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Abstract 

Background:  Prediction of the change in fold stability (ΔΔG) of a protein upon muta-
tion is of major importance to protein engineering and screening of disease-causing 
variants. Many prediction methods can use 3D structural information to predict ΔΔG. 
While the performance of these methods has been extensively studied, a new problem 
has arisen due to the abundance of crystal structures: How precise are these methods 
in terms of structure input used, which structure should be used, and how much does 
it matter? Thus, there is a need to quantify the structural sensitivity of protein stability 
prediction methods.

Results:  We computed the structural sensitivity of six widely-used prediction methods 
by use of saturated computational mutagenesis on a diverse set of 87 structures of 25 
proteins. Our results show that structural sensitivity varies massively and surprisingly 
falls into two very distinct groups, with methods that take detailed account of the local 
environment showing a sensitivity of ~ 0.6 to 0.8 kcal/mol, whereas machine-learning 
methods display much lower sensitivity (~ 0.1 kcal/mol). We also observe that the 
precision correlates with the accuracy for mutation-type-balanced data sets but not 
generally reported accuracy of the methods, indicating the importance of mutation-
type balance in both contexts.

Conclusions:  The structural sensitivity of stability prediction methods varies greatly 
and is caused mainly by the models and less by the actual protein structural differ-
ences. As a new recommended standard, we therefore suggest that ΔΔG values are 
evaluated on three protein structures when available and the associated standard 
deviation reported, to emphasize not just the accuracy but also the precision of the 
method in a specific study. Our observation that machine-learning methods deempha-
size structure may indicate that folded wild-type structures alone, without the folded 
mutant and unfolded structures, only add modest value for assessing protein stability 
effects, and that side-chain-sensitive methods overstate the significance of the folded 
wild-type structure.

Keywords:  Protein stability, Mutation, Computation, Protein structure, Structural 
sensitivity
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Background
The accurate prediction of the change in protein fold stability (ΔΔG) upon amino-acid 
substitution is a central challenge in modern biology, the solution to which would enable 
efficient rational engineering of stable proteins for industry and medicine [1–3], help 
us to understand protein evolution where stability effects play a major role [4–9], and 
improve our understanding of many protein-stability related genetic diseases driven by 
point mutations [10–12].

Many programs can predict ΔΔG by utilizing diverse prediction models from 
machine-learning to energy-based force-fields [13–22]. An important distinction can 
be made between those methods that only use the protein amino-acid sequence to pre-
dict stability and those that use a three-dimensional wild-type structure as input. Logi-
cally, one expects methods that use a 3D structure to perform better, since interactions 
between amino acids cannot be fully deduced from sequence alone. However, the struc-
ture-based methods importantly miss both the unfolded wild-type structure, and the 
folded and unfolded mutants structures, i.e. three of the four structures of the thermo-
dynamic cycle of ΔΔG values; perhaps partly for this reason, structure-based methods 
perform only slightly better than their sequence-based counterparts [23].

The worse-than-expected performance of structure-based methods can also relate 
directly to the quality of the structures used. Indeed, it has been long debated whether 
crystal structures reproduce the native structures of proteins in solution and cells, as 
structures could be affected by crystal packing effects [24, 25]. Thus, while we can say 
whether a structure is more precisely determined, it is difficult to say which protein 
structure is more realistic. Databases such as ProTherm [26] and VariBench [27] anno-
tate each experimental data point with a Protein Data Bank (PDB) [28] code that may 
not represent the best structure if more structures are available, and this could affect the 
computed ΔΔG value.

It is well-known that energy-based methods such as FoldX [29] or Rosetta [30] can 
be quite affected by the structure used, and the authors of the methods recommend to 
minimize the structures used as input before prediction. On the other hand, machine 
learning methods, which arguably deemphasize the protein structure relative to such 
methods (as shown clearly below), have been previously indicated to be less structurally 
sensitive, at least for certain proteins [31, 32].

