kpc. To test the impact of this on the model fits, I sample a halo

profile with 𝑛H = 3.724 within the 𝑏 > 80◦ vertical cone and use the sample to estimate the

mean spherical radius error. I find that the spherical radius of sources is underestimated

by ∼ 0.3% on average.

I also assumed my halo was spherically symmetric and ignored any flattening. Given

the small high latitude region I have used, it is unlikely that I would have been able to

fit a halo oblateness parameter separately. However, this assumption may still impact

the inferred steepness of the halo. I test the impact of placing all sources at the Solar

radius and assuming a spherical halo by regenerating my mock sample with the correct

cylindrical radius with an oblate halo 𝑞 = 0.9 (Mateu & Vivas, 2018). Using the same

parameters as discussed in Section 6.4, I generate a mock catalogue with thin and thick

disc scale lengths of 𝐿Tn = 2.6 and 𝐿Tk = 3.6 kpc (Jurić et al., 2008). I also include the

cylindrical radius dependence of the spherical radius for the halo model.
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The results are shown in Table 6.6 and orange dashed contours of Fig. 6.14. This has

had a more significant impact on the fits with the posteriors ∼ 2 − 3 sigma off the input

parameter values in several cases. The disc scale heights and halo power law profile all

have significant offsets from the true input parameters. It appears that the dominant effect

is a level of source confusion between the components. The sample is no longer exactly

representative of my assumed vertical exponential profile and power law halo but instead

a marginalisation over this with radius. This leads to overestimated disc normalisation

and scale heights and an overly steep halo.

6.9 Statistical and Systematic Uncertainties

I have produced fits to the observed data around the northern and southern Galactic poles

and to mock samples to test the effects of limitations in the model. To provide results

which are informative and usable, I quantify what my results mean for the true model

parameters and their statistical and systematic uncertainties.

I do this by assuming the posterior distributions for all parameters in Table 6.4 are

drawn from independent normal distributions. This enables us to parameterise all posteriors

with a means (`) and uncertainties (𝜎).

The first two columns of Table 6.4 provide the means and standard deviation uncer-

tainties of the MCMC posteriors for the north and south fits to the Gaia data. I model

the combined north/south posteriors as being drawn from a normal distribution with

mean `, uncertainty 𝜎2
sys,N/S convolved with an additional normal distribution, N(0, 𝜎2)

providing the standard deviation uncertainty for each sample. Therefore the likelihood of

the posteriors is

logL =
∑

𝑖,North

logN
(
𝑥𝑖 | `, 𝜎2

North + 𝜎
2
sys,N/S

)
+

∑
𝑖,South

logN
(
𝑥𝑖 | `, 𝜎2

South + 𝜎
2
sys,N/S

)
(6.50)

where 𝑥𝑖 are the posterior samples provided by the MCMC chains. I then maximise the

log-likelihood with respect to `, 𝜎sys,N/S. The results are given in the third and forth

columns of Table 6.4. The method I am using here is similar to inflating systematics

until the chi-squared reaches a ‘reasonable’ value, however, I avoid defining an arbitrary

chi-squared target by instead maximising the Gaussian log-likelihood.

Given a sample drawn from an equally weighted sum of Gaussian distributions with

the same mean but different variance, the sample variance will be the mean of the

individual component variances. Therefore, the statistical error for the Gaia data fits is

the root-mean-square of the north and south fits

𝜎stat =

√
𝜎2
North

+ 𝜎2
South

2
. (6.51)

This is given as the statistical error on ` in Table 6.4.
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6.10 Discussion

I play a similar game with the results of my systematic test runs from Section 6.8,

however, in this case I know the true parameters because I provided the input parameters.

The likelihood is given by

logL =
∑
𝑖,test

logN
(
𝑥𝑖 | `true, 𝜎2

test + 𝜎2
sys,test

)
(6.52)

where 𝜎test is the statistical uncertainty of the fit given by the standard deviation of

the posterior and `true is the input parameter. I maximise this with respect to 𝜎sys,test

to estimate the systematic uncertainty contribution from the given test. I then rescale

the systematic errors by the measured Milky Way parameters, `/`true, to estimate the

systematic error on my fits to the Gaia data. In Table 6.4, I provide 𝜎sys,tests which is the

maximum systematic error for the given parameter from my tests. I also state the test(s)

which dominate the systematic uncertainty contribution. Where more than one test is

listed, it is because they provided a similar systematic uncertainty to within 10%.

I recommend that anyone using my results should take the root mean square sum of

all quoted uncertainties to obtain the total uncertainty on each parameter.

6.10 Discussion

Here, I interpret the results of the structural parameters of the Milky Way thin disc, thick

disc and halo given in Table 6.4, comparing them with previous work as well as considering

future developments.

6.10.1 Results

The most striking thing to notice when examining my results is the comparison between

statistical and systematic uncertainties. In general, the total systematic uncertainty is

more than an order of magnitude greater than statistical uncertainty. In some cases,

it is over two orders of magnitude larger. This demonstrates two things. First, Gaia

has ushered in an era where it is necessary to model systematic errors once considered

insignificant. Rigorous systematic analysis of the kind I have performed is essential to

provide accurate and reliable results. Secondly, the precision which can be achieved with

Gaia data is impressive. I used a deliberately constrained sample of objects on the sky

consisting of less than 0.1% of the entire Gaia catalogue and yet the precision on most

parameters is more than an order of magnitude better than anything in the literature.

I infer a local stellar mass density for pre-compact object stars with of

𝜌∗
local

= 3.66 ± 0.03 (stat) ± 0.52 × 10−2M⊙/pc3 (sys). This is smaller than the value of

𝜌∗
local

≈ 4.2 × 10−2M⊙/pc3 as derived (without errors bars) in Flynn et al. 2006, using the

Hipparcos and Tycho surveys, together with the Catalogue of Nearby Stars.

