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SUMMARY 

 

Malayamycin A is an unusual bicyclic C-nucleoside, with interesting antiviral, 

antifungal and anticancer bioactivity. We report here the discovery and 

characterization of the biosynthetic pathway to malayamycin by using genome 

mining of near-identical clusters from both the known producer Streptomyces 

malaysiensis and from Streptomyces chromofuscus. The key precursor 5'-

pseudouridine monophosphate (5'-Ψ-MP) is supplied chiefly through the action 

of MalD, a TruD-like pseudouridine synthase. In vitro assays showed that MalO 

is an enoylpyruvyltransferase acting almost exclusively on 5'-Ψ-MP rather than 

5'-UMP, while in contrast the counterpart enzyme NikO in the nikkomycin 

pathway readily accepts either substrate. As a result, deletion of malD in S. 

chromofuscus coupled with introduction of the gene for NikO led to production 

of non-natural N-malayamycin, as well as malayamycin A. Conversely, cloning 

malO into the nikkomycin producer Streptomyces tendae in place of nikO 

diverted biosynthesis towards C-nucleoside formation.  
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INTRODUCTION 

 

Modified nucleosides that mimic UDP-linked metabolites are a prominent group of 

natural products, produced by Streptomyces and allied bacterial genera, that show 

particularly diverse activities (Winn et al., 2010; Niu et al., 2017; Chen et al., 2017). 

Malayamycin A (Figure 1, 1) is a promisingly potent antifungal uracil C-nucleoside, 

originally isolated from the soil bacterium Streptomyces malaysiensis (Benner et al., 

2003; Li et al., 2008).  Such uracil C-nucleosides are rare, although pseudouridimycin 

(Figure 1, 2) (this is a re-assigned structure of the compound previously reported 

under the name strepturidin (Pesic et al., 2014)) has been recently unveiled as an RNA 

polymerase inhibitor (Maffioli et al., 2017; Sosio et al., 2018); while pseudouridine 

itself (Figure 1, 3) is produced in all living cells through the breakdown of non-coding 

RNAs containing specific Ψ residues (Spenkuch et al., 2014).  The exact fungal 

target(s) of malayamycin A have not been identified, although it appears particularly 

to inhibit the sporulation of phytopathogenic fungi (Li et al., 2008). The bicyclic N-

glycoside ezomycin A1 6 (Figure 1), which shares the same trans-fused 

perhydrofuropyran core structure as 1, likewise shows selective activity against 

phytopathogenic fungi (Sakata et al., 1974). 

In contrast, uracil N-nucleosides of the nikkomycin and polyoxin classes 

(Figure 1) have been shown to act as structural analogues of UDP-N-

acetylglucosamine and to inhibit chitin synthase (Dähn et al., 1976; Winn et al., 2010; 

Niu et al., 2017), specifically disrupting fungal and insect cell wall biosynthesis. 

Analysis of the nikkomycin biosynthetic gene cluster from Streptomyces tendae 

(Bormann et al., 1996) and of the polyoxin gene clusters from Streptomyces cacaoi 

var. asoensis and Streptomyces aureochromogenes (Chen et al., 2009) has now led to 

a fairly detailed understanding of the enzymology of the pathway that leads from 5'-

uridine monophosphate  (UMP) 7 via 3'-enoylpyruvyl-UMP (3'-EPUMP) 8 and the 

high-carbon (>6Cs) sugar nucleoside octosyl acid 9 to the 5'-amino-5'-carboxy-5'-

deoxyhexuronic acid (AHA) 10 (Figure 2),  the most advanced common intermediate 

in formation of uracil-based polyoxins and nikkomycins. However, it is not known to 

what extent this pathway (Lilla and Yokoyama, 2016; He et al., 2017) is also used in 

the biosynthesis of uracil C-nucleosides such as malayamycin; nor at which point the 

Ψ nucleobase is introduced. 
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Data S1. 1D and 2D NMR Spectra of 3'-EP-Ψ-MP 

 
 

 
 

 

 

1H NMR spectrum of 3'-EP-Ψ-MP 

 
 
 

 

 

 

 



13C NMR spectrum of 3'-EP-Ψ-MP 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1H-1H COSY spectrum of 3'-EP-Ψ-MP 

 
 

 

 

 

 

 

 

 

 

 

 



Zoomed 1H-1H COSY spectrum of 3'-EP-Ψ-MP  
 

 
 

 

 

 

 

 

 

 

 

 



HSQC spectrum of 3'-EP-Ψ-MP 

 
 

 

 

 

 

 

 

 

 

 

 



HMBC spectrum of 3'-EP-Ψ-MP 
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We present here a genomics-led approach to deciphering the biosynthetic 

origin of the Ψ C-nucleoside linkage in malayamycin A; and to identifying the factors 

that direct the biosynthesis of either N- or C-nucleosides. This has enabled 

engineering of the malayamycin A biosynthetic pathway to produce non-natural N-

malayamycin, and the engineering of nikkomycin biosynthesis in Streptomyces tendae 

to increase production of the C-glycoside Ψ-nikkomycin Z. The origin of the Ψ 

moiety appears to be the unexpected repurposing of an enzyme catalyzing a universal 

editing step in RNA metabolism, in which specific uridine residues are isomerized 

into pseudouridine. These insights open up additional possibilities for the engineered 

biosynthesis of new nucleosides (Niu et al., 2017; Chen et al., 2017). 

 

RESULTS AND DISCUSSION 

 

Identification of the Malayamycin A, mal, Gene Cluster 

Whole-genome next-generation de novo sequencing of the known malayamycin 

producer Streptomyces malaysiensis DSM14702 was carried out using the Illumina 

platform and the reads were assembled into two chromosomal scaffolds, one of 

8,908,535 bp (SC1) and one of 1,727,442 bp (SC2). Bio-informatic analysis using the 

AntiSMASH program (Blin et al., 2016) revealed the presence of at least 39 

biosynthetic gene clusters, among which was one predicted to encode biosynthesis of 

a polyketide nucleoside. The structure of malayamycin A indicates that a 

carbamoyltransferase should be required for the biosynthesis, and so in our initial 

search for the mal locus we used the sequence of an authentic carbamoyltransferase 

gene from the geldanamycin biosynthetic gene cluster (Genbank accession number 

ATL81095.1) in a BLAST (Altschul et al., 1990) search of the genome sequence. 