In addition to the accuracy (as estimated from the performance for a balanced data 
set) [33], it is therefore also important to know how sensitive a method is to the input 
structure used, i.e. its “precision”. Method accuracy has been extensively studied and the 
moderate accuracy of the prediction methods was attributed to failings in the scoring 
functions [17], inability to correctly predict stabilizing mutations [23] or biases originat-
ing from the datasets used for training [33]. An important set of principles for evaluating 
protein stability prediction methods of the prediction methods was reported by Niroula 
and Vihinen [34], but the impact of structure choice on the computed outcome was not 
discussed, yet, as shown below, adds an additional criteria for evaluating these methods. 
To our knowledge, structural sensitivity has only been considered when studying select 
proteins such as superoxide dismutase [31] and myoglobin [32].

A more generally confirmed structural sensitivity measure would represent a base 
measure for the precision of the methods, which seems required from a scientific 
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point of view, since accuracy without precision does not suffice to establish predic-
tive power, and any output should ideally be seen in the context of such a precision 
measure, i.e. the noise expected due to choice of structural input. However, it should 
be noted that a method showing no structural sensitivity at all is not desirable either, 
as it would imply that the method underemphasizes the wild type structure, leaving it 
practically if not formally a sequence-based method.

In this paper we studied the structural sensitivity of six widely used protein sta-
bility prediction methods, including both energy and knowledge-based methods and 
machine learning methods. The structural sensitivity was determined from com-
putational saturated mutagenesis [35] applied on 25 different proteins, each having 
multiple possible structures published in the PDB. Our results show that structural 
sensitivity varies greatly, with some methods showing high sensitivity (~ 0.6 to 
0.8  kcal/mol) whereas others, notably all studied machine-learning methods, are 
very insensitive to structure choice (~ 0.1  kcal/mol). Furthermore, this sensitivity 
was rather constant across the proteins studied, showing that the models themselves 
cause the behaviour regardless of the structural heterogeneity itself. Our results pro-
vide a good baseline for the precision of protein stability calculators useful for future 
studies. As a consequence, we recommend the use of triplicate ΔΔG evaluations on 
three distinct structures and reporting of the associated standard deviation whenever 
this is possible.

Methods
Protein structures studied

23 proteins were selected from an exhaustive search of PDB structures that fulfilled 
the following conditions:

•	 At least three crystal structures (3–5 used) in the PDB at different resolutions (at 
least 0.15 Å standard deviation of the resolution among the structures) but with 
the same amino-acid sequence;

•	 All structures monomeric in the crystal form;
•	 All structures apo (no ligands) in the crystal form;
•	 No missing CA atoms, except for N-terminal or C-terminal residues.

Furthermore, one protein with a metal centre (carbonic anhydrase) and one protein 
in a tetrameric form (deoxy-haemoglobin) were included to test the influence of such 
substantial features on structural sensitivity, for a total of 25 proteins. All structures 
were renumbered so that the same number corresponds to the same residue in all 
structures of a protein. More than three structures were selected for proteins with a 
wide spread of resolutions, to a maximum of five structures for Lyz, CAH, Rnase and 
UBQ. This resulted in a varied list of long and short proteins and proteins belong-
ing to all secondary structure classes in CATH, which should make our results more 
general; however, importantly it turns out that these variations have modest effect, 
i.e. the sensitivities are quite generic to the methods. The full list of proteins and their 
PDB IDs is given in Table 1.



Page 4 of 14Caldararu et al. BMC Bioinformatics           (2021) 22:88 

Structural sensitivity calculations

In order to calculate the structural sensitivity, a saturated computational mutagenesis 
[35] (all amino-acids were mutated to all other 19 amino-acids to produce 19 N mutants) 
was performed starting from all PDB structures with all six prediction methods, with a 
total of 87 structures subjected to saturated computational mutagenesis.

Structural sensitivity per mutation (SSmut) was defined as the standard deviation of 
the predicted ΔΔG values (in kcal/mol) for one mutation among all PDB structures of 
the same protein. Structural sensitivity per site (SSsite) was defined as the average SSmut 
(in kcal/mol) for all mutations from a specific residue of one protein, i.e. the average of 
19 mutations. Structural sensitivity per protein (SSprot) was defined as the average SSmut 
(kcal/mol) for all mutations in a specific protein.