I compute a surface density of Σ∗
local

= 23.42 ± 0.09 (stat) ± 3.22M⊙/pc2 (sys). This is
significantly smaller than Bovy et al. 2012a who estimate 30 ± 1𝑀⊙/pc2, as well as Flynn
et al. 2006 who estimate 35.5𝑀⊙/pc2.

209



Photo-Astrometric Tracer Density of the Milky Way

I expect that the most significant difference is that their works include compact objects

in the stellar mass estimates. In particular, Bovy et al. 2012a use the initial mass function

to infer the contribution from all sources similar to my work in Section 6.7.1. However, I

account for stellar mass loss and only include stars with mass low enough that they would

not have evolved into a compact object or gone supernova. Bovy et al. 2012a extrapolate

to higher mass stars which will have evolved to a compact object without accounting for

mass loss. This means their results will significantly overestimate the total stellar mass

density for evolved stars which have undergone significant mass loss. I do not extrapolate

my results to include compact objects as there is significant uncertainty over how much of

the initial mass is kept in the final compact object remnant.

My relative thick-to-thin disc local density ratio sits between the values of Mackereth

et al. 2017 and Jurić et al. 2008, although the systematic uncertainties on this due to

extinction and magnitude error are quite large.

Ample past research has been dedicated to estimating the scale heights of the thin

and thick disc. There is some discrepancy between studies, with thin disc estimates in

the range ℎTn ∼ 120 − 300pc and thick disc in the range ℎTk ∼ 500 − 1900pc (Ak et al.,

2008; Bilir et al., 2006a; Dobbie & Warren, 2020; Jurić et al., 2008; Kuijken & Gilmore,

1989; Mateu & Vivas, 2018; de Jong et al., 2010). I constrain the thin disc scale height

as ℎTn = 260 ± 3 (stat) ± 26 pc (sys) and thick disc ℎTk = 693 ± 7 (stat) ± 121 pc (sys). My

estimates are broadly in agreement with Jurić et al. 2008, de Jong et al. 2010 and Mateu

& Vivas 2018 with reasonably strong constraints on the thin disc scale height (±26 pc),

but the thick disc scale height is dominated by systematic uncertainty (±121 pc) due to

the cylindrical radius dependence.

The power law profile of the halo has received substantial attention with typical

estimates in the range 𝑛H ∼ 2.5 − 4.4 (Cohen et al., 2017; Gould et al., 1996; Hernitschek

et al., 2018; Iorio et al., 2018; Jurić et al., 2008; Mateu & Vivas, 2018; Newberg & Yanny,

2006; Saha, 1985; Smith et al., 2009a; Yanny et al., 2000; de Jong et al., 2010). My model

sits in the middle of these estimates with 𝑛H = 3.542 ± 0.023 (stat) ± 0.259 (sys). Recent
works have suggested the halo is better represented by a broken power law distribution

(Deason et al., 2011; Fukushima et al., 2019; Thomas et al., 2018). Whilst I have focused

in the inner halo by the definition of Fukushima et al. 2019 and truncated at 𝑠 = 160

kpc, there is a wide range of distances inferred for the truncation, e.g. 25 kpc (Watkins

et al., 2009) and 42 kpc for (Cohen et al., 2017). In reality I expect I am covering both

sides of the break especially considering many stars from other author’s samples will likely

have made it into the Gaia astrometry sample. Another issue, extensively discussed in

the literature, which can impact halo fits is accreted substructure (Bell et al., 2008). The

current standard halo model is composed of stars from from GES (a major merger event

∼ 8 Gyr ago Belokurov et al., 2018; Helmi et al., 2018), the “Splash” (in-situ stars kicked

up by the merger event Belokurov et al., 2020a) and other accreted substrucuture such

as Sagittarius and smaller streams. I masked problematic regions of the southern field in

Section 6.6, however, there are likely to be more diffuse substructures which are not so

easy to mask.
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6.10 Discussion

Another notable feature of my results is the north-south asymmetry across several

parameters. I find the northern thin disc scale height is larger than the south at ≲ 10%.

Dobbie & Warren 2020 found a similar asymmetry, although they claimed a much larger

25% difference. I also find that the southern halo is significantly shallower with a smaller

power law exponent than the north which was also seen by Hernitschek et al. 2018. These

effects may be caused by dynamical instabilities which asymmetrically excite the disc

(Antoja et al., 2018; Widrow et al., 2012) and diffuse halo substructure such as Sagittarius

which may contribute many more stars to the southern high latitude field (Vasiliev et al.,

2021).

I used my halo local mass density and profile to estimate the total halo stellar mass,

using a flat uniform density for 𝑟 < 1 kpc in order to prevent the integral from diverging,

obtaining 𝑀∗
Halo

∼ 7.2 × 108M⊙. This is quite a rough estimate of the total halo stellar

mass however my results do agree reasonably well with the broad range of literature results

𝑀∗
Halo

∼ 2 − 14 × 108 𝑀⊙ (Bell et al., 2008; Deason et al., 2011, 2019).

The dwarf fractions and absolute magnitude profiles were defined specifically for this

work and were mainly fit as nuisance parameters in order to get at the spatial distribution

of stars so I do not discuss these in detail here.

6.10.2 More General Models

My results have small statistical uncertainty compared with the dominant systematic

uncertainty. This implies that the model I have chosen to fit is over-constrained by the

data. The solution to this is to significantly increase the amount of freedom in the model

until my systematic and statistical uncertainties are comparable.

Some generalizations of my model are obvious: inclusion of radial dependence; provision

of free parameters on the radial disc profile; allowing a free Solar vertical position 𝑧⊙;

introduction of halo oblateness as a free parameter. I have not provided these freedoms

due to numerical complications in the parallax error integral discussed in Sections 6.3.2

and 6.3.3.

I could also move away from the simplistic two-component disc model towards a

continuous distribution of discs with age, as proposed by Bovy et al. 2012a. Alternatively,

I could go for a much more data-driven approach and fit the source density at nodes with

a smooth model such as a Gaussian Process to enable correlations between neighbouring

points.

More ambitiously still, I could leverage the BP and RP photometry provided in Gaia

EDR3 for 1.5 billion sources. Rather than using my simple magnitude model, I could

directly infer the population of the HR diagram as a function of position in the Milky Way,

from which the star formation histories and metallicity distributions could also be inferred.

This will require selection functions for the BP and RP photometry samples which have

not yet been produced.

Ultimately the model I have fit to the data is grossly oversimplified such that the

results do not provide significant insight into the physical processes governing our Galaxy’s

formation and evolution. The suggestions provided here improve on this to some extent
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but it is still not clear what question these models would answer. What we would really

like to do is combine this with kinematic information to infer a dynamical model of the

Milky Way from which we could learn about the mass and distribution of Dark Matter.

Or we would work with metal abundance data to learn something about how the elements

came to be where we see them in the Galaxy today.

6.10.3 Extragalactic Component

In this work, I filtered extragalactic sources from my sample using cuts on colour and

excess flux. However, another option is to add an additional component to the model for

sources at infinite distance.

The spatial distribution of the extragalactic sources would simply be

aEG(𝑙, 𝑏, 𝑠)d𝑉 =
1

2𝜋(1 − sin(𝑏min))
𝛿(1/𝑠) 𝑠2 d𝑙 d sin(𝑏) d𝑠 (6.53)

where extragalactic sources have zero parallax and are uniformly distributed across the

sky for 𝑏 > 𝑏min or 𝑏 < −𝑏min with 𝑏min = 80◦ in this work.

However, this spatial model needs an apparent magnitude distribution for all extra-

galactic sources to which the selection function can be applied. This makes the model

significantly more complicated as the apparent magnitude distribution is dependent on the

distance and luminosity distribution which are different for quasars and galaxies. For this

reason, I have not chosen to model the extragalactic population in this work. However,

adding this additional component would be an interesting and worthwhile route forward,

measuring the population of galaxies and quasars as a function of apparent magnitude

with Gaia data.

6.11 My Milky Way Model

I have developed a method to fit the distribution of stars in the Milky Way using the

Poisson likelihood function. My method correctly accounts for the sample selection function

and parallax measurement uncertainty.

The method is used to fit the vertical distribution of stars with |𝑏 | > 80◦. For the

model I use two exponential disc components and a power-law halo. The data are also

simultaneously fit with a four-piece exponential absolute-magnitude distribution. The

efficacy of my method is demonstrated against a mock sample. By refitting the model

parameters I demonstrate that the method produces results which are accurate to within

the statistical uncertainties of the parameter posteriors.

I used the Gaia Early Data Release 3 (EDR3) photometry and astrometry to model

the vertical distribution of stars in the Milky Way at the Solar radius. My sample includes

the majority of stars with measured parallax in Gaia within 10◦ of the Galactic north and

south Poles. My method formally accounts for parallax measurement uncertainty and the

Gaia selection function.
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6.11 My Milky Way Model

I represent the vertical density of the thin and thick discs by exponentials with scale

heights ℎTn and ℎTk respectively. The stellar halo density is a power-law of spherical

radius, i.e. 𝜌 ∝ 𝑟−𝑛H . I thoroughly test possible sources of systematic uncertainty in my

approach, in particular from oversimplifications of the model. This enables me to quantify

the systematic uncertainty associated with all parameter estimates.

I find the scale height of the thin disc is ℎTn = 260 ± 3 (stat) ± 9 ± 24 pc (sys), Here,
the two levels of systematic error correspond to north-south asymmetry about the Galac-

tic plane and simplifying model assumption (particularly the treatment of extinction

and the assumption of halo spherical symmetry). The scale height of the thick disc

is ℎTk = 693 ± 7 (stat) ± 10 ± 121 pc (sys) where the larger systematic error contribution

is introduced by my assumption that all sources have the same cylindrical polar ra-

dius as the Sun. For the stellar halo, I am able to constrain a power law profile of

𝑛H = 3.542 ± 0.023 (stat) ± 0.160 ± 0.204 (sys).
I infer a local stellar mass density for non-compact object stars

𝜌∗
local

= 3.66 ± 0.03 (stat) ± 0.39 ± 0.34 × 10−2M⊙/pc3 (sys) and surface density

Σ∗
local

= 23.42 ± 0.09 (stat) ± 1.4 ± 2.9M⊙/pc2 (sys). Whilst these values are lower

than previous estimates (Bovy et al., 2012a; Flynn et al., 2006), this discrepancy may be

explained by the absence of any contribution from compact object remnants to the total

stellar mass. I have not included this due to the uncertain correction for stellar mass loss,

itself not well accounted for in previous works.

I also find a north-south asymmetry with respect to the Galactic plane. The thin and

thick disc scale heights are larger in the north, and the halo profile is shallower in the

south. However, this asymmetry is only at the ≲ 10 percent level, much less than the 25

percent claimed by Dobbie & Warren 2020.

The impressive information content of the Gaia data produces parameter estimates

with significantly improved precision over previous studies, even for my sample using only

a small region of the sky. Note, though, systematics now completely dominate the error

budgets, meaning that I need better models to fully realise the potential of the Gaia data.

As I discussed in Secion 6.3, the model I have applied is not an accurate representation of

the Milky Way. The work I have performed does not provide dramatic new insight into

the physics governing the formation and evolution of the Galaxy but it does provide an

avenue through which that can be achieved with far greater accuracy and precision than

ever before.

The approach taken here demonstrates the power of information available from Gaia

which has yet to be unlocked. There is a substantial prize available for controlling the

systematic uncertainties involved with modelling the Gaia data.
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7
Conclusions

My PhD aimed to model the spatial and velocity distribution of stars in the Milky Way.

This 6D distribution of stars is hugely important for our understanding of the Milky Way. It

facilitates Galactic archaeology, studying how the Galaxy formed and evolved to its current

state. It is hugely valuable for stellar physics, matching populations to their kinematic

and inferring the intrinsic luminosity distribution of stars. It can provide detailed tests of

cosmological models such as comparing the numbers of Milky Way satellite galaxies against

predictions. Perhaps most excitingly, it allows us to model the gravitational potential

of the Milky Way and therefore estimate the distribution of missing mass, dark matter,

which is important for direct detection experiments.

The Gaia mission has published positions, parallaxes and proper motions for 1.5 billion

sources and radial velocities for a much smaller but no less impressive seven million stars.

This makes the problem appear incredibly tractable, one simply needs to fit a density

model to the number density of observed sources. However, there are two dominant

obstacles which significantly complicate the issue.

If no stars are observed in a region of parameter space, is this because there are no

stars there or because the telescope was unable to observe them? We need the answer to

this question to reliably fit the distribution of stars to the data. The answer is provided

by the selection function.

The second problem is that parallax uncertainties are significant for most stars observed

by Gaia and modelling spatial distributions from parallax distances is a statistically

complicated task. I demonstrated this in Chapter 2 where I showed that a small systematic

bias in the parallax measurements can significantly change the inferred tilt of the velocity

ellipsoid. This systematic is important – parallax biases can completely change the

conclusions inferred about the velocity ellipsoid alignment and the Milky Way potential.

7.1 My solutions

I first solved the local velocity ellipsoid problem by using the work of Schönrich et al.

2019 who provide posterior distance estimates to all stars in the Gaia radial velocity

sample. They fit a geometric parallax zero-point offset to the Gaia RVS sample and, using

a prior Milky Way density model, evaluate posterior distance distributions to all stars. In

Chapter 2 I used this data to measure the velocity ellipsoid in the solar neighbourhood

which is close to spherical alignment with deviations consistent with the contribution from
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baryonic matter in the Milky Way disk. This is consistent with the canonical picture of a

close to spherical Milky Way mass distribution with an additional disk component.

Whilst Schönrich et al. 2019 distance estimates were hugely valuable for this study, they

had some significant limitations. The parallax zero-point offset could only be modelled for

sources with measured radial velocity which limited the sample to the seven million sources

in Gaia RVS. Their method included fitting a distance-dependent selection function for the

catalogue, however, this didn’t factor in the dramatic variations of the selection function

across the sky. Furthermore, they include an a priori density model such that any spatial

model with Milky Way data could be influenced by the prior.

To model the spatial distribution of stars in the Milky Way I would need selection

functions for Gaia science samples and complementary spectrographs and a method to

formally account for parallax uncertainties.

I presented my method for selection functions of multi-fibre spectrographs in Chapter 3.

I used a Poisson likelihood density modelling method to fit the distribution of sources in

the spectrograph sample against a colour-magnitude complete catalogue. Using the field-

by-field nature of spectrograph observations I incorporated spatial dependence on the sky.

I applied isochrones to transform the selection function into intrinsic source parameters.

This selection function reproduced the data extremely well, passing Kolmogorov-Smirnov

sample tests.

However, my method has its limitations. Firstly it could not be applied the the full

Gaia source catalogue as it required a more complete catalogue to compare against. Gaia

subsets are all-sky samples which means the field-by-field method was not applicable. The

Poisson likelihood method also didn’t leverage our knowledge that the spectrograph isn’t

just less complete than the photometric catalogue, it is a direct subset.

In Chapter 4 I introduced new methods for modelling the Gaia source catalogue and

science subsets. The observing strategy of the Gaia satellite presents an opportunity to

evaluate the source catalogue selection function leveraging information from the scanning

law. For science subsets of Gaia I applied the method developed in Boubert & Everall 2021.

The model uses spherical needlets to encode on-sky spatial dependence and a Gaussian

process prior across colour-apparent magnitude bins. Improving on Chapter 3, I used a

Binomial likelihood function which includes the information that the subset is drawn from

the source catalogue. Using Binomial p-value tests I demonstrated that the new selection

function models are consistent with the data down to 2 degree scales on the sky.

Using Gaia astrometry to model the spatial distribution of stars requires an in depth

understanding of the astrometric fitting procedure. I developed the Astrometric Spread

Function (ASF), the expected Gaia astrometry covariance of a point source moving linearly

with respect to the Solar system barycenter, which I introduced in Chapter 5. The ASF

predicts the Gaia DR2 published covariances beautifully well except in crowded regions

where the satellite struggles to measure centroid positions for individual sources.

Using my comprehensive toolkit for Gaia data, I have fitted the vertical structure of

stars in the Milky Way at the solar radius. I developed a method to fit the tracer density

of stars formally accounting for parallax uncertainty and survey incompleteness through
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7.2 Value for the Community

the selection function. I demonstrated that this performs extremely well on Gaia-like mock

samples. Applying this to a small subset of Gaia, the tight statistical uncertainties in my

posterior fits demonstrate the as-of-yet unexplored power of the Gaia data with orders of

magnitude improvement in precision over previous studies. However, better models are

needed to reduce the systematic uncertainties to obtain comparable accuracy.

I measured the scale height of the thin disk, ℎTn = 260 ± 3 (stat) ± 26 pc (sys), and thick

disk, ℎTk = 693 ± 7 (stat) ± 121 pc (sys), and the radial power law exponent of the spherical

halo, 𝑛H = 3.542 ± 0.023 (stat) ± 0.259 (sys). These are consistent with various previous

works although the halo profile varies heavily depending on the choice of truncation radius.