This identified a single carbamoyltransferase gene homolog, malD, in the same 

cluster as highlighted by AntiSMASH. Detailed inspection of this region revealed two 

adjacent clusters, one the gene cluster for a macrocyclic polyketide and the other a 

strong candidate to be the malayamycin biosynthetic gene cluster, comprising 20 

predicted open reading frames (ORFs). These included several homologs of genes in 

the nikkomycin gene cluster whose functions have been previously elucidated (Figure 

3A), including genes for enoylpyruvyl-UMP transferase (malO), for octosyl acid 

synthesis (malJ, malL), and for further processing of octosyl acid (malI, malK, malM). 
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The presence of the predicted carbamoyltransferase gene malD and methyltransferase 

gene malF are also fully consistent with the production of malayamycin. Strikingly, 

the candidate mal locus was also found to contain a gene with significant sequence 

similarity to the tRNA Ψ synthase gene truD (Charette and Gray, 2000; Hamma and 

Ferré-D'Amaré, 2006), which immediately suggested a possible origin of the ψ-

uridine moiety in malayamycin (Figure 3A, see Table S1 for a complete list of 

predicted gene functions for the mal cluster of S. malaysiensis). 

 Gene sequences from the candidate malayamycin cluster were then used in 

BLAST searches against a library of >50 actinomycete genomes fully sequenced in-

house, and a very significant match was found with an orphan gene cluster in 

Streptomyces chromofuscus ATCC 49982 (Genbank accession number JN671974) 

(See Table 1 for the complete list of predicted gene functions). Fermentation of S. 

chromofuscus revealed that it is indeed also a malayamycin A producer (Figure 3B). 

This strain proved more amenable to genetic manipulation than S. malaysiensis, so it 

was used in further genetic experiments.  

 

Gene Deletions of malF and malD: O-Methylation and N-Carbamoylation are 

Late Steps in Malayamycin A biosynthesis 

Methyltransferase gene malF, carbamoyltransferase gene malD, dephospho-CoA 

kinase gene coaE, and tRNA pseudouridine synthase gene truD were individually 

deleted (Figure S1). The in-frame deletion of the coaE gene did not alter 

malayamycin A production, suggesting either that the coaE gene lies outside the 

cluster or that it is involved but not essential. The in-frame deletion of the malF 

methyltransferase gene of S. chromofuscus led to the complete loss of malayamycin A 

production ([M+H]+: m/z 343.2) and to the appearance of a peak ([M+H]+: m/z 329.2) 

corresponding to the known compound desmethylmalayamycin A, a minor 

component of the wild type fermentation of S. malaysiensis (Benner et al., 2003) 

(Figure 3B). Similarly, in-frame deletion of the malD carbamoyltransferase gene led 

to the replacement of malayamycin A by a peak ([M+H]+: m/z 300.2) corresponding 

to the new analog descarbamoyl-malayamycin A (Figure 3B). The identity of this 

metabolite was confirmed by MS/MS fragmentation (Figure S1). As expected, 

complementation of the ΔmalD mutant with a wild type copy of malD restored 

malayamycin A production (Figure 3B). Only the ΔmalD mutant revealed an 
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additional peak ([M+H]+: m/z 286.2) that would correspond to descarbamoyl-

desmethylmalayamycin A. The identity of this metabolite was confirmed by MS/MS 

fragmentation (Figure S1). These data taken together fully confirm the identity of the 

mal cluster, and suggest that, although the methyltransferase prefers carbamoylated 

substrate, there is no obligatory order in the timing of these two late-stage 

modifications.   

 

Pseudouridine-5'-phosphate (5'-Ψ-MP) as a Precursor for Malayamycin 

Biosynthesis: Repurposing of a Universal RNA Editing Mechanism?  

In principle, the Ψ nucleobase in malayamycin might be installed at either an early or 

a late stage in the biosynthetic pathway, but the finding of a gene in the mal 

biosynthetic gene cluster with significant sequence similarity to authentic TruD 

pseudouridine synthases (Ψ synthases) offered a substantial clue that 5'-Ψ-MP might 

be the key precursor. Across all kingdoms of life, cofactor-independent Ψ synthases 

belong to one of six different enzyme families named respectively after the E. coli 

enzymes TruA, TruB, RsuA, RluA and TruD and the archaeal enzyme Pus10 

(Spenkuch et al., 2014). These enzymes catalyze the isomerization of specific U 

residues within particular RNA species into Ψ residues (Hamma and Ferré-D'Amaré, 

2006).  Although the biological functions of Ψ remain unclear, the additional H-

bonding available to the free N1-H in Ψ residues is proposed to enhance base stacking 

and to increase the rigidity of the sugar phosphate backbone (Hamma and Ferré-

D'Amaré, 2006; Spenkuch et al., 2014). TruD was originally discovered as the 

enzyme uniquely capable of catalyzing the isomerization of uridine-13 in tRNAGlu  

(Kaya and Ofengand, 2003). The TruD homologs encoded in the mal clusters of S. 

malaysiensis and S. chromofuscus both possess the conserved active site motifs of 

authentic TruD enzymes (Figure S2), consistent with their being active catalysts for 

this isomerization reaction. Subsequent turnover of tRNA to mononucleotides, 

catalyzed by cellular ribonucleases, would then generate 5'-Ψ-MP for incorporation 

into malayamycin. In E. coli, tRNA has been shown to become significantly unstable 

as a stress response (Sørensen et al., 2017), so it is plausible that the entry of 

Streptomyces into stationary phase, which triggers malayamycin biosynthesis, might 

analogously accelerate tRNA breakdown. Alternatively, the TruD homologs in the 

mal clusters, and the recently-reported similar TruD homolog in the pseudouridimycin 
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(PUM) biosynthetic gene cluster (Sosio et al., 2018) may have diverged to be active 

against a non-RNA uridine-based mononucleotide substrate. Sosio and colleagues 

suggest that either 5'-UMP or 5'-UDP is phosphorylated at the 3' position, catalyzed 

by PumH, a putative kinase annotated as an adenylate kinase. The hypothetical 

product is proposed to mimic an RNA-embedded uridine residue sufficiently for the 

TruD homolog PumJ to isomerize it, after which a putative phosphatase PumD is 

proposed to remove both 3'- and 5'-phospho groups to generate the Ψ needed for  

PUM biosynthesis. However, no genetic or biochemical evidence was adduced in 

support of this proposal. The malayamycin clusters do house an adenylate kinase, but 

there is no gene with significant similarity to PumD in either cluster (or indeed 

elsewhere in the genome). 

To examine the role of TruD in malayamycin biosynthesis, the truD gene was 

specifically deleted from S. chromofuscus. Analysis of extracts from fermentation of 

the ΔtruD mutant showed that malayamycin production levels were reduced to only 5-

10% of wild-type levels (Figure 5A). The specificity of this effect was confirmed by 

complementation of the mutant in trans by a copy of the truD gene, which restored 

malayamycin production to wild-type levels (Figure 5A). We ascribe the residual 

level of malayamycin production in the ΔtruD mutant to the background production 

of 5'-Ψ-MP, either from breakdown of RNA edited by other cellular Ψ synthases, or 

another as yet unidentified pathway. We also obtained TruD_Sm from S. malaysiensis 

as a purified recombinant protein in E. coli, and assayed it directly in vitro for its 

putative ability to convert 5'-UMP into 5'-Ψ-MP. No such activity was detectable. It 

has been argued (Hamma and Ferré-D'Amaré, 2006) that such an enzymatic activity 

would anyway be deleterious to the cell, both by depleting the pool of precursors for 

DNA synthesis; and by risking the random misincorporation of Ψ into RNA. The 

exquisite specificity of all known Ψ synthases, imposed by the RNA context, would 

neatly circumvent such potential problems, as would the phosphorylation-

dephosphorylation pathway suggested by Sosio and colleagues (Sosio et al., 2018), 

particularly if the timing of expression of the genes were under tight control.  Further 

work will be needed to clarify the substrate specificity of these TruD homologs. 

 There is also a widely-distributed salvage pathway present in bacterial cells 

for the degradation of 5'-Ψ-MP to uracil and ribose 5-phosphate, catalyzed by 

pseudouridine-5′-phosphate glycosidases such as YeiN from E. coli (Preumont et al., 
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2008; Thapa et al., 2014), which might normally operate to keep levels of 5'-Ψ-MP 

low. In malayamycin-producing strains the glycosidase reaction might conceivably 

operate in the reverse direction as a glycosynthase, as has been recently shown for 

distinctive YeiN-like enzymes involved in biosynthesis of the blue pigment 

indigoidine (Takahashi et al., 2007), of the unusual polyketide alnumycin (Oja et al., 

2012) and of the C-nucleoside showdomycin (Palmu et al., 2017) (Figure S3).  

 

The malayamycin enoylpyruvyltransferase MalO, unlike its nikkomycin 

counterpart NikO, specifically accepts C-nucleoside 5'-Ψ-MP as substrate rather 

than 5'-UMP 

The gene nikO encoding the nikkomycin 3'-enoylpyruvyl-transferase was cloned from 

S. tendae (Ginj et al., 2005) and NikO was expressed and purified as a recombinant 

protein from E. coli, as described in Experimental Procedures. Likewise, the 

malO_Sm gene from the malayamycin biosynthetic gene cluster of S. malaysiensis 

was cloned, and MalO_Sm was obtained as a purified protein from E. coli. Each 

enzyme was incubated with PEP and either 5'-UMP or 5'-Ψ-MP as substrate 

(Experimental Procedures) and the reaction mixtures were analyzed by HPLC. The 

analysis showed that 5'-UMP was as previously demonstrated (Ginj et al., 2005) an 

excellent substrate for NikO to yield 3'-EPUMP 8, while in contrast no detectable 

reaction was found with MalO_Sm (Figure 4A).  

 The alternative substrate 5'-Ψ-MP was generated in situ through the reverse 

action of recombinant monophosphate glycosidase YeiN (Preumont et al., 2008) on 

uracil and ribose 5-phosphate (R5P). When incubated in the presence of either 

MalO_Sm or NikO, this led to the appearance of 3'-EP-Ψ-MP 11 (Figure 4B). The 

identity of 11 was confirmed by MS/MS (Figure S4) and NMR analysis of purified 

compound from a large scale enzymatic reaction (Experimental Procedures) (Table 

S4). Comparing the 1H and 13C NMR data of 3’-EPUMP (Ginj et al., 2005), the H-5 

signal disappeared, the H-6 signal changed from a doublet peak to a singlet peak, and 

the chemical shift of H-1' shifted from 5.88 to 4.60, and the C-1' shifted from 88.5 to 

78.4, suggesting a C-C link between C-5 and C-1'. Furthermore, the HMBC spectrum 

showed correlations of H-1' to C-5, C-4 and C-6, confirming the C-1' and C-5 linkage. 

The in vitro results strongly suggest that the pathway to the C-nucleoside 

malayamycin is as shown in Figure 6, in which the key precursor is 5'-Ψ-MP rather 

peter leadlay� 2/12/18 15:37
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than 5'-UMP. The adenosylcobalamin-dependent radical SAM enzyme MalJ is 

proposed to catalyze C-C bond formation as previously demonstrated for 

nikkomycin/polyoxin biosynthesis (Lilla and Yokoyama, 2016; He et al., 2017) to 

form Ψ-octosyl acid phosphate 12, which is then acted upon by phosphatase MalL to 

give Ψ-octosyl acid 13.  Decarboxylation and amination, probably catalyzed by the 

combination of putative 2-oxoglutarate-Fe(II)-dependent oxygenases MalM and MalI, 

together with aminotransferase MalK, would give descarbamoyl-

desmethylmalayamycin A 14. The final steps involve the action of 

carbamoyltransferase MalF and O-methyltransferase MalD to provide malayamycin A 

1 (Figure 6). The observed tolerance of NikO towards 5'-Ψ-MP as substrate in vitro 

also helps to account for the previous isolation of two pseudo-nikkomycins (differing 

from known nikkomycins only in the C-C rather than C-N attachment of the 

nucleobase) from fermentation extracts of mutant S. tendae (Heitsch et al., 1988; 

Decker et al., 1989).  

 

Engineered biosynthesis of N-malayamycin and of C-nikkomycins 

We reasoned that the different substrate specificity of MalO and NikO might be 

exploited to divert biosynthesis either towards N- or C-nucleosides. The S. 

chromofuscus ΔtruD strain, which produces greatly reduced levels of malayamycin A 

(Figure 5A), was used as the starting point of an attempt to produce N-malayamycin 

by direct fermentation. This compound has only been obtained previously by an 18-

step stereocontrolled synthetic route (Hanessian et al., 2005). The nikO gene from S. 

tendae was cloned on expression plasmid pGP9-nikO and used for conjugation into 

the S. chromofuscus  ΔtruD mutant (Experimental Procedures). LC-MS analysis of 

extracts from the fermentation of this strain (Figure 5A) revealed two peaks with the 

same [M+H]+ of 343.2: the peak with a retention time of 13.7 minutes represents 

malayamycin A, and the second peak at 16 minutes is N-malayamycin A, as 

confirmed by high-resolution MS and NMR analysis (Figure S5). This result shows 

that all the enzymes of the malayamycin A pathway are indeed able to act on 3'-

EPUMP and confirms that N-malayamycin can be obtained by fermentation. The 

switch to N-nucleoside production is however only partial, because 5'-Ψ-MP is still 

available in the ΔtruD mutant and is also processed by MalO and NikO. 
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A complementary experiment was carried out on the biosynthetic pathway to 

nikkomycin Z 4 in S. tendae, to attempt diversion of biosynthesis towards Ψ-

nikkomycin Z (Heitsch et al., 1988). First, the nikO gene of S. tendae was specifically 

deleted in-frame.  This abolished the production of nikkomycin Z (Figure 5B). 

