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The resonant π+γ → π+π0 amplitude from Quantum Chromodynamics

Raúl A. Briceño,1, ∗ Jozef J. Dudek,1, 2 Robert G. Edwards,1

Christian J. Shultz,2 Christopher E. Thomas,3 and David J. Wilson2

(for the Hadron Spectrum Collaboration)
1Thomas Jefferson National Accelerator Facility,

12000 Jefferson Avenue, Newport News, VA 23606, USA
2Department of Physics, Old Dominion University, Norfolk, VA 23529, USA

3Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

We present the first ab initio calculation of a radiative transition of a hadronic resonance within
Quantum Chromodynamics (QCD). We compute the amplitude for ππ → πγ?, as a function of the
energy of the ππ pair and the virtuality of the photon, in the kinematic regime where ππ couples
strongly to the unstable ρ resonance. This exploratory calculation is performed using a lattice
discretization of QCD with quark masses corresponding to mπ ≈ 400 MeV. We obtain a description
of the energy dependence of the transition amplitude, constrained at 48 kinematic points, that we
can analytically continue to the ρ pole and identify from its residue the ρ→ πγ? form-factor.

a. Introduction: The electromagnetic transitions
of the nucleon into unstable resonant N? excitations is a
primary tool in the experimental study of nucleon struc-
ture and spectroscopy [1]. These processes give us in-
sight into the mechanisms that lead to the formation of
the low-lying and excited hadrons from the basic quark
and gluon building blocks of Quantum Chromodynamics
(QCD). It is crucial to have a complimentary theoretical
program that connects physically observed transitions to
QCD. One major challenge in studying these transitions
is their resonant nature, where the N? excitation decays
rapidly to asymptotic scattering states composed of two
or more stable hadrons. To investigate these processes
within QCD, one needs a non-perturbative framework
that can accommodate resonant behavior, and presently,
lattice QCD is the only available tool to evaluate such ob-
servables while making only controlled approximations.
Its implementation for the determination of properties of
hadron resonances is still at an exploratory stage, and
in this work we will extend the exploration into a new
area with the first calculation of a radiative production
amplitude of an unstable hadronic resonance from QCD.

Before attempting the more complicated baryonic case
of γ?N → N? → Nπ, we will consider a simpler problem
featuring only mesons, πγ? → ρ→ ππ, which in addition
to serving as the first of a new class of observables to be
studied, is itself of significant phenomenological interest.
The amplitude for this process is related to the hadronic
contribution to the anomalous magnetic moment of the
muon [2, 3], the chiral anomaly [4, 5], the ρ → πγ ra-
diative decay rate [6, 7], and appears in meson-exchange
models of nuclear structure [8]. The ρ → πγ? transition
has been previously studied using lattice methods (see,
for example, Ref. [9–11]), but prior to this work the ρ
has always been treated as a stable hadron, incapable of
decay to ππ, in contrast to how it appears in experiment.
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This approximation, which is uncontrolled for light quark
masses such as those used in Refs. [10, 11] is removed in
the present work.

The perturbative nature of quantum electrodynamics
ensures that to an excellent approximation the ππ → πγ?

amplitude can be obtained from matrix elements of the
electromagnetic current, J µ = 2

3 ūγ
µu− 1

3 d̄γ
µd,

Hµππ,πγ? =
〈
out;π,Pπ

∣∣J µx=0

∣∣in;ππ,Pππ, ` = 1
〉
, (1)

where the ππ state has been projected onto an ` = 1
partial wave, and where Pππ and Pπ are the 4-momenta
of the ππ and π states, respectively. We will determine
this amplitude as a function of the c.m. frame energy
of the pion pair, E?ππ, and the virtuality of the photon,
Q2 = −(Pπ − Pππ)2, by evaluating correlation functions
using lattice QCD.

Lattice QCD calculations are performed in a finite, dis-
cretized Euclidean spacetime, and this introduces three
length scales into the theory: the lattice spacing, a, and
the spatial (L) and temporal (T ) extents of the volume.
For studies of stable hadrons not featuring heavy quarks,
provided mπT, mπL � 1 and a � 1 fm, the typical
length scale associated with hadrons, these approxima-
tions introduce only small and controllable systematic
errors.

The restriction to a finite volume in space prohibits
the definition of asymptotic states, making the rela-
tionship between few-body observables obtained via lat-
tice QCD to the scattering amplitudes of infinite-volume
QCD somewhat non-trivial. As has been extensively ex-
plored in the literature, scattering amplitudes of two-
body [12–19] and three-body systems [20–23] can be de-
termined from the spectrum of eigenstates of QCD in a
finite volume. Such spectra can be obtained from two-
point correlation functions within lattice QCD, and the
energy-dependence of hadron scattering amplitudes can
be inferred – by analytically continuing these amplitudes
to complex values of the scattering energy, poles can
be found, with the pole positions providing the mass
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and width of hadronic resonances. For an example see
the recent determination of kaon resonant excitations in
coupled-channel πK, ηK scattering [24, 25], and the ρ
resonance for lighter quark-masses where ππ,KK can be
coupled [26].