Table 1  List of proteins studied in this work

CATH secondary structure class, PDB IDs, and the average and standard deviation among all the resolution values

Name Abbreviation CATH Length (N) PDB IDs Average 
resolution

STDEV 
resolution

Human acidic fibro-
blast growth factor

FGF β 513 2AFG, 3UD7, 1JQZ, 
1RG8

1.88 0.71

Barnase Bar α + β 110 1BNI, 1B2X, 1A2P, 1X1X 1.32 0.35

Hen Lyzozyme Lyz α 129 2LYZ, 2VB1, 3LZT, 5LIN, 
5HNL

1.50 0.73

Beta Lactamase BLac α + β 263 1ZG4, 1BTL, 4OQG 1.31 0.44

Alpha Amylase AAmy α + β 453 1AQM, 1AQH, 1B0I 2.08 0.28

Ubiquitin UBQ α + β 76 1UBQ, 6Q00, 4XOK, 
4XOL, 4XOF

1.78 0.83

Bovine pancreatic 
trypsin inhibitor

BPTI NoSS 58 1BPI, 3LDJ, 9PTI 1.34 0.32

Carbonic anhydrase CAH α + β 258 1CAH, 3KS3, 6PEA, 
1CA2, 1HCA

1.69 0.56

Hemoglobin Hem α 574 4HHB, 2DN2, 2HBS, 
1COH

1.39 0.69

Ribonuclease A Rnase α + β 108 6ETK, 1KF4, 2BLP, 1C0B, 
1JVV

1.43 0.56

Thaumatin Thm β 207 5AVG, 1THI, 1PP3 1.32 1.16

Human serum albumin HSA α 578 4G03, 1AO6, 4K2C 2.65 0.53

Turkey lysozyme MLyz α 129 2LZ2, 3LZ2, 135L 2.00 0.62

T-cell glycoprotein TGly β 363 1WIQ, 1WIP, 1WIO 4.3 0.61

Uracil-DNA Glycosylase UGlc α + β 223 2OYT, 2OXM, 1EMH, 
1AKZ

1.37 0.40

Beta-secretase 1 BACE1 β 370 2ZHS, 2ZHT, 2ZHV 2.30 0.42

Toxic shock toxin 1 TST1 β 194 5TSS, 2TSS, 2QIL 2.34 0.48

Human Procathepsin HPC α + β 317 1PBH, 2PBH, 3PBH 3.01 0.44

Gamma-B Crystallin GBC β 174 4GCR, 1GCS, 1AMM 1.56 0.41

Thermomyces Lanugi-
nosa Lipase

TLL α + β 269 1TIB, 1DTE, 1DT3 2.26 0.39

Spasmolytic polypep-
tide

SPP NoSS 105 1POS, 1PSP, 2PSP 1.35 0.35

Human neonatal Fc 
receptor

FCR β 263 3M17, 3M1B, 5BJT 2.37 0.32

Cyclophilin A CycA β 164 4YUJ, 5F66, 5KUL 1.42 0.28

Lysin Lys α 131 1LIS, 2LIS, 5II9 1.79 0.39

Tryparedoxin I TRR​ α + β 143 1EWX, 1O7U, 1QK8 1.53 0.16



Page 5 of 14Caldararu et al. BMC Bioinformatics           (2021) 22:88 	

Prediction methods studied

The studied prediction methods were selected based on their ability to model any 
mutation, to give a quantitative ΔΔG prediction (rather than just qualitatively; 
destabilizing or stabilizing) and to work at high computational speed so that satu-
rated computational mutagenesis was feasible. Structural sensitivity should depend 
on the model used for ΔΔG prediction, and accordingly a diverse group of meth-
ods was desired to assess sensitivity broadly. Six publicly available predictors were 
explored in this study: FoldX [36], I-Mutant 3.0 [37], PoPMuSiC 2.1 [38], Maestro 
[39], mCSM [19] and CUPSAT [40].

The chosen methods use a variety of algorithms to compute the change in pro-
tein stability upon mutation: FoldX uses an empirical force field to calculate the free 
energy of folding for the wild-type and mutant structures. As the force field is rather 
sensitive to structure [41], a minimization of the wild-type structure was performed 
before prediction using the FoldX command RepairPDB. The differences between 
the minimized structures from RepairPDB and the original PDB structures are very 
small, with the maximum all-atom root mean square deviation (RMSD) < 0.01  Å 
(Additional file 1: Table S1), thus FoldX’s structural sensitivity can be compared with 
the other methods. CUPSAT uses atomic potentials from chemical properties and 
empirically derived torsion potentials. I-Mutant 3.0 uses support-vector machines 
that account for amino acid substitution and structural environments. Similarly, 
Maestro combines support vector machines with a random-forest approach to 
obtain a consensus free energy. mCSM uses graph-based signatures that encode dis-
tance patterns between atoms. PoPMuSiC uses a statistical potential calculated from 
contact probabilities of amino acids close to the mutated residue. Thus, we studied 
one energy-based method (FoldX), two knowledge-based methods (PoPMuSiC and 
CUPSAT) and three machine learning methods (mCSM, I-Mutant 3.0 and Maestro).

Unless specified otherwise, all prediction programs were run with default 
parameters.

Calculating global and local structural variables of amino‑acids

The secondary-structure composition of each protein was taken from CATH [42]. 
The length of the proteins (N) was considered as the number of amino-acids in the 
structure. Pairwise root-mean-square deviation (RMSD) was calculated with the 
PyMol [43] command rms_cur after alignment of the structures. The average RMSD 
is reported as the average of all pairwise RMSD values for one protein.

The secondary structure of each amino-acid was calculated using the dssp pro-
gram [44] and then converted to a four-category secondary structure. The second-
ary structure per residue is reported as the consensus dssp calculation for all PDB 
structures used. The RMSD per residues is the average pairwise RMSD per residue 
between all structures of the same protein, calculated with the PyMol script Rms-
dByResidue after alignment. Relative solvent accessibility (RSA) was calculated with 
Naccess [45, 46], using default van der Waals atomic radii, and is reported as the 
average accessibility for all PDB structures of the same protein. Cystine bridges in 
each structure were predicted using the DisulfideByDesign 2.0 server [47, 48].
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Results
Structural sensitivity measured for the full proteins

The 25 proteins were subjected to computational saturated mutagenesis, started from 
each of the selected structures for each protein. Figure 1a shows the average SSprot for all 
six methods and the standard deviation. The individual data for each protein can also be 
found in Additional file 1: Table S1. Of the six methods, CUPSAT and FoldX displayed 
much larger structural sensitivity than the other four methods, i.e. SSprot = 0.83  kcal/
mol and 0.61 kcal/mol, respectively. FoldX is an energy-based method that applies many 
terms in its energy function, such as electrostatic and van der Waals forces, whereas 
CUPSAT is a knowledge-based method that bases its energy calculation on statistics 
of torsional angles, which are very sensitive to differences in side-chain structure. We 
conclude that the magnitude of the structural sensitivity for these two methods is quite 
worrying, since, in perspective, the average ΔΔG for any typical, random mutation is 
perhaps + 1.0  kcal/mol on average. Thus, CUPSAT and FoldX come with an intrinsic 
imprecision that approaches the actual predicted value. We note that this does not nec-
essarily imply lower trend accuracy, but it will certainly affect the predictive capacities 
of the methods. CUPSAT and FoldX also displayed the largest differences in structural 
sensitivity across the protein structures used, with a standard deviation of more than 
0.2 kcal/mol in total for the 25 studied proteins.

In contrast, the other four studied methods displayed quite modest structural sensi-
tivity, ranging from 0.04 kcal/mol for I-Mutant 3.0 to 0.14 kcal/mol for PoPMuSiC 2.0. 
I-Mutant, mCSM and Maestro are all machine-learning methods that do not take into 
account detailed features of the local environment, whereas PoPMuSiC is a knowledge-
based method that captures interactions between close and distant amino-acids, but it is 
heavily parametrized, which can perhaps explain the much lower structural sensitivity 
compared to CUPSAT. Interestingly, PoPMuSiC, mCSM and Maestro all showed almost 
the same average structural sensitivity. Conversely, I-Mutant was very structurally insen-
sitive, and produced very little differences between each protein. Although this means 
that any 3D structure can be used for prediction with I-Mutant, it also suggests that 
I-Mutant underreports structural information, i.e. is practically very close to a sequence-
based method. Our analysis thus inspires a more quantitative view on sequence-versus 

Fig. 1  Structural sensitivity. a Average structural sensitivity per protein for each prediction method. Error 
bars show standard deviation of structural sensitivity among all proteins. b Average structural sensitivity of all 
prediction methods for each protein studied
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structure-based methods than just qualitative yes/no, with methods lying on a spectrum, 
as seen from their actual structure sensitivity.

Figure 1b shows the average SSprot for each protein among all six methods. Surpris-
ingly, the structural sensitivity did not vary much between proteins, with all showing 
averages around 0.3 ± 0.1  kcal/mol, except one case, TGly, which has the lowest aver-
age resolution of the structures used (4.3 Å), indicating that structural sensitivity is low 
when all structures are of poor quality. This low variance is confirmed by the low stand-
ard deviation of the structural sensitivity of the methods (Fig. 1a and Additional file 1: 
Table S1) and by a single-factor analysis of variance (ANOVA) performed for all 25 pro-
tein (Additional file  1: Table  S3). This tendency is observed regardless of the variable 
quality of the structures used, regardless of the different spreads in resolution for each 
protein, and largely regardless of the presence of metal sites, as for Hem and CAH. Fur-
thermore, the proteins for which more than three structures were used did not exhibit 
distinct structural sensitivities. These results indicate that structural sensitivity depends 
mostly on the prediction model itself and not so much on the features and differences 
between the protein structures selected for our study.

Comparing the computed precision of the six methods with the accuracy (mean abso-
lute error) calculated in our previous study for a mutation-type balanced data set [33] 
reveals that the two methods with higher structural sensitivity also display lower accu-
racy for balanced data (Fig. 2). This suggests that accuracy and precision are correlated, 
and that structural sensitivity may play a part in the accuracy of the methods, along with 
the data set bias previously identified. It is therefore important to carefully select the 
protein structures used for training the models and assess the impact of structural sen-
sitivity during training. We note that CUPSAT and FoldX still work quite well for trend 
predictions, as they retain accuracy and precision locally for certain mutations, as shown 
in previous benchmarks.

Factors that affect structural sensitivity

In order to understand and control the structural sensitivity issue identified in Fig. 1, we 
must first understand the factors that influence the structural sensitivity of each method, 
for example whether certain proteins are more structurally sensitive than others. 

Fig. 2  Accuracy and precision of studied methods. Mean absolute deviation (MAE, in kcal/mol) of the six 
methods against the balanced O2567 data set, as calculated in Caldararu et al. [33] versus average structural 
sensitivity per protein (in kcal/mol) for each prediction method
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Moreover, mutation studies often focus on certain sites and residues in a protein, and 
thus it is important to determine which type of residues are mostly contributing struc-
tural sensitivity during prediction.

The most logical cause of structural sensitivity is the structural difference between the 
PDB structures used, which can be measured by the average RMSD between all struc-
tures. To determine whether amino-acids that are in different conformations in differ-
ent structures display larger differences than amino-acids in the same conformation we 
plotted SSsite for all the residues in all 25 proteins against the average RMSD per residue 
(Fig. 3). Strikingly, no methods showed any correlation between RMSD and structural 
sensitivity. Actually, most sites that had high structural sensitivity also had an RMSD 
relatively close to 0, i.e. the conformation of the residues was the same in all structures 
used. Furthermore, rigid residues (residues with a B-factor close to the average B-factor 
of the protein) were also found to have higher structural sensitivity than flexible residues 
(Additional file 1: Fig. S1). Although this might at first seem counter-intuitive, it implies 
that prediction methods are more structurally sensitive to buried residues, which usually 
have the same conformation in all structures of the same protein and are more rigid, and 
usually associated with larger energy effects. More flexible residues on the other hand 
typically reflect low-energy modes such as rotations, which may not affect ΔΔG as much.

For these reasons we also studied the relationship between the relative solvent acces-
sibility (RSA) of each residue and SSsite. The results, illustrated in Fig. 4, again revealed 
no correlation between the RSA and the structural sensitivity for any of the methods. 
Several outliers for FoldX and I-Mutant are indeed buried residues, but we observed no 
general trend.

Next, we investigated whether the secondary structure of each residue influenced 
structural sensitivity, as many prediction methods contain a term for the second-
ary structure of the wild-type residue during ΔΔG calculation. As shown in Fig.  5, 
the average SSsite for all residues in the 25 proteins was similar for all four types of 

Fig. 3  Relation between structural sensitivity and RMSD. Structural sensitivity per site (in kcal/mol) versus 
Average RMSD per residue among all residues in all 25 proteins for: a PoPMuSiC; b CUPSAT; c mCSM; d FoldX; 
e Maestro, f I-Mutant
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secondary structure in all six prediction methods, with outliers also being similarly 
shared across the four types of secondary structure.

In a previous study, we showed that mutation type greatly affects method accuracy, 
and none of the studied methods were generally transferable and balanced in this 
context [33]. Therefore, we studied in the present work whether mutation type also 
affects the precision (i.e. structural sensitivity) of the methods. A mutation type was 
considered to have high sensitivity if its average SSmut was significantly higher than 
the average for the method, as shown in Fig. 1.

Figure  6 shows the average SSmut for each of the 380 mutation types in all 25 
proteins and for each of the prediction methods. We observe that each prediction 

Fig. 4  Structural sensitivity per site (in kcal/mol) versus Average RSA per residue. The plots show all residues 
in all 25 proteins for the methods: a PoPMuSiC; b CUPSAT; c mCSM; d FoldX; e Maestro, f I-Mutant

Fig. 5  Structural sensitivity per site (in kcal/mol) for residues in different secondary structures. α-helix, 
β-sheet, turn or random coil among all residues in all 25 proteins for: a PoPMuSiC; b CUPSAT; c mCSM; d 
FoldX; e Maestro, f I-Mutant
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method is more structurally sensitive for certain mutation types. PoPMuSiC is sen-
sitive to mutations from C (Fig.  6a), whereas CUPSAT has higher sensitivity for all 
mutations involving C (Fig.  6b). mCSM presented higher sensitivity for mutations 
involving charged residues, especially R and E (Fig.  6c). FoldX showed the most 

Fig. 6  Structural sensitivity per mutation. Values shown in kcal/mol for all mutations of a certain mutation 
type among all mutations studied in all 25 proteins for: a PoPMuSiC; b CUPSAT; c mCSM; d FoldX; e Maestro, 
f I-Mutant
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substantial differences, with mutations to hydroxyl-containing amino-acids (S, T, 
Y) having significantly higher structural sensitivity than other mutations (Fig.  6d). 
Maestro (Fig. 6e) and I-Mutant (Fig. 6f ) were more balanced, although Maestro had 
a slightly higher structural sensitivity for mutations from M and I-Mutant showed a 
similar behaviour for mutations to I.

Although none of the structures used in this study had any explicit cystine bridges 
in their PDB files, we investigated more closely if cystine bridges could occur in the 
selected proteins, since two methods showed particularly high structural sensitivity for 
mutations from C. We separated the data into two separate data sets, proteins with pre-
dicted cystine bridges and proteins without any predicted cystine bridges (Additional 
file  1: Table  S4) and recalculated the average SSmut for each mutation type for CUP-
SAT and PoPMuSiC (Additional file  1: Fig. S2). Our results indicate that the sensitiv-
ity of PoPMuSiC towards mutations from C may be caused by possible cystine bridges, 
whereas CUPSAT was not affected by the presence of cystine bridges.

In summary, we conclude that among the properties potentially contributing to struc-
tural sensitivity studied here, the mutation type has the highest effect, and thus the pre-
cision of a method may be quite dependent on the mutation type studied, as we saw 
previously in terms of accuracy.

