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ABSTRACT 

 

Nanomedicine development currently suffers from a lack of efficient tools to predict 

pharmacokinetic behavior without relying upon testing in large numbers of animals, impacting 

success rates and development costs. This work presents dendPoint, the first in silico model to 

predict the intravenous pharmacokinetics of dendrimers, a commonly explored drug vector, 

based on physicochemical properties. We have manually curated the largest relational database 

of dendrimer pharmacokinetic parameters and their structural/physicochemical properties. This 

was used to develop a machine learning-based model capable of accurately predicting 

pharmacokinetic parameters, including half-life, clearance, volume of distribution and dose 

recovered in the liver and urine. dendPoint successfully predicts dendrimer pharmacokinetic 

properties, achieving correlations of up to r = 0.83 and Q2 up to 0.68. dendPoint is freely 

available as a user-friendly web-service and database at 

http://biosig.unimelb.edu.au/dendpoint. This platform is ultimately expected to be used to 

guide dendrimer construct design and refinement prior to embarking on more time consuming 

and expensive in vivo testing. 
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INTRODUCTION  

A lack of appropriate pharmacokinetic behavior has historically been one of the leading causes 

of drug failure in clinical trials1. Advances in controlled release technologies and 

nanomedicine, however, are increasingly providing new opportunities to circumvent this 

shortcoming in rational drug development initiatives and are providing renewed hope for old 

drug candidates. Importantly, a wide range of nanosized materials with a variety of chemico-

biological traits that can be used to alter and drive the pharmaceutical behavior of loaded drugs 

(including colloids, nanoparticles and polymers) have been developed and explored for their 

potential as relatively biologically inert drug carriers. One of the primary indications for which 

nanomaterials have been explored and have proven successful is in promoting the targeted 

delivery of chemotherapeutic drugs towards solid tumors via the enhanced permeation and 

retention (EPR) effect2. While optimal EPR necessitates the use of nanocarriers that display 

prolonged blood circulation3, a trade off needs to exist between blood exposure (to maximize 

EPR) and elimination (to minimize accumulation of the nanomaterial in the body and off-target 

toxicity). As a classic example, the PEGylated liposomal formulation of doxorubicin 

(Doxil®/Caelyx®) displays good EPR into solid tumors, but its prolonged plasma exposure 

leads to accumulation in the extremities, causing painful swelling of the hands and feet4. This 

highlights the importance of optimizing the pharmacokinetic behavior of nanomedicines early 

in development. 

 

Often, however, the preclinical development of nanomedicines involves testing the 

biopharmaceutical behavior and safety of a wide range of nanocarriers, alone and in 

combination with loaded drug, in hundreds of animals prior to advancing the optimized 

construct(s) into clinical trials. This leads to increased research and development time and cost 

which, ultimately, translates into higher product costs for consumers. Furthermore, researchers 



are seeing an increasing impetus to limit the use of animals in biomedical research5. This has 

been addressed somewhat for small molecule drug candidates by the development of predictive 

models for toxico-pharmacokinetic behavior based on the physicochemical attributes of the 

drug (approaches such as pkCSM6). This enables preliminary in silico assessment of 

pharmacokinetic properties, guiding refinement of the molecule prior to in vivo testing. To date, 

however, no such predictive models exist for macromolecules and nanomaterials. This is in 

part due to the wide diversity in available nanostructures that can be employed as drug delivery 

systems, with each displaying distinct in vivo behavior. Even within defined classes of 

nanomaterials, changes to the nanomaterial composition, drug loading, length and number of 

surface polyethylene glycol (PEG) groups, for instance, can have profound and, until recently, 

seemingly unpredictable effects on biopharmaceutical behavior by altering the solution 

behavior and cell/protein binding properties of the material7. This is especially problematic for 

polymer-based systems (linear and hyperbranched polymers) which are typically much smaller 

(≤20 nm or <500 kDa) than colloids and nanoparticles (typically >100 nm) and are therefore, 

more sensitive to small changes in composition and physicochemical properties. 

 

In an attempt to address the lack of effective predictive models for the in vivo behavior of 

nanomaterials, Riviere and colleagues8 published the first approach to predict the adsorption 

of biomolecules onto a nanoparticle surface in Nature in 2010. The approach involved 

comparing the surface adsorption of a set of small molecule probes and generating a ‘surface 

adsorption index’ to predict the binding of biomolecules (the ‘protein corona’) which is known 

to play a significant role in dictating the biodistribution behavior of nanoparticles9. Subsequent 

to this, a number of investigators have used physiologically based pharmacokinetic models 

(PBPK) to simulate the mass-time biodistribution profiles for a range of metal nanoparticles10-

15 as well as some polymeric nanoparticles16-18. In most cases, these models were developed 



based on limited experimental data sets to predict the biodistribution and elimination kinetics 

of nanoparticles with a fairly narrow set of physicochemical variants (such as size and charge). 

The intention behind these models was to aid researchers in their selection of optimal particle 

properties for further development or in risk assessment analysis. The PBPK approach 

however, is not appropriate for predicting the pharmacokinetic behavior of more complex 

nanostructures such as liposomes and polymers that may be comprised of a variety of different 

scaffold components (such as different lipids or monomers). These models are also not easily 

adaptable and available for use by researchers with limited or no knowledge of biometric 

analysis. 

 

Dendrimers are well defined hyperbranched polymeric systems that can range in size from 1-

20 nm in diameter19 (Figure 1), which can provide several pharmacokinetic advantages over 

much larger colloids and nanoparticles20-22. Drugs can be loaded either peripherally via 

internally triggered chemical linkers, or can be non-covalently loaded into the hydrophobic 

scaffold. Although the clinical advancement of nanomedicines has been a slow process, 

Starpharma’s topical microbicidal gel (Vivagel®) has recently gained regulatory approval in 

Australia and Europe for the treatment of bacterial vaginosis and a dendrimer-based 

formulation of docetaxel (DEP™-docetaxel) recently successfully completed phase I clinical 

trials for the treatment of advanced solid tumors. The establishment of an in silico model 

capable of accurately predicting dendrimer pharmacokinetics is therefore timely and of 

increasing relevance. 

 

Here, we describe dendPoint, the first in silico and widely available model to predict the 

intravenous pharmacokinetics of complex polymeric nanomaterials based on scaffold structure 

and physicochemical properties. We have manually curated a detailed relational database 



describing dendrimer biopharmaceutical behavior with various structural and chemical 

characteristics. This was used to develop a model to predict key pharmacokinetic parameters 

for dendrimers. dendPoint is available via a user-friendly freely available web-based system, 

accessible at http://biosig.unimelb.edu.au/dendpoint. This computational platform 

encompasses a relational database of pharmacokinetic properties of different dendrimer 

scaffolds together with a web-service capable of predicting and comparing dendrimer 

properties, including Half-life, Volume of Distribution, Clearance and Dose in Liver and Urine, 

allows users to rapidly and easily browse literature-derived properties as well as predict, 

compare and visualize dendrimer pharmacokinetic properties. 

 

RESULTS: 

Database curation 

In total, the pharmacokinetic parameters of 69 distinct dendrimers, from over 600 papers, were 

manually curated into the dendPoint database (Figure 2, Table S1). Many structural and 

physicochemical properties can dictate the pharmacokinetic behavior of dendrimers, including 

scaffold composition, dendrimer size, degree of surface PEGylation, PEG chain length, surface 

functionality (including charge and the presence of hydrophobic drugs) and structural 

flexibility3,23,24. The impact of each of these parameters on intravenous pharmacokinetics has 

been summarized previously3 and they were therefore included in the database as summarized 

in Table S1 (Supporting information).  