The extension of the formalism to the case where an
external (e.g. electroweak) current causes a transition
from a single stable hadron to a pair of hadrons was
presented by Lellouch and Lüscher. They demonstrated
that one can constrain such an amplitude using hadronic
matrix elements of the currents evaluated in a finite vol-
ume [27]. Their work focused on the implications of this
formalism for K → ππ decays, where ππ is in an S-wave
(see Refs. [28–32] for numerical implementations), and
this has been subsequently extended to other systems of
interest [15, 16, 18, 33–37].

Recently, these ideas were extended to accommo-
date more generic processes featuring an external cur-
rent [38, 39], and in this work it was shown that the
Hµππ,πγ? transition amplitude can be obtained from finite
volume matrix elements of the vector current,

|Hµππ,πγ? |
L3

√
R

2Eπ
=
∣∣∣
L

〈
π;Pπ,Λπ

∣∣J µx=0

∣∣ππ;Pππ,Λππ
〉
L

∣∣∣,
(2)

where R is the residue of the finite-volume two-hadron
propagator, which depends on the ππ four-momentum,
the cubic irrep (Λππ), the lattice volume (L × L × L),
and the ππ elastic scattering amplitude. The hadronic
finite-volume eigenstates carry labels, Λ, which indicate
in which irreducible representation, or “irrep”, of the re-
duced rotational symmetry of the cubic lattice they lie.
We point the reader to Ref. [39] for a detailed derivation
and definition of R. Equation 2 is an approximation of
the result presented in Ref. [39] – we have ignored contri-
butions due to mixing with higher partial waves, which
are both kinematically and dynamically suppressed in the
energy regime of interest. 1

b. Lattice QCD calculation: We use an anisotropic
Symanzik improved gauge and Clover fermion actions
with Nf = 2 + 1 dynamical fermions. The quark masses
are chosen so that mπ ∼ 400 MeV [41], and we use a
spacetime volume of (L/as)

3×(T/at) = 203×128, where
as and at are the spatial and temporal lattice spacings
with as/at = 3.444(6) and as ≈ 0.12 fm. In Ref. [42]
it was demonstrated that exponential corrections associ-
ated with the finite volume of this lattice lead to sub-
percent corrections.

We construct three-point correlation functions using
the technology presented in Ref. [9]. We use variation-

ally optimized π and isospin-1 ππ operators, Ω
[Λπ ]
π and

1 In Ref. [40] it was demonstrated that the ` ≥ 3 ππ scattering
phase shifts are consistent with zero. This assures one that the
only resonance present that couples to the I = 1 ππ channel in
this kinematic regime is the ρ-meson and so the ` = 1 transition
amplitude is the dominant contribution.

Ω
[Λππ ]
ππ , respectively, that have been subduced to the de-

sired irrep, Λ, of the appropriate little group of the octa-
hedral group [43]. These operators have been previously
obtained in the determination of the spectrum from two-
point correlation functions [40]. Inserting the vector cur-
rent we have three-point functions,〈

0
∣∣Ω[Λπ ]
π (∆t, Pπ)J µ(t,Pπ−Pππ) Ω[Λππ ]†

ππ (0,Pππ)
∣∣0〉,

(3)

and we will present results extracted from correlation
functions computed with Euclidean time separation,
∆t = 32at, excluding Wick contractions where the cur-
rent couples to a disconnected quark loop 2. J µ is the
tree level improved Euclidean vector current [9], which
is renormalized by insisting the π form-factor be 1 at
Q2 = 0 GeV, giving a multiplicative renormalization of
ZV = 0.833(9). By inserting a complete set of finite
volume QCD eigenstates in Eq. 3, and evolving the oper-
ators to the origin of Euclidean time, one can determine

L

〈
π;Pπ,Λπ

∣∣J µx=0

∣∣ππ;Pππ,Λππ
〉
L

from the time depen-

dence of the correlation function [9].
Consideration of various momenta, P = 2π

L [nx, ny, nz],
allowed by the periodic boundary conditions, leads to
determination of the matrix element at 48 distinct kine-
matic points. Eight different discrete E?ππ values feature,
corresponding to the finite-volume eigenstates of ππ in
various irreps, and discrete values of photon virtuality in
the range −0.4 ≤ (Q/GeV)2 ≤ 1 are sampled.

c. The transition amplitude and ρ → πγ? form fac-
tor: The ππ → ππ P -wave elastic scattering amplitude,
expressed via a phase-shift, δ1(E?ππ), was determined
from the lattice QCD finite-volume spectrum in Ref. [40].
With this in hand we may evaluate R in Eqn. 2 and de-
termine the transition amplitude from the finite-volume
matrix elements.

The transition amplitude is a Lorentz vector, and it
has a kinematic decomposition,

Hµππ,πγ? = εµναβ Pπ,ν Pππ,α εβ(λππ,Pππ) 2
mπ
Aππ,πγ? ,

(4)

where Aππ,πγ?(E?ππ, Q
2) is a Lorentz scalar and εβ is the

polarization vector of the P -wave ππ state with λππ being
its helicity.

In the energy region we consider, the transition ampli-
tude will be sharply peaked due to the ρ pole. Defining
a ρ → πγ? form-factor, Fπρ(E

?
ππ, Q

2), we may write the
amplitude,

Aππ,πγ?(E?ππ, Q
2)

= Fπρ(E
?
ππ, Q

2)

√
8π

q?ππ Γ1(E?ππ)
sin δ1(E?ππ) eiδ1(E?ππ),

(5)

2 These exactly vanish in the SU(3) flavor limit and are expected
to be suppressed for the quark masses used.
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FIG. 1. The points appearing in the upper panel depict the
form factor determined from lattice QCD for three ππ energy
levels. The index n labels the order in which the state appears
in the spectrum. Also shown are the fits of the form factor
performed using Eq. 6 and evaluated at the three ππ energies.
The corresponding P -wave phase shift and ππ energy is shown
on the lower panel.

which is proportional to the elastic ππ → ππ scat-

tering amplitude M`=1
ππ =

8πE?ππ
q?ππ

sin δ1 e
iδ1 with q?ππ =

1
2

√
E?2ππ − 4m2

π. In Refs. [34, 38] it was demonstrated
that this parametrization is consistent with the analytic-
ity and unitarity constraints required in scattering the-
ory. The presence of the energy-dependent ρ → ππ
strong decay width, Γ1, can be understood in the con-
text of an effective field theory where the re-scattering
of the final ππ states is mediated by a fully dressed ρ
resonance (see Appendix of Ref. [38]).

The derivative of the phase-shift, dδ1
dE?ππ

, appears in R
– to compute it we use a sensible parameterization for
δ1(E?ππ), the relativistic Breit-Wigner [40].

In Fig. 1 we present the computed form-factor for three
of the eight ππ energies studied, using the Breit-Wigner
parameterization for the phase shift, where we observe
that both space-like and time-like Q2 kinematics are sam-
pled. It is evident that Fπρ(E

?
ππ, Q

2) has only a mild
dependence on E?ππ, with the sharply peaked resonant
behavior having been captured by the sin δ1(E?ππ) factor
in Eqn. 5.

To analytically describe the E?ππ and Q2 dependence
of the form-factor we introduce an ansatz,

h[{α,β}](E?ππ, Q
2) =

α1

1 + α2Q2 + β1(E?2ππ −m2
0)

+ α3Q
2 + α4Q

4

+ α5 exp
[
−α6Q

2 − β2(E?2ππ −m2
0)
]

+ β3(E?2ππ −m2
0) + β4(E?4ππ −m4

0), (6)

where the parameters αi and βi are to be fitted and the
constantm0 is fixed to 2.1805mπ to coincide with the real
part of the ρ mass. To fit the form factor, we vary the
form being used by setting a subset of these coefficients
to zero and thus consider over 15 different fit functions.
We also consider fits where the points in the time-like Q2
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FIG. 2. The upper panel shows the real part of the form fac-
tor determined in this work [orange band] evaluated at the
ρ pole, Eρ/mπ = 2.1805(32) − 0.0151(5)i. This is compared
with the value obtained in Ref. [9] [green band], where the ρ
is QCD stable, and the experimentally determined ρπ photo
coupling [6, 7]. The lower panel shows the previously unde-
termined imaginary component of the form factor.

region are excluded. From all fits performed, we retain
only those that have a χ2/d.o.f ≤ 1.5, and we find that no
fit lacking E?ππ-dependent terms satisfies this. The bands
shown in Figure 1 reflect the parameterization variation
as will the uncertainties on all quantities quoted below.

With an analytic description of the E?ππ dependence of
form-factor, we may analytically continue to the ρ pole
at E?ππ = [2.1805(32) − i 0.0151(5)]mπ. The Q2 depen-
dence of the resulting form-factor is shown in Fig. 2, with
the small imaginary part reflecting the fact that the ρ in
this calculation is unstable, but with a small hadronic
width – as the pion mass is decreased in future lattice
calculations [26], the width will increase and with it the
imaginary part of the form-factor.

