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Abstract

Genome-wide association studies (GWAS) have identified thousands of genetic variants

that are associated with complex traits. However, a stringent significance threshold is

required to identify robust genetic associations. Leveraging relevant auxiliary covariates has

the potential to boost statistical power to exceed the significance threshold. Particularly,

abundant pleiotropy and the non-random distribution of SNPs across various functional cat-

egories suggests that leveraging GWAS test statistics from related traits and/or functional

genomic data may boost GWAS discovery. While type 1 error rate control has become stan-

dard in GWAS, control of the false discovery rate can be a more powerful approach. The

conditional false discovery rate (cFDR) extends the standard FDR framework by condition-

ing on auxiliary data to call significant associations, but current implementations are

restricted to auxiliary data satisfying specific parametric distributions, typically GWAS p-val-

ues for related traits. We relax these distributional assumptions, enabling an extension of

the cFDR framework that supports auxiliary covariates from arbitrary continuous distribu-

tions (“Flexible cFDR”). Our method can be applied iteratively, thereby supporting multi-

dimensional covariate data. Through simulations we show that Flexible cFDR increases

sensitivity whilst controlling FDR after one or several iterations. We further demonstrate its

practical potential through application to an asthma GWAS, leveraging various functional

genomic data to find additional genetic associations for asthma, which we validate in the

larger, independent, UK Biobank data resource.

Author summary

Genome-wide association studies (GWAS) detect regions of the human genome that are

associated with various traits, including complex diseases, but the power to detect these

genomic regions is currently limited by sample size. The conditional false discovery rate

(cFDR) provides a tool to leverage one GWAS study to improve power in another. The

motivation is that if two traits have some genetic correlation, then our interpretation of a

low but not significant p-value for the trait of interest will differ depending on whether
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that SNP shows strong or absent evidence of association with the related trait. Here, we

describe an extension to the cFDR framework, called “Flexible cFDR”, that controls the

FDR and supports auxiliary data from arbitrary distributions, surpassing current imple-

mentations of cFDR which are restricted to leveraging GWAS p-values from related traits.

In practice, our method can be used to iteratively leverage various types of functional

genomic data with GWAS data to increase power for GWAS discovery. We describe the

use of Flexible cFDR to supplement data from a GWAS of asthma with auxiliary data

from functional genomic experiments. We identify associations novel to the original

GWAS and validate these discoveries with reference to a larger, more highly-powered

GWAS of asthma.

Introduction

Genome-wide association studies (GWAS) identify risk loci for a phenotype by assaying single

nucleotide polymorphisms (SNPs) in large participant cohorts and marginally testing for asso-

ciations between each SNP and the phenotype of interest. Conducting univariate tests for each

SNP in parallel presents a huge multiple testing problem for which a stringent p-value thresh-

old is required to confidently call significant associations.

The statistical power to detect associations can be increased by leveraging relevant auxiliary

covariates. For example, pervasive pleiotropy throughout the genome [1] suggests that

leveraging GWAS test statistics for related traits may be beneficial, whilst the non-random dis-

tribution of trait-associated SNPs across various functional categories [2] suggests that incor-

porating functional genomic data may also be useful. In fact, the expansive range of relevant

auxiliary covariates has accumulated in a wealth of covariate-informed multiple testing meth-

ods which leverage auxiliary covariates (e.g. SNP-level data) with test statistics for variables

(e.g. GWAS p-values for SNPs) to increase statistical power. These methods have been exten-

sively researched both in the statistical literature [3–13] and specifically in the context of

GWAS [14–22] with a consistent aim of minimizing type-2 errors (or equivalently increasing

statistical power) whilst controlling some appropriate type-1 error rate, such as the false dis-

covery rate (FDR).

The conventional multiple testing correction procedures control some error measure by

assuming that each hypothesis is equally likely a priori to be true or false. For example, the

Bejamini-Hochberg (BH) procedure [23] provides nearly optimal control of the FDR under

the condition that almost all null hypotheses are true [10]. The simplest extension to incorpo-

rate covariates is independent filtering [9] whereby test statistics are first censored based on

the value of the covariate and a multiple testing method (for example, the BH procedure) is

then applied on the remaining subset of test statistics. Alternatively, the test statistics can be

grouped based on covariate values and the BH procedure can be applied separately within

each group, as in stratified FDR [4]. However, these simplistic approaches do not make full

use of the information contained within the covariate values and require subjective covariate

thresholding which may lead to data dredging bias [6].

Insinuating a more unified approach of incorporating covariates, the conventional multiple

testing correction procedures can incorporate weights for each variable, such that the raw test

statistics are no longer considered exchangeable [24, 25]. However, it is non-trivial to convert

covariate values to weights satisfying certain constraints required for type-1 error rate control

(typically non-negative weights that average 1 [19]), and consequently the covariate values are

typically still only used in an initial stratification step. For example, the grouped Benjamini-
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Hochberg (GBH) procedure [5] groups test statistics based on covariate values and derives

group-specific weights that are proportional to the estimated proportion of true nulls in each

group, whilst the independent hypothesis weighting (IHW) method calculates optimal group-

specific weights which maximise the number of discoveries, whilst controlling the FDR [6]. In

the GWAS setting, the FINDOR method (which was shown to be generally less powerful, but

superior in terms of false positive findings, to stratified FDR, GBH and IHW methods) was

developed to leverage auxiliary data relating to how well SNPs tag functional categories that

are enriched for heritability with GWAS test statistics [15, 26, 27]. SNPs are grouped based on

the auxiliary data and group-specific weights, that are proportional to the ratio of the estimated

proportion of alternative to null SNPs in each group [5, 28], are derived for use in a weighted

Bonferroni procedure [3]. The FINDOR methodology is similar to that of the GBH procedure,

but includes an additional step whereby the weights are normalised to average 1. This normali-

sation step is significant because Roeder et al. [19] demonstrated that using a data-dependent

weighting scheme with weights that average to 1 preserves control of type-1 error with high

probability if the number of weights learned is significantly less than number of hypothesis test

performed [15]. Whilst grouping-based approaches are satisfactory when they capture all

information provided by the covariate, as is possible in the case of categorical covariates, this

assumption is restrictive in the case of continuous covariates or more complex multi-dimen-

sional covariate spaces. Moreover, subjective thresholding and coarse binning is generally

required, meaning that the entire dynamic range of the auxiliary data is often not fully

exploited (for example, applying FINDOR to Biobank style data with the recommended

100 bins results in bins containing approximately 100K SNPs within which covariate values

will vary).

Other notable methods in the GWAS literature include those that require subjective thresh-

olding, such as GenoWAP [14], or those that require additional knowledge, such as the distri-

bution of the true effect size [19–21]. GenoWAP was developed to leverage scores of SNP

functionality (called “GenoCanyon scores” [29]) with GWAS test statistics and includes a

thresholding step to define “functional” SNPs. Related methods in the statistical literature

include those which estimate the proportion of true null hypotheses conditional on observed

covariates and use these as plug-in estimates for the FDR [30], such as Boca and Leek’s FDR

regression [31], those utilising local false discovery rates (defined as the posterior probability

that a variable is null given the observed test statistic [32]) [7, 33, 34] and those that focus

power on more promising hypotheses [10, 11, 35, 36]. Specifically, the AdaPT method [10]

adaptively estimates a Bayes optimal p-value rejection threshold, but this requires a SNP filter-

ing stage in the GWAS context due to high computational demand [37]. A comprehensive

overview of these statistical methods for covariate-informed multiple testing is provided by

Ignatiadis and Huber [38].

The conditional FDR (cFDR) approach developed and applied by Andreassen and col-

leagues [39–43] is a natural extension to the FDR in the presence of auxiliary covariates. This

intuitive approach mitigates many of the aforementioned shortcomings: it does not bin vari-

ables and thus makes full use of the dynamic range of covariate values, it does not include any

subjective thresholding, and does not require the definition of a normalised weighting scheme.

However, it was designed for a very specific setting, that is to increase GWAS discovery (in the

“principal trait”) by leveraging GWAS test statistics from a genetically related (“conditional”)

trait.

We were interested to see whether a more general form of cFDR could address the same

covariate-informed multiple testing problems as the range of methods listed above. Here, we

describe “Flexible cFDR”, a new cFDR framework [44] that enjoys all of the benefits of the

conventional cFDR approach but now supports continuous auxiliary data from arbitrary
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distributions, thus enabling broader applicability. Specifically, our computationally efficient

approach extends the usage of cFDR beyond only GWAS to the accelerating field of functional

genomics and can be applied iteratively to incorporate additional layers of data. Integrating

functional genomic data with GWAS test statistics is not a new concept, and is motivated by

SNP enrichment studies [2, 16, 45, 46]. For example, Pickrell [16] found that loci that associ-

ated with serum high-density lipoprotein (HDL) concentrations were enriched for several

functional annotations, including enhancer regions in HepG2 cells and coding exons. When

using their “fgwas” model to integrate these functional annotations with GWAS test statistics,

they were able to identify new loci that robustly associated with HDL concentrations. How-

ever, the fgwas approach outputs posterior probabilities rather than p-values, as are typical in

GWAS, and currently only supports binary auxiliary data. In contrast, Flexible cFDR outputs

quantities analogous to p-values and also supports a wide range of auxiliary data types, includ-

ing (but not limited to) continuous data derived from functional genomic experiments (e.g.

fold change values from ATAC-seq or ChIP-seq) and GWAS-related values (e.g. allele frequen-

cies, sample sizes, Bayes factors or p-values).

We show through detailed simulations that Flexible cFDR increases sensitivity whilst con-

trolling the FDR, and performs as well or better than the existing cFDR framework in the sub-

set of use-cases supported by the latter. We demonstrate the utility of our method by leveraging

a variety of functional genomic data with GWAS p-values for asthma [47] to prioritise new

genetic associations, and compare our results to those from four existing methods which have

previously been shown to outperform other approaches [15, 48]: Boca and Leek’s FDR regres-

sion [31], a Bayesian approach, GenoWAP [14] and two grouping-based approaches, IHW [6]

and FINDOR [15]. We evaluate results according to validation status in the larger, indepen-

dent, UK Biobank data set [49].

Materials and methods

Conditional false discovery rate

We begin by restating the definition and empirical estimator of the conditional Bayesian false

discovery rate (cFDR). Consider p-values for m SNPs, denoted by p1, . . ., pm, corresponding to

the null hypotheses of no association between the SNP and a principal trait (denoted by Hp
0).

Let p1, . . ., pm be realisations from the random variable P. The Bayesian false discovery rate

(FDR) is defined as the probability that the null hypothesis is true for a random SNP in a set of

SNPs with P� p:

FDRðpÞ ¼ PrðHp
0jP � pÞ: ð1Þ

This Bayesian definition of a tail area FDR [50] is asymptotically equivalent [51] to the FDR

introduced by Benjamini and Hochberg [23], which is the expected fraction of false discoveries

amongst all discoveries.

Given additional p-values, q1, . . ., qm, for the same m SNPs for a “conditional trait”, the

Bayesian FDR can be extended to the conditional Bayesian FDR (cFDR) by conditioning on

both the principal and the conditional trait variables (in contrast to the standard FDR which

conditions only on the principal trait variable). Assuming that pi and qi (for i = 1, . . ., m) are

independent and identically distributed (iid) realisations of random variables P, Q satisfying:

PjHp
0 � Uð0; 1Þ

P ⫫ QjHp
0

ð2Þ

then the cFDR is defined as the probability Hp
0 is true at a random SNP given that the observed
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p-values at that SNP are less than or equal to p in the principal trait and q in the conditional

trait [39]. Using Bayes theorem,

cFDRðp; qÞ ¼ PrðHp
0jP � p;Q � qÞ

¼
PrðP � pjHp

0;Q � qÞ � PrðHp
0jQ � qÞ

PrðP � pjQ � qÞ
:

ð3Þ

The cFDR framework implicitly assumes that there is a “positive stochastic monotonic rela-

tionship” between p and q, meaning that on average SNPs with smaller p-values in the condi-

tional trait are enriched for smaller p-values in the principal trait. This assumption is naturally

satisfied in the typical use-case of cFDR that leverages p-values for genetically related traits.

Using Bayes theorem and standard conditional probability rules, Eq (3) can be simplified

to:

cFDRðp; qÞ ¼
PrðP � pjHp

0;Q � qÞ � PrðQ � qjHp
0Þ � PrðHp

0Þ

PrðP � p;Q � qÞ
ð4Þ

[52].

It is conventional in the cFDR literature to conservatively approximate PrðHp
0Þ � 1, and

this is reasonable in the GWAS setting where the proportion of true signals is expected to be

very low (this may be debateable as sample sizes increase, but it is still appropriate in terms

of being conservative). Given the assumptions in Property (2), we can also approximate

PrðP � pjHp
0;Q � qÞ � p, noting that this is an equality if p is correctly calibrated. The esti-

mated cFDR is therefore:

dcFDR ðp; qÞ ¼
p� PrðQ � qjHp

0Þ

PrðP � p;Q � qÞ
; ð5Þ

and existing methods use empirical cumulative distribution functions (CDFs) to estimate

PrðQ � qjHp
0Þ and Pr(P� p, Q� q) [39, 44].

Having derived dcFDR values for each p-value-covariate pair, a simple rejection rule would

be to reject Hp
0ðiÞ for any dcFDR ðpi; qiÞ � a, for 0< α< 1. However, as discussed in Liley and

Wallace [44], dcFDR ðpi; qiÞ is not monotonically increasing with pi and we do not wish to reject

the null for some (pi, qi) but not for some other pair (pj, qj) with qi = qj but pj< pi.
Andreassen et al. [39] use the decision rule:

Reject Hp
0 if : 9 p0 � pi : dcFDR ðp0; qiÞ � a ð6Þ

which closely follows the BH procedure [23]. Yet unlike the BH procedure, this rejection rule

does not control frequentist FDR at α [52]. Liley and Wallace [44] described a method to trans-

form the cFDR estimates into “v-values”, which are analogous to p-values and can be used to

control FDR (e.g. in the BH procedure). However this approach is currently only suited to

instances where the auxiliary data may be modelled using a mixture of centered normal distri-

butions (for example by transforming auxiliary p-values to Z scores; q≔ � �
� 1 q

2

� �
).

Flexible cFDR

The cFDR estimator in Eq (5) holds in the more general setting where q1, . . ., qm are real con-

tinuous values from some arbitrary distribution that is positively stochastically monotonic in

p. However, the current methods were designed with specific assumptions about the distribu-

tion of the auxiliary data (p-values from related traits and thus bounded by [0, 1]). Sparse data
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regions are likely to be found more often in unbounded auxiliary data from arbitrary distribu-

tions (for example near the extreme observations) and empirical CDFs are typically inaccurate

in sparse data regions because they are step functions. Moreover, the method used to control

the frequentist FDR [44] assumes auxiliary data can be modelled using a mixture of centered

Gaussian distributions, meaning that it is not yet applicable for auxiliary data from arbitrary

distributions. We consequently describe a new, more versatile cFDR framework for data pairs

consisting of p-values for the principal trait (p) and continuous covariates from more general

distributions (q). We call our method “Flexible cFDR” and show that it is naturally suited to

leveraging functional genomic data, which is not typically Gaussian.

Flexible cFDR estimator. To estimate both PrðQ � qjHp
0Þ and Pr(P� p, Q� q) in Eq (5)

we first fit a bivariate kernel density estimate (KDE) using a normal kernel. To do this, we

transform the p-values for the principal trait (derived from a two-tailed test, as is typical in

GWAS) to absolute Z-scores (Zp; since the sign of the associated Z-scores are essential arbi-

trary as they depend on which allele is designated “effect’). Since the absolute Z-scores are

bounded by 0, the KDE will penalise the lack of negative data points and may underestimate

the true density in regions close to 0. To avoid this boundary effect, we mirror the absolute Z-

scores onto the negative real line together with their associated Q values but only estimate the

KDE on the non-negative part of the data, akin to the “reflection technique” described by Sil-

verman [53]. We consequently model the PDF corresponding to Zp, Q in the usual way as

f ðx; yÞ ¼
1

n

X

i

1

spsq
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x � f� �� 1 pi

2

� �
g

sp

�2

þ

�
y � qi

sq

�2
s !

ð7Þ

where ϕ is the standard normal density and the values σp and σq are the bandwidths deter-

mined using a well-supported rule-of-thumb [54], which assumes independent samples. Con-

sequently, we fit the KDE to a subset of independent SNPs in the data set (independent SNP

sets can be readily found using a variety of software packages including LDAK [55] and

PLINK [56]). We integrate over P and Q to estimate Pr(P� p, Q� q).

Hard thresholding is used to approximate the distribution of QjHp
0 by Q|P> 1/2 in the ear-

lier cFDR methods [39, 44]. Instead, in Flexible cFDR we empirically evaluate the influence of

specific p-value quantities on the null hypothesis by utilising local false discovery rates, which

estimate PrðHp
0jP ¼ pÞ [32]. We approximate PrðHp

0jP ¼ p;Q ¼ qÞ � PrðHp
0jP ¼ pÞ assuming

that the majority of information about Hp
0 is contained in P so that

PrðP ¼ p;Q ¼ q;Hp
0Þ ¼ PrðHp

0jP ¼ p;Q ¼ qÞ � PrðP ¼ p;Q ¼ qÞ

� PrðHp
0jP ¼ pÞ � PrðP ¼ p;Q ¼ qÞ

ð8Þ

where Pr(P = p, Q = q) is estimated from our bivariate KDE and PrðHp
0jP ¼ pÞ is estimated

using the local false discovery rate. In order to avoid boundary effects, we mirror the absolute

Z-scores onto the negative real line and extract only the local false discovery rates for the non-

negative part of the data, utilising the locfdr R package (https://cran.r-project.org/web/

packages/locfdr/index.html) to do this.

We therefore have that

dPrðQ ¼ qjHp
0Þ ¼
dPrðQ ¼ q;Hp

0Þ

dPrðHp
0Þ

; ð9Þ

wheredPrðQ ¼ q;Hp
0Þ is derived by integrating Eq (8) over P anddPrðHp

0Þ is derived by
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integrating Eq (8) over P and Q. We then integrate over Q to obtain

dPrðQ � qjHp
0Þ¼
dPrðQ � q;Hp

0Þ

dPrðHp
0Þ

: ð10Þ

where we use ^ to denote that these are estimates under the assumption Hp
0 ⫫ QjP.

Our final cFDR estimator is therefore:

dcFDR ðp; qÞ ¼
p�dPrðQ � qjHp

0ÞR q
� 1

R1
zp

f ðx; yÞdxdy
: ð11Þ

where zp is the Z-score associated with p.

As in the conventional cFDR approach, our estimator implicitly assumes a positive stochas-

tic monotonic relationship between p and q. However, this is not guaranteed for the more gen-

eral covariates that can now be leveraged with Flexible cFDR. If instead this relationship is

negative (such that low p-values are enriched for high values of q), then the sign of the auxiliary

data values can simply be reversed and the method can proceed as usual.

Mapping p-value-covariate pairs to v-values. We describe a similar approach to that by

Liley and Wallace [44] but remove the restrictive parametric assumptions placed on the auxil-

iary data.

Following Liley and Wallace [44], we define “L-regions” as the set of points with dcFDR � a
and the “L-curve” as the rightmost border of the L-region, found through calculating dcFDR val-

ues for p, q pairs defined using a two-dimensional grid of p and q values. For each observed pi, qi
pair we find the L-curve, which corresponds to the contour of estimated dcFDR ¼dcFDR ðpi; qiÞ.

We then define the L-region from this L-curve.

We derive v-values, which are essentially the probability of a newly-sampled realisation

(p, q) of P, Q falling in the L-region under Hp
0 . These are readily calculable by integrating the

PDF of P;QjHp
0 , denoted by f0(p, q), over the L-region:

vðp; qÞ ¼ PrððP;QÞ 2 Lðp; qÞjHp
0Þ ¼

Z

Lðp;qÞ
f0ðp; qÞdpdq ð12Þ

[44]. In the original method, f0(p, q) is estimated using a mixture-Gaussian distribution, but to

support auxiliary data from arbitrary distributions (where the only distributional constraint is

that it is positively stochastically monotonic in p) we utilise the assumptions in Property (2) to

write f0ðp; qÞ ¼ f q
0 ðqÞ (since the PDF of p conditional on Hp

0 is the standard uniform density).

We estimate f q
0 ðqÞ as an intermediate step in the derivation ofdPrðQ � qjHp

0Þ (Eq 9).

The v-value, vi, can be interpreted as the probability that a randomly-chosen (p, q) pair

has an equal or more extreme dcFDR value than dcFDR ðpi; qiÞ under Hp
0 and is thus analo-

gous to a p-value. We refer readers to Theorem 3.1 and its accompanying proof in Liley and

Wallace (2021) [44] which shows that the v-values are uniformly distributed under the null

hypothesis for X = (pi, qi) 2 [0, 1]2, and this naturally holds for Flexible cFDR where X = (pi,
qi) 2 [0, 1] × [qlow, qhigh] (where qlow and qhigh are the lower and upper limits of the KDE

support respectively).

Deriving v-values, which are analogous to p-values, means that the output from Flexible

cFDR can be used directly in any conventional error rate controlling procedure, such as the

BH method [23]. The derivation of v-values also allow for iterative usage, whereby the v-values

from the previous iteration are used as the “principal trait” p-values in the current iteration

[44]. This allows users to incorporate additional layers of auxiliary data into the analysis at
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each iteration, akin to leveraging multi-dimensional covariates, and this approach is exempli-

fied both in our simulation analysis and in our application utilising ChIP-seq data.

Adapting to sparse data regions. To ensure that the integral of the KDE approximated in

our method equals 1, we define the limits of its support to be 10% wider than the range of the

data. This however introduces a sparsity problem whereby the data required to fit the KDE in

or near these regions is very sparse. Adaptive KDE methods that find larger value bandwidths

for these sparser regions are computationally impractical for large GWAS data sets. Instead,

we opt to use left-censoring whereby all q< qlow are set equal to qlow and the value for qlow is

found by considering the number of data points required in a grid space to reliably estimate

the density (S1 Fig). Note that since our method utilises cumulative densities, the sparsity of

data for extremely large q is not an issue.

Occasionally, in regions where (p, q) are jointly sparse, the v-value can appear extreme com-

pared to the p-value. To avoid artifactually inflating evidence for association, we fit a spline to

log10(v/p) against q and calculate the distance between each data point and the fitted spline,

mapping the small number of outlying points back to the spline and recalculating the corre-

sponding v-value as required (S2 Fig).

Flexible cFDR software. We have created an R package, fcfdr, that implements the

Flexible cFDR method (https://github.com/annahutch/fcfdr). The software web-page (https://

annahutch.github.io/fcfdr/) contains fully reproducible vignettes which illustrate how the Flex-

ible cFDR method can be used to generate v-values from GWAS p-values and auxiliary data,

and how these can be used directly in any error rate controlling procedure (for example using

the p.adjust function with method=“BH” for FDR-adjusted p-values).

Flexible cFDR supports a wide range of auxiliary data types and is particularly suited to

leveraging functional genomic data, which is not typically Gaussian (e.g. fold change values

from ChIP-seq or per-SNP scores of functionality). We include vignettes (https://annahutch.

github.io/fcfdr/articles/extra-information.html; https://annahutch.github.io/fcfdr/articles/t1d_

app.html) exemplifying the types of functional genomic data that can be leveraged and also

describing how the LDAK method [55] can be used to generate an independent subset of

SNPs for input into the software.

Simulations

We used simulations to assess the performance of Flexible cFDR when iteratively leveraging

various types of auxiliary data. We validated Flexible cFDR against the existing framework,

which we call “Empirical cFDR” [44], in two cases where q 2 [0, 1] (as required by Empirical

cFDR). We then evaluated the performance of Flexible cFDR in three novel use-cases where

the auxiliary data is no longer restricted to [0, 1]. We also analysed the simulation data using

Boca and Leek’s FDR regression (referred to as BL) [31], which was the only other method that

allowed for multiple covariates of this nature.

Simulating GWAS results (p). We first simulated GWAS p-values for the arbitrary “prin-

cipal trait” to be used as p in our simulations. We collected haplotype data for 3781 individuals

from the UK10K project (REL-2012–06-02) [57] for 80,356 SNPs with minor allele frequency

(MAF)� 0.05 residing on chromosome 22. We split the haplotype data into 24 LD blocks rep-

resenting approximately independent genomic regions defined by the LD detect method [58],

and further stratified these so that no more than 1000 SNPs were in each stratification. For

each stratification, we sampled 2, 3 or 4 causal variants with log odds ratio (OR) effect sizes

simulated from the standard Gaussian prior used for case-control genetic fine-mapping stud-

ies, N(0, 0.22) [59] (the mean number of simulated causal variants in each simulation was 54).

We then used the simGWAS R package [60] to simulate Z-scores from a GWAS in each region
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for 5000 cases and 5000 controls. We collated the Z-scores from each region and converted

these to p-values representing the evidence of association between the SNPs and the arbitrary

principal trait.

To generate an independent subset of SNPs required to fit the KDE, we converted the hap-

lotype data to genotype data and used the write.plink function [56] to generate the files

required for the LDAK software [55]. We generated LDAK weights for each of the SNPs and

used the subset of SNPs with non-zero LDAK weights as an independent subset of SNPs (an

LDAK weight of zero means that its signal is (almost) perfectly captured by neighbouring

SNPs) [61]. Over the restricted interval of MAF values considered (MAF� 0.05), we found

that the MAF distributions of the whole SNP set and the independent subset were largely

comparable, so we did not here perform the MAF matching procedure discussed below in our

analysis of asthma data.

Simulating auxiliary data (q). We consider five use-cases of cFDR (simulations A-E),

defined by (i) the distribution of the auxiliary data q (ii) the relationship between p and q and

(iii) the relationship between different q in each iteration (5 realisations of q were sampled in

each simulation representing multi-dimensional covariates so that cFDR could be applied iter-

atively) (Table 1). We denote the value of q at SNP i in realisation k as qðkÞi .

In simulation A, we sampled qi� Unif(0, 1) to represent iterating over null p-values (S3A

Fig). In simulation B, we investigated the standard use-case of cFDR by iterating over p-values

from “related traits” (S3B Fig). To do this, we used the simGWAS R package [60] to simulate

p-values, specifying the shared causal variants such that each pair of vectors p, q were guaran-

teed to share causal variants in exactly 4 of the 24 LD blocks, whilst each pair of vectors q(k),

q(j) were expected to share causal variants in 4 of the 24 LD blocks.

In simulations C-E, we simulated auxiliary data representing functional genomic data sam-

pled from arbitrary distributions and which varied based on dependence structure with the

principal trait p-values. In simulation C, we sampled qi from a bimodal mixture normal distri-

bution that was independent of pi: qi� 0.5 × N(−2, 0.52) + 0.5 × N(3, 22) (S3C Fig). In simula-

tions D and E we simulated continuous auxiliary data that was dependent on pi by first

defining “functional SNPs” as causal variants plus any SNPs within 10,000-bp (to incorporate

SNPs residing in the same arbitrary “functional mark”), and “non-functional SNPs” as the

remainder. In simulation D, we then sampled qi from different mixture normal distributions

for functional and non-functional SNPs:

qi �

w� Nðm1; 1Þ þ ð1 � wÞ � Nðm2; 0:5
2Þ; if SNP i is non-functional

ð1 � wÞ � Nðm1; 1Þ þ w� Nðm2; 0:5
2Þ; if SNP i is functional

8
<

:
ð13Þ

where μ1 2 {2.5, 3, 4}, μ2 2 {−1.5, −2, −3}, w 2 {0.6, 0.7, 0.8, 0.9, 0.95} vary across iterations.

Table 1. Summary of simulation analysis.

Simulation Distribution of q Relationship between pi and qðkÞi Average pairwise correlationa between q(k) and q(l)

A p-values (all null) Independent 0

B p-values (related trait) Shared causal variants 0.04

C Functional Independent 0

D Functional Dependent 0.08

E Functional Dependent 0.19

a Pairwise correlation values are the Pearson correlation coefficients.

https://doi.org/10.1371/journal.pgen.1009853.t001
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Since we anticipate our method being used to leverage functional genomic data iteratively,

we also evaluated the impact of repeatedly iterating over auxiliary data that captures the same

functional mark. To do this, in simulation E we iterated over realisations of q that are sampled

from the same distribution,

qi �

Nð3; 22Þ; if SNP i is non-functional

Nð� 2; 0:52Þ; if SNP i is functional:

8
<

:
ð14Þ

Running empirical cFDR, Flexible cFDR and BL. Following the vignette for the Empiri-

cal cFDR software (https://github.com/jamesliley/cfdr/blob/master/vignettes/cfdr_vignette.

Rmd), we first used the vl function to generate L-curves. As recommended in the documenta-

tion and to ensure that the rejection rules were not being applied to the same data from which

they were determined, we used the leave-one-out-procedure whereby L-curves were fit sepa-

rately for data points in each LD block using data points from the other LD blocks. To ensure

that the cFDR curves were strictly decreasing (preventing a complication whereby all v-values

corresponding to the smallest p-values were given the same value), we reduced the value of the

gx parameter to the minimum p-value in the LD block. We then estimated the distribution of

P;QjHp
0 using the fit.2g function and integrated its density over the computed L-regions

using the il function, specifying a mixture Gaussian distribution for the Z-scores.

Flexible cFDR was implemented using the flexible_cfdr function in the fcfdr R

package with default parameter values. Both cFDR methods were applied iteratively 5 times in

each simulation to represent leveraging multi-dimensional covariates.

For BL, we used the lm_qvalue function in the swfdr Bioconductor R package (version

1.16.0 https://github.com/leekgroup/swfdr) to derive adjusted p-values. The covariate matrix

that we used consisted of five columns for q(1), q(2), q(3), q(4), q(5).

Evaluating sensitivity, specificity and FDR control. To quantify the results from our

simulations, we used the BH procedure to derive FDR-adjusted v-values from empirical and

Flexible cFDR (which we call “FDR values” for conciseness). For BL, we used the adjusted p-

values as the quantity of interest. We then calculated proxies for the sensitivity (true positive

rate) and the specificity (true negative rate) at an FDR threshold of α = 5 × 10−6, which roughly

corresponds to the genome-wide significance p-value threshold of 5 × 10−8 (S4 Fig). We

defined a subset of “truly associated SNPs” as any SNPs with r2� 0.8 with any of the causal

variants. Similarly, we defined a subset of “truly not-associated SNPs” as any SNPs with r2�

0.01 with all of the causal variants. (Note that there are 3 non-overlapping sets of SNPs: “truly

associated”, “truly not-associated” and neither of these). We calculated the sensitivity proxy

as the proportion of truly associated SNPs that were called significant and the specificity proxy

as the proportion of truly not-associated SNPs that were called not significant. To examine

whether our results were robust to using different r2 values to define truly associated and truly

not-associated SNPs, we also evaluated our sensitivity and specificity proxies using larger r2

values.

To assess whether the FDR was controlled within a manageable number of simulations, we

raised α to 0.05 and calculated the proportion of SNPs called FDR significant which were truly

not-associated (that is, r2� 0.01 with all of the causal variants).

Application to asthma

We demonstrate the utility of our method by leveraging a variety of functional genomic data

with GWAS p-values for asthma [47]. Specifically, we describe two applications: (1) leveraging
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GenoCanyon scores with asthma GWAS p-values and (2) leveraging ChIP-seq data in relevant

cell types with asthma GWAS p-values. We compare the performance of Flexible cFDR to that

of four existing methods in the applications which support their usage.

Asthma GWAS data. Asthma GWAS summary statistics for 2,001,256 SNPs were down-

loaded from the NHGRI-EBI GWAS Catalog [62] for study accession GCST006862 [47] on

10/10/2019. We used the p-values generated from a meta-analysis of several GWASs for indi-

viduals of European ancestry under a random effects model, totalling 19,954 asthma cases and

107,715 controls. The genomic inflation factor for this study was λ = 1.055, implying minimal

inflation of test statistics. The UCSC liftOver utility [63] was used to convert GRCh38/hg38

into GRCh37/hg19 coordinates, and those that could not be accurately converted were

removed. All co-ordinates reported are for GRCh37/hg19. We call this GWAS data the “dis-

covery GWAS data set”.

We analysed these data with methods that leverage auxiliary data as described below, and

evaluated results using data from a larger asthma GWAS performed by the Neale Lab (self-

reported asthma: 20002_1111) for 41,934 asthma cases and 319,207 controls from UK Biobank

[49] (URL: https://www.dropbox.com/s/kp9bollwekaco0s/20002_1111.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0 downloaded on 10/05/2020). Specifically, if a SNP was claimed to be

significant in the discovery GWAS data set or after applying cFDR (or a comparator method),

and it was also significant in the Neale Lab UK Biobank validation data, then we say that it is

validated. We used the BH procedure to derive FDR-adjusted p-values (which we call “FDR

values” for conciseness) and defined significant SNPs as those with FDR� 0.000148249, which

corresponds to the genome-wide significance p-value threshold of p� 5 × 10−8 (0.000148249

is the maximum FDR value amongst SNPs with raw p-values� 5 × 10−8 in the discovery

GWAS data set). We restricted analysis to the 1,968,651 SNPs that were present in both the dis-

covery and the validation GWAS data sets.

We down-sampled the independent subset of SNPs to match the MAF distribution in this

subset to that in the whole set of SNPs. This accounts for the confounding of LDAK weights

and GWAS p-values by MAF: less common SNPs (MAF< 0.05) are over-represented among

the independent subset and have, on average, larger p-values. Matching in this way prevents a

bias of the KDE fit towards the behaviour of rarer SNPs. We used MAFs estimated from the

CEU sub population of the 1000 Genomes resource [64], and for the 639 SNPs with missing

MAF values we used values randomly sampled from the empirical MAF distribution derived

from the other SNPs. This reduced the independent subset of SNPs for fitting the KDE from

509,716 to 247,879 SNPs.

To identify independent hits we used the LD clumping algorithm in PLINK 1.9 [56], using

a 5 Mb window and an r2 threshold of 0.01 [15]. We used haplotype data from the 503 individ-

uals of European ancestry from 1000 Genomes project Phase 3 [64] as a reference panel to cal-

culate LD between SNPs. The SNP with the smallest p-value in the discovery GWAS data set in

each LD clump was called the “index SNP”.

Application 1: Leveraging GenoCanyon scores. Tools have now been developed that

integrate various genomic and epigenomic annotation data to quantify the pathogenicity,

functionality and/or deleteriousness of both coding and non-coding GWAS variants [29, 65–

68]. For example, GenoCanyon scores aim to infer the functional potential of each position in

the human genome [29]. They are derived from the union of 22 computational and experi-

mental annotations (broadly falling into conservation measure, open chromatin, histone mod-

ification and TFBS categories) in different cell types. We downloaded GenoCanyon scores

from http://zhaocenter.org/GenoCanyon_Downloads.html for each of the 1,968,651 SNPs that

GWAS p-values were available for, noting a bimodal distribution for the scores (S5A Fig).
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Application 2: Leveraging ChIP-seq data. The histone modification H3K27ac is associ-

ated with active enhancers [69] and so SNPs residing in genomic regions with high H3K27ac

counts in trait-relevant cell types may be more likely to be associated with the trait of interest

[70].

We downloaded consolidated fold-enrichment ratios of H3K27ac ChIP-seq counts relative

to expected background counts from NIH Roadmap [71] (https://egg2.wustl.edu/roadmap/

data/byFileType/signal/consolidated/macs2signal/foldChange/) in primary tissues and cells

relevant for asthma: immune cells and lung tissue. We mapped each SNP in our GWAS data

set to its corresponding genomic region and recorded the H3K27ac fold change values for

each SNP in each cell type using bedtools intersect [72]. For SNPs on the boundary of a geno-

mic region (and therefore mapping to two regions) we randomly selected one of the regions.

The raw H3K27ac fold change data had very long tails and so we transformed the values:

q≔ log(q + 1). We observed that the data for the different cell types roughly fell into two clus-

ters (S6 Fig): lymphoid cells (consisting of CD19+, CD8+ memory, CD4+ CD25- CD45RA+

naive, CD4+ CD25- CD45RO+ memory, CD4+ CD25+ CD127- Treg, CD4+ CD25int CD127+

Tmem, CD8 naive, CD4 memory, CD4 naive and CD4+ CD25- Th cells) clustered with CD56

cells whilst lung tissue clustered with monocytes (CD14+ cells). We therefore averaged the

transformed H3K27ac fold change values in lymphoid and CD56 cell types to derive q1, and

the transformed H3K27ac fold change values in lung tissue and monocytes to derive q2, add-

ing a small amount of noise [N(0, 0.12)] to the latter to smooth out the discrete valued counts

(S7 Fig).

Analysis methods

Flexible cFDR. We used the flexible_cfdr function in the fcfdr R package to gen-

erate v-values derived by leveraging the auxiliary data described above with asthma GWAS p-

values. We defined our independent SNP set as the set of 509,716 SNPs given a non-zero

LDAK weight [61] for the indep_index parameter and we used the optional maf parame-

ter in the software to supply the MAF values required for our MAF matching procedure. We

used the BH procedure to derive FDR values and used these as the output of interest.

GenoWAP. GenoWAP is a Bayesian method that leverages GenoCanyon scores with

GWAS p-values to output posterior scores of disease-specific functionality for each SNP [14].

The GenoWAP software requires a threshold parameter defining functional SNPs accord-

ing to their GenoCanyon score. For this, we used the default recommended value of 0.1, which

corresponded to 40% of the SNPs in our data set being “functional”. We used the GenoWAP.
py python script to obtain posterior scores for each SNP, and used these as the output of inter-

est. GenoWAP could only be used for application 1 because it only supports auxiliary data that

is GenoCanyon scores.

IHW. Independent hypothesis weighting (IHW) [6] is a statistical method for covariate-

informed multiple testing whereby variables are divided into groups and optimal group spe-

cific weights are derived (which maximise the number of discoveries whilst controlling the

FDR) for use in a weighted BH procedure. We used the IHW Bioconductor R package (version

1.18) with default parameters, specifying the level of FDR control alpha = 0.000148249,

and used the adjusted p-values as the output of interest. IHW could only be used for applica-

tion 1 because it is not clear how to use this method to leverage multi-dimensional covariate

vectors.

Boca and Leek’s FDR regression. BL estimates the proportion of null hypotheses condi-

tional on observed covariates and uses these as plug-in estimates for the FDR [31]. We used

the swfdr Bioconductor R package (version 1.16.0) to derive adjusted p-values [73] and used
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these as the output of interest. For application 1, the lm_qvalue function was used with a

covariate matrix consisting of a single column of GenoCanyon scores for each SNP. For appli-

cation 2, the lm_qvalue function was used with a covariate matrix consisting of two col-

umns for q1 and q2.

FINDOR. FINDOR is a p-value re-weighting method which leverages a wider range of

non-cell-type-specific functional annotations. FINDOR uses the baseline-LD model from

Gazal et al. [27] for prediction, and so we were unable to directly compare the methods when

leveraging the same GenoCanyon or ChIP-seq auxiliary data. Instead, as recommended we

used FINDOR to leverage the 96 annotations from the latest version of the baseline-LD model

(version 2.2) with asthma GWAS p-values. Briefly, this auxiliary data contains the 75 annota-

tions from Gazal et al. [27] (including functional regions, histone marks, MAF bins and LD-

related annotations) plus extra annotations including synonymous/ non-synonymous, con-

served annotations, 2 flanking bivalent TSS/ enhancer annotations from NIH Roadmap [71],

promoter/ enhancer annotations [74], promoter/ enhancer sequence age annotations [75] and

11 new annotations from Hujoel et al. [76] (5 new binary annotations and corresponding

flanking annotations and 1 continuous count annotation). We matched SNPs to their annota-

tions using rsID and GRCh37/hg19 coordinates.

To run FINDOR, stratified LD score regression (S-LDSC) must first be implemented to

obtain annotation effect size estimates, btC . To run S-LDSC, we downloaded (i) partitioned LD

scores from the baseline-LD model v2.2 [27], (ii) regression weight LD scores and (iii) allele

frequencies for available variants in the 1000 Genomes Phase 3 data set. We then used the

munge_sumstats.py python script in the ldsc package to convert the asthma GWAS

summary statistics to the correct format for use in the ldsc software. We restrict analysis to

HapMap3 SNPs using the -merge-alleles flag, as recommended in the LDSC and FIN-

DOR documentation.

We ran S-LDSC with the -print-coefficients flag to generate the .result file

containing the annotation effect size estimates required for FINDOR. Specifically, pre-com-

puted regression weight LD scores were read in for 1,187,349 variants, for which 1,034,758

remained after merging with reference panel SNP LD scores, for which 1,032,395 SNPs

remained after merging with regression SNP LD scores.

To run FINDOR, partitioned LD scores must also be supplied for the SNPs in the data set.

To do this, we downloaded the 1000 Genomes EUR Phase 3 PLINK files and annotation data

and followed the ‘LD Score Estimation Tutorial’ on the LDSC GitHub page. Partitioned LD

scores could be generated for the 1,976,360 (out of 2,001,256) SNPs in the asthma data set that

were also present in the 1000 Genomes Phase 3 data set.

We then generated a file for the asthma GWAS data [47], including columns for sample

sizes, SNP IDs and Z-scores. We used this file, along with the computed partitioned LD scores

and the .result file from S-LDSC to obtain re-weighted p-values for the 1,968,651 SNPs

using FINDOR. We used the BH procedure to convert these to FDR values and used these as

our output of interest.

Results

Simulations show Flexible cFDR controls FDR and increases sensitivity

where appropriate

We expect that leveraging irrelevant data should not change our conclusions about a study.

Simulations A and C showed that the sensitivity and specificity remained stable across itera-

tions and that the FDR was controlled at a pre-defined level when leveraging independent aux-

iliary data with Flexible cFDR (Fig 1A and 1C). In contrast, when leveraging relevant data, we
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Fig 1. Simulation results. Mean +/- standard error for the sensitivity, specificity and FDR of FDR values from empirical

and Flexible cFDR when iterating over independent (A; “simulation A”) and dependent (B; “simulation B”) auxiliary data

that is bounded by [0, 1]. Panels C and D show the results from Flexible cFDR when iterating over independent (C;

“simulation C”) and dependent (D; “simulation D”) auxiliary data simulated from bimodal mixture normal distributions.

BL refers to results when using Boca and Leek’s FDR regression to leverage the 5-dimensional covariate data. Iteration 0

corresponds to the original FDR values. Our sensitivity proxy is calculated as the proportion of SNPs with r2� 0.8 with a

causal variant (“truly associated”), that were detected with a FDR value less than 5 × 10−6. Our specificity proxy is

calculated as the proportion of SNPs with r2� 0.01 with all the causal variants (“truly not-associated”), that were not
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hope that the sensitivity improves whilst the specificity remains high. This is what we observed

for Flexible cFDR in simulations B and D (Fig 1B and 1D). The increase in sensitivity related

to how informative the auxiliary data was, whereby the sensitivity generally increased more in

simulation B than simulation D, where the average Pearson correlation coefficient between p
and q(k) was r = 0.07 and r = 0.04 respectively. These findings were robust to the r2 threshold

used to define our sensitivity (S8 Fig) and specificity (S9 Fig) proxies.

For simulations A and B, we could compare Flexible cFDR performance to that of the cur-

rent method, Empirical cFDR, since q could be transformed to a mixture Gaussian [44]. Per-

formance was similar for simulation A, whilst for simulation B, the sensitivity of the two

methods was comparable but Empirical cFDR exhibited a greater decrease in the specificity

and failed to control the FDR in later iterations (Fig 1B). This contrasts with earlier results for

Empirical cFDR, which showed good control of FDR [44], and reflects the structure of our

simulations which assume dependence between different realisations of q.

A leave-one-out procedure is required for the Empirical cFDR method, as it utilises empiri-

cal CDFs and including an observation when estimating its own L-curve causes the curve to

deviate around the observed point [44]. Flexible cFDR does not require a leave-one-out proce-

dure as KDEs are used instead of empirical CDFs. Additionally, Flexible cFDR is quicker to

run than Empirical cFDR, taking approximately 3 minutes compared to Empirical cFDR

which takes approximately 6 minutes to complete a single iteration on 80,356 SNPs (using one

core of an Intel Xeon E5–2670 processor running at 2.6GHz). Together, these findings indicate

that Flexible cFDR performs no worse, and generally better, than Empirical cFDR in use-cases

where both methods are supported.

We also benchmarked the performance of Flexible cFDR against that of BL [31], which was

the only other method that allows for multiple covariates of this nature. We found that BL

failed to control the FDR when leveraging independent covariate data, which may be due to

the correlations between SNPs (Fig 1A and 1C). Indeed, Boca and Leek [32] found that control

of the FDR by BL was worse with increasing correlation, but we note that correlation between

SNPs is ubiquitous in GWAS data. When leveraging dependent covariate data, BL was consis-

tently less powerful than Flexible cFDR (Fig 1B and 1D) and it failed to control the FDR in

simulations leveraging dependent covariates from arbitrary distributions (Fig 1D), which rep-

resent the general use-case of the method [31].

We anticipate that Flexible cFDR will typically be used to leverage functional genomic data

iteratively and it is helpful that specificity remains high and FDR is controlled in simulation D.

It is obvious that repeated conditioning on the same data should produce erroneous results,

with SNPs with a modest p but extreme q incorrectly attaining greater significance with each

iteration. For strict validity, we require qðkÞi ⫫ qðlÞi jH
p
0 as the v-value from iteration k will contain

some information about qðkÞi , and the cFDR assumes vi ⫫ qðkþ1Þ

i jHp
0 at the next iteration. How-

ever, even when qðkÞi ⫫= qðlÞi jH
p
0 , we expect the dependence between v and q to be quite weak,

hence the acceptable FDR control in simulations B and D above.

Given the wealth of functional marks available for similar tissues and cell types (for example

subsets of peripheral immune cells), we wanted to assess robustness of our procedure to more

extreme dependence by repeatedly iterating over auxiliary data that is capturing the same func-

tional mark. In simulation E, the sensitivity increased with each iteration at the expense of a

drop in the specificity and loss of FDR control in later iterations (Fig 2). The drop in specificity

detected with a FDR value less than 5 × 10−6. Our FDR proxy is calculated as the proportion of SNPs that were detected

with a FDR value less than 0.05, that had r2� 0.01 with all the causal variants (“truly not-associated”) (we raised α to 0.05

in order to assess FDR control within a manageable number of simulations). Results were averaged across 100 simulations.

https://doi.org/10.1371/journal.pgen.1009853.g001
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and loss of FDR control is exacerbated when iterating over exactly the same auxiliary data in

each iteration (S10 Fig), as expected. We therefore recommend that care should be taken not

to repeatedly iterate over functional data that is capturing the same genomic feature, and in a

real data example that follows, we average over cell types which show correlated values for

functional data.

Analysis of asthma GWAS leveraging GenoCanyon scores

Overall, 655 SNPs were FDR significant (FDR� 0.000148249) in the original asthma GWAS

[47]. We used Flexible cFDR to leverage GenoCanyon scores measuring SNP functionality

with asthma GWAS p-values and have made all of the results publicly available at https://doi.

org/10.5281/zenodo.5554628. SNPs with high GenoCanyon scores were enriched for smaller

asthma p-values (S11 Fig) and accordingly FDR values from Flexible cFDR for SNPs with high

GenoCanyon scores (and therefore more likely to be functional) were lower than their corre-

sponding original FDR values, whilst those for SNPs with low GenoCanyon scores (and there-

fore less likely to be functional) were higher than their corresponding original FDR values (S12

Fig). (Due to the positive stochastic monotonicity requirement for cFDR, the Flexible cFDR

Fig 2. Simulation results for scenario E. Mean +/- standard error for the sensitivity (A), specificity (B) and FDR (C) of FDR values from Flexible cFDR

when iterating over auxiliary data sampled from the same distribution (“simulation E”). Iteration 0 corresponds to the original FDR values. Our

sensitivity proxy is calculated as the proportion of SNPs with r2� 0.8 with a causal variant (“truly associated”), that were detected with a FDR value less

than 5 × 10−6. Our specificity proxy is calculated as the proportion of SNPs with r2� 0.01 with all the causal variants (“truly not-associated”), that were

not detected with a FDR value less than 5 × 10−6. Our FDR proxy is calculated as the proportion of SNPs that were detected with a FDR value less than

0.05, that had r2� 0.01 with all the causal variants (“truly not-associated”) (we raised α to 0.05 in order to assess FDR control within a manageable

number of simulations). Results were averaged across 100 simulations.

https://doi.org/10.1371/journal.pgen.1009853.g002
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software reversed the sign of the GenoCanyon scores for its internal calculations). Specifically,

Flexible cFDR identified 12 newly FDR significant SNPs (rs4705950, rs6903823, rs9262141,

rs1264349, rs2106074, rs3130932, rs9268831, rs3129719, rs1871665, rs16924428, rs1663687

and rs12900122) which had high GenoCanyon scores (mean GenoCanyon score = 0.77) and

3 SNPs were no longer FDR significant which had low GenoCanyon scores (mean GenoCan-

yon score = 0.01). At the locus level no newly significant, or newly not-significant, loci were

identified.

We compared the results from Flexible cFDR to those from IHW [6], BL [31] and Geno-

WAP [14] when leveraging the exact same auxiliary data and have made all of the results pub-

licly available at https://doi.org/10.5281/zenodo.5554628. IHW groups SNPs based on their

covariate values and derives optimal group-specific weights for use in a weighted BH proce-

dure. Interestingly, all SNPs were allocated a weight of 1 in this instance, meaning that IHW

reduced to the conventional BH procedure (and so the adjusted p-values from IHW were iden-

tical to the original FDR values from the discovery GWAS data set [47]).

In BL, logistic regression is used to estimate how the distribution of input p-values depends

on the GenoCanyon scores to estimate the probability that the null hypothesis of no associa-

tion is true for each SNP. These probabilities ranged from 0.957 for the SNP with the largest

GenoCanyon score to 0.993 for the SNP with the smallest GenoCanyon score (S6B Fig). The

consequence of the narrow range of these values is that the adjusted values from BL were very

similar to the original FDR values (S13 Fig). Specifically, BL only identified 3 newly FDR sig-

nificant SNPs, and these were all also identified by Flexible cFDR. One of these had a very

high GenoCanyon score (rs1871665 with score = 0.999) whilst the other two had medium

(rs16924428 with score = 0.532) or low (rs9268831 with score = 0.224) scores. No SNPs were

identified as no longer FDR significant after applying BL and at the locus level, no newly signif-

icant, or newly not-significant, loci were identified.

Since GenoWAP outputs posterior probabilities rather than p-values, we compared the per-

formance of the methods with GenoWAP based on the rankings of SNPs using the UK Bio-

bank data resource. Firstly, at the SNP-level, for each of the 5152 SNPs that passed FDR

significance in the UK Biobank data, we compared the rank of the FDR value in the discovery

data set with (1) the rank of the FDR value after applying Flexible cFDR, (2) the rank of the

FDR value from BL and (3) the rank of the (negative) posterior score from GenoWAP. (IHW

was not included in this comparison because the output from IHW was just the original FDR

values). We found that the percentage of FDR significant SNPs in the UK Biobank data which

had an improved rank after applying each of the methods was similar (Table 2) and that 68.5%

of the SNPs that improved ranks in at least one of the methods improved rank in all of the

methods. Similarly, the percentage of the 1,963,499 SNPs that were not FDR significant in UK

Biobank which had a decreased rank after applying each of the methods was similar (Table 2)

and 49.6% of the SNPs that decreased rank in at least one of the methods decreased rank in all

of the methods.

Table 2. Summary of SNP-level results when leveraging GenoCanyon scores with asthma GWAS p-values.

Table lists the percentage of the 5152 FDR significant SNPs in UK Biobank which improved rank (“UK Biobank signif-

icant which improved rank”) and the percentage of the 1,963,499 SNPs that were not FDR significant in UK Biobank

which decreased rank (“UK Biobank not-significant which decreased rank”) after applying Flexible cFDR, BL or

GenoWAP.

Flexible cFDR BL GenoWAP

UK Biobank significant which improved rank 60.3% 52.4% 61.5%

UK Biobank not-significant which decreased rank 46.8% 58.0% 44.8%

https://doi.org/10.1371/journal.pgen.1009853.t002
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Secondly, we focused on the 114 loci that passed FDR significance in the UK Biobank data

set. Within each of the 114 loci, we identified the SNP with the lowest p-value and called this

the “index SNP”. For each index SNP, we compared the rank of the FDR values in the discov-

ery GWAS data set with (1) the rank of the FDR value after applying Flexible cFDR, (2) the

rank of the FDR value from BL and (3) the rank of the (negative) posterior score from Geno-

WAP. We found that the percentage of UK Biobank significant SNPs (including index SNPs)

that improved rank after applying Flexible cFDR was greater than that for BL (Tables 2 and 3),

which matched results from our simulation analysis which showed that BL was generally less

sensitive than Flexible cFDR. Similarly, the percentage of the 301 loci that were not FDR signif-

icant in UK Biobank which had a decreased rank after applying each of the methods was simi-

lar (Table 3) and 51.4% of the lead variants that decreased rank in at least one of the methods

decreased rank in all of the methods.

In all, the results were similar for Flexible cFDR, BL and GenoWAP when leveraging Geno-

Canyon scores of SNP functionality with asthma GWAS p-values, but rather unexciting as no

newly significant loci were identified. We suggest that this is due to the one-dimensional non-

trait-specific auxiliary data that is being leveraged, which is unlikely to capture enough disease

relevant information to substantially alter conclusions from a study. This is supported by our

intermediary results, where the optimal weights derived in IHW were all equal to 1 and the

estimated proportions of true null hypotheses conditional on the GenoCanyon scores in BL

were almost negligible.

Analysis of asthma GWAS leveraging ChIP-seq data uncovers new genetic

associations

In agreement with reports that GWAS SNPs are enriched in active chromatin [77], we

observed that H3K27ac fold change values in asthma relevant cell types were negatively corre-

lated with asthma GWAS p-values (S14 Fig) such that SNPs with high fold change values were

enriched for smaller p-values (S15 Fig). (Due to the positive stochastic monotonicity require-

ment for cFDR, the Flexible cFDR software reversed the sign of the fold change values for

its internal calculations). Accordingly, FDR values from Flexible cFDR for SNPs with high

H3K27ac fold-change counts in asthma relevant cell types were lower than their correspond-

ing original FDR values, whilst those for SNPs with low H3K27ac fold-change counts in

asthma relevant cell types were higher than their corresponding original FDR values (Fig 3A,

3B and 3C).

The 655 SNPs that were FDR significant (FDR� 0.000148249) in the original asthma

GWAS [47] have strong replication p-values in the UK Biobank data set used for validation

(Fig 3D; Iteration 0). By leveraging H3K27ac data, Flexible cFDR identified weaker signals that

were not significant in the original data but have reassuringly small p-values in the UK Bio-

bank data (median p-value in UK Biobank data for these SNPs is 4.65 × 10−21; Fig 3D). Specifi-

cally, Flexible cFDR identified 51 newly significant SNPs when leveraging average H3K27ac

Table 3. Summary of locus-level results when leveraging GenoCanyon scores with asthma GWAS p-values.

Table lists the percentage of the 114 FDR significant index SNPs in UK Biobank which improved rank (“UK Biobank

significant which improved rank”) and the percentage of the 301 index SNPs that were not FDR significant in UK Bio-

bank which decreased rank (“UK Biobank not-significant which decreased rank”) after applying Flexible cFDR, BL or

GenoWAP.

Flexible cFDR BL GenoWAP

UK Biobank significant which improved rank 42.1% 28.9% 55.3%

UK Biobank not-significant which decreased rank 40.5% 40.9% 34.6%

https://doi.org/10.1371/journal.pgen.1009853.t003
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Fig 3. Using Flexible cFDR to leverage H3K27ac data with asthma GWAS p-values. (A) (-log10) FDR values after 2

iterations of Flexible cFDR leveraging H3K27ac counts in relevant cell types against raw (-log10) FDR values coloured by the

average value of the auxiliary data across iterations. (B) As in A but non-log-transformed FDR values. (C) As in B but

coloured by (log10) counts of data points in each hexbin. (D) Box plots of (-log10) p-values in the discovery GWAS and the

UK Biobank data set for the 655 SNPs that were FDR significant in the original GWAS (Iteration 0), 51 SNPs that were

newly FDR significant after iteration 1 of Flexible cFDR (leveraging average H3K27ac fold change values in lymphoid and

CD56 cell types) and 24 SNPs that were newly FDR significant after iteration 2 of Flexible cFDR (subsequently leveraging

average H3K27ac fold change values in lung tissue and CD14+ cells). Black dashed line at genome-wide significance
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fold change values in lymphoid and CD56 cell types (Fig 3D; Iteration 1), and 24 newly signifi-

cant SNPs when subsequently leveraging average H3K27ac fold change values in lung tissue

and monocytes (Fig 3D; Iteration 2). The maximum p-value for the 69 newly significant SNPs

(6 SNPs newly significant after iteration 1 were no longer significant after iteration 2) in the

discovery GWAS data set was 2.15 × 10−6 and the maximum UK Biobank p-value for these

SNPs was 0.02. The newly significant SNPs had relatively small estimated effect sizes (S16 Fig),

implying that there may be many more regions associated with asthma with increasingly

smaller effect sizes that are missed by current GWAS sample sizes.

As a proxy for sensitivity, we calculated the proportion of FDR significant SNPs in the UK

Biobank data set that were also found to be FDR significant both before (“iteration 0”) and

after each iteration of Flexible cFDR. We found that the sensitivity increased from 0.127 to

0.131 after iteration 1 (leveraging average H3K27ac fold change values in lymphoid and CD56

cell types) and to 0.133 after iteration 2 (leveraging average H3K27ac fold change values in

lung tissue and monocytes) (Fig 3E). As a proxy for specificity, we calculated the proportion of

SNPs not FDR significant in the UK Biobank data set that were also not FDR significant both

before (“iteration 0”) and after each iteration of Flexible cFDR, finding that the specificity

remained close to 1 (� 0.9999975) (Fig 3F). One could expect that the order of which the auxil-

iary data is iterated over may impact the results from Flexible cFDR. Reassuringly, in this

application we found that the order of which we iterated over the auxiliary data had minimal

impact on the results (S17 Fig).