 

The susceptibility of the dendrimer scaffold to in vivo biodegradation may also impact upon 

the rate of dendrimer elimination from the body, but surface functionalization with non-

biologic groups (such as non-natural amino acids and PEG) slows scaffold breakdown3. To this 

end, with the exception of two unmodified amine-terminated polylysine dendrimers, none of 

http://biosig.unimelb.edu.au/dendpoint


the dendrimers in Table S1 were reported in their respective publications to have shown 

significant in vivo biodegradation that was expected to have driven the reported intravenous 

pharmacokinetics. Biodegradability of the scaffold was, therefore, not included as a parameter 

that defined the ultimate pharmacokinetics, although the composition of the scaffold was. 

 

Pharmacokinetic data was therefore obtained for dendrimers based on non-biodegradable 

triazine and polyamidoamine (PAMAM) scaffolds, as well as biodegradable polyester and 

polylysine scaffolds. While the effective ‘size’ of polymeric nanomaterials may be reported in 

terms of hydrodynamic radius or molecular weight, few of the papers reported in Table S1 

provided this information on radius and therefore, this parameter could not be included in the 

database. Regardless, it has previously been suggested that the terminal Half-life of dendrimers 

correlates more significantly with molecular weight than with radius3. In addition, three 

quarters of the dendrimers included in dendPoint presented some degree of surface PEGylation. 

This is likely a result of the fact that since the molecular weight of the dendrimer scaffold is 

limited by poor conjugation efficiency and greater polydispersity for generations higher than 

approximately 5-6, surface PEGylation is commonly required to increase size and prolong 

plasma exposure3. PEGylation is also often employed either alone or in combination with 

acetylation (Ac) to block surface reactive sites and prevent binding to cells and tissues. 

 

Pharmacokinetic parameters that were included in the database include terminal Half-life and 

clearance, since these ultimately describe the plasma exposure of the dendrimers after 

intravenous delivery. From these parameters, volume of distribution can be calculated from the 

equation Cl = Vd*(0.693/t1/2), where Cl denotes Clearance, Vd denotes terminal Volume of 

Distribution and t1/2 denotes Half-life. The percentage of the dose excreted via the urine and 

percentage dose recovered in liver were also included since these represent the major pathways 



by which dendrimers are cleared from plasma (i.e., via elimination in urine and biodistribution 

towards the liver). For liver uptake and urinary excretion, a threshold of <20% was used in 

classification tasks to define dendrimers with limited liver uptake or urinary excretion 

respectively. With the exception of several polyester dendrimers, significant quantities of 

dendrimer have not been detected in the feces, suggesting this is not a major route of dendrimer 

elimination from the body. Liver biodistribution typically results from recognition of the 

polymeric nanomaterial by macrophages of reticuloendothelial organs (which also include the 

spleen, lymph nodes and lungs) and is normally the organ that contains the highest proportion 

of an injected dendrimer dose after one week3. Distribution towards the liver may result from 

initial plasma protein binding (opsonisation) of the dendrimer, electrostatic recognition of 

anionic charges on the dendrimer surface by macrophages or non-specific accumulation of long 

circulating constructs over time23-25.  

 

Analysis of dendrimer properties 

The distribution of all four experimental pharmacokinetic properties for all molecules in the 

database are shown in Figure S1. This highlights the relatively broad distribution of Half-life, 

Clearance and percentage dose recovered in the urine across the range of dendrimer constructs 

that have been characterized. There was little accumulation of dendrimer dose (median of 7%) 

in the liver for the majority of constructs in the database (with 80% of dendrimer having 

a %Dose in Liver below 20%). 

 

Looking closer at the distribution of Half-life and Clearance divided by Scaffold and Flexibility 

revealed some general trends (Figure 3A-D). Notably, as structural flexibility increased, Half-

life decreased and Clearance increased. When assessing the effects of Surface Charge on the 

pharmacokinetic properties (Figure 3E-F) a similar behavior was also observed. While 



Clearance increased as Surface charge move further from neutral (increasing charges, either 

negative or positive), Half-life decreased. The polylysine-based scaffold presented the largest 

variability in pharmacokinetic properties, in part due to the large number of diverse constructs 

that have been systematically analyzed to date. Triazine-based dendrimers were associated with 

lower Clearance and longer Half-lives.  

 

PEGylation level and construct molecular weight correlated well with all pharmacokinetic 

properties. Half-life significantly and positively correlated with both construct molecular 

weight (r=0.70) and total PEG molecular weight (r=0.61) (Figure 4A-B). An even stronger 

correlation, although negative, between these properties and Clearance was also observed (r=-

0.70 for construct molecular weight and r=-0.65 for total PEG molecular weight) (Figure 4C-

D).  

 

Prediction of Dendrimer Pharmacokinetic Properties 

Our curated database was then used to train and test predictive pharmacokinetic models. The 

approach we used was based on our well validated CSM methodology26. This is based on the 

concept of structural signatures, which are an alternative way of extracting relevant patterns 

from molecular entities, originally modeled as graphs, which in turn are provided as evidence 

to supervised learning methods. These structural signatures are a powerful and scalable way to 

represent geometry and physicochemical properties, and have been applied to accurately 

predict small molecule pharmacokinetics6,27, to characterize small molecule-protein 

interactions28 and the effects of mutations on protein structure29-37. As shown in Figure 1, we 

represent each dendrimer as a graph where the nodes are the branch points and the edges are 

the connections. Distance patterns between nodes are then summarised as cumulative 

distribution functions, which are then used as evidence to train machine learning methods. 



Complementary information also integrated into the signatures included the physicochemical 

properties in the curated database. This information, together with the experimentally measured 

pharmacokinetic properties, was then used to train and test predictive models.  

 

The dendPoint platform for predicting dendrimer pharmacokinetic properties was able to 

accurately predict Half-life with a Pearson’s correlation coefficient of r = 0.82 and Q2 = 0.66 

on jackknife validation (Table 1, Figure 5A). This correlation increases to r = 0.91 when 

assessing the performance of the method after removing 10% of outliers. A similar 

performance, however with smaller dispersion, was observed for the Clearance predictor. A 

correlation of r = 0.83 and Q2 = 0.68 was obtained on cross validation, also increasing to r = 

0.89 after 10% outlier removal (Table 1, Figure 5B). To further evaluate the predictive models, 

we assessed their performance on a bootstrap validation using a 90%/10% split over 100 

repetitions. The performance of all models was consistent with that achieved over jackknife 

validation as shown in Table 1. 

 

For both Half-life and Clearance predictors, the outlier sets were composed, on average, of 

smaller constructs (Construct molecular weight of Half-life outliers = 33.8 kDa, and Clearance 

outliers = 17.2 kDa, compared to the average construct molecular weight across the dataset of 

47.9 kDa), with less surface PEGs (Half-life outliers = 8.5, Clearance outliers = 6.4 compared 

to 16.2 average surface PEGs across the dataset), accounting for a smaller total PEG molecular 

weight (Half-life outliers = 15.9 kDa, Clearance outliers = 11.5 kDa compared to the overall 

dataset that had an average total PEG molecular weight of 30.3 kDa). 

 

Building a predictor for %Dose in liver presented a great challenge given the very skewed 

distribution of experimental values, as seen in Figure S1C. Despite the skewed distribution of 



experimental data, dendPoint was able to achieve a correlation of r = 0.59, which increased 

significantly once the top 10% of outliers were removed, reaching a correlation of r = 0.73 on 

90% of the data (Table 1, Figure S2A). Predictive performance for %Dose Liver did deteriorate 

slightly for larger predicted values due to the skewed nature of the data distribution.  

 

The predictor for %Dose in urine, achieved a higher correlation in comparison with % Dose in 

Liver, with a correlation of r = 0.73, increasing to r = 0.87 after 10% outlier removal (Table 1, 

Figure S2B). This is largely due to the data of %Dose recovered in the urine within the 

dendPoint database that had a more even distribution of experimental values. Bootstrap 

validation of both %Dose in liver and %Dose in urine showed consistent performance to 

jackknife (Table 1), further improving confidence in both models predictive capabilities. 

 

Alternatively, we were also able to build predictors to assess whether a dendrimer construct 

would be cleared by the liver and/or excreted in urine. Constructs were defined as having 

limited liver uptake or urinary excretion using a 20% cutoff for dose in liver and urine, 

respectively (see details in Materials and Methods). Figure S3 of Supplementary Materials 

shows the ROC curves obtained for both predictors, which achieved AUCs of 0.87 and 0.86 

for urinary excretion and liver uptake, respectively. The predictors were successful in 

predicting the differences between constructs that had limited liver uptake/limited urinary 

excretion compared to those that were cleared by the liver or excreted in urine, achieving an 

accuracy of up to 80%. 

 

The attributes that contributed most to the performance of each predictor were evaluated by 

principal component analysis. Both construct molecular weight and total PEG molecular 

weight were consistently well ranked for all four predictors. This was expected given these 



attributes correlated well with the pharmacokinetic parameters by themselves. Principal 

Component Analysis (PCA) showed that these attributes contributed largely to the variability 

of the Half-life data set, together with Generation and Structure Flexibility (Figure S4A). These 

were consistent with the other data sets. Drug conjugation, both in terms of the type and number 

of surface drugs, played an important role in prediction performance, despite a clear correlation 

not being noticed during analysis of individual features. A histogram of the percentage of 

explained variance per feature (Figure S4B) shows that the majority of the features are 

necessary to explain variability (a linear drop on explained variance, instead of a usual 

logarithmic drop), suggesting that the selected group of variables are diverse and 

complementary. 

 

DISCUSSION 

In summary, here we describe dendPoint, the first relational database and predictive method 

that associates physicochemical properties of a complex hyperbranched polymeric structure 

(notably dendrimers) with experimentally measured intravenous pharmacokinetic data. This 

provides the first opportunity to begin to systematically analyze the relationship between 

dendrimer structures and their biological behaviors, in the attempt to guide construct design 

and development. It has been carefully curated from the literature and will be updated regularly. 

Although in practice, dendrimers may ultimately be delivered via non-intravenous routes (such 

as subcutaneously or via inhalation) which will require the need for additional base 

physicochemical properties for optimal pharmacokinetic behavior, the intravenous route is 

currently standard practice for the systemic delivery of nanomedicines. 

 

This database reveals some general rules of dendrimer design, where construct molecular 

weight, flexibility and PEGylation can all be used to tunably adjust the plasma exposure of a 



dendrimer. To begin with, whilst half-life is used as the most common parameter to describe 

the plasma exposure of a nanomaterial, clearance is a more appropriate parameter since it takes 

into account urea under the whole plasma concentration-time profile, rather than simply the 

elimination kinetics alone. With this in mind, plasma exposure can be increased (or rather, 

clearance decreased) via restricting urinary excretion, extravasation and uptake into cells and 

tissues by employing the following basic rules: 1) increased degree of surface conjugation or 

molecular weight of hydrophilic, biocompatible and poorly-biodegradable polymers such as 

PEG (polymerisation), 2) increase construct molecular weight (size), 3) reduce surface charge 

(charge), 4) reduce structural flexibility (flexibility). Based on the available data and our model, 

drug conjugation to the surface has a negligible effect on intravenous pharmacokinetics.  

 

In small molecule drug design, the development and application of generalized rules and these 

tools have been widely used to improve compound quality and success rates. In addition to 

providing the first curated database of dendrimers to facilitate the analysis of nanoparticles, we 

demonstrate that it can be used as the basis to train novel predictive pharmacokinetic models.  