The transition amplitude, Aππ,πγ? , follows from Eq. 5,
where the phase is fixed up to an overall sign by Watson’s
theorem to be the ππ → ππ phase-shift. The remaining
sign only has meaning in comparison to other transition
amplitudes, and consequently, we need only present the
absolute value of Aππ,πγ? . In Fig. 3 we plot mπ ·

∣∣Aππ,πγ? ∣∣
as a function of E?ππ for two values of Q2. This figure
illustrates that as the ππ energy approaches the ρ pole,
the transition amplitude is dynamically enhanced by the
resonance as one would expect. The resonant behavior,
as a function of E?ππ, arises solely from the R factor in
Eq. 2; it is not due the parametrization in Eq. 5 which
simply serves as the definition of the form factor

From Eq. 4, one may readily obtain the π+γ → π+π0

cross section in terms of the reduced amplitude, Aππ,πγ?
evaluated at Q2 = 0,

σ(π+γ → π+π0) = α
q?ππ q

?
πγ

m2
π

∣∣∣Aππ,πγ?(E?2ππ, 0)
∣∣∣2, (7)

where q?ππ, q
?
πγ are the c.m. relative momenta. In Fig. 4

we plot this as a function of the c.m. energy. That
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FIG. 3. The top panel shows the absolute values of the
transition amplitude in units of inverse mπ ∼ 400 MeV as a
function of the c.m. ππ energy. This is determined for two
different values of Q2/GeV2 = 0, 0.025. For comparison, in
the lower panel we show the absolute values of the elastic
` = 1 ππ amplitude,

∣∣M`=1
ππ

∣∣.
the peak cross-section for mπ ∼ 400 MeV is significantly
larger than phenomenological parameterizations of the
physical cross section [44, 45] can be easily understood:
Near the resonance we have,

lim
E?ππ→mρ

σ(π+γ → π+π0) ∝
q?πγ F

2
πρ(mρ, 0)

m2
π Γ1(mρ)

,

and the q?πγ F
2
πρ(mρ, 0)/m2

π ratio we find to be approx-
imately 60% of the experimental value, and we expect
this to vary only slowly with changing quark mass. On
the other hand, the width of the ρ when mπ ∼ 400 MeV,
12.4(6) MeV [42], is approximately 12 times smaller than
the experimental width [46], scaling as expected for an
approximately quark mass independent coupling, gρππ,
with reduced P -wave phase-space. This suggests that
as future calculations are performed with quark masses
closer to their physical values, and as the ρ-resonance be-
comes broader [26], the π+γ → π+π0 cross section will
decrease by an order of magnitude. For comparison, in
Fig. 4 we plot the ` = 1 π+π0 elastic cross section, whose
factor of 5 kinematic enhancement with respect to the
experimental determination (see for example, Ref. [47])
can be understood by 1/q?2 dependence in the vicinity
of the resonance.

d. Final remarks: We have presented the first de-
termination of a resonant radiative transition amplitude
from QCD. This exploratory study of ππ → πγ?, al-
though performed with unphysically heavy light quarks,
serves as a proof of principle that hadronic transition pro-
cesses involving resonating few-body states can be rigor-
ously studied using lattice QCD. We have demonstrated
how from this amplitude, by analytically continuing to
a pole in the complex energy plane, one may obtain the
ρ→ πγ? form-factor where the ρ is treated as an unsta-
ble resonance, and have also obtained the π+γ → π+π0
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FIG. 4. The top panel shows the π+γ → π+π0 cross section
as a function of the ππ c.m. energy. The lower panel shows
the elastic ` = 1 scattering cross section. One observes near
the resonance the enhancement of the π+γ → π+π0 cross
section.

cross-section, and discussed how we expect the results to
change in future calculations using lighter quark masses.

Closely related techniques can be implemented in fu-
ture studies of hadron structure and weak decays. As
well as the obvious extension into the baryon sector,
γ?N → N? → Nπ, there are processes important
for testing the limits of the Standard Model such as
B → Kπ `+`− [48, 49], where the Kπ system is known
to resonate.

Having demonstrated in this work the feasibility of
studying radiative transition of two-body hadronic res-
onances directly from QCD, future studies will focus on
the extension of this work. The technology for studying
transition amplitudes with any number of open two-body
states has been already developed [38, 39] and here we
have tested it in the case where there is only one channel
open. Future calculations will accommodate for simi-
lar processes involving resonances that decay strongly to
more than one hadronic state, for example Kγ? → K? →
Kπ/Kη [24, 25] and πγ? → ρ? → ππ/KK [26]. Further-
more, given the recent and exciting theoretical develop-
ment for the study of three strongly interacting parti-
cles via lattice QCD [20–23], we can also expect electro-
magnetic transition amplitudes involving three or more
hadrons (e.g. Nγ? → N? → Nππ). 3
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