I also used my results to infer the local stellar mass density,

𝜌∗
local

= 3.66 ± 0.03 (stat) ± 0.52 (sys) × 10−2M⊙/pc3, and surface density,

Σ∗
local

= 23.42 ± 0.09 (stat) ± 3.22 (sys)M⊙/pc2. My result are consistent with the

bulk of previous work to within total uncertainties and demonstrate the first pure-Gaia

photo-astrometric tracer density model of the Milky Way. These values are lower

than previous estimates as I don’t include mass contributions from sources which have

experienced supernovae and evolved into compact objects.

I found an asymmetry between the north and south of the Milky Way disk and halo

consistent with previous works but less extreme at the ≲ 10% level. This is likely the

result of disk disequilibrium and halo substructure.

7.2 Value for the Community

I have introduced an armory of tools for analysing Gaia data. Through my PhD I have

produced and contributed to the open source GitHub repositories:

∗ seestar: For estimating selection functions for multi-fibre spectrographs using my

method from Chapter 3.

∗ selectionfunctions: For retrieving selection probabilities for stars as a function of

position on the sky, colour and apparent magnitude using the selection functions from

Chapter 4.

∗ scanninglaw: For retrieving the ASF covariance of any source as explained in Chapter 5

and learning the Gaia scan times, directions and probabilities expected for a star.

∗ mwtrace: My code used in Chapter 6 to evaluate the vertical tracer density of stars in

the Milky Way.

These tools enable the user to produce generative models of Gaia and multi-fibre

spectrograph data for predictions of the phase-space structure of the Milky Way. This

is a vital aspect of forward modelling. I applied this technique to fit the Galactic tracer

density in Chapter 6 and produced Gaia-like mock catalogues akin to Aurigaia (Grand

et al., 2018).
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7.3 The Ones that Got Away

Whilst I have achieved many scientific goals in my PhD, there are some problems which re-

main unsolved. I hope these problems will keep future PhD students and GaiaUnlimited1

busy.

7.3.1 General Spatial Models

My tracer density model demonstrated the power of the Gaia data but was not able to

fully leverage it due to an over-simplified model. There are several ways this could be

improved which I discussed in Section 6.10. A key challenge is integrating over parallax

error for every source at every iteration of the optimization process. Any model used needs

to be tractable to efficiently integrate over.

7.3.2 Crowded Regions

Gaia doesn’t behave well in crowded regions of the sky. The astrometric solution relies

on centroid fits to the images of stars on the Gaia focal plane. If multiple sources are

contributing to the flux distribution this can become significantly more challenging. Both

the ASF and selection functions are significantly dependent on the number density of

sources in a region of space. In the case of the selection function I have managed to model

this for individual stars, however, this introduces inter-source correlations which means

a source’s selection function can no longer be fully defined by it’s observable properties

alone. This is the key un-solved challenge of Gaia selection functions.

7.3.3 Stellar Type Selection Functions

Particular stellar types are often extremely valuable for understanding the properties of

the Milky Way and indeed nearby galaxies. Henrietta Leavitt’s modelling of the Cepheid

variable period luminosity relation which facilitated the resolution of “The Great Debate”

is a beautiful example. These types of objects enable us to extrapolate geometric distance

information from parallax measurements to much greater distances. However, in order to

use them to fit the structure of the Milky Way we need their selection function.

As I discussed in Section 4.7, this cannot be modelled simply as a subset of a parent

sample as most sources in the parent will not be stars of the given type. We need the

probability of selection given that a source is, for example, a Cepheid variable. As of yet

we do not know how to achieve this other than comparing with surveys such as OGLE

(Udalski et al., 1992) which are expected to be significantly more complete for variable

stars in the Milky Way bulge, LMC and SMC.

1GaiaUnlimited is a new collaboration seeking to model the completeness limits of catalogues
published by Gaia, building on the work of the Completeness of the Gaia-verse collaboration.
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7.4 Back Down to Earth

7.3.4 Binary Systems and Exoplanets

The Gaia mission will introduce a detection method for finding binary systems and

exoplanets which has the capacity to outshine all previous techniques, astrometric wobble.

The orbit of a star around the system barycentre due to an unseen companion can generate

a detectable deviation from expected single object astrometry (Penoyre et al., 2020), a

phenomenon previously seen in the Hipparcos data (Lindegren et al., 1997).

To date ∼ 20 000 close binary systems (Price-Whelan et al., 2020) and 4 331 exoplanets2

have been discovered, most from variations in stellar radial velocity and binary eclipses or

exoplanet transits. Using astrometric wobble, Gaia is capable of finding 60 million binary

systems including many Brown Dwarf and Black Hole companions (Andrews et al., 2019).

Similarly, it is expected that Gaia will be able to find over 21 000 exoplanets (Perryman

et al., 2014).

The potential of this has already been demonstrated by Belokurov et al. 2020b using

Gaia’s published goodness-of-fit statistic, RUWE. Estimating the sensitivity of Gaia to

binaries is extremely hard due to the complex Image Parameter Determination (IPD

Fabricius et al., 2021) and astrometry pipeline (Lindegren et al., 2012). Given a binary

system at a known distance with known orbital parameters, what is the probability that

Gaia’s astrometry would be significantly affected by the binary motion? This questions

pertains to the binary selection function and will be important when using Gaia astrometry

to estimate the distribution of binary systems and exoplanets.

7.4 Back Down to Earth

My journey into the Gaia-verse has been a fascinating learning experience about the

Milky Way’s past, present and future. But the most exciting thing for me has been

discovering how to distill the full information content from the vast wealth of data we have

available. Galactic dynamics is in a data-dominated regime where we have not perfected

the statistical and computational techniques required to fully exploit the huge volume and

incredible precision of data available.

There are many avenues to take building on the work I have done, some of which I have

suggested. I hope that others in the field will pick up on them. As for me, my next steps

will be in biostatistics for genomics which has undergone an arguably even more significant

data revolution in the last decade. I hope the techniques I have learned and developed

to model the building blocks of the Galaxy will prove similarly useful for modelling the

building blocks of life.

2https://exoplanetarchive.ipac.caltech.edu/index.html
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221

http://dx.doi.org/10.3847/1538-4365/aa9e8a
http://dx.doi.org/10.1086/524984
https://ui.adsabs.harvard.edu/abs/2020arXiv200606008A
http://dx.doi.org/10.1016/j.newast.2007.08.003
https://ui.adsabs.harvard.edu/abs/2008NewA...13..133A
http://dx.doi.org/10.3847/0004-637X/816/1/35
https://ui.adsabs.harvard.edu/abs/2016ApJ...816...35A
https://ui.adsabs.harvard.edu/abs/2019arXiv190411302A
http://dx.doi.org/10.1051/0004-6361/201732516
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...8A
http://dx.doi.org/10.3847/1538-4357/ab441f
https://ui.adsabs.harvard.edu/abs/2019ApJ...886...68A
http://dx.doi.org/10.1038/s41586-018-0510-7
https://ui.adsabs.harvard.edu/abs/2018Natur.561..360A
http://dx.doi.org/10.1051/0004-6361/201833234
https://ui.adsabs.harvard.edu/abs/2018A&A...616A..17A
http://dx.doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A%26A...558A..33A
http://dx.doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A
http://dx.doi.org/10.1086/683116
http://dx.doi.org/10.1086/683116
https://ui.adsabs.harvard.edu/abs/2015PASP..127..994B
http://dx.doi.org/10.3847/1538-3881/aacb21
https://ui.adsabs.harvard.edu/abs/2018AJ....156...58B
https://ui.adsabs.harvard.edu/abs/2018AJ....156...58B
http://dx.doi.org/10.1093/mnras/stz2947
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.5615B
https://ui.adsabs.harvard.edu/abs/2006math......6154B
http://dx.doi.org/10.1086/588032
https://ui.adsabs.harvard.edu/abs/2008ApJ...680..295B
http://dx.doi.org/10.1086/504797
https://ui.adsabs.harvard.edu/abs/2006ApJ...642L.137B
http://dx.doi.org/10.1093/mnras/stw3357
https://ui.adsabs.harvard.edu/abs/2017MNRAS.466.4711B
http://dx.doi.org/10.1093/mnras/sty982
http://dx.doi.org/10.1093/mnras/staa876
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.3880B
http://dx.doi.org/10.1093/mnras/staa1522
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.1922B
http://dx.doi.org/10.1093/mnras/sty2813
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1417B
http://dx.doi.org/10.1093/mnras/4.17.152
https://ui.adsabs.harvard.edu/abs/1838MNRAS...4..152B
http://dx.doi.org/10.1016/j.newast.2006.10.001
https://ui.adsabs.harvard.edu/abs/2006NewA...12..234B


References
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Robin A., Reylé C., Derrière S., Picaud S., 2003, A&A, 409, 523

Rowell N., et al., 2021, A&A, 649, A11

Ruiz-Lara T., Gallart C., Bernard E. J., Cassisi S., 2020, Nature Astronomy, 4, 965

Rybizki J., Green G., Rix H.-W., Demleitner M., Zari E., Udalski A., Smart R. L., Gould
A., 2021a, arXiv e-prints, p. arXiv:2101.11641

Rybizki J., Rix H.-W., Demleitner M., Bailer-Jones C. A. L., Cooper W. J., 2021b,
MNRAS, 500, 397

Saha A., 1985, ApJ, 289, 310

Saha K., Pfenniger D., Taam R. E., 2013, ApJ, 764, 123

Sale S. E., Magorrian J., 2014, Monthly Notices of the Royal Astronomical Society, 445,
256

Sanders J., Binney J., 2015, MNRAS, 449, 3479

Sartoretti P., et al., 2018, A&A, 616, A6

228

http://dx.doi.org/10.1051/0004-6361:20010085
https://ui.adsabs.harvard.edu/abs/2001A&A...369..339P
http://dx.doi.org/10.1088/0004-637X/797/1/14
https://ui.adsabs.harvard.edu/abs/2014ApJ...797...14P
https://ui.adsabs.harvard.edu/abs/1908AnHar..50....1P
http://dx.doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P
http://dx.doi.org/10.3847/1538-4357/ab8acc
https://ui.adsabs.harvard.edu/abs/2020ApJ...895....2P
http://dx.doi.org/10.1002/asna.200811080
http://dx.doi.org/10.1093/mnras/sty330
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.2556Q
http://dx.doi.org/10.1051/0004-6361/201730921
https://ui.adsabs.harvard.edu/abs/2018A&A...614A..30R
http://dx.doi.org/10.1088/0954-3899/41/6/063101
https://ui.adsabs.harvard.edu/abs/2014JPhG...41f3101R
http://dx.doi.org/10.1051/0004-6361/201322944
https://ui.adsabs.harvard.edu/abs/2014A&A...567A...5R
http://dx.doi.org/10.1093/mnras/201.1.51
https://ui.adsabs.harvard.edu/abs/1982MNRAS.201...51R
http://dx.doi.org/10.1093/mnras/201.1.73
https://ui.adsabs.harvard.edu/abs/1982MNRAS.201...73R
http://dx.doi.org/10.3847/2041-8213/abf359
https://ui.adsabs.harvard.edu/abs/2021ApJ...911L..20R
http://dx.doi.org/10.1051/0004-6361/201832712
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...3R
http://dx.doi.org/10.1051/0004-6361/202039587
https://ui.adsabs.harvard.edu/abs/2021A&A...649A...3R
http://dx.doi.org/10.3847/1538-4357/aaadb7
http://dx.doi.org/10.3847/1538-4357/ab1422
https://ui.adsabs.harvard.edu/abs/2019ApJ...876...85R
http://dx.doi.org/10.3847/2041-8213/abdbaf
https://ui.adsabs.harvard.edu/abs/2021ApJ...908L...6R
https://ui.adsabs.harvard.edu/abs/2021arXiv210607653R
http://dx.doi.org/10.1051/0004-6361:20031117
http://dx.doi.org/10.1051/0004-6361/202039448
https://ui.adsabs.harvard.edu/abs/2021A&A...649A..11R
http://dx.doi.org/10.1038/s41550-020-1097-0
https://ui.adsabs.harvard.edu/abs/2020NatAs...4..965R
https://ui.adsabs.harvard.edu/abs/2021arXiv210111641R
http://dx.doi.org/10.1093/mnras/staa3089
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500..397R
http://dx.doi.org/10.1086/162890
https://ui.adsabs.harvard.edu/abs/1985ApJ...289..310S
http://dx.doi.org/10.1088/0004-637X/764/2/123
http://adsabs.harvard.edu/abs/2013ApJ...764..123S
http://dx.doi.org/10.1093/mnras/stu1728
http://dx.doi.org/10.1093/mnras/stv578
http://dx.doi.org/10.1051/0004-6361/201832836
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...6S


References

Schlesinger F., Jenkins L., Observatory Y. U., 1935, General Catalogue of Stellar
Parallaxes: Compiled at Yale University Observatory. Yale University Observatory,
https://books.google.co.uk/books?id=3uooAAAAYAAJ

Schönrich R., 2012, MNRAS, 427, 274

Schönrich R., Aumer M., 2017, MNRAS, 472, 3979

Schönrich R., Binney J., 2009, MNRAS, 396, 203

Schönrich R., Binney J., Dehnen W., 2010, MNRAS, 403, 1829

Schönrich R., McMillan P., Eyer L., 2019, MNRAS, 487, 3568

Schwarz G., 1978, Annals of Statistics, 6, 461

Scodeller S., Rudjord Ø., Hansen F. K., Marinucci D., Geller D., Mayeli A., 2011, ApJ,
733, 121

Sellwood J. A., 2014, Rev. Mod. Phys., 86, 1

Shapley H., 1918, PASP, 30, 42

Sharma S., Bland-Hawthorn J., Johnston K., Binney J., 2011, ApJ, 730, 3

Shu F. H., 1969, ApJ, 158, 505

Shu Y., Koposov S. E., Evans N. W., Belokurov V., McMahon R. G., Auger M. W.,
Lemon C. A., 2019, MNRAS, 489, 4741

Silverwood H., Sivertsson S., Steger P., Read J. I., Bertone G., 2016, MNRAS, 459, 4191

Sivertsson S., Silverwood H., Read J. I., Bertone G., Steger P., 2018, MNRAS, 478, 1677

Skowron D. M., et al., 2019, Acta Astron., 69, 305

Skrutskie M., et al., 2006, AJ, 131, 1163

Smart R. L., Nicastro L., 2014, A&A, 570, A87

Smith M. C., et al., 2009a, MNRAS, 399, 1223

Smith M. C., Evans N. W., An J. H., 2009b, ApJ, 698, 1110

Snaith O., Haywood M., Di Matteo P., Lehnert M. D., Combes F., Katz D., Gómez A.,
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A
Statistics

A.1 Union Expansion

Considering the simplest case of two overlapping fields, A and B, Equation (3.5) expands

to

P(S | 𝜽 , v) = P(SA | 𝜽 , v) + P(SB | 𝜽 , v) − P(SA,SB | 𝜽 , v). (A.1)

In most surveys I am considering, there will be substantially more than two fields. For 𝑀

fields, I expand the union using inclusion-exclusion principle.

P

(
𝑀⋃
𝑖=1

S𝑖

)
=

𝑀∑
𝑖=1

P(S𝑖) −
𝑀∑
𝑖=2

𝑖−1∑
𝑗=1

P(S𝑖,S 𝑗 )

+
𝑀∑
𝑖=3

𝑖−1∑
𝑗=2

𝑗−1∑
𝑘=1

P(S𝑖,S 𝑗 ,S𝑘 ) − ...

... + (−1)𝑀+1P(S1,S2....S𝑀)

=

𝑀∑
𝑘=1

(−1)𝑘+1
[ ∑
1≤𝑖1<...<𝑖𝑘≤𝑀

P(S𝑖1 ,S𝑖2 ...S𝑖𝑘 )
]
, (A.2)

where I have dropped the conditionals such that P(S𝑖) ≡ P(S𝑖 | 𝜽 , v) for ease of notation.

Assuming independence of observations from different fields (i.e. the event that a star

is selected on field A is independent of whether it has been observed on field B) I can

expand the joint probability as the product of the probability of each event.

P(S1,S2, ... | 𝜽 , v) =
∏

𝑖=1,2,...

P(S𝑖 | 𝜽 , v)

Using Equation 3.4 I expand the conditional selection probabilities in terms of the

event that the positional coordinates lie on the field

P(S1,S2, ... | 𝜽 , v) =
∏

𝑖=1,2,...

P(S𝑖 | Θ𝑖, v) P(Θ𝑖 | 𝜽)

where P(Θ𝑖 | 𝜽) = 1 if 𝜽 is on field i and P(Θ𝑖 | 𝜽) = 0 otherwise. Therefore any joint

probability terms with fields which don’t contain 𝜽 will vanish from Equation A.2.

I can simplify Equation (A.2) for some specific circumstances:
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(1) 𝜽 is not located on any fields. P(Θ𝑖 | 𝜽) = 0 ∀ 𝑖. All terms in the expansion are 0

P

(
𝑀⋃
𝑖=1

S𝑖

)
= 0

(2) 𝜽 is located on only one patch, 𝐴. P(Θ𝑖 | 𝜽) = 0 ∀ 𝑖 ≠ 𝐴, P(Θ𝐴 | 𝜽) = 1

P

(
𝑀⋃
𝑖=1

S𝑖

)
= P(S𝐴 | Θ𝐴, v)

(3) 𝜽 is on the intersection between two fields denoted by 𝐴 and 𝐵:

P

(
𝑀⋃
𝑖=1

S𝑖

)
=P(S𝐴 | Θ𝐴, v) + P(S𝐵 | Θ𝐵, v) (A.3)

− P(S𝐴 | Θ𝐴, v) × P(S𝐵 | Θ𝐵, v)

A.2 Poisson Likelihood

I start from the likelihood of observing a particular object with coordinates 𝑣𝑖 given that I

only pick one point from the density function, _

P(𝑣𝑖 | 𝑛 = 1, _) = _(𝑣𝑖)∫
d𝑣 _(𝑣)

. (A.4)

Expanding this to observations of a population of N objects

P(𝑣1, 𝑣2...𝑣𝑁 | 𝑛 = 𝑁, _) =
𝑁∏
𝑖=1

_(𝑣𝑖)∫
d𝑣 _(𝑣)

. (A.5)

The likelihood of the data is then given by

P(𝑣1, 𝑣2...𝑣𝑁 , 𝑛 = 𝑁 | _)
=P(𝑣1, 𝑣2...𝑣𝑁 | 𝑛 = 𝑁, _)P(𝑛 = 𝑁 | _)

=

∏𝑁
𝑖=1 _(𝑣𝑖)

(
∫
d𝑣 _(𝑣))𝑁

(
∫
d𝑣 _(𝑣))𝑁 exp

(
−

∫
d𝑣 _(𝑣)

)
𝑁!

=

∏𝑁
𝑖=1 _(𝑣𝑖) exp

(
−

∫
d𝑣 _(𝑣)

)
𝑁!

.

(A.6)

The denominator here is independent of the parameters of the density model so the

likelihood of my dataset, {𝑣} is given by

P({𝑣} | _) ∝
𝑁∏
𝑖=1

_(𝑣𝑖) exp
(
−

∫
d𝑣 _(𝑣)

)
(A.7)
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A.3 Binomial One-tailed p-value

and taking the log likelihood

lnP({𝑣} | _) ∝ −
∫

d𝑣 _(𝑣) +
𝑁∑
𝑖=1

ln_(𝑣𝑖). (A.8)

A.3 Binomial One-tailed p-value

The one-tailed p-value test provides the probability that the observations would be smaller

(in some sense) than the actual measured data, 𝑑 given the hypothesised model.

For a hypothesised model with parameters 𝜓 and measured data 𝑑, the likelihood of

the data given the parameters is P(𝑑 | 𝜓). The p-value is given by the integral over this

(i.e. the CDF)

𝑃 =

∫ 𝑑

𝑑 ′
min

d𝑑′P(𝑑′ | 𝜓) (A.9)

where 𝑑′min is the minimum value the data can take under the model.

Let’s say I have a sample of 𝑘 marbles drawn from a bag of 𝑛. I hypothesise that

the probability of any marble being selected is Bernoulli (i.e. randomly) distributed with

probability 𝑞. Therefore my likelihood is Binomial(𝑘 | 𝑛, 𝑞). The p-value is given by

𝑃 =

∫ 𝑘

𝑘 ′=0
d𝑘′Binomial(𝑘′ | 𝑛, 𝑞). (A.10)

However, the CDF at 𝑘′ = 𝑘 discontinuously jumps. This is shown by the example Binomial

CDF in Fig. A.1 where I have used 𝑛 = 5, 𝑞 = 0.5 to demonstrate. The CDF at 𝑘 = 3 has

a discontinuity and uniformly covers a range of p-values in the CDF. Therefore I can write

the p-value as

𝑃 = U

[
𝑘−1∑
𝑘 ′=0

Binomial(𝑘′ | 𝑛, 𝑞),
𝑘∑

𝑘 ′=0

Binomial(𝑘′ | 𝑛, 𝑞)
]
. (A.11)

This is shown by the red shaded region in Fig. A.1 as the p-value for 𝑘 = 3 given 𝑛 = 5,

𝑞 = 0.5 is 𝑃 ∼ U[0.50, 0.81].
I would also like to point out here that without any data (𝑛 = 0) the p-value becomes

uniformly distributed

𝑃 = U

[ −1∑
𝑘 ′=0

Binomial(0 | 0, 𝑞),
0∑

𝑘 ′=0

Binomial(0 | 0, 𝑞)
]
= U [0, 1] . (A.12)

As one would hopefully expect, if there’s no data to test the hypothesis against, then the

p-value is model independent (i.e. there’s no dependence on 𝑞).
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Statistics

Fig. A.1 The CDF of the Binomial distribution for 𝑞 = 0.5 and 𝑛 = 5 is shown with the
blue line as a series of steps. The value of the CDF at 𝑘 = 3 is uniformly distributed
between 0.50 and 0.81 shown by the red shaded region.
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B
Measurements

B.1 DoF Bug

During the calibration of excess noise in Gaia DR2, the degrees of freedom parameter was

erroneously used as the total number of AL and AC observations rather than only AL

observations as intended. For a full explanation I refer the interested reader to Appendix

A in L18.

The result of this bug was that sources brighter than 𝐺 = 13, for which 2D observations

were used, received overestimated measurement uncertainties. Through the attitude

calibration, this indirectly impacted sources with 𝐺 > 13 although the increased photon

count noise at dimmer magnitudes dampens the effect for dim stars.

To correct for this, the astrometric covariance was multiplied by a correction factor

𝐹 = (1 + 0.8𝑅)
√√√√√ 2

1 +
√
1 + 4(1 + 0.8𝑅)2

(
0.025mas

𝜎𝜛

) (B.1)

taken from Equation A.6 of L18. The published 𝜒2 and astrometric sigma5d max

didn’t receive this correction, the latter being because the selection of the DR2 astrometry

sample was performed before the bug was corrected.

As a result, when estimating astrometric sigma5d max in Section 5.6, in order

to obtain a good agreement with the data, I must decorrect for the DoF bug by dividing

through by the correction factor, 𝐹.
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