Complementation of the S. tendae ΔnikO mutant with a wild-type copy of nikO in 

trans successfully restored nikkomycin Z production. However, when the truD_Sm 

gene of S. malaysiensis was expressed in the S. tendae ΔnikO mutant strain, as 

expected it did not lead to production of Ψ-nikkomycin Z (Figure 5B). 

Encouragingly, when the enoylpyruvyl-transferase gene malO_Sm from S. 

malaysiensis was used to complement S. tendae ΔnikO, LC-MS analysis revealed a 

new, earlier-eluting peak with the same mass as nikkomycin Z, but almost no peak at 

the position expected for nikkomycin Z. It has been reported that Ψ-nikkomycin Z 

formation is boosted by feeding a high concentration (0.4%) of uracil to the wild-type 

S. tendae fermentation (Decker et al., 1988). Indeed, when uracil was fed to the wild-

type culture, the same earlier-eluting peak as observed in the ΔnikO::malO_Sm 

fermentation appeared with the same m/z at 496.4 as nikkomycin Z (Figure 5B). The 

MS/MS spectrum of this species was almost identical to that of nikkomycin Z (Figure 

S6). However, MS3 on m/z 288.2 of the two showed significant differences. In the 

MS3 of nikkomycin Z, a fragment at m/z 176.2 was generated due to C-N cleavage 

between uracil and ribose moiety.  MS3 spectrum of the earlier eluted peak did not 

show this characteristic fragment, instead a fragment at m/z 208.2 was generated, 

which was in agreement with the C-C glycosidic linkage in Ψ-nikkomycin Z (Figure 

S6). These results were in full agreement with the in vitro specificity we have 

determined for MalO_Sm. Expression of both truD_Sm and malO_Sm in S. tendae 

ΔnikO did not further alter the amount of Ψ-nikkomycin Z formed (Figure 5B), so a 

step other than that catalyzed by TruD_Sm must be rate-limiting. A YeiN-like 

monophosphate glycosidase is encoded in the S. tendae genome (Figure S3) and this 

enzyme may be responsible for the stimulation of Ψ-nikkomycin Z production by 

uracil. When uracil was fed to the ΔnikO::malO_Sm mutant, the production of Ψ-

nikkomycin Z was increased 5-fold (Figure S7). 

 

SIGNIFICANCE 



! 10!

There is an urgent need for new antifungal compounds for both plant protection 

and clinical use. The uridine C-nucleoside malayamycin is a promising lead 

compound, but exploration of analogs and their activity has so far been limited 

by the complexity of the synthetic route.  We report here the discovery of the 

biosynthetic gene cluster (mal) for malayamycin A from two different 

Streptomyces strains, which has revealed the molecular basis for C-nucleoside 

formation. The pathway parallels the early steps of biosynthesis of known 

uridine-based N-nucleosides, except that the key nucleotide building block is 5'-

pseudouridine monophosphate (5'-Ψ-MP) instead of 5'-UMP. The key 

determinant of C-nucleoside formation is the malayamycin 3'-

enoylpyruvyltransferase MalO, which acts specifically on 5'-Ψ-MP and not on 

5'-UMP. We show that the supply of 5'-Ψ-MP for malayamycin biosynthesis may 

depend either upon the repurposing of a universal RNA editing mechanism, in 

which a specific U residue in RNA is converted to Ψ  by the action of a TruD-like 

enzyme encoded in the malayamycin biosynthetic gene cluster; or alternatively 

on the evolution of such an enzyme to isomerize a uridine mononucleotide 

substrate. These insights have allowed engineering of the malayamycin pathway 

to create analogs by fermentation, and suggest the presence of a TruD gene is 

sufficient to identify an orphan actinomycete gene cluster as leading to a 

pseudouridine-based antibiotic.  
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Main Figure titles and legends 

!
Figure 1. Structures of uracil-containing nucleoside natural products 

Figure 2. The biosynthetic pathway to nikkomycin and polyoxin N-nucleosides 
 
Figure 3. Production of malayamycin from Streptomyces chromofuscus and 
mutants 
(A) Malayamycin biosynthetic gene cluster in Streptomyces chromofuscus and 
Streptomyces malaysiensis.  
(B) LC-MS analysis of malayamycin A standard ([M+H]+: 343.2) and its analogs 
produced by S. chromofuscus wild-type (WT_Sc) and mutant strains: the 
methyltransferase (malF) deletion mutant (ΔmalF) produced desmethylmalayamycin 
A ([M+H]+: 329.2); the carbamoyltransferase (malD) deletion mutant (ΔmalD) 
produced both descarbamoylmalayamycin A ([M+H]+: 300.2) and the descarbamoyl-
desmethyl-malayamycin A ([M+H]+: 286.2). Complementation of the ΔmalD mutant 
with carbamoyltransferase (ΔmalD::malD) restored malayamycin A production. See 
also Figure S1. 
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Figure 4: HPLC Analysis of the Reactions Catalyzed by NikO and MalO_Sm 
monitored at UV of 262 nm 
(A) with UMP as substrate I: uridine monophosphate (UMP) standard; II: formation 
of 8 (3'-EPUMP) from UMP in a reaction containing PEP, UMP and NikO; III: 
almost no conversion of UMP in the presence of PEP and MalO_Sm.  
(B) with 5'-Ψ-MP as substrate I: 5'-pseudouridine monophosphate (5'-Ψ-MP) was 
generated by uracil, R5P and YeiN; II: formation of 11 (3'-EP-Ψ-MP) in a reaction 
containing uracil, R5P and YeiN, PEP and NikO; III: formation of 11 (3'-EP-Ψ-MP) 
in a reaction containing uracil, R5P and YeiN, PEP and MalO_Sm. See also Figures 
S3, S4, Table S4 and Data S1. 
 