At the locus level, 18 loci were FDR significant (FDR� 0.000148249) in the original

asthma GWAS [47]. When used to leverage H3K27ac fold change values, Flexible cFDR identi-

fied 4 additional significant loci with index SNPs: rs9501077 (chr6:31167512), rs4148869

(chr6:32806576), rs9467715 (chr6:26341301) and rs167769 (chr12:57503775) (Fig 4 and

Table 4). Three of the four (rs4148869, rs9467715 and rs167769) validated in the UK Biobank

data set at Bonferroni corrected significance (for 4 tests the Bonferroni corrected significance

threshold corresponding to α = 0.05 is 0.05/4 = 0.0125). One locus was found to be no longer

FDR significant with index SNP rs12543811 (chr8:81278885).

SNPs rs9501077 and rs4148869 reside in the major histocompatibility complex (MHC)

region of the genome, which is renowned for its strong long-range LD structures that make it

difficult to dissect genetic architecture in this region. rs9501077 and rs4148869 are in linkage

equilibrium (r2 = 0.001), and are in very weak LD with the index SNP for the whole MHC

region (rs9268969; FDR = 7.35 × 10−15; r2 = 0.005 and r2 = 0.001 respectively). rs9501077

(p = 1.53 × 10−7) has relatively high H3K27ac counts in asthma relevant cell types (mean

percentile is 90th) and Flexible cFDR uses this extra disease-relevant information to increase

the significance of this SNP beyond the significance threshold (FDR before Flexible cFDR =

3.99 × 10−4, FDR after Flexible cFDR = 6.26 × 10−5; Table 4). rs9501077 is found in the long

non-coding RNA (lncRNA) gene, HCG27 (HLA Complex Group 27), which has been linked

to psoriasis [78], however the finding of a significant association with asthma for this SNP was

not replicated in the UK Biobank data (UK Biobank p = 0.020).

SNP rs4148869 has very high H3K27ac fold change values in asthma relevant cell types

(mean percentile is 99.6th) and so Flexible cFDR decreases the FDR value for this SNP from

9.28 × 10−4 to 3.22 × 10−5 when leveraging this auxiliary data (Table 4). This SNP is a 5’ UTR

(p = 5 × 10−8). (E) Sensitivity proxy and (F) specificity proxy for the H3K27ac application results. Sensitivity proxy is

calculated as the proportion of SNPs that are FDR significant in the UK Biobank data set that are also FDR significant in the

original GWAS (iteration 0), after iteration 1 of Flexible cFDR or after iteration 2 of Flexible cFDR. Specificity is calculated

as the proportion of SNPs that are not FDR significant in the UK Biobank data set that are also not FDR significant in the

original GWAS (iteration 0), after iteration 1 of Flexible cFDR or after iteration 2 of Flexible cFDR.

https://doi.org/10.1371/journal.pgen.1009853.g003
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Fig 4. Manhattan plot of FDR values before and after applying Flexible cFDR to leverage H3K27ac data with asthma

GWAS p-values. Manhattan plots of -log10 FDR values before (A) and after (B) applying Flexible cFDR leveraging

H3K27ac counts in asthma relevant cell types. Points are coloured by chromosome and green points indicate the four index

SNPs that are newly identified as FDR significant after Flexible cFDR (rs167769, rs9467715, rs9501077 and rs4148869)

whilst the red point indicates the single index SNP that was newly identified as not FDR significant by Flexible cFDR

(rs12543811). Black dashed line at FDR significance threshold [−log10(0.000148249)].

https://doi.org/10.1371/journal.pgen.1009853.g004
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variant in the TAP2 gene. The protein TAP2 assembles with TAP1 to form a transporter asso-

ciated with antigen processing (TAP) complex. The TAP complex transports foreign peptides

to the endoplasmic reticulum where they attach to MHC class I proteins which in turn are traf-

ficked to the surface of the cell for antigen presentation to initiate an immune response [79].

Studies have found TAP2 to be associated with various immune-related disorders, including

autoimmune thyroiditis and type 1 diabetes [80, 81], and pulmonary tuberculosis in Iranian

populations [82]. Recently, Ma and colleagues [83] identified three cis-regulatory eSNPS for

TAP2 as candidates for childhood-onset asthma risk (rs9267798, rs4148882 and rs241456).

One of these (rs4148882) is present in the asthma GWAS data set used for our analysis

(FDR = 0.12) and is in weak LD with rs4148869 (r2 = 0.4).

SNP rs9467715 is a regulatory region variant with a raw FDR value that is very nearly signif-

icant in the original GWAS (FDR = 2.49 × 10−4 compared with FDR threshold of 1.48 × 10−4

used to call significant SNPs). This SNP has moderate H3K27ac fold change values in

asthma relevant cell types (mean percentile is 67.9th) so that when these are leveraged using

Flexible cFDR, the SNP is just pushed past the FDR significance threshold (FDR after Flexible

cFDR = 1.15 × 10−4; Table 4).

SNP rs167769 has a borderline FDR value in the original GWAS discovery data set

(FDR = 4.04 × 10−4) but was found to be significant in the multi-ancestry analysis in the same

manuscript (FDR = 1.61 × 10−5) [47]. This SNP has very high H3K27ac fold change values in

asthma relevant cell types (mean percentile is 98.4th) and Flexible cFDR decreases the FDR

value for this SNP to 1.51 × 10−5 when leveraging this auxiliary data (Table 4). rs167769 is an

intron variant in STAT6, a gene that is activated by cytokines IL-4 and IL-13 [84, 85] to initiate

a Th2 response and ultimately inhibit transcribing of innate immune response genes [86, 87].

Transgenic mice over-expressing constitutively active STAT6 in T cells are predisposed

towards Th2 responses and allergic inflammation [88, 89] whilst STAT6-knockout mice are

protected from allergic pulmonary manifestations [90]. Accordingly, rs167769 is strongly

associated with STAT6 expression in the blood [91–93] and lungs [94] and is associated with

increased risk of childhood atopic dermatitis [95, 96], which often progresses to allergic air-

ways diseases such as asthma in adulthood. No genetic variants in the STAT6 gene region

(chr12:57489187–57525922) were identified as significant in the original GWAS, and only

rs167769 was identified as significant after leveraging H3K27ac data using Flexible cFDR

(S18 Fig).

One significant index SNP was no longer significant after applying Flexible cFDR.

rs12543811 is located between genes TPD52 and ZBTB10 and has moderate H3K27ac fold

change values in asthma relevant cell types (mean percentile is 52th). This SNP only just

Table 4. Summary of newly significant asthma index SNPs when using Flexible cFDR to leverage H3K27ac data. Details of index SNPs that became newly FDR signifi-

cant (FDR< 0.000148249) after using Flexible cFDR to leverage H3K27ac fold change values with asthma GWAS p-values. Table contains the rsIDs (SNP), genomic posi-

tions (Chr: chromosome, BP: base pair), reference (Ref) and alternative (Alt) alleles, log ORs (beta), standard errors (SE) and p-values from the discovery GWAS, mean

H3K27ac fold change values across asthma relevant cell types, p-values from UK Biobank and resultant v-values from Flexible cFDR. For the original p-values (and v-val-

ues), the corresponding FDR values are also given, calculated using the BH procedure.

SNP Chr BP Ref Alt beta SE H3K27ac percentilea p FDR (p) p (UKBB) v FDR (v)

rs167769 12 57503775 C T 7.87×10−2 1.50×10−2 98.4th 1.55×10−7 4.04×10−4 4.69×10−24 3.75×10−9 1.51×10−5

rs9467715 6 26341301 T C -8.61×10−2 1.61×10−2 67.9th 8.96×10−8 2.49×10−4 5.93×10−4 3.83×10−8 1.15×10−4

rs9501077 6 31167512 A G -8.06×10−2 1.54×10−2 90.5th 1.53×10−7 3.99×10−4 2.01×10−2 1.91×10−8 6.26×10−5

rs4148869 6 32806576 C T 7.03×10−2 1.39×10−2 99.6th 4.03×10−7 9.28×10−4 1.49×10−15 9.07×10−9 3.22×10−5

a Mean H3K27ac percentile across cell types.

https://doi.org/10.1371/journal.pgen.1009853.t004
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exceeds the FDR significance threshold in the original GWAS (FDR = 1.08 × 10−4 compared

with FDR threshold of 1.48 × 10−4 used to call significant SNPs) but by leveraging its H3K27ac

fold change values using Flexible cFDR, the resultant FDR value is just below the significance

threshold (FDR after Flexible cFDR = 3.04 × 10−4; S19 Fig). This SNP is in strong LD with

rs7009110 (r2 = 0.79) which has previous been associated with asthma plus hay fever but not

with asthma alone [97]. Conditional analyses show that these two SNPs represent the same sig-

nal which is likely to be associated with allergic asthma [47]. rs12543811 was found to be sig-

nificant in the UK Biobank data (UK Biobank p = 1.42 × 10−19).

Comparison with existing methods

Boca and Leek’s FDR regression. We compared the results from Flexible cFDR when

leveraging cell-type specific ChIP-seq data to those from BL when leveraging the exact same

auxiliary data (Fig 5). The estimated probabilities that each SNP was null (not associated),

which are calculated as an intermediate step in the method, ranged from 0.746 to 1 and were

negatively correlated with H3K27ac fold change values in asthma relevant cell types (S20

Fig). In total, BL identified five SNPs as newly FDR significant, which replicate in the

Fig 5. Using Boca and Leek’s FDR regression to leverage H3K27ac data with asthma GWAS p-values. (A) (-log10) adjusted p-values from BL against

raw (-log10) FDR values coloured by average value of q (H3K27ac fold change value). (B) Box plots of (-log10) p-values in the discovery GWAS data set

and the UK Biobank data set for the 655 SNPs that were FDR significant in the original GWAS (“before”) and 5 newly significant SNPs after applying

BL (“after”). Black dashed line at genome-wide significance threshold (5 × 10−8). (C) Sensitivity and (D) specificity proxies for the results. Sensitivity

proxy is calculated as the proportion of SNPs that are FDR significant in the UK Biobank data set that are also FDR significant in the original GWAS or

after applying BL. Specificity is calculated as the proportion of SNPs that are not FDR significant in the UK Biobank data set that are also not FDR

significant in the original GWAS or after BL.

https://doi.org/10.1371/journal.pgen.1009853.g005
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UK Biobank validation data set (rs4705950 UK Biobank p = 7.2 × 10−23, rs9268831 UK

Biobank p = 1.3 × 10−42, rs17533090 UK Biobank p = 4.4 × 10−41, rs1871665 UK Biobank

p = 5.5 × 10−24 and rs16924428 UK Biobank p = 3.6 × 10−40) (Fig 5B). These SNPs are a

subset of the 69 newly significant SNPs identified by Flexible cFDR, except for rs16924428

which has very low H3K27ac fold change values in asthma relevant cell types (average

value = 0.087). The sensitivity increased slightly from 0.127 to 0.128 after applying BL (com-

pared to 0.133 after Flexible cFDR) (Fig 5C) and the specificity remained stable at 0.9999995

(Fig 5D). No SNPs were FDR significant in the discovery data set and no longer FDR signifi-

cant after applying BL, and no new loci were found to be newly FDR significant (or newly

not FDR significant).

FINDOR. We next compared results from Flexible cFDR when leveraging cell-type spe-

cific ChIP-seq data to those from FINDOR which leverages a wider range of non-cell-type-

specific functional annotations, and have made all of the results publicly available at https://

doi.org/10.5281/zenodo.5554628. FINDOR identified 119 newly FDR significant SNPs

which had a median p-value of 4.44 × 10−15 in the UK Biobank validation data, but the maxi-

mum UK Biobank p-value for these 119 newly significant SNPs was 0.98 (Fig 6A and 6B).

The proportion of FDR significant SNPs in the UK Biobank data set that were also FDR sig-

nificant in the discovery GWAS data set increased from 0.127 to 0.146 (compared to 0.128

after BL and 0.133 after Flexible cFDR) (Fig 6C) and the specificity remained � 0.99999 (Fig

6D). The increase in sensitivity from FINDOR is greater than that of Flexible cFDR and BL,

which may reflect the information gain in leveraging 96 annotations rather than a single his-

tone mark.

At the locus level, FINDOR identified two newly FDR significant index SNPs: rs13018263

(chr2:103092270; original FDR = 6.79 × 10−4, new FDR = 10−4) and rs9501077 (chr6:31167512;

original FDR = 3.99 × 10−4, new FDR = 4.86 × 10−5) (Fig 6E and 6F). SNP rs13018263 is an

intronic variant in SLC9A4 and is strongly significant in the UK Biobank validation data set

(p = 4.78 × 10−31). Ferreira and colleagues [98] highlighted rs13018263 as a potential eQTL for

IL18RAP, a gene which is involved in IL-18 signalling which in turn mediates Th1 responses

[99], and is situated just upstream of SLC9A4. Genetic variants in IL18RAP are associated with

many immune-mediated diseases, including atopic dermatitis [100] and type 1 diabetes [101].

Interestingly, although different auxiliary data was leveraged using Flexible cFDR and FIN-

DOR in our analyses, both methods found index SNP rs9501077 to be newly significant, but

this SNP did not validate in the UK Biobank data (UK Biobank p = 0.020).

Two additional index SNPs were found to be no longer significant after re-weighting by

FINDOR, rs2589561 (chr10:9046645; original FDR = 5.25 × 10−5, new FDR = 3.06 × 10−3)

and rs17637472 (chr17:47461433; original FDR = 1.42 × 10−5, new FDR = 9.42 × 10−4), how-

ever both of these SNPs were strongly significant in the UK Biobank validation data set

(p = 2.09 × 10−29 and p = 1.75 × 10−14 respectively).

SNP rs2589561 is a gene desert that is 929kb from GATA3, a transcription factor of the Th2

pathway which mediates the immune response to allergens [47, 102]. Hi-C data in hematopoi-

etic cells showed that two proxies of rs2589561 (r2 > 0.9) are located in a region that interacts

with the GATA3 promoter in CD4+ T cells [103], suggesting that rs2589561 could function

as a distal regulator of GATA3 in this asthma relevant cell type. rs2589561 has relatively high

H3K27ac fold change values in the asthma relevant cell types leveraged by Flexible cFDR

(mean percentile is 85th) and Flexible cFDR decreased the FDR value from 5.25 × 10−5 to

2.41 × 10−5.

SNP rs17637472 is a strong cis-eQTL for GNGT2 in blood [91–93, 104], a gene whose pro-

tein product is involved in NF-κB activation [105]. This SNP has moderate H3K27ac fold

change values in relevant cell types (mean percentile is 62th) and the FDR values for this SNP
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Fig 6. Results from FINDOR re-weighting of asthma GWAS p-values leveraging 96 baseline-LD model annotations. (A)

(-log10) FDR values from FINDOR against (-log10) original FDR values coloured by FINDOR weights. (B) Box plots of

(-log10) p-values in the discovery GWAS data set and the UK Biobank data set for the 655 SNPs that were FDR significant in

the original GWAS (“before”) and 119 newly significant SNPs after re-weighting using FINDOR (“after”). Black dashed line

at genome-wide significance threshold (5 × 10−8). (C) Sensitivity and (D) specificity proxies for the FINDOR results.

Sensitivity proxy is calculated as the proportion of SNPs that are FDR significant in the UK Biobank data set that are also

FDR significant in the original GWAS or after p-value re-weighting using FINDOR. Specificity is calculated as the

proportion of SNPs that are not FDR significant in the UK Biobank data set that are also not FDR significant in the original
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were similar both before and after using Flexible cFDR to leverage the H3K27ac data (original

FDR = 1.42 × 10−5, new FDR = 1.46 × 10−5).

Discussion

Developments in molecular biology have enabled researchers to decipher the functional effects

of various genomic signatures. We are now in a position to prioritise sequence variants associ-

ated with various phenotypes not just by their genetic association statistics but also based on

our biological understanding of their functional role. Originally designed for the specific pur-

pose of leveraging test statistics from genetically related traits, we have extended the cFDR

framework [44] to support auxiliary data from arbitrary continuous distributions. Our exten-

sion, Flexible cFDR, provides a statistically robust framework to leverage functional genomic

data with genetic association statistics to boost power for GWAS discovery.

We compared the performance of Flexible cFDR to that of four comparator methods which

have previously been shown to outperform other approaches [15, 48]: GenoWAP, IHW, BL

and FINDOR. We also tried to compare our method to AdaPT [10], but this approach uses a

p-value masking procedure which takes many iterations of optimisation and can be computa-

tionally expensive [106]. We found AdaPT to be too computationally demanding for large-

scale GWAS data and previous studies suggest that a SNP pre-filtering stage is required [37].

Of the methods considered, we found that only BL was as versatile as Flexible cFDR. Specifi-

cally, IHW currently only supports univariate covariates and, unlike Flexible cFDR, cannot be

applied iteratively to leverage multi-dimensional covariates. In GenoWAP, the prior probabili-

ties used in the model are calculated as the mean GenoCanyon score (or tissue-specific GenoS-

kyline [107] or GenoSkyline-Plus [108] score) of the surrounding 10, 000 base pairs, thereby

restricting its utility to leveraging only these scores (which we found were unlikely to capture

enough disease relevant information to substantially alter conclusions from a study). Whilst in

FINDOR, SNPs are binned based on how well they tag heritability enriched categories and this

requires the estimation of χ2 statistics (i.e., tagged variance) for each SNP using a range of

functional annotations, which are generally those in the baselineLD model [27]. Users are thus

required to run LD-score regression prior to running FINDOR, and this two-step approach

may limit the accessibility of the method. Although BL was as versatile as Flexible cFDR, we

found that it failed to control the FDR in some simulations and was less powerful than Flexible

cFDR in a simulation-based analysis. Whilst FINDOR was shown to be the most powerful

method, this may reflect the information gain in leveraging 96 annotations rather than a single

histone mark. This emphasises the importance of being able to iterate over different auxiliary

measures, and suggests that a fruitful area of extension for cFDR will be to increase the robust-

ness of FDR control for dependent q across multiple iterations. A related extension would be

to formally assess robustness of the cFDR approach to the order of which the auxiliary data is

iterated over.

Flexible cFDR has several key advantages over competing methods. It does not bin vari-

ables and does not rely on subjective thresholding or normalised weighting schemes, which

hinder many of the existing methods [3–6, 9, 14, 15, 25]. Moreover, Flexible cFDR outputs

quantities analogous to p-values which can be used directly in any error-rate controlling

GWAS or after p-value re-weighting using FINDOR. Manhattan plots of FDR values before (E) and after (F) re-weighting by

FINDOR. Green points indicate the two index SNPs that are newly identified as FDR significant by FINDOR [rs13018263

(chr2:103092270) and rs9501077 (chr6:31167512)]. Red points indicate the two index SNPs that are newly identified as not

FDR significant by FINDOR [rs2589561 (chr10:9046645) and rs17637472 (chr17:47461433)]. Black dashed line at FDR

significance threshold [−log10(0.000148249)].

https://doi.org/10.1371/journal.pgen.1009853.g006
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procedure, and which also permit iteration to support multi-dimensional covariate data.

Whilst LD between SNPs is often a concern (e.g. because methods such as KDE assume inde-

pendence between observations), we fit the KDE to a subset of LD-independent SNPs but

then generate v-values for the full set of SNPs, thereby benefiting from computational effi-

ciency but also facilitating downstream analyses which typically require the full set of SNPs,

such as fine-mapping or meta-analysis. LD means that the v-values will be positively corre-

lated, so we appeal to the established robustness of the BH FDR estimation to positive depen-

dency [109].

Whilst larger case and control cohort sizes will boost statistical power for GWAS discovery,

incorporating functional data provides an additional layer of biological evidence that an

increase in sample sizes alone cannot provide. There are also instances in the rare disease

domain where case sample sizes are restricted by the number of cases available for recruitment

(for example in primary immunodeficiency disorder [110]), and our method has potential util-

ity in these instances as it provides an alternative approach to increase statistical power. The

choice of functional data to use may be guided by prior knowledge, or in a data driven manner

using a method such as GARFIELD [111] to quantify the enrichment of GWAS signals in dif-

ferent functional marks. Moreover, our method intrinsically evaluates the relevance of the aux-

iliary data by comparing the joint probability density of the test statistics and the auxiliary data

to the joint density assuming independence, and can therefore be used to inform researchers

of relevant functional signatures and cell types.

Our manuscript describes four key advances enabling the extension of the cFDR frame-

work to the functional genomics setting. Firstly, we derive an estimator based on a 2-dimen-

sional KDE of the bivariate distribution rather than empirical estimates, making our method

considerably faster than earlier empirical approaches. Secondly, the cFDR framework estimates

qjHp
0 with the relatively coarse approximation q|p> 1/2. In contrast, Flexible cFDR utilises the

local false discovery rate in its estimator for qjHp
0 . The local false discovery rate conditions the

probability of a null hypothesis on the point value of its p-value, and its use allows for finer-

grained estimation of qjHp
0 . Thirdly, we remove the assumption that qjHp

0 can be transformed

to a mixture of centered normals, and instead integrate over the previously estimated KDE,

which relaxes the distributional assumptions placed on the auxiliary data. Finally, Flexible

cFDR is supported by user-oriented software documented on an easy-to-navigate website

(https://annahutch.github.io/fcfdr/). The website features several fully reproducible vignettes

which illustrate how the method can be applied to a particular data set at the desired level of

error control. We hope this support will make Flexible cFDR accessible to a wider range of

researchers.

One can see that the performance of Flexible cFDR depends on how well the KDE fits the

data. Usual concerns about KDE apply, including that fits may be poor if there are regions

with very sparse data. The auxiliary data can be transformed to improve the KDE fitting proce-

dure, as in application 2 where we log-transformed the raw fold change values to avoid long

tails. The optimal scale for the auxiliary data is likely to depend on the relationship between

the principal p-values and the auxiliary data, and is not something we have explored here, but

as usual, data visualisation is likely to be helpful to confirm that the scale for the auxiliary data

is sensible. By default, the Flexible cFDR software returns a plot of the fitted 2D KDE and the

estimated density of the auxiliary data overlaid onto the real data values, enabling users to visu-

ally examine the fit of the KDE to their data. Investigating the KDE fitting procedure, includ-

ing the suitability of the Gaussian kernel, is an interesting area for future research.

Estimation of both FDR and local false discovery rates (often denoted “fdr”) [32] require

estimation of a ratio. In the case of FDR these are cumulative distribution functions (CDF),
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and in the case of the fdr these are probability density functions (PDF). The simple approach is

to take a ratio of two separate estimates of the numerator and denominator. In the case of a 2d

fdr proposed by Ploner et al. [34], this approach was found to be numerically unstable, because

the sparsity of the data across 2 dimensions means the uncertainty attached to the estimate of

the denominator in particular may be large. Ploner et al. [34] proposed a solution based on

binomial regression, adapting the Poisson regression method used by Efron [32] to estimate

the denominator in the fdr ratio. Despite depending on a 2 dimensional density, we do not use

a smoothing estimator for cFDR, yet it still performs well. This is because CDF estimates are

typically more stable than PDF estimates at any given point (apart from towards the lower lim-

its of the data), and is one of the attractive ideas for using cumulative rather than probability

density functions.

Our method has several limitations. Firstly, if applying Flexible cFDR iteratively then it is

important that each iteration considers new information. That is, care must be taken to ensure

that the auxiliary data to be leveraged iteratively is capturing distinct disease-relevant features

to prevent multiple adjustment using the same auxiliary data. The definition of “distinct dis-

ease-relevant features” to leverage is at the user’s discretion and sparks an interesting philo-

sophical discussion. For example, leveraging data iteratively from various genomic assays

measuring the same genomic feature at different resolutions may be deemed invalid for some

researchers but valid for others, since if the mark is repeatedly identified by different assays

then it is more likely to be reliably present. Whilst we show that our method is robust to minor

departures from qðkÞi ⫫ qðlÞi jH
p
0 , this does not extend to strongly related q. We would argue that

the conservative approach would be to average over correlated auxiliary data, to ensure that

the q vectors are not strongly correlated.

Secondly, Flexible cFDR requires that the auxiliary data to be leveraged is continuous. This

means that the approach cannot currently be used to leverage functional genomic data that

yields discrete or binary values, such as PHRED scores, whether SNPs are synonymous or

non-synonymous or whether they reside in coding regions of the genome. A fruitful contribu-

tion to the field would be to extend the cFDR approach to support discrete or binary data, thus

increasing applicability.

Thirdly, the cFDR framework assumes a positive stochastically monotonic relationship

between the test statistics and the auxiliary data: specifically, low p-values are enriched for low

values in the auxiliary data. Our method automatically calculates the correlation between p
and q and if this is negative then the auxiliary data is transformed to q≔ −q. However, if the

relationship is non-monotonic (for example low p-values are enriched for both very low and

very high values in the auxiliary data) then the cFDR framework cannot simultaneously shrink

v-values for these two extremes. This non-monotonic relationship is unlikely when leveraging

single functional genomic marks, but may occur if, for example, multiple marks were decom-

posed via PCA. We therefore recommend that users use the corr_plot and strati-
fied_qqplot functions in the fcfdr R package to visualise the relationship between the

relationship between the two data types. Note that this restriction could be removed if we used

density instead of distribution functions, and worked at the level of local false discovery rates

[32] as described earlier, but this would in turn reduce the robustness our method has to data

sparsity in the (p, q) plane.

Finally, in our asthma application we only leveraged data for a single histone modification

across various cell types. Additional data measuring other histone modifications (e.g. repres-

sive marks) could also be leveraged to further increase power.

Overall, we anticipate that Flexible cFDR will be a valuable tool to leverage functional geno-

mic data with GWAS test statistics to boost power for GWAS discovery.

PLOS GENETICS Leveraging auxiliary data from arbitrary distributions to boost GWAS discovery with Flexible cFDR

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009853 October 20, 2021 28 / 37

https://doi.org/10.1371/journal.pgen.1009853


Supporting information

S1 Fig. Demonstration of the left-censoring procedure. Plots showing how many data points

are in each grid space of the auxiliary data, q, over the support of the KDE for an example data

set. (A) shows the full support of the KDE and (B) is zoomed in to the left tail. Black dashed

line at y = 50 which is the default value of the gridp parameter in the fcfdr::flexi-
ble_cfdr function. Data points falling in grid spaces with fewer than 50 data points (those

to the left of the blue dashed line) are left-censored, meaning that their value is replaced by the

value of the left bound of the first grid space containing more than 50 data points. In practise,

very few data points are left-censored.

(TIF)

S2 Fig. Illustration of the spline correction procedure. A spline with 5 knots is fitted to

log10(v/p) against q using the bigsplines R package (https://cran.r-project.org/web/

packages/bigsplines/index.html) for an example data set. The distance between each data point

and the fitted spline is calculated. If this distance is greater than the value of the dist_thr
parameter in the fcfdr::flexible_cfdr function (default value is 0.5), then the data

point is mapped back to the spline and the corresponding v-value is recalculated using the fit-

ted spline. In this example, the red line shows the fitted spline and the grey triangular points

are mapped back to the spline to generate new v-values.

(TIF)

S3 Fig. Histograms of auxiliary data leveraged in simulation analysis. (A) Example data lev-

eraged in simulation A (simulated from standard uniform distribution). (B) Example data lev-

eraged in simulation B (simulated p-values for related traits). (C) Example data leveraged in

simulations C, D and E (simulated from a mixture normal distribution).

(TIF)

S4 Fig. Choosing an FDR threshold corresponding to the genome-wide significance p-

value threshold in the simulation analysis. Histogram of the maximum FDR-adjusted p-

value (using BH method) amongst SNPs with p� 5 × 10−8 in the simulation analysis. Red

dashed line at the selected FDR threshold of 5 × 10−6.

(TIF)

S5 Fig. Histograms from GenoCanyon application. (A) Histogram of GenoCanyon scores

for SNPs in the asthma GWAS data set. (B) Histogram of estimated pi0 values from BL.

(TIF)

S6 Fig. Heatmap of the correlations between H3K27ac fold change values amongst asthma

relevant cell types.

(TIF)

S7 Fig. Histograms of auxiliary data used in H3K27ac application. (A) q1 is the average of

(log transformed) H3K27ac fold change values in lymphoid and CD56 cell types (B) q2 is the

average of (log transformed) H3K27ac fold change values in lung tissue and CD14+ cells.

(TIF)

S8 Fig. Simulation results assessing the sensitivity when increasing the r2 threshold used to

call associated SNPs. Mean +/- standard error for the sensitivity of FDR values from empirical

and Flexible cFDR when iterating over independent (A; “simulation A”) and dependent (B;

“simulation B”) auxiliary data that is bounded by [0, 1]. Panels C and D show the results from

Flexible cFDR when iterating over independent (C; “simulation C”) and dependent (D; “simu-

lation D”) auxiliary data simulated from bimodal mixture normal distributions. BL refers to
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results when using Boca and Leek’s FDR regression to leverage the 5-dimensional covariate

data. Iteration 0 corresponds to the original FDR values. Our sensitivity proxy is calculated

as the proportion of SNPs with r2� X with a causal variant (“truly associated”), that were

detected with a FDR value less than 5 × 10−6, where results are faceted for X = 0.8, 0.9, 0.95.

Results were averaged across 100 simulations.

(TIF)

S9 Fig. Simulation results assessing the specificity when increasing the r2 threshold used to

call not-associated SNPs. Mean +/- standard error for the specificity of FDR values from

empirical and Flexible cFDR when iterating over independent (A; “simulation A”) and depen-

dent (B; “simulation B”) auxiliary data that is bounded by [0, 1]. Panels C and D show the

results from Flexible cFDR when iterating over independent (C; “simulation C”) and depen-

dent (D; “simulation D”) auxiliary data simulated from bimodal mixture normal distributions.

BL refers to results when using Boca and Leek’s FDR regression to leverage the 5-dimensional

covariate data. Iteration 0 corresponds to the original FDR values. Our specificity proxy is cal-

culated as the proportion of SNPs with r2� X with all the causal variants (“truly not-associ-

ated”), that were not detected with a FDR value less than 5 × 10−6, where results are faceted for

X = 0.01, 0.05. Results were averaged across 100 simulations.

(TIF)

S10 Fig. Simulation results for using Flexible cFDR to iteratively leverage exactly the same

auxiliary data. Mean +/- standard error for the sensitivity (A) specificity (B) and FDR (C) of

FDR values from Flexible cFDR when iterating over the same dependent auxiliary data (“simu-

lation E”). Iteration 0 corresponds to the original FDR values. Our sensitivity proxy is calcu-

lated as the proportion of SNPs with r2� 0.8 with a causal variant (“truly associated”), that

were detected with a FDR value less than 5 × 10−6. Our specificity proxy is calculated as the

proportion of SNPs with r2� 0.01 with all the causal variants (“truly not-associated”), that

were not detected with a FDR value less than 5 × 10−6. Our FDR proxy is calculated as the pro-

portion of SNPs that were detected with a FDR value less than 0.05, that had r2� 0.01 with all

the causal variants (“truly not-associated”) (we raised α to 0.05 in order to assess FDR control

within a manageable number of simulations). Results were averaged across 1000 simulations.

(TIF)

S11 Fig. Stratified Q-Q plot of empirical -log10 GWAS p-values for asthma against theoret-

ical values stratified by GenoCanyon scores. The values that were used to threshold the Gen-

oCanyon scores are the quantiles of the distribution (0.020 is the 0.25 quantile, 0.204 is the 0.5

quantile, 0.731 is the 0.75 quantile and 1 is the maximum value).

(TIF)

S12 Fig. Results when using Flexible cFDR to leverage GenoCanyon scores with asthma

GWAS p-values. FDR values after using Flexible cFDR to leverage GenoCanyon scores with

asthma GWAS p-values against raw FDR values coloured by GenoCanyon score.

(TIF)

S13 Fig. Results when using BL to leverage GenoCanyon scores with asthma GWAS p-val-

ues. Adjusted p-values from BL when leveraging GenoCanyon scores with asthma GWAS p-

values against raw FDR values coloured by GenoCanyon score.

(TIF)

S14 Fig. Heatmap of correlations between log-transformed asthma GWAS p-values and

the summarised H3K27ac fold change values leveraged by Flexible cFDR. q1 is the average

of (log transformed) H3K27ac fold change values in lymphoid and CD56 cell types. q2 is the
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average of (log transformed) H3K27ac fold change values in lung tissue and CD14+ cells.

(TIF)

S15 Fig. Stratified Q-Q plot of empirical -log10 GWAS p-values for asthma against theoret-

ical values stratified by average H3K27ac fold change values in asthma relevant cell types.

The values that were used to threshold q (average H3K27ac fold change values) are the quan-

tiles of the distribution (0.174 is the 0.25 quantile, 0.271 is the 0.5 quantile, 0.419 is the 0.75

quantile and 4.583 is the maximum value).

(TIF)

S16 Fig. Effect sizes of significant SNPs. Absolute estimated effect sizes (|β|; log OR) +/ −1.96

× SE of SNPs significantly associated (FDR� 0.000148249) with asthma in the original discov-

ery GWAS data set (“iteration 0”) and those newly significant after iteration 1 and 2 of cFDR.

(TIF)

S17 Fig. Switching the order of iteration. (-log10) v-values after 2 iterations of Flexible cFDR

leveraging H3K27ac data when iterating over q2 and then q1 against (-log10) v-values when

iterating over q1 then q2.

(TIF)

S18 Fig. Manhattan plots for genomic region containing the STAT6 gene. Manhattan plots

of FDR values before (A) and after (B) applying Flexible cFDR for the region containing the

STAT6 gene (chr12:57489187–57525922). Black dashed line at FDR significant threshold. Red

SNP is rs167769 (index SNP).

(TIF)

S19 Fig. Manhattan plots for region containing the index SNP rs12543811 that is no longer

FDR significant after applying Flexible cFDR. Manhattan plots of FDR values before (A) and

after (B) applying Flexible cFDR for the region (chr8:81100000–81500000) containing index

SNP rs12543811 (chr6:81278885) that is no longer FDR significant when applying Flexible

cFDR.

(TIF)

S20 Fig. Estimated pi0 values in BL when leveraging H3K27ac fold change values in rele-

vant cell types with asthma GWAS p-values. (A) Average H3K27ac fold change values in

asthma relevant cell types (q) against estimated probabilities that the null hypothesis is true

(‘pi0’) (B) Histogram of pi0 values for all 1,968,651 SNPs.

(TIF)
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