 

We have implemented a user-friendly web server that will enable researchers to search, predict 

and visualize the pharmacokinetic properties for their molecules of interest 

(http://biosig.unimelb.edu.au/dendpoint). In addition, we have implemented a comparison 

feature that enables users to rapidly compare the pharmacokinetic profiles of two molecules, 

allowing systematic evaluation of pharmacokinetic profiles as various physicochemical 

properties of the dendrimer are modified. Considering the sensitive nature of many projects, 

the web server does not retain any information submitted to it. This will hopefully facilitate the 

development and optimization of dendrimers for specific biological roles, and provide a 

foundation for the evaluation of nanoparticles more broadly. 

http://biosig.unimelb.edu.au/dendpoint


 

METHODS: 

Collation of published pharmacokinetic data 

Published work describing the intravenous pharmacokinetics of dendrimers were identified by 

undertaking PubMed searches of the terms ‘dendrimer and pharmacokinetics’ or ‘dendrimer 

and biodistribution’. Only papers that described - or provided enough information to 

extrapolate – composition of the dendrimer scaffold and surface, molecular weight, terminal 

plasma half-life (t1/2) plus % dose excreted in urine and/or % dose recovered in liver at 

termination were included in the database. Papers describing the pharmacokinetics of loaded 

drug rather than the dendrimer scaffold were excluded, since following the loaded drug is a 

poor predictor of the biopharmaceutical behavior of the dendrimer itself. Supramolecular 

structures (such as micelles) that were comprised of dendritic polymers and hyperbranched 

polymers that were based on dendritic cores were also excluded. Dendrimers conjugated with 

distinct targeting moieties (such as tumor targeting ligands) were also not included since this 

is expected to change the pharmacokinetics of the base construct.  

 

Using this criteria, 20 papers collectively describing the pharmacokinetics of 69 distinct 

dendrimer structures were identified that provided sufficient information to compile the 

database. Plasma clearance (Cl) was included in the database where possible and was either 

taken directly from published papers or was extrapolated from available data by dividing dose 

by area under the plasma concentration versus time curve. Where pharmacokinetic parameters 

needed to be extrapolated from graphical data, the data recovery program GetData Graph 

Digitizer v2.26 (GetData Pty Ltd, NSW, Australia) was employed. Where area under the 

plasma concentration time curve needed to be calculated to determine Cl, this was calculated 



manually using the trapezoid rule and extrapolated to infinity by dividing the last plasma 

concentration detected by the elimination rate constant (k).  

 

Each of the papers used described dendrimer pharmacokinetics in rodent models (notably mice 

and rats), and as such, the body weight of the animal models used can vary by up to 20 fold. 

While this has no bearing on t½ or proportion of injected dose recovered in liver or urine, Cl 

is a function of distribution volume (Vd) and therefore body weight. Cl was therefore 

normalized to ml/h per kg body weight by dividing Cl (in ml/h) by the average reported body 

weight of animals used in the study. Where mean body weight or body weight ranges were not 

reported, mean body weights for the animals described and at the reported ages were 

extrapolated from growth curves published online by several breeders (Harlan, Charles River 

Laboratories, Taconic and the Animal Resources Centre).  

 

The complete set of data used to compile the pharmacokinetic database is tabulated in Table 

S1 (see supporting information). 

 

Method Training and Evaluation 

Different supervised learning algorithms for regression available on the Weka ToolKit (version 

3.8.2)38 were used to train models for the different pharmacokinetic properties collected and 

store on the database. The best performing models, based on the evaluation metrics below, were 

obtained using Random Forest39 (default settings, 100 trees) for both classification and 

regression tasks.  

 

Regression models were initially evaluated using jackknife validation procedure and the best 

performing models were selected based on the Pearson's Correlation Coefficient and Root 



Mean Square Error (RMSE; 𝑅𝑀𝑆𝐸 =  √∑
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2

𝑁
𝑁
𝑖=1 ). The Pearson's Correlation 

Coefficient quantifies the linear dependency between two variables (e.g., experimental vs. 

predicted pharmacokinetic properties) as the covariance of the variables divided by the product 

of their standard deviations:      BsdAsdBA,cov=r BA, / . Correlations vary from [-1, 1], 

where 1 and -1 denote a perfect positive and negative linear correlation, respectively, while a 

correlation value of 0 denote no linear correlation. Classification models were also evaluated 

using jackknife validation and best performing ones selected based on Area Under ROC curve 

(AUC) and accuracy. AUC varies from [0, 1] with a random binary classifier achieving an 

AUC=0.5 and a perfect classifier achieving an AUC=1. Regression and classification models 

were further evaluated using bootstrap validation on a 90%/10% split of the data, with 100 

repetitions. Outliers are considered the points furthest away from the line of best fit, and were 

removed only for analysis purposes. Accuracy is denoted by the proportion of correctly 

classified instances. PCA was performed using R programming language to assess each 

feature’s contribution to explain variability. 