As a final note, we also studied several global parameters of the proteins: CATH struc-
ture (Additional file  1: Table  S5), length and average global RMSD (Additional file  1: 
Table S6) but none showed any significant correlation to structural sensitivity. As SSsite 
has shown more variation than SSprotein it is expected that these global parameters will 
have little effect on the precision of the methods.

Discussion
In this study, we have tried to evaluate the precision of commonly used protein stabil-
ity prediction methods, defined as their structural sensitivity evaluated for all possible 
mutations in 25 proteins. Our results show that structural sensitivity varies substantially 
among the six studied methods and intriguingly cluster in two groups—those that are 
highly trained and those that are highly dependent on local environment of the muta-
tion (FoldX and CUPSAT), which displayed high structural sensitivity (0.6 and 0.8 kcal/
mol, respectively). This is as matter of concern since the average ΔΔG of a typical ran-
dom mutation is of the order of ~ 1.0 kcal/mol. The methods still work to some extent 
because they retain accuracy locally in any structure used, but they are not very precise 
in our definition. On the other hand, machine-learning methods (mCSM, Maestro and 
I-Mutant) and parametrized knowledge-based methods (PoPMuSiC) are very insensitive 
to structure choice.

To deepen our understanding of structural sensitivity, we also studied what factors 
cause it. Our results indicate that there is no correlation between the structural sensitiv-
ity of residues and the RMSD between the structures used, probably because low-energy 
modes define much of the structural RMSD. Furthermore, neither the solvent accessibil-
ity, secondary structure nor B-factor values of the amino-acids had any significant cor-
relation with structural sensitivity. Instead, the only factor that seems to affect precision 
was the mutation type, with different methods being more sensitive to different muta-
tion types. Thus, structural sensitivity is caused by either the modelling of the wild-type 
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structure or the parametrization bias towards some mutation types as touched upon in 
our recent related work [33]. The correlation in Fig. 2 shows that mutation-type is the 
most salient feature of both accuracy and precision and that none of these should be 
evaluated on mutation-type biased data if wider conclusions on performance are to be 
drawn. More importantly, and perhaps controversially, it is very interesting that all the 
studied machine-learning methods tend to train away almost entirely the used wild-type 
structure.

The least structure-sensitive methods are also the most accurate for our balanced 
benchmark data, and their structural sensitivity (~ 0.1  kcal/mol) is within the experi-
mental uncertainty in the data. This may controversially indicate that folded wild type 
structures provide modest value to ΔΔG predictions, which, if true, could be because the 
three “other” structures of the thermodynamical cycle are missing. Some methods seem 
to overemphasize structure, probably side chain conformations, which may differ sub-
stantially in mutant and wild type unfolded states that produce the experimental data. 
We invite further studies to settle this question and also note that there is no “optimal” 
structural sensitivity except that which provides highest accuracy upon independent 
benchmarking.

Conclusions
Users of stability prediction methods are often faced with a choice between many pos-
sible structures for a wild type protein of interest, and we wanted to explore in this study 
how this affects outcome. Our study provides a base measure of the precision of meth-
ods in relation to structure input used for calculations. This will be important both as a 
general tendency and for specific mutation types of distinct sensitivity in most studies 
using these methods, and thus we recommend that triplicate structures are used as input 
and the standard deviation of the ΔΔG reported as a best-practice for these methods, of 
course only if several reasonable structures are available. The specific structural sensi-
tivities for each method and mutation type reveal the aspects needed to be improved in 
each method in order to optimize structural sensitivity.

Finally, instead of just considering sequence- and structure-based methods as either/
or, our base measure provides a spectrum of actual structural emphasis of the methods, 
noting that a machine-learning could in principle “train away” structure completely even 
if used formally. The fact that all studied machine-learning methods are rather insensi-
tive to structure input raises a perhaps controversial question on the relevance of folded 
wild-type structures alone (without folded mutant and unfolded structures) to ΔΔG 
prediction altogether. However, we show that a substantial reason for imprecision is, as 
for accuracy [33], bias from certain mutation types arising from training on imbalanced 
data sets, via their effect on local residue geometry. We do not claim to answer these 
questions in any completeness but given its importance suggest that this is explored fur-
ther in future studies using other data sets.
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