Figure 5. LC-MS analysis of nucleosides produced by S. chromofuscus, S. tendae 
and mutants 
(A) LC-MS ([M+H]+: 343.2) analysis of malayamycin A and N-malayamycin A. 
When truD was deleted (ΔtruD), production of malayamycin A was reduced to 5-10% 
of the amount from wild-type S. chromofuscus (WT_Sc). Complementation of truD to 
the ΔtruD mutant (ΔtruD::truD) rescued malayamycin A production. When the nikO 
gene of nikkomycin cluster was complemented into the ΔtruD mutant (ΔtruD::nikO). 
N-linked malayamycin (N-malayamycin A) was produced along with malayamycin A. 
(B) LC-MS ([M+H]+: 496.4) analysis of nikkomycin Z and pseudo-nikkomycin Z 
production from S. tendae and its mutant strains. nikO deletion mutant (ΔnikO) 
abolished nikkomycin Z production. Using nikO for complementation of the ΔnikO 
mutant (ΔnikO::nikO) rescued nikkomycin Z production. When the malO gene of 
malayamycin cluster from S. malaysiensis was used to complement the ΔnikO mutant 
(ΔnikO::malO_Sm). C-linked nikkomycin Z (Ψ-nikkomycin Z) was almost 
exclusively produced. There was no significant increase in the amount of Ψ-
nikkomycin Z production when malO and truD were together used to complement the 
ΔnikO mutant (ΔnikO::malO_Sm). As reported in the literature (Decker et al., 1988), 
Ψ-nikkomycin Z production was boosted when high concentration of uracil (0.4%) 
was fed to the wild-type S. tendae. See also Figures S2, S5 and S6. 
 
Figure 6.   The proposed biosynthetic pathway to malayamycin A 
 
 
Main Tables 

!
Table 1. Deduced Functions of ORFs in the mal Biosynthetic Gene Cluster of 
Streptomyces chromofuscus ATCC 49982 
!
 
 
STAR Methods text 
 

Contact for Reagent and Resource Sharing 

“Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Peter F Leadlay (pfl10@cam.ac.uk)” 
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Experimental Model and Subject Details 

Bacterial Strains and Culture Conditions 

Streptomyces malaysiensis DSM 14702 (malayamycin A-producing strain) was 

obtained from the Leibniz Institute DSMZ, the German Collection of Microorganisms 

and Cell Cultures, Braunschweig, Germany. Streptomyces chromofuscus ATCC 

49982 and Streptomyces tendae ATCC 31160 were obtained from the American Type 

Culture Collection (ATCC) via LGC Standards, Teddington, U.K. All strains were 

maintained on SFM agar (2% soya flour (AYKASOY), 2% D-mannitol, 2% agar) at 

30°C. E. coli strains were grown in Luria-Bertani (LB) broth (10% tryptone, 5% yeast 

extract, 10% NaCl) or agar (10% tryptone, 5% yeast extract, 10% NaCl, 2% agar) at 

37oC with appropriate antibiotic selection (kanamycin, at 50 µg ml-1). 

 

Method Details 

DNA Isolation and Manipulations 

Plasmids and oligonucleotides (Sigma-Aldrich) used in this work are summarized in 

Supplementary Tables S3 and S4 respectively. Restriction endonuclease digestion 

(NewEngland Biolabs Inc), PCR amplifications using Phusion® High-Fidelity PCR 

Master Mix (NewEngland Biolabs Inc) and ligation using Gibson Assembly® Master 

Mix (NewEngland Biolabs Inc) were carried out according to the manufacturers’ 

protocols. Liquid cultures for isolation of genomic DNA were grown in tryptone soya 

broth (Difco). DNA isolation and manipulation in Streptomyces, and E. coli were 

carried out using standard protocols (Sambrook and Russell, 2001; Kieser et al., 2001).  

Metabolite analysis 

For small-scale analysis, Streptomyces chromofuscus and Streptomyces tendae were 

grown in liquid SFM medium (2% soya flour (ARKASOY), 2% d-mannitol) at 30°C 

and 200 rpm in a rotary incubator for 4 days. 0.5 mL samples of culture broth were 

centrifuged at 20,000 x g for 15 min. 100 µL of clear supernatant was analyzed by 

LC-MS. LC-MS analyses were performed on a HPLC (Agilent Technologies 1200 

series) coupled to a Thermo Fisher LTQ mass spectrometer fitted with an electrospray 
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ionization (ESI) source. A Prodigy 5µ C18 column (4.6 x 250 mm, Phenomenex) was 

used, and the samples were eluted using MilliQ-deionised/distilled water (MQ) 

containing 0.1% trifluoroacetic acid (A) and methanol (B) at a flow rate of 0.7 ml 

min-1. The linear elution gradient for analysis of malayamycin A and its analogues 

was 2% B for 8 min, 2% to 12% B over 10 min, 12% to 98%  B over 1 min, 98% B 

for 10 min, 98% to 2% B over 1 min. The elution gradient for nikkomycin analysis 

was 2% B for 5 min, 2% to 15% B over 13 min, 15% to 98% B over 1 min, 98% B for 

10 min, 98% to 2% B over 1 min.  The mass spectrometer was run in positive 

ionization mode, scanning from m/z 200 to 2000 in full scan mode. MS/MS analysis 

were performed on [M+H]+ ions with a normalized collision energy of 10% to 15%. 

High-resolution UPLC-MS was carried out on a Waters Xevo G2-S Q-TOF for the 

semi-purified mixture of malayamycin A and N-malayamycin A. A Waters Acquity 

instrument fitted with a Acquity UPLC BEH 1.7µ C18 column (2.1 x 50 mm) was 

used, and the sample was eluted using MQ containing 0.1% formic acid (A) and 

acetonitrile containing 0.1% formic acid (B) at a flow rate of 0.21 ml min-1. The linear 

elution gradient was 2% B for 4.4 min, 2% to 6% B over 5 min, 6% to 100% B over 

1.6 min, 100% to 2% B over 1 min. The ESI was operated in positive mode. 

 

Construction of gene knock-out plasmids 

Recombinant plasmids based on the pYH7 vector were constructed by ligating DNA 

fragments (about 2 kb) PCR-amplified from the upstream and downstream flanks of 

the target gene into cloning vector pYH7, which was digested with NdeI, treated with 

shrimp alkaline phosphatase (SAP) and gel purified. To ligate the fragments 

corresponding to the left and right flanking regions of the target gene into pYH7, the 

isothermal assembly method was used as described (Gibson et al., 2009). The mixture 

was incubated at 50°C for 60 min, and was used to transform E. coli DH10B. The 

integrity of all recombinant plasmids was checked by restriction digestion and 

sequencing.  

!

truD, malF, mal D and coaE gene knock-out in S. chromofuscus 

The constructs used in this study for gene knock-out are summarized in 

Supplementary Table S2. The pYH7 based constructs were transformed into E. coli 

ET12657/pUZ8002 and then introduced by conjugation into mycelia of the 
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Streptomyces chromofuscus WT strain. Conjugations were carried out on 20 ml of 

SFM plates (2% mannitol, 2% soya flour, 2% agar). After incubating at 30°C for 

around 17 hours, exconjugants were selected with 10 µg ml-1 apramycin and 25 µg ml-

1 nalidixic acid. Single colonies from this plate were transferred to a SFM plate 

containing 50 µg ml-1 apramycin to check for antibiotic resistance. Mutant screening 

was carried out by streaking transformants on SFM agar medium for non-selective 

growth, then patching single colonies in parallel onto SFM agar and SFM agar 

containing apramycin (50 µg ml-1). Candidate colonies with the correct phenotype 

(AprS) were selected for further screening by PCR using screening primers listed in 

Table S3 to identify double cross-over mutants. The PCR fragments from the double 

cross-over mutants were further verified by sequencing. 

!

nikO gene knock-out in S. tendae 

The pYH7-nikO plasmid was transformed into E. coli ET12657/pUZ8002 and then 

introduced by conjugation into spores of the Streptomyces tendae WT strain. Spores 

from SFM plates were collected, washed twice with 2TY and heat-shocked at 50°C 

for 10 min before conjugation. Conjugations were carried out on 20 ml of SFM plates. 

After incubation at 30°C for 17 hours, exconjugants were selected with 25 µg ml-1 

apramycin and 25 µg ml-1 nalidixic acid. Single colonies from this plate were 

transferred to a SFM plate containing 50 µg ml-1 apramycin to double check for 

antibiotic resistance. Mutants screening were carried out by streaking transformants 

on SFM agar medium for non-selective growth, then patching single colonies onto 

both SFM agar and SFM agar containing apramycin (50 µg ml-1) in parallel. 

Candidate colonies with the correct phenotype (AprS) were selected for further 

screening by PCR using screening primers listed in Supplementary Table S3 to 

identify double cross-over mutants. The PCR fragments from the double cross-over 

mutants were further verified by sequencing. 

 

Complementation of truD, nikO and malD genes into S. chromofuscus deletion 

mutants 

The tRNA pseudouridine synthase truD and carbamoyltransferase malD were PCR 

amplified from genomic DNA of S. chromofuscus, using primer pairs truD-p9_Fd/Rv 

and malD-p9_Fd/Rev, respectively. The enoylpyruvyl-UMP synthase nikO was PCR 

amplified from genomic DNA of S. tendae, using primer pair nikO-p9_Fd/Rv.  The 
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cloning vector pGP9 was digested with NdeI and gel purified. The truD, malD and 

nikO PCR fragments were ligated by the isothermal assembly method with the 

digested pGP9 plasmid, to yield plasmids pGP9-truD, pGP9-malD and pGP9-nikO. 

The constructs were then introduced by conjugation into ΔtruD, ΔmalD and ΔtruD 

strains, respectively, to generate ΔtruD::truD, ΔmalD::malD and ΔtruD::nikO 

complementation strains. The conjugation procedure was the same as described in 1.4. 

After incubating at 30°C for around 17 hours, exconjugants were selected with 10 µg 

ml-1 apramycin and 25 µg ml-1 nalidixic acid. Single colonies from this plate were 

transferred to a SFM plate containing 50 µg ml-1 apramycin to double check for 

antibiotic resistance. The patch from the confirmation plate was then inoculated into 

SFM liquid culture containing 50 µg ml-1 apramycin for metabolites production. 

 

Complementation of nikO, malO_Sm, truD_Sm and malO_Sm-truD_Sm genes 

into the S. tendae nikO deletion mutant 

The S. tendae nikO-deletion mutant (ΔnikO) was complemented with native 

enoylpyruvyl-UMP synthase nikO, as well as enoylpyruvyl-UMP synthase malO_Sm, 

tRNA pseudouridine synthase truD_Sm and malO_Sm-truD_Sm from S. 

malaysinensis. Gene nikO was PCR amplified from genomic DNA of S. tendae, using 

primer pair nikO-p139_Fd/Rv. Genes truD_Sm and malO_Sm were PCR amplified 

from genomic DNA of S. malaysiensis, using primer pairs truD_Sm-p139_Fd/Rv and 

malO_Sm-p139_Fd/Rv, respectively. The cloning vector pIB139 was digested with 

NdeI and gel purified. The nikO, truD_Sm and malO_Sm PCR fragments were ligated 

by the isothermal assembly method with the digested pIB139 vector, to yield plasmids 

pIB139-nikO, pIB139-truD_Sm and pIB139-malO_Sm, respectively. To create 

plasmid pIB139-malO_Sm-truD_Sm, the plasmid pIB139-malO_Sm was digested 

with XbaI, and purified by gel. The truD_Sm including its RBS was PCR amplified 

from genomic DNA of S. malaysinensis, using primer pair truD_Sm-XbaI_Fd/Rv. 

This truD_Sm PCR fragment was then ligated by the isothermal assembly method 

with the XbaI-digested pIB139-malO_Sm to yield pIB139-malO_Sm-truD_Sm 

plasmid.  

The constructs were then introduced by conjugation into ΔnikO mutant, to generate 

ΔnikO::nikO, ΔnikO::truD_Sm, ΔnikO::malO_Sm and ΔnikO::malO_Sm-truD_Sm. 

The conjugation procedure was the same as described in 1.5. After incubating at 30°C 
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for around 17 hours, exconjugants were selected with 25 µg ml-1 apramycin and 25 µg 

ml-1 nalidixic acid. Single colonies from this plate were transferred to a SFM plate 

containing 50 µg ml-1 apramycin to double check for antibiotic resistance. The patch 

from the confirmation plate was then inoculated into SFM liquid culture containing 50 

µg ml-1 apramycin for metabolites production. 

!

Production, purification and NMR analysis of N-malayamycin 

For the production of N-malayamycin, 100 of 20 ml SFM agar plates containing 50 

µg ml-1 apramycin were set up. Each plate was innoculated with 0.3 ml of 1-day 

TSBY culture of S. chromofuscus ΔtruD::nikO mutant, in which 

enolpyruvyltransferase gene (nikO) from nikkomycin cluster was complemented into 

the tRNA pseudouridine synthase gene (truD) deletion mutant of S. chromofuscus. 

The plates were incubated at 30 °C for 12 days. After the incubation, plates were 

extracted with MQ water twice. The aqueous solution was then lyophilized. The dried 

residue was dissolved in methanol, and spun thoroughly to remove insoluble debris.  

The methanol sample was applied onto a preparative HPLC (Agilent 1200) fitted with 

a Luna 10µ C18 column (100Å, 21.20 x 250 mm, Phenomenex). Compounds were 

eluted with MQ (A) and acetonitrile containing 0.1% formic acid (B) at a flow rate of 

20 ml min-1. The linear gradient was 0% B for 5 min, 0% to 10% B over 10 min, 10% 

to 100% B over 5 min, 100% B for 4 min, 100% to 0% B over 1 min. HPLC elution 

was monitored at 262 nm. Fractions were further checked by LC-MS analysis. 

Fractions containing N-malayamycin were combined. Acetonitrile was removed under 

reduced pressure, and sample was lyophilized. The dried sample was dissolved in a 

minimal amount of methanol, and further purified on a ThermoHypersil BDS C8 

analytical column (5µ, 4.6 x 250 mm), eluting with MQ (A) and acetonitrile (B) at a 

flow rate of 1 ml min-1. The gradient was 0% B for 5 min, 0% to 6% B over 10 min, 

6% to 0% B over 1 min. Fractions containing N-malayamycin were combined, and 

acetonitrile was removed under reduced pressure, and the sample was lyophilized. 

The dried residue was dissolved in [2H4]-methanol, and analysed on a Brucker-500 

NMR spectrometer. 

!!

Protein expression and purification 
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The tRNA pseudouridine synthase truD_Sm and enolpyruvyl transferase malO_Sm 

genes were PCR amplified from genomic DNA of Streptomyces malaysiensis, using 

primer pairs TruD_Sm-p28_Fd/Rv and MalO_Sm-p28_Fd/Rv, respectively. The nikO 

gene was PCR amplified from genomic DNA of S. tendae, using primer pair NikO-

p28_Fd/Rv. The E. coli pseudouridine-5′-phosphate glycosidase yeiN gene was PCR 

amplified from genomic DNA of E. coli K12, using primer pair YeiN-p28_Fd/Rv. 

The cloning vector pET28a(+) was digested with NdeI and gel purified. The nikO, 

yeiN, truD_Sm and malO_Sm PCR fragments were ligated by the isothermal assembly 

method with the digested pET28a(+) vector, to yield plasmids pET28a-nikO, pET28a-

yeiN, pET28a-truD_Sm and pET28a-malO_Sm, respectively.  

The pET28a-nikO, pET28a-yeiN, pET28a-truD_Sm and pET28a-malO_Sm plasmids 

were then used to transform E. coli BL21(DE3) for protein expression. A single 

colony was inoculated into 10 mL of LB medium containing 50 µg ml-1 kanamycin 

and grown overnight at 37°C, 250 rpm. The overnight culture was used to inoculate 1 

L LB medium containing 50 µg ml-1 kanamycin and incubated at 37°C, 200 rpm until 

A600 reached 0.6 before addition of isopropyl-β-d-thiogalactopyranoside (IPTG) to a 

final concentration of 0.4 mM, and incubation at 22°C overnight to induce protein 

expression. Cells were harvested by centrifugation at 4,000 rpm for 10 min, 

resuspended in lysis buffer (20 mM Tris-HCl, pH 7.8, 0.5 M NaCl, 10 mM imidazole) 

and lysed by sonication. The total lysate was centrifuged at 14,000 x g for 40 min, and 

the supernatant was loaded onto a His-Bind column, which had been pre-charged with 

nickel ions and equilibrated with lysis buffer. The column was washed with 10 

column volumes of lysis buffer. Bound proteins were then eluted with a step gradient 

of increasing imidazole concentration (40, 80, 100, 150, 200, 250 and 500 mM in 

binding buffer). The fractions containing the expected protein were pooled, 

concentrated and buffer exchanged to 50 mM Tris-HCl, 0.15 M NaCl, pH 7.7. The 

purified proteins were aliquoted and stored at -70°C.  

 

In vitro activity assays of TruD_Sm, NikO and MalO_Sm 

To test the activity of TruD_Sm, several candidate substrates were tried, including 

uridine, UMP, UDP and UTP. Each reaction mixture (50 µl) contained 5 µM purified 

TruD_Sm, and 1 mM substrate, in 50 mM Tris-HCl buffer pH 7.7. Incubations were 

carried out at 30°C for 0.5 hr, 1 hr, 2 hr, 6 hr and overnight. After the incubation, 

chloroform was added to the reaction mixtures to precipitate the protein. 10 ul of the 
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resultant samples were analysed by HPLC-UV-MS (Agilent HP1200 coupled to 

Thermo fisher LTQ mass spectrometer) on a Prodigy 5µ C18 column (4.6 x 250 mm, 

Phenomenex), eluting with MQ containing 0.1% trifluoroacetic acid (A) and 

acetonitrile containing 0.1% trifluoroacetic acid (B) at a flow rate of 0.7 ml min-1. The 

linear gradient was 0% B for 5 min, 0% to 5% B over 10 min, 5% to 100% B over 10 

min, 100% B for 4 min, 100% to 0% B over 1 min. The mass spectrometer was set up 

in positive electrospray ionisation (ESI) mode, scanning from m/z 200 to 1000 in full 

scan mode. MS/MS analysis were performed on [M+H]+ ions with a normalized 

collision energy of 35%. Elution was also monitored by a photodiode array (PDA) 

detector. 

To test the enolpyruvyl transfer activity of NikO and MalO_Sm towards uridine 5’-

monophosphate (UMP) as substrate, the enzymatic reactions were set up containing 1 

mM UMP, 1 mM phosphoenolpyruvate (PEP) and 5 µM purified NikO or MalO_Sm 

in 50 mM Tris-HCl buffer pH 7.7. Reactions were incubated at 30°C for 2 hr. After 

incubations, samples were treated with chloroform and 10 µl of the resultant samples 

were analysed by HPLC-UV-MS as described above.  

To test the enolpyruvyl transfer activity of NikO and MalO_Sm towards 

pseudouridine-5'-monophosphate (Ψ-MP) as substrate, Ψ-MP was generated in situ 

using E. coli pseudouridine-5′-phosphate glycosidase YeiN. To verify the activity of 

the purified YeiN, reaction was set up containing 0.5 mM MnCl2, 1 mM uracil, 1 mM 

ribose 5-phosphate (R5P), 5 µM YeiN, in 50 mM Tris-HCl buffer pH 7.7. The 

reaction mixture was incubated at 30°C for 2 hr. The formation of Ψ-MP was checked 

by HPLC-UV-MS analysis of 5 µl reaction mixture as described above. A one-pot 

reaction was set up for the activity assay of NikO and MalO_Sm using Ψ-MP as 

substrate. The reaction contained 0.5 mM MnCl2, 1 mM uracil, 1 mM R5P, 1 mM 

PEP, 5 µM YeiN and 5 µM NikO or MalO_Sm, in 50 mM Tris-HCl buffer pH 7.7. 

The reaction mixture was incubated at 30°C for 2 hr. After treatment with chloroform, 

10 µl of the resultant samples were analysed by HPLC-UV-MS as described above.    

 

Large-scale production and purification of 3’-EP-ΨMP and NMR analysis 

For the production of 3’-EP-ΨMP, 40 ml of reaction containing 1 mM MnCl2, 2 mM 

uracil, 2 mM R5P, 2 mM PEP, 5 µM YeiN and 6 µM NikO, in 50 mM Tris-HCl 

buffer pH 7.7. The reaction mixture was incubated at 30°C for 3 hr. After incubation, 
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chloroform was added to the reaction mixture to precipitate the proteins. The clear 

supernatant was then transferred and lyophilized. To purify the reaction product, the 

lyophilized crude mixture was dissolved in water, and applied to a semi-prep C18 

column (Gemini 5µ C18, 10.00 x 250 mm, Phenomenex) on an Agilent 1260 Infinity 

II LC. MQ containing 0.05% TFA (A) and acetonitrile (B) were used to elute the 

compound at a flow rate of 3 ml min-1. The linear gradient was 0% B for 5 min, 0% to 

5% B over 10 min, 5% to 100% B over 10 min, 100% B for 4 min, 100% to 0% B 

over 1 min. Elution was monitored at 262 nm. Fractions containing 3'-EP-ΨMP were 

combined. Acetonitrile was removed under reduced pressure with the rotary 

evaporator. The remaining aqueous solution was lyophilized. The dried residue was 

dissolved in [2H6]DMSO, and analysed on a Brucker-500 NMR spectrometer. 

Quantification and Statistical Analysis 

See individual sections above for details on the statistics used for analysis. 

 

Data and Software Availability 

The software used in this study is listed in the Key Resources Table. 

The sequence of the mal cluster has been deposited in the NCBI under the accession 

number GenBank MH537786. 

 
Supplemental item titles and legends 
 
Figure S1. A) In-frame deletion of truD, malD, malF, and coaE genes in S. 

chromofuscus, Related to STAR Method and Figure 3. Lane 1: marker; Lane 2 and 

3: PCR product from ΔtruD (93 bp) and WT (1,897 bp), respectively; Lane 4: marker; 

Lane 5 and 6: PCR product from ΔmalD (2,437 bp) and WT (3,703 bp), respectively; 

Lane 7: marker; Lane 8 and 9: PCR product from ΔmalF (2,631 bp) and WT (3,315 

bp), respectively; Lane10: marker; Lane 11 and 12: PCR product from ΔcoaE (1,108 

bp) and WT (1,675 bp), respectively; Lane 13: marker. B) In-frame deletion of nikO 

gene in S. tendae, Related to STAR Method and Figure 3. Lane 1: marker; Lane 2 
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and 3: PCR product from ΔnikO (520 bp) and WT (1,942 bp), respectively. C) ESI-

MS/MS spectra of malayamycin A and its analogous. Malayamycin A standard 

([M+H]+: 343.2), malayamycin A produced from S. chromofuscus WT, desmethyl-

malayamycin A from ΔmalF ([M+H]+: 329.2), descarbamoyl-malayamycin A from 

ΔmalD ([M+H]+: 300.2) and descarbamoyl-descarbamoyl-malayamycin A from 

ΔmalD ([M+H]+: 286.2). 

 

Figure S2. Sequence alignment of TruD family of tRNA pseudouridine 

synthases, Related to Figure 5. The sequences of TruDs [TruD_SM: TruD from 

Streptomyces malaysiensis; TruD_SC: TruD from Streptomyces chromofuscus; 

TruD_SS: TruD from Streptomyces sp. ID38640 (accession no. AVT42379); 

TruD_HP : TruD from Helicobacter pylori (accession no. NP_207718); TruD_AF: 

TruD from Archaeoglobus fulgidus (accession no. O28596); TruD_EC: TruD from E. 

coli (accession no. AQZ29382)] are aligned using Clustal Omega. The conserved 

sequence motifs are highlighted in boxes. The catalytic aspartate is denoted with an 

asterisk. 

 

Figure S3. Phylogenetic analysis of YeiN-related glycosidase and putative 

glycosynthase enzymes, Related to Figure 4. Sc: Streptomyces chromofuscus; St: 

Streptomyces tendae; Sm: Streptomyces malaysiensis; ShYeiN:  YeiN from 

Streptomyces himastatinicus (accession no. WP_009720488); EcYeiN: YeiN from 

Escherichia coli (accession no. AAA60517); AlnA: alnumycin biosynthesis from 

Streptomyces sp. CM020 (accession no. ACI88875); SaInda: indigoidine biosynthesis 

from Streptomyces albus (accession no. AMM12432); Sdma: showdomycin 

biosynthesis from Streptomyces showdoensis ATCC 15227.   

 

Figure S4. Comparison of ESI-MS/MS spectra of 3'-EPUMP ([M+H]+: 395.2) 

and 3'-EP-Ψ-MP ([M+H]+: 395.2), Related to Figure 4. Loss of C-N linkage in 3'-

EP-Ψ-MP abolished the fragment at m/z 283.2, which was a key fragment in the 

MS/MS of 3'-EPUMP. 

 

 

Figure S5. Analysis of N-malayamycin A by MS and 1H NMR, Related to Figure 

5A. A) High-resolution UPLC-MS analysis of N-malayamycin A and malayamycin A 
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from fermentation extract of S. chromofuscus ΔtruD::nikO mutant. B) Comparison of 
1H spectra of N-malayamycin A purified from fermentation of S. chromofuscus 

ΔtruD::nikO mutant and from chemical synthesis (Hanessian et al., 2005). 

 

Figure S6. MS/MS and MS3 analysis of nikkomycin Z and Ψ-nikkomycin Z, 

Related to Figure 5B. A) MS/MS and MS3 spectra of nikkomycin Z. B) MS/MS and 

MS3 spectra of Ψ-nikkomycin Z. C) Fragmentation pathways for the generation of 

m/z 176 fragment in nikkomycin Z and of m/z 208 fragment in Ψ-nikkomycin Z. 

 

Figure S7. Comparison of Ψ–nikkomycin Z production with and without uracil 

feeding to the ΔnikO::malO_Sm mutant, Related to Figure 5B. When uracil (0.4%) 

was fed to the ΔnikO::malO_Sm mutant, the production of Ψ-nikkomycin Z was 

increased 5-fold. 

 

Data! S1.!NMR! Spectra! of!3'3EP3Ψ3MP.! ! Related! to! Figure! 4.! 1HQ!and!13CQ!1D!

NMR!spectra,!and!!1HQ1H!COSY,!HSQC!and!HMBC!2D!NMR!spectra,!of!the!product!

of!the!reaction!catalyzed!by!MalO.!!
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