 

Database and Web Interface 

dendPoint’s database and predictive models have been implemented as a user-friendly web-

server freely available at http://biosig.unimelb.edu.au/dendpoint. The dendrimer 

pharmacokinetics information collected from literature search was consolidated as a MySQL 

relational database (version 5.5.35). Front-end development was created using the Bootstrap 

framework (version 3.3.7). The server back-end runs on a Linux server and was implemented 

in Python using the Flask frame-work (version 0.12.3). Dendrimer depiction was developed 

with the JavaScript library D3.js (version 4.2.6) and Plasma Concentration plot was created 

with the HighCharts charting tool (version 5.0.0). 

 

http://biosig.unimelb.edu.au/dendpoint


Users have the option to browse the database via the web interface (Figure S5, supporting 

information), search/filter specific information as well as show/hide construct properties, 

surface group properties and phamacokinetics details. 

 

Job submission can be easily done by informing construct properties and surface group 

compositions via an intuitive submission form (Figure S6). Generation and Construct 

molecular weight are required fields. After prediction a results page is exhibited (Figure S7), 

showing the pharmacokinetics properties, dendrimer depiction and plasma concentration 

curve, giving the user the option to wither modify the job for resubmission or compare the 

predicted properties with another dendrimer construct (Figure S8). See supporting information 

for supplementary figures. 
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TABLES: 

 

Table 1. dendPoint evaluation on jackknife cross validation, and 100 times bootstrap validation 

on a 90%/10% split with 100 repetitions. 

 

 
Data set 

Jackknife Cross Validation Bootstrap 

Pearson’s RMSE Pearson’s RMSE 

Half-life 0.82 0.52 0.76 0.54 

Clearance 0.83 0.57 0.82 0.54 

%Dose Liver 0.59 15.7 0.57 13.6 

%Dose Urine 0.73 15.5 0.70 14.2 

 



FIGURE LEGENDS: 

 

Figure 1. Basic structure of a dendrimer showing sequential layering of monomeric units 

around a central core (G0). A dendrimer may be composed of any monomeric unit provided it 

has at least 2 functional groups available to build additional generations. Surface functional 

groups depicted as circles. 

 

Figure 2. dendPoint workflow. Dendrimer pharmacokinetics were collected from over 600 

papers via literature search. Construct properties, information on surface functional groups as 

well as pharmacokinetic behaviour of 69 different dendrimers were collected and included in 

a relational database. This was used as evidence to train and test predicted methods via 

supervised learning. A user-friendly web interface was created for both database and predictive 

method.  

 

Figure 3. Distribution of Half-life and Clearance properties based on Scaffold, Structure 

Flexibility and Surface Charge across the database. The left-hand side graphs depict (from top 

to bottom), as violin plots, the distribution of Half-life per Scaffold, Structure Flexibility and 

Surface Charge, while the right-hand side graphs show how Clearance varies based on these 

properties. 

 

Figure 4. Distribution of Half-life and Clearance properties based on Construct and Total PEG 

molecular weight. The left-hand side graphs depict, as scatter plots, the distribution of Half-

life (top) and Clearance (bottom) based on Construct molecular weight, while the right-hand 

side graphs show how these properties vary based on Total PEG molecular weight. Pearson’s 

linear correlations between these properties are also depicted. 



Figure 5: Predicting dendrimer pharmacokinetcs with dendPoint. The graphs depict the 

correlation between experimental and predicted properties on jackknife validation. A 

correlation of r = 0.82 was obtained when assessing Half-life, increasing to r = 0.91 when 10% 

outliers (shown in red) were removed. While predicting Clearance, dendPoint achieves a 

correlation of up to r = 0.89 on 90% of the data. 
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