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Abstract 
 

The research reported in this thesis arose from a comment made by a student who had 

achieved highly in examinations yet felt that science: ‘doesn’t make sense’. Different 

conceptualisations of learning are analysed leading to the development of the concept 

of making sense as the formation or modification of a conceptual compound in which 

concepts are related in a coherent causal system that may be transferred to novel 

situations. This definition is situated within a constructivist epistemology. The 

research question asks how students make sense of physics concepts in dynamics and 

electricity. Five 17-18 year-old students, conceptualised as a multiple case study, 

were selected from an English secondary school using purposeful sampling. The 

students were interviewed once a week for 22 weeks in sessions using a range of 

probes such as interviews about instances, concept maps and concept inventory 

questions. It is assumed that data collection occurred at a frequency that was high 

relative to the rate of conceptual change, hence, the work is conceptualised as 

microgenetic. The analysis focuses on the development of the students’: a) ontologies 

of concepts from concrete instances towards abstractions; b) conceptual structures 

from temporary organisations to more stable structures; c) understanding of causality 

from focused on macroscopic objects to abstract concepts; d) judgments of coherence; 

f) conceptual change modeled as an alteration in the ‘oftenness’ of application of a 

concept in a given context; and e) ability to apply concepts to novel contexts. The 

implications of these findings for teaching and future research are discussed. 

 

Word Count: 78,766 
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1.0 Introduction 

1.1 The origins of the research 
The study reported in this thesis was prompted by a comment made by a student 

whom I had taught physics. On results day, I had complemented her on getting the 

highest possible grade in an external examination. ‘It’s brilliant,’ she replied, ‘and 

physics doesn’t even make any sense to me. I just memorised it all’. Her comment 

prompted my interest in what it means to ‘make sense’ of physics and hence this 

thesis seeks to develop an understanding of how it is possible to have ‘memorised it 

all’ but yet fail to experience the information as meaningful. Therefore, I sought to 

examine models of learning in science education to identify common features of 

terms such as understanding and meaningful learning and the concept of ‘making 

sense’ is defined to encompass these shared aspects. The features of ‘making sense’ 

were tracked in reports of four 16-17 year old students’ thinking across twenty-two 

sessions over a period of approximately six months. A fifth student completed ten 

sessions before withdrawing from the research. The data illustrate the complex nature 

of ‘making sense’ of physics and the patterns of change that occurred in the students’ 

application of concepts across a number of contexts and over an extended period of 

time. A number of recommendations for teaching and research are proposed which, it 

is hoped, will prevent others from experiencing my student’s situation of knowing the 

facts but finding they don’t make sense. 

1.2 A taxonomy of types of learning 
As learning cannot be observed directly (Taber, 2013), researchers have proposed a 

range of different models of learning (Agarkar & Brock, 2017). Even within 

communities of researchers who share similar assumptions, for example those who 

construct learning as a psychological process, a variety of different constructs have 

been used to describe learning: for example, meaningful learning (Ausubel, 2000), 

deep learning (Chin & Brown, 2000), understanding (Nickerson, 2000; White & 

Gunstone, 1992), making sense (Donaldson, 1987) and conceptual change (diSessa, 

2002; Koponen & Huttunen, 2013). It has been argued that this proliferation of 

constructions benefits, rather then hinders researchers (Geelan, 1997), because a 

complex process such as learning may be best described by a range of descriptions 

that emphasise different facets of its nature (Taber, 2013). However, whilst the 
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generation of a diversity of models of learning, has illuminated a range of aspects of 

the phenomenon, it also presents a fragmented picture. It has been suggested that a 

feature of scientific explanations is that they tend to reduce the number of 

‘independent phenomena’ (Friedman, 1974, p. 123). Therefore, a tension exists for 

researchers who must balance a desire to generate a unified model of learning with a 

requirement to represent the multiplicity of a phenomenon (Pope & Denicolo, 1986). 

It is hoped that the proposition of the concept of ‘making sense’ can unify the 

commonalties that underpin a number of descriptions of learning in science education 

without reducing the need for alternative models. 

1.2.1 Commonly used descriptions of learning in science education 

In this section, a number of terms that are commonly used to describe learning in 

science education will be compared. The commonalties between these terms are 

illustrated in Figure 1.1, below. My analysis of the terms began with the concept of 

making sense, because this is the term the student, cited above, used. However, as 

shown in Figure 1.0 below, a number of related concepts are used in the science 

education literature with related or overlapping meanings. The conceptualisations of 

learning were identified using ‘snowball’ or ‘chain’ sampling (Suri, 2011, p. 69), a 

form of purposeful sampling, in which references in one paper lead to the discovery 

of further concepts. Sampling continued until a subjective sense of theoretical 

saturation was reached, that is no further models of learning were found that could 

‘develop properties of the category’ (Glaser & Strauss, 1967, p. 61). 
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(Msimanga & Lelliott, 2012) 
(Linn & Songer, 1993) 
(Chin & Brown, 2000; Lemke, 2001; Mayer, 2002a; G. J. Posner et 
al., 1982) 
 

 
Figure 1.0: A representation of the process of purposeful sampling of models of 

learning related to making sense. Linked terms are highlighted in quotations. 

1.2.1.1 Making sense and meaning making 

Making sense is a term that has been used to describe learning in science education 

(e.g. Berland & Reiser, 2009; Driver, Rushworth, Squires, & Wood-Robinson, 1994; 

Wilensky & Resnick, 1999). Though the term is not explicitly defined in the science 

education literature, it tends to be used to describe the development of an 

understanding of the relationships between pieces of knowledge, as Murray Gell-

Mann (1995, p. 89) described: ’Many facts then become more than just items to be 

memorized- their relationships permit us to use a compressed description, a kind of 

theory, a schema, to apprehend and remember them. They begin to make some sense’.   

Making sense has been linked with reducing novel problems to well understood 

contexts (Donaldson, 1987) and satisfying competing demands to reach a state of 

coherence (Kunda, 1999). The related term, meaning making tends to have a more 

social and linguistic focus (Rahm, 2004; Scott, 1998) than making sense, which is 

typically related to personal psychological processes. For example, meaning making 

is described as: ‘an ongoing process of comparing and checking… understandings 

Making Sense Meaning Making

Understanding

Msimanga & Lelliott, 2012
Making sense of science: 

Argumentation 
for meaning-making...

There are ways in which students employ the 
same rational processes attributed to scientists 

yet fail to achieve the understanding of 
scientists. Some students' efforts to make sense 
of the natural world resemble those of scientists 

(Linn & Songer, 1993, p. 51 )

Deep Learning

In essence, the deep approach is associated 
with intrinsic motivation and interest in the 

content of the task, a focus on 
understanding the meaning of the learning 

material (Chin & Brown, 2000, p.110)

Meaningful Learning

A focus on meaningful learning is 
consistent with the view of learning as 

knowledge construction in which 
students seek to make sense of their 
experiences. (Mayer, 2002, p. 227) 

Conceptual Change

Generally, a new conception is unlikely to 
displace an old one, unless one encounters 
difficulties...(in other words), one simply 

cannot make sense of something.
(Posner, Strike, Heson, & Gertzog, 

1982, p. 220)

Our lives within these institutions and their 
associated communities give us tools for making 

sense of and to those around us: languages, 
pictorial conventions, belief systems, value 

systems, and specialized discourses and 
practices. (Lemke, 2001, p. 296)

Socio-linguistic models
of learning
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with the ideas that are being rehearsed on the social plane’ (Mortimer & Scott, 2003, 

p. 10).  

1.2.1.2 Understanding 

Understanding is a challenging concept to define (de Regt, Leonelli, & Eigner, 2009) 

and of all the terms discussed in this thesis, perhaps has the widest range of meanings. 

Even the ontology of understanding is controversial. It has been described as ‘an 

internal seeing,’ (Kvanvig, 2007, p. 198), a ‘state’ (Zagzebski, 2001, p. 246), a 

‘feeling’ (Colliver, 1999, p. 189), a ‘process’ (Baron, 1987, p. 293; Cobern, 1994, p. 

586; Rumelhart, 1991, p. 273), an ‘ability’ (Wittgenstein, 1953, sec. §150-§154) and 

as a behaviour (Perkins & Blythe, 1994; Perkins, 1998). Indeed, some authors 

(Entwistle & Nisbet, 2013, p. 9) argue understanding exists in multiple ontological 

categories: ‘… as mental representations within cognitive structure, as the learning 

processes involved in reaching it, or as the emergent property of mental operations 

within a neural net’. 

 

Despite these significant disagreements, a number of commonalties are discernible in 

descriptions of understanding. Understanding is not an all-or-nothing concept, 

students may understand to varying degrees (Davidson, 2010; Newton, 2001; White 

& Gunstone, 1992). Understanding is often described as an appreciation of the 

connections between conceptual elements (Elgin, 2012; E. L. Smith, 1991). For 

Kvanvig (2003, p. 198), this is an ‘…internal seeing or appreciating of explanatory 

relationships in a body of information‘, whilst for Kosso (2006, p. 173), 

understanding involves ‘…apprehending the connections between theories and the 

global coherence among concepts’. Understanding is reported as conferring the ability 

to transfer learning to a range of contexts (de Regt, 2004; Perkins & Blythe, 1994). 

For example, diSessa (1993, p. 190) states: ‘Understanding should evolve toward 

compactness, involving few principles that are as general as possible. In a sense, 

compactness is the essence of explanation, identifying general mechanisms beneath 

differences’. de Regt (2004, p. 101, Italics in original) argues that understanding leads 

to an ability to transfer learning:  ‘Understanding is not only knowing the formula, but 

in addition being able to use the formula in the case at hand’. Similarly, for 

Nickerson, understanding involves forming knowledge into a ‘cohesive whole’ so 

understanding involves ‘not only having knowledge but also doing something with it’ 
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(Nickerson, 1985, p. 234). Understanding has been linked with a range of other 

constructs including: knowledge of causes (Lipton, 2004; Salmon, 1984), the 

development of coherence (Kosso, 2006; Riggs, 2003), reducing the number of 

instances of a case (Chaitin, 2006; Friedman, 1974) and detecting abstract principles 

(Morrison, 2009).  

1.2.1.3 Meaningful learning 

Meaningful learning is a comparatively clearly defined term that David Ausubel 

(2000) described as a collection of processes which led to the integration of novel 

material into existing cognitive structure. Meaningful learning is contrasted with rote 

learning, which is defined as the possession of knowledge that cannot be transferred 

to novel contexts and is seen as distinct from understanding (Mayer, 2002a). Rote and 

meaningful learning are conceptualised as two poles of a continuum of types of 

learning rather than exclusive positions (Ausubel, 2000). The meaningful learning 

model has been critiqued in a number of ways: it has been suggested that the theory is 

not falsifiable (Lawton & Wanska, 1979); some reviewers have found weak or non-

supportive evidence for the usefulness of advance organisers in learning, a key 

prediction of the theory (Barnes & Clawson, 1975; Clark & Bean, 2010), though these 

results are disputed (Luiten, Ames, & Ackerson, 1980; Mayer, 1979); and Ausubel’s 

theory has been critiqued for vagueness and ambiguous terminology (Huh, Lee, & 

Reigeluth, 2013).  

1.2.1.4 Conceptual change 

Learning in science education has often been associated with the process of 

conceptual change (Chi, Slotta, & De Leeuw, 1994; Gorodetsky & Keiny, 2002; 

Hewson, 1981). Though conceptual change has been studied for over thirty years it 

remains a contested concept (Amin, Smith, & Wiser, 2014; Duit, Treagust, & 

Widodo, 2008). It has been suggested that conceptual changes is an ‘umbrella’ term 

covering a range of different but unrelated processes (Rusanen, 2014, p. 1414; 

Rusanen & Lappi, 2013, p. 3332) and there remains no agreement over what 

processes may occur during conceptual change (Rusanen & Pöyhönen, 2013, p. 

1400). Different models of conceptual change emphasise different aspects of the 

process. For example, Chi and Roscoe’s (2002) model focuses on ontological 

reassignment, Roschelle (1992) emphasises the construction of an abstracted model of 
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a situation, and Koponen and Huttunen (2013) propose that causal knowledge and the 

development of coherence play a role. Other researchers have emphasised affective 

and social aspects of the process of conceptual change (Pintrich, Marx, & Boyle, 

1993). A particularly developed model is that proposed by diSessa and colleagues 

(diSessa, 2002; diSessa & Sherin, 1998; diSessa & Wagner, 2005) which describes 

conceptual change as the manipulation of multiple knowledge elements into structures 

known as coordination classes, complex systems which coordinate action across 

contexts leading to consistent behaviours (diSessa, 2002). 

2.2.1.5 Socio-linguistic models of learning 

A significant group of models of learning place an emphasis on social and linguistic 

aspects of learning. These constructions can be seen as arising from Vygotsky’s 

(1962, 1978) claims that thinking and speaking are inherently connected and that 

functions appear first in a child’s social behaviour before becoming internalised as a 

psychological processes. A subset of social models of learning build on the semiotic 

tradition founded, at least partly, on Peirce’s (1902, pp. 20–21) model of the 

relationship between sign, object and interpretant. Typical of the claims made by this 

group of theories is Lemke’s (1990) assertion that learning about science involves 

both participation in a community and the communication of meaning through 

language.  

1.2.2 Mapping the territory 

In Figure 1.1, below, a selection of terms used in science education research to 

describe learning have been organised to emphasise common features and areas of 

difference. 

 

 



Understanding

'However, our over-all understanding of the world  is increased; our total picture of nature is 
simplified via a reduction in the number of independent phenomena that we have 

to accept as ultimate’ (Friedman, 1974, p. 123)

Reducing

Knowing about 
causes

‘The moral to be drawn is that underlying causal mechanisms hold the key to our
understanding of the world’ (Salmon, 1984, p. 260)

'Understanding is not some sort of super-knowledge, but simply more knowledge: 
knowledge of causes' (Lipton, 2004, p. 30)

‘A useful theory is a compression of the data; comprehension is compression. 
You compress things into computer programs, into concise algorithmic descriptions. 
The simpler the theory, the better you understand something‘ (Chaitin, 2006, p. 77)

Generating 
coherence

'Furthermore, “coherence” or “understanding” are the kinds of properties or states that are 
plausible candidates for adding value to one’s epistemic situation.’ (Riggs, 2003, p. 101)

‘ The achievement of understanding is in apprehending the connections between
 theories and the global coherence among concepts.’ (Kosso, 2006, p. 179)

‘The construction of a “deep-featured” situation at an 
intermediate level of abstraction from the literal features 

of the world.’ (Roschelle, 1992, p. 237)

 Conceptual change
‘What I mean here by “understanding” is simply having a theoretical account of how 

the system is constituted that enables us to solve problems, make predictions, and explain 
why the phenomena in question behave in the way that they do’ (Morrison, 2009, p. 123)

Abstracting

Generating
Links ‘In essence, the deep approach is associated with intrinsic motivation and interest in the 

content of the task, a focus on understanding the meaning of the learning material, 
an attempt to relate parts to each other, new ideas to previous knowledge,

and concepts to everyday experiences. There is an internal emphasis where the learner
personalizes the task, making it meaningful to his or her own experience and

 to the real world.’ (Chin & Brown, 2000, p. 110)

Deep learning
‘…a person understands an expression if on hearing it he directs his thoughts to an object 

other than the word in question’ (Ajdukiewicz, 1974, p. 7)

‘Understanding does not advert to the etiological aspects which can be crucial for knowledge. 
What is distinctive about understanding, once we have satisfied the truth requirement, is 

internal to cognition. It is the internal seeing or appreciating of explanatory
 relationships in a body of information which is crucial to understanding.‘

 (Kvanvig, 2007, pp. 198–199)

‘Understanding involves a body of mutually supportive cognitive commitments. The elements of 
an understandingmust hang together. Moreover, the understander should grasp or appreciate how 

they hang together’ (Elgin, 2012, p. 133)

'The first criterion deals with the structure of a person’s knowledge. An idea is understood to the 
extent that the learner has appropriately represented it and connected it with other ideas, particularly 

with the learner’s own prior knowledge and beliefs. Learning with understanding can thus be
 contrasted to learning of isolated bits of information. Many students and even some teachers view 

the learning of science as primarily the learning of many definitions and facts
 that are to be memorized and reproduced or  recognized for testing purposes. Such learning fails 

to meet the connectedness criterion for understanding.' (Smith, 1991, p. 46)

'Meaningful reception learning is inherently an active process because it requires, 
at the very least  (1) the kind of cognitive analysis necessary for ascertaining 

which aspects of existing cognitive structure are most relevant to the new potentially 
meaningful material; (2) some degree of reconciliation with existing ideas in 

cognitive structure- that is, apprehending similarities and differences, and resolving 
real or apparent contradictions; and (3) reformulation of learning material in 

terms of the idiosyncratic intellectual background and vocabulary of the particular 
learner.' (Ausubel, 2000, p. 5)

Meaningful learning

‘Understanding involves more than mere knowledge of the relevant formula (or in the scientific 
case: theories, laws, and background conditions)… Understanding is not only knowing the 

formula, but in addition being able to use the formula in the case at hand.’ (de Regt, 2004, p. 101)

Transfering
Ideas

Developing 
mental models

‘Understanding is usually the consequence of a learning process, generally construed. 
But there are many modes of learning. We can learn by feedback, with explicit instruction or not. 

We can learn by analogy, representing to oneself or “internalizing” 
a model of a process, and then generating various scenarios about the performance of the system under 

a range of circumstances.’ (Trout, 2002, p. 222)

'The results show that in the concept development process, 
both causal knowledge and coherence of the knowledge system 

play crucial roles.' (Koponen & Huttunen, 2013, p. 2227)

Linking to background knowledge/
Making personally meaningful

Making sense

‘And what ‘making sense’ often amounts to- as the work of Bransford and his colleagues  shows- is an activity 
that may be called ‘imaginative embedding’ by means of which we contrive to slot the problem in to some 

setting with which weare familiar, in which we feel we know the rules’ (Donaldson, 1987, p. 70)

‘…making sense of people involves an elaborate balancing act in which one attempts to satisfy many, 
often conflicting demands so as to arrive at coherent impressions of individuals,

 behaviours, or social situations’ (Kunda, 1999, p. 51)

'Sensemaking is about such things as placement of items into frameworks, comprehending, redressing 
surprise, constructing meaning, interacting in pursuit of mutual understanding and patterning.' (Weick, 1995, p. 6)

'All around us are facts that are related to one another. Of course, they can be regarded as separate entities and 
learned that way. But what a difference it makes when we see them as part of a pattern! Many facts then become more than

 just items to be memorized-  their relationships permit us to use a compressed description, a kind of theory, a schema,
 to apprehend and remember them. They begin to make some sense. The world becomes a more comprehensible

 place.' (Gell-man, 1991, p. 89)

Developing a 
coordination class

• 'Determining a certain 
class of information

across contexts'

• 'Complexly articulated 
subsystems' 

(diSessa, 2002, p. 52)

• 'If [sic] coordination class
adequately describes any
scientific concept, then,...

they have achieved....
consistencey and coherence'

(diSessa, 2002, p. 55)

• 'Readout strategies and causal 
net'

(diSessa, 2002, p. 52)

‘That is to understand a concept you must have in your memory some information about it’ (White 
& Gunstone, 1992, p. 3)

‘Philosophers differ also in the way they relate the notions of understanding and meaning: some 
explain understanding by meaning, others explain meaning by understanding. All agree that 

understanding is a mental experience; understanding is always ‘in the head’. While the meaning is 
public, at least for some authors, understanding remains private.’(Sierpinska, 1994, pp. 22–23)

'This draws on the Vygotskyan notion that the construction of knowledge and understanding 
is a social process. Understanding appears first in the social space, and then becomes 

internalised by individuals...' (Adey, Robertson, & Venville, 2002, p. 4)

'In the situation outlined above, an understanding of a particular scientific term is 
constituted through their co-membership in the same community of practice—

the science class.' (Xu & Clarke, 2011, p. 500)

‘The quality of students’ understanding rests on their ability to master and use bodies
 of knowledge that are valued by their culture. More specifically, it rests on their ability

 to make productive use of the concepts, theories, narratives, and procedures 
available in such disparate domains as biology, history, and the arts…Put differently, 

students should use knowledge to engage in a repertoire of performances 
valued by the societies they live in.’(Mansilla & Gardner, 1998, p. 162)

Engaging socially 
and culturally

'Learning viewed as situated activity has as its central defining
characteristic a process that we call legitimate peripheral 

participation. By this we mean to draw attention to the point that
learners inevitably participate in communities of practitioners

and that the mastery of knowledge and skill requires newcomers
 to move toward full participation in the sociocultural practices 

of a community.' (Lave & Wenger, 1991, p. 29)

Legitimate peripheral participation

'Knowing and learning were taken as 
aspects of culturally and historically 

situated activity, discernible as changing 
participation in changing social practices.' 

(Roth & Lee, 2002, p. 50)

Collective Praxis

'What is involved, for each participant, is an ongoing process of 
comparing and checking their own understandings with the ideas 
that are being rehearsed on the social plane.' (Mortimer & Scott, 

2003, p. 10)

Meaning Making

'This implies that all attempts by learners to understand or explain concepts in science entail 
representational work in that they have to use their current cogntive and representational resources to 

make sense of science concepts that are new to them. Coming to know what 'force', 'electricity', or 
'states of matter' mean, both as concepts and words in science, must entail understanding and using
the appropiate representational resources to make cognitive links between appropiate phenomena 

and theoretical scientific accounts of phenomena' (Waldrip & Prain, 2013, p. 17)

Using symbols

Socio-linguistic
Learning

'Teaching, learning, and doing science are all 
social processes: taught, learned, and done as 
members of social communities, small (like

 classrooms) and large. We make those 
communities by communication, and we 

communicate complex meanings primarily 
through language.' (Lemke, 1990, p. xi)

'‘Making sense’ is a social process; it is an activity that
is always situated within a cultural and historical context '(Bruner & Haste, 1987, p. 1)

'Learning with representations does not preclude learning from representations, and this broader perspective 
reflects a constructive–interactive view of learning where knowledge construction is an active process that 

involves interactions among prior knowledge, concurrent experiences, and external information 
resources.' (Tippett, 2016, p. 738)

Learning with representations

‘Our ‘performance perspective,’ in brief, says that understanding is a matter of being able to do a 
variety of thought-demanding things with a topic-like explaining, finding evidence and examples, 
generalizing, applying, analogizing, and representing the topic in a new way.’ (Perkins & Blythe, 

1994, pp. 5–6)

An idea is understood to the extent that the learner can use that idea in successfully performing 
significant tasks appropriate to the social context in which they occur.’ (E. L. Smith, 1991, p. 46) 
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'Besides the influence of individual beliefs then, the conceptual change
 process may be influenced by being situated within different classroom

 contexts and shaped dramatically by the nature of the interactions
 between students and the teacher.' (Pintrich, Marx, & Boyle, 1993, p. 172)

Figure 1.1: Areas of overlap and difference between models of learning. Bold titles and solid lines are used to label and boundary descriptions of 
learning. Shaded areas with dashed boundaries and italic titles are used to indicate shared features of models.

7

‘Philosophers differ also in the way they relate the notions of understanding and 
meaning: some explain understanding by meaning, others explain meaning by 

understanding.’ (Sierpinska, 1994, pp. 22–23)
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1.2.3 An underlying concept of learning: The elephant in the room 

Researchers into learning might be likened to the blind men in the fable who examine 

an elephant: the one who grasps the trunk claims the object is a snake; another, 

feeling the leg, argues it is a tree; for a third, the tail implies the object is rope-like 

(Long, 2013).  Researchers adopting different assumptions have developed a variety 

of models of learning (see Figure 1.1). Though this might seem problematic, 

Wittgenstein (1953, §66) pointed out that even apparently simple concepts, such as a 

‘game,’ resist the development of a single definition as concepts consist of ‘…a 

complicated network of similarities overlapping and criss-crossing’. In this thesis, due 

to limited space, the focus will be on learning as constructed in the mind of the 

individual learner, rather than on social models. The Wittgensteinian network of 

similarities of the terms related to personal learning in Figure 1.1 can be seen to 

include the following features: 

 

 • Linking to background knowledge/ making personal meaning; 

 • Generating links between concepts; 

 • The ability to transfer ideas; 

 • Developing mental models; 

 • Abstracting and reducing; 

 • Generating coherence; 

 • Knowing about causes. 

  

Together, these facets might go some way to describing an underlying ‘concept with 

blurred edges’ (Wittgenstein, 1953, §71). This is not to assume that any single 

cognitive process, collection of neurones or set of behaviours fully accounts for the 

collection of features discussed above. However, the overlap between models of 

learning suggests it may be useful to develop a single placeholder term to enable 

discussion of the inaccessible underlying processes: making sense. 

 

As learning inherently involves change (Lachman, 1997; Marton, 1983; Mowrer & 

Klein, 2001), a process ontology appears to be appropriate for a model of learning. 

The terms understanding and meaningful learning are therefore avoided as they have 

an ambiguous state-process ontology. Though deep learning is situated as a process 
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(Marton & Säljö, 1976), it includes non-cognitive processes; for example, Biggs’ 

(1987) use of the term includes behavioural aspects. The term sense making is 

commonly used in science education (Booth & Ingerman, 2002; Driver et al., 1994; 

Tobin, 2007; Wei, Beardsley, & Labov, 2012), and, as illustrated in Figure 1.1, has a 

broad range of associations. In this thesis, making sense will be taken to refer to a 

constructed psychological process undertaken by a learner (Danielak, Gupta, & Elby, 

2010; Donaldson, 1987; Gell-Mann, 1995; Kunda, 1999). The related term 

sensemaking is commonly used in the context of decision-making in organisations 

(Weick, 1993, 1995); but, as making sense is more commonly used in science 

education, the later construction will be used in this work. The concept of making 

sense will be defined explicitly in section 1.3.5, below. 

1.3 Constraining a model of making sense 
Given the plurality of models of learning discussed above, three constraining features 

on the concept of making sense will be discussed: a) making sense involves more than 

the acquisition of knowledge or following procedures (see sections 1.3.1 and 1.32); b) 

making sense is a potential for behaviour (section 1.3.3); and c) making sense does 

not reduce to any single process or behaviour (section 1.3.4). The discussion of these 

themes will draw on arguments related to the concept of understanding. However, as 

making sense is seen as acting as an umbrella term for various models of learning, 

including understanding, arguments related to subsumed terms will be taken to apply 

to making sense.   

1.3.1 Acquiring more knowledge is not sufficient for making sense 

One approach to simplifying the problem of understanding science is to argue that 

what differentiates understanding from rote learning is simply additional knowledge. 

Lipton (2004, p. 30) has argued, ‘[u]nderstanding is not some sort of super-

knowledge, but simply more knowledge’. He (Lipton, 2004) narrows his claim for the 

association of understanding with knowledge, by arguing that the extra knowledge 

required is knowledge of causes, echoing Salmon’s (1984, p. 260) assertion that 

‘…underlying causal mechanisms hold the key to our understanding of the world’. 

Critics of the causal-knowledge-as-understanding model have pointed out that not all 

explanations in science are based on causal relationships (de Regt & Dieks, 2005), for 

example, laws of coexistence (Van Fraasseen, 1980), such as Boyle’s law, do not 
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invoke causes and effects. Moreover, Pritchard (2014) agrees that understanding is 

possible without knowledge of causes, and he points out that, even if causal 

knowledge were acquired, understanding does not necessarily follow (for example, 

causal relationships may be rote learned). A more general type of knowledge that has 

been linked with understanding is knowledge of explanations (de Regt, 2009; 

Hempel, 1965). However, it has been argued that students may rote learn explanations 

(Khalifa, 2012), and thought experiments or physical models, may provide 

understanding without explicit explanation (Lipton, 2009). Therefore, knowledge of 

an explanations is not a sufficient condition for understanding. 

 

Even if understanding were a form of knowledge, it is reported that most 

epistemologists would argue it is not a form of propositional knowledge (Hazlett, 

2014). For example, Elgin (2007, 2009) argues that understanding is not factive, but 

rather a ‘cognitive success term’ which arises from a grasp of how a body of 

information ‘hangs together’ (Elgin, 2012, p. 133). Kvanvig (2003, p. 196) points out 

that understanding can be present to differing degrees, whereas knowledge cannot, 

and so concludes that ‘…understanding is not a species of knowledge’. Similarly, for 

Grimm (2006, p. 532), understanding requires an additional kind of ‘achievement’ to 

knowing, which he links to an awareness of counterfactual situations. Wheeldon and 

colleagues argue that is it is possible to have knowledge of a scientific principle, and 

achieve highly in formal assessments yet lack ‘holistic understanding’ (Wheeldon, 

Atkinson, Dawes, & Levinson, 2012, p. 115). If students are not lacking propositional 

knowledge, the gap between knowing and understanding may be explained by the 

lack of certain kinds of tacit knowledge (Brock, 2015).  

 

Though it has been claimed (Pritchard, Millar, & Haddock, 2010, p. 82) that 

understanding may not be ‘opaque,’ that is, the understander must have explicit 

justifications for understanding, Polanyi (1974, p. 94) noted that, in some cases, for 

example an anatomist carrying out a dissection, people possess understanding 

‘…which we cannot put into words’. Lipton (2009) suggested a number of other cases 

in which understanding might be inexpressible: a thought experiment might provide 

understanding without explicit explanation; understanding of the rules that bind a 

category together may be implicit; and a visual model may provide understanding that 
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is not expressible in words. For example, it is argued that observing an orrery may 

lead to an understanding of retrograde motion that is impossible to describe in words 

(Lipton, 2009). Indeed, it has been suggested that conscious thinking is ‘only 

comprehensible against the background provided by… inarticulate understanding’ 

(Taylor, 1993, p. 50). To some extent teachers are limited as they cannot completely 

voice their personal understanding, but must illustrate it by providing examples from 

which a student develops their own interpretation (Wittgenstein, 1953, p. §210) .  

 

An alternative argument against a link between making sense and the possession of 

certain kinds of knowledge is the observation that novice and expert scientists may 

possess similar sets of conceptual resources but combine and apply them in different 

ways (diSessa, 1993; Sabella & Redish, 2007). In that case, the learning deficit 

doesn’t arise from a lack of conceptual resources but from the manner in which 

conceptual resources are structured and applied, a fragmentation learning impediment 

(Taber, 2001b). Rather than simple acquisition, learning can be seen as the ‘tuning’ of 

conceptual elements towards expert understanding (diSessa, 1993). 

1.3.2 There is more to making sense than following procedures 

An alternative to ‘knowledge-that’ is ‘knowledge-how’ (Fantl, 2008, p. 451). Ryle 

(1945, p. 46) argued that a scientist ‘…is primarily a knower-how and only 

secondarily a knower-that,’ because they must know how to make new discoveries. 

Knowledge-that has been labelled propositional knowledge and has been described as 

factual and declarative, whereas knowledge of how to carry out a task is categorised 

as procedural knowledge (Greene, Sandoval, & Bråten, 2016). The Chinese Room 

thought experiment, posed by John Searle to make a case about the nature of artificial 

intelligence, suggests procedural knowledge alone may not confer understanding. 

Searle (1980) imagined a room containing a person who has no knowledge of the 

Chinese language. The person is given a set of written rules that link one set of 

Chinese characters to another. A set of characters, forming a question in Chinese, is 

passed into the room and the person uses the rules to create a sequence of characters, 

which they pass out of the room. Given a suitable set of rules, it is possible that, to an 

observer outside the room, it appears that the person inside has an understanding of 

Chinese. However, the person inside the room may experience the symbols as 

‘meaningless squiggles’ (Searle, 1980, p. 418), and could be considered as lacking an 
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understanding of Chinese. The same process may occur in the science classroom, 

students may carry out the steps they have been taught, solving accelerated motion 

problems or balancing chemical equations, but experience their actions as a 

meaningless performance they enact without understanding (White & Gunstone, 

1992). In a sociolinguistic model of learning, this phenomenon has been described as 

‘discourse imitation’ (Airey & Linder, 2008, p. 38), the process in which students are 

capable of using the language of a discipline without experiencing the associated 

ways of knowing. A research programme in cognitive science sought to develop 

computer programmes that replicated the strategies used by experts (Simon, 1989). 

However, the observation that researchers have, as yet, failed to develop a sufficient 

set of procedures that will lead to expert-like understanding suggests the position is 

more complicated than was initially imagined. It has since been reported that ‘[t]he 

general consensus seems to be that no set of rules can ever capture every possible 

situation and that interaction of rules may lead to unforeseen circumstances’ 

(Yampolskiy, 2013, p. 407). 

1.3.3 Making sense is a potential for behaviour 

A significant feature of forms of learning such as making sense and understanding, 

which distinguishes them from rote-learning, is they act as a potential for behaviour 

(Watson, 2006). Increasing understanding confers a greater ability to perform in an 

appropriate manner when encountering novel situations that tends to be limited with 

rote-learned knowledge (de Regt, 2004; Perkins & Blythe, 1994; Trout, 2002). A 

characteristic of understanding is going beyond the knowledge and procedures that 

have been taught (Bruner, 1973). As Marton, Wen and Wong (2005, p. 308) describe: 

‘While memorization takes place through repetition, understanding takes place 

through variation’. Therefore, making sense requires not only the acquisition of facts 

but an ‘adaptive expertise’ (Redish, 2010, p. 1) that allows students to go beyond the 

information given.  

1.3.4 Making sense is emergent 

Understanding might be considered to be an ‘emergent’ phenomenon (Martin, 

Towers, & Pirie, 2006, p. 150), that is one which possesses properties that are not 

conferred by any of its components processes (Bunge, 1977), is not reducible to its 

elements and therefore is a property of system as a whole (Georgiou, 2007). This 



 13 

classification seems to fit well with the notion that understanding is a relationship 

between elements and irreducible to any particular skill or element of knowledge. 

Non-decomposability is seen as an intrinsic property of complex systems like the 

brain (Schierwagen, 2012) and it may be that it will never be possible to describe the 

processes that underlie the phenomenon of making sense, either at the neuronal level 

or through the systems representations of cognitive science. The definition of making 

sense as an emergent potential acknowledges that the abilities and knowledge 

elements outlined in Figure 1.1, such as knowledge of causes, or the ability to make 

connections, are practically useful indicators for educators but that replicating those 

behaviours will not necessarily lead a student to make sense. 

1.3.5 Defining making sense 

The key facets of learning arising from Figure 1.1 can be combined to develop a 

general term, making sense, which combines the common features of each (see Figure 

1.2, below). The model is constructed with the epistemological assumptions of 

constructivism (see Section 3), in particular the axiom that learning can be modelled 

as changes to conceptual structure (Taber, 2009). 

 

 
Figure 1.2: A representation of the manner in which the definition of making sense 

arises from an analysis of models of learning. 

 

Making sense will be defined as the formation or modification of a conceptual 

compound in which concepts are related in a coherent causal system that may be 

transferred to novel contexts. A discussion of the meaning of the terms used in this 

definition follows in the literature review, however, as the term is not widely used, it 

should be noted that a conceptual compound is a representation of a system of two or 

more concepts that are activated and related together in a particular context. 

Understanding Meaningful Learning

Conceptual change

Deep Learning

Making sense

Linking to background knowledge
Generating links between concepts
The ability to transfer idea Developing a

coordination class

Developing mental models

Generating coherence
Knowing about causes

Abstracting and reducing

Making sense is the formation or

 modification of a conceptual compound in 

which concepts are related in a coherent 

causal system that may be transferred to 

novel contexts

Interpreted in a constructivist empistemology in which
learning is modelled as alteration to conceptual structure
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1.4 The epiconceptual analogy 
The prevailing model of learning in science education, constructivism (Taber, 2009), 

conceptualises the process of developing understanding as the construction of richly 

integrated, well differentiated and coherent networks of concepts (Chi, Glaser, & Farr, 

1988; Reif, 2008; Tsai & Huang, 2001). Whilst historically there was a focus on 

cataloguing alternative conceptions, the constructivist description of the learning 

process would suggest focus should progress from examining individual concepts to a 

study of the dynamics of developing conceptual structure (Amin et al., 2014; Smith, 

diSessa, & Roschelle, 1993; Taber, 2009). The definition of making sense given 

above argues for this kind of an approach. Several researchers (Brown & Hammer, 

2013; diSessa & Sherin, 1998; diSessa & Wagner, 2005; Koponen & Kokkonen, 

2014; Roth, 2014) have modelled learning as the interaction of multiple contextually-

triggered conceptual resources, but have typically not made use of a high density of 

sampling or tracked progress over an extended period, as was done in this research.  

 

To draw an analogy, geneticist have moved from a view of genes as the sole 

determinants of inheritance (Spector, 2012, pp. 23–24) to a more nuanced view, in 

which the influence of genes may be mediated by their environment - a change that 

has been labelled the ‘epigenetic revolution’ (Spector, 2012, p. 8). The term 

epigenetics is derived from the Greek for ‘around the gene’ (Spector, 2012, p. 8). 

Research in science education may be entering a new phase, epiconceptual change 

research, which advances from considering individual, isolated concepts and instead 

seeks to understand the complex patterns of activation of concepts due to their 

relationships with other concepts, contexts encountered, affective states and other 

factors (see Table 1.0). 
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Table 1.0: An illustration of some areas of difference between a conceptual and 

epiconceptual model of change. 

Conceptual Model Epiconceptual model 
Focuses on single concepts. Focuses on the relationships between 

concepts. 
Focuses only on concepts. Focuses on multiple elements of 

conceptual ecology such as tacit 
knowledge and epistemological beliefs. 

Describes conceptual 
relationships at a number of 
points in time with relatively long 
intervals between observations. 

Describes the development of 
conceptual relationships with an interest 
in development over relatively short 
time scales. 

Models conceptual change as 
replacement. 

Models conceptual change as alteration 
in activation of several co-existing 
concepts. Change is not sudden and 
discrete. 

Focuses on cataloguing concepts. Focuses on the contingencies of use of 
concepts and the nature of conceptual 
relationships. 

 

Research into conceptual change in science education has been described as passing 

through three overlapping phases (Amin et al., 2014). The first phase focused largely 

on describing students’ ideas, and on the proposition of interventions to support 

change to concepts. The second phase progressed beyond a focus on alternative 

conceptions to an examination of students’ interpretations of ontology, their 

epistemological beliefs, their use of models and an investigation of the role of social 

interactions. The third phase, which is described as ‘emerging,’ is labelled the 

‘systemic perspective’, in which conceptual change is modelled as the interaction of 

multiple elements (Amin et al., 2014, p. 68). Amin and colleagues argue that future 

research needs to rise to the challenge of modelling learning as the interaction of 

diverse conceptual resources. This research, which is situated within the third wave of 

conceptual change research, seeks to examine the manner in which students make 

sense; that is, how they develop coherent conceptual compounds that can be applied 

across a range of contexts.  
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1.5 The structure of this thesis 
The structure of the thesis is represented in Figure 1.3, below. Following the 

development of a model of making sense (above), six themes related to the concept 

are considered: a) the development of ontological categories; b) the development of 

organisations of concepts; c) the development of understandings of causality; d) the 

development of coherence; e) the rate of conceptual change; f) the relationship 

between conceptual change and the contextual triggering of concepts. These themes 

lead to the proposition of a set of research questions. Section 3 examines the 

assumptions that are made in this work, including those relating to the nature of 

knowledge, and emphasises their fit with the proposed model of making sense. These 

assumptions and the research question lead to the choice of methods discussed in 

section 4. The analysis is structured around the six themes related to making sense 

(section 5) and the final section considers the implications of the work for both 

research and teaching. 
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Figure 1.3: An illustration of the structure of the thesis. Note that the numbers refer to 

section labels. 
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2.0 Literature Review 
The literature review is constructed in a number of sections, building on the definition 

of making sense in the introduction, leading to development of research questions (see 

Figure 2.0). 

 
 

Figure 2.0: Research questions arising from the definition of making sense. The 

numbers indicate the section of the literature review in which each theme is 

addressed. Some example conceptual relationships are shown as an illustration. 

2.1 The formation and modification of conceptual categories  
It has been argued that cognition and categorisation are inseparable (Harnad, 2005), 

and therefore that, assessments of similarity are fundamental to cognition (Goldstone 

& Son, 2005; Pauen, 2002; Rosch, Simpson, & Miller, 1976). In particular, the 

classification of entities is an important aspect of work in science (Sokal, 1977; Van 

Custem, 1994). Additionally, construction of similarities between entities is 
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fundamental to learning and enables predictions to be made in novel situations 

(Quine, 1969). Novices and experts have different approaches to dividing the world 

into categories (Chi, Feltovich, & Glaser, 1981; Hardiman, Dufresne, & Mestre, 

1989; Rosch, Simpson, et al., 1976). It may be that some of students’ difficulties with 

understanding science arise from the difference between their categorisations and 

those of experienced scientists (Chi & Slotta, 1993; Hestenes, Wells, & Swackhamer, 

1992 ; Mortimer, 1995; Piaget & Inhelder, 1941/1997; Smith, Carey, & Wiser, 1985). 

Categories that students may perceive as distinct, for example, circular and linear 

accelerated motion, are conceptualised, by experts as ontologically equivalent (Chi et 

al., 1981). This section considers the nature of students’ conceptual categories (2.1.1-

2.1.3) and the manner in which those categories develop over time (2.1.4). 

2.1.1 Defining ontology 

The question of ontology can be expressed as: ‘What sort of things are there?’ 

(Sommers, 1963, p. 327). As a discipline of philosophy, ontology is the study of the 

things that exist (Effingham, 2013), and it aims to provide an ‘…exhaustive 

classification of entities’ (Smith, 2003, p. 155). Distinctions between categories might 

be thought to exist either in ‘intrinsic’ (i.e. some external ‘reality’) or in the 

psychological ‘reality’ (Chi, 1992, pp. 130–131) of an individual. Given the 

constructivist ontology adopted in this research (see Section 3), a nominalist position, 

that is the notion that categories do not precisely replicate divisions that exist in 

‘reality’ (Gabriel, 2015, p. 234), will be adopted. Therefore, in this thesis, ontology 

will refer to an individual’s psychological categorisation (Baily & Finkelstein, 2014; 

Gupta, Elby, & Conlin, 2014) and no comments about the nature, or indeed existence, 

of intrinsic ontology are intended.  Psychological ontologies can be thought of as an 

individual’s catalogue of domains of information (Boyer & Barrett, 2005),  or ‘one’s 

conception of the basic categories of existence’ (Keil, 1979, p. 1). As concepts are 

commonly defined as categorisations (Carey, 2009; diSessa & Sherin, 1998; Murphy, 

2002; Smith, 1989), they might be thought of as ontological divisions. 

2.1.2 Concepts as ontological divisions 

The development of ontologies occurs spontaneously during the normal course of 

development during infancy and childhood (De Cruz & De Smedt, 2007), and similar 

categories are formed, in some topics, by learners from various cultures (Atran, 
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1998). The nature of the concept is contested (Barsalou, Simmons, Barbery, & 

Wilson, 2003), and the wide range of meanings ascribed to this term has led some 

researchers to speculate as to whether it is a useful construct (Barsalou et al., 2003; 

Machery, 2010). Such ambiguity may arise as the assumptions and limitations related 

with its use are sometimes overlooked by researchers (Taber, 2013). Though the 

range of entities subsumed by the term may be broad, there are commonalities 

between different models, and the term remains a useful, if imperfect, construct 

(Couchman, Boomer, Coutinho, & Smith, 2010; Danks, 2010).  

 

The nominalist position, which aligns with the constructivist methodology of this 

work, suggests concepts are not inherent division in reality but are human constructs 

(Babbie, 2010; Schlick, 1974). As will be argued in section 3.1.2, constructivists 

typically propose that access to reality is imperfect (Taber, 2009); hence, concepts are 

not precise representations of the external world (Lakoff, 1989). Some thinkers have 

argued that concepts are not psychological constructs (Clark, 2001; Frege, 1974), but 

have an existence as abstract entities. However, a model of concepts as abstractions 

fails to account for how individuals can develop personal constructs and a purely 

psychological categorisation of concepts is seen to have the greatest explanatory 

power (Margolis & Laurence, 2007) and has been adopted by many researchers 

(Carey, 2009; diSessa & Sherin, 1998; Murphy, 2002; E. Smith, 1989).  

 

In many models, a concept is not seen as a unitary structure (diSessa & Sherin, 1998, 

p. 1170) but rather as a ‘mental representation of a class’ (Ross & Spalding, 1994, p. 

120), or as a mental representation of ‘classes of things’ (Murphy, 2002, p. 5). Models 

of the manner in which individual elements may be clustered together in a concept 

have passed through a number of iterations (Murphy, 2002). In the ‘classical’ view of 

concepts (Smith & Medin, 1981, pp. 22–60), categorisations are defined by summary 

descriptions of the entire class that are often abstracted and need not refer to a specific 

member of the category. This model was critiqued first by Wittgenstein (1953) and 

then by Rosch (1973), on the basis that concepts such as colours do not have clear 

criteria attributes. Rosch (1973, 1975) went on to develop the prototype view which 

argues some members of a class can be seen as ‘clearest cases’ or ‘best examples’ 

though Rosch later argued for a looser description of prototypes as not necessarily 
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being a member of the class but rather an ‘abstract representation of a category’ 

(Rosch & Mervis, 1975, p. 575). This principle is seen in Rosch and Mervis’ (1975) 

family resemblance descriptions of categories, where individual members of a 

category may share some features but there is no single set of features that is shared 

by all members. However, the prototype theory does not explain observations of how 

measures of typicality combine in conceptual compounds (Osherson & Smith, 1981), 

and has been criticised for failing to describe clear conceptual boundaries and account 

for contextual variation in concept use (Croft & Cruse, 2004, pp. 87–97). An 

alternative account proposed that classifications are based on judgements of 

similarities to stored exemplars (Hintzman, 1986; Medin & Schaffer, 1978). 

However, the exemplar model is unsatisfactory, as a set of exemplars is, in itself, 

insufficient to define a concept: certain kinds of summary factual information cannot 

be stored in the form of an exemplar (Smith & Medin, 1999). 

 

More recent models of categorisation emphasise the importance of theories and 

background knowledge for demarking ontologies (Keil, 1989; Lin & Murphy, 1997; 

Murphy & Medin, 1985). A different interpretation of the nature of conceptual 

constructs is Barsalou’s (1983, 2005) proposition of ‘ad hoc’ concepts; that is, 

categories are constructed pragmatically, in the moment, to interpret a given situation. 

In this model, concepts are not seen as static entities with a fixed structure, but rather 

as flexible entities that are reconstructed by the pressures and contexts of a given 

situation (Barsalou, 1987).Though this plurality of constructs of the concept might 

seem to deny the usefulness of the term, it has been argued that differing models 

might be conceptualised as ‘special cases’ rather than distinct kinds (Danks, 2010). 

Given the lack of agreement over the nature of categorisation processes, in this thesis 

a concept will simply be defined as a representation of a mental category. The 

elements that make up a concept will be labelled conceptual resources (diSessa, 1993; 

Hammer, 2000; Taber, 2008a). 

2.1.3 Ontologies in science education 

It has been reported that students, at some stages of learning, may struggle to 

differentiate a number of concepts including: force, momentum and kinetic energy 

(Brookes & Etkina, 2009), velocity and acceleration (Dykstra, Boyle, & Monarch, 

1992), current and potential difference (Koponen & Huttunen, 2013; McDermott & 
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Shaffer, 1992; Shipstone, 1984), heat and temperature (Erickson & Tiberghien, 1985; 

Wiser & Amin, 2001; Wiser & Carey, 1983), and mass, weight and density (Piaget & 

Inhelder, 1941/1997; Smith et al., 1985). Though differences between learners’ and 

experts’ ontologies have been noted, little attention has focused on the manner in 

which categories develop over time. 

2.1.4 The formation and modification of ontologies 

diSessa and Cobb (2004) have observed that the process of developing new 

ontological categories is not straightforward and typically involves refinement 

through application, yet few descriptions of the kind of stages or features of the 

process of development of categories over time exist. However, some general themes 

can be discerned, and will be discussed in the sections below.  

2.1.4.1 The nature of ontologies and their development 

A central issue for ontological research is to define the nature of categories 

themselves. A recent debate has seen the ontological model of Chi and colleagues 

(Chi, 1992; Chi et al., 1994; Slotta & Chi, 2006; Slotta, Chi, & Joram, 1995) criticised 

by Gupta, Hammer and Redish (2010) over the nature  and stability of expert and 

novice ontologies over time. Gupta and colleagues’ critique (2010) prompted a 

rebuttal from Slotta (2011), to which Hammer, Gupta and Redish (2011) wrote a 

response. The two positions are summarised in Table 2.0 at the end of the section. 

 

Chi (1992, p. 130) proposed the existence of a set of distinct ontological categories 

(originally: matter, events and abstractions (Chi, 1992, p. 130); though, in later 

papers: matter, processes and mental states (Chi, 2013; Chi et al., 1994)). Ontological 

categories were seen as distinct (Chi, 1992; Chi et al., 1994); that is, language used to 

talk about entities in one category would be meaningless if applied to entities in 

another (Chi et al., 1994; Slotta et al., 1995). Nevertheless, the model of ontology 

allowed entities to exist in multiple ontologies at one time (Chi, 1992; Slotta, 2011), 

but change between ontological categories was seen as challenging (Chi, 1992, 2013). 

Though there is no explicit discussion of the stability of an ontology over time, a link 

is made between the robustness of misconceptions to change over time and the 

difficulty of ontological transition, implying that the categories must, to some extent, 

be stable (Chi, 1992, 2013). Slotta (2011, p. 159) summarises the position held by Chi 
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as ‘flexible attribution of ontologies in accordance with the person’s immediate 

conceptual needs’.  

 

Gupta, Hammer and Redish (2010) proposed a different version of ontologies. They 

suggested that experts and novices commonly reason across ontological categories 

and so asserted that ‘ontological blending’ is an important component of scientific 

thought (Gupta et al., 2010, p. 304). Therefore, they imagined learners posses 

‘multiple and mutually overlapping ontological views’, which were seen as 

complementary and productive of a rich and complex description of the physical 

world (Gupta et al., 2010, p. 303) and argued against the existence of distinct, 

independent ontological categories (Hammer et al., 2011). They critiqued Chi’s 

notion that individual concepts as understood by experienced scientists, may exist in a 

single category (Hammer et al., 2011). Though Slotta (2011) suggested that the two 

perspectives agree on several issues, he suggested the major differences between the 

models arise from Gupta and colleagues’ greater flexibility in attribution of ontologies 

(see Table 2.0, below). A third model of ontology, the conceptual profiles model 

developed by Mortimer and colleagues (Mortimer, 1995; Mortimer & El-Hani, 2014), 

is classified as occupying a space between the two models described above. Though 

the conceptual profiles model assumes students’ utterances related to a concept can be 

categorised as belonging to one of a number of categories, and lacks the notion of 

‘ontological blending’ found in Gupta and colleagues’ system (Gupta et al., 2010, p. 

304), it does allow that a learner’s ontological classification can evolve by changing 

the likelihood of activation of different ontologies (Mortimer, 1995).  
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Table 2.0: A comparison of Chi, Slotta and colleagues’ construction of ontologies 

with Gupta, Hammer and Redish’s model. 

 

 Chi, Slotta and 

colleagues’ position 

Gupta, Hammer 

and Redish’s 

position 

Can a concept exist in more than one 

ontology simultaneously? 

Yes Yes 

Are there a finite number of pre-

determined ontological categories? 

Yes No 

Do the categories themselves evolve 

over time? 

Implication that they 

do not 

Yes; ontologies can 

be blended together 

Do accepted scientific ideas belong in 

a single ontological category 

Yes No 

 

These two models of ontology suggest different processes by which ontological 

development may occur. In Chi’s model there is a clearly defined sequence: 1) the 

properties of a new ontological category are developed; 2) the meaning of individual 

concepts within the novel category are learned; 3) concepts may be reassigned to the 

new category (Chi, 1992). Hammer, Gupta and Redish (2011, p. 165) proposed that 

the apparent stability of ontologies arises from ‘…the dynamics of a complex system 

composed of manifold cognitive resources’. They argue that students’ intuitive 

ontologies may be productive (Hammer et al., 2011), and dismiss Slotta’s (2011) 

suggestion that original ontological commitments should be minimised. Their view of 

ontological change allows concepts to have multiple ontological categorisations; 

therefore, development happens through alteration in the contextual triggering of 

particular facets of a category. A description of such changing preferences for 

different ontological interpretations can be found in work by Silva, Mortimer and 

Coutinho, (2014) and Nicoli and Mortimer (2014), though their model carries with it 

the assumption of distinct ontological categories. The model of making sense 

described above is premised on the evolution of conceptual categories over time and 

hence Gupta, Hammer and Redish’s blended model will be adopted for this work. The 
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next sections outline three areas of change that might be expected in ontologies as 

expertise develops: a) differentiation; b) clustering; and c) abstraction. 

2.1.4.2 Ontologies become increasingly differentiated 

 
Figure 2.1: A representation of increasing ontological differentiation with expertise. 

 

One noted path of progression in ontology is the increasing separation of concepts 

into distinct categories (see Figure 2.1). Conceptual differentiation has been defined 

as the differentiation of a single parent concept into two or more conceptual 

descendants (Smith et al., 1985). Paget and Inhelder (1941/1997) reported that young 

children initially did not differentiate between weight and volume but, over time, 

became able to distinguish the concepts. As described in Section 2.1.3 a difference in 

differentiation of concepts by experts and novices has been reported in several topic 

areas in science education. In general, experienced learners may have better-

differentiated categories than novices (Murphy & Wright, 1984). Experts’ ability to 

solve problems rapidly (Chi et al., 1981) may be explained by the increased 

accessibility of more clearly differentiated categories (Murphy & Brownell, 1985; 

Murphy & Smith, 1982). Therefore, sharper distinctions between categories may lead 

to an advantage in learning (Murphy & Wright, 1984). 
Brownell 
Though novice learners’ concepts may seem undifferentiated when compared to those 

of experts, Smith, Carey and Wiser (1985) present evidence that, in the case of 

density, though students may in many situations not differentiate between mass and 

density, there may exist some contexts in which some distinctions between the 

concepts can be triggered. In the case of force, Dykstra, Boyle and Monarch (1992) 

suggested that students’ initial undifferentiated concept of motion separates into 

velocity and acceleration before force is linked to acceleration. However, their model 

makes two contentious assumptions: first, the authors assume that there exists a 

‘stable framework of abstract ontological categories’ (Dykstra et al., 1992, p. 630), an 

assumption that has been challenged by Gupta, Hammer and Redish (2010). Second, 
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it is not clear that students necessarily pass through the same series of steps in 

developing the concept of force: students may not necessarily differentiate velocity 

and acceleration before understanding that net force is linked to acceleration (see 

Daniel’s ongoing confusion between velocity and acceleration described in section 

5.2.1.2.1). 

 

Though it might be tempting to assume that the general trend of development always 

involves greater distinctions between concepts, in some cases, distinctions novices 

possess are reduced in experts. For example, Dykstra, Boyle and Monarch (1992) 

describe how constant velocity and rest may initially be seen as distinct states but 

become collapsed into a single construct with expertise. The next section considers 

how development may occur through a reduction in the distinction between 

conceptual elements. 

2.1.4.3 Ontologies become increasingly clustered 

 
Figure 2.2: A representation of development from a novice’s loosely clustered 

concepts to the tightly grouped ontology of an expert. 

 

Some models of categorisation propose that the members of a category have different 

degrees of perceived typicality within a concept (Rips, Shoben, & Smith, 1973; 

Rosch, 1973, 1975). This ‘graded structure’ of representativeness (Barsalou, 1985, p. 
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629) can be represented by a spatial distance: more similar items are drawn closer 

together (see Figure 2.2). Evidence suggests items that are perceived as more typical 

of a category are more easily learned than items that are perceived as less typical 

(Rosch, Simpson, et al., 1976). It has been suggested that ‘…expert physicists have 

their knowledge tightly organized around relatively few major principles’ (Reif, 2008, 

p. 139) in contrast to the conceptual structures of novices which tend to consist of a 

collection of unstructured facts. Greater experience with a domain leads to members 

of a category being rated as more similar to each other, and more different from non-

members (Homa, Rhoads, & Chambliss, 1979). The drive towards tightly clustered 

concepts, that is, the reduction of a diverse range of facts and observations to a few 

underlying principles, has been called the ‘great desideratum for any science’ 

(Maxwell, 1890/2010, p. 59) and has been linked with developing understanding 

(Friedman, 1974; Kitcher, 1989) (see Figure 1.1). 

2.1.4.4 Ontologies develop from instances to abstractions 

  

 

Figure 2.3: A representation of the development of classification from multiple 

specific examples to a single unifying abstract principle with expertise. 

 

The third trend in ontology during the move towards expertise is a progression from 

categorisation via multiple concrete and specific instances towards a more unified 

abstract conceptualisation (see Figure 2.3). Vygotsky (1962/2012) suggested young 

children initially have unorganised, incoherent collections of data based on physical 

similarities about objects; but, as they learn, they develop increasingly coherent and 

A novice's concept of force may be 
composed of specific instances grounded 

in contexts 

An expert's concept of force may be 
abstracted and apply across a range of 

contexts 
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organised abstractions. Novices’ intuitive beliefs may be highly context-dependent 

(Hestenes et al., 1992), whilst expertise can be related to the ability to transfer 

principles to a variety situations with surface differences within a domain (Kimball & 

Holyoak, 2000; Novick, 1988). Quine (1977, p. 171) described the progression as: 

‘…a development away from the immediate, subjective, animal sense of similarity to 

the remoter objectivity of a similarity determined by scientific hypotheses and posits 

and constructs’.  

 

One model of concept acquisition suggests individuals begin with exemplar-based 

categorisations but transition to more abstracted definitions as they gain experience- 

the so-called ‘characteristic-to-defining shift’ (Keil & Batterman, 1984, p. 232): 

children may first acquire categories defined by perceptual characteristics and then 

develop an understanding of more abstract relationships (Imai, Gentner, & Uchida, 

1994). Chi, Feltovich, and Glaser (1981) report that novices tended to categorise 

problems based on surface similarities, whilst experts used abstract laws and 

principles. Acquiring causal knowledge may assist this transition: category 

membership is initially based on observable features, but may develop to be 

dependent on a shared underlying cause (Rehder, 2007). This move towards 

abstraction may arise from a desire to maintain conceptual coherence: when novel 

contradictory information is encountered, increasing abstraction may allow more 

elements to be included in the category (Ohlsson, 2009).  

 

It is debated as to whether the development of ontology proceeds from lower to 

higher levels of abstraction (Pauen, 2002). Mandler and McDonough (1993, 1996) 

have argued that even young children may appreciate abstract similarities between 

entities, and Pauen (2002) has suggested initial categorisation may be broad in scope 

before a global-to-basic shift in categorical thinking occurs. An intermediate position 

was suggested by Rosch and colleagues (1976): ontological development begins with 

psychologically fundamental ‘basic’ level categories. For example, the category of 

‘chairs’ (basic-level) is acquired before the subordinate category of ‘kitchen chairs’ or 

the superordinate category of ‘furniture’, and the basic level is seen as maximising 

information gained (Rosch, Mervis, et al., 1976). However, this notion has been 

critiqued by Tanaka and Taylor (1991), who argue there is no absolute notion of a 
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basic category and that prior knowledge may affect judgements of the basic level of 

categorisation. Though the development from instances to abstractions may not be as 

simple as suggested in some models, the development of abstractions is a facet of 

several models of learning (see Figure 1.1), and the transition presents a useful 

working hypothesis for the development of ontology. 

2.2 The formation and modification of conceptual compounds 
A common facet of models of learning is the claim that students develop links 

between concepts to form compound organisations (see Figure 1.1). Such 

organisations are highly significant as concepts are defined by their relations to other 

concepts (Ruiz-Primo & Shavelson, 1996). The notion that cognitive entities may be 

arranged into some kind of structure has existed for many years (Deese, 1962; 

Vygotsky, 1962) and many different conceptualisations of these arrangements have 

been proposed some of which are analysed in the following sections. The concepts of 

explanation and argument have been excluded from the discussion as they are seen as 

linguistics structures rather than constructs of psychological entities (Osborne & 

Patterson, 2011). 

2.2.1 Schema, and cognitive and conceptual structures 

Perhaps the earliest description of a conceptual organisation is Bartlett’s (1932, p. 

201) schema, ‘an active organization of past reactions’, which became influential 

through its adoption by Piaget (1955, 1970). The term schema is not widely used in 

science education research (Taber, 2013); rather, the terms conceptual or cognitive 

structures are often used. The term conceptual structure has an ambiguous usage, as it 

may refer either to the structure of a single concept (Komatsu, 1992; Medin, 1989) or 

the relationship between multiple concepts (Shavelson, 1972). The terms cognitive 

and conceptual structure are used interchangeably; for example, the representations 

developed in concepts maps are referred to by some authors as describing cognitive 

structure (Novak & Musonda, 1991; Towbridge & Wandersee, 1998), and by others, 

as depicting conceptual structure (Chang, 2007; Regis, Albertazzi, & Roletto, 1996). 

Descriptions of conceptual structure typically define this construct as having 

relatively long-term stability (Shavelson, 1972), or conceptualise it as a largely stable 

structure with some variable elements (Ausubel, 1963; Taber, 1995). The terms 

conceptual and cognitive structure are often used in the plural form, implying a 
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learner is imagined as possessing multiple structures (Dhindsa & Anderson, 2011; 

Tsai & Huang, 2001); but little indication is given as to how such separate structures 

might be demarcated. Other researchers imply a representation of cognition as a 

single structure; for example, ‘the learner’s conceptual structure’ (Ausubel, 2000; 

Osborne, 1980; Tsai, 1998). The ambiguous usage of these commonly-used terms 

suggests a more clearly defined alternative may be useful. 

2.2.2 Mental models 

The diversity of existing constructions makes mental models hard to define (Franco & 

Colinvaux, 2000; Rapp, 2005; Rouse & Morris, 1986). However, mental models are 

described by some researchers as compound structures, formed from the organisation 

of a number of entities (Chi, 2008; Johnson-Laird, 1983; Nersessian, 2013; Rapp, 

2005). There is broad agreement that mental models are dynamic (Greca & Moreira, 

2002; Harrison & Treagust, 2000a; Rapp, 2005) and idiosyncratic (Gilbert, Boulter, & 

Rutherford, 1998; Greca & Moreira, 2002). However, the stability of mental models 

is disputed: some researchers describe the existence of both long-term and short-term 

models (Johnson-Laird, 1989), whilst others define mental models as relatively 

enduring, with only subsections of the structure undergoing change (Doyle & Ford, 

1998).  In contrast to cognitive structure, mental models are seen as having defined 

limits (Johnson-Laird, 1983), though their boundaries may be poorly defined (D. A. 

Norman, 1983). According to Doyle and Ford (1998, p. 18), ‘a mental model must be 

small enough to be implemented in short-term memory, the capacity of which is 

generally considered to be seven plus or minus two “chunks” of information’, though 

they argue the size of the ‘chunks’ will vary with expertise. They argue the smallest 

possible mental model consists of two variables and two causal relationships (Doyle 

& Ford, 1998). 

2.2.3 Coordination classes 

A specialised description of an organisation of cognitive elements is the coordination 

class found in the knowledge-in-pieces model of conceptual change developed by 

diSessa and colleagues (diSessa, 2002; diSessa & Sherin, 1998). Coordination classes 

are likely to be composed of p-prims and are described as ‘…large, complex systems, 

rather than atomic elements’ (diSessa, 2002, p. 43). P-prims, or phenomenological 

primitives are ‘”pieces” of intuitive knowledge’ (diSessa, 2000, p. 91) that are 
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‘inarticulate,’ ‘not strongly related to dictionary lexicon’ and without ‘explicit 

propositional form’ (diSessa, 1993, p. 119). DiSessa argues coordination classes may 

well not exist in naïve thinking as the construct is seen as determining information 

across a range of contexts (diSessa, 2002). Thaden-Koch (2003) therefore proposed 

the term coordination system for organisations of knowledge that do not generalise 

across a range of contexts. In discussing the extent of coordination classes, diSessa 

and Wagner (2005, p. 137) state that ‘… the criteria for “completing a system” are not 

clear’. Though the issue is not discussed explicitly, the claim that coordination classes 

can function across a range of contexts implies they are relatively stable constructs. 

2.2.4 Temporary organisations 

The conceptual organisations discussed up to this point are described as, to some 

extent, stable: this section deals with constructions of conceptual compounds that are 

short-lived and unstable. Perhaps one of the earliest reports of these structures is 

found in Piaget’s (1979, pp. 16–17) description of children ‘romancing’ an answer in 

clinical interviews because ‘… they like the sound of it’. He cautions against 

discounting these constructed ideas, as they may provide evidence of past learning or 

anticipations of future constructs (Piaget, 1979). Taber (1995, p. 95) used the terms 

‘mental flotsam and jetsam’ to refer to constructions which are ‘transient’; but he 

observes that such temporary constructions may occasionally lead to permanent shifts 

in conceptual structures.  

 

The transience and lability of such temporary structures can be explained in the 

reconsolidation model of memory, which suggests concepts are relatively stable in 

long-term memory but become changeable when recalled to working memory 

(Alberini & LeDoux, 2013; Besnard, Caboche, & Laroche, 2012). Some concepts, 

though ad hoc and constructed in response to a particular context, may, through 

repetition, transfer into long-term memory (Barsalou, 1983). Niedderer (1997) 

describes a similar process through which unstable ‘actual constructions’ can 

transition into stable cognitive elements during the learning process. Just as Barsalou 

(1983) describes some concepts as ‘adhoc’, Wittmann (2002, p. 113) reports some 

students’ responses to questioning on wave phenomena as being ‘on the fly’, meaning 

that additional properties are added, without much consideration, in response to the 

interviewer’s prompts. Wittmann (2002, p. 113) elaborates that the robustness of  
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‘just-in-time’ constructs is an open question: one that would require the use of 

sampling over an extended period to answer. A number of descriptions of these kinds 

of temporary organisational structures have emerged in science education including: 

Sabella and Redish’s (2007, p. 1027) ‘locally coherent’ knowledge structures; 

Paranfes’ (2012, p. 362) ‘temporary plateau of coherence’; and Sherin, Krakowski 

and Lee’s (2012) dynamic mental constructs. This research is unique in its attempt to 

describe the development of unstable conceptual organisations using high frequency 

sampling over an extended period of time. 

2.2.5 Properties of conceptual compounds 

The terms above, describe psychological entities that consist of a system of related 

concepts or other cognitive elements. Some of these constructs come with 

assumptions and restrictions on the stability, composition or number of component 

elements related. Therefore, the term ‘conceptual compound’ is proposed as a general 

term that refers to a representation of a system of two or more concepts that are 

activated and related together in a particular context. The term conceptual compound 

has been used to refer to concepts developed from the amalgamation of previously 

distinct concepts (e.g. Sichelschmidt & Günther, 1990), in contrast to its use here to 

refer to the activation of multiple concepts in a given context. 

 

Conceptual compounds can be thought of as differing along three dimensions: the 

types of entities organised, the stability of the organisation, and the ‘extent’ of the 

organisation; that is, the number of components related. Variation in each of these 

dimensions may explain the range of different properties conceptual compounds can 

exhibit. A large range of entities has been proposed as the elements of conceptual 

compounds: ideas (Diekhoff, 1983); concepts (Doyle & Ford, 1998; Nersessian, 

2013); p-prims (diSessa, 2002); mental representations, including word-like concepts 

and picture-like images (Thagard, 2007); resources (Sabella & Redish, 2007); and 

knowledge elements (Bao & Redish, 2006). A compound composed of tacit elements, 

such as p-prims, might be imagined to behave differently from the structures 

composed of ‘committed facts’ found in expert thinking. However, as it is difficult, in 

practice, to distinguish many of these constructs the analysis will focus mainly on the 

stability and the extent of compounds. 
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It may be the case that expert learners’ cognition can be represented by a series of 

relatively stable relationships between concepts that are activated consistently across 

appropriate contexts by recalling elements of relatively stable structures in long-term 

memory. However, a novice learner may display greater variability in the groups of 

concepts they choose to activate in given contexts; and their available resources, and 

the relationships between them, may also be less stable than those of experts. A 

researcher only has access to the representations a learner chooses to ‘bring to mind’ 

in a particular context, but such constructs are not direct representations of long-term 

memories or physical substrates (Taber, 2013). The term conceptual compound is 

intended to highlight that the groups of concepts learners ‘bring to mind’ can be 

organised in various combinations and with varying degrees of stability across 

different contexts. 

2.2.5.1 The stability of the compound 

Defining the stability or lifetime of a collection of cognitive entities is challenging 

and few models of stability exist. Georghiades (2000, p. 124) defined ‘durability’ as 

how long a conception ‘remains in effect’. Though they do not define the term, Licht 

and Thijs (1990) imply the persistence of preconceptions relates to the time period 

over which a particular understanding is employed by a learner. The lack of 

discussion of stability of both concepts and compounds of concepts may relate to a 

lack studies of conceptual change over extended time periods and with sufficiently 

high frequencies to describe change (Brock & Taber, 2017b). Describing the stability 

of conceptual compounds is more challenging than for concepts, as there are more 

ways in which a conceptual conglomerate can change; and, as they are compound 

entities, parts can remain stable while certain elements undergo change. However, as 

reported in the sections above, a number of different constructs of conceptual 

compounds make claims regarding the stability of the entity. Given that it is assumed 

that the application of concepts can be contextually triggered, the stability of a 

conceptual compound might be defined as the extent to which a group of concepts 

with a fixed set of relationships is repeatedly applied in a particular set of contexts.  
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2.2.5.2 The extent of the compound  

Conceptual compounds are, by definition, formed from component entities; therefore, 

it may be possible to determine the extent of a compound, that is, the number of 

entities linked within the construct. However, neither the elements nor the structures 

have clearly defined boundaries, diSessa and Sherin (1998, p. 1170) describe 

compounds as ‘fuzzy’ due to their compound nature. Moreover, mental models evolve 

over time (Coll & Treagust, 2003), making the task of defining the extent of a 

compound challenging. Despite the difficulty in defining the exact extent of a 

structure, it will be useful to be able to differentiate constructions by the number of 

elements coordinated, described here as the extent of the construct. This distinction 

occurs in a number of descriptions of organisations of cognitive elements. 

 

Johnson-Laird (1983, p. 398) described mental models as necessarily finite in ‘size’, 

though he does not define the concept of ‘size’. Doyle and Ford’s (1998, p. 18) claim 

that the size of a mental model is restricted by working memory, that is, seven plus or 

minus two ‘chunks’. In addition, they place a lower bound on the size of a mental 

model as two variables and two causal relations (Doyle & Ford, 1998). Other authors 

provide definitions linking the extent of a compound to the number of links between 

elements. For example, White and Fredericksen (1990, p. 14) link the ‘degree of 

elaboration’ with the number of qualitative rules used in a model, and Tsai and Huang 

(2001) relate the extent of a cognitive structure to the number of linkages between 

components.  
 

Initially, students may be able to connect only a few component entities from a single 

domain to form an argument, whereas experts are better able to coordinate multiple 

elements from across contexts into a structure (Clark, 2006). Learning can be 

conceptualised as progress from conceptual compounds of a few elements with 

limited complexity into increasingly complex structures that subsume a greater 

number of elements (Wiggins, 2015). However, in certain contexts, it may not be the 

case that experts have more conceptual elements available than novices; rather, that 

they are better able to coordinate the information into appropriate constructs (Sabella 

& Redish, 2007). One particularly significant manner in which elements may be 

related in a conceptual compound is through causal relationships. 
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2.3 Learning about causality 
Causal relationships are seen as significant in a number of models of learning in 

science education (see Figure 1.1). The concept of causality is difficult to define 

(Neufeld, 1990), and the mass of ‘misleading associations’ that surround the term led 

Russell (1912, p. 1) to suggest philosophy could do without the concept. One way of 

describing causality is as a relationship which links two events that occur at different 

points in time (Bohm, 1957/1984). However, as David Hume noted, the nature of the 

link between cause and effect is elusive, as the events may ‘… seem conjoined, but 

never connected’ (Hume, 1748/2007, p. 52). Contemporary accounts of causality have 

been divided into two frameworks: difference-making and causal process approaches 

(Woodward, 2007). Difference-making theories include the interventionist model, 

which suggests: ‘If manipulation on one factor (interventions) are associated with a 

change in a second factor, then the first causes the second’ (Sommerville, 2007, p. 

48). Alternatively, in causal process approaches, causality is seen as a process that 

exists in some sense in the universe (Cartwright, 2004). The interventionist account of 

causation is seen as well-suited to the methods of experimental science (Lange, 2003), 

and is commonly used in psychological investigations of causality (Gopnik & Schulz, 

2007a; Sloman, 2009). Therefore it will be the model used here, additionally, given 

their common usage by different writers, both the terms causality and causal 

relationship will be used to refer to the relationship between cause and effect. 

 

The concept of causality is central to the scientific project of developing 

interpretations of natural phenomena (Mumford & Anjum, 2013), as scientific 

explanations often, though not always, have a causal character (Van Fraasseen, 1980). 

An inherent aspect of causality is the asymmetric nature of cause and effect 

(Mumford & Anjum, 2013). However, the expression of relationships between 

physical variables in the form of equations containing an equality sign are 

symmetrical (Bunge, 2009; Iwasaki & Simon, 1994; Russell, 1912). Students may 

therefore learn to manipulate equations without developing an understanding of 

causality (Cohen, Eylon, & Ganiel, 1983). This is significant, as it has been argued 

that coming to understand science depends on acquiring causal knowledge (Lipton, 

2004). The next section considers research regarding how information about causes 

and effects is learned. 
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2.3.1 Learning causal relationships 

Psychologists have yet to reach a consensus as to how causal relationships are learned 

(Goldvarg & Johnson-Laird, 2001) though there has been a recent increase in research 

interest in the topic (Holyoak & Cheng, 2011). Researching the understanding of 

causality is challenging because causal relations are not directly observable in the 

physical world (Hume, 1748/2007); and people develop personal constructions of 

causality (Alessio, 2011), which may not be directly expressible in words (Lipton, 

2009). Despite these difficulties, a body of research exists about learning causal 

relationships.  

 

People have a tendency to assume causal explanations exist when making sense of 

events (Kahneman, 2011; Michotte, 1963), and prefer learning about asymmetrical 

causal relationships, that is, between variables that are either causes or effects rather 

than non-causal relationships (Holyoak & Cheng, 2011; Schauble, 1996). Learners 

may develop a tendency to overgeneralise causal explanations and to disregard 

information that disconfirms their model (Schauble, 1996). In addition, learners may 

reject strong correlations that do not conform to their causal expectations (Chapman 

& Chapman, 1969). Causality may play a role in defining conceptual structure, as 

cause features are perceived as more central than effect features in categorisations 

(Ahn, Kim, Lassaline, & Dennis, 2000). Causal networks are acquired in a ‘piecemeal 

fashion’ (Lagando, Waldmann, Hagmayer, & Sloman, 2007, p. 168), and short causal 

chains tend to be integrated into larger networks (Ahn & Dennis, 2000). It is known 

that young children’s models of causality differ from those of experienced scientists 

(Grotzer, 2012; Piaget, 1930/1970): the next section examines reports of how 

students’ understanding of causality develops over time. 

 

2.3.2 Changes to understanding of causality over time 

Whilst researchers have tracked changes in young children’s understanding of 

causality (Sobel & Kirkham, 2006; White, 1988), little attention has been given to the 

development of understandings of causality in older students in particular contexts 

within science education. One of the earliest, and most influential, descriptions of the 

development of causality in the physical world is Piaget’s model (1930/1970). He 
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described a series of seventeen stages in children’s understanding of causality, shown 

in Table 2.1. 

 

Table 2.1: Stages of causal development. Adapted from Piaget (1930/1970, pp. 258–

273). 
Stage Name Description 

1 Pre-causality Psychological motive for all events. 

2 Finalism All functions have a purpose. 

3 Phenomenistic Events experienced together are seen as causally related. 

4 Participation Similar kinds of objects are able to act on each other at a 

distance. 

5 Magical causality Links are established between thoughts, gestures and objects. 

6 Moral causality Explanations contain a moral imperative. 

7 Artificialism All events are willed or organised by human activity. 

8 Animistic Explanation via an internal conscious agent. 

9 Dynamicism Objects are considered to contain a driving force. 

10 Reaction to the 

surrounding medium 

Movement requires continual contact with an outside medium. 

11 Mechanical causality Causes are explained by contact and transfer of motion. 

12 Causality by 

generation 

One object is born from another. 

13 Substantial 

identification 

Causation by the transmutation of objects. 

14 Condensation and 

rarefaction 

Qualities of objects are caused by their relative densities. 

15 Atomisitic 

composition 

Objects properties are explained by though their atomisitic 

composition. 

16 Spatial explanations Explanations based on the spatial forms of objects. 

17 Explanation by 

logical deduction 

Deductive laws or principles are used to form explanations. 

 

Piaget (1930/1970) described a general trend away from the self as the main agent in 

the world, through notions of concrete objects as causes, towards a final abstract 

understanding of causality. A similar progression is described by diSessa (1993), who 

suggests students may advance from assuming causality requires a human agent to the 

development of more elaborate causal chains including invisible and inanimate 

causes. A move from causality as a property of physical objects towards a more 
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abstracted notion of causes is also seen in Metz’s (1991) three-stage model of 

progression in children’s reasoning about gear trains. At first, the function of an 

object defines its causality, then the connections between elements define causality, 

then, finally, causality is understood through the action of mechanisms.  

 

Subsequent commentators have criticised Piaget’s contention that infants and young 

children are acausal, and that causal reasoning via logical deduction only occurs at 

relatively advanced ages (Gopnik, 2009; Gopnik & Schulz, 2007b). Gopnik’s model 

of causal development assumes children are born with some innate, though ‘sketchy’, 

causal assumptions, which are then modified and developed as they encounter new 

experiences (Gopnik et al., 2004, p. 28). Researchers have also noted deviations from 

Piaget’s developmental pattern; for example, older children may revert to types of 

explanations found in Piaget’s earlier stages in unfamiliar situations (Berzonsky, 

1971; Nass, 1956) - an example of a general pattern found within the Piagetian 

research programme, known as ‘horizontal décelage’, where a cognitive operation a 

learner has demonstrated in some contexts is less likely to be applied in less familiar 

domains (Kreitler & Kreitler, 1989). Given its important role in scientific 

understanding, it is surprising that, recently, little research attention has focused on 

the how students’ causal thinking changes over time. The models that do exist suggest 

a transition from an association of causes with physical objects towards a more 

abstracted model; a transition that can be represented using the macroscopic, sub-

microscopic and symbolic categories described in detail in the discussion section 

5.2.3.2. 

2.4 Coherence in conceptual compounds 
The drive to detect order and patterns in sensory data is an entrenched feature of 

human cognition (Gibson, 2000; Heine, Proulx, & Vohs, 2006; Shermer, 2012). 

Though this tendency can be a powerful tool for developing understanding, it may 

also lead to the perception of patterns in stimuli that are entirely random (Murra & Di 

Lazzaro, 2010; Taleb, 2004). Both the appeal of coherence (Koponen & Huttunen, 

2013) and the desire to avoid incoherent mental states (Piaget, 1953) have been 

described as driving conceptual change. The impetus for development may arise 

partly from the negative emotions associated with incoherence, and the positive 

feelings linked to the development of coherence (Thagard, 2006). These drives result 
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in coherent constructions acquiring a degree of stability: humans tend to seek to retain 

their existing constructs even when disconfirming evidence is presented (Heine et al., 

2006).  

2.4.1 Defining coherence 

Coherence is a difficult notion to define (Garnham, 1997) and to assess (diSessa, 

2008): a number of models of coherence are presented below. diSessa, Gillespie and 

Esterly (2004) proposed that coherence is defined by the manner in which concepts 

are specified, the relational structure between concepts, and the contexts in which 

concepts are triggered. The model presented here extends diSessa and colleagues’ 

work by positing that coherence is driven by three factors: a) prior learning, b) 

contextual factors, and c) epistemological assumptions.  

 

Some models focus on the role of the concepts or other knowledge as the driver of 

coherence. For example, Thagard and colleagues conceptualise coherence as 

occurring through constraint satisfaction, that is, ideas are coherent if they satisfy a 

number of inter-conceptual conditions (Thagard, 2000; Thagard & Verbeurgt, 1998). 

If one statement explains another, or one claim is deducible from another, a degree of 

coherence is assumed to exist between the assertions (Thagard & Verbeurgt, 1998). In 

these kinds of constructions the principles that define the relationship between 

concepts are seen as arising from the concepts themselves. For example, diSessa 

(2008, p. 35) argues it is the nature of concepts that drives coherence: concepts are 

coherent ‘if one vaguely seems to imply the other, or even if they merely seem related 

in some unspecified sense’.  
 

Murphy and Medin (1985, p. 291) argued accounts of coherence based on 

comparative relationships were insufficient; hence they defined a coherent group as 

one which ‘makes sense to the perceiver’. They argued that theoretical knowledge 

plays an important role in constraining judgments of coherence; for example, an 

expert taxonomist’s background knowledge might lead them to group shrimp, moths 

and spiders together, despite differences in their forms and habitats (Murphy & 

Medin, 1985). Similarly, Chi, Feltovich and Glaser (1981, p. 125) describe how 

expert physicists constructed categories based on ‘deep structure’, the physical 

principles or laws that transcended the surface details of a situation. External 
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constraint models focus on knowledge beyond the concepts themselves as 

constraining coherence: coherence arises from ‘extent to which category features go 

together in light of prior theoretical, causal, and teleological knowledge’ (Patalano, 

Chin-Parker, & Ross, 2006, p. 408). For example, the features ‘lives in water, eats 

fish, has many offspring’ go together better than the features ‘lives in water, eats 

wheat, has a flat end’, because of background knowledge about the nature of an 

aquatic habitat (Murphy & Wisniewski, 1989). 

 

Antonovsky (1987, p. 19) argues people may have a general preference, a ‘sense of 

coherence’ regarding the extent to which they perceive their environment as being 

‘structured, predictable and explicable’. Beliefs students hold about knowledge have 

been labelled ‘personal epistemology’ (Hofer, 2001), and learners may posses 

multiple, contextually-triggered epistemological beliefs (Hammer & Elby, 2003). 

Novice learners of physics tend to view the subject as a collection of discrete, 

contextually applied principles, in contrast to the universally coherent model of 

experts (Halloun & Hestenes, 1998). Beliefs about coherence may impact on learning; 

for example, Schommer and colleagues (1992) carried out a large survey which 

indicated a correlation between comprehension of a textbook passage and a belief in 

the coherence of mathematical knowledge. Hammer (1989) reported two case studies 

of learning about physics: in the first, a student’s belief that physics is fragmented is 

claimed to be linked with limited flexibility in application of ideas, in the second a 

student who expected a coherent account resolved misconceptions that another 

student did not. Two further case studies, Gupta and Elby (2011) and Bing and Redish 

(2009), report examples of students solving a physics problem. The students have the 

appropriate knowledge elements to understand the problem, yet initially fail to make 

sense of it, due to the activation of inappropriate epistemological resources. 

 

The final element that drives coherence are factors related to the context. A context 

can be considered to consist of physical conditions, the people involved and their 

social relationships (White, 1985). White (1985) highlights a distinction between 

objective and subjective features of context; though observers may agree on the 

presence of certain conditions, for example physical features, there may be 

disagreement over others, such as the construction of social relationships. Finkelstein 
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(2005) similarly describes context as multi-layered and dependent on the interaction 

between participant, task, researcher and wider cultural factors. Learning has been 

described as an activity inherently situated in a context (Greeno, 1998; Lave, 1988); 

hence, the transfer of knowledge to novel situations may be challenging for students 

(diSessa & Wagner, 2005). A number of models of cognition propose that the 

activation of conceptual resources is context-dependent (Bao & Redish, 2001; 

diSessa, 1993). Such models allow the difference in performance between novices 

and experts to be explained by the possession of different knowledge elements, which 

act together ‘…sometimes coherently and sometimes not’ (Hammer, 2000, p. 53), in 

different contexts of activation (Sabella & Redish, 2007).  

 

In order to subsume the broadest possible range of models, in this thesis, coherence 

will be taken to mean: a subjective judgement of the degree to which a set of 

conceptual resources fit together to make an assertion about a context. This 

construction may seem to shift the burden of definition to the word fit, as is seen in 

Murphy and Medin’s (1985, p. 291) definition of coherence as the extent to which 

ideas ‘hang together’ or ‘make sense’. As the sense of unity denoted by coherence is 

personal and contextual, no further explication is helpful in a definition. However, the 

review of literature above suggests three pressures, pre-existing concepts, 

epistemological assumptions and context, can be seen to constrain coherence (see 

Figure 2.4). 

 
Figure 2.4: Three factors that constrain the formation of coherence. 

 

This model suggests that all three of these factors may impact on the formation of 

coherence; but, according to the circumstances, different pressures may be dominant. 

The factors that drive coherence may be tacit, and an awareness of the links between 
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concepts may, on rare occasions, arise suddenly and be labelled an insight (Brock, 

2015). 

2.4.2 Emic and etic coherence 

The elusiveness of a definition of coherence may stem in part from its subjective 

nature (Hoey, 1991). Different cultures of thinking may apply different rules 

concerning the acceptability of arguments (Kuhn, 1962); and students may perceive 

their concepts as coherent, because their criteria for coherence are different to those of 

scientists’ (Driver, Guesne, & Tiberghien, 1985). This subjectivity suggests it will be 

useful to distinguish emic coherence (as judged by the actors) from etic coherence (as 

judged by external observers) (Pike, 1967). A significant debate in science education 

research has focused on judgements of etic coherence; that is, on describing the extent 

to which students’ knowledge about the world seems coherent to observers (Özdemir 

& Clark, 2007). One model of conceptual change argues that both novice and expert 

understandings are relatively coherent (Vosniadou, 2002); another, suggested by 

diSessa (1993), suggests that novice thinking is relatively unstructured, and thus lacks 

a high level of coherence. The debate regarding etic coherence is one of degree of 

coherence rather than absolute positions (diSessa, 2008) and will be difficult to settle 

because the level of coherence of students’ concepts varies with time and with the 

manner in which such concepts are elicited (Sherin et al., 2012).  

 

Students develop positions that are personally coherent (emic coherence) but may 

appear contradictory to expert observers (Beveridge, 1985; Vosniadou & Brewer, 

1992). However, students may struggle to explicate the processing underlying the 

formation of such emic coherences as individuals may possess limited insight into 

certain aspects of their own cognition (Nisbett & Wilson, 1977), and some elements 

of cognition may be tacit (Brock, 2015). Therefore, in this thesis, the focus will be on 

etic descriptions of the factors that constrain coherences.  

2.4.3 The stability of coherent conceptual structures 

It is reported that concepts which are coherent are acquired more easily (Rehder & 

Ross, 2001) and retained for longer periods (Ausubel, 2000). Conversely, incoherent 

conceptual compounds are susceptible to change (Dole & Sinatra, 1998). This 

observation can be explained using the ‘meaning maintenance model’ (Heine et al., 
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2006), which suggests humans find it problematic when interpretative frameworks are 

disrupted, and will actively seek to re-establish equilibrium. Such processing may be 

non-conscious and lead to ‘a coherent pattern of activated ideas in associative 

memory’, which exaggerates consistency, neglects ambiguity and ignores absent 

evidence (Kahneman, 2011, p. 105). This tendency to partial interpretation of 

evidence to protect existing beliefs, is known as ‘confirmation bias’ and occurs across 

a range of domains (Nickerson, 1998, p. 175), for example, Pasteur, Faraday and 

Millikan are reported to have rejected or ignored anomalous data that threatened the 

frameworks they had constructed. The idea that scientists may be as fallible to 

confirmation bias as other people is central to Kuhn’s (1962, p. 78) construct of 

inertia in paradigm shift; he suggested that, rather than face conflict, scientists might 

‘devise numerous articulations and ad hoc modifications’ to their theories. Though 

models of science as a discipline do not necessarily apply to patterns of change in 

learners’ ideas (Kuhn, 1993), learners’ tendency to defend coherent constructions of 

ideas is a two-edged sword for educators. If students perceive accepted scientific 

constructs as coherent such constructs will be retained and defended against 

contradiction. However, learners’ alternative coherences that differ from scientific 

models may be difficult to alter due to their emic coherence (Driver et al., 1985; 

Vosniadou, 2008a). 

2.4.4 Coherence in students’ conceptual compounds in science  

It is reported that children prefer theories that are logically and empirically consistent 

(Samarapungavan, 1992), though their judgements of consistency may differ from 

those of experts. Novices may perceive less coherence between some types of 

contexts than experts, and may develop personally meaningful categories to deal with 

data they perceive as incoherent (Brown & Clement, 1992; Chi et al., 1981). 

Conceptual change has been described as ‘…a cognitive attempt to resume coherence 

of the knowledge system that has been disturbed by new pieces of information’ 

(Hatano & Inagaki, 2002, p. 174), though change may produce understandings that 

differ from scientific models.   

 

When a student encounters information that contradicts their current beliefs, Chinn 

and Brewer (1993) suggest there are seven patterns of response, only two of which, 

peripheral and complete theory change, involve changes to existing knowledge. They 
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propose that, rather than altering prior conceptual structures, students may ignore or 

reject the anomalous data. The drive to maintain coherence can be so strong that it can 

influence perceptions: Chinn and Malhorta (2002) report that only a quarter of 

children who predicted that two rocks of different mass would take different times to 

fall reported seeing the rocks hit the ground at the same time after being released 

simultaneously from the same height. Alternatively, students may modify their 

conceptual structures to maintain coherence with novel information. Vosniadou and 

Brewer (1992) described how children made peripheral modifications to their theories 

to maintain a belief in a flat Earth. Lawson and Worsnop (1992) hypothesise that 

students developed the belief that God placed fossils onto the Earth to defend their 

central belief in creationism. Joshua and Dupin (1987, p. 129) report students working 

with electrical circuits, who encountered data that contradicted their expectations, 

chose to cite apparatus failure to avoid a threat to their constructed understanding.  

2.5 The rate of conceptual change 
The focus of this thesis, making sense, describes the process of forming and 

modifying conceptual relationships; hence, this section examines the concept of 

conceptual change. Conceptual change has received substantial research interest for at 

least the last thirty years (Larsson & Halldén, 2010; Treagust & Duit, 2009; 

Vosniadou & Ioannides, 1998). During this period, conceptual change has been 

imagined in a number of different frameworks (Treagust & Duit, 2008). However, 

one facet of conceptual change that is conspicuous by the relatively limited attention 

it has received is the rate of conceptual change; that is, the time scales over which 

conceptual change might be expected to occur. A number of researchers describe 

conceptual change as generally gradual (Nussbaum, 1989; Smith et al., 1993; 

Vosniadou, 2008b) though there are reports of rapid forms of conceptual change 

(Brock, 2015; Chi, 1997; Clement, 2008). The next sections examine the notion of 

conceptual change and, in particular, models that suggest varying rates of change.  

2.5.1 The nature of conceptual change 

Though the meaning of conceptual change has developed over the last thirty years 

(Amin et al., 2014; 2008), it remains a challenging concept to define. Conceptual 

change may be an ‘umbrella’ term covering a range of different but unrelated 

processes (Rusanen, 2014; Rusanen & Lappi, 2013) for example, revision, 
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reinterpretation or construction of a conceptual system (Rusanen & Lappi, 2013). It is 

unsurprising, then, that there remains some disagreement over how conceptual change 

might be usefully represented within science education research (Rusanen & 

Pöyhönen, 2013). Differing assumptions about the nature of conceptual constructs 

and other factors (see Table 2.2) has led to the development of a variety of models of 

change (Treagust & Duit, 2008).  

 

Table 2.2: Implied assumptions in models of conceptual change. 

Authors Definition of conceptual change Some implied 

assumptions 

Posner et 

al., 1982, 

p. 211 

‘…the substantive dimensions of the process 

by which people’s central, organising 

concepts change from one set of concepts to 

another set, incompatible with the first.’ 

Concepts have a central 

core; change occurs from 

one set of concepts to 

another; incompatibility 

exists between initial and 

final concepts. 

Chi & 

Roscoe, 

2002, p. 4 

‘…conceptual change is merely the process 

of reassigning or “shifting” a miscategorized 

concept from one “ontological” category to 

another “ontological” category.’ 

Conceptual change 

involves ontological 

recategorisation. 

diSessa, 

2006, p. 

265 

‘… students must build new ideas in the 

context of old ones; hence, the emphasis on 

"change" rather than on simple acquisition.’ 

Context of old ideas is 

significant; ideas are 

‘built’ not acquired. 

Vosniadou, 

2007, p. 49 

‘Theory-like knowledge structures allow the 

possibility that developmental change is 

theory change and this is exactly what 

conceptual change is meant to be.’ 

Conceptual change 

involves theory change; 

concepts are theory-like. 

Rusanen & 

Lappi, 

2013, p. 

3332 

 

‘…conceptual change is seen as a specific 

kind of learning process, in which … 

conceptions of phenomena in a certain 

domain undergo a restructuring process that 

affects ontological commitments, inferential 

relations, and standards of explanation…’ 

Conceptual change 

involves change to 

ontological 

commitments, inferential 

relations and standards 

of explanation. 
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In order to minimise the assumptions upon which the construction is predicated, in 

this thesis, the term conceptual change will be taken to mean: the process in which 

one concept is used at a given time and in a given context, but at a different time an 

alternative concept is applied in the same context. The separation of change in a given 

context from change across contexts will be discussed in section 2.6, below. It has 

been argued that the different models of conceptual change share many common 

elements (Dagher, 1994; Özdemir & Clark, 2007); however, a number of authors have 

suggested dimensions that might highlight differences between models (Caravita & 

Halldén, 1994; Koponen & Huttunen, 2013; Özdemir & Clark, 2007; Tyson, 

Venville, Harrison, & Treagust, 1997). One distinction distinguishes between 

evolutionary and revolutionary change (Nussbaum, 1989; Özdemir & Clark, 2007; 

West, 1982; Wiser & Amin, 2001). This division, however, is used ambiguously: Duit 

(1994, p. 56) links evolutionary change with continuity and revolutionary change with 

‘discontinuity’, however, for other researchers, the revolutionary model is defined as 

the complete replacement of one concept by another (Caravita & Halldén, 1994) and 

the change may be ‘time consuming and lengthy’ (Özdemir & Clark, 2007, p. 357). In 

general, however, there is limited discussion of the rate of conceptual change in 

different constructs of conceptual change. The next section considers models that 

imply a rate of conceptual change. 

2.5.2 Models of conceptual change that suggest a rate of change 

This section examines five models that make claims about the rate of conceptual 

change. One of the earliest models of conceptual change in science education is that 

of Posner and colleagues (Posner et al., 1982). Their construction of learning is based 

on a conceptual ecology, consisting of: anomalies, analogies and metaphors, 

epistemological commitments, metaphysical beliefs and concepts (Posner et al., 

1982). Conceptual change is modelled not as the replacing of old theories with more 

adequate ones; but, rather, as ‘establishing a reflective equilibrium between new 

ideas, facts, and discoveries and his current set of concepts’ (Strike & Posner, 1982, p. 

233). Given this complex conceptual ecology, conceptual change is seen as a ‘gradual 

and piecemeal affair’, which ‘involves much fumbling about, many false starts and 

mistakes, and frequent reversals of direction’ (Posner et al., 1982, p. 223) and it is 

argued that flashes of insight and sudden change are considered to be rare 

occurrences. 
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In Vossniadu’s ‘framework’ model, concepts are seen as fragmented entities: ‘we do 

not expect students to hold unitary, isolated, and context-independent misconceptions’ 

(Vosniadou, 2013, p. 22), but the elements are seen as constrained within broad 

epistemological and ontological assumptions (Vosniadou & Brewer, 1992). It is 

argued that conceptual change involves the alteration of these frameworks in which 

concepts are embedded (Vosniadou, 2007b). It is unsurprising that the framework 

model of the concept leads to a gradual model of conceptual change for three reasons: 

a) it takes a long time to reorganise multiple concepts into a framework (Vosniadou, 

2002); b) the frameworks are coherent and the result of years of everyday experience 

(Vosniadou, 1994); and c) the ontological, representational and epistemological 

changes that are expected to take place within the framework theory are necessarily 

slow and gradual (Vosniadou & Skopeliti, 2014). 

 

diSessa’s model of the concept has some similarities with the notion of an array of 

different elements proposed by Posner and colleagues (Posner et al., 1982). diSessa 

proposes ‘a variety of types of mental entities’, which are seen as existing at a smaller 

‘grain-size’ than concepts (diSessa, 2002, p. 33). Concepts are not seen as ‘unitary 

mental structure[s]’, but are described as ‘fuzzy’, since they involve the interaction of 

many smaller elements (diSessa & Sherin, 1998, p. 1170). Given this understanding 

of the concept, conceptual change is seen as a reorganisation of conceptual ecology 

involving a continuity of resources that are refined and recombined into knowledge 

systems in a gradual progress towards expertise (diSessa, 1993; diSessa, 2002; Smith 

et al., 1994).  However, diSessa’s model allows for rapid switching between ‘correct 

and flawed approaches’ in a single problem solving episode, as conceptual structure is 

seen as being composed of both expert and novice elements (Smith et al., 1994, p. 

125). 

 

The three models of conceptual change examined so far suggest a generally gradual 

transition between concepts; however, one construction offers an explanation of rapid 

conceptual change. Chi’s model of the concept proposes that concepts may acquire a 

‘label’ to indicate membership of a category (Chi, 1997, p. 210). Though they may be 

implicit, such labels are conjectured to affect the manner in which the concept is used 
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(Chi, 1997). The proposed categories are seen as ontologically distinct, denoting that 

‘the attributes of one category cannot be applied to members of another category’ 

(Chi & Slotta, 1993, p. 252). Such mutually exclusive categorisation allows for the 

possibility of rapid conceptual change through an ‘ontological shift’ of the attributes 

of a concept that is seen as underlying the ‘the “aha" phenomenon’ (Chi, 1997, p. 

230). As ontological categories are seen as binary, it is impossible ‘…to gradually 

change a conceptualization from one ontological category to another’ (Slotta, 2011, p. 

156). However, Slotta and Chi (2006) allow that experts can maintain intuitive 

categorisations alongside expert ontologies, therefore, in addition to discontinuous 

changes, Chi and Roscoe (2002) argue changes to mental models can happen in an 

incremental fashion through the accumulation of additions and alterations to 

conceptual structure. 

 

Lastly, the complex dynamic system approach (Brown & Hammer, 2008, p. 124) 

assumes a conceptual ecology consisting of elements that are involved in constant 

‘non-linear’ interactions (see also Koponen and Huttunen’s (2013) model). It is 

argued this assumption means learning might be expected to exhibit ‘a period of slow 

growth at the outset with more rapid progress later, as ideas connect to and build on 

the initial conceptual understandings’ (Brown & Hammer, 2008, p. 132). A trend in 

systemic models of conceptual change is for researchers to borrow terms such as 

‘non-linear’ and ‘conceptual attractor’ (Brown & Hammer, 2013, p. 127; Luffiego, 

Bastida, Ramos, & Soto, 1994, p. 306; Sharp & Kuerbis, 2006, p. 141) and also 

methods of analysis (Koponen, 2014) from the study of dynamic systems. However, 

some commentators have argued that the application of dynamic systems models to 

cognition is problematic (Eliasmith, 1996; Keijzer & Bem, 1996). Though there may 

be some similarities between conceptual systems and the models produced by the 

dynamic systems approach (Smith & Thelen, 2003), the number of simplifying 

assumptions that need to be applied casts doubt on the usefulness of the analogy 

(Eliasmith, 1996). The mathematical terminology of chaotic systems may not be 

appropriately applied to the difficult-to-quantify psychological realm (Barton, 1994); 

and, though dynamic systems models might, to some extent, fit data, they provide few 

explanations or insights into cognitive processes (Keijzer & Bem, 1996). 
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2.5.3 Models of conceptual change that suggest multiple rates of change 

Whilst the models above tend to link a construct of the concept with a single rate of 

conceptual change, a number of models exist which allow for multiple rates of change 

(see Table 2.3).  

 

Table 2.3: Models of conceptual change that include multiple rates of conceptual 

change. 

Author/s ‘Slow’ model ‘Fast’ model 

Gilbert & Watts, 1983 

 

Smooth Change  Catastrophic 

Thornton, 1997 Extended conceptual 

transition 

Punctuated conceptual 

evolution 

Blown & Bryce, 2006 Weak/ Moderate 

restructuring 

 

Radical/ Dynamic 

interactive restructuring 

Clement, 2008 Accretionism Eurekaism 

 

Gilbert and Watts proposed three types of conceptual change which link a model of 

the concept with a rate of conceptual change. In the stepped change model, concepts 

are envisaged as ‘Euclidean point “misconceptions”’ (Gilbert & Watts, 1983, p. 88), 

which allow change to be ‘instantaneous’. In the smooth change model, an actional 

model of the conception leads to a construction of students in a constant process of 

revision of conceptions, and those ‘… that show the greatest potential are retained by 

frequent use’ (Gilbert & Watts, 1983, p. 89). Finally, the authors argue that the 

catastrophic model has the most potential as it based on a ‘continuous, or 

constructivist notion of conception’ (Gilbert & Watts, 1983, p. 91) and allows for 

both gradual change and the rapid change seen in “Ah, ha” experiences. 

 

Blown and Bryce (2006) suggest four types of conceptual change, which differ by the 

time span over which they occur: a) weak restructuring: ‘a gradual realisation over 

several years’ (Blown & Bryce, 2006, p. 1449); b) moderate restructuring: the 

‘gradual creation of alternative frameworks’ (Blown & Bryce, 2006, p. 1449); c) 

radical or strong restructuring: ‘changes over relatively short time spans’, that is, 
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‘from a few months to 1 or 2 years’ (Blown & Bryce, 2006, p. 1449); and d) dynamic-

interactive restructuring: ‘very rapid changes’ that occur during an interview or over 

the course of a few minutes (Blown & Bryce, 2006, p. 1450).  

 

Thornton (1997) draws an analogy between conceptual change and biological 

evolution, contrasting extended conceptual transition with punctuated conceptual 

evolution. Thornton implies a student may transition instantaneously to complete 

alignment with an expert position, though he admits that there is ‘… little evidence 

for this model’ (Thornton, 1997, p. 248). Finally, Clement (2008, p. 442) proposes 

that conceptual change may be gradual for extended periods, but also that episodes of 

stagnation and insight (sudden increases in understanding) might occur. Clement 

(1989, p. 365) explicitly describes a moment of a rapid conceptual change in a student 

engaged in solving a problem and argues that such insights can lead to ‘fairly sudden 

reorganizations in the structure of a mental model’ (Clement, 1989, p. 341). The next 

section examines the empirical evidence for claims concerning the rate of conceptual 

change.  

2.5.4 Evidence for varying rates of conceptual change 

The evidence from a number of researchers presents conceptual change as a largely 

gradual process. Nussbaum (1989, p. 538), for example, argues evidence indicates 

learning occurs gradually: ‘… the student maintains substantial elements of the old 

conception while gradually incorporating individual elements from the new one’. 

Vosniadou and Ioannides (1998, p. 1226) report the idea of a sudden shift in 

conceptual structure implied by early models of conceptual change ‘has not…been 

supported by empirical evidence’. Moreover, Vosniadou argues that what are claimed 

to be radical conceptual changes are really the end product of a ‘slow and gradual 

affair and not a dramatic gestalt type shift’ (Vosniadou, 2008b, p. xvi). In examining 

four theories of conceptual change, including those of Vosniadou, Chi and Roscoe 

and diSessa, Mayer (2002b) concludes that in all of these models conceptual change 

is constructed as a gradual process. Several researchers report that rapid changes in 

understanding are rare occurrences (Fisher & Moody, 2002; Vosniadou, 2008b; 

Vosniadou & Ioannides, 1998). However, it is possible to find reports of moments of 

rapid conceptual change in the literature (Brock, 2015), though such moments may be 

experienced as sudden, they might be the outcome of a gradual tacit process. Given 
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the existence of models of conceptual change at varying rates, the next section 

considers the concept of the rate of conceptual change. 

2.5.5 Rate of change as a neglected component of conceptual change 

Typically, studies of conceptual change have used cross-sectional or longitudinal 

designs with relatively long intervals, often several weeks or months, between probes, 

and a relatively low number of probes (Brock & Taber, 2017b). Few fine-grained 

studies of the rate of conceptual change have been carried out, perhaps because 

carrying out research that samples data related to conceptual change at a sufficiently 

high frequency to adequately represent change processes, as in the microgenetic 

method (Siegler & Crowley, 1991), is demanding for the researcher and participants.  

 

The nearest notion to the concept of rate of conceptual change that exists in the 

literature is Georghiades’ (2000, p. 126) notion of durability; that is: ‘How long does 

a conception remain in effect, within the learner’s cognitive repertoire?’ This 

definition is somewhat vague, as the meaning of ‘in effect’ is not further defined. A 

central challenge to understanding the rate of conceptual change is that several 

models of cognition model learners as sometimes possessing multiple understandings 

of the same concept (Harrison & Treagust, 2000b; Mortimer, 1995; Taber, 2001a). In 

such models, the use of one concept in a given context, followed by the use of a 

different understanding in the context, may not be evidence of conceptual change, but, 

rather, the stable application of two elements of conceptual ecology (see the lower 

part of Figure 2.5). The methodological implications of this observation are discussed 

in detail in Section 4.3.3. Given the potential presence of multiple, contextually-

triggered concepts, the rate of conceptual change is defined as: the rate at which the 

oftenness of application of a particular concept, in a particular context, varies over 

time. 

 

The term ‘oftenness’ is used in preference to ‘frequency’ as the construct is not 

intended to be a quantitative measure, but, rather, a broad description of the pattern of 

change. Oftenness is taken to refer to participants’ or researchers’ subjective 

interpretation of how commonly a particular concept is trigged in a given context. The 

construct can be used to distinguish between the three patterns of change shown in 

Figure 2.5. 
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Figure 2.5: Examples of different patterns of conceptual change in a two-concept 

conceptual ecology. Time advances to the right along the x-axis. The black circles 

represent the application of a particular concept in a single context at a particular 

point in time. 

 

It may be that conceptual change is generally like the representation shown in section 

a) of Figure 2.5; a gradual change in the likelihood of application of a particular 

concept. However, there are reports of sudden changes in understanding, or moments 

of insight (Brock, 2015), which may be evidence of stable (graph b in Figure 2.5) or 

unstable (graph c in Figure 2.5) change. It is important that researchers attempt to 

distinguish between change to concepts to which a learner holds limited commitment 

from more substantial and stable change (Taber, 1995). However, it is challenging to 

define a duration of observation that supports claims to stability (Brock & Taber, 

2017b). The construct of rate of conceptual change also allows the apparently variable 

application of two concepts (graph d in Figure 2.5) to be considered as an example of 

stability rather than change. Though a learner may apply two concepts in a single 

context, if the oftenness of application of both concepts does not vary, no conceptual 

change is occurring.  

 

If the rate of conceptual change is studied over an extended period of time, 

representations of change will be inherently bound up with the order and nature of the 

probes presented, much as the data in a case study are situated in a given context 

(Flyvbjerg, 2006). Comparisons between representations of the rate of conceptual 

change for different learners, even those produced from a series of identical probes, 

are challenging, and a researcher may need to make reasoned judgments about the 
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a) Long timescale change between two 
concepts

Time

concept 1
concept 2
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extent to which claims are comparable, as outlined in the concept of analytical 

generalisability (Kvale, 1996; Taber, 2000a).  

2.6 Conceptual change and conceptual span 
Though cognition may be parallel (Rumelhart & McClelland, 1986), consciousness 

imposes a sense of seriality to a ‘train of thought’ (Baars & Franklin, 2003, p. 167), 

and research tools tend to report data as sequence (see Figure 2.6).

 
Figure 2.6: A representation of the effect of different choices of probes on the 

construction of a data sequence. On the left-hand side the same context is used 

repeatedly as a probe; on the right, multiple different contexts are presented. 

 

Only a subset of a learner’s conceptual resources can be the focus of investigation at a 

given time (Taber, 2013), and the nature and order of probes presented to a learner 

will affect which conceptual resources are activated. A researcher may wish to 

examine the conceptual resources a student applies when exposed to the same context 

several times in order to understand patterns of conceptual change (see left-hand side 

of Figure 2.6). Whilst this approach may offer a valid representation of change in a 

particular context, it develops a limited representation of the resources available to the 

learner. Alternatively, the researcher may present probes, which trigger the same set 

of concepts, but are situated in a range of contexts, allowing an understanding of the 

contextual triggering of resources and, perhaps, accessing a broader range of 

conceptual resources. However, in this approach, it is impossible to distinguish 

between effects due to context and variation due to change over time (for a discussion 

of the nature of different sequences of probes, see Section 4.3.7). Therefore, two 
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dimensions might be seen as significant for reporting the nature of students’ 

cognition: an assessment of variation in a given context over time, conceptual change; 

and a representation of the manner in which a concept is applied across different 

contexts, conceptual span. 

2.6.1 Conceptual change 

Though early descriptions of conceptual change modelled the process as the 

substitution of one concept for another (for example, Chi and Roscoe (2002)), it has 

been noted that experts and novices may not differ greatly in the conceptual resources 

they possess. Rather, there may be differences in the contexts in which concepts are 

activated (Brock & Taber, 2017a; Sabella & Redish, 2007) and contemporary models 

of change focus on changes to the conditions of activation of multiple conceptual 

resources across different contexts (diSessa & Sherin, 1998; diSessa & Wagner, 

2005). 

 

Two writers have argued conceptual change should be replaced with constructions 

that have a greater focus on contextual variation: Linder (1993) has suggested 

conceptual appreciation, an understanding of how the use of a concept is constrained 

by contexts, is preferable to conceptual change; and Mortimer (1995) proposed the 

conceptual profile construct, the set of different understandings of a concept a learner 

possesses. For example, a conceptual profile may consist of a learner’s 

conceptualisations of heat as a substance in some contexts and as an abstract entity in 

others. In Mortimer’s (1995) model, conceptual change is understood as changes to 

the likelihood of a particular understanding being triggered in a given context. 

However, such descriptions of conceptual change are methodologically problematic, 

as it is unclear whether reports of the use of multiple conceptual resources across a 

number of contexts should be taken as evidence of the activation of a single, static 

conceptual profile, or whether they may be used to make inferences about change. 

Therefore, the separation of conceptual change from conceptual span is felt to be a 

useful distinction. Conceptual change, as defined above, will be taken to mean the 

process in which one concept is used at a given time and in a given context, but at a 

different time an alternative concept is applied in the same context.  
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2.6.2 Conceptual span 

Several studies report that students activate different conceptual resources in different 

contexts (Clough & Driver, 1986; Mishler, 1979; Palmer, 1993; Taber, 2008b; White, 

1985). Transfer of learning is thought of as the ability to apply what has been learned 

in one context to another context (Haskell, 2001; Singley & Anderson, 1989), and has 

been reported as difficult to achieve (Gick & Holyoak, 1980, 1983; Haskell, 2001; 

Perkins, 2009; Singley & Anderson, 1989). However, as shown in Figure 1.1, the 

ability to transfer learning to appropriate contexts is a commonly cited component of 

understanding (Burns et al., 1991; Newton, 2001; Trout, 2002). 

 

Various mechanisms of transfer have been suggested: the development of abstract 

schema (Gick & Holyoak, 1983), the construction of coordination classes (diSessa & 

Wagner, 2005), and engagement with the cultural practices in a domain (Brown, 

Collins, & Duguid, 1989). However, such models of transfer have been criticised for 

imposing an external expectation of the form of transfer: Lobato (2003, 2012) has 

argued researchers should be sensitive to learners’ conceptualisations of the 

similarities and differences between contexts. Experienced scientists and novice 

learners may have differing categorisations of contexts (Chi et al., 1981). A task that 

involves two markedly different contexts for a novice may seem like two variations 

on a single context to an expert, and vice-versa. 

 

Given the significance of the term context to the argument, it is worth considering its 

connotations. Both White (1985) and Finkelstein (2005) describe a context as 

consisting of three broad factors: physical conditions, the people involved and social 

or cultural conditions. However, as White (1985) hinted and Lobato (2003) described 

in detail, the interpretation of factors that delineate a context will be subjective. Here, 

the term refers to the stimulus presented to the student; changes in the other factors 

such as physical or cultural conditions are not considered. Only probes in which the 

same stimulus is repeated, for example the same question from the force concept 

inventory (Hestenes et al., 1992), are seen as identical contexts. Probes which might 

be seen by experts as possessing the same ‘deep structure,’ but which novices may 

perceive as having surface differences (Chi et al., 1981), for example, the oscillations 

of a pendulum and a mass on a spring, are described as different contexts in this 
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study. A discussion of the degree of similarity between probes can be found in 

Section 4.3.7. 

 

The term ‘conceptual span’ has been used to refer to the range of contexts that are 

covered by a learner’s conceptual resources (diSessa & Wagner, 2005, p. 128). The 

related concept of ‘contextual coherence’ (Nieminen, Savinainen, & Viiri, 2012, pp. 

722–723) refers to the ability of a student to apply a concept in a range of familiar and 

novel contexts. The span conceptualisation is preferred here as an ‘ability’ would 

appear to be a more difficult concept to report empirically than the range of contexts 

in which a concept is activated. In this study, the concept of conceptual span will be 

developed to create a clear separation between the application of a concept across 

contexts and change in a concept over time in a particular context. Conceptual span 

will therefore be taken to refer to the range of contexts to which a learner applies a 

concept over an interval during which it is assumed that no significant changes occur 

to conceptual structure. The notion of a static interval is introduced in greater detail in 

section 4.3.4. 

2.6.3 Studies of conceptual change in a fixed context 

A common means of assessment in science education is to present a set of probes 

across a range of contexts at multiple moments in time, as occurs in studies that 

construct change from the repeated application of concept inventories (e.g. Hake, 

1998). However, there are relatively few studies that explore conceptual change by 

presenting a probe in a single context to a student multiple times. Those studies tend 

to apply the microgenetic approach, which samples data at a frequency which is 

assumed to be high compared to the rate of change of the phenomenon of interest 

(Siegler & Crowley, 1991), and present participants with an identical measure over a 

number of sessions. Though some of these studies have examined strategy use (Kuhn 

& Phelps, 1982; Kuhn, Schauble, & Garcia-Mila, 1992), others have focused on 

changes in knowledge (Johnson & Mervis, 1994), reasoning (Schauble, 1996) and 

knowledge structures (Izsak, 2000). It is interesting to note that even when identical 

probes were presented to students, Kuhn and Phelps (1982, p. 40) noted significant 

variability in participants’ responses and they argued this variability should be treated 

as ‘an important subject of substantive investigation, rather than a methodological 

source of error’.  
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2.6.4 Studies of conceptual span 

Studies of conceptual span focus on changes in application of concepts to different 

contexts over a single static interval, a period of time over which no significant 

changes to conceptual structure occur. For example, Taber (2008b) investigated 

students’ conceptual integration related to forces and energy across several contexts, 

for example, an apple hanging from a tree, the solar system and a parachute jump, in a 

single interview. In that case, the interview may be imagined to be a single static 

interval, that is, a representation of conceptual structure at a single point in time. 

Several studies (Clough & Driver, 1986; Ioannides & Vosniadou, 2002; Palmer, 

1993) of contextual variability assume a single data collection event, which has some 

extension over time (perhaps 30-60 minutes), can produce a static representation of 

conceptual resources. Such studies are useful for providing information on the 

features of different contexts that trigger differing interpretations. 

2.6.4.1 Conceptual span in novices and experts 

Conceptual change and conceptual span represent different facets of a learner’s 

developing understanding. One approach to examining both dimensions of change is 

to carry out cross-sectional research into the application of concepts across contexts, 

for example, Ioannides and Vosniadou (2002) claimed to have detected a degree of 

consistency in novice students’ application of concepts across contexts. However, two 

quasi-replication studies reported much lower levels of consistency (diSessa et al., 

2004; Özdemir & Clark, 2009). These differing interpretations of the applications 

arise from different models of conceptual change (Özdemir & Clark, 2007): the 

knowledge-in-pieces model (diSessa, 1988, 1993), and the framework model 

(Ioannides & Vosniadou, 2002; Vosniadou, 1994). The framework model suggests 

that the responses of learners who have not been exposed to formal education will be 

‘relatively consistent’ (Vosniadou, 2008a, p. 14); but, when students encounter formal 

scientific teaching, there may be a period of inconsistency as they develop new 

models (Vosniadou, 2008a). In diSessa’s (2002, p. 53) model, though novice thought 

is not seen as completely lacking in consistency of application across contexts, it is 

seen as consisting of ‘relatively independent’ p-prims which are ‘contextually bound’. 

As expertise develops, the elements of conceptual structure become organised into 

structures, known as coordination classes, that allow a consistent approach across 

contexts (see Figure 2.7). 
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Figure 2.7: Representations of contextual span at different stages of development in 

the framework and knowledge-in-pieces models. The black circles represent the use 

of a particular concept in a given context. 

 

The representation of expert conceptual consistency in Figure 2.7 includes an 

assumption that is acknowledged by several researchers: expert learners have a large 

conceptual span (Ainsworth, 2008; diSessa, 2002; diSessa & Wagner, 2005; Kuhn & 

Phelps, 1982; Parnafes, 2012). Evidence from students’ answers to the force concept 

inventory suggests there is a correlation between consistent application of learning 

across different representations of questions and overall score (Nieminen et al., 2012). 

Experts’ superior performance on novel transfer tasks is an assumption that underlies 

certain forms of higher order questions on assessments (Zoller, 2010). However, 

expert conceptual span is challenging to define, as even expert physicists, under 

certain circumstances, revert to alternative understandings (Goldberg & Thompson-

Schill, 2009; Kelemen, Rottman, & Seston, 2013), and it is difficult to describe 

precisely the span of contexts that represents expert behaviour (Clark, 2006; diSessa 

& Wagner, 2005). In this study, the students encountered both novel and repeated 

contexts over the course of the sessions, in order to probe both conceptual change and 

conceptual span. 

2.6.5 Studies that separate conceptual span and conceptual change 

There are relatively few studies that present evidence of conceptual span and 

conceptual change as two separate dimensions. Two such studies are Tao and 

Gunstone’s (1999) investigation of computer-based learning, and Clark’s (2006) 

longitudinal study of learning in thermodynamics. In Clark’s (2006) study, students 

were interviewed seven times over a period of approximately 13 weeks to probe their 
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understanding of thermodynamics. The probes were a sequence of laboratory 

activities and simulations without repeated contexts and therefore might be thought of 

as investigating conceptual span. A pre- and post- test of understanding was carried 

out which might be imagined to be a measure of conceptual change. Clark (2006) 

describes the case of one student who became increasingly able to connect conceptual 

elements together to form an explanation. A representational tool called an ‘element 

map’ (Clark, 2006, p. 468) was developed to display the activation of different 

conceptual elements within an interview. Though the separation of conceptual span 

and change is not explicitly discussed, and the argument might have been 

strengthened by a discussion of the nature of claims regarding change that were 

proposed, the study does present evidence of changes to conceptual span, and data 

related to conceptual change. 

 

A different approach is to investigate change across a small number of contexts, each 

of which is repeatedly encountered a number of times. Tao and Gunstone (1999) 

focused on three contexts, a model car, a spaceship and a skydiver, and used computer 

simulations, interviews and written tests to examine students’ understanding of forces 

in these situations. In this research, the time engaged with each context is, implicitly, 

assumed to be a static interval, and changes between static intervals in the same 

context are considered. Their data led Tao and Gunstone (1999) to conclude that 

conceptual change initially occurs in a particular context before the occurrence of 

context-independent change. The clear separation of conceptual change, variation in 

application of a concept in a single context, from the application of concepts across 

contexts, conceptual span, in this study presents a broad and valid representation of 

change. It is proposed that this two-dimensional construct of changes to conceptual 

ecology will clarify descriptions of change.  

2.6.6 The two dimensions of change 

The investigation of change related to conceptual resources is challenging, as it 

requires both investigation across multiple contexts, in order to probe the extent of 

structure and to understand contextual triggers and transfer, and also a comparison 

between identical contexts to support claims of conceptual change. Therefore, a 

method which investigates understanding across multiple contexts, but also includes 

some repetition of probes (as in Tao and Gunstone’s (1999) study), might be an 
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effective approach for considering the development of conceptual resources (Caravita 

& Halldén, 1994). The use of the concept of the static interval (See section 4.3.4) 

allows researchers to clearly separate two dimensions of change. For example, as 

illustrated in Figure 2.8, a learner might be exposed to four different contexts to 

provide evidence of conceptual span. Then, in order to assess conceptual change, the 

learner’s understanding could be reassessed in the previously encountered contexts, in 

this case context 1 and 2. Application of learning to novel contexts, 5 and 6, adds 

information on the student’s ability to transfer learning. By investigating both 

conceptual span and conceptual change a fuller representation of changes to 

conceptual resources may be developed. 

 
Figure 2.8: Conceptual change and conceptual span as two dimensions of variation in 

the application of conceptual resources. 

2.7 Research questions 
As shown in Figure 2.0, the construction of the concept of making sense leads to the 

research question below, which can be broken down into six sub-questions. 

 

How do 16-17 year-old students form and modify conceptual compounds to develop 

coherent causal systems that may be transferred to novel contexts in physics? 

 • How do ontological categories vary over time? 

 • How do compounds of concepts form and disperse over time? 

 • How do causal relationships develop over time? 

 • What factors cause collections of concepts to cohere together? 

• How can the rate of conceptual change be constructed in students’ 

responses? 

• How can conceptual change be distinguished from the activation of 

concepts across contexts? 
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3.0 Methodology 
 

Research can be conceptualised as ‘systematic self-critical inquiry’ (Stenhouse, 1981, 

p. 103), and a large number of approaches to research have been proposed (Nisbet, 

2005) but there remains no consensus on the most effective manner in which to 

investigate the social world (Baranov, 2004). Different approaches to inquiry arise as 

researchers necessarily adopt implicit or explicit premises (T. S. Kuhn, 1962), hence 

no research can be considered to be free of assumptions (Golby, Martin, & Porter, 

1995). Such axioms can be classified as: ontological, relating to the nature of entities 

which exist (Effingham, 2013; Sommers, 1963); epistemological, assumptions 

regarding the nature of knowledge and its justification (Dancy, 1985; Moser, 2002); 

and axiological assumptions concerning values and ethics (Mertens, 2014; Weinberg, 

1970). No particular combination of assumptions, sometimes labelled a paradigm 

(Lincoln & Guba, 2005), should be seen as superior to another; rather, different 

suppositions are suitable for answering different types of research question 

(Gawronski & De Houwer, 2014). A researcher has a duty to explicate and justify the 

assumptions made in their work (Caelli, Ray, & Mill, 2003; Creswell & Miller, 2000; 

Guba, 1981; Krauss, 2005), via methodological justification, the examination of the 

premises of a particular approach to research (Schwandt, 2007). In particular a 

methodology should aim to develop a ‘coherent and consistent argument’ (Taber, 

2007, p. 44) and ensure a good ‘match’ between the assumptions of the work and the 

phenomenon of interest (Krauss, 2005, p. 761).  

 

Holloway and Todres (2003, p. 347) argue for consistency between the argument in 

different sections of a research paper, a concept which they describe variously as 

‘goodness of fit,’ ‘logical staged linking’ or ‘how the whole thing “hangs together.”’ 

Failure to achieve this can lead to ‘method slurring’ (Baker, Wuest, & Stern, 1992, p. 

1355), in which approaches with different philosophical assumptions are erroneously 

combined. The aims of research, its theoretical assumptions and the methods used 

must be justified as leading to a coherent argument as illustrated in Figure 3.0. 
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Figure 3.0: Relationship of methodology and methods seen in the triadic network of 

justification in Laudan (1986, p. 63). 

 

The next sections will make the case that the assumptions of constructivism fit well 

with the aims and methods of this research. 

3.1 Assumptions adopted in this work 
The assumptions made in this thesis are outlined below in three categories: 

ontological, epistemological and axiological (Coe, 2012). 

3.1.1 Ontological assumptions 

Ontology is the study of what kinds of entities exist (Effingham, 2013). A range of 

different ontological assumptions is compatible with constructivism. Some writers 

have argued constructivism is agnostic over the existence of external reality (Staver, 

1998). A similar observation was made by Quale: 

 

Thus, the theory [radical constructivism] does not deny the 

possibility of an objective reality, existing independently of all 

subjects; but it does assert that it is in principle not possible to 

obtain cognitive knowledge of such an entity, and hence it is 

irrelevant in the context of cognitive learning. (Quale, 2007, p. 

233) 

 

Among several slightly different claims regarding ontology, von Glasersfeld argues 

that constructivism ‘… has nothing to say about what may or may not exist’ (von 

Glasersfeld, 1996, p. 113). It has been claimed that the proposition that knowledge is 

constructed by individuals or groups does not make any assumptions about the nature 

of reality (Noddings, 1990). 
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Other versions of constructivism for example, Kumar’s realist constructivism (2011) 

and Cupchik’s (2001) constructivist realism, adopt an unambiguous assumption that 

an external reality exists (Blackburn, 2005). Models such as these can be seen to be 

the source of Matthews’ (1992) argument that constructivism, or some forms of it, are 

versions of empiricism, and that ‘…talk of 'making sense' is quintessentially 

empiricist’ (Matthews, 1992, p. 305). Empiricism, here, is taken to mean the 

development of knowledge through the acquisition of sense data about ‘material 

objects’ that are assumed to exist (Matthews, 1992, p. 302). Matthews (1992) 

suggests the difference in positions between at least some versions of realism, 

empiricism and constructivism, may be relatively small.  

 

Alternatively, it has been observed that certain forms of constructivism, for example, 

von Glasersfeld’s radical constructivism, incoherently adopt both a realist and 

solipsistic stance (Martínez-Delgado, 2002). However, it seems that solipsists, 

thinkers who believe only one’s own experience exists (Blackburn, 2005), are rare 

(Russman, 1987); in a survey of philosophers, only 4.8% of respondents expressed a 

position sceptical of an external world (Bourget & Chalmers, 2013, p. 476). As 

Martínez-Delgado (2002) observes, even the radical constructivism of von 

Glasersfeld is not purely solipsistic: von Glasersfeld (1996, p. 118) implies that ‘ontic 

reality’ impinges on actions to some extent. It seems that, amongst constructivists in 

science education, there is a general consensus that assumes an external reality 

impinges to some extent on awareness. Though at least one model of constructivism 

‘explicitly rejects... notions of absolute existence’ (Quale, 2008, p. xv), the relativist 

ontological position is ‘not representative of most work’ in science education (Taber, 

2009, p. 166). The existence of an ‘external reality’ will be assumed in this work; 

however, the extent to which it is possible to gain knowledge of such a reality is 

debated, as will be considered in the next section. 

3.1.2 Epistemological assumptions 

A central epistemological claim of constructivism is that access to reality is imperfect 

(Taber, 2009). Just as with the straw man of solipsism, critics of constructivism have 

exaggerated constructivists’ arguments concerning the fallibility of the link to the 

external world. For example, Kitcher (2001, p. 156) argues that constructivists make 
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use of an ‘inaccessibility of reality argument’; that is, they regard all objects as 

‘epistemically inaccessible’. However, arguing that there is no access to external 

reality is by no means the same as a claim that access to an external reality is 

mediated or imperfect. Some philosophers and psychologists (Putnam, 1990; Reid, 

1997; Searle, 2015) have proposed versions of direct realism, the claim that there are 

‘no entities mediating perception of objects’ (Copenhaver, 2004, p. 62). Yet, even 

realists such as Kitcher (2001, p. 167) argue that ‘[r]ealists should also acknowledge 

that our judgments of success are fallible’, as they occur through our limited 

‘perceptual powers’ (Kitcher, 2001, p. 191). Evidence from studies of perception 

suggest that ‘direct’ (unmediated) and ‘indirect’ perception form a continuum with no 

clear division between the two processes (J. Norman, 1983, p. 731; Ulman, 1980, p. 

377). For example, ‘seeing’ is not simply a matter of perception, but also of mental 

representation (Fodor & Pylyshyn, 1981, p. 190). Models of direct perception struggle 

to explain how knowers can come to develop faulty representations (Fodor & 

Pylyshyn, 1981). The next sections consider a particular example of faulty 

representations, Gettier’s (1963) cases, to develop a critique of the justified true belief 

model of knowledge that might seem to arise from direct realism. 

 

The term ‘knowledge’ is widely used in educational discourse (Taber, 2013), for 

example, researchers refer to students’ knowledge structures (Driver & Oldham, 

1986; Novak, 1990; Osborne & Wittrock, 1983) or students’ and teachers’ knowledge 

of various concepts (Chinn & Brewer, 1993; Hogan, 2000; Justi & Gilbert, 2002; Van 

Driel & Verloop, 2002; Zohar & Nemet, 2002). However, the concept of knowing, 

and the related construct of knowledge, are problematic, as they have been used with 

a range of different meanings (Aaron, 1971). For example, Price (1969, pp. 42–43) 

draws a distinction between possessing or having knowledge, ‘a disposition’ and the 

‘mental occurrence’ of activating that knowledge at a particular time. Despite these 

different meanings, a model of knowledge as justified, true belief, was taken for 

granted by the majority of philosophers until the middle of the twentieth century 

(BonJour, 2001). 

3.1.2.1 The Platonic model of knowledge 

It has been claimed that the Platonic definition of knowledge is ‘standard’ and ‘widely 

accepted’ (Boghossian, 2006, p. 15). Matthews (2002, p. 127) argues that the view of 
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knowledge as justified true belief has been ‘epistemological orthodoxy’ since Plato 

proposed the definition. In the Theaetetus, Plato’s Socrates is reported as arguing that 

knowledge is distinct from belief because knowers have an ‘account’ of their true 

beliefs that believers do not possess (Plato, trans. 2004, p. 115). Plato proposed that 

justification tethers beliefs: 

 

For true opinions, as long as they remain, are a fine thing and all 

they do is good, but they are not willing to remain long and they 

escape from a man’s mind, so that they are not worth much until 

one ties them down by (giving) an account of the reason 

why….After they are tied down, in the first place they become 

knowledge, and then they remain in place. (Plato, trans. 1981, p. 86) 

 

Though it had become widely accepted, the justified true belief model of knowledge 

has encountered a number of challenges, and it has been reported that ‘[m]ost 

philosophers’ (Turri, 2010, p. 247) no longer accept the Platonic account of knowing. 

3.1.2.2 Russell’s challenge to the Platonic model 

Though Gettier’s (1963) thought experiments are seen as the most significant 

challenge to the justified true belief model of knowledge (Dew & Foreman, 2014), 

and are discussed in detail below, a number of commentators have noted that a case 

described by Russell prefigured Gettier’s critique (Bigelow, 2006; Heathcote, 2012). 

Russell (1948, p. 170) argued that there is an ‘inevitable vagueness and inexactitude’ 

associated with the concept of knowledge, and he proposed a thought experiment 

concerning a clock: 

 

“Knowledge” is sometimes defined as “true belief", but this 

definition is too wide. If you look at a clock which you believe to 

be going, but which in fact has stopped, and you happen to look 

at it at a moment when it is right, you will acquire a true belief as 

to the time of day, but you cannot be correctly said to have 

knowledge. (Russell, 1948, p. 113) 
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Russell’s example includes both the features of Gettier problems introduced below: 

luckiness and fallibility of justification (Hetherington, 2011). However, the thought 

experiment was ‘little noticed at the time’ (Bigelow, 2006, p. 204), and it was not 

until the second half of the twentieth century that epistemologists began to seriously 

question the justified true belief model of knowledge. 

3.1.2.3 Gettier’s critique 

In 1963, Edmund Gettier published a three-page paper which has had an ‘[e]normous 

impact’ (Foley, 2002, p. 178) on epistemology, and demonstrated that the traditional 

model of knowledge was ‘…at the very least seriously incomplete and quite possibly 

even more badly mistaken’ (BonJour, 2001, p. 40). The impact of the Gettier’s paper 

was far-reaching, and there is, as yet, no consensus amongst philosophers as to how to 

resolve the objections it raised (Hetherington, 2011).  

 

Gettier (1963) proposed a thought experiment that considered two people, Smith and 

Jones, who have applied for a job at a company. The president of the company has 

told Smith that Jones will get the post, and Smith is also aware that Jones has ten 

coins in his pocket. Smith therefore holds the justified belief that the person who will 

get the job has ten coins in their pocket. However, it turns out that Smith gets the job 

and, though he was unaware of it, he also had ten coins in his pocket. Gettier argued 

that Smith’s belief that a person with ten coins in their pocket would get the job is 

both true and justified, and therefore might be considered knowledge. However, there 

is a ‘virtual consensus’ amongst philosophers that Smith’s belief is not knowledge 

(Turri, 2013, pp. 1–2). Many different Gettier cases have been proposed, but two 

features appear to be common to all the examples: 

 

(1) Fallibility. The justificatory support is fallible. It indicates 

strongly–without proving conclusively–that the belief is true. 

(2) Luck. Within each case, the well-but-fallibly justified 

belief is true. (Hetherington, 2011, p. 121, Italics in original) 

 

Over the years since Gettier proposed his thought experiments, no consensus has 

emerged about how to overcome the challenge to the Platonic definition of 
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knowledge (Bigelow, 2006). A range of different strategies to resolve the 

contradiction have been proposed, a small sample of which are summarised below: 

 

• Knowledge should be redefined to require infallible 

justifications for beliefs. 

• A belief should not be considered knowledge if the 

justification occurs through an accidental occurrence. 

• Knowledge may not be justified by a false belief. 

• A belief must be caused by appropriate evidence. 

• The intuition that Gettier cases do not represent knowledge 

should be discarded.  

(Hetherington, 2011, pp. 122–128) 

 

Despite these suggestions, contemporary epistemologists report there are still no ‘easy 

answers’ to Gettier’s challenge (Pritchard, 2016, p. 131).  

3.1.2.4 Some Gettier cases in science education 

Consider the cases below, which contain the two elements of Gettier cases, fallible 

justification and lucky truthfulness, in the context of students’ beliefs related to 

science education. In each case, though the student holds a justified true belief, it 

might be felt they do not possess knowledge. 

 

Case 1 

A student’s pre-formal experiences of the world have led them to believe that all 

motion requires the action of a resultant force. A teacher asks the student if a resultant 

force acts on an accelerating rocket and they reply that a force does indeed act.  

 

Case 2 

A student’s parent assists them with a piece of homework on equilibrium related to a 

book that is at rest on a table. The parent tells the student that the reaction force and 

the book’s weight are equal and opposite as they form a Newton’s third law pair. In 

class, the teacher asks the student about the size of the reaction force and weight 

acting on a person standing on the ground and the student replies that their 

magnitudes are equal.  
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Case 3 

A student has the belief that, in an ionic bond, an electron is transferred from one 

atom to another causing an attractive electromagnetic force between the particles. The 

student then encounters an exam question in which they are asked what force is 

responsible for ionic bonding. The student responds that the electromagnetic force 

causes the bond. 

3.1.2.5 Knowledge and belief in science education 

The cases described above are doubtless contrived, and are not common occurrences 

in the science classroom. However, they are significant for a number of reasons. First, 

they highlight the problematic nature of the term knowledge; Matthews, writing with 

Southerland and Sinatra (2001, p. 349), had claimed: ‘those that wish to make a 

strong distinction between knowledge and beliefs are on shaky ground from a 

psychological standpoint as no empirical distinction has been demonstrated’. He later 

critiqued constructivist thinkers for confusing belief with knowledge arguing that ‘…a 

psychological matter is confused with an epistemological one, and the consequence is 

educational havoc’ (Matthews, 2002, p. 126). Gettier cases highlight that making a 

distinction between knowledge and belief may not be straightforward. Therefore, as 

Taber (2013, p. 176) suggests, ‘…whilst the ‘reasoned true belief’ version of 

knowledge may be useful in philosophical discussions, it does not seem to ‘do the 

job’ in supporting research in science education’.  

 

Second, there may be a class of beliefs that students possess which match accepted 

scientific understandings in some ways or under certain conditions, and for which 

students feel justifications exist (see the three cases above). As these kinds of beliefs 

contain elements that both match and contradict scientific models, they will be 

referred to as mixed beliefs (see Figure 3.1, below). For example, consider the belief 

that an object in motion experiences a resultant force (Viennot, 1979), as described in 

case one, above. In the case of accelerating objects, this belief might be considered to 

be both justified and ‘true’ (here ‘true’ is taken to mean matches accepted scientific 

models), but, in other cases, for example, an object travelling at constant velocity, is 

not ‘true’, though a student may feel some form of justification for the belief (a 

discussion of sources of justification may be found below). The existence of justified 
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‘true’ belief in the case of accelerated motion is analogous to the belief in Russell’s 

stopped clock example; the belief has a fallible justification, and is ‘lucky’, in that it 

just happens to be correct in a particular situation. 

 
 

Figure 3.1: An illustration of a mixed belief: the belief that motion requires a resultant 

force may be a justified ‘true’ belief in the case of accelerating objects, but a ‘false’ 

belief in the context of an object travelling at constant velocity. 

 

The notion of a mixed belief suggests the knowledge status of a belief is dependent on 

the contexts to which it is applied. Consider the following thought experiment 

proposed by Wedgewood (2002), which supports this notion: imagine two possible 

worlds, w1 and w2, in which you have the same experiences and form the same 

beliefs: 

 

Now suppose that in w1 you are bedeviled by an evil demon who 

ensures that many of your experiences are misleading, with the 

result that many of the beliefs that you hold in w1 are false. In w2, 

on the other hand, almost all your experiences are veridical, with 

the result that almost all the beliefs that you hold in w2 are true. 

Intuitively, this makes no difference at all. Exactly the same 

beliefs are rational and irrational in both worlds. (Wedgewood, 

2002, p. 349) 

 

Wedgewood argues that, as the rationality of a belief depends only on ‘internal facts’ 

related to the thinker’s mental states, justification might be considered to occur within 

the mind of the thinker, rather than through relation to the external world 

(Wedgewood, 2002, p. 350). The evil demon example is interesting, as it echoes the 
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experiences of a student inside and outside of the formal classroom. The belief that 

objects require a resultant force to be in motion may be a justified by a student’s 

experiences of motion outside of the classroom; however, within the boundaries of 

school science, the concept is a ‘false’ belief when considered in general.  

 

Knowledge of the contexts to which a belief is applicable can also seemingly affect its 

knowledge status. Consider a mixed belief in the case of knowledge of Ohm’s law. 

Ohm’s law has been described as a ceteris paribus law, that is, one which is a valid 

description only if some conditions are met (Cartwright, 1980). Imagine a student 

who believes that current is universally proportional to potential difference, because 

this is what their teacher has implied, and what the practicals they have carried out 

have justified. The student’s belief may be considered justified and ‘true’ in cases 

where temperature is constant, but ‘false’ in other circumstances. Awareness of the 

temperature dependent nature of the law appears to change the belief about the 

relationship of current and potential difference from a mixed belief to a justified ‘true’ 

belief. 

3.1.2.6 A psychological model of knowledge 

The case made here is that the model of knowledge as justified true belief is not a 

useful one for science education (Taber, 2013). The Gettier cases described above 

suggest that, at least in some cases, justified true beliefs seem intuitively to differ 

from instances of knowledge. Though Matthews (2002) has criticised constructivist 

models of cognition for conflating knowledge and belief, it is difficult to understand 

how a distinction between these two types of entity is sustainable. Gettier cases 

challenge the notion that justification can act as a ‘tether’ (Plato, trans. 1981, p. 86) 

which distinguishes knowledge from mere belief. Indeed, a difficulty of science 

education arises because some beliefs may be justified and, in certain circumstances, 

true, whilst in general being thought of as alternative conceptions (see Figure 3.1).  

 

The psychological construct of the concept would appear to be a useful way to model 

a learner’s constructions related to science. As Quine has argued, ‘[e]pistemology, or 

something like it, simply falls into place as a chapter of psychology’ (Quine, 2000, p. 

297). Claims about students’ views on science are all claims about psychological 

states and therefore it seems unsustainable that ‘knowledge’ of Newton’s first law, for 
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example, should be accorded different epistemological status from a belief that 

motion requires a force. The fact that one concept more closely resembles the 

accepted scientific model does not change the nature of the belief. There is no 

evidence to suggest that there is any difference in representation between conceptual 

constructs with differing levels of epistemological warrant (Southerland et al., 2001, 

p. 336). This argument is not intended to imply that the two concepts are equally 

desirable in educational terms, rather it is important to acknowledge both are beliefs 

about the physical world which are supported by some form of justification. Taber 

(2009) has argued claims for the pedagogic importance of students’ beliefs should not 

be conflated with claims for their scientific appropriateness. Some philosophers have 

suggested, since the proposition of the Gettier cases, that they ‘…face the unpleasant 

reality that we simply have no use for a definition of propositional knowledge’ 

(Kaplan, 1985, p. 363). Though it may be time for researchers in science education to 

abandon the term knowledge, as it is widely used in the literature, the term will be 

used in this thesis. However, it will refer to a psychological construct with varying 

degrees of justification and no assumption of a ‘truth’ criterion. 

3.1.3 Axiological assumptions 

It has been suggested that research is never value free (Boyd, 2000), and that even an 

assumption of value-neutrality is a value claim (Greenbank, 2003). Researchers must 

address axiology, that is, the manner in which values are ascribed (Blackburn, 2005), 

as a researcher’s values may affect the decisions they make (Flynn, 1995; Greenbank, 

2003). Therefore, a clear statement of values is an important form of methodological 

clarification. A number of different classification systems for values have been 

proposed (Rokeach, 1973; Schwartz, 1994), which cover a range of topics, including 

those related to relationships and pleasure. As the focus of this work is on developing 

a model of students’ learning, the most significant issue is the manner in which value 

has been attached to different models of learning. 

 

The seemingly theoretical debate over the nature of learning has recently become a 

political debate in the United Kingdom, with the former Secretary of State for 

Education arguing for reforms premised on the importance of ‘knowledge acquisition’ 

(Gove, 2013). This speech prompted a hundred education academics to sign a letter 

that appeared in a national newspaper arguing changes to the curriculum would lead 
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to ‘rote learning without understanding’ (Bassey et al., 2013). In a recent speech, the 

former Schools Minister, Nick Gibb, claimed there exists an: ‘…anti-knowledge - 

and, I would argue, anti-evidence - position in education debates‘ (Gibb, 2016). 

 

This debate has existed for some time in the United States, with proponents of 

constructivist education arguing that:    

 
To us, rote learning and the conformity it engenders may be likened 

in some respects to a form of intellectual slavery. In contrast, we 

value and respect individual human minds and believe that, in a 

democracy, learners deserve an educational system that encourages, 

supports, and rewards divergent and creative thinking; deep 

understanding; and novel ways of problem solving. Further we 

believe that such a system is ultimately in our best political, social, 

and economic interests collectively. (Mintzes & Wandersee, 1998a, p. 

xix) 

 

A recent movement has argued that rote learning and drill-like practice have a place in 

learning (Willingham, 2009), and approaches that are perceived as neglecting 

knowledge have been criticised: 

 

This supposed liberation from “mere” information and rote 

learning is one of the most precious principles of American 

educational thought, and lies at its very core. Its proponents 

disparage those who favor a definite, cumulative course of study 

for children as “traditional,” “hidebound,” and “reactionary,” to 

mention only the more polite terms. (Hirsch, 2006, p. 40) 

 

This argument seems to be misconceived through the exaggerated characterisations of 

the differences between the positions adopted by the two sides in the debate. For 

example, Hirsch (2000), accepts that pre-existing knowledge structures enable the 

acquisition of novel ideas, a central claim of constructivists (Mintzes & Wandersee, 

1998b, p. 76). This debate has surfaced recently in the context of the perceived 
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learning styles of Asian students. Marton and colleagues (2005) describe the apparent 

‘paradox’ that, though Chinese students’ approach to learning was interpreted as 

relying on rote learning, the students often acquired good understandings of topics. 

They report that the students saw memorisation and understanding as two parts of the 

same learning process; therefore, the meaning of terms such as memorisation and 

understanding may be culturally contingent (Marton, Watkins, & Tang, 1997). A 

simple dichotomy between memorisation and understanding may be misleading 

(Entwistle & Entwistle, 2003), as, for Chinese students at least, ‘…having an 

understanding of something implies memory, just as (meaningful) memory implies 

understanding’ (Marton, Watkins, & Tang, 1997, p. 32). As Kosso (2002) has argued, 

knowledge without understanding is undesirable, but understanding requires a base of 

knowledge. Similarly, Toulmin (1961, p. 108) asserted: ‘The business of science 

involves more than the mere assembly of facts: it demands also intellectual 

architecture and construction’. Valuing epistemological outcomes, such as making 

sense, should not be seen as diminishing the importance of the acquisition of 

propositions about the world. However, a number of authors (de Regt et al., 2009; 

Elgin, 1996; Martínez, 2013) have argued that understanding, not simply 

propositional knowledge, should be the goal of scientific education. Therefore, the 

assumption adopted in this work is that there is something epistemologically valuable 

in the process of making sense. 

3.1.2 Summary of the assumptions made in this work 
Following the discussion above, the assumptions in Table 3.1 are adopted in this 

work: 

Table 3.1: Assumptions adopted in this thesis. 

Ontological assumption • An external reality exists 

Epistemological assumptions • Knowledge of external reality is 

partial and personally constructed 

Axiological assumptions • Both knowledge and understanding 

are valuable epistemological goals in 

science education 

 

Given the assumptions shown in Table 3.1, constructivism would appear to be a good 

fit with the axioms of the research (see section 3.5 for a fuller analysis of the 
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coherence of constructivism to this research). The next section considers different 

forms of constructivism and their potential coherence with this work. 

3.2 The nature of constructivism 
Constructivism is often linked to the notion of meaning-making (Bodner, Klobuchar, 

& Geelan, 2001; Crotty, 1998; Mintzes & Chiu, 2004), and so might be considered a 

good fit for the research questions being studied. The notion of constructivism has 

been associated with a number of meanings (Bickhard, 1997; Geelan, 1997; Taber, 

2009), and the different models will be considered in the next sections.  

3.2.1 The epistemological focus of various constructivism 

The term constructivism has different connotations in different contexts (Taber, 

2009). Irzik (2000) differentiates between cognitive and epistemic constructivism, and 

a similar distinction is suggested by both Colliver (2002) and Taber (2009), who 

separates constructivism as a theory of learning in science education and other fields 

from its application to an epistemological position (See Table 3.2). 
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Table 3.2:  Different epistemological foci of constructivism. 

Philosophical constructivism Psychological constructivism 

Assumptions of philosophical 

constructivism (Doolittle & Hicks, 2003, 

p. 6) 

The ‘Hard Core’ assumptions of 

constructivism in science education 

(Taber, 2009, p. 124) 

• Knowledge is not passively 

accumulated, but rather, is the result of 

active cognizing by the individual. 

• Cognition is an adaptive process that 

functions to make an individual’s 

cognition and behavior more viable given 

a particular environment or goal. 

• Cognition organizes and makes sense of 

one’s experience, and is not a process to 

render an accurate representation of an 

external reality. 

• Knowing has its roots in both 

biological/neurological construction and 

in social, cultural, and language-based 

interactions. 

• Learning science is an active process of 

constructing personal knowledge 

• Learners come to science learning with 

existing ideas about many natural 

phenomena 

• The learner’s existing ideas have 

consequences for the learning of science 

• It is possible to teach science more 

effectively if account is taken of the 

learner’s existing ideas 

• Knowledge is represented in the brain 

as a conceptual structure 

• Learners’ conceptual structures exhibit 

both commonalities and idiosyncratic 

features 

• It is possible to meaningfully model 

learners’ conceptual structures 

  

Notice that, in philosophical constructivism, the focus is on cognition and knowing, 

whereas the theory within science education focuses on the learning experiences of 

individual learners. It has been argued these two positions are independent of each 

other: one may adopt a constructivist view of learning (knowledge is constructed by 

the individual learner) and yet not adopt constructivism as a philosophical position 

(Colburn, 2000). 

 

Tobin and Tippins (1993) present an alternative differentiation between 

constructivism as a method and as a referent. They argue some authors have used 
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constructivism to refer to a method of teaching (Tobin & Tippins, 1993); and, 

elsewhere, Tobin (1993, p. ix) has described constructivism as ‘a paradigm for the 

practice of science education’. Other researchers have described constructivism as an 

‘approach to teaching and learning’ (Parson, 2013, p. 71) and a ‘method’ (Osborne, 

1996, p. 63). Alternatively, Phillips (1995) distinguishes between constructivism as 

applied to individual psychology or as a public discipline. Colliver (2002) and Taber‘s 

(2009) two-category taxonomies of constructivism might therefore be extended to 

include an additional category of constructivism as a description of classroom practice 

(see Figure 3.2). 

 
Figure 3.2: A taxonomy of constructivisms. 

 

The three branches of the taxonomy in Figure 3.2 should not be seen as entirely 

distinct, as each is based on assumptions about the nature of knowledge. The next 

section examines how different versions of constructivism establish knowledge 

claims. 

3.2.2 Knowledge claims in variations of philosophical constructivism 

In an editorial, Good (1993) noted the existence of at least 15 varieties of 

constructivism. One axis over which such models of constructivism might be 

differentiated contrasts the justification of constructions in the models, and runs from 

theories which see knowledge as largely constrained by the external world to 

conceptions in which knowledge is determined by knowers (Phillips, 1995). A variety 

of these positions, and the criteria they propose for judging claims, are discussed in 

the sections below. 

Knowledge is constructed
by the individual

Knowledge as an
abstract entity

Knowledge as a
psychological entity

Knowledge as
produced by classroom

practice

Constructivism as a
philosophical theory

Constructivism as
a learning theory

Constructivism as a
classroom practice



 77 

3.2.2.1 Relativist constructivism 

Relativism has been defined as an epistemology that argues there can be no evaluation 

of beliefs against an external reality, and, therefore, that no framework exists for 

measuring the truth, rationality or reality of claims (Bernstein, 1983; Hollis, 1993). A 

number of authors have claimed that constructivism, or at least some varieties of 

constructivism, are underpinned by a relativist epistemology (Irzik, 2000; Matthews, 

1992, 2002; Nola, 1997).  

 

The targets of accusations of relativistic constructivism are in some cases poorly 

defined. For example, the work of members the Strong Programme, such as Bloor 

(1991) and Collins (1981), have been critiqued for their relativistic positions (Irzik, 

2000) but do not link their arguments to constructivism. A second source of claims of 

relativism in constructivism arises from pedagogic models which have been 

interpreted as implying that an exam question may have multiple acceptable answers 

(Scerri, 2003, p. 470). However, Taber (2009) has pointed out this view is not one 

typically held by constructivists, and has clarified the difference between pedagogical 

and scientific significance of students’ alternative ideas. An analogous argument 

might be made in regard to constructivists’ approach to modelling learning. For 

example, Geelan (1997, p. 16) has described how a profusion of perspectives is ‘both 

more flexible and more powerful’ than a single model and describes the tension 

between two opposing views as ‘a source of creativity and productivity’ (Geelan, 

1997, p. 22). Geelan’s views do not propose that multiple models are simultaneously 

‘true’, but, rather, that for complex systems, such as learning and thinking, a variety 

of different models may provide the richest representation (Taber, 2013). 

 

It has been claimed that, in radical constructivism, criteria for comparing models do 

not exist, as would be expected of relativism; however, a more nuanced connection 

between knowledge and reality is actually reported. Though von Glaserfeld has been 

accused of relativism (Matthews, 1994, 2002), he is careful to avoid statements that 

criteria for judging claims do not exist: 

 

Constructivism, as I explained earlier, has nothing to say about 

what may or may not exist. It is intended as a theory of knowing not 
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as a theory of being. Nevertheless it does not maintain that we can 

successfully construct anything we want. (von Glasersfeld, 1996, p. 

113) 
 
Indeed, elsewhere, Matthews (1992) has argued that constructivism is no more than a 

version of empiricism. Quale (2008, p. 239), who has adopted an explicitly relativist 

approach to constructivism, nonetheless admits that is ‘perfectly permissible… to 

assign truth values to propositions’, though those evaluations are seen as personal and 

contextual. It is challenging to find genuine relativist epistemologies of 

constructivism (i.e. those that argue there are no criteria for comparing knowledge 

claims (Bernstein, 1983; Hollis, 1993)), but, rather, different version of 

constructivism propose a range of different constructions of ‘truth’ criteria.  

3.2.2.2 Pragmatic constructivism 

Unlike relativism, which posits no truth criteria, the pragmatic models of knowledge 

conceptualise theories as instrumental; that is, ‘they become true and they are true to 

different degrees based on how well they currently work’ (Johnson & Onwuegbuzie, 

2004, p. 18). It has been suggested that von Glasersfeld’s radical constructivism is a 

type of pragmatic constructivism (Bickhard, 1997), as von Glasersfeld’s truth criteria 

of viability (1996) is a measure of the extent to which a concept can make accurate 

predictions about the outcome of events. Von Glasersfeld (1996) however, aligns 

radical constructivism with a coherence construction of truth (discussed below). A 

clearer potential example of pragmatic constructivism is found in Kelly’s (1955, p. 

30) personal construct theory; Kelly argues constructs should be tested to determine 

their ‘usefulness’ for anticipating events. Pragmatic epistemologies have been 

critiqued by Russell (1946/1996, pp. 728–729), who observed that the fact that a 

concept is useful does not make it true. For example, pragmatic models of 

constructivism may struggle to assist students in the early stages of learning about 

science, when their alternative conceptions of the world seem more useful, and 

therefore more ‘true’, than accepted models. An additional critique highlights that 

pragmatic notions of ‘usefulness’ are subjective and challenging to define (Hartwig, 

2007, p. 486). 
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3.2.2.3 Coherence dependent constructivism 

An alternative to a pragmatic judgements are those based on assessments of 

coherence. Von Glasersfeld (1996, p. 68) argued that his radical constructivism was a 

coherentist theory, and that the ‘validity’ of concepts was not determined by their 

usefulness, but, rather ‘…their non-contradictory fit into the largest possible 

conceptual network’. One interpretation of constructivism is that the model is founded 

on a coherentist understanding of truth, rather than on correspondence to an external 

reality (Staver, 1998). However, coherence models of ‘truth’ have long been criticised 

on the basis that, simply because a set of ideas are coherent, this does not make them 

true (Russell, 1907, p. 33). Defining the nature of coherence is challenging (Garnham, 

1997), and, as interpretations of coherence may be subjective (Hoey, 1991), learners 

may develop highly coherent networks of ideas that differ from accepted scientific 

models (Driver et al., 1985; Wertheim, 2011). Given the critiques of relativist, 

pragmatic and coherentist constructivism, this work will instead adopt a realist 

constructivist epistemology, which fits with the ontological assumptions discussed 

above. 

3.2.2.4 Realist constructivism 

At the heart of realism lies the assumption that an external world exists that is 

independent of our thoughts and feelings (Boyd, 1983). Putnam (1975, p. 73) 

remarked that realism ‘is the only philosophy that does not make the success of 

science a miracle’, because it involves an alignment with an external reality. Realist 

interpretations of constructivism are implied in the works of a number of writers in 

science education (Bodner, 1986; Driver & Oldham, 1986; Redish, 2004). Others, for 

example Kumar (2011, p. 529), have proposed explicit models of ‘realist 

constructivism’ in which a ‘knowledge-reality correspondence’ is accepted. Realist 

varieties of constructivism accept a link between knowledge and the external world, 

though typically argue the link is mediated in some manner, for example, through 

personal or social experience (Khagram et al., 2010). Cupchik’s (2001) model of 

constructivist realism proposes that ‘real’ phenomena will be constructed and 

interpreted by different individuals and communities in different manners. A 

particularly well-developed realist model of constructivism is found in Gilbert and 

Swift’s (1985) Lakatosian research programme for studying alternative conceptions. 

This model asserts that the world is real, but all observations of that reality are 
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inherently theory laden. Realist models of constructivism face the challenge of 

describing how knowledge develops through the twin constraints of a single external 

reality and multiple personal perceptions. A useful analogy that addresses this issue is 

Bodner’s (1986) description of locks and keys. He suggests that, just as many 

versions of a key may fit the same lock, many different conceptualisations may have a 

sufficient ‘fit’ with reality (for example, the different models of learning shown in 

Figure 1.1).  

3.3 Criticisms of constructivism 
In order to defend the adoption of realist constructivism outlined in the previous 

section, several common critiques of constructivism will be considered and addressed 

in the following sections. The critiques are divided into those that address 

philosophical and psychological constructivism. A number of critiques of pedagogic 

constructivism have been proposed (for example, that its practices are culturally 

imperialist (Bowers, 2007)). However, as the focus of the thesis is on a model of 

learning, such criticisms will not be addressed in detail here. 

3.3.1 Philosophical constructivisms 

3.3.1.1 Knowledge claims and the charge of solipsism 

Perhaps the commonest, and most serious, charge against philosophical 

constructivism is the accusation of solipsism levelled by a number of writers (Fox, 

2001; Martínez-Delgado, 2002). Solipsism is the belief that only one’s own 

experience exists, and no link to any external referent may be established (Blackburn, 

2005). Solipsism has been described as ‘existentially irrelevant’ as to reject the 

assumption that we share our experiential world with other people would be ‘…a sign 

of mental aberration’ (Quale, 2007, pp. 242–243). Whilst the critique of solipsism 

may be valid for relativist models of constructivism, it does not apply to the realist 

version assumed in this thesis, as it assumes knowledge claims are, to some extent, 

constrained by an existing external reality. 

3.3.1.2 The blurring of knowledge and belief 

Matthews (2002) has criticised constructivist philosophies for not adequately 

distinguishing between knowledge and belief (see Section 3.1.2). He argued a 

psychological matter (belief) is confused with an epistemological one (knowledge); 
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such that if the term ‘knowledge’ in constructivist accounts were replaced with the 

word ‘belief’, the claims would become sustainable. This critique is premised on the 

Platonic model of knowledge (Matthews, 2002), and, as discussed above, has been 

shown to be insufficient (Gettier, 1963). Matthews’ charge is not without justification; 

there has been a period in which terms related to learning have been used 

ambiguously in the constructivist literature (Taber, 2013). Lax usage, however, does 

not undermine the philosophical premises of constructivism. Taber (2009) argues that 

the term knowledge is inappropriate in a constructivst framework that has rejected a 

direct link to the external world, and that the concept of belief underemphasises the 

justifications students possess for their notions. Therefore he proposes conception as a 

suitable intermediate construct (see discussion of a psychological model of 

knowledge in section 3.1.2.6, above).  

3.3.1.3 The charge of ‘anything goes’ 

Another common criticism of constructivism is the claim that, as truth criteria are 

poorly defined, all constructions are equally valid (Nola, 1997; Scerri, 2003). 

However, again, this charge may be valid in relation to explicitly relativist models of 

constructivism, but as can be seen in realist, pragmatic and coherentist models of 

constructivism, care has been taken to formulate constructs that constrain the 

acceptability of statements. Indeed, even Matthews (1992) implies that constructivism 

is closer to empiricism than to relativism.  

3.3.2 Psychological constructivism 

Though the critiques of philosophical constructivism are generally aimed at the straw 

man of relativist constructivism, some of the critiques of psychological constructivism 

present greater challenges. 

3.3.2.1 The impossibility of personal knowledge  

A key claim of constructivism is that individuals develop personal and idiosyncratic 

understandings of the world (Brooks & Brooks, 1993; Taber, 2009; von Glasersfeld, 

1996). However, a number of critiques of personal understanding seem to dispute this 

axiom. Wittgenstein (1953, pt. §243) argued the words of an individual’s private 

language would refer to entirely personal entities, such as feelings and moods, and 

could therefore not be understood by another individual. Without private language, it 

is argued, there can be no personal concepts (Heller, 2009, p. 24) However, as 
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constructs are ‘woven into relational context’, therefore, ‘it does not serve us to 

suppose that they are internalized into individual minds’ (Wortham, 1996, pp. 81–82). 

Though individuals may possess personal frameworks and translating from one 

system to another might sometimes be difficult, it is rarely impossible (Popper, 1970). 

The claim of constructivists is that an individual’s concepts are unique, not that they 

are unintelligible to others: individual constructs may vary but be explicable in a 

common language. 

3.3.2.2 The origin of concepts 

The problem of concept acquisition presents another possible threat to psychological 

constructivism. Plato (trans. 2002) first proposed an apparent paradox inherent in 

learning: if one is aware of what one is trying to learn, then no learning is necessary: 

if one is unaware of the target information, no learning is possible. The problem has 

since been restated by Jerry Fodor (1983), who pointed out that learning a concept 

involves the manipulation of a concept that has yet to be acquired. This apparent 

paradox can be resolved as it is observed that the acquisition of a novel concepts tends 

not to happen in a single step, and may be achieved by the development of existing 

conceptual resources (Margolis & Laurence, 2011). Carey (2009) has provided 

support for this argument by suggesting that certain innate representational primitives 

exist which participate in a process of bootstrapping more complex concepts from 

simpler elements. 

3.4 An appropriate theoretical framework 
This section makes a case for the close alignment between the assumptions of realist 

constructivism and the constructions of learning developed in this project. In this 

work, the existence of an external reality is assumed, but, it is argued, access to that 

reality is imperfect; hence, knowledge is constructed rather than directly ‘discovered’. 

In Table 3.3, below, the major assumptions of constructivism in science education 

(Taber, 2009) are shown to fit closely with the model of making sense proposed in 

this thesis.  
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Table 3.3: The fit between assumptions of constructivism and the model of making 

sense presented in this thesis. 

The ‘Hard Core’ 
assumptions of 
constructivism in science 
education (Taber, 2009, p. 
124) 

Assumptions of the making sense model of learning 

• Learning science is an 
active process of 
constructing personal 
knowledge. 

• Making sense is seen as both an idiosyncratic and an 
active process. 

• Learners come to science 
learning with existing ideas 
about many natural 
phenomena. 

• The conceptual compounds developed in the making 
sense process are expected to include ideas that both 
match and differ from accepted scientific models. 

• The learner’s existing 
ideas have consequences for 
the learning of science. 
 

• Background knowledge and epistemological 
assumptions are assumed to guide the manner in which 
new coherences are formed. 

• It is possible to teach 
science more effectively if 
account is taken of the 
learner’s existing ideas. 
 

• It is not a necessary assumption for the work that an 
understanding of learner’s ideas will lead to more 
effective teaching though it is hoped that the model of 
making sense will lead to novel pedagogical approaches 
(see Section 6.4). 

• Knowledge is represented 
in the brain as a conceptual 
structure. 
 

• Though it has been emphasised that conceptual structure 
is a model, and, therefore, like all models, is to some 
extent an imperfect reflection (Box & Draper, 1987, p. 
424), it is nevertheless accepted as useful model. The 
model of making sense is premised on the construction 
and modification of conceptual compounds. 

• It is possible to 
meaningfully model 
learners’ conceptual 
structures. 

• Though it has been argued that researchers should avoid 
developing models of mental processes to which they have 
no direct access (Skinner, 1977), it has been observed that 
the constructivist research programme has ‘achieved a 
good deal, and continues to suggest potentially fruitful 
directions for further research’ (Taber, 2009, p. 356). 

• Learners’ conceptual 
structures exhibit both 
commonalities and 
idiosyncratic features. 
 

• The making sense model assumes that learners’ 
conceptual compounds will share both common elements 
and idiosyncratic features. The multiple-case design (Yin, 
2009, p. 53) adopted in this research allows both the 
distinctive and shared features of learners’ thinking to be 
discussed. 
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3.4.1 The nature of knowledge constructed in this research 

Different forms of research produce different kinds of knowledge claims (DePoy & 

Gitlin, 2016), and researchers should attempt to explicate the nature of knowledge 

produced by their research (Fenstermacher, 2002). The conceptualisation of 

knowledge produced in this work is constructed to cohere with the model of learners’ 

knowledge, described above. Therefore, knowledge produced in research is seen as a 

‘construction’ arising out of a process of ‘conscious, systematic, and disciplined 

sense-making’ (Lincoln & Guba, 2013, p. 62). The knowledge constructed in 

educational research might be conceptualised as representations of researchers’ 

personal mental models (Taber, 2013). In constructivism, different researchers might 

be expected to develop different interpretations of data related to complex phenomena 

(Guzzetti & Hynd, 1998), and the existence of a plurality of models is seen as 

productive (Geelan, 1997). Acknowledging that multiple constructions of data are 

possible does not imply that all models are equally useful (Colliver, 1999). Rather, in 

realist constructivism, interpretations are, partially, constrained by the nature of 

reality (Kumar, 2011). In particular, the interpretations of data produced are 

conceptualised as embedded in the contexts in which they were produced (Flyvbjerg, 

2006); hence, claims about the generalisability of the knowledge produced are limited 

to cases which researchers perceive are related (Taber, 2000a). 

3.5 Fitting methods to assumptions 
It is assumed that there should be a coherence between the theoretical assumptions, 

aims and methods of a piece of research (Laudan, 1986). It is argued that, once 

researchers have stated their ontological and epistemlogical assumptions, they have a 

duty to adopt research methods that fit with their methodology (Boote, 2008). This 

does not necessarily mean that certain approaches to data collection are forbidden 

within certain philosophical approaches (Niaz, 2008); rather, a clear case must be 

made that the methods construct data in a manner that fits the assumptions of the 

research.  

 

The methods will be described in detail in the next section, however the assumption 

that learning is an idiosyncratic process (Taber, 2009) suggests that an approach that 

is sensitive to individual variation would be suitable. The case study approach is 

described as being sensitive to such idiosyncrasy (Yin, 1981) and, in general,  
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qualitative methods are seen as useful in the early stage of theorising a concept 

(Johnson & Onwuegbuzie, 2004). For example, Taber (2008b, p. 1918) argues 

enquiry into conceptual integration, a process that may resemble making-sense, 

requires ‘in-depth study of particular teaching and learning contexts’ in order to 

explore ‘the nuances of thinking of individual learners’. 

 

Secondly, making sense is a process that might be expected to occur over an extended 

period of time, however, research in science education has often used ‘one shot’ 

approaches to data collection, giving relatively impoverished data (Taber, 2000b, p. 

402). Similarly, diSessa (2008, p. 45) has argued that ‘deep learning takes time’, yet 

‘stunningly little process data is taken into account in conceptual change research. By 

and large, the paradigm has employed before and after snapshots’ (diSessa, 2002, p. 

37). An approach that can study processes and capture change requires a high density 

of observations. The microgenetic method’s focus on ‘details of subjects’ behavior in 

specific contexts’ means it ‘is the only approach that makes it possible to derive the 

kind of fine-grained information essential for grasping change processes’ (Calais, 

2008, p. 3). To gain insight into the extended process of learning, one-off 

observations will not do; rather, ‘the learner must be followed for a significant period 

of time so that shifts in the landscape of cognitive structure may be detected. An in-

depth case study approach is required’ (Taber, 2001a, p. 735). Hence, this thesis 

adopts a microgenetic case study approach that samples data over an extended period 

of time. 

 

In addition to the fit of the research methods and assumptions in research, the 

processes of analysis should also be coherent with the methodology of a work (Van 

den Bergh, 2015). Analysis has been described as both developing understanding 

(Fossey, Harvey, Mcdermott, & Davidson, 2002; Stenhouse, 1981) and making sense 

of data (Miles & Huberman, 1994; Sullivan, 2009), processes which, in this research, 

are seen as personal and subjective, and therefore fit well with the constructivist view 

of knowledge adopted. The quantitative criterion of replicability is not expected in 

qualitative data analysis (Merriam, 1995), and some constructivists expect and 

celebrate the development of multiple interpretations of data (Geelan, 1997). As will 

be discussed in the section on generalisability (Section 4.7.3), the analysis produced is 
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seen as a reasoned interpretation developed by the researcher, with sufficient data 

reported and clear descriptions of the processes of generation of analysis outlined to 

allow other researchers to engage critically with the ideas generated (Taber, 2000a). 

3.6 The relationship of the researcher to the research 
In a constructivist model of research, data are imagined to be constructions of the 

research process involving the interaction of the researcher and the participants 

(Kvale, 2007). Therefore, there is an onus on the qualitative researcher to provide 

sufficient information for a reader to make reasoned judgements about the manner in 

which the interactions between the researcher and participants may have channelled 

the data (Atkins & Wallace, 2012; Etherington, 2004; Fine, Weis, Weseen, & Wong, 

2000). The term ‘positional reflexivity’ refers to the relationships between the 

researcher and participants that shape the analytical activity (Macbeth, 2001, p.35).  

 

One significant issue that occurs in this research is that, during the collection of data, I 

acted both as a part-time teacher and a researcher at the school the participants 

attended (see, also, Section 4.8, for a consideration of ethical implications). I had 

taught all of the students at some time during their time at the school but was not a 

class teacher for any of the participants during the process. Wong (1995) has argued 

that a tension exists between the role of researcher and teacher. In particular, the roles 

have conflicting aims: the researcher wants to understand learning; the teacher, to 

support it. However, Wilson (1995) has critiqued Wong’s position, arguing that there 

is not a clear distinction between the roles, as both have a concern with understanding 

students’ learning. I saw my role as primarily that of a researcher, but understood that 

the interview process would cause changes in students’ understanding (Brock & 

Taber, 2017b). In that sense, the process can be thought of as a form of dynamic 

assessment (Sternberg & Grigorenko, 2002), in which the learners receive feedback 

on their comments and the researcher is seen as an active participant in the process. 

As one-to-one interactions between a teacher and a student focused on making sense 

of a particular context do occur in the normal course of school activities, the 

interviews could be constructed as ‘quasi-naturalistic’ interactions (Lincoln & Guba, 

1985, p. 8). Though the interventions in the sessions, and my role as a teacher known 

to the students, doubtless had some effects on the data constructed, it is difficult to 

describe the precise nature of such influences.   
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4.0 Methods 
4.1 The challenges of modelling making sense 
The historical focus of science education research has been on cataloguing isolated 

alternative concepts but, it is argued, the research programme needs to advance to 

models that examine the interaction of multiple conceptual entities (Amin et al., 

2014). The table below (Table 4.0) outlines the difficulties of investigating making 

sense and describes how they are addressed in this research. 

 

Table 4.0: Approaches to addressing specific challenges in the research 

Challenge Facet of method to address this challenge 

Conceptual constructs may be 

contextually sensitive 

(diSessa, 1993; Sabella & 

Redish, 2007). 

Assess understanding across both a set of repeated 

contexts, to assess change, and novel contexts to 

assess transfer. 

Learning may occur at 

multiple rates (Clement, 2008; 

Gilbert & Watts, 1983). 

Collect data using relatively high-density sampling 

for an extended period. 

Probes may access a subset of 

available conceptual resources 

(Taber, 2013, p. 87). 

Use a range of contexts to probe an extended area of 

conceptual structure but ensure measures access 

broadly similar sets of concepts. 

Some processing may be tacit 

(Nisbett & Wilson, 1977).  

Interpretations were based only on the data produced 

by the probes (e.g. transcripts of interviews, concept 

maps, etc.). However, in some instances, differences 

between the researcher’s and the participant’s 

interpretations might indicate knowledge the student 

could not articulate (See Section 5.2.4.1.1). 

 

Therefore, the investigation of making sense might suggest an approach that uses both 

non-identical measures and repeated probes with a high density of sampling for an 

extended period of time to capture detail of the processes of change. In order to trial 

the method, a short pilot, using high frequency sampling, was carried out. 
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4.1.1 Reflections from pilot study 

Pilot studies are recommended (Taber, 2007) to assist in designing and tuning 

methods of data collection (Yin, 2009). The intention of the pilot was to trial a 

method that used a range of identical and non-identical probes, and to sample data at a 

relatively high frequency. Table 4.1 outlines the pilot interviews that were conducted. 

The names given are pseudonyms. 

 

Table 4.1: Pilot Interviews. 

Student Date Topic 
Anna 25/1/13 Current 
Bimal 28/1/13 Current 
Anna 1/2/13 Potential Difference 
Bimal 6/2/13 Potential Difference 
Bimal 11/2/13 Potential Divider 
Chris 6/3/13 Induction 

 
The pilot was intended to demonstrate the potential of the use of multiple sessions 

containing non-identical probes to investigate how students make sense. For example, 

in the excerpt below, Bimal attempts to reconcile two contradictory models of the 

current flowing into and out of a motor lifting a load: current as a quantity that is 

consumed versus current as a conserved quantity. 

 

B: [Pause] Um [pause] part of me is saying yes, they’re different 

and there’s part of me saying no, because of Kirchhoff’s law.  

I: What’s the bit of you that says they you want them to be 

different? 

B: Because if it’s a greater load, more current will be used to lift it.  

I: Yes. 

B: Work done. But I am not sure. 

I: But your other side is saying… 

B: That because of Kirchhoff’s law input equals output. 

I: Yes. 

B: [pause] I think I will go with Kirchhoff’s Law it’s a law! 

 

(Bimal, Session 1, 179-190; I labels interviewer’s comments; B Bimal’s 

comments) 
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In the third session, Bimal was shown a variable resistor and asked to predict the 

current flowing in and out if the slider were set in two different positions. Initially, he 

argued that the current entering and leaving would be equal; but, when considering 

the situation with increased resistance, he argued that the current leaving the resistor 

would be less than that entering. These data begin to develop a crude representation of 

the contingencies of activation of two of Bimal’s understandings of current.  

 

Though the pilot demonstrated the potential of the method for uncovering the 

complexities of understandings, it also raised two issues: First, careful consideration 

needed to be given to the choice of situations used in the interviews. For example, it 

was assumed that the context of an inductor circuit would be a novel context for 

Chris, but that turned out not to be the case. The situations were chosen to be 

sufficiently novel that students would need to engage in active organisation of 

concepts in the interview, rather than simple recall. At all times in the research, this 

was a difficult goal to achieve, but, as I gained information from previous interviews, 

I was able to target more effectively subsequent probes to the students’ current 

understandings in an approach similar to Campione and Brown’s (1985) ‘dynamic 

assessment’ (see section 4.4.1.1).  
 
Second, the pilot indicated the challenge of interviewing students whilst they made 

sense: the students could typically make some sense of a situation with no support, 

but further probes often uncovered additional or alternative understanding. Different 

follow up prompts were used with different students depending on their responses to 

the situations. The interview then remains ‘naturalistic’, not because there is ‘no 

manipulation by the inquirer’ (Lincoln & Guba, 1985, p. 8), but because the 

manipulation is similar to the intervention of a teacher in a ‘natural’ classroom 

situation. 

4.2 Overview of the approach 
 A complex process such as learning requires eclecticism in research approach (Pring, 

2000; Taber, 2008c). It is argued that every research tool has a particular way of 

constructing data (Smagorinsky, 1995) therefore a range of tools were used to allow 

triangulation between constructions developing a richer picture of the data (Taber, 
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2009). Within a semi-structured interview, a variety of tools (see Table 4.2) were 

used: a) Unstructured concept maps (Nicoll, 2001, p. 876); b) Questions adapted from 

concept inventories (Engelhardt & Beichner, 2004; Hestenes et al., 1992); c) 

Interviews about events (White & Gunstone, 1989), in which students are presented 

with a piece of apparatus and asked to develop an explanation of the physics; d) 

Physics problem card sorts (Chi et al., 1981) and e) Questions about personal beliefs 

related to physics (Adams et al., 2006). The nuances of these individual approaches 

are discussed in section 4.5. The extended duration of the interview period allowed 

the researcher to respond to emerging themes in the data (Strauss & Corbin, 2008, p. 

144). Though an outline design for the research was developed before the start of data 

collection (Taber, 2007), case study research is expected to deviate from the original 

research plan (Yin, 2009); and, within the structure set out below, the researcher 

adopted a flexible approach to investigate unexpected occurrences (Taber, 2007). 

Two topics in which students would be expected to have existing conceptual 

structures of some complexity, dynamics and electricity, were selected for the 

sessions. In order to be able to investigate change over longer periods of time, and to 

avoid boredom in the students, these two topics, electricity and dynamics, were 

addressed in four alternating sections of roughly five interviews, with an additional 

final session (see Table 4.2). The probes were chosen to investigate the same 

underlying conceptual areas repeatedly in different contexts. The forces and dynamics 

sessions investigated students’ understanding of the link between force and motion; 

the electrically focused sessions examined the relationships between potential 

difference, current and resistance. As will be argued in the next section, the data 

generated are seen as inherently bound up with the order and nature of the probes 

presented (Yin, 1981).  
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Table 4.2: Summary of student sessions. The individual probes are identified by lower 

case letters, and listed in Appendix 8.7.2. 

C
ontext 

Session 
N

um
ber 

Session Focus Date 

Forces and 
dynam

ics 

1 Force concept questions (a, b, c, d, e, f), discussion about learning. 30/9/13 
2 Simple pendulum apparatus (g), forces on a car question (h). 7/10/13 
3 Mass on a spring apparatus (i), forces on an astronaut question (j). 14/10/13 
4 Loop-the-loop apparatus (k), forces on a swung ball (l), scales in a lift 

question (l), beliefs about physics questions (see Appendix 8.7.4). 
21/10/13 

5 Reflections on making sense, concept map, ball in a bowl apparatus 
(m). 

4/11/13 

Electricity 

6 Electrical concept questions (n, o, p, q, r, s, t, u), defining concepts 
and their links. 

11/11/13 

7 Circuit question (v), variable resistor (w), the potential divider 
simulation (x), the motor under load apparatus (y). 

18/11/13 

8 Potential difference circuits simulations and questions (z, aa, ab, ac). 25/11/13 
9 Internal resistance simulation (ad), the capacitor and potential 

difference apparatus (ae). 
2/12/13 

10 Concept map and Wheatstone bridge apparatus (af). 9/12/13 

Forces and dynam
ics 

11 Concept map, forces on vertically projected object question (ag), 
Situation card sort (see Appendix 8.7.3.1). 

6/1/14 

12 Causality questions, problem card sort (see Appendix 8.7.3.2), pseudo 
forces in a braking car question (ah). 

13/1/14 

13 Questions about concepts’ properties, leaping from crouch question 
(ai). 

20/1/14 

14 Weightlessness questions (aj), force concept ontology table (see 
Section 4.4.5), reflections on pre-drawn ‘student’ concept map 
(Appendix 8.7.5). 

27/1/14 

15 Concept map, force concept questions (a, b, c, d, e, f), ball in bowl 
(m), pendulum (g), and mass on a spring apparatuses (i). 

3/2/14 

16 Comment on previous concept map, dynamics concepts card sort, 
forces on astronaut (j), ball in bowl apparatus (m). 

10/2/14 

Electricity 

17 Beliefs about physics (see Appendix 8.7.4), electricity concept 
questions (l, m, n, o, p, q, r, s, t), sliding wire potential divider 
apparatus (ak). 

24/2/14 

18 Circuit problems (z, al, am), burette and capacitor analogy apparatus 
(an). 

3/3/14 

19 Electricity concept ontology table (see Section 4.4.5), sequence of 
circuit problems (ao). 

10/3/14 

20 Discussion of causal links between electrical concepts (Appendix 
8.7.7), comments on own concept map, circuit problems (ap). 

17/3/14 

21 Electrical concept map, electrical concept ontology table (see Section 
4.4.5), electricity concept questions (l, m, n, o, p, q, r, s, t), circuit 
with two sources of EMF problems (aq). 

24/3/14 

Forces and 
dynam

ics 

22 Reflection on process, force concept map, force concept questions (a, 
b, c, d, e, f), pendulum (g), U-shaped track (w), mass on spring (i), 
forces on an astronaut (j), force concept ontology table (See Section 
4.4.5). 

31/3/14 
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Summary of data collected 
Total number of 
sessions completed 

Pilot: 6 
Main project: (4x22)+(1x10) [One student 
withdrew after ten sessions, see below] 
Total: 104 

Mean length of session 25 minutes 

4.3 Overarching approaches 
Two broad frameworks were used to guide data collection. One, the case study 

approach, matches the situated and idiosyncratic model of learning assumed; the 

second, the microgenetic method, structures assumptions about the investigation of 

change. The assumptions of these frameworks are considered in the next two sections. 

4.3.1 Case study 

Both the term ‘case’ (Ragin, 1992, p. 1) and ‘case study’ (Gerring, 2007, p. p6; 

VanWynsberghe & Khan, 2008) have been used with a variety of meanings. 

However, the differing definitions generally emphasise the study of unique features of 

a phenomenon in a particular context (Yin, 1981). Research which focuses on a full 

portrayal of ‘of a unique, temporally circumscribed reality’ (Windelband, 1894, p. 12) 

has been labelled ‘idiographic’ in contrast to ‘nomothetic’ research which aims to 

understand ‘general lawfulness’. The term ‘case’, in this thesis, will be taken to mean 

‘an instance of a class of events’ (George & Bennett, 2005, p. 17). Therefore a case 

study focuses on the ‘particularity and complexity’ (Stake, 1995, p. xi) of a particular 

‘phenomena specific to time and place’ (Ragin, 1992, p. 2). Case studies develop a 

‘nuanced view of reality’, rather than aiming to produce grand theories (Flyvbjerg, 

2006, p. 223) and, therefore, fit well with constructivist epistemology (Baxter & Jack, 

2008). Within a constructivist understanding, learning is seen as, to some degree, 

idiosyncratic (Taber, 2009, p. 124) and ‘messy’ (Taber, 2013, p. 126) hence case 

studies are argued to be a suitable tool for studying the complexities of learning in 

science (Taber, 2000a). The microgenetic method is reported to produce ‘untidy’ data 

(Flynn, Pine, & Lewis, 2006, p. 4) and therefore the case study approach is seen as a 

good fit for microgenetic research (Parnafes & diSessa, 2013, p. 6). Therefore, an 

approach in which particularity is seen as a strength (George & Bennett, 2005; 

Schofield, 2002; Stake, 1995) is an appropriate choice for this research project.  
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A researcher studying a case study has to make a decision regarding the manner in 

which are cases bounded. Cases are expected to have some kind of ‘unity’ (Abbott, 

1992, p. 63); hence, it is important for researchers to clearly define the boundaries of 

cases (Yin, 2009). As learning progressions are assumed to be, to some extent, 

idiosyncratic (Taber, 2009), in this thesis, the data produced in interviews with 

individual students will be taken to represent separate cases of learning. However, it 

has been argued that multiple case studies, which examine cases that are 

‘categorically bound together’ (Stake, 2006, p. 6), are more compelling and robust 

than single case designs (Yin, 2009). Two different conceptualisations of multiple 

case studies are possible: either the individual cases are seen as relatively discrete 

entities or they can be treated as embedded in a single overarching context (Yin, 

2009). In this thesis, the participating students are seen as relatively discrete cases that 

share some commonalties in learning processes, making up a multiple case study. 

 

A significant challenge of multiple case studies is that the particularity of individual 

cases may be lost in seeking generalities (Stake, 2006). Hence, Eisenhard (1989) 

suggests that researchers should focus on the characteristics of individual cases first 

before examining patterns that link a group of cases together. Multiple case study 

research faces an acute version of the researcher’s dilemma (Pope & Denicolo, 1986); 

the particularity of each case must be maintained whilst some commonalities of the 

cases are proposed. It is hoped that the inclusion of many sections of verbatim 

transcript of individual cases of learning will maintain a sense of particularity whilst 

supporting claims about similarities between the cases. 

4.3.1.1 Sampling 

The selection of cases, or sampling, is crucial to the outcome of a case study 

(Seawright & Gerring, 2008). Many approaches to sampling have been proposed: 

random, stratified, extreme/deviant case, critical case, and paradigmatic sampling 

(Flyvbjerg, 2006, p. 230). Randomised approaches to sampling, as used in 

quantitative research, may lead to unrepresentative samples when choosing from 

small groups, for example, a school, so purposive sampling is recommended for case 

studies (Seawright & Gerring, 2008). Sampling approaches in qualitative research are 

‘not rigidly defined’ (Coyne, 1997, p. 623), and sampling decisions may therefore be 
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‘a matter of discretionary, judgemental choice’ (Yin, 2009, p. 58) providing the 

researcher asserts a case for their decisions.  

 

The school the researcher taught at, a comprehensive state secondary school near 

London in the United Kingdom, was chosen for a pragmatic reason: ease of access. 

Students aged 16-17 years were selected as it was assumed, and the pilot studied 

confirmed, that the complexity of their conceptual structures allowed for the potential 

for relatively extended incidents of making sense: they possessed multiple coexisting 

concepts, yet were still acquiring new concepts and developing the relationships 

between existing concepts. The choice of students in their penultimate year of 

secondary education, rather than students in their final year, enabled observation to 

continue over a time when the students were not involved with external examinations. 
 
An appropriate sample size for qualitative research is one which allows adequate 

answers to research questions to be developed (Marshall, 1996). A sample size of five 

was chosen for a number of reasons. Siegler (2006) suggested microgenetic 

researchers balance the number of participants and number of sessions: if the number 

of participants is low then a high density of observations is required, and vice-versa. 

As the aim of the research was to track learning over a relatively large number of 

sessions (22) compared with that common in microgenentic research in science 

education (only one microgenetic study in science education, Nuthall & Alton-Lee 

(1993) involved a greater number of observations (see Appendix 8.1)), a relatively 

low number of participants was judged to be acceptable. As Taber (2007) has 

suggested, sampling is often driven by pragmatic considerations: given participants’ 

commitments and the researcher’s part-time work as a teacher, combined with the aim 

of maintaining an approximate one week interval between sessions, a sample size of 

five students was seen as an appropriate. Though the modal number of participants in 

microgenetic research studies in science education is fifteen (see Figure 4.1 and 4.2), 

the small sample size is justified as researchers studying change processes have 

argued that adding extra data collection probes is preferable to adding extra 

participants when studying change in individuals (Siegler, 2006; Sliwinski, 2011). It 

was expected that, due to the high level of commitment required from the students, a 

number were likely to drop out; so, an initial group size of five would be likely to 
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result in at least two students at the end of the process, which would enable 

comparison of cases. However, it transpired that only one student, Amy, chose to 

leave the process after ten sessions, citing the time pressure of upcoming mock exams 

as her reason for finishing her involvement. 
 
Two commonly used approaches to qualitative sampling are: theoretical sampling,  

‘…that will maximise opportunities to discover variations among concepts and to 

densify categories’ (Strauss & Corbin, 2008, p. 201); and purposeful sampling, in 

which the cases selected are ‘…those from which one can learn a great deal about 

issues of central importance to the purpose of the research’ (Patton, 1990, p. 169). As 

these definitions might suggest, the terms theoretical and purposeful sampling are 

often used interchangeably. However, Coyne (1997) clarifies the distinction by 

arguing theoretical sampling is a subset of purposeful sampling in which sampling 

occurs in accordance with theory arising from the data. In this study, no developed 

theory was useful for guiding selection, so the purposeful sampling strategy of 

extreme (Yin, 2009, p. 47) or maximum variation (Flyvbjerg, 2006, p. 230) cases was 

used. Students were identified by discussions with their teachers, and members of the 

following categories were selected: a) two students who appeared to make sense of 

physics easily; b) two students who appeared to struggle with making sense in physics 

c) one student who lay in the middle of these two positions. All the students selected 

consented to involvement after learning about the project (see Appendices 8.4 and 

8.5). In order to preserve the students’ anonymity, and because the analysis does not 

refer to the teachers’ construction of the students’ abilities, the pseudonyms are not 

linked to a particular category description. 
 
A common and significant criticism of the case study approach is that statistical 

generalisations are limited when drawn from small sample sizes (Flyvbjerg, 2006; 

Yin, 2009). This criticism is addressed in Section 4.7.4 on generalisability, below. A 

second criticism claims case studies are carried out with ‘insufficient precision’, and 

that ‘investigators…have allowed a biased view to influence the direction of findings’ 

(Taylor, Dossick, & Garvin, 2010, p. 303). It is hoped that a clear statement of 

research methodology, methods and means of analysis will mitigate the possibility of 

such criticisms in this study (see discussion of validity in section 4.7.2). 
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4.3.2 The microgenetic method 

As making sense is conceptualised as a change process that occurs over both short 

and long timescales, the microgenetic approach to data collection was used to develop 

a representation of change. The microgenetic approach has been defined by three 

characteristics: 

 

(a) Observations span the entire period from the beginning of the change to the 

time at which it reaches a relatively stable state.  

(b) The density of observations is high relative to the rate of change of the 

phenomenon. 

(c) Observed behaviour is subjected to intensive trial-by-trial analysis, with 

the goal of inferring the processes that give rise to both quantitative and 

qualitative aspects of change. (Siegler & Crowley, 1991, p. 606)  

 
In contrast to the pre-test/post-test paradigm, which reveals only whether an 

observable change over an interval has occurred, the microgenetic method can give 

information on the processes of change (Goldin-Meadow & Wagner Alibali, 2002). 

Researchers in science education have taken up the microgenetic approach to 

investigate a range of phenomena, and around thirty studies claim to have used the 

method (See appendix 8.1). The application of the method to science education raises 

five significant issues: 

a) Can the microgenetic approach be used within research designs 

collecting and analysing either, or both, qualitative and quantitative 

data? (Section 4.3.2.2) 

b) When examining data that describe changes in students' 

representations of their thinking how can researchers define 

intervals over which change does and does not occur? (Section 

4.3.2.3) 

c) What is an appropriate sampling rate for a microgenetic study of 

learning? (Section 4.3.2.4) 

d) How is it possible to manage the high variability that may occur 

in data sampled at a high frequency? (Section 4.3.2.5) 
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e) What kinds of sequences of probes are appropriate within the 

microgenetic approach? (Section 4.3.2.6) 

 

The next section examines some of the assumptions that may be made when data 

relating to cognition are constructed as a series of events over time. 

4.3.2.1 The sequential division of data about cognition 

Data in science education research are constructed representations, and do not fully 

reflect the nature of cognition (Taber, 2013): though cognition may be parallel 

(Rumelhart & McClelland, 1986), many forms of data have an apparent sequential 

nature; for example, the utterances in interviews and even concept maps are produced 

as, and might be constructed as, serial chains of concepts interlinked with themselves. 

The serial nature of data can be seen as arising from processes occurring at three 

levels, shown in Figure 4.0.  

 

 
Figure 4.0: The channelling of cognition into serial-in-time reports. Reproduced from 

Figure 1 in Brock and Taber (2017b, p. 6). 

 

Cognition is complex (O’Brien & Opie, 1998, p. 13): processing may be parallel 

(Rumelhart & McClelland, 1986), involve tacit elements (Brock, 2015; Polanyi, 1966; 

Taber, 2014) and the conscious experience of the order of cognitive processes over 

short timescales may be misleading (Dennett, 1991). Consciousness imposes a sense 

Cognition is composed of 
multiple parallel processes, 
both tacit and explicit, that 
occur in an order that may 
differ from the conscious 
perception of order

Consciousness imposes 
seriality on cognition, 
generating the impression 
of a stream of consciousness

The forces on the car will
be balanced making it 
travel at constant
velocity

As the brakes are applied 
the resistive forces increase

A resultant force therefore 
acts

The car comes to a stop as it 
runs out of force 

The forces on the car will
be balanced making it 
travel at constant
velocity

As the brakes are applied 
the resistive forces increase

A resultant force therefore 
acts

The car comes to a stop as it 
runs out of force 

1) Ordering on the 
psychological level

2) Ordering on the 
methodological level (I)
The nature of data collection tools 
often impose further seriality 
onto representations of cognition

3) Ordering on the methodological 
level (II)
Analytical choices by the researcher 
divide the data into fragments that are 
considered as units representing 
meanings, usually u erances

Representation of 
constructed cognitive 
elements

Representation of 
transcripts
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of ‘seriality’ onto the parallel nature of cognition (Baars & Franklin, 2003, p. 167)- as 

illustrated in the left-hand section of Figure 4.0. 

 

In addition to psychological ordering, research instruments cause an additional layer 

of sequencing (right-hand side of Figure 4.0): the particular stimuli, their forms and 

the order in which they are presented, cue what a participant 'brings to mind'. Probes 

of consciousness at different times will then produce different representations: 

cognition at a given time is partly, but not wholly, dependent on the nature of the 

stimuli encountered (Dennett, 1991). In the final stage of ordering, a researcher may 

deliberately define temporal divisions or static intervals in a sequence of data (see 

section 4.3.3.4). The next section examines existing microgenetic studies in science 

education. 

4.3.2.2 The microgenetic method in small scale studies in science education 

A catalogue of microgenetic studies in science education was created (Appendix 

8.1.2) using a set of search criteria (Appendix 8.1.1). The papers listed in Appendix 

8.1.2 provide a context in which to examine how the microgenetic method has been 

understood in science education. One author who has commented on the use of the 

approach, Chinn (2006), made a case that certain kinds of small-scale, qualitative, 

repeated measures studies are not microgenetic because the data collected are not 

analysed on a moment-by-moment basis, probes in the studies are not 

counterbalanced (a technique used to reduce practice and task effects by changing the 

order of the probes presented to individual participants (Gaito, 1961)) and the sample 

size in the studies is too small for statistical analysis. 

 

Whilst Chinn has identified some useful indicators for including studies in the 

microgenetic canon, his indicators should not be considered as absolute criteria and a 

case is made, below, for the value of the microgenetic approach in studies designed to 

collect qualitative data from small numbers of participants. The criticisms relating to 

sampling rate, moment-by-moment analysis and counterbalancing of tasks are not 

inherent issues of small-scale, qualitative studies and may equally be applied to some 

quantitative microgenetic studies. 
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Parnafes and diSessa (2013) have argued that the microgenetic method fits well with a 

case study approach as high-density sampling will lead to ‘… a high degree of 

individual and contextual variation’ (Parnafes & diSessa, 2013, p. 7) which is best 

suited to examination through the sensitivity to idiosyncrasy of case study research. 

Small numbers of participants are usual in microgenetic research, even single 

participant studies are not uncommon (Siegler, 2006). Though small-scale studies 

have been criticised for their limited generalisibility (Feldon & Gilmore, 2006), 

Parnafes and diSessa (2013) argue that microgenetic case studies may have stronger 

ecological validity and develop greater insights than strictly controlled, laboratory-

based studies. The microgenetic focus on individual variability means ‘…it makes 

little sense to average performance over individuals’ (Kelso, 1995, p. 161) and, rather 

than larger sample size, a high frequency of observation may ‘minimize measurement 

error’ (Lee & Karmiloff-Smith, 2005, p. 257).  

 

The mean number of participants in the studies listed in appendix 8.1.2 is 25 and the 

mode is 15. The frequency distribution of participants in these studies is shown in 

Figures 4.1 and 4.2. Note that Kuhn, Schauble, and Garcia-Mila (Kuhn et al., 1992) 

and Johnson and Mervis (1994) consist of two discrete studies, involving different 

numbers of participants, and those studies have been individually counted. Kuhn 

(2010) and diSessa (2014) could not be included in these graphs, as the number of 

participants is not stated.  
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(Reproduced from Figures 2 and 3 in Brock and Taber (2017b, p. 13)) 

 

The number of participants leads to a distinction in analytical approach: in studies 

with high N (Chinn, O’Donnell, & Jinks, 2000; Feldon & Gilmore, 2006; Opfer & 

Siegler, 2004) analysis tends to be largely quantitative. In smaller scale studies, a 

greater variety of analysis types are found: largely qualitative analysis (Wiser & 

Amin, 2001), mainly quantitative approaches (Van Der Steen, Steenbeek, Van Dijk, 

& Van Geert, 2014) or a mixture of both (Nuthall, 1999). Clearly, different 

approaches are appropriate for different kinds of investigation. Chinn’s (2006, p. 444) 

argument against qualitative microgenetic studies might be valid if statistical 

generalisability were the only goal of research. However, this research is not aiming 

for statistical generalizability; instead, it aims to provide in-depth detail about 

particular cases (Taber, 2000a) and therefore the emphasis on the richness of 

individual experience in this research is argued to be an excellent fit for the 

microgenetic approach.  

4.3.2.3 The static interval and the observation of different phenomena 

The microgenetic method’s focus on the occurrence of change requires researchers to 

describe the interval over which change is considered to occur. In analysing 

qualitative data, for example transcripts of interviews, classroom dialogue and think-

aloud protocols, researchers commonly divide the transcript into what they perceive 

are a sequence of somewhat distinct episodes that may be considered to represent 

change (see Figure 4.3). This division of the data set into sections is typically driven 

0	

2	

4	

6	

8	

10	

12	

1-5	 6-10	 11-15	 16-20	 21-25	

N
um

be
r	
of
	s
tu
di
es
	

Number	of	participants	

Figure	4.2:	Number	of	microgentic	studies	with	a	
range	of	participants	with	N<26.	



 101 

by the analyst's interpretation of an alteration in the focus of the constructed 

representation. A common assumption is that a particular subsection of the data, for 

example a number of utterances in an interview transcript, represents a point in time, 

that is, a particular phase in the development of the participant.	In microgenetic 

research, however, the assumption is that there may be significant shifts that occur 

during data collection such that a transcript might be a record of several distinct 

phases in the development being explored. This raises an issue about how data, 

perhaps a transcript with a long sequence of utterances alternating between an 

interviewer and participant (labelled as I and P in Figure 4.3), can be fragmented 

during analysis in order to represent potential change.		

 
Figure 4.3: An illustration of the concept of static interval. The image displays a 

section of transcript. ‘I’ and ‘P’ refer to the interviewer’s and participant’s utterances 

respectively. Reproduced from Figure 4 in Brock and Taber (2017b, p. 14). 

 

In order to report change, researchers will describe a perceived difference between 

data collected at two or more different times. This approach assumes that change 

occurs in the interval between these two sections of data but, crucially, the sections of 

data themselves, the start and end points of the change, are assumed to be essentially 
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static: change occurs between the sections rather than during the sections. These 

periods in which no change is assumed to occur are referred to here as static intervals 

(see Figure 4.3). There follows a discussion of two papers, Parnafes and diSessa 

(2013) and Taber (2008b), to illustrate the concept of the static interval. Parnafes and 

diSessa’s (2013) investigated students’ understanding of simple harmonic motion. In 

their analysis, the authors describe a student as reaching two different conclusions 

about the concept of ‘fastness’, in the contexts of an oscillating pendulum and a rod 

(Parnafes & diSessa, 2013, p. 24). Parnafes and diSessa argue: 

 

This is a canonical case of lack of alignment; while Rachel 

believes she is determining the same kind of information in both 

situations, ‘fast or slow,’ she is actually determining two 

different kinds of information. (Parnafes & diSessa, 2013, p. 25) 

 

By contrast, during the computer simulation, it is reported that the introduction of 

friction ‘… led to the discovery of an important new relationship’ (Parnafes & 

diSessa, 2013, p. 26). The pendulum and the rod are seen as two contexts triggering 

different interpretations of ‘fastness’, as in Mortimer’s (1995) conceptual profile 

model, but the developing understanding of periodicity is seen as a ‘discovery’ rather 

than a shift of frame. 

 

The case being made is not intended to criticise Parnafes and diSessa’s (2013) 

interpretations of the data, but rather to highlight a shift in interpretation of the 

interval over which change occurs has taken place. The two different models of 

fastness are implied to coexist within the same static interval, but the shift in 

understanding of periodicity is described as a discovery; hence, it implies a transition 

between static intervals. A discussion of the difficulty of distinguishing conceptual 

change from the presence of multiple concepts is outlined in the next section. 

 

Taber (2008b) presents a different division of time: he interviewed students to 

examine their application of knowledge of forces and energy to a variety of contexts: 

an apple hanging in a tree, the solar system, and a stretched spring, amongst others. 

He reported a number of incidences in which students possessed conceptual resources 
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that matched the scientific position but chose not to activate them in a particular 

context. In	Taber’s (2008b) study the intention was to explore thinking related to the 

same underlying scientific ideas in different contexts, and so the study was not 

intended to be microgenetic. However, it is possible to conceptualise the work as a 

study of potential change: the student is presented with multiple sequential tasks that, 

from a formal scientific perspective, access similar conceptual resources. 

 

Taber (2008b) and Parnafes and diSessa (2013) used similar methods: a single 

interview including multiple probes of a student’s understanding of an underlying 

conceptual structure. However, the authors characterise their data differently: in 

particular, they make implicitly different assumptions about the division of reports of 

cognition over time. In terms of the concept of the static interval, the interview is 

considered either a single static interval, describing an unchanging conceptual 

structure applied in several contexts (as in Taber, 2008a), or the interview is 

interpreted as containing multiple static intervals, describing an evolving 

understanding (as in Parnafes & diSessa's (2013) report of a discovery). Both of these 

interpretations are justifiable, however, it is important that authors clearly define their 

assumptions related to the intervals over which change does and does not occur. 

A researcher’s choice of static interval will depend on the phenomenon being 

investigated. When studying the acquisition of strategies, for example, Adolph and 

colleagues (2008) examined infants learning to walk, static intervals of relatively 

short duration are appropriate, as the behaviours, for example walking or crawling, 

are well defined and occur over short time periods. However, the situation is more 

complicated if the investigation focuses on scientific concepts: as Parnafes and 

diSessa (2013, p. 15) state, ‘[l]earning a concept simply cannot happen in a single try, 

as a new strategy usually appears’.  

The relationship between phenomenon and static interval may explain the historical 

focus in science education research on individual concepts rather than wider 

explorations of conceptual structure (Taber, 2009). The extended length of time that 

would be required to probe a conceptual structure makes it difficult to maintain the 

assumption that change is not occurring over the observation period. In this thesis, 
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static intervals for addressing different research foci are described in the analysis 

sections, but are summarised in Figure 4.4, below. 

 
Figure 4.4: Summary of choice of static interval. The arrow-headed lines represent the 

static intervals applied in different strands of the thesis. It is assumed that it requires 

multiple probes, across several sessions, to develop a representation of a student’s 

ontology of force, as ontologies are multifaceted and potentially contextually 

sensitive. By contrast, the construction of a conceptual compound may occur in a 

single context within a session, and change might be constructed as occurring within 

or between sessions. 

4.3.2.4 Sampling rate and the rate of change of learning 

Researchers typically attempt to describe change by observing a selection of episodes 

in an extended process. In order, therefore, to construct a fair representation of the 

change, Siegler and Crowley’s (1991, p. 606) second criterion for microgenetic 

studies makes the cases that: ‘The density of observations is high relative to the rate 

of change of the phenomenon’. Microgenetic studies may be seen as a subset of 

longitudinal studies, in which ‘…two or more measures or observations are made at 

different times of the same individuals or entities’ (White & Arzi, 2005, p. 138). Most 

longitudinal studies, for example, are seen as developing ‘snapshots’, rather than the 

‘near continuous flow of information in movies’ (Siegler, 1995, p. 226) seen in 
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microgenetic methods: moment-by-moment analysis is seen as the ‘gold-standard’ of 

the microgenetic approach (Parnafes & diSessa, 2013, p. 7). When observing change, 

an overly low density of observations will result in a loss of detail in the data 

produced (Adolph et al., 2008; Kuhn, 1995). 

 

In order to fulfil Siegler and Crowley’s (1991) condition, researchers need to make 

and justify claims for the rate of change of the phenomenon they are observing. As 

has been discussed in section 2.5, various rates of conceptual changes have been 

suggested in science education research. It is hypothesised that change to ontologies 

(Chi, 1992, 2013) and understandings of causality (Grotzer, 2012) happen gradually, 

hence lower sampling rates are acceptable for those phenomena (See Figure 4.4). By 

contrast, given the reported range of timescales of conceptual change (See section 

2.5.4), both a high density of observation, weekly sampling, to capture short timescale 

change in conceptualisations, and an extended period of observation, a total period of 

observation covering approximately six months, to capture gradual shifts in cognitive 

structure (Taber, 2001a), were used to collect data related to conceptual change, span 

and the formation of conceptual compounds. 

4.3.2.5 Noisiness and stability in the microgenetic method 

A concern relating to data collected over short timescales is a difficulty in 

distinguishing ‘signal’ from ‘noise’ (Silver, 2012). In the case of learning, this might 

be thought of as distinguishing ‘genuine systematic change’ in conceptual structure 

from transient fluctuations (Lee & Karmiloff-Smith, 2005, p. 257). Taber (2008a, p. 

1028) argues researchers should ‘…distinguish between thinking that reflects stable 

‘alternative conceptions’ from thinking that constructs a viable but labile response to 

which the learner has little commitment’, and so be able to discriminate ‘significant 

progression’ from ‘mental flotsam and jetsam’ (Taber, 1995, p. 5). The distinction 

between ‘signal’ and ‘noise’ is especially acute in the microgenetic method as the 

approach is reported as uncovering ‘untidy’ change (Flynn, Pine, & Lewis, 2007, p. 

4). 

 

Though stable cognitive elements are often the focus in studies of learning (Petri & 

Niedderer, 1998; Taber, 1995), transient processes may nonetheless be significant 

(Siegler, 2006). An understanding may appear ad hoc and short-lived within a 
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particular set of data, but if observations are continued over an extended period, it is 

possible the apparent flotsam might develop into a stable conceptual entity. In the 

absence of sufficient data researchers should be cautious in discounting the 

significance of apparently transient elements (a construction of unstable constructs in 

the data is found in Section 5.2.2.1.1).	 

An additional difficulty is that a student may posses multiple co-existing 

understandings that are stable and selectively active over short timescales (Harrison & 

Treagust, 2000b; Mortimer, 1995; Taber, 2000b) in response to particular contextual 

cues. However, when sampling occurs at high densities, it becomes difficult to 

determine if a report of several different consecutive concepts is evidence of multiple 

concepts reported serially, or of conceptual change. An extended period of sampling, 

across a range of contexts, may assist in distinguishing the presence of multiple 

concepts from conceptual change. It has been reported that substantive shifts in 

conceptualisation may take weeks, months or years to occur (Shuell, 1990), and it is it 

difficult to define a precise duration of observation that would satisfy claims 

regarding conceptual change. The notion of moving towards ‘theoretical saturation’ 

(Glaser & Strauss, 1967, p. 61) may be more appropriate than a defined interval. The 

ideal form of investigation would include microgenetic sampling over an extended 

period of time to provide evidence of the diversity and stability of conceptual entities. 

In this thesis the data were collected at intervals of one week, to capture short 

timescales changes; and for an extended period covering approximately six months in 

order to understand the stability of changes. 

4.3.2.6 The use of repeated measures 

In defining the conditions of microgenetic studies, Chinn (2006, p. 441) states a 

participant ‘…typically encounters similar tasks and measures repeatedly’, and 

implies studies that do not use counterbalanced tasks should not be considered 

microgenetic. Counterbalancing is a technique intended to reduce practice and task 

effects by changing the order in which the probes are presented to individual 

participants (Gaito, 1961). This section considers the methodological choices 

researchers face when choosing the types of probes to use in microgenetic studies. 

Measures may be thought of as existing on a continuum of similarity (see Figure 4.5), 

including identical probes and probes which are apparently different but investigate 
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the same conceptual area. The extreme case of non-identical probes that investigate 

unrelated conceptual areas is not considered here as it seems an unlikely choice for a 

researcher. However, defining similarity is not straightforward and may depend on 

expertise. For example, to an expert, a problem concerning the motion of the mass on 

a spring and a problem about a block sliding down a slope, may be perceived as 

similar, because their solution methods share the same ‘deep structure’ of energy 

conservation (Chi et al., 1981, pp. 125–127). Measures that appear non-identical may 

be argued, at least to an expert, to be similar if they share a ‘deep structure’ (see 

Figure 4.5)  

 
Figure 4.5: The continuum of similarity of measures. Reproduced from Figure 5 in 

Brock and Taber (2017b, p. 21). 

 

The nature of the effects of assessment may vary for measures at different places on 

the continuum (Figure 4.5). Siegler and Crowley’s (1991) use of relatively similar 

measures in an investigation of addition strategies was criticised by Pressley (1992, p. 

1240), who argued microgenetic studies lead to a confounding of ‘…time of 

assessment with experimental effects associated with assessment’. The high density of 

novel experiences encountered may differ from typical learning experiences (Miller & 

Coyle, 1999). At the other end of the continuum, where identical measures are not 

used (such as Parnafes and diSessa, 2013), it is impossible to separate effects due to 

context from changes over time (see Figure 4.5). If the intention of a study is to 

produce a narrative of a particular learner’s developing understanding across different 

contexts, this effect is unavoidable, and non-identical measures are a necessary 

choice. The data then, as in the case-study approach (Flyvbjerg, 2006), are inherently 

bound up with the nature and order of probes and the interaction with the researcher. 

The use of non-identical but isomorphic probes is similar to the kind of assessment 

Sequence of identical measures
For example repeated use of a question
over a series of sessions
E.g. 
A car collides with a stationary lorry. Which
vehicle experiences a greater force?

A car collides with a stationary lorry. Which
vehicle experiences a greater force?

A car collides with a stationary lorry. Which
vehicle experiences a greater force?

Valid comparisons between measures are 
possible. No inferences about studentsʹ ability to 
transfer learning are possible and practice effects 
from repeated exposure to a probe may influence 
the data.

Sequence of non-identical measures
Probes access the same conceptual understanding
in different contexts over a series of sessions
E.g.
A car collides with a stationary lorry. Which
vehicle experiences a greater force?

A horse is pulling a cart at a steady speed. Compare the
size of the force of the horse on the cart with the force of
the cart on the horse. 

A sateli le orbits the Earth. Compare the size of the gravitational 
forces on the two objects.

Claims about the ability to transfer learning may be made and
practice effects are reduced. Valid comparisons of learning between 
measures are more complicated as it may be difficult to distinguish
changes due to particular contexts from changes over time. 
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that a student might routinely encounter in the classroom, and so it might be argued to 

have stronger analytical generalisability (Kvale, 1996; Taber, 2000a) than a small-

scale study using identical measures. 

 

Expert conceptual structures appear to allow the transfer of principles to novel 

situations (Haskell, 2001; Mayer, 2002a); hence, it has been argued a microgenetic 

study of learning should involve a variety of related, but non-identical, tasks that 

share similar underlying structures (Kuhn, 1995, p. 136). Complex forms of learning 

are applicable across a range of contexts, and controlling for context would be 

mistaken (Maxwell, 2004). In this thesis, both identical probes and non-identical 

probes (see Table 4.2) were used to produce a broad representation of making sense 

(see Section 2.6). It is argued that the non-identical probes (see Appendix 8.7.2) 

allowed the researcher to develop an understanding of the students’ activation of 

conceptual resources across a range of contexts in which experts might be expected to 

consistently activate a particular set of conceptual resources. 

4.4 Tools 
The previous sections have addressed the over-arching approaches that inform the 

research, that is, case study and the microgenetic method. The next sections (4.4.1-

4.4.7) focus on the particular methods used to collect data. 

4.4.1 Interviews 

Interviews may be conceptualised as a process in which ‘knowledge’ is constructed in 

the interaction of the participants (Kvale, 2007, p. 1) and both parties are seen to be 

active in the meaning making process (Holstein & Gubrium, 1995). Therefore, an 

interview is not a ‘pipeline for transmitting knowledge’, but, rather, a process that 

leads to the creation of meaning from the interaction of participants (Holstein & 

Gubrium, 1995, p. 3). Interviews are not passive processes but can cause conceptual 

change: ‘an interviewee’s thinking will change and drift, as they draw on and 

recombine various conceptual resources’ (Sherin et al., 2012, p. 170). Such shifting 

conceptual dynamics may be ‘messy’ and so an interview should not be 

conceptualised as a tool that allows for a simple ‘read out’ of participants’ 

understandings (Sherin et al., 2012, p. 172). Responses may be highly sensitive to the 

context of probes (Southerland, Smith, & Cummins, 2005) and therefore replication 
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of responses between repeated measures should not be expected (Holstein & 

Gubrium, 1995). This kind of contextual variability is not seen as a hindrance, but a 

reflection of the contextually sensitive nature of cognition; the data produced are 

conceptualised as inherently bound to the contexts in which they were generated. 

 

In semi-structured interviews, the researcher has an aim for the material they wish to 

cover, but will allow discussion to be guided by the participant’s responses; therefore, 

topics of discussion may vary considerably in individual interviews (Fylan, 2005). 

Semi-structured interviews can be seen as occupying the centre of a continuum 

running from highly structured interviews to entirely unstructured interviews, in 

which initial responses may determine the focus: a flexible but unpredictable 

approach (Leech, 2002). Semi-structured interviews are seen as useful for addressing 

complex research questions, such as those in this project, as they allow 

responsiveness to emerging understandings (Fylan, 2005) and enable the exploration 

of inconsistencies or contradictions (Barriball & While, 1994). A sample set of 

interview probes is shown in Appendix 8.7.1. Within the interviews a number of 

conceptual questions were drawn from the Force Concept Inventory (Hestenes et al., 

1992) and Determining and Interpreting Resistive Electric Circuits Concepts Test 

(DIRECCT) (Engelhardt & Beichner, 2004). The inventories were not used as 

instruments in their entirety, but as a source for probes which were repeated a number 

of times over the course of the interviews (see Appendix 8.7.2). As part of the 

interview process, students were asked to give their own reflections on the process of 

making sense, as Taber (2008b, p. 1936) suggests an exploration of students’ own 

views about conceptual integration would be an important direction for work in this 

field. 

4.4.1.1 Interviews about events and instances 

Given the assumption that making sense is constrained by a particular context 

(Dykstra et al., 1992; Redish, 1999; Sabella & Redish, 2007), it has been argued that 

interviewing across a range of contexts will present the richest model of conceptual 

structure (see Section 4.2.1). Ausubel (2000, p. 110) argued that asking students to 

state principles may lead to the elicitation of rote-learned material, and instead 

suggested probes of comprehension are presented in ‘a somewhat different context 

than the originally encountered learning material’. Making-sense is particularly 
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challenging to assess as it is a personal act (Craig-Lees, 2001), and our ‘private 

understandings’ may be idiosyncratic and differ from canonical  representations 

(West, Fensham, & Garrad, 1985, p. 30). A number of approaches have been 

suggested which are suitable for the investigation of making sense. Osborne and 

Gilbert (1979) developed a method to probe the construction of meaning, the 

interviews-about-instances approach. In this technique, a student is shown one of a set 

of drawings that represent instances of the use of a concept, for example, situations 

linked to electric current, and the student is asked if the drawing represents an 

example of their meaning of the concept (Osborne & Gilbert, 1979). A related 

approach is the interviews-about-events method in which a practical apparatus acts as 

the basis of questioning (Solomon, 1993; White & Gunstone, 1992). The distinction 

between these two methods is blurred, as, in the instances approach, cards may 

represent practical situations (White & Gunstone, 1992). In the interviews-about-

events approach, the interview is seen as ‘a conversation that is managed in order to 

bring out the student’s understanding’ (White & Gunstone, 1992, p. 66), and it is 

recommended the sequence of the interview should be guided by the discussion 

(White & Gunstone, 1992). The interview is set up as a dialogue or open discussion 

and emphasis is placed on there being no single correct answer. For this reason, 

Osborne and Gilbert (1980) advise against the interviewer being the student’s current 

teacher (see section 4.4.2 and 4.7 for a discussion of this issue). Further variants are 

the Describe, Observe, Explain task (Champagne, Gunstone, & Klopfer, 1985) and 

the similar Predict, Observe Explain task (White & Gunstone, 1992), in which 

students are presented with some physical apparatus, asked to predict and justify the 

effect of some manipulation, and then compare their prediction with the outcome of 

the manipulation.  

 

The interviews about instances approach can be seen as a form of dynamic 

assessment, as: a) the interviewers’ questions are not entirely pre-determined; b) some 

form of feedback is given on a learner’s attempts to develop an understanding; c) the 

interviewer does not adopt a neutral or detached role; rather, the process is seen as a 

‘two-way interactive relationship’ (Sternberg & Grigorenko, 2002, pp. 28–29). This 

approach is cited as evolving out of Vygotsky’s concept of the zone of proximal 

development (ZPD) (Grigorenko & Sternberg, 1998) in which a distinction is drawn 
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between actual development that a learner can achieve alone, and potential 

development, which is achieved in collaboration with peers or adults (Vygotsky, 

1978). The use of a dynamic approach, in a particular context, allows the researcher to 

elicit a student’s initial interpretation of a situation and then, through cycles of 

scaffolding prompts, to uncover other facets of the student’s understanding. Similarly, 

the graduated prompt approach (Campione, 1989; Campione & Brown, 1987) permits 

a researcher to provide a sequence of prompts to move a learner closer to solving a 

problem, and, in the process, acquiring information about their understanding. This 

kind of responsive assessment is both time-consuming and challenging for the 

researcher who must pitch prompts at the appropriate level (Berk, 2001). 

 

A typical progression of questioning would begin with the presentation of a scenario, 

either a physical piece of apparatus, a written description or a computer simulation, 

such as, a marble travelling round a looped track. The participant was initially asked 

an open-ended question to allow them to make sense of the situation; for example, 

“How can the marble travel upside down at the top of the loop?” The initial prompt 

was intended to allow students to talk for an extended period, without interruption, in 

order to present their initial ideas in that context. The interviewer developed some 

probes in the moment, to respond to facets of the participants’ initial argument. Often 

these might involve: asking for greater detail, probing areas of inconsistency, or 

eliciting underlying assumptions. A list of the pre-determined questions asked in each 

scenario is given in Appendix 8.7.2. For this research, two broad conceptual areas, 

dynamics and electricity, were chosen to be the focus of the interviews. These areas 

were chosen as both presented a number of situations (for example, instances of 

simple harmonic motion or direct current resistive circuits) in which the same 

underlying principles could be applied across a range of situations with surface 

differences (Chi et al., 1981). 

4.4.1.2 The naturalness of the approach 

Naturalistic inquiry ‘focuses on how people behave when they are absorbed in 

genuine life experiences in natural settings’ (Frey, Botan, & Kreps, 1999, p. 257). 

Several researchers draw a distinction between ‘classroom and laboratory’ settings 

(A. L. Brown, 1992; Maki & McGuire, 2002; Sheen, 2008). Laboratory settings have 

been assumed to possess the advantage of greater, though not complete, control of 
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variables; hence, they allow stronger claims to reproducibility and validity to be made 

(Berkowitz & Donnerstein, 1982; Brewer, 2000). Alternatively, research in 

naturalistic settings may be seen to have greater external validity than laboratory 

studies as naturalistic research is more likely to resemble commonly occurring 

situations (Gilliland & Chan, 200; Wilson, Aronson, & Carlsmith, 2010). However, 

these assumptions are somewhat simplistic and therefore contested (Anderson & 

Bushman, 1997). For example, there is no reason to suppose a trade-off between 

internal and external validity (Jiménez-Buedo & Miller, 2010). As Brown (1992) has 

argued, both types of settings can provide research advances. This research could then 

be conceptualised not as a series of clinical interviews, but, rather, as recordings of 

quasi-naturalistic interactions (Lincoln & Guba, 1985), that resemble, to some degree, 

typical one-to-one student-teacher interactions. 

4.4.2 Think-aloud protocols 

Though it is sometimes assumed, both explicitly and in the choice of language 

researchers use, that spoken utterances can give direct reports of cognition, the reality 

is more nuanced (Taber, 2013). For example, the think-aloud protocols developed by 

Ericsson and Simon (Bernardini, 2002, p. 242) have been described as ‘a very direct 

method to gain insight into the knowledge and methods of human problem-solving’ 

(Someren, Barnard, & Sandberg, 1994, p. 1) and as a ‘…way of accessing rich 

information that is unattainable through other means’ (Ku & Ho, 2010, p. 255). 

However, the relationship between reports of cognition and cognition itself is not 

simple: as early as 1830, Comte (quoted in Vermersch, 1999, pp. 18–19) argued ‘[t]he 

thinking individual cannot split himself [sic] in two’ to observe their own cognition, 

and therefore the method of introspection was ‘radically faulty’. 

 

More recently, Nisbett and Wilson (1977) pointed out there was little evidence that 

people are capable of commenting accurately on their own cognitive processes. 

Moreover, the processes of cognition are unlikely to be easily expressible in language 

(Nielsen, Clemmensen, & Yssing, 2002). When asked to think-aloud whilst 

performing a task, some participants reported that: 

 

…they think faster than they can speak…and that thinking 

aloud interferes with their interaction with the interfaces and 
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the task…they felt they were being observed, evaluated and 

judged and that it influenced their performance. (Nielsen et 

al., 2002, p. 102)  

 

The contention that thinking aloud affects performance is contested; for example, Ku 

and Ho (2010) report evidence that students’ performance was not affected by 

thinking aloud. Think-aloud protocols are accepted by a large part of the 

psychological community, and have been in used in a variety of different research 

programmes (Branch, 2000). The extent to which verbalisation affects cognition is 

likely to be variable, and to depend on the nature of the task, the particular verbaliser 

and other factors. The data from this investigation are presented as artefacts of the 

interview process, that is, as a representation of cognition whilst verbalising. In the 

spirit of analytical generalization (Taber, 2000a), the onus will be left to the reader to 

decide the extent to which verbalisations may be extrapolated to cognition in other 

situations (see Appendix 8.6 for a sample interview transcript). The technique was 

described to the students before the start of the first interview, and they were given 

the opportunity to practice the technique (Liu & Li, 2015). 

4.4.3 Concept maps 

The concept map may be seen as a tool that provides insights into a person’s 

interpretations of the relationships between concepts (Nesbit & Adesope, 2011). It is, 

therefore, an appropriate tool for understanding how students develop conceptual 

compounds. In particular, concept maps are capable of reflecting the 

‘interconnectedness’ and ‘fuzzy overlap’ between concepts (Carley & Palmquist, 

1992, p. 603), a good match for the model of the concept described in section 2.1.2. 

Concept mapping is a poorly-defined technique, and multiple methodological 

approaches exist (Carley & Palmquist, 1992). For this work, a rather general 

definition of a concept map as 'a network that includes nodes... linking lines and 

linking phrases which describe the relationship between nodes' (Yin & Shavelson, 

2004, p. 3) is used to allow students as much representational freedom as possible.  

 

Much research data show the valuableness of concepts maps for representing 

cognitive development (Novak & Musonda, 1991), and concept maps have been used 

for a number of different purposes in educational research, including: to compare 
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'expert' and 'novice' students' knowledge (Chi et al., 1988), to track changes in 

knowledge (Novak & Musonda, 1991; Pearsall, Skipper, & Mintzes, 1997), and to 

identify misconceptions (Gonzalez, 1997; Regis et al., 1996). Though it has been 

argued that a single concept map does not capture dynamic behaviour (Liem, Beek, & 

Bredeweg, 2010), a map might be pragmatically conceptualised as capturing a static 

interval in the progression of cognition. Several studies (Francisco, Nakhleh, 

Nurrenbern, & Miller, 2002; Hay, 2007; Novak & Musonda, 1991; Pearsall et al., 

1997; Roth & Roychoudhury, 1993) have used two or more concept maps, created at 

intervals, to examine developments in learning. In the studies cited above, the interval 

between concept maps ranges from one week (Hay, 2007) to one year (Novak & 

Musonda, 1991).  

 

A choice was made to use ‘non-hierarchical’ (Nicoll, 2001, p. 867), or ‘student-

generated’ concept maps (Schau, Mattern, Zeilik, Teague, & Weber, 2001, pp. 137–

138) in which students are free to choose the concepts and type of structure in their 

concept maps, allowing the students to create unique and idiosyncratic representations 

of their understanding. Such ‘non-hierarchical’ or ‘network’ concept maps are 

recommended for topics, such as the ones in this study, that do not have an obvious 

hierarchy (Nicoli & Mortimer, 2014; Shavelson, Lang, & Lewin, 1994). Students 

were asked to create non-hierarchical concept maps of the same topic on a number of 

occasions (see Table 4.2), and inferences were drawn from changes in the represented 

concepts and relationships. Before the construction of their first concept map, the 

students were introduced to the process, and drew a practice concept map. 

4.4.4 Concept ontology table 

Relatively few measures exist to develop representations of students’ ontology in 

science education. Mariani and Ogborn (1991, 1995) used questionnaires in which 

students were asked to indicate which properties (for example, ‘is immaterial’, ‘has a 

real existence’, ‘causes movement’) they believed were associated with scientific 

concepts. Alternatively, the interviews-about-instances approach might be thought of 

as providing representations of students’ ontologies (Osborne & Gilbert, 1979). 

Mortimer and colleagues used surveys and interviews to develop representations of 

students’ conceptual profiles, that is, the totality of approaches a student possess for 

interpreting a concept (Mortimer & El-Hani, 2014). In this research, a novel prompt 
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to stimulate the discussion of the nature of concepts was developed for the major 

concepts in dynamics and electricity (shown in Table 4.3) and was applied in 

interviews number 14 and 22 (dynamics) and 19 and 21 (electricity). The tools were 

developed based on a number of reported ontological alternative conceptions 

possessed by students: force causes motion (Viennot, 1985), force is a property of an 

object (Dykstra et al., 1992), current is ‘used up’ (Shipstone, 1984), there is no 

connection between potential difference and the flow of current (Periago & Bohigas, 

2005), and voltage and current are conflated, suggesting voltage may flow (Shipstone, 

1984).  

Table 4.3: Ontology tables. 

a) Dynamics 
 Force Velocity Energy 

What does it cause?    

What causes it to change?    

How would you use this term 

in a sentence? 

   

Is it a property an object 

posses? 

   

Can an object possess this 

concept in multiple values? 

   

Does it have multiple types?    

 

b) Electricity 
 Current Potential Difference Resistance 

What is this concept?    

What causes it?    

Is it a property of a 

component? 

 

 

  

Is it used up in a circuit?  

 

  

Is it conserved?    

Is it measured at a single 

point? 

 

 

  

Does it flow?    
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4.4.5 Card sorting 

The ranking of concepts has been an established technique in research since 

Stephensons’s (1953) Q-sorts and Kelly’s (1955) repertory grid tool. In general, 

sorting techniques are useful for examining constructs of categorisation and are quick 

and easy to use (Rugg & McGeorge, 1997). Two card sorts were developed, based on 

the technique used by Chi, Feltovich and Glaser (1981), in which the participants 

were asked to sort a set of situations and a set of problems (see Appendices 8.7.3.1 

and 8.7.3.2) into categories by similarity, then to explicitly state the nature of the 

categorisation developed. This approach was used in interviews 12 and 16. A sorting 

activity based around categorising concepts as causes or effects (see Appendix 

8.7.3.3) was used in interviews 11 and 20 and, though the tool was difficult for 

students to engage with, prompted some interesting comments that are reported in the 

analysis of students’ ideas on causality (see section 5.2.3). 

4.4.6 Personal ontology questionnaires 

As has been discussed (see section 2.4.1.4.3), students’ beliefs about the nature of 

knowledge, ‘personal epistemologies’ (Hofer, 2001) may have an impact on the 

manner in which learning occurs. Therefore, a sub-set of prompts related to personal 

epistemology from the Colorado Learning Attitudes about Science Survey (CLASS) 

(Adams et al., 2006) was used as a basis for discussion in interview four. A sub-set 

was chosen as time was limited, and an open-ended discussion was preferred over the 

application of a survey. The questions, which are listed in Appendix 8.7.4, were 

chosen as they were felt to be relevant to the conceptualisation of making sense. 

4.5 Recording and Transcription 
All interviews were recorded using a digital audio recorder and transcribed by the 

interviewer, typically within a few days of completion. This allowed themes arising in 

one interview to be followed up in the next, thus enabling analysis and data collection 

to proceed in parallel (Merriam, 2009). However, transcripts do not represent a 

complete and ‘true’ record of the interview: the process is dependent on the decisions 

of the transcriber (Miles & Huberman, 1994, p. 51). Transcribing is an interpretive 

process, as a researcher makes decisions about which information should be included 

and excluded (Kvale, 2007), which are channelled by the researcher’s assumptions 

(Green, Franquiz, & Dixon, 1997). In a constructivist frame, the transcripts are not a 
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direct reflection of a person’s thinking, or even a complete record of the conversation, 

but rather a social construct, mediated by the participants, the context and the data 

collection tools (Smagorinsky, 1995). As case study research is premised on 

developing a detailed description of a particular individual (Ragin, 1992; Stake, 

1995), in this research, as far as possible, verbatim transcripts were produced. 

Therefore repeated words, verbal stumbles and pauses are included in the students’ 

transcripts (Kvale, 2007). Where students made gestures that were interpreted to be 

relevant to their argument, for example, indicating a point on the apparatus or diagram 

(see Appendix 8.6, utterance 12), these have been included in square brackets 

(Powers, 2005). The transcripts were divided up into utterances, units of ‘spoken 

interaction’, which were numbered to allow reference to specific parts of a transcript 

(Lankshear & Knobel, 2004). The division of transcripts into utterances is seen as an 

interpretive process, and a new utterance was taken to begin when a significant (i.e. 

meaningful) communication was made by a previously silent speaker. 

4.6 Making claims about the data 
Maintaining rigour in qualitative research is challenging, and multiple approaches 

exist (Creswell & Miller, 2000; Lincoln & Guba, 1985; Maxwell, 1992). Various 

researchers have argued that the concepts of quantitative research such as validity and 

generalisability are not appropriate for qualitative work (Guba, 1981; Lincoln & 

Guba, 1985; Merrick, 1999). Consequently, a variety of substitute terms for 

supporting rigour in qualitative research have been proposed: authenticity (Lincoln & 

Guba, 1986), credibility (Guba, 1981), plausibility (Hammersley, 1993) transferability 

(Guba, 1981) and trustworthinesss (Lincoln & Guba, 1986), to name just a few. A 

review of types of validity alone identified at least eight distinct constructs (Altheide 

& Johnson, 1994).The strategy of developing ‘parallel criteria’ in qualitative research 

to mirror those in quantitative has been called ‘defensive and limited given it’s 

reliance on quantitative terms’ (Merrick, 1999, p. 27); however, following the 

argument of LeCompte and Goetz (1982) and Merriam (1995), as the terms reliability 

and validity are widely understood, they are adopted in this thesis, though they are 

defined in a manner that fits with a constructivist project. 



 118 

4.6.1 Validity 

Validity has been defined in numerous ways (Altheide & Johnson, 1994); but, it may 

be thought of as the extent to which ‘the features ascribed to the phenomena being 

described are actually held by those phenomena, and perhaps also whether they are 

possessed to the degree indicated’ (Hammersley, 2007, p. 44); or, to put it another 

way, validity measures the extent to which explanation can be supported by the data 

(Cohen, Manion, & Morrison, 2007). In qualitative research there are no defined 

procedures for supporting validity (Maxwell, 1992); rather, validity criteria need to be 

situated in a particular theoretical tradition (Creswell & Miller, 2000). In realist 

constructivist research, it is assumed personal constructs are tested by interaction with 

reality (Gilbert & Swift, 1985), and therefore, the naturalistic conception of validity 

measures the closeness of fit between theoretical propositions and respondents’ and 

researchers’ representations (Guba, 1981). Numerous strategies for increasing validity 

in qualitative research have been suggested: 

 

Triangulation: The validity of a claim is strengthened if multiple sources of evidence 

are used to support an assertion (Baxter & Jack, 2008, p. 556; Guba, 1981, p. 87; 

Shenton, 2004, p. 65). The triangulation in this study can be thought of as between-

methods triangulation (Denzin, 1978, p. 301), an approach which argues that 

convergence between methods ‘…enhances our belief that the results are valid and 

not a methodological artifact’ (Bouchard, 1976, p. 268). A range of different methods 

were used, including think-aloud protocols, concept maps, interviews about instances 

and card sorts, to support the validity of the construction of claims to making sense. 

 

Clear Statement of theoretical positions: As qualitative research is open to a plurality 

of theoretical frameworks, validity is judged within the philosophical positions of the 

particular research (Creswell & Miller, 2000). Therefore, if a reader is to make a 

judgement of validity, a clear statement of underlying assumptions is required 

(Creswell & Miller, 2000; Guba, 1981; Mauthner & Doucet, 2003). The methodology 

section clearly outlines the assumptions of this work. 

 

Rich Description: Presenting lengthy quotations in the participants’ words is a 

strength of qualitative research and a key to securing validity (Creswell & Miller, 
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2000; Onwuegbuzie & Leech, 2007). Verbatim quotation allows readers to form their 

own judgements about the validity of conclusions, and ensures the participants’ 

voices are represented as faithfully as possible (Corden & Sainsbury, 2006). This 

research makes use of extended verbatim quotation. 

 

Prolonged and persistent engagement: The extended application of microgenetic 

sampling used in this study led to prolonged and persistent observation of students, 

ensuring an ‘adequate representation’ of learning was developed (Onwuegbuzie & 

Leech, 2007, p. 239). The high density of observation in the microgenetic approach 

may increase validity by avoiding the misrepresentation of change that may occur 

with the ‘snapshots’ produced by longitudinal methods (Granott & Parziale, 2002, p. 

11).  

 

Ecological validity: ‘laboratory’ settings, in which it is claimed variables are tightly 

controlled, may include conditions that are unrepresentative of ‘natural’ situations 

(Bracht & Glass, 1968; Bronfenbrenner, 1976). Hence, validity may be increased by 

setting research in conditions that are similar to normally occurring situations 

(Bronfenbrenner, 1976). The kind of interaction between researcher and participant in 

this research, which involves dynamic probing of the student’s ideas, is argued to 

resemble typical teacher-student interaction, and therefore have some degree of 

ecological validity.  

 

Using extreme cases: The strength of a conclusion may be supported by checking if it 

holds even in extreme cases (Miles & Huberman, 1994; Onwuegbuzie & Leech, 

2007). Students who regularly and rarely displayed sense-making strategies were 

selected based on discussions with teachers. It is hoped that the examination of such 

extreme cases will be support the model of making sense presented.  

4.6.2 Reliability 

Exact replicability cannot be expected from human behaviour (Merriam, 1995); 

therefore, the concept of reliability, which is nonetheless challenging to achieve, is 

applied to qualitative research (LeCompte & Goetz, 1982; Merriam, 1995; Seale & 

Silverman, 1997). Reliability may be judged against different criteria: internal 

reliability is judged by the extent to which multiple observers would agree within a 
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single study (LeCompte & Goetz, 1982); external reliability is a measure of the extent 

to which independent researchers might construct the same interpretations in the same 

or similar settings (LeCompte & Goetz, 1982). Given that a constructivist interpreter 

might expect the possibility of multiple constructions of one data set (Merriam, 1995), 

agreement between researchers is not necessarily a goal of constructivist research; 

indeed, interpretive pluralism has been proposed as an aim of the programme 

(Feyerabend, 1975; Geelan, 1997). An alternative construction of reliability is Guba’s 

(1981, p. 86) notion of dependability in which researchers strive for ‘stability of data,’ 

a concept which suggests researchers should not expect invariance in data, but rather 

adopt a sensitivity to possible instabilities due to different interpretations of the data. 

The dependability of a study is therefore enhanced by the use of multiple sources of 

data and the establishment of a clear ‘audit trail’ (Guba, 1981, pp. 86–87). The high 

density of sampling and extended period of observation has allowed some distinction 

to be drawn been stable and unstable elements in the data (see Section 5.2.5). 

4.6.3 Generalisability 

Generalisability may be defined as ‘the extent to which one can extend the account of 

a particular situation or population to other persons, times, or settings than those 

directly studied’ (Maxwell, 1992, p. 293). A common criticism of small-scale 

research is that it lacks generalisability (Flyvbjerg, 2006, p. 221; Merriam, 1995), and 

some researchers argue the concept ought to be discarded in such research. Denzin 

(1983, p. 133) claims interpretivists ‘rejects generalisation as a goal’, and Guba and 

Lincoln (1982, p. 238) argue ‘[g]eneralizations are impossible since phenomena are 

neither time- nor context-free’. However, Williams (2000, p. 210) argues such denials 

are disingenuous because interpretive research tends to make or imply ‘generalizing 

statements’ without providing justifications for the contexts to which extrapolations 

can be made. 

 

As an alternative to the rejection of generalisability, researchers have adapted the 

quantitative concept to qualitative research. For example, Kvale (1996) and Taber 

(Taber, 2000a), proposed the idea of analytical generalisation, a ‘reasoned judgment 

about the extent to which the findings from one study can be used as a guide to what 

might occur in another situation’ (Kvale, 1996, p. 223). Qualitative notions of 

generalisability may be more contextual and nuanced that the quantitative version: 
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Guba’s (1981, p. 81) ‘transferability’ indicates a generalisation that is not expected to 

apply in all times and all places, but, rather, a ‘working hypothesis that may be 

transferred from one context to another’. Other reinterpretations of the concepts 

include: moderatum generalisations (Williams, 2000), fuzzy generalisations (Bassey, 

1999) and naturalistic generalisations (Stake, 1978). In such constructions of 

generalisability ‘the validity of the extrapolation depends not on the typicality or 

representativeness of the case but upon the cogency of the theoretical reasoning’ 

(Mitchell, 2006, p. 39), and the onus is on the reader to ‘judge the soundness of the 

generalization claim’ (Kvale, 1996, p. 233). A requirement of qualitative research 

therefore is that sufficient, rich data is presented to allow the reader to draw their own 

conclusions regarding generalisations (Taber, 2000a). Therefore, no specific claims 

are made regarding the contexts in which the findings of this research might apply, 

though section 4.4.2 has discussed the extent to which the methods used might 

resemble typical situations, and the onus is on the reader to judge how the findings of 

the research may transfer to other circumstances. 

4.7 Ethical considerations 
Ensuring research is ethical is an important and necessary part of data collection 

(Laine, 2000; Soltis, 1989). Informed consent is amongst the most central of ethical 

principles (BERA, 2011; Howe & Moses, 1999; Yin, 2009). Therefore, the nature of 

the research was explained to the participants in the pilot and main study, and an 

information leaflet was given to participants, their parents, and the headteacher of the 

school (see Appendix 8.4). The right to withdraw at any stage of the research was 

made clear to participants (BERA, 2011), as outlined on the consent forms (Appendix 

8.5). Privacy is an intrinsic component of human dignity (Howe & Moses, 1999); 

therefore, the confidentiality of students’ identities and data must be safeguarded 

(BERA, 2011; Yin, 2009). As per the BERA ethical guidelines (2011), data will be 

held according to the regulations in the Data Protection Act (1998). Participants are 

identified by pseudonyms and transcripts were edited to ensure that individuals could 

not be identified from the extracts quoted (Grinyer, 2009).  

 

Whilst I was not concurrently a teacher of the participants during the research 

process, that I had taught the students in earlier years, and retained the role of a 

member of staff at the school, raised ‘ethical tensions’ (BERA, 2011). In particular, 



 122 

for the teacher/researcher, there may be a conflict between observation and promoting 

change in interactions with students (Wong, 1995). However, the adoption of a 

dynamic testing approach, in which assessment and feedback are intertwined 

(Grigorenko & Sternberg, 1998), reduced the tension, as the aims of the teacher and 

researcher role overlap to a greater extent than in traditional static testing research. 

However, working with students in one’s own institution raises concerns about the 

manner in which the imbalance of power in the relationship may cause students to 

give the answers they feel are expected of them (Tight, 2012). This effect might be 

assumed to be less significant in work which focused on learning about science rather 

than opinions about an institution, though the nature of the relationship between the 

researcher and participants may have affected the students’ choice to participate, and 

continue participating, in the research. 

 

The use of the microgenetic approach raises particular ethical issues: repeated 

interviewing can lead to boredom and reduce motivation (Flynn et al., 2006). 

Richards and Schwartz (2002) claim the inconvenience and costs involved in 

participating in in-depth interviews are often underestimated. Therefore, interviews 

should be considered ‘gifts’ from the participants (Limerick, Burgess-Limerick, & 

Grace, 1996), and researchers have responsibilities to those they interview ‘in terms 

of both the time and mental exertion’ asked of them (Taber, 2008a, p. 1922). The 

British Educational Research Association Ethical Guidelines require that researchers 

do everything possible to reduce a sense of intrusion, and that they eschew practices 

that will cause emotional or other forms of harm (BERA, 2011). As has been 

discussed, the dynamic testing approach provided students with structured feedback 

which gave opportunities for learning and the students generally experienced the 

process as a positive learning opportunity (see Section 5.3). Ethical research requires 

an ‘equitable distribution of benefits and burdens’ (Kahn, Mastrioanni, & Sugarman, 

1998, p. 2), and it appears that the participants perceived the sessions as to their 

benefit, which, to some extent, mitigated the burden of microgenetic interviewing (see 

Appendices 8.2 and 8.3 for the Faculty of Education’s ethics checklist and risk 

assessment form). 
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A final ethical consideration is that the theoretical construction developed by the 

researcher sufficiently represents that of the participant (Bressler, 2002; Karnieli-

Miller, Strier, & Pessach, 2009). The autonomy of participants should be respected, as 

Taber and Student (2003) argue that a valid representation of the voice of the 

participant in research is both a methodological and ethical imperative. It is hoped 

that the use of extended verbatim quotation goes someway to meeting this aim.
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5.0 Data and analysis 
 

The discussion of themes emerging from the analysis of the data is organised around 

the six sub-questions related to the concept of making sense (see Figure 5.0). 

 
Figure 5.0: A representation of the six themes of analysis 

How do 16-17 year old physics students form and modify 
conceptual compounds to develop coherent causal 

systems that may be transferred to novel contexts in 
physics?

k to
ration

F

P
p

5.1 How do ontological categories
vary over time?

5.2 How do compounds of concepts form and
disperse over time?

5.3 How do causal relationships 
develop over time?

5.6 How can conceptual change be distinguished from
the contextual activation of concepts?

5.4 What factors cause collections of concepts
to cohere together?

5.5 How can the rate of conceptual change be constructed
in students' responses?

orA B A     B A     B

Context 1    Context 2 Context 1    Context 2
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In this section, all quotations from students’ transcripts, both those quoted verbatim 

and those paraphrased, will be labelled with the number of the session in which they 

occurred, then with an utterance number. For example, (Ben, Session 1, 17), refers to 

utterance number 17 in the transcript of session one.  

5.1 Methods of analysis 
There is no single correct way of analysing qualitative data: multiple approaches exist 

(Coffey & Atkinson, 1996; Marton & Säljö, 1997; Onwuegbuzie & Leech, 2007); 

though, typically, analysis will focus on theory building rather than theory testing 

(Eisenhardt & Graebner, 2007). It is expected that different researchers would 

develop individual interpretations of the same data (Frost et al., 2010), and that a 

single researcher could construct multiple understandings of the same information 

(Taber, 2008c). Therefore, a researcher has a duty to explicate the choices and 

principles underlying their analysis of data (Mays & Pope, 1995; Patton, 1990). This 

requirement is challenging, as the development of themes will, to some extent, depend 

on ‘hunches’ or a ‘felt sense’ (Cutcliffe & McKenna, 1999, p. 377), which the 

researcher must explicate. Lincoln and Guba (1985, p. 319) argue researchers should 

produce an ‘audit trail’ that explains how analyses were developed in order that 

readers may argue with the conclusions (Ryan & Bernard, 2003). The adoption of a 

particular approach to analysis carries with it epistemological, ontological and 

theoretical assumptions (Mauthner & Doucet, 2003), and a researcher must make a 

case for the fit between these assumptions and the rest of the work. 

 

Within constructivist research, qualitative data analysis can be seen as a method of 

making sense of data (Caudle, 2004; Elo & Kyngäs, 2008). Data are not inherently 

organised or meaningful (LeCompte, 2000); therefore, the process of data analysis is 

an active process of meaning development (Hatch, 2002). It is interesting to note the 

parallels between some of the suggested processes of qualitative data analysis, for 

example, ‘synthesis, evaluation, interpretation, categorization, hypothesizing, 

comparison, and pattern finding’ (Hatch, 2002, p. 148), and those suggested for the 

process of making sense (see Figure 1.1). Just as with making sense, analysis is 

described as a search for patterns (Yin, 2009), or a construction of ‘meaningful’ 

groupings (LeCompte, 2000, p. 150) with the aim of developing ‘coherence’ (Miles & 

Huberman, 1994, p. 62). Though the processes of making sense of data may be, to 
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some extent, opaque in the context of discovery (Reichenbach, 1938), the researcher 

should present a transparent case for their analysis in order that readers may evaluate 

the route taken to the conclusions reached.  

 

In this research, it would be incorrect to suggest that no conceptualisation occurred 

before analysing the data (Strauss & Corbin, 2008), or that the categories of analysis 

entirely pre-existed data collection, as might occur in the positivist tradition, which 

favours hypothesis testing (Punch & Oancea, 2014; Taber, 2007). Rather, the 

categories developed were channeled both by the researcher’s interpretation of the 

data and by his reading of the literature. In some models, analysis is conceptualised as 

occurring at two levels: First, the data is sifted, and meaningful units are labelled or 

given ‘codes’ (LeCompte, 2000, p. 418; Leech & Onwuegbuzie, 2007, p. 565; Strauss 

& Corbin, 2008, p. 101). Codes ‘are tags or labels for assigning units of meaning to 

the descriptive or inferential information compiled during the study’ (Miles & 

Huberman, 1994, p. 56), which may be attached to ‘chunks’ of data of varying sizes, 

from single words to larger collections of utterances. In the second stage of analysis, 

the coded units are themselves organised into groups (LeCompte, 2000; Strauss & 

Corbin, 2008). The transcripts were subject to a preliminary analysis each week in the 

interval between interviews. This allowed the researcher to respond to emerging 

themes in subsequent interviews. This initial analysis occurred across two 

dimensions: a) students’ use of major concepts such as force and potential difference; 

and b) emerging themes, for example, ‘understanding of causality’ (see Table 5.0). 

 

Table 5.0: Illustration of process of analysis of changes in students’ concepts and 

emerging themes (numbers refer to the session and utterance). 

 

 
 

Amy

Concept of
force

Concept of
acceleration

Session 1; 56
Argues heavier ball takes less
time to fall due to greater force

Session 1; 56
Links zero resultant force with
constant velocity for parachutist

Session 1; 56
Argues lorry exerts more force on
car than vice-versa in crash

Session 1; 80
Links acceleration with action 
of resultant force

Session 1; 80

Amy

Rate of
conceptual
change

Causality

Session 1; 34-40
Describes moment of sudden
conceptual change

Session 1; 56
Appears to have moment of 
sudden conceptual connection

Session 2; 271
Noticing period is independent of 
mass for pendulum leads to clarity 

Session 2; 261
Connecting force and 
acceleration leads to clarity 

Session 2; 229

Session 2; 126
Describes a causal link between
energy and motion

Session 2; 130
Describes weight as causing
motion

Session 2; 130
Changing tension is seen as
causing changing velocity
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Once all the interviews were completed, the second phase of analysis began. For each 

of the six emergent themes (the development of conceptual categories, the formation 

of conceptual compounds, understanding of causality, the development of coherence, 

the rate of conceptual change, and the relationship between conceptual change and 

transfer), I returned to the transcripts and re-coded the data to describe change over 

the course of the sessions and to examine commonalties between students. This 

process typically took several iterations and continued until a perception of theoretical 

saturation was reached. This process reflects the two stages of analysis described by a 

number of authors (Miles & Huberman, 1994; Mills, 1959; Saldana, 2009): a process 

of coding following by categorisation of codes into groups. Further details of the 

codes used are given in the relevant subsections of the analysis chapter.  

 

Qualitative data analysis could go on indefinitely (Merriam & Tisdell, 2016) and 

some indicator of completeness is required. In this work, the condition of theoretical 

saturation, that is when ‘no additional data are being found [to] . . . develop properties 

of the category’ (Glaser & Strauss, 1967, p. 61) was taken as the goal. A similar 

concept was described by Lincoln and Guba (1985, p. 202), who proposed ‘selection 

to the point of redundancy’, in which ‘sampling is terminated when no new 

information is forthcoming from newly sampled units’. However, determining when 

saturation or redundancy has occurred is subjective: as Bowen (2008, p. 138) 

observes, ‘Explicit guidelines for determining saturation are almost non-existent’. As 

the end point of research is subjective, a researcher might be expected to hold their 

conclusions ‘lightly, maintaining openness and scepticism’ (Miles & Huberman, 

1994, p. 11), but the onus rests on the researcher to provide justification for claims of 

theoretical saturation (Bowen, 2008). 
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5.2 Themes arising from the data 

5.2.1 The formation and modification of conceptual categories 
 
The concept of force and its relationships to other concepts was chosen as the focus of 

ontological analysis as it is a concept which has been reported as causing ontological 

challenges for students (Brookes & Etkina, 2009; Dykstra et al., 1992; Hestenes et al., 

1992); and, in the students’ transcripts, the concept was invoked in a large number of 

utterances coded for ontology. In order to develop a valid picture of students’ 

changing understandings of ontology, the eleven sessions covering forces and 

dynamics were divided into two blocks of five consecutive sessions- sessions 1-5 

sessions 11-16; and session 22- the final interview. It is expected that a representation 

of a students’ ontology will require assessment through multiple probes, as ontologies 

are multi-faceted and contextually sensitive (Gupta et al., 2010). Therefore, change 

will be constructed between two blocks of five sessions and a final interview, 

considered to be static intervals (see section 4.3.2.3). It is reported that changing the 

ontology of a concept is challenging (Chi, 1992, 2013); therefore, it is assumed that 

ontologies change gradually and that a static interval covering several weeks will be a 

suitable match for the rate of ontological change. Approximately two months elapsed 

between the end of first and start of the second static interval, and just under two 

months between the second and third intervals. Any utterance in the students’ 

transcripts that referred to their understanding of the nature of concepts was labelled 

with an ontological code. These codes were subsequently sorted into the three themes: 

differentiation, clustering and instance/abstraction. 

 

The next two subsections present two case studies of the development of ontology in 

students who were selected as extreme cases: I judged Ben’s categorisation to have 

shown the greatest variation out of the students, whereas Daniel’s ontology displayed 

the least change over the period of observation. A significant assumption of this 

analysis is that students’ ontologies may be understood through their use of language. 

This is a common assumption for research into ontology: Brookes and Etkina (2007, 

2009) argue grammatical structures can give insight into categorization, and Chi and 

colleagues (Chi, 1992; Chi et al., 1994; Slotta et al., 1995) argue students’ use of 

predicates, for example, the verb applied to a concept (e.g., force ‘flows’ or ‘moves’) 

can indicate ontological assumptions. This approach is adopted in this thesis, and 
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inferences about the nature of students’ ontologies are made from their responses to 

probes. Note that, in the discussion below, the descriptions of students’ ontology are 

conceptualised as representations constructed by the researcher. 

5.2.1.1 Changes to Ben’s ontology 
The next subsections consider the development of Ben’s ontology across the three 

themes of development proposed in the literature review: differentiation of categories, 

clustering of conceptual members and the transition from situated to abstracted 

representations.   

5.2.1.1.1 Changes to Ben’s differentiation of concepts 

In his first session, Ben displayed evidence of a relatively undifferentiated motion 

category linked to the concept of force. On two occasions, in the context of a lift and a 

ball falling after being projected horizontally, he linked force to the idea of motion: 

 

Therefore for the lift to move up the force pulling on it must be 

greater. (Ben, Session 1, 128) 

…the only force acting on the ball when the ball is dropped is a 

downwards force so it would just move downward. (Ben, 

Session 1, 106) 

 

However, as Gupta and colleagues’ (2010) model suggests, Ben possesses multiple 

versions of the concept of motion. In the same interview, in a discussion of an object 

in free fall, Ben displays evidence of two distinct motion categories: acceleration and 

velocity. 

 

…it will accelerate by 10 meters per second squared, um, 

however, as it increases in its velocity, the air resistance will 

increase, and because the air resistance will increase, 

eventually the air resistance will cancel out the gravitational 

force, and so due to Newton’s, I think it’s first law, the ball will 

carry on at a constant speed, and reach its terminal velocity. 

(Ben, Session 1, 76) 
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The case of a free-falling object was covered in the curriculum Ben studied in the 

pervious year; therefore, as Gupta and colleagues (2010, p. 286) suggest, Ben’s use of 

ontology may be contextually triggered: in the case of vertically free-falling objects, 

he can access scientific ontologies; but in the contexts of the lift and the ball with 

horizontal and vertical components of velocity, a less differentiated ontology is 

triggered. 

 

In Ben’s fifth session, there is further evidence of blurred boundaries between 

categories. In describing the oscillating motion of a ball in a bowl, Ben argues: 

‘because the, er, velocity and the, um, force of the gravity will be equal so it won’t be 

going anywhere’ (Ben, Session 5, 88), implying some sense of equivalence between 

the categories of force and velocity. This perhaps relates to the compound Ben has 

used on a number of occasions, that force and velocity are linked; for example, ‘so 

you change its velocity you change its resultant force’ (Ben, Session 5, 86). In a later 

series of utterances, this blurring reoccurs; though Ben, when prompted, makes a clear 

distinction between force and velocity. In the excerpt below, Ben is describing the 

resultant force acting on a ball when it is displaced to one side of a concave bowl: 

  

I: Which way would you expect the resultant 

force to be? 

B: Er this way [adds diagonal line down to the 

right] so…  

I: Yeah? 

B: Forty-five degrees below the horizontal. 

I: Where does that come from? 

B: Um [pause] um [pause] is it the ball’s velocity. 

I: Is velocity the same as force? 

B: No. I was just thinking about vectors. 

(Ben, Session 5, 113-120) 

 
In the second static interval, Ben shows a more consistent activation of clearly 

defined concepts of force, acceleration and velocity, for example: 
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I think force is something that causes something to 

accelerate. (Ben, Session 13, 30) 

Force causes objects to move I would, um, I would there, 

write, I would add accelerates here because to differentiate 

between force and velocity. (Ben, Session 14, 387) 

 

However, Ben displays a weak discrimination of force from other concepts. When 

asked to draw a Venn diagram representing the overlap of the concepts of force, 

momentum and energy (Figure 5.1), he constructs the concepts as almost entirely 

overlapping arguing: ‘they all essentially boil down to the concept of energy’ (Ben, 

Session 13, 247). 

 
Figure 5.1: Venn diagram of the overlap between momentum (P), force (F) and 

energy (E) (Ben, Session 13, 239). 

 

In the next session, Ben (Session 14, 349) suggests that ‘force pushing objects’ and 

momentum are ‘almost exactly’ the same thing. He argues forces are agents that 

‘…tend to cause some form of order or regularity’ (Session 14, 76) because, for 

example, the electromagnetic force tends to cause a uniform distribution of electrons 

and gravity causes objects to sink to the same point. He draws a clear distinction 

between the object a force acts upon and the force itself (Session 14, 301-303), and 

argues forces emanate from objects but objects are not required for the existence of 

forces. Though there is evidence of development of the differentiation of Ben’s 

category of motion, there remain blurred boundaries between force and the concepts 

of energy and momentum. 
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5.2.1.1.2 Changes to Ben’s conceptual clustering 

Ben, in early sessions, had a tendency to group types of force together by the contexts 

in which he has encountered them. In session five, he drew the concept map shown 

below (Figure 5.2) 

Figure 5.2: Ben’s first concept map related to forces and motion (Session 5). 

 

Ben constructed a cluster consisting of weight and air resistance, because he 

perceived them as opposing each other: 

 

I would probably link air resistance and friction to gravity, 

weight, because sometimes they oppose or at least acting in 

different directions. (Ben, Session 5, 86).  

 

Though Ben linked weight with resultant force, neither air resistance nor friction are 

seen as related to net force. This may be because, in the case of a falling object, 

weight acts in the same direction as the resultant force and air resistance does not. 

Ben described that, in free fall, as air resistance increases, ‘…so the resultant force 

with the weight is less’ (Ben, Session 5, 86), indicating an association between weight 

and resultant force. Ben’s concept of force seems to be relatively fragmented due to 

an implicit understanding that different types of forces fulfil different roles. 
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Figure 5.3: Ben’s second concept map related to forces and motion (Session 15). 

 

In later sessions, there seemed to be some tendency towards greater integration of the 

concepts of force under a single unifying category. In Figure 5.3, gravitational force 

and centripetal force are linked directly to the concept of force. However, perhaps due 

to the contextual nature of Ben’s understanding, as he explained below, tension, 

friction and air resistance are linked to gravitational force. Ben argued that the 

common occurrence of certain forces in the classroom can make them appear more 

typical than others: 

 

Um, and then I think acceleration, probably, because I’m 

most used to acceleration being linked to gravity, the 

gravitational force, because again acceleration mainly 

occurs in, at least for physics we’re doing, where things 

are falling…So we’re mainly concerned with gravitational 

force, we’re very, very rarely concerned with air resistance 

apart from terminal velocity. (Ben, Session 15, 40-46) 

 

Ben went on to comment that both air resistance and friction are often deliberately 

ignored in questions, which might explain his perception that the two forces are more 

weakly linked to acceleration than the gravitational force. 
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In session 16, Ben was asked to reflect on and annotate the concept map he had 

drawn in session 5 (the annotated version is shown in Figure 5.4). Ben indicated some 

increase in the clustering of his concept of force. 

 

Figure 5.4: Ben’s annotated concept map (Session 16). Annotated entries are shown 

in light grey rectangles. 

 

Ben argued he ‘was quite hasty to link weight with resultant force’, because resultant 

force links to other ideas as well’ (Ben, Session 16, 122). However, he appeared to 

retain some sense of differentiation between the actions of different types of forces: 

 

I: So you’d still link weight to resultant force? 

B: Yes, but via the gravitational force, in the sense that, that 

is, almost saying the resultant force is directly 

determined by the weight or vice-versa…Rather the 

weight is determined by the gravitational force, and then 

the weight causes the resultant force. (Ben, Session 16, 

122-128) 

 

In addition, Ben saw tension as an effect of force; therefore, tension appears more 

peripherally on the map: ‘I think on a separate branch to weight I think I would put 

tension [writes] because tension at least in general scenarios is caused by weight 
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exerting a force on something and it having to produce a reaction force’ (Session 16, 

142). Nevertheless, Ben argued he would now ‘start with more general concepts and I 

would group it separately so I would begin with the force…And then link the forces 

to, um, the effect of forces so acceleration types of forces’ (Session 16,152). Ben’s 

development of a more abstract ontological categorisation will be examined in the 

next section. 

 

Ben began his final concept map (Figure 5.5) by showing an awareness of the 

challenge of balancing the generality of the concept of force with the nature of 

particular types of force: ‘I’ll begin with the, um, major forces acting that, seems to 

me, actually, no, because the problem is the, all the forces are linked to particular 

ideas’ (Session 22, 4).  

 

Figure 5.5: Ben’s final concept map related to forces and motion (Session 22). 

 

In Figure 5.5, Ben showed a clearer understanding that all the forces listed, surface 

friction, drag and weight, may act as a net force, a change from his earlier concept 

map (Figure 5.2). In that sense, there appears to be a growing understanding of the 

similarity between different types of force. However, Ben maintained some 

distinctions between different types of force. He proposed a distinction between 

forces which do not ‘necessarily change momentum’, such as weight, from forces 

which are linked to changing momentum: for example, drag and friction (Session 22, 
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78). This distinction appears to arise from a misunderstanding of the concept of 

resultant force, as Ben commented: ‘…because you can still have a gravitational force 

acting on you…Even if your momentum isn’t changing’ (Ben, Session 22, 82); for 

example, in the case of sitting in a chair. By contrast, ‘with surface friction and drag it 

there has to be a change in momentum’ (Ben, Session 22, 88).   

5.2.1.1.3 Changes to Ben’s categorisation by instances and abstractions 

Some of Ben’s initial applications of concepts were grounded in specific contexts in 

which they had been learned. For example, in the excerpt below, he was considering 

the forces on a ball travelling round a looped track, and developed a situated notion of 

reaction force as a force that acts upwards: 

 

Yes, but I’m not, I wouldn’t be sure why the reaction force would 

be acting when it’s up here [top of track], I can understand when it 

is sitting on here [bottom of loop], but I am not sure whether there 

would be any reaction force when it is all the way up at the top, 

because then it’s not resting on anything. (Ben, Session 4, 98) 

 

In the next session, when asked to draw a concept map of his understanding of forces 

and motion, Ben began by describing a link between friction and centripetal force that 

arises from a particular context: 

 

Um, so friction, um, acts as a centripetal force…I’m thinking of 

the last time when we did the experiments of the marble going into 

the tube…and then circling around it… And also I was thinking of 

in my revision guide, at one point, it has a picture of a car circling 

around and, um, I’m not sure what’s it called but, um, and the 

friction was always acting to the centre of it [pause to write] when 

an object is moving in a circle. (Ben, Session 5, 68-74) 

 

Ben’s situated understandings led to erroneous predictions. He conceptualised tension 

as a reaction to weight and therefore argued the tension in the string of a pendulum 

remains constant during its motion (Ben, Session 5, 76). He proposed that ‘the force 

acting on an object will have a particular direction depending on the weight of the 
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object’ (Ben, Session 5, 86), a claim that may arise from frequent encounters with 

situations in which objects travel in the direction of the gravitational force. 

 

In the second static interval, Ben was asked to complete the card sorting activity 

shown in Figure 5.6, below (see Appendix 8.7.3.1). He was shown a set of cards 

displaying situations and asked to sort them into categories of similar forms of 

motion. 

 
Figure 5.6: Ben’s categorisation of situations in Session 11 (See Appendix 8.7.3.1). 

 

Ben tended to categorise the situations by the perceivable features nature of motion, 

such as falling or change, rather than using abstracted notions related to scientific 

concepts. In the next session, when Ben was asked to group a set of problems 

(Appendix 8.7.3.2) he displayed some ability to look beyond the surface features of 

the problems to their ‘deep structures’: for example, he grouped one set of problems 

by their relation to accelerating objects; and another group involved problems with 

‘no forces acting’ (see Figure 5.7). Ben chose to group motion in two dimensions as 

distinct from the other categories.      
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Figure 5.7: Ben’s Categorisation of problems in Session 12 (See Appendix 8.7.3.2). 

 

In session 13, Ben argued force was an abstract entity: 

 

I don’t think, um, I don’t think it’s something that this is 

necessarily confined, as in, it doesn’t occupy a region of space, we 

say the force is here… but we really mean the force is acting here. 

(Ben, Session 13, 60-62) 

He classified forces as non-physical entities (see Figure 5.8) that cause acceleration 

and change. 

 
Figure 5.8: Ben’s understanding of the nature of force (Session 13). 
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Despite his growing sense of the abstract nature of force, Ben’s use of the concept 

implied he perceived differences between certain types of force. He argued that two 

pairs of forces, weight and air resistance, and ‘gravity’ and centripetal force, have 

particular kinds of relationships that arise from the contexts in which they are used: 

 

 [Referring to weight and air resistance] I’m not sure if it’s 

inversely proportional but definitely the reverse [pause] at least 

in the Earth. (Session 15, 28) 

  

…centripetal force I link it with gravity, because gravity causes 

things to circulate around something. It very rarely causes 

something to actually just directly come towards it, at least in 

the astronomical sense. (Session 15, 78)   

 

In general, however, in the second static interval, Ben displayed a commitment to an 

abstracted ontology of force. He claimed that forces emanate from objects, and 

therefore that forces may exist in the absence of objects (Ben, Session 14, 301-303). 

He argued that, whilst energy has a reality in the universe, force is ‘just a concept’ 

(Ben, Session 15, 144) and described force as ‘…an invisible thing that makes certain 

things happen’ (Ben, Session 16, 245). This increasing sense of the abstract nature of 

forces eventually led Ben to query the existence of forces:  

 

…so we can only really find acceleration and I, I’m not 

sure whether really forces actually exist. I think 

acceleration has to exist…But there’s there doesn’t seem 

to me to be any need for forces. (Ben, Session 22, 32-34) 

 

Ben suggested that force is simply a name for that which causes acceleration (Session 

22, 12). In drawing his final concept map (see Figure 5.5, above), Ben described how 

he now saw the link between force and acceleration as being the defining relationship 

for the concept of force, and that different types of force were incidences of an 
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abstracted notion: ‘So we tend to link up with force with acceleration before we link 

it up with individual things that we call forces like weight etc.’ (Ben, Session 22, 18). 

5.2.1.2 Changes to Daniel’s Ontology 

5.2.1.2.1 Changes to Daniel’s differentiation of concepts 

Daniel’s early sessions were marked by an ambiguous usage of the concepts of 

velocity and acceleration. Daniel described acceleration as: ‘…like the time to speed 

up, is it like the speeding up of something’ (Session 3, 40); and, when asked how 

velocity changes under constant acceleration, he responded that velocity would 

remain constant (Session 3, 42). This lack of a clear distinction between the concepts 

was highlighted by two comments in the fifth session:  

 

Um, acceleration is [pause] acceleration is, um, is it 

movement in a direction or is that velocity? (Daniel, 5,48) 

 

Oh, acceleration is just [pause] is it like something that moves 

at a constant, no ‘cos something always has constant 

acceleration, is it something moving [pause] it’s accelerating, 

oh, it’s like something with a force acting on it to make it 

move. (Daniel, 5,64) 

 

In addition, Daniel demonstrated some blurring between the concepts of gravity and 

free fall and had some sense that they are the same concept: ‘you say gravity and free 

fall is the same thing?’ (Session 5, 36). 

 

In the second static interval, the lack of demarcation between velocity and 

acceleration remained. Daniel explicitly admitted to confusing the terms (Session 11, 

42), before suggesting that acceleration is the rate of change of displacement (Session 

11, 46). In the final session, when Daniel was asked to explain the link he had drawn 

between velocity and acceleration on his concept map, he responded: ‘Er because the 

area under the graph is displacement and velocity is a vector so it’s given a direction’ 

(Session 22, 68). Daniel admitted to confusion between the concepts of mass and 
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weight (Session 11, 98), and he described his perception of the similarity between the 

terms: 

 

D: Yeah, definitely this is just one of my personal… it’s a 

personal thing, ‘cos there’s the way, the way, I think I 

always get certain things mixed up, like weight and mass 

gets mixed up, and velocity and acceleration gets mixed up. 

I: Why do think they are so easy to mix up? 

D: Um, because they have the same, they have they take into 

account the same things, if you think about ‘cos weight and 

mass, one’s measured in kilograms. 

 (Session 11, 138-140) 

 

When asked whether there was possibility for confusion between the concepts of 

energy and momentum, Daniel replied:  

 

Possibly, but I think I think I’d be able to tell the difference 

between them…More than I would the others, because 

they’re so proper, like, they’re really really closely linked 

together…Whereas energy is, in it’s way, it’s own little topic 

and momentum is its own little topic…When you’re learning 

this stuff you learn it together. (Session 11, 154-160) 

 

However, despite his perception that momentum is ontologically distinct from energy, 

there is a greater overlap in Daniel’s concepts of force and momentum than one 

would expect in an expert. In session thirteen, he argued: ‘Um, momentum is like a 

force … the force that something has on something else creates momentum’ (Session 

13, 56). He went on to describe the overlap between the concepts of force and energy 

as ‘not that much, because, there, there’s they link together in ways, it’s not like 

completely linked together’ (Session 13,76) and he drew the diagram below (Figure 

5.9). 
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Figure 5.9: Daniel’s representation of the overlap between force (F), energy (E) and 

momentum (m). 

 

He argued that the reason they link together is because energy can create momentum, 

which can create a force (Session 13, 86-88). The notion that energy ‘creates’ a force 

reoccurs in the next session: Daniel described how a person could use ‘chemical 

energy to create a force on the door’ (Session 14, 84). In later sessions, Daniel’s 

earlier ambiguities over terms related to gravitational force remained: he described 

drag as balancing ‘free fall’ (Session 11, 178), and then argued ‘…the gravity er 

gravitational energy er is trying to er equal with the would you say this is thrust?’ 

(Session 11, 180). This categorisation was persistent, and in the final session, Daniel 

commented that gravity was the same as free fall (Session 22, 32), and that ‘g is the 

gravity is nine point eight’ (Session 22, 42). In one scenario, Daniel’s intuitive 

understanding of motion appeared to have caused him to develop two distinct 

categorisations of deceleration. Daniel was asked to predict what would happen to a 

shopping bag on a car seat when the car brakes, and he argued that the bag would 

move backwards relative to the seat. On being shown a demonstration of a weight 

moving forwards relative to a tray during a collision, he argued the two situations 

were distinct: 

 

I: Do you think the car is different? 

D: Yeah, because it’s only braking, and it’s not hitting 

something really…Yeah there’s no collision force, so it’s 
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like, how can I explain it, um [pause]. Is it because when 

you’re braking, you brake over a certain amount of 

time…But when you hit something you stop like 

immediately. (Session 12, 195-201) 

 

Daniel appears to retain blurred distinctions between different concepts over the 

course of the sessions. 

5.2.1.2.2 Changes to Daniel’s conceptual clustering 

In his initial concept map, Daniel referred to two types of force: friction and ‘gravity’ 

(see Figure 5.10). 

 
Figure 5.10: Daniel’s first concept map related to forces and motion (Session 5). 

 

Daniel perceived ‘gravity’ and friction as having different relationships with other 

concepts. Daniel linked ‘gravity’ with force and velocity, but friction with 

acceleration and velocity: 

 

… force would it be more connected with velocity than 

acceleration…Because say if a car is moving in a direction 
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there’s always going to be the friction acting on the tyres 

and the road. (Session 5, 78-80) 

 

…gravity and velocity go together ‘cos velocity is a vector 

movement because it’s something in a direction…And 

gravity pulls something down so that’s basically movement 

in a direction. (Session 5, 86-88) 

 

In the second static interval, Daniel maintained a loosely grouped understanding of 

force. In his next concept map, in session 11 (Figure 5.11), he conceptualised two 

distinct clusters of types of force. 

Figure 5.11: Daniel’s second concept map related to forces and motion (Session 11). 

 

Daniel developed a set of forces, in the upper right portion of the map, which related 

to the context of a parachutist: drag, thrust and ‘free fall’. The relationships between 

the forces are described in that context (see the following section for a discussion of 

the situated nature of Daniel’s concepts); hence, drag and ‘free fall’ were seen as 

acting in opposition: 

 

Linking back to the parachutist, as well, um, there’s drag acting 

on the parachutist…When it’s open up, when you open up the 
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parachute, the drag force starts to get bigger until it balances 

out with the free fall or gravity, gravitational force acting on 

it…Um drag and thrust link together, ‘cos, they are, can I say 

they are like opposite forces in the air? (Daniel, Session 11, 30-

34) 

 

Daniel developed a second group of forces grouped by their relation to the context of 

a person sat in a chair (reaction and resultant force). He argued that: 

 

Um, the reaction force links with the resultant force [pause] 

Because in, like, for example, the earth chair scenario, if I’m 

sitting on a chair, there’s a force acting on…Gravity is 

attracting downwards and the reaction force from the chair… 

To me is balancing it out so that I am sitting on the chair not 

falling through it or going up. (Daniel, Session 11, 36-40) 

 

The notion that pairs of force exist in opposition appears in a number of other places 

in the transcripts of Daniel’s sessions. In the first session, he explained the circular 

motion of an object occurred because ‘… there’s more force coming from behind it 

than it is in front’ (Session 1, 76); when analysing the motion of a pendulum, he 

commented that: ‘it’s because there’s the force going in one direction is more than the 

force going in the other’ (Session 2, 58); in accounting for the motion of a marble at 

the top of a loop, he argued that the reaction and gravitational forces act against each 

other to keep the ball from falling (Session 4, 136). 

 

 Daniel’s final concept map (Figure 5.12) suggests that his fragmented ontology of 

force remained unchanged over the sequence of sessions.  
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Figure 5.12: Daniel’s final concept map related to forces and motion (Session 22). 

 

As in his second concept map, Daniel did not include a general concept of force on 

his third map, but listed two types of force: friction and ‘gravity (free fall)’. These two 

constructions appear to have significantly different properties. Friction is linked to 

acceleration, because ‘if there’s a high friction then acceleration won’t be like 

maximum’ (Session 22, 60) but gravity is not. The concept of ‘gravity’ is linked to 

‘GPE’ because ‘gravitational potential energy links to gravity and free fall ‘cos GPE 

equals m times g delta h’ (Session 22, 40). Daniel’s concept of force seems to remain 

weakly clustered: his perception of differences in the nature of different types of 

forces has been maintained over the six-month duration of the interviews. 

5.2.1.2.3 Changes to Daniel’s categorisation by instances and abstractions 

The fragmented nature of Daniel’s concept of force is related to the contextual nature 

of his understandings. In constructing explanations, links to particular contexts 

constrained Daniel’s explanations. For example, when drawing his first concept map, 

Daniel’s understanding of the relationship between force, acceleration and velocity 

seems to be situated in the context of the motion of a car. 

 

… acceleration is something moving with a force acting on it, so, 

and a force can be something that’s acting on something else, so, 

say if you was pushing a car, its acceleration would be the force 
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of the push that you’re putting on the car, basically, so that links 

together um [pause] Er could friction link with it as well? …On, 

yeah, say, if you was in a car and, er, there’s always friction 

between the, the, tyres and the road so, um [pause] I don’t, I just 

want to know how, that something to do with force. Would it be 

more connected with velocity than acceleration? (Session 5, 76-

78) 

 

In another example, gravity is seen specifically as the force of the Earth pulling 

objects into its core (Session 5, 68).  

 

In the second static interval there was some evidence that Daniel could look beyond 

surface features of a context to perceive shared abstractions, for example in his 

categorisation of motion situations (Figure 5.13). 

 

 
Figure 5.13: Daniel’s categorisation of motion situations in Session 11 (See Appendix 

8.7.3.1). 

 

Daniel made use of the concept of force to justify his classifications, and there 

appears to be an activation of the notion, discussed above, that forces act in opposing 
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pairs. He argued that, when a tennis ball was thrown, and in the case of the 

parachutist: ‘The drag is trying to, like, um, equal out with the free fall’ (Session 11, 

178). He assumed that the ball rolling down the slope would travel at constant speed, 

and therefore classified it as a case of motion at constant velocity. Daniel argued that, 

for the ball on the slope, ‘there’s no force acting on it except from the downwards 

force but no force like behind it pushing it forward to go faster’ (Session 11, 184), 

which was similar to the situation with the car, because ‘there’s no force acting on it 

for it to accelerate further’ (Session 11, 186). He argued the book and the Earth 

orbiting the sun cards are in their own categories because the book is at rest (Session, 

11, 211), and the Earth is travelling in a ‘circular orbit or not a perfectly circular orbit’ 

(Session, 11, 221). Daniel’s categorisations indicated some tendency to see abstract 

commonalities between apparently different contexts. However, when he was asked 

to categorise the problem cards in the next session (Figure 5.14), Daniel based his 

categorisation largely on the variable that is the target in the problem rather than 

deeper structural similarities in the questions. 

 
Figure 5.14: Daniel’s categorisation of physics problems in Session 12 (See Appendix 

8.7.3.2). 

 

Some of Daniel’s situated notion of the concept of force may stem from his belief that 

force is a relatively physical entity: 
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I’d say force is more on the concrete side….Because you can feel 

a force when you’re acting on it, when it’s acting on you, you can 

create a force um you can [pause] It’s just something you can 

actually feel, you can actually, you know, it’s going on around 

you (Session 16, 86-88) 

 

It is perhaps unsurprising, given this ontological commitment, that Daniel struggled to 

overcome apparent surface differences in the nature of different types of force to 

develop a single abstracted notion of the concept. 

5.2.1.3 Discussion of general trends in ontological development 

From a reading of the literature, it was suggested that three processes might be useful 

in thinking about how ontological change occurs: differentiation, clustering and the 

transition from instances to abstraction (see Figure 5.15, below). These processes are 

not seen as distinct: for example, an increased understanding of the similarity between 

types of forces (increased clustering) is likely to increase the differentiation of force 

from other concepts. As a concept becomes increasingly defined by abstract concepts 

rather than specific instances it is likely to become increasingly clustered. The 

evidence from the two case studies suggests that the development of ontology is not a 

straightforward process. In Ben’s case there appears to be some progression from a 

weakly differentiated, loosely clustered and contextualised concept of force towards a 

more clearly differentiated category that made use of abstract principles as a guide to 

membership. However, the process appears to proceed gradually; indeed, over the 

course of the six months of the case study, Daniel’s fragmented and situated notion of 

the concept of force appears to have remained relatively static.  
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Figure 5.15: A representation of ontological development suggested by the literature 

review  

 

In general, the more nuanced model of Gupta and colleagues (2010) seems a better fit 

for the changes observed than Chi’s (1992, 2013) notion of parallel evolution of 

ontology (see section 2.1.4.1), as the students displayed evidence of making use of ad 

hoc and idiosyncratic ontological categories rather than the finite number of stable 

ontologies proposed by Chi and her colleagues. For example, in an incident discussed 

above, Daniel developed two distinct categories of collision in response to a particular 

prompt. Similarly, Daniel’s category that subsumed the notions of gravity, weight and 

‘free fall’ was not constructed in Ben’s transcripts. The two cases described above 

provide evidence to suggest that ontological developmental paths may be individual. 

There is no evidence in the reports above that indicate students constructed novel 

ontological categories before assigning concepts to them, as suggested by Chi and 

colleagues (Chi, 1992, p. 136; Slotta et al., 1995, p. 378). Rather, Ben appears to have 

undergone a gradual and complex process in which his existing concepts, which had 

multiple contextually-triggered facets, were adjusted to match a target of expert 

ontological categorisation that is rarely explicitly stated in the classroom.  

 

Daniel struggled to acquire the scientific concept partly because of his fragmented 

and situated concept of force. As he did not possess a single concept of force, Daniel 

faced the challenging task of encountering multiple contexts in which the concepts 

that operated were, to his perception, subtly different. Explaining the motion of an 

object is difficult if you perceive that friction and the gravitational force have 

different properties. In making an argument about the ontology of mythical entities, 

such as Pegasus, Quine (1980, p. 4) argued that philosophers should carry out an 
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ontological slum clearance to rid the universe of ‘disorderly elements’ such as 

mistaken categories. However, developing an expert ontology is not as simple as 

simply discarding alternative ontologies: students must work with their existing 

categories to develop ontologies that differ from everyday categories and are difficult 

to describe explicitly. Indeed, it has been suggested that initial categories may be 

useful stepping stones to developing expert ontologies. For example, a substance-

based ontology for gravity may be productive at some stages of learning (Gupta et al., 

2014); or, an intermediate atomic model, electronium, which treats electrons as a 

continuously distributed liquid, may provide a bridge between material and 

probabilistic electronic ontologies (Budde, Niedderer, Scott, & Leach, 2002). 

Conceptual categories might be thought of as being defined by the manner in which 

concepts are related to other concepts (Chalmers, 1999, p. 98); consequently the next 

section examines the formation of groups of concepts, conceptual compounds.   
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5.2.2 The formation and modification of conceptual 

compounds  
The earlier discussion of conceptual compounds (Section 2.2) suggested that some 

types of conceptual compounds may form and disperse over short timescales. 

Therefore, in this section, static intervals (see Section 4.3.2.3) are defined at the scale 

of utterances or groups of utterances so that short timescale change may be 

constructed. When reading through the transcripts, utterances or sequences of 

utterances in which students constructed compounds relating two or more concepts 

together were initially given the same code. These instances were then differentiated 

into the categories shown below: the stability of compounds (5.2.2.1), the extent of 

compounds (5.2.2.2), and the interaction of conceptual elements (5.2.2.3). 

5.2.2.1 The stability of conceptual compounds 
A number of conceptual compounds, with differing stabilities, were constructed in the 

students’ responses. 

5.2.2.1.1 Relatively unstable conceptual compounds 
In some circumstances, a student developed a temporary conceptual compound that 

only occurred once in the cannon of their utterances. Listed below are three reports of 

students’ ad hoc conceptual compounds: 

 

• Ben’s construct that force ‘takes over’ from energy as a cause of motion 

Ben was asked to predict the most likely trajectory of an object dropped from a plane 

moving with constant horizontal velocity. 

 
Figure 5.16: Projectile from a plane question (See Appendix 8.7.2 (m)). 

Dropped balls, interview 1, 15, 22
(Adapated from Epstein, 2009, p.27) 

Two  balls are dropped at the same time, from
the same height. The balls have the same diameter

but one ball has a greater mass than the other. 
Which ball will hit the ground first?

Explain your answer.

Projectile from a plane, interview 1, 15, 22
(Adapated from Epstein, 2009, p. 133)

An aeroplane is travelling with constant velocity when
it drops a ball. Which path best describes how

 the trajectory of the ball would look to an observer
on the ground? Explain your answer.

A B C D E

Free fall, interview 1, 15, 22

A ball is dropped from the top of a building. Describe
and explain its subsequent motion

The student is given the following prompts:
• Describe the motion of the mass (sketch graphs 
of displacement, velocity and acceleration against
time)
• Explain the motion of the mass
• Draw a force diagram to illustrate your answer
• Predict what will happen when the mass on the
spring is increased

Simple pendulum, interview 2, 15, 22
Student is shown a simple pendulum system

The student is given the following prompts:
• Describe the motion of the bob (sketch graphs 
of displacement, velocity and acceleration against
time
• Explain the motion of the bob
• Draw a force diagram to illustrate your answer
• Predict what will happen when the mass of the
bob is increased

Astronaut in space, interview 3, 16, 22

The astronaut below is in space, far from any 
planets. They have on a thurster which exerts a 
constant force. Describe the motion of the 
astronaut when the thruster is fired. Describe 
how their displacement, velocity and 
acceleration will change over time? Sketch a 
graph of each.

Mass on a spring, interview 2, 15, 22
Student is shown a mass-and-spring oscilator
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B: Um, I think if it was a gentle roll, but if it was a strong force 

then it would follow path E. 

I: Say it was like a gun that fired it outwards. 

B: I think then it would be E. 

I: If it was a gun it follow path E. 

B: Yes sir. 

I: Why path E if it was a gun? 

B: Because, I think, it would probably, the force acting on it 

would be slightly sideways, but, if it was a gun, then I think 

the force acting on it would be much stronger than the force 

of gravity at first, so it would be practically vertical, well 

practically horizontal. 

I: Yes. 

B: But, then, eventually it would lose its kinetic energy gained 

from the push, and then the gravitational force would take 

over and it would just drop to the ground. (Ben, Session 1, 

114-122) 

 

It appears that the particular context of the question causes Ben to develop an 

explanation in which force can take over from kinetic energy as a cause of motion. 

This construct is not seen elsewhere in his explanations, and does not reoccur when 

the question is asked again in session 22: on that occasion, Ben chose option D. 

 

• Edward argues weight decreases with upward motion 

Edward was asked to discuss the forces acting on a lift as it moved upwards at 

constant velocity (adapted from Pople (1982, p. 27)). He was asked if the forces 

would be different from those in a stationary lift: 

 

Er, well, it would be different, ‘cos it’s a change in its velocity, 

so it would be higher upwards, the reading, i.e. the reaction 

force, would be higher, erm, and yeah I suppose the reading 
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would be different, ‘cos there’d be less weight acting downwards 

on the scales. (Edward, Session 4, 229) 

 

In the next utterance, Edward is asked if he believes the passenger’s weight changes 

during the motion of the lift. He replies: ‘No, not technically’. Again, it can be argued 

that the particular constraints of the question context caused the formation of a 

temporary conceptual compound that contradicted a more stable belief. Edward was 

asked the same question in sessions 1 and 22 and, in both cases, argued that in the 

case of constant velocity the upward and downward forces were equal and opposite. 

 

• Amy, Ben and Edward’s development of multiple temporary models 

The route to developing understanding may pass through several relatively short-lived 

moments of coherence. Clement (2013, pp. 334–338) described a cycle of model 

construction and testing in problem-solving and Parnafes (2012, p. 362) proposed a 

progression through a series of ‘plateau[s] of coherence’. It should be noted that the 

pattern reported here is stimulated by the interview prompts, and therefore represents 

an ‘accelerated’ version rather than a ‘natural’ process (Kuhn & Phelps, 1979). In 

session seven, Amy was asked to consider the problem shown in Figure 5.17. 

 
Figure 5.17: Question 29 on Determining and Interpreting Resistive Electrical 

Circuits Concepts Test (Engelhardt & Beichner, 2004). See Appendix 8.7.1 (v). 

 

Amy’s response is shown below: 

 

Erm, B would [pause]. Would B [pause]. No, B brighten and A 

would be dimmer…I’m thinking because [pause]. Wait no it 

would just stay the same….No it would dim they would, no, I’d 

say stay the same, because when the electrons they go into, so 

branch off…They’ve got the same amount of energy, I assume B 

What	happens	to	the	brightness	of	bulbs	A	and	B
when	the	switch	is	closed?

B
A

C
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and C have the same resistance…But the electrons are still each 

going through, no. A would be brighter than B 

[pause]…Because, so the electrons go through B and C, so they 

use up the same amount of energy, but when they go through A, 

you would [pause]. You’d still have, you’d, the electrons still 

have, I don’t know how to explain it. (Amy, Session 7, 180-190) 

 

Amy appears to pass through two overlapping temporary compounds in attempting to 

find a solution to the problem. First, she related the brightness of the bulbs to the flow 

of current and their resistance, before using energy considerations in order to make 

sense. This process of developing a construct to explain a situation, evaluating the 

solution and altering it to create a better fit to the context, has been described as 

‘sense-making’ or ‘satisficing’ by Nokes-Malach and Mestre (2013, p190). 

 

A second example of this process was seen in Ben’s thinking around how an increase 

in mass will affect the time period of a pendulum (Session 2, 201-225). Ben’s initial 

argument proposed that greater weight on a pendulum leads to greater tension in the 

string, therefore greater accelerating force and acceleration, causing a shorter time 

period. When Ben is confronted with data showing the time period remains constant, 

he argues that tension will be unaffected by the change in weight: 

 

…because the force of tension is acting in the opposite 

direction to the force, in a different direction to the force of 

gravity, so I don’t think the force of gravity affects the tension 

very much does it? (Ben, Session 2, 211) 

 

Ben had previously demonstrated the ability to construct an argument, in the case of 

free-fall (Session 1), that acceleration is independent of mass, but he fails to activate 

that knowledge in this context. Finally, Ben developed a third argument in which he 

suggested that, because the weight had increased, the time for the bob to move from 

maximum displacement to the equilibrium position is reduced, whilst the time to 

travel in the opposite direction is increased. This compound disperses when Ben is 

asked to consider the symmetry of the situation. This kind of reasoning supports 
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Sloman’s (2009, p. 138) claim that: ‘Causal models aren’t necessarily waiting like 

ripe cherries to be picked from memory; they have to be constructed for a particular 

purpose’. It appears that Ben was capable of developing a number of different models 

to explain the motion in this context. 

 

A third example of the development of temporary compounds was constructed in 

Edward’s transcripts. This example related to making sense of the changes to the 

potential difference across an electric motor when the load it is lifting is increased: 

 

First iteration: Edward initially proposed a link between a perception of increased 

‘physical resistance,’ due to the decreased speed of lifting, and electrical resistance 

but quickly discarded the argument:  

 

‘its pulling it up slightly slower? And mm that means there’s 

more resistance…I’d say physical resistance in this case…I was 

going to say it would decrease the voltage but that wouldn’t 

make sense ‘cos more resistance would just mean more voltage 

overall’ (Edward, Session 7, 114-120) 

 

Second iteration: Noting that the potential difference across the motor had decreased 

when the load was increased, Edward argued that: ‘So, for some reason, the resistance 

[of the motor] must have gone down by quite a lot, so, …mmm perhaps more of it’s 

transferred into stuff waste products such as like heat or sound’ (Edward, Session 7, 

126-128). 

 

Third Iteration: Finally, he moved towards a compound that links the potential 

difference across the motor to the distribution of resistance in the circuit: ‘Because the 

potential difference dropped across the wire increases…‘Cos the current increases, 

and that causes the, um, is it the, a particles or something, that are, that um, sort of 

like, it’s a vibrate more and stop the current coming through’ (Edward, Session 7, 

188-190).  
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5.2.2.1.2 Relatively stable conceptual compounds 
Though some conceptual compounds were relatively short-lived, others may have had 

longer existences. For example, Charlie, in session 13, implied that gravity and 

weight are separate concepts: ‘Er [pause] gravity’s and weight’s always going to be 

down’ (Session 13, 124). This compound reappeared later in the interview when 

asked the cause of the acceleration of a pendulum he responded: ‘Er the gravity… 

And er weight pulling it down’ (Charlie, Session 13, 139-142). This relatively stable 

compound is evident in a force diagram drawn in the session, Figure 5.18. 

 

Figure 5.18: Charlie’s representation of the forces on a pendulum (Session 13, 146). 

 

This construction of a compound of weight and gravity appeared to be stable across a 

number of sessions over a period of at least two months: 

 

Um, ‘cos there’s a heavier ball, and they both go same speed ‘cos 

one ball’s lighter, um, the weight and gravity have a less effect. 

(Charlie, Session 15, 106) 

 

Erm, gravity always acts downwards…So that contributes along 

with its, er, weight. (Charlie, Session 15, 168) 

 

Because it’s er going down, and it’s weight and gravity would 

give a resultant force above zero. (Charlie, Session 15, 172) 

 

… it’s mass would be down wouldn’t it…There’s gravity as well 

[pause] mass. (Charlie, Session 16, 192-194) 
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In his final session, when questioned about the construct, Charlie indicated that he 

conceptualised weight and gravity as two distinct concepts, but used them as a stable 

compound: 

 

C: So there’s still er weight and gravity. 

I: Are those two separate things? 

C: Yeah or yeah and… 

I: How are they separate? 

C: Gravity is the [pause] or the field strength. 

I: Mmmh. 

C: Acting on everything and then an object can have an 

individual weight. 

(Charlie, Session 22, 339-345)  

 

A particular compound Ben developed, that all forms of energy are related to motion, 

seems stable across a number of sessions. This construct arose first in session thirteen, 

and appeared on a number of other occasions, including the final session, over a 

period of approximately two months: 

 

…it only causes movement in the sense that we say there are 

different kinds of energy, but in a way they are all, in some way, 

kinetic, because, light we have oscillating magnetic and electric 

fields…So it’s kinetic. Heat we have molecules moving so its 

kinetic…So it actually all energy is kinetic. (Ben, Session 13, 

148-152) 

 

I again I go back to saying that all energies are manifestation of 

kinetic. (Ben, Session 14, 333) 

 

I think I’ll just link energy with heat energy and then, as we’ve 

said, all energy is a manifestation of kinetic energy. (Ben, 

Session 15, 126) 
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I think even when we say something has so much heat energy, 

so much kinetic energy, um, as I’ve said before, I think they’re 

all just kinetic energy. (Ben, Session 22, 473) 

 

This compound appears to arise from an understanding that all forms of energy are in 

some ways associated with motion. 

5.2.2.2 The extent of conceptual compounds 
Over the course of the sessions, some of the students developed conceptual 

compounds that linked a growing number of elements. In early sessions, Charlie 

typically produced explanations that linked a small number of concepts to form an 

argument. For example, in describing the pendulum, he linked energy to height and 

motion: 

 

So when we let go it will convert some into, er, would it be kinetic 

energy? So it’s got an energy so it can keep moving, plus every 

time it goes back to a bit more height, it gets a bit more GPE, so 

that’s how it gets energy to move, so that’s how the pendulum 

works. (Charlie, Session 2, 124) 

 

To account for the ability of a ball to travel round a loop-the-loop, Charlie developed 

a compound relating ‘g-force’ to acceleration: 

 

…because, where it starts, as it goes down, er, it accelerates so its 

getting faster and, as its, er, a tight loop as it goes round, I dunno if 

it would be right, there’s g-force. (Charlie, Session 4, 72)  

 

In the context of a ball moving in a concave bowl, Charlie accounted for the motion 

by linking the shape of the bowl to loss of momentum and deceleration: 

 

So it’s all the same shape, wherever you go on the bowl, so by 

dropping the ball at one point, directly through the middle, it 

would keep its path going, er, up and down the sides, of the two 

different sides of the bowl, and, er, as time goes on, I think it loses 
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momentum every roll, I put on the side, so it would gradually start 

decelerating and end up in the bottom of the bowl. (Charlie, 

Session 5, 74) 

 

In general, his early explanations link a small number of concepts to create an 

argument. When Charlie re-encountered the context of the ball in the bowl, in his 

fifteenth session, he activated a greater number of conceptual resources, but he 

seemed to struggle to form links between the separate components to develop a 

coherent argument.  

 

At the top, and, er, when it’s released it gets converted to 

kinetic…Erm, gravity always acts downwards…So that contributes 

along with its er weight…Um [pause] as it er at the top it would 

start to accelerate [sound of marble]…Because it’s, er, going down 

and its weight and gravity would give a resultant force above zero. 

(Charlie, Session 15, 164-172) 

 

In his final session, in comparison to his first encounter with the motion of the ball in 

the bowl, a greater number of concepts were activated, but the relationships between 

the concepts remain poorly defined: 

 

There’s GPE, and when it’s released it’s converted into kinetic 

[here Charlie rolls the ball]…Energy which helps it move [pause] it 

has, er, a weight and an amount of gravitational field 

strength…Pulling it down and erm [pause] its weight would, as it 

bends, there would be a weight acting down, so if it’s at the top 

[pause] er [pause] there, there’d be a reaction force 

inwards…Weight downwards [pause] but the reaction force’s 

[draws arrows perpendicular to track]. (Charlie, Session 22, 289-

295) 

 

A similar pattern can be constructed in Edward’s attempts to make sense of the 

oscillations of a ball in a concave bowl. In his first engagement with the context, like 
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Charlie, Edward activated a limited number of conceptual elements related to the 

physical features of the situation: 

 

Isn’t it something to do with the gradient, er [pause] and the 

gradient’s like zero at the bottom, I think, yeah, yeah it’s 

completely flat, it’s zero at the bottom. It’s like a large, it’s a larger 

number at the side so it sort of moves down to the centre. It’s a 

word you said last week that I think has something to do with it but 

I can’t remember what it was. (Edward, Session 5, 80) 

 

After some discussion, he recalled a link to the centripetal force, which he used to 

explain the motion of an object swung on a string in the previous session. His 

subsequent explanations showed development in the sense that there was an attempt 

to make use of scientific concepts such as momentum and force, though, see below, 

these concepts may be conflated, to explain the motion: 

 

Erm, as it gets higher up, the ball up the slope…It gains more 

gravitational potential energy…And so it would, it would, sort 

of, wanna go back down towards the middle, in a sort of 

centripetal motion, so, and as it does momentum builds, so it 

goes back up the other slope. (Edward, Session 15, 204-213) 

 

E: Erm [pause] we draw a ball here then um the forces acting on 

it would be parallel to the platform it’s on so the two forces 

would sort of both be going that way [draws ball in centre 

with two horizontal arrows, see Figure 5.19]. 

I: What are the two forces there? 

E: In this case it’d be the forward momentum of the ball and the 

drag on it I think. (Edward, Session 22, 243-245) 
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Figure 5.19: Edward’s representation of the motion of a ball in a bowl 

(See Appendix 8.7.2(m)) 

 

In Daniel’s case, his first encounter with the situation led to a conceptual compound 

that was largely related to the physical features of the bowl, rather than abstract 

explanatory ideas: 

 

Is it because the shape of the bowl has a part to play in it, so 

when it’s going down, it’s accelerating and then, this is it’s, 

‘cos it’s flat here [indicating lowest point of surface], that’s 

when it’s going at constant speed, then goes up, which slows 

down the speed, then it’s coming back down accelerating 

again. (Daniel, session 5, 102) 

 

During his second attempt at explaining the situation, in session 15, he made use of 

abstract concepts, describing the ball as ‘accelerating because the force of gravity’s 

acting downwards’. He produced an argument based around three concepts: 

gravitational force, velocity and acceleration. Unfortunately, due to a scheduling 

mistake, Daniel’s final interview was cut short, and there was insufficient time to 

revisit the situation in his 22nd session. 

 

In his first encounter with the context, Ben activated a conceptualisation of 

gravitational force resolved into components: ‘…because the force is gravitational 

field strength times by sine theta I think for the acceleration and so as the angle 

becomes flatter it should the acceleration should be less’. To explain the ball’s 

instantaneous moment of rest at maximum displacement, he developed a compound 
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that assumed that velocity and force could be balanced: ‘because the er velocity and 

the um force of the gravity will be equal, so it won’t be going anywhere’. This first 

engagement with the context triggered the concepts of velocity, acceleration and 

gravitational force, but Ben fails to activate his understanding of the reaction force - 

in Session 4, Ben had demonstrated an awareness of the existence of the reaction 

force in the context of a book at rest on a surface.  

 

When Ben reencountered the situation, in Session 15, he added the concept of 

frictional force into the conceptual compound he developed and argued the constant 

velocity motion at the bottom of the bowl occurs, ‘…because the friction and weight 

cancel‘. The activation of the concept of friction led to the development of an 

explanation that accounts for change in the ball’s direction: 

 

Because it’s slowing, its friction must, I would suppose, in 

well, it’d be as if the friction increased and the friction is 

becoming more and more diagonal (Ben, Session 15, 245) 

 

In the final session, Ben’s conceptual compound included the concept of a reaction 

force that changes direction depending on the position of the ball as well as the 

gravitational and frictional forces to produce a coherent account of the oscillations of 

the ball. Ben was able to activate increasingly complex conceptual compounds over 

the sessions; his initial encounter triggered a relationship between gravitational force, 

acceleration and velocity only, his final version is sensitive to the action of friction 

and a reaction force. 

5.2.2.3 The interaction of conceptual compounds 
It is possible for a learner to develop multiple conceptual compounds that make sense 

of a given context. As discussed above, these compounds can occur as a sequence of 

increasingly refined conceptual compounds. However, there are cases in which a 

student reported possessing two co-existing coherences for making sense of a single 

context. Amy was asked to consider how potential difference might vary across a 

capacitor; a situation that she was encountering for the first time. She reported being 

aware of two different ways to interpret the situation with her conceptual resources: 
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Hmmm, well, I am thinking of two different things in my head 

‘cos part of me is thinking, well, if the electrons can’t move 

from one plate to the other, then there can’t be a potential 

difference. However, if there’s a build up of electrons, then, on 

the plate, then maybe, is, energy, electrons still transfer energy. 

So the potential difference increases. So I’m stuck between the 

two. I think it’d probably be [pause]. Would it increase? 

[pause] I’m stuck between that and staying the same. (Amy, 

Session 9, 140).  

 

Amy believed her two models of electricity, a model of electron flow and a construct 

involving transfer of energy, were incompatible in this context. A similar case 

occurred when Ben was asked to consider a lift travelling at constant velocity. 

 

B: Um [pause] I would like to say that the reaction force is 

bigger. 

I: Why would you like to say… 

B: Because, he has to, at some point, accelerated, because he’s 

not stationary, but at the same time, he’s not accelerating 

any more, and so they should be equal, and so I am not sure 

whether the resultant force is greater or the same. (Ben, 

Session 4, 196-198) 

 

Ben struggled to decide between a compound in which motion requires a resultant 

force or one in which constant velocity is linked to the absence of a resultant force. 

This conflict reasserted itself in session 13 when Ben was asked to make sense of the 

forces acting on a boy jumping from a crouched position. When considering the 

instant of leaving the ground, he struggled to reconcile his belief that there must be a 

resultant force on the boy with his assumption that, because of Newton’s third law, 

the forces acting on the jumper must be equal and opposite. This conflict led to the 

construction of a novel compound of concepts through which Ben argued that the 

forces (referring to the reaction force and the weight of the boy) did not occur 

simultaneously: 
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I’m just not sure whether they’re… occur instantly after each 

other, and not after, instantly at the same time as each other, or 

whether they there’s a gap between them. (Ben, Session 13, 

337)  

 

In this case, Ben developed a model that allowed the retention of two compounds: one 

linking force with acceleration, and another which constructed the reaction force and 

weight as a set of paired forces. When he was prompted that the forces would act 

simultaneously, he developed an explanation in which the resultant force on the 

jumper was ‘zero but she moves at constant velocity’. Ben’s next attempt started from 

the claim that ‘she’s putting less weight on the floorboards when she lifts her legs up’. 

He argued that the floorboards move down, reducing the weight acting on the surface. 

Ben claimed that the jumper’s weight reduced because the area of contact with the 

floor decreased; hence the strain decreased. The subsequent compound was formed 

around the notion that the jumper ‘herself puts some force into jumping’. When the 

interviewer directed Ben to develop an explanation at the sub-microscopic level, he 

proposed that: 

 

Um [pause] Is it because when she crouches down she’s putting 

pressure so the electrons at the bottom come closer to the electrons at 

the surface and so there will be not only a reaction force but there 

will be a force causing the electrons in her feet to accelerate from the 

electrons in the um floor. (Ben, Session 13, 435) 

 
With some additional prompting, Ben managed to develop a coherent explanation of 

the situation. When asked to reflect on his route to reaching his final explanation, Ben 

reported that he has just come from a chemistry lesson, which prompted his thinking 

about forces between particles.  
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5.2.2.4 Discussion of general patterns in the formation of conceptual 

compounds 
Though the possession of certain conceptual elements may be necessary to make 

sense of a given situation, possessing appropriate conceptual resources is insufficient 

for understanding (Bransford, Brown, & Cocking, 2000, p. 9; Kosso, 2002). For 

example, Ben, in making sense of the forces acting on a mass on a spring (Session 3), 

displayed many of the elements required to provide an explanation of the situation. 

He described Newton’s first law and the link between force and displacement and he 

understood, in some contexts, the relationship between force, acceleration and 

velocity. However, he struggled to use these elements to construct an appropriate 

conceptual compound in this context. This difficulty may arise from the presence of 

some misconceived conceptual elements that disrupted his construction. In particular, 

Ben’s belief that the resultant force acting on the oscillating mass was zero at 

maximum displacement, which appears to have arisen from an awareness that the 

instantaneous velocity is zero at this point, interfered with his making sense. 

 

Ben seemed to be aware of the difference between knowledge and the ability to 

develop an appropriate explanation in a given context. He reported that: 

 

I think my knowledge in itself is fine. I think I will slightly 

improve…But I think I’m quite weak in terms of when given a 

situation, thinking and considering every single thing that is 

happening within that model…Because, at the moment I’m not 

linking everything, so I might only notice two things…. Instead of 

the whole range. (Ben, Session 16, 100-106) 

 

The ability to activate appropriate conceptual resources in novel contexts is an 

important skill in learning about science and has been linked with understanding (de 

Regt, 2004). Therefore, understanding cannot be evaluated by assessing the presence 

or absence of particular conceptual elements; rather, assessment should focus on the 

manner in which conceptual constructs are developed across a range of contexts. 
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Learning might be modelled as consisting of three phases (see Figure 5.20). When 

students initially acquire expert scientific concepts, they may be triggered in a limited 

range of contexts (Tao & Gunstone, 1999) and coexist with alternative concepts 

(diSessa, 1988, 1993). For example, Ben was able to develop a conceptual compound 

that explained the independence of time to fall with mass for falling objects in a 

vacuum, a context he was familiar with, but struggled to organise the same elements 

into a compound in the context of the effect of mass on the time period of the simple 

pendulum. A facet of expertise is the ability to consistently apply expert concepts 

across a range of appropriate contexts (diSessa, 2002; diSessa & Wagner, 2005; 

Parnafes, 2012). An intermediate stage exists between these two phases (illustrated in 

the central section of Figure 5.20, below) in which a learner may posses similar 

concepts to an expert, but fail to activate them in appropriate contexts to form 

coherent conceptual compounds. 

 
Figure 5.20: An illustration of the contextual activation of conceptual resources 

 

It is important to distinguish the conceptual resources available to a learner from the 

particular conceptual compound they activate in a given context. Making judgements 

regarding the presence and stability of underlying resources when a learner is in the 

intermediate phase may be challenging, as only a subset of available resources may be 

elicited by a set of probes (Taber, 2013). Even in the expert phase of learning, 

experienced scientists may activate alternative concepts when forced to make choices 

at speed that are not characteristic of their responses under normal conditions 
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(Kelemen et al., 2013). The intermediate stage can be particularly challenging for 

learners and teachers, as the student does not need to be taught more propositional 

knowledge, but, rather, requires support to develop appropriate activation and 

organisation of conceptual compounds. During the intermediate phase, a student may 

display a high degree of variability in the kinds of conceptual compounds they can 

construct (for a discussion of the contextual variability of students’ application of 

concepts see Section 5.6, below). It has been reported that high variability in approach 

to problem-solving contexts may precede an advance in learning (Adolph et al., 2008; 

Siegler & Chen, 1998); therefore, the production of a range of conceptual compounds 

in a given context (as described in Section 5.2.1.1, above) might be seen as an 

important feature of the intermediate phase of learning. 

 

The discussion of different kinds of conceptual compounds in the literature review 

(see section 2.2) indicated the variety of conceptualisations of this construct in the 

science education research literature. To prompt a discussion of the nature of these 

aggregate entities, a taxonomy is proposed in Figure 5.21, across two axes of 

variation: stability and extent. 

 
Figure 5.21: A taxonomy of different conceptual compounds 

 

The differentiation of models of conceptual compounds shown in Figure 5.21 is not 

intended to indicate clear differentiations between different constructs but, rather, to 

indicate that the manner in which students relate conceptual elements can be 

constructed as differing across two axes. Initially, some of the students in this 
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research developed constructs of relatively few elements that were activated for 

relatively short periods of time. By contrast, it is expected experts might, if asked to 

make sense of the contexts present in this study, activate compounds that make use of 

multiple elements consistently over time and appropriate contexts. One factor that 

may drive the organisation of categories is perceptions of causality: it is reported that 

cause features are typically seen as more central to categories than effect features 

(Ahn et al., 2000). The next section examines changes in understanding of causality 

represented in the data.  



 170 

5.2.3 Learning about causality 

5.2.3.1 Students’ understanding of causality in the context of electricity 
A topic, which scientists model as a complex set of multiple causal relationships 

(Barbas & Psillos, 1997), direct current electrical circuits, was chosen to allow 

sufficient scope for investigating students’ changing understandings of causality. In 

addition, a body of research exists describing students’ causal understanding of 

electrical circuits at particular moments during development. Students tend to 

interpret the world through a framework involving a single agent and an acted-upon 

object: a causal Gestalt (Andersson, 1986). This Gestalt leads to misconceptions 

across topics in science; for example, in the context of electrical circuits, students may 

argue physical distance to the battery, or adding batteries in parallel, will affect the 

brightness of bulbs (Andersson, 1986). Students tend to assume linear, unidirectional 

causal relationships between variables (Green, 1997; White, 1995). A single variable 

may be assumed to be the only causal agent (Piaget & Inhelder, 1941/1997; Rozier & 

Viennot, 1991). For example, current may be perceived to be the only variable 

affecting the brightness of a bulb (Psillos & Koumaras, 1993) because, it is suggested, 

students may perceive current to be more concrete and intuitive than potential 

difference (Cohen et al., 1983).  

 

As the causal relationships between electrical variables are complex, novice learners 

often develop simplified mental models. Tina Grotzer (2003, 2012, 2015) argues 

students often misclassify causality in science as a simple linear relationship when 

other more complex forms, such as mutual or relational causality would be more 

appropriate. It has been argued that the transition from applying linear to circular 

causality appropriately is a ‘decisive’ transition in learning about electrical circuits 

(Barbas & Psillos, 1997, p. 447). Students tend to apply models involving sequential 

causation to circuits (Closset, 1983; Reiner, Slotta, Chi, & Resnick, 2000; Shipstone, 

1984) and struggle to appreciate the simultaneous causality that physicists construct 

(Grotzer & Sudbury, 2000; Perkins & Grotzer, 2005; White & Frederiksen, 1989). 

Novice learners are likely to analyse circuits, therefore, in terms of causes and effects 

localised to individual components, and to neglect systemic relationships (Cohen et 

al., 1983).  



 171 

5.2.3.2 Categorising students’ statements about causes 
In order to develop a coarse-grained representation of changes in models of causality, 

students’ utterances that related to causality, that is those that linked causes with 

effects, were categorised. A preliminary analysis of the data revealed students cited 

macroscopic objects, sub-microscopic entities and abstract rules as causes. 

Consequently, a categorisation based on Gilbert and Treagust’s (2009) taxonomy of 

models (after Johnstone, 1982) was felt to be relevant (see Table 5.1).  

 

Table 5.1: Gilbert and Treagust’s classification system of models applied to causes 

represented in Ben’s transcript (see Appendix 8.8.1 for complete table of codes for all 

participants) 

Category of 

cause 

Description Example response in Ben’s 

transcripts 

Macroscopic Objects that are perceptible in 

everyday life are cited as 

causes (c.f. Gilbert & Treagust, 

2009, p. 4). 

 

I would link the resistance to the 

internal resistance caused by the 

battery. (Session 10, 66) 

Sub-

microscopic 

Entities that are too small to be 

seen with optical microscopes 

are described as causes (c.f. 

Gilbert & Treagust, 2009, p. 4). 

 

I think they will stay the same 

because you’ve got the same you’re 

pushing the electrons by the same 

amount you’re going to have more 

electrons through point one and two 

but they’re not necessarily going to 

be travelling any faster than they 

were originally. (Session 6, 94) 

Symbolic Causes are linked to 

abstractions, symbols or 

algebraic constructions (c.f 

Gilbert & Treagust, 2009, p. 4). 

Current would increase um as I 

think one amp is actually one 

coulomb over one coulomb per 

second. (Session 6, 32) 
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A similar distinction between models in the context of electric circuits was proposed 

by Frederiksen, White and Gutwill (1999), who argued students could develop 

understanding based on models at the particle, aggregate charge or algebraic level. A 

key assumption of the classification scheme proposed here is that no category of 

cause is superior to another; rather, expert physicists might be expected to make use 

of all three types of causal entity in different circumstances. The probes used in the 

interviews asked students to explain an effect such as ‘Why is one bulb brighter than 

the other?’ or ‘Why does the current increase over time?’ The contexts the students 

were questioned about allowed causal explanations in any of the three categories. It 

may be that the selection of contexts contained some cues that triggered certain kinds 

of causal explanation; for example, it is possible that contexts in which practical 

apparatus was used may have triggered macroscopic causal explanations that were not 

triggered when paper based questions were presented. However, as a large number of 

different contexts were used in each of the static intervals (see Section 4.3.2.4), 

effects due to particular probes are minimised, and the aggregation of results can be 

seen as developing a cross-contextual representation of the availability of different 

understandings. The quantitative representations of data in Table 5.2 and Figure 5.22 

are not intended to stand as completely valid or generalisable representations of 

change; rather, they are intended to act as a tool for selecting case studies for more 

detailed examination. It is assumed that changes to understanding of causality happen 

gradually; therefore, sessions 6-10 and sessions 17-21 were therefore considered to be 

static intervals. The categorisation in Table 5.1 was used to code students’ responses 

and the percentage of utterances in each category over the two static intervals was 

calculated (see Table 5.2). 
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Table 5.2: The frequency of occurrence of different types of cause over two static 

intervals (Amy’s data is omitted as she left the process after session 10). 

Student Category of cause Sessions 6-10 Sessions 17-21 

Ben Macroscopic 10 (25%) 5 (21%) 

Sub-microscopic 12 (35%) 10 (42%) 

Symbolic 18 (45%) 9 (38%) 

Charlie Macroscopic 11 (52%) 9 (39%) 

Sub-microscopic 1 (5%) 6 (26%) 

Symbolic 9 (43%) 8 (35%) 

Daniel Macroscopic 10 (37%) 13 (39%) 

Sub-microscopic 5 (19%) 5 (15%) 

Symbolic 12 (44%) 15 (45%) 

Edward Macroscopic 14 (38%) 12 (32%) 

Sub-microscopic 6 (16%) 9 (24%) 

Symbolic 17 (46%) 16 (43%) 

 

The data in Table 5.2 were plotted in the graphs shown in Figure 5.22 below:  
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Figure 5.22: Patterns of change in students’ use of different categories of cause. 
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The graphs in Figure 5.22 suggest that the changes in the use of causes between the 

two static intervals were relatively small for two of the students (Daniel and Edward), 

but larger for Charlie and Ben. In order to understand this change in more detail, the 

next section presents case studies of Ben’s and Charlie’s development. 

5.2.3.3 Ben’s learning related to causality 
In his early sessions, Ben was generally comfortable using causal explanations 

involving abstract concepts: ‘if the resistance of the wires is equal [current] will halve 

at that route and so effectively you’ve got the same current going to points’ (Session 

6, 140). He was also able to link abstract electrical concepts to physical entities: ‘I 

think bulb C will be brightest um I think less because you’ve got more current so in a 

fixed amount of them you’ve got more electrons passing through the filament at point 

C and because of that you’ll have more collisions and more energy will be transferred 

to the ions’ (Session 6, 130). Ben’s language sometimes suggested a direct link 

between physical objects and electrical concepts, for example, when discussing an 

electric motor lifting a load: ‘Because um is it because the same amount of electricity 

has to pull up more weight so it’s going to so the turn’s going to be turning less fast 

and so the current’s going to be less’ (Session 7, 80). 

 

Ben tended to think of variables in causal pairs that act in opposition to each other 

but, on one occasion, he displayed some early sensitivity to the existence of a wider 

causal network: 

 

I think that they oppose each other, because if you have the same 

amount of potential difference, but more resistance then it would be 

harder for the current to get through. But if you’ve got the same 

current, and you increase the potential, then you decrease the 

resistance, providing the temperature isn’t changing um [pause]. I 

think I would link current with potential difference because of 

Ohm’s law that the current is directly proportional to the voltage 

across a conductor, provided the temperature remains constant, um 

[pause]. I think in the same way that potential difference and 

resistance oppose each other, current and resistance oppose each 
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other, ‘cos if you have more resistance, then the electrons are going 

to have a lower average drift velocity so the current is going to be 

less. (Ben, Session 6, 38)  

 

In general, however, in the first static interval, Ben tended to attribute effects to single 

causes, for example, ‘it’s the potential difference that causes things to get hot and 

emit light’ (Session 8, 32). The explanations Ben gave in response to stimuli generally 

involved a fairly linear causal chain, for example: ‘A [a bulb] will be less bright 

because you’ve slowed down the electrons so less electrons is reaching the bulb 

second so there’ll be less collisions, less light energy emitted’ (Session 6, 152).  

 

As Ben’s understanding of electricity developed, in the second static interval, his 

reasoning became dominated by abstract or algebraic arguments with little reference 

to macroscopic causality. For example, in calculating the potential differences across 

the bulbs in the circuit below (Figure 5.23), he ignored the physical structure of the 

circuit and simply divided the EMF between the four bulbs: 

 
Figure 5.23: Circuit problem used in session 18 (See Appendix 8.7.2 

(am)). 

 

Yes, well one two three and four [pause]. So the [pause]. We’ve got 

four, four resistances to get through once, that’s nearly. Three plus 

three which is six. So it’d be three so six minus three that’d three 

volts…Because this is going to use three joules per coulomb this is 

going to use three…Because if they’re equal resistances then the 

voltage will be split evenly across all the resistors. (Session 18, 201-

209) 
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Ben justified his commitment to abstract notions explicitly in a later session arguing: 

‘it was much easier to work out things mathematically with potential difference’ 

(Session 21, 6). He reported that he found reasoning at the abstract level easier then 

working with sub-microscopic models: 

	

 I think because potential difference it’s easier to um I think picture 

and also decide on the values because it is just literally out of the 

EMF how much energy’s transferred to each component…Which I 

think is much more um easier to picture than a whole random 

collection of electrons moving along a wire. (Session 21, 72-74) 

 

As Ben’s understanding developed he was able to explicitly comment on the mutual 

causality that exists: ‘Rather with electricity all the variables affect all the other 

variables’ (Session 21, 172). The complexity of his understanding of causality can be 

seen in Figure 5.24, below. 

 
Figure 5.24: A representation of Ben’s understanding of causal relationships between 

electrical variables drawn in session 20 (See Appendix 8.7.7). The arrows point from 

cause to effect. 
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Ben displayed awareness that some electrical variables might be perceived as both 

causes and effects. For example, he argued current caused potential difference: 

 

I think current [pause] causes the potential difference because, you, 

the electrons have to be moving through something…And if they’re 

not moving through something, similar to the idea of something 

having a resistance, they’re not going to have any potential 

difference. (Session 20, 58-60) 

 

In addition, current was seen as an effect of the electromotive force: ‘I think [pause] 

EMF [pause] causes current because it’s the initial that provides the energy’ (Session 

20, 82). The increased sophistication of his causal understanding is demonstrated in 

his explanations, which take an increasing number of causal factors, at a range of 

different levels, into account: 
 

Because, the, I think the main idea is if you’re going to, 

if you’re going to have more current, you’re going to 

have more electrons passing, and if you’ve got, um, and 

so the voltage would then increase if R remains 

constant. (Session 17, 225) 

5.2.3.4 Charlie’s learning related to causality 
Charlie’s early arguments had a tendency to use macroscopic properties as causes in 

his explanations. For example, in explaining the division of current in different 

sections of a circuit he argueed that distance will affect the flow of current: ‘’Cos it’s 

in series and that’s parallel so more er coulombs would go through the shorter route’ 

(Session 6, 94). In his discussion of how the current drawn by a motor would alter if 

the load were changed, Charlie constructed a causal link between a physical object 

and current: ‘Er because this [indicating masses being lifted by the motor] is against 

the current more current is going to have to be needed so it can pull up the weights’ 

(Session 7, 130). The direct influence of macroscopic entities on electrical variables 

was also seen in a discussion of a capacitor circuit, as Charlie argued ‘the current 

would decrease as time goes on ‘cos of the gap’ (Session 9, 90-92). Charlie’s early 
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explanations suggested an understanding of current and resistance as opposing causal 

forces, in which: ‘potential difference has got to be more than the resistance’ (Session 

6, 42) in order for current to flow. In a later session, asked why the potential 

difference between two points in a circuit is zero, Charlie argued: ‘Cos there’s more 

it’s a bigger er resistance than the voltage going in‘ (Session 8, 126). Charlie tended 

to describe the causal links between pairs of variables, and rarely referred to more 

than one cause leading to an effect. His understanding of the relationship between 

current, potential difference and resistance appeared to exist as discrete pairs of 

relationships between variables, rather than as a network of interlinked causes and 

effects.  

 

In the second static interval, macroscopic objects are still a common type of cause; in 

Session 17, Charlie reuses his earlier argument that the length of a wire affects the 

magnitude of a current. There are several instances in which physical objects are seen 

as the dominant causal agents, for example: ‘Because resistors are made to slow down 

or act against…a current’ (Session 21, 124-126). However there is a growing 

tendency to include sub-microscopic justifications, such as the repulsive forces 

between electrons: ‘‘Cos they’re negatively charged and they come yeah so they have 

repulsion between each other and they have a general direction where they flow’ 

(Session 20, 217). This kind of explanation was almost completely absent from his 

arguments in early sessions. Additionally, there seems to have been some 

development towards an understanding of the causal networks in electricity: 

 

Mmm, can I put like tri… these three are all linked because in 

V equals I R, the equation, er, changing one of these would 

have an effect on the others as well, so they would all link 

(Session 17, 162) 

 

In an activity during session twenty, Charlie was asked to draw arrows, running from 

cause to effect, to describe the causal relationships between variables (shown in 

Figure 5.25). 
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Figure 5.25: Charlie’s understanding of causal relationships in electricity in 

session twenty; arrows run from cause to effect (See Appendix 8.7.7). 

 

Despite the apparent awareness of the interrelatedness of causality shown in session 

17, this diagram hints that Charlie’s model of causality, at this time, consisted of a 

chain of uni-directional causes and effects.  

5.2.3.5 Discussion of general patterns in learning about causality 
The general pattern shown in Figure 5.22 suggested that the students, when they 

began the interview process, were typically more likely to make use of causes at the 

macroscopic and symbolic levels. Students’ extensive use of macroscopic causes 

contrasts with Piaget’s (1930/1970) claim that only children at early stages of their 

development will ascribe causality to physical objects, whereas older learners tend to 

use abstract causality. The case studies presented here suggest the pattern of 

development may be more complex than a simple transition between stages and, as 

will be argued in the conclusion (see Section 6.1.3), the ability to develop 

explanations at all levels of causality is a useful scientific skill. The prevalence of 

macroscopic causality in the students’ initial responses might be accounted for by 

reference to the students’ ontologies. In the discussion of the development of 

students’ ontology above (Section 2.1.4.4), it was suggested that learners’ initial 

categorisations tend to be linked to concrete examples of a category, rather than by 

abstract rules (Keil & Batterman, 1984; Rehder, 2007; Vygotsky, 1962/2012) and it 

has been observed that novice learners tend to categorise electrical variables as having 

a material ontology (Reiner et al., 2000). To take Daniel as an example, there are 

several instances that suggest, at times, he activated a substance-like model of 

electrical current: 
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Is it because its already gone through A and there’s nothing like 

blocking nothing like resisting the current through A? (Daniel, 

Session 6, 138) 

…like it [referring to a motor] used up more in the beginning. 

(Daniel, Session 7, 146) 

Because [pause] it hasn’t like been used by the bulb. (Daniel, 

Session 17, 136) 

Um, it gets used up as it’s coming in…Then it’s dropped all of its 

current and it picks up here [the battery]. (Daniel, Session 20, 134-

136) 

 

Daniel’s physical ontology of current may have led to his frequent selection of 

macroscopic causes in his first static interval. It has been suggested (see Section 

5.1.3) that Gupta and colleagues’ (Gupta et al., 2010) dynamic model of ontologies 

may be more fruitful than a model in which individual concepts are categorised in a 

single ontology (Chi, 1992; Chi et al., 1994); hence, Daniel’s substance-like ontology 

of current is seen as one possible categorisation that is activated in certain contexts. A 

model in which ontologies are contextually triggered and which allows for the 

combination of features of different categories (‘ontological blending’ (Gupta et al., 

2010, p. 304)), suggests that the sequential stage-like model of development of 

causality proposed by Piaget (1930/1970, pp. 258–273) is unlikely to occur; rather, 

Figure 5.22 suggests the development of causality proceeds through gradual changes 

in the likelihood of activation of different categories of cause. 

 

In addition to macroscopic causes, symbolic entities, such as the concepts of 

resistance or potential difference, were often cited as causal factors in the students’ 

early arguments. Such symbolic causes are likely to have been acquired from formal 

education. The dominance of macroscopic and symbolic causes might be likened to 

the initial position in Vygotsky’s (1962/2012) metaphor of the direction of conceptual 

acquisition. Vygotsky (1962/2012, pp. 193–194) argued that development might be 

imagined as involving the ‘upward’ development of spontaneous concepts which 

move away from the concrete situations in which they were acquired, whilst 

‘scientific’ concepts develop ‘downwards’, moving away from their original 
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abstracted conceptualisation towards more situated and personalised understandings. 

Similarly, in causal thinking, students’ early arguments related to electrical variables 

may make frequent use of macroscopic causes because they are suggested by 

experience of physical objects as causal agents, and symbolic causes, because they are 

commonly referred to in classroom discussions.  
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5.2.4 The coherence of conceptual compounds 
Students’ perceptions of coherence may differ from those of expert scientists (Driver 

et al., 1985, p. 3). However, it is assumed that, when students developed a construct in 

a particular context, they perceived some degree of coherence between the elements 

they related, in so far as they had the option to chose not to develop an explanation. 

For example, Daniel (Session 16, 183), in one encounter with the ball in the bowl 

situation, admitted that he had ‘no clue’ how to construct an explanation of the 

motion. Though their emic perceptions of the strength of coherence doubtless varied 

between contexts, any attempt to relate two or more elements into an argument 

suggested some perception of potential coherence between the related parts; 

consequently the utterances containing such structures were coded as relating to 

coherence. There was considerable overlap in the utterances coded as relating to 

conceptual compounds and coherence; however, the foci of analyses were different: 

for compounds, the emphasis was on the nature of the compound constructs; for 

coherence, the focus was on the factors that drove a perception of relatedness. The 

examination of the construct of coherence, above (Section 2.4), led to the construction 

of three factors that were seen to drive the formation of coherence: pre-existing 

concepts, epistemology and the nature of the context. These aspects were used to 

categorise codes, and are discussed in the first three sections below (5.4.1-5.4.3). 

Incidents in which students defended developed coherences (5.4.4) emerged as an 

additional category during the analysis. 

5.2.4.1 Pre-existing concepts as a driver of coherence 
In some cases, the activation of a particular conceptual resource could be interpreted 

as driving the coherence formed. Daniel displayed a belief that, for objects in motion, 

there exists a driving and retarding force, which determine their motion and tend to 

equilibrium. For example, he accounted for the motion of a ball by arguing: 

 

 …because, like, there’s more force coming from behind it than 

it is in front, but then the force isn’t going to stay constant at all 

times, so, it might, the force might get lower from behind  

(Session 1, 76).  
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This conceptual compound was stable over a number of sessions. For example, it 

reoccurred in session 11 when Daniel described the forces affecting the motion of a 

ball thrown vertically, and argued: ‘…it’s trying to equal out to come back down’ 

(Session 11, 273). This conceptual compound appears to act as a constraint that drives 

the formation of coherence. In session four, Daniel made sense of the forces that acted 

on a ball swung round on a rope in a horizontal circle. It appears that his belief in the 

existence of balanced forces in this situation, led him to propose an inward and 

outward force (see Figure 5.26), though, when questioned, he was unable to describe 

the nature of the outward force. 

 

D: [pause] um, because when this [the ball] is swinging, the 

tension on the rope is tight, so it’s like restricting it from 

flinging off, so it’s like, I dunno how to explain it, but in 

my head I know what it is, but I just can’t explain it 

properly. It’s like, it’s not the force going outwards is being 

like slightly overtaken by the force coming in. 

I: Well why label on the forces you think um you think would 

be there. 

D: Um this is a force coming off [draws force along radius 

outside circumference, perpendicular to motion], and 

there’s a force. 

 

 

Figure 5.26: Daniel’s 

representation of forces on a 

rotating object. 

 

I: What’s that force going outwards? 

D: [pause] I don’t, I don’t know, I don’t what force it. 

I: Where is there definitely a force? 

D: There’s definitely a force here [indicating string]. 

I: Pulling which way? 

D: Pulling inwards. (Daniel, Session 4, 80-88) 



 185 

It appears that an organising principle, the existence of balanced forces, drove the 

arrangement of other conceptual elements into a compound (see Figure 5.27). As will 

be discussed in section 5.4.5, it appears that some of the understanding developed by 

the coherence, the nature of the outward force, is inexpressible or tacit. 

 
Figure 5.27: A representation of the manner in which Daniel’s understanding of 

balanced forces drives the formation of coherence. 

 

A different case of the manner in which prior knowledge may have affected Charlie’s 

making sense occurs in relation to ‘g-force’. Charlie first referred to this concept 

when making sense of the motion of a marble round the loop-the-loop: 

 

I read in a car book when they do a wall of fate [wall of death]. 

I think it’s called a wall of fate, and it’s ‘cos it is driving round 

‘cos its going so tight a circle it eventually gets pushed 

outwards so its allowed to stick on the wall (Session 4, 100) 

 

This piece of knowledge was used to develop a personally coherent explanation of the 

motion of the marble due to the interaction of the gravitational and ‘g-force’ (see 

Figure 5.28).  

 

 

 

Organising coherence:
Forces are balanced in stable 

situations

Organising coherence:
Forces are balanced in stable 

situations

There must be an 
inward and outward 

force on  the ball

Organising coherence:
Forces are balanced in stable 

situations

There must be an 
inward  and outward 

force on  the ball

Linked to tension

Unclear on the nature
of this force
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I think, because gravity is always going to pull it down, so it’s 

gonna be pulled down to this [indicating bottom of loop], at 

this point the bottom of the loop, and it’s already on the ramp 

so as it will go up, it will stay on path, and, I think, if you could 

say g-force would help it be pushed back up on the ramp, still, 

and it would carry on going round until it reaches the end. 

(Charlie, Session 4, 86) 

 

Figure 5.28: Charlie’s representation of the forces acting on a marble in 

a loop-the-loop (See Appendix 8.7.2 (k)). 

 

To develop this argument, Charlie drew on the assumption that, at the top of the loop, 

there was no resultant force acting on the marble. He proposed that: ‘At that point 

[the apex of the loop] the forces g-force and gravity would be equal’ (Session 4, 106). 

When asked if that construction makes sense, he changes the construct so that the ‘g-

force’ acting radially outwards is larger than the weight. 

 

Charlie often activated the belief that a force acts in the direction of motion. When 

making sense of the forces that act on a ball thrown vertically into the air, he 

developed a coherent argument around that belief. He described a motion force that 

acts upwards against a downward force, labelled as ‘drag or gravity’ (Charlie, 11, 

136). He argued the motion force is larger than the downwards force on the upward 

part of the ball’s motion, the forces are balanced when the ball reaches its peak, and 

the size of the motion force increases as the ball descends (see Figure 5.29). 
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Figure 5.29: Charlie’s representations of the forces acting on a ball, (See Appendix 

8.7.2 (ag)). 

 

Within his existing conceptualisation of motion, Charlie developed a coherent model 

of the variation of the two forces that he imagines act, in order to explain the motion 

of the ball.  

5.2.4.1.1 The role of tacit elements in developing coherence 
In addition to explicit conceptual elements, tacit elements, those that are not directly 

expressible in words (Polanyi, 1966, p. 4), may also channel perceptions of 

coherence. The noted difficulty of describing the nature of the concept of coherence 

(Garnham, 1997, p. 159) may stem from the partly tacit nature of constraining factors. 

A number of incidents in which the participants reported tacit influences playing a 

role in the development of coherence are discussed in this section. Daniel argued that 

down



 188 

two balls of equal size, with different masses but dropped from the same height, will 

hit the ground at the same time. He proposed that ‘they have the same force acting on 

it, the same, like, magnitude of force‘ (Session 15, 68) a claim which arose from his 

intuition that: ‘I know they’ll definitely hit the ground at the same time, but 

explaining it, I wouldn’t know how to explain it’ (Session 15, 72). Similarly, Amy 

was asked to predict and explain the trajectory of a ball swung in a horizontal circle 

when the string broke. She suggested the ball would follow a tangent to the circle, but 

struggled to articulate the reasons behind her prediction: ‘I just think it seems logical 

that’s what I’m just thinking I am not really basing it on any knowledge I’m just 

thinking it sounds logical’ (Session 4, 114). Daniel’s and Amy’s perceptions of the 

motion of objects may be based on an intuition about the manner in which physical 

objects move that is not expressible in words (Brock, 2015). 

 

Ben described an awareness that some of his reasoning was based on intuitive 

hunches and, in the context of a collision between a car and a lorry, he was able to 

overrule the tacit perception with a reasoned answer: 

 

I had a gut instinct and still have a gut instinct that they exert equal 

amounts of force…I could, but I couldn’t find, the, um, logical 

reasoning for it, so I did what I could, which was logically reason 

something that, that, from that perspective seemed to be correct. 

(Ben, Session 16, 60-66) 

 

This kind of cognition has been described as characteristic of ‘intuitive’ or ‘system 1’ 

thinking: Kahneman (2011, p. 105) argues that system 1 thought ‘creates a coherent 

pattern of activated ideas in associative memory’ and exaggerates consistency, 

neglects ambiguity and ignores absent evidence. This kind of difficult-to-express 

construction is also seen in Daniel’s understanding of the relationship between forces 

acting on a lift moving up at constant velocity: 

 

D: As it’s going up the [pause]. The force of gravity is getting 

bigger [pause]. Yeah, I think the force is getting bigger as it 

goes up. 
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I: Why does the force of gravity get bigger as it goes up? 

D: [pause] I don’t really know to be honest. I just, it’s just one of 

these things that you just know, like, ‘cos higher up it is 

[pause]. Um the more time it takes to come down. 

(Daniel, Session 1, 94-96). 

 

Similarly, Daniel perceives that the motion of a ball on a U-shaped track and a 

pendulum are similar, yet struggles to articulate the areas of coherence: ‘I don’t know 

how it would link to tension but it would have more like I don’t know what you 

would call it here [end of track] it would just have more effect on it’ (Daniel, 15, 

371). 

5.2.4.2 Epistemology as a driver of coherence 
Epistemological resources can play a role in the formation of coherences, as a student 

may make assumptions about appropriate responses when they encounter a difficulty 

in making sense of a situation. In a discussion of his learning in physics, Ben (Session 

4, 30) commented that: ‘I think sometimes physics can be very detached’ and ‘…if 

you are looking at the topic for the first time in which case you just have to look at it 

on its own’. During his first session, Ben (Session 1, 4) had remarked that he did not 

expect to fully understand physics; rather, he suggested that there is ‘always some 

confusion’. In describing his process of learning about electricity, he remarked that: ‘I 

think there are a lot of models that work and are different but we haven’t been able to 

sort out which one is the correct’ (Session 5, 44). This epistemological expectation 

that physics will have plural, possibly contradictory models may underlie the 

tendency in Ben’s thinking to be accepting of the existence of multiple models rather 

than seeking a single unified account. Taber (2000b) describes a similar case, in 

which a student accepts the existence of a plurality of explanatory models of chemical 

bonding. 

 

In session six, Ben was asked to consider what would happen to the potential 

difference across two branches of a parallel circuit, each containing a bulb, if one of 

the bulbs were removed. He initially argued the potential differences across the 

branches would increase; then he claimed the values would remain constant. Ben was 

aware of having developed two models, one based on ‘[t]he amount of coulombs per 
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second’, and the other ‘in terms of push‘ (Session 6, 110-116). He described a 

difficulty in choosing between the two models suggesting that his preference is: ‘I 

think eighty per cent for the speed of the coulombs and twenty per cent for the voltage 

being pushed’ (Session 6, 120). 

 

In the context of thinking about the motion of a lift (described above in section 

5.2.2.3), Ben developed two explanatory models of the situation and concluded: ‘I am 

not sure whether the resultant force is greater or the same’. He did not attempt to 

reconcile the contradictory accounts and seemed to accept the state of contradiction 

that existed. A similar situation occurred in Ben’s analysis of the forces on a boy 

jumping from the ground (discussed in detail in section 5.2.23). He was again unable 

to resolve a situation in which he could perceive two coherent accounts. 

 

I’m just not sure whether they …occur instantly after each other 

and not after instantly at the same time as each other or whether 

they, there’s a gap between them. (Ben, Session 13, 337)  

 

Ben may, or may not, have possessed the skills to evaluate which of the two 

coherences was more fruitful, however, it is interesting to note that he again made no 

attempt to resolve this apparently incoherent mental state.  

 

Amy reported that if she couldn’t make sense of an idea in physics ‘…it is always in 

the back of my mind. I do like to know how things work’ but accepts ‘there are things 

that I just don’t get so I’ll just leave it and move on’. She claimed that, rather than 

focusing all her energy on resolving a particular difficulty, it was best to progress onto 

other issues. This attitude appears to have caused Amy similar difficulties to Ben: she 

was aware of two interpretations of how potential difference across a charging 

capacitor varied (see Section 5.2.2.3, above), but was unable to choose between them: 

‘I’m stuck between the two’ (Amy, Session 9, 140). However, in the context of 

discussing the forces on a lift, she made a choice to resolve two incoherent accounts, 

though admits the reasons for her choice may be tacit: 
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Well the upwards force can’t be greater than the downwards 

force because otherwise the person would just move up to the 

top of the lift [pause] erm [pause]. I don’t know, now I am 

thinking would they just be, would they just be the same, erm 

[pause]. I don’t think it would be the same. I wouldn’t be too 

good at explaining why though [laughs]. (Amy, Session 4, 373) 

 

Daniel, in his first session, was asked if he believed ideas in physics cohere, and he 

replied: ‘Yeah, yeah it should but not all of it does’ (Session 1, 6). He imagined a 

moment when two contradictory explanations occurred: he felt he wouldn't be able to 

reach a resolution on his own and that he would seek help from a teacher. In 

comparing the current flowing into and out of a motor lifting a weight, Daniel 

(Session 7, 132) argued first that ‘there’s just more current [entering the motor] 

because then if the current was the same it wouldn’t be able to lift it up’. 

Subsequently, he proposed a model in which the currents entering and leaving would 

be equal, though he argued that he couldn’t justify that prediction: rather ‘it just 

sounds right’ (Session 7, 150). Daniel described the existence of two models as 

‘baffling’, and, when asked to assign confidence to the two interpretations, claimed: 

‘It’s probably the second one but I just like because of the because I can explain the 

first one I’d say like sixty forty for the first one because I can explain it’ (Session 7, 

152). It is impossible to infer a direct link between epistemological beliefs and the 

students’ interpretive dilemmas. However, it might be assumed that a stronger 

commitment to the coherence of physical explanations might have encouraged greater 

reflection when contextual and knowledge affordances allowed the construction of 

two personally coherent explanations.  

5.2.4.3 Context as a driver of coherence 
The contexts of particular probes may drive students to develop conceptual 

compounds that are personally coherent, even to the extent that the compounds 

contradict other beliefs. For example, when Ben explained how a ball can loop-the-

loop, he temporarily argued that gravitational force can have a sideways component.  
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I: Why doesn’t the ball drop downwards? 

B: [pause] Is it because [long pause]. Is it because gravity is causing it 

to, um, de- [pause] -ccelerate, well, accelerate towards the centre? 

But gravity is also, because it’s resisted here [at top], it’s almost 

swinging it around 

I: Which way does which way does gravity always act? 

B: Downwards. 

I: Can it provide a sideways component? 

B: Yes [pause]. 

I: Explain. 

B: Yes, so, gravity acts downwards [pause]. So it can also do [pause] 

a horizontal component [labelling horizontal arrow H in Figure 

5.30, below] and a vertical component [labelling vertical arrow V 

and adding diagonal line] that’s with itself. 

I: Where’s the horizontal component of gravity coming from? 

B: [pause]  

(Ben, Session 4, 109-118) 

 
Figure 5.30: Ben’s representation of the forces acting on a marble at the apex of a 

loop-the-loop. 

 

It would appear that Ben required there to be some horizontal component of the force 

on the ball for it to be able to loop-the-loop, perhaps due to his understanding, 

triggered in some contexts, that a force acts in the direction of motion (see section 

5.2.5.1). He assumed that the only force acting on the ball was the gravitational force; 

consequently he applied knowledge that a vector quantity may be resolved into two 

perpendicular components to argue that a horizontal component of gravity caused the 

ball to travel round the loop. The coherence is one to which Ben has little 

commitment, and it is soon discarded. In this case, the nature of the context causes 
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Ben to temporarily develop a local coherence that contradicts a secure knowledge 

element, the direction in which the gravitational force acts.  

 

Coherence is conceptualised as a perception of fit that occurs between conceptual 

resources; however, such perceptions may vary across contexts. In his first session, 

Edward (Session 1, 58) showed awareness, in the context of the motion of a lift, that 

an object travels at constant velocity when no resultant force acts on it. When he came 

to observe the motion of a simple pendulum in the next interview, Edward perceived 

the motion as involving an initial acceleration from its stationary state, followed by a 

period of uniform motion: 

 

I: And are there any points when it is not accelerating? 

E: Yeah, almost the rest of it. 

I: Because? 

E: It is travelling at a constant velocity. 

(Edward, Session 2, 49-52) 

 

Despite developing an understanding that the tension in the string supporting the 

pendulum’s bob varied with displacement, because Edward was committed to his 

perception that the pendulum moves with constant velocity, he argued that the 

‘overall force’ on the bob remained constant: ‘the overall force on from each 

individual force is always the same so the acceleration remains constant’ (Edward, 

Session 2, 140). 

 

In the third session, Edward was introduced to the oscillations in the vertical axis of a 

mass on a spring. In this context, Edward categorised the motion of the mass as 

involving changing acceleration with displacement: ‘… if there’s more displacement 

that means there is more force acting on it therefore higher acceleration’. By linking 

the changing acceleration to resultant force and displacement, Edward was able to 

develop a coherent explanation of the motion of the mass on the spring. In the fifth 

session, the discussion of a practical situation focused on the oscillations of a marble 

released from the rim of a concave bowl. Edward’s initial attempt at explaining the 

motion activated few resources related to abstract concepts such as force or 
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acceleration, rather it focused on physical features of the situation: ‘Isn’t it something 

to do with the gradient, er [pause], and the gradient’s like zero at the bottom … It’s a 

larger number at the side, so it sort of moves down to the centre’ (Edward, Session 5, 

80). 

 

When prompted to explain in more detail, Edward proposed an argument that: ‘…the 

gravity acting down on it would be stronger as the further you pull it away the more 

force acts on it’ (Edward, 5, 96). This may be a partial reactivation of the force-

linked-to-displacement resource that was used in the case of the mass on the spring; 

however, Edward was unable to describe a mechanism which explained the variation. 

This difficulty may have arisen from Edward’s weak understanding of reaction force: 

when asked to describe the forces acting on the ball, he replied: ‘…probably weight 

and something to do with lift’. Without the necessary resource, the changing direction 

of reaction force with displacement, Edward struggled to develop a coherent 

argument. In a model of making sense as the coordination of conceptual resources, 

Edward’s ability to form a coherent structure in each of the contexts might be 

summarised as shown in Table 5.3: 

 

Table 5.3: Summary of Edward’s attempts to develop coherent accounts in three 

contexts. 

Pendulum (Session 2) Mass on a spring (Session 

3) 

Ball in bowl (Session 5) 

• Perceived the bob as 

moving at constant 

velocity. 

• Was aware of link 

between tension and 

displacement. 

• Made sense by arguing 

whilst overall force didn’t 

change, tension did. 

• Perceived motion as 

involving varying 

acceleration. 

• Was aware of a link 

between the magnitudes 

of displacement, force and 

acceleration. 

• Made sense in a manner 

that matches accepted 

scientific explanation. 

• Perceived motion as 

involving speeding up and 

slowing down. 

• Had a weak 

understanding of reaction 

force. 

• Made sense by arguing 

gravitational force varied 

with displacement, but 

was unable to explain 

variation. 
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Edward’s attempts at making sense of the different contexts demonstrate the 

challenge of coordinating multiple conceptual resources. Edward has many of the 

appropriate resources to develop coherent accounts of the situations, but an erroneous 

perception of motion, and missing resources related to the reaction force, led to the 

development of alternative accounts. The context of the mass-spring oscillator and the 

ball in the bowl triggered a perception of accelerated motion that drives the formation 

of coherence. As the claim related to a perception, it is difficult to understand the 

particular features of the pendulum context that led to Edward’s claims that the bob: 

‘…stops just for a second [at maximum displacement] and then it continues going at 

the same speed’ (Edward, Session 2, 38). 

 

Even when many appropriate resources exist, students may still develop alternative 

coherences. In the first session, Edward was asked which of two objects with different 

masses, released above the surface of the Earth, would hit the ground first. His 

response is shown below: 

 

Hmmm, I would say, the one with the heavier mass, ‘cos because, 

going back to Newton’s Law, force equals mass times acceleration. If 

they are both going the same speed, they’d both have a similar 

acceleration, but if the one has a higher mass, then mass times 

acceleration would bring a higher force behind it than the other…The 

bigger one would travel further. (Edward, Session 1, 32-34) 

 

In the excerpt above, conceptual resources that match scientific understandings, 

Newton’s second law and the observation that the masses will accelerate at the same 

rate, are used to justify an intuition that the larger mass will travel further. In order to 

develop a personally coherent argument with these elements, Edward forms a link 

between force and distance travelled. Elsewhere in the first interview, in discussing a 

collision between a lorry and a stationary car, Edward had argued: ‘the lorry doesn’t 

just carry a greater mass but there is also more speed therefore more acceleration 

acting behind it so the force would be greater’ (Session 1, 40). This link between 

force and velocity (Viennot, 1979) might be linked to a conflation of velocity and 
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acceleration that appears a number of times in Edward’s arguments and might 

underlie the development of the link between force and distance travelled. In the 

example above, when Edward attempted to describe the motion of falling objects, 

despite the availability of appropriate resources to develop a coherence that matches 

the scientific model, intuitions regarding the nature of motion that are triggered by the 

context lead to the construction of an alternative coherence. 

 

An examination of another case, Ben, demonstrates the personal nature of the 

development of coherences (see Table 5.4).  

 

Table 5.4: Summary of Ben’s interpretations of three contexts. 

Pendulum (Session 2) Mass on a spring (Session 

3) 

Ball in bowl (Session 5) 

• Argued gravitational 

force causes acceleration. 

• Stated he didn’t 

understand how the 

pendulum could move 

upwards.  

 

• Linked motion to 

changes in tension. 

• Argued tension 

decreased as displacement 

increased. 

• Suggested acceleration 

was zero at maximum 

displacement. 

• Argued the magnitude 

of gravitational force 

varied due to changing 

gradient of bowl. 

• Argued that, at the top 

of the slope, force was 

balanced by velocity so 

ball would be stationary. 

 

Ben’s attempts to make sense of the contexts differed from Edward’s. He appeared to 

have a more stable link between the concepts of resultant force and acceleration than 

Edward, however he struggled to develop explanations in which several forces acted 

together. The differences between the coherences developed by Edward and Ben in 

different situations suggest that contextual factors may have had an impact on the 

formation of coherences. 

5.2.4.4 There is a drive to maintain a developed coherence 
The meaning maintenance model (Heine, Prolux & Vohs, 2006) suggests that the 

representations of the world people develop have some stability because disruptions 

to meaning frameworks are unpleasant, therefore people strive to protect developed 

meaning structures. An example of a coherence defended against a threat to its 
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stability is seen in Edward’s comments related to a ball being swung round on a 

string. 

 

I: Which way is the resultant force on the ball? 

E: Going that way isn’t it [adds clockwise arrow on Figure 

5.31]. 

I: If there was a force going that way what would happen 

to the velocity of the ball? 

E: It would stay constant. 

(Edward, Session 4, 89-92) 

 

In this case, Edward activates the belief that a force is required in the direction of 

motion. He is then prompted to consider the effect of the resultant force on the motion 

of the ball. 

 

I: Um will there be a resultant force in the direction of its 

motion? 

E: Er, not necessarily, 

I: Not necessarily?  

E: No, if there’s a reaction force going the opposite way 

that’s equal to it, then it will just keep it at a constant 

velocity rather than acceleration.  

(Edward, Session 4, 101-104) 

 
Figure 5.31: Edward’s annotation on a diagram of a ball being swung on a string. 
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The discussion triggered Edward’s belief that force causes acceleration and so, in 

order to defend his coexisting belief that a force acts in the direction of motion, he 

constructs a ‘reaction force’ that acts in the opposite direction to the ‘driving force’, in 

order to allow the ball to travel at constant velocity. 

 

As described above (see Section 2.4.4), preconceptions about the outcome of an event 

may cause students to disregard novel information in order to maintain their existing 

model (Chinn & Malhotra, 2002). In such a case, Charlie was asked to predict the 

potential difference across two equal resistors connected in parallel to a 12V supply. 

He had predicted that there would be a potential difference of 6V across each resistor, 

because ‘there’s two components so it would be half’ (Session 19, 265). 

Subsequently, he was shown a simulation of the circuit and confronted with the 

contradictory data that the reading across the two resistors was 12V. In order to 

maintain the coherence he had developed, Charlie argued that because the parallel 

branches were physically linked together, the potential difference measured in either 

of the branches will be a measure of the total potential difference across the two 

resistors: ‘So it’s like wherever you measure on one yep if you put it [referring to the 

probes of the voltmeter] on any of the others it’s the sum of er them both of them 

added up ‘cos it’s the front and the end of it’ (Charlie, 19, 307). 

 

The stability of coherences may be linked to their emotional resonance. Thagard 

(2006) has claimed that the experience of developing coherence is associated with 

positive emotions: reaching, even a temporary state of coherence may result in 

comfort and satisfaction (Parnafes, 2012). Conversely, Daniel reported strong 

aversive feelings in the moment of not being able to make sense: 

 

Basically, like, I don’t know, it’s just the way I work, if I don’t, if 

I understand something, I don’t understand something it, it bugs 

me, it annoys me if I don’t understand something. So that’s why I 

like go the extra mile to know how to understand something so 

that my mind’s at rest, literally…Urgh, it’s terribl,e like I actually, 

ah, I just hate it. I hate it when I don’t get something and when I 
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go back on it and I understand it I find out how easy it is and that 

is what annoys me the most. (Daniel, Session 4, 8-10) 

 

By contrast, Daniel described the moment of reaching understanding as: ‘It’s relief. 

Like the big one of the biggest reliefs’ (Daniel, Session 4, 12). Ben described how, 

once a ‘habit of thinking’ is established, it is very difficult to break from it and 

establish a new model. The affective associates of coherence may well be factors that 

promote or minimise conceptual change (Thagard, 2006, pp. 182–183). 

5.2.4.5 Discussion of general patterns 
Coherence is a significant concept as it defines the manner it which concepts are 

perceived to ‘fit’ together. The three factors described above seem to be a useful 

structure for discussing the notion. It is worth noting that students’ alternative 

concepts acted to channel the kinds of coherences they perceived. This observation is 

significant as alternative concepts might be imagined to have a broader function than 

simply competing for application with the concepts accepted by science. As 

coherence has been argued to involve judgements of fit in relation to background 

knowledge (Patalano et al., 2006), students’ idiosyncratic conceptual ecologies can be 

conceptualised as channelling the kind of constructs they judge as coherent. As 

discussed above, Daniel’s belief that two competing forces act on objects in motion 

leads to the development of a coherent explanation of circular motion. The examples 

cited above suggest that the students, on a number of occasions, could perceive 

multiple alternative coherences, but failed to make a judgement between them. This 

acceptance of incoherence may have arisen from their assumptions about the unity of 

physics as a discipline and their expectations of sense making (Hammer, 1989). 

Though the failure to choose between alternatives may, be problematic in some 

contexts, it may be a useful approach for maintaining multiple alternative 

explanations in contexts where evidence is limited. Indeed, some degree of inertia to 

change between mental models, sometimes called the ‘status quo’ cognitive bias 

(Kahneman, 2011, pp. 304–305), may be a useful feature that prevents overly rapid 

switching between conceptual positions. 

 

Students may develop a range of different coherences, in different contexts, based on 

factors that are challenging for an external observer to detect; judgements of 
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coherence are subjective acts (Hoey, 1991, p. 12). Hence, it is unsurprising that 

students may perceive situations in a different way to the researcher, and may 

perceive contexts that a researcher views as similar, as distinct. For example, Edward 

interpreted the motions of a pendulum and a mass on the spring as being of different 

kinds. The subjective perception of contexts may lead to the development of ‘locally 

coherent’ systems of conceptual elements (Hammer, Elby, Scherr, & Redish, 2005; 

Parnafes, 2012). As the examples above suggest, students attempted to defend some 

of their coherences, though others were short-lived and quickly abandoned. The 

stability of some coherent conceptual compounds is both a benefit and hindrance to 

students’ conceptual development: constructs that resemble, and differ from, accepted 

scientific arguments may be difficult to change if they are perceived to be coherent.  
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5.2.5 The rate of conceptual change 
The rate of conceptual change was defined in Section 2.5.5 as the rate at which the 

oftenness of application of a concept, in a particular context, varies over time, where 

oftenness was taken to refer to participants’ or researchers’ subjective interpretation 

of how commonly a particular concept is trigged in a given context. The analysis 

occurs in four sections divided into ‘emic’ (as constructed by the participants) and 

‘etic’ (as constructed by the researcher) descriptions of change (Pike, 1967, pp. 571–

575). A further division is constructed between descriptions of change over long 

(between interviews) and short (within contexts) timescales.  

 

5.2.5.1 Etic descriptions of long timescale conceptual change 
An important facet of the definition of rate of conceptual change given above is the 

notion that conceptual change should be assessed in a single context. Descriptions of 

learning suggest different contexts may trigger the activation of different concepts 

(Clough & Driver, 1986; Mishler, 1979; Palmer, 1993; Taber, 2008b; White, 1985); 

therefore, claims to change should be made by comparisons of activation in a single 

context. Table 5.5 and Figure 5.32 illustrate the repeated probes that were introduced 

to students in the sessions related to force and motion. 

 

Table 5.5: A representation of the repeated probes in the sessions related to force and 

motion. The dark grey bars indicate where sessions on electric circuits took place. 

Interviews with consecutive numbers occurred at intervals of 1 week. An interval of 

eight weeks occurred between interview 5 and 11, and an interval of seven weeks 

occurred between interview 16 and 22. 
Probe Session 

1 2 3 4 5  11 12 13 14 15 16  22 

Mass on a spring 	 	 ✓	 	 	 	 	 	 	 ✓	 	 ✓	

Simple Pendulum 	 ✓	 	 	 	 	 	 	 	 ✓	 	 ✓	

Astronaut in Space 	 	 ✓	 	 	 	 	 	 	 	 ✓	 ✓	

Dropped balls ✓	 	 	 	 	 	 	 	 	 ✓	 	 	

Projectile dropped from a 

plane 

✓	 	 	 	 	 	 	 	 	 ✓	 	 ✓	

Object in free fall ✓	 	 	 	 	 	 	 	 	 ✓	 	 ✓	

 



 202 

 
Figure 5.32: Representations of repeated prompts (See Appendix 8.7.2) 

 

Dropped balls, interview 1, 15, 22
(Adapated from Epstein, 2009, p.27) 

Two  balls are dropped at the same time, from
the same height. The balls have the same diameter

but one ball has a greater mass than the other. 
Which ball will hit the ground first?

Explain your answer.

Projectile from a plane, interview 1, 15, 22
(Adapated from Epstein, 2009, p. 133)

An aeroplane is travelling with constant velocity when
it drops a ball. Which path best describes how

 the trajectory of the ball would look to an observer
on the ground? Explain your answer.

A B C D E

Free fall, interview 1, 15, 22

A ball is dropped from the top of a building. Describe
and explain its subsequent motion

The student is given the following prompts:
• Describe the motion of the mass (sketch graphs 
of displacement, velocity and acceleration against
time)
• Explain the motion of the mass
• Draw a force diagram to illustrate your answer
• Predict what will happen when the mass on the
spring is increased

Simple pendulum, interview 2, 15, 22
Student is shown a simple pendulum system

The student is given the following prompts:
• Describe the motion of the bob (sketch graphs 
of displacement, velocity and acceleration against
time
• Explain the motion of the bob
• Draw a force diagram to illustrate your answer
• Predict what will happen when the mass of the
bob is increased

Astronaut in space, interview 3, 16, 22

The astronaut below is in space, far from any 
planets. They have on a thurster which exerts a 
constant force. Describe the motion of the 
astronaut when the thruster is fired. Describe 
how their displacement, velocity and 
acceleration will change over time? Sketch a 
graph of each.

Mass on a spring, interview 2, 15, 22
Student is shown a mass-and-spring oscilator
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The context of forces and motion was selected as a domain for the analysis of the rate 

of conceptual change as two concepts of force, force linked to acceleration and force 

linked to motion (Viennot, 1979), occurred frequently in the students’ transcripts. The 

transcripts were coded for the occurrence of these two concepts, and the point at 

which they occurred within a session was noted, as shown in Table 5.6. Note that 

these two understandings are not conceptualised as representing the totality of 

interpretations of force available to Daniel. 

 

Table 5.6: Examples of coded sections of Daniel’s transcripts (See Appendix 8.7.6 for 

complete list of codes). 

Session; utterance Comment linking force to 

acceleration 

Comment linking force to 

motion 

1;52  …it’s heavier when it’s coming 

down it will be coming down 

quicker than a lighter ball  

2;180 this is where it is accelerating 

here ‘cos the force that’s 

going to be acting on it  

 

 

The applications of these understandings were tracked in contexts that occurred 

repeatedly (see Figure 5.32) and plotted as graphs, shown in Figure 5.33, below. This 

representation is an adaptation of the figures found in Tao and Gunstone (1999). 

Daniel’s and Ben’s transcripts were selected for discussion because they contained the 

greatest number of incidents of activation of the two concepts of force in the repeated 

contexts. As argued above, the data are not intended to be generalisable to all 

students, but rather to represent the detail of conceptual change for a particular 

learner. Note also that, as represented in Figure 4.3, a short static interval is implied 

because change is constructed between individual utterances, or sections of 

utterances.  
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Figure 5.33: A representation of conceptual change in Daniel’s application of two 

interpretations of the force concept across various contexts. Note that the x-axis is 

discontinuous in this representation, as it only represents time within sessions. The 

markers indicate the position of an utterance within a session. For example, Daniel’s 

second session consisted of 210 utterances, so an activation of force linked to 

acceleration in utterance 105 would be plotted at the point (2.5, 1).  

 

The representations in Figure 5.33 suggest that conceptual change may proceed at 

different rates in different contexts. In one context, a projectile dropped from a 

moving plane, Daniel seemed to make stable use of the concept of force linked to 

acceleration over time. It might be conjectured that this stability relates to the explicit 

teaching that occurs in the curriculum regarding the context of a falling parachutist. 

However, in the another context related to a falling object, a stone dropped from a 

building (labelled ‘free fall’ in Figure 5.33), Daniel links force to acceleration in his 

first two encounters with the context but reverts to an understanding linking force 

with motion in his final session. He suggests the ball reaches a maximum speed soon 

after release, and argues that: ‘there was a force acting on it for the whole time like a 

fixed force’ (Daniel, Session 22, 120). 
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In general, Daniel’s pattern of application of the two understandings of force across 

the contexts appears variable. The graphs in Figure 5.33 suggest that conceptual 

change must be considered in a given context, as change can occur at different rates in 

different situations (Tao & Gunstone, 1999). In a number of contexts, for example, 

the mass on the spring and the pendulum, Daniel makes use of two different 

conceptualisations in the same context over relatively short time-spans. These graphs 

suggest that short timescale variability should be interpreted against a representation 

of change on a longer timescale, rather than simply standing as clear evidence of 

change. The graphs in Figure 5.33 present a complex picture of Daniel’s transition in 

understanding between two concepts of force. There appears to be a high degree of 

variability in Daniel’s application of the two understandings of force, both across 

different contexts and over time. To provide a comparison with Daniel’s variation, 

data from Ben’s sessions are plotted below, in Figure 5.34. 

 
 

Figure 5.34: A representation of conceptual change in Ben’s application of two 

understandings of force across various contexts. 
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Ben appears to display greater stability in his application of the force linked to 

acceleration concept. In sessions 11-16 and session 22, in the contexts in Figure 5.34, 

he exclusively activated the force linked to acceleration concept. In general, the 

graphs in Figure 5.34 might be taken as representing a student who has a stable 

understanding of force linked to acceleration in two contexts linked to free fall, and is 

developing a stable application in other contexts. A change in the frequency of the 

application of force linked to acceleration occurs in four contexts between the first 

two periods of sessions and change appears to occur at a similar rate in those contexts.  

 

5.2.5.2 Emic description of long timescale conceptual change 
In session 14, the students were asked to draw a graph representing their learning 

about forces and dynamics over the course of the sessions, and to comment on the 

pattern of change. The term ‘learning’ was chosen as a non-technical descriptor that 

would be familiar to the students, and because learning is often modelled as 

conceptual change (E.g. Strike & Posner, 1982). The students’ representations are 

shown below (see Figure 5.35). When asked to describe the rate at which their 

learning progressed, three of the students described periods of different rates of 

acquisition. 
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(i) Ben’s representation   (ii) Charlie’s representation  

 

 

 

 

(iii) Daniel’s representation   (iv) Edward’s representation 

Figure 5.35: Students’ representations of changes in their learning about forces and 

motion over time, produced in interview 14.  

 

Ben described his learning about dynamics as initially occurring at a low rate, as his 

classroom lessons recapped material he had previously encountered (labelled ‘a’ on 

section i of Figure 5.35). He reported that he learned more rapidly when encountering 

the novel topic of equations of motion (labelled ‘b’); but the topic of moments, which 

he perceived as counter-intuitive, caused a dip in the rate of his learning (labelled ‘c’). 

Charlie argued that acquiring new concepts initially ‘took a bit of time’, followed by a 

period of consolidation, in which the concepts were applied to new contexts 

(indicated by the plateau on the right hand side of section ii, above). Daniel reported 

that he initially found learning about dynamics easy, so he progressed rapidly 
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(labelled a in section iii); then he became confused between the concepts of velocity 

and acceleration, causing a decrease in his rate of learning (‘b’ in section iii) before a 

final period (‘c’ in section iii) in which elaboration on previously-learned concepts led 

to an increased rate of learning. Edward (Session 14, 4) conceptualised his learning as 

occurring ‘continually at one level’, without any changes in rate. Though the students 

tended to perceive their learning as occurring relatively continuously, a close 

examination of the students’ application of concepts indicates that moments of sudden 

change over short timescales can be constructed in their transcripts. 

5.2.5.3 Etic descriptions of short timescale conceptual change 
When conceptual change is conceptualised as an alteration in the frequency with 

which a concept is applied in a given context, the period over which change is 

constructed becomes significant. An alteration in the manner in which a concept is 

used may occur on a single instance but not lead to longer-term change in the 

application of that understanding. Such unstable shifts have been conceptualised in a 

number of ways (see section 2.2.4): for example, Piaget’s (1979, pp. 16–17) notion of 

‘romancing’ and Taber ‘s (1995, p. 95) construction of mental ‘flotsam and jetsam’. 

Moments of short timescale change are worthy of study for a number of reasons: it 

has been suggested that constructions that are apparently constructed in the moment 

may develop into conceptual elements with longer timescale stability (Barsalou, 1983; 

Taber, 1995). In addition, even if an apparent switch in application of a concept does 

not lead to a more permanent change, examining moments in which students’ 

application of concepts varies in a given context may lead to an understanding of the 

processes that prompt change. Utterances in which a student appeared to switch their 

conceptualisation over a short timescale were coded and are discussed below. 

 

Clement (2008, p. 99) has linked insight with the rapid formation of a novel set of 

relationships between concepts and this process also seems to have occurred in Amy’s 

understanding of oscillating motion. Amy initially considered the oscillations of a 

pendulum and a mass on a spring to be unrelated situations but experienced an abrupt 

transition: 

 

A: I wouldn’t say they are that similar, no, because [pause]. 

I: What makes them different? 
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A: Because [pause]. This one with the pendulum, when the 

pendulum moves to the side, it’s the [pause]. I am thinking 

now that they would be similar because, it’s there, because the 

resultant force decreases as the pendulum moves to the side, 

which causes it to slow down and with this um [mass on 

spring] when it’s moving upwards [pause] the resultant force 

[pause] when it’s moving up to the equilibrium point from here 

to there the resultant force acting on it upwards decreases as 

well. (Amy, Session 3, 235) 

 

One feature that has been proposed as marking the difference between novice and 

expert physicists is an ability to focus on the ‘deep structure’, the underlying 

commonalties of situations, rather than surface details (Chi et al., 1981). Amy’s 

perception of the two simple harmonic oscillators appeared to change in a short space 

of time through the perception of a common pattern in the variation of force with 

displacement. In this case, the change seems to be relatively long lasting. In session 

five, Amy considered the oscillations of a marble released within a large concave 

bowl, and was asked if it reminds her of anything. She replies it reminds her of the 

pendulum ‘because there’s the resultant force changes as it goes along’ (Session 5, 

255). Amy’s understanding that certain kinds of motion are related, because of a 

similar pattern of variation in force with displacement, may have had some stability 

over time and transfers to at least one novel context. 

 

Not all changes are as stable as Amy’s: in the example below, Daniel was making 

sense of the distribution of potential difference in an electric circuit (Figure 5.36). He 

displayed a rapid change in his understanding of potential difference towards the end 

of session 8, as he became able to correctly analyse the distribution of potential 

difference in the circuit problem with switch A and B closed. He reported that the 

situation ‘makes sense’: 

 

I: So what potential difference…[is there across bulb 

two]? 

D: Er, twelve. 
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I: Twelve. Bulb three? Between two and three is..  

D: Zero [pause] Twelve! 

I: So on the right hand side. 

D: OK, that makes sense now. 

I: So they’d all light up and how bright would they be? 

D: The same. 

(Daniel, Session 8, 220-231) 

 
Figure 5.36: Circuit problem set in session eight (adapted from (Grimvall, 

2007, p. 32) see Appendix 8.7.2 (ab). 

 

In a later session, he reported that he felt that potential difference is an area in which 

he had undergone change: ‘Yeah in potential difference yeah right when I first when I 

got it then I just knew how to do the rest of it and everything’ (Daniel, Session 10, 

26). However, later in session ten, he reverted to his initial model of potential 

difference, in which he treated potential difference as a substance which flows: 

‘Because ten’s coming out this way… Then it has to split here’ (Daniel, Session 10, 

118-122). This sequence illustrates the importance of probing cognition at multiple 

points in time. Though it appeared from Daniel’s answers, that he was capable of 

calculating potential differences at various points in simple circuits and expressed a 

feeling of understanding, in later sessions, in a similar context, he reverted to his 

former understanding. Daniel’s perception of change to his available conceptual 

resources may not be reflected in their application at a particular time or in a 

particular context. As illustrated in Figure 5.33, Daniel may possess appropriate 

Switch Circuit
(Adapated from Grimvall, 2007, p. 32) 

Switch B

Switch A

1 2 3

12V

Which bulbs light when: a) no 
switches are closed; b) A only is 

closed; c) B only is closed; d) both 
A and B are closed?
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conceptual resources to understand a situation, but their application may not be stable 

over time. 

 

Not all conceptual change leads to scientifically accepted concepts: students’ 

perceptions that their novel understanding of the world is ‘correct’ may contrast with 

experts’ assessment (Ylikoski, 2009). Irvine (2015, p. 226) has described the category 

of ‘false aha moments’, which appear to be ‘a genuine insight’ but ‘fail the 

verification process’. As Irvine’s construct conflates two issues, the outcome of the 

insight and the nature of reflection on the insightful product, here, ‘false insights’ 

refer to sudden transitions that lead to alternative conceptions. An example of a ‘false’ 

insight can be constructed in a moment of change in Ben’s transcripts. During an 

extended process of making sense of the forces acting on a person jumping from a 

crouched position, Ben drew a diagram which led to a first insight which largely 

resembles the canonical account of the jump: ‘Oh yes, oh, now I understand, um, so 

this is a person, um, and they push downwards with a certain force that causes a 

reaction force upwards and so then they can jump up’. However, in response to a 

question about whether the jumper experiences a resultant force at the moment of 

leaping, Ben appears to undergo a sudden shift. 

 

I: Is there a resultant force on her? 

B: Yeah [pause] Oh is it zero but she moves at constant 

velocity… 

(Ben, Session 13, 348-349) 

 

This construction is productive for Ben as it allowed him to develop a model that 

explained the motion of the jumper that was consistent with his belief that the forces 

on the jumper should remain balanced at all times - e.g., ‘there’s going to be zero 

Newton’s overall’ (Session 13, 343). It might therefore be classified as a moment of 

sudden transition in Ben’s explanation that led to a construct that did not match the 

accepted scientific model - a false insight. The attractiveness of developing a coherent 

account was compelling, and seemed to override Ben’s stable understanding that 

acceleration requires a resultant force. 
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A sudden change in conceptualisation may occur when a concept that a student 

possesses, but has not previously activated in a given context, is triggered. Working 

memory has a limited capacity (Miller, 1956), so students can activate a finite number 

of conceptual resources in a given context. Therefore, the development of expertise 

depends not only on the acquisition of appropriate conceptual elements, but also on 

selecting and linking suitable concepts in a given context (Sabella & Redish, 2007). In 

reflecting on the motion of a marble round a loop-the-loop, Ben initially attempted to 

make sense of the situation by focusing on the relationship between gravitational 

force and the velocity of the marble. 

 

…It’s at the top, the only force well, its velocity is that way, but 

then at the top its, um, gravity is pulling it downwards so its 

velocity is gradually going to become less and less sideways. It’s 

going to become more and more steep and so it will, maybe in 

average, approximately this direction, and as it moves down the 

[pause]. It’s um horizontal, it’s what horizontal component of its 

velocity will decrease and so it will [inaudible] downwards (Ben, 

Session 4, 166) 

 

When asked to reflect on the forces acting on the marble at various points, the 

concept of reaction force, which Ben had applied in other contexts, was brought to 

mind, and appeared to trigger a sudden transition to a novel argument based around 

the resultant of reaction and gravitational force. 

 

[Referring to the resultant force on the marble] Zero Newtons, so it 

wouldn’t accelerate. Oh so [pause]. Is it the reaction force bigger? 

(Ben, Session 4, 174) 

 

Ben repeatedly struggled to appreciate that the velocity of an object may be 

instantaneously zero whilst a resultant force acts on the object when explaining 

contexts related to simple harmonic motion. In the following excerpt, Ben was 

considering the motion of a pendulum and initially argued that the resultant force was 
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zero when the pendulum was at maximum displacement. However, examining his 

force diagram prompted a rapid transition to a novel understanding: 

 

Because I want to get for it to, stationary, I want to, tension to 

completely cancel out the weight [pause], and yet my arrows 

don’t. Ah I think I might know, um, here. I think what’s 

happening is there is a force acting on it but it’s acting completely 

opposite to the direction of motion. (Ben, Session 22, 591) 

 

A related incident of the activation of an existing understanding occurred when Ben 

was reflecting on the motion of a box on a car seat when the car brakes. He had 

initially presented an argument that a resultant force acted on the box during braking, 

causing it to move. Subsequently, he transitions to a different interpretation: 

 

Um oh! Is it because if the the box is also moving with the car at 

constant velocity, and if the car stops then the box will carry on, 

supposedly moving at that constant velocity, and so it will move 

forward because the car isn’t moving but the box is? (Ben, 

Session 12, 259) 

 

When questioned as to why he felt he was able to make the connection, he reported 

that he had been reading a book that referred to relative motion: 

 

…it talked about it looking like you’re not moving at all if you’re 

moving at the same rate as another object…And so that made me 

think well what would happen if you were not moving at the same 

rate as the other object (Ben, Session 12, 265-267) 

 

A failure to activate a concept in a context does not indicate that a student does not 

possess that understanding (Taber, 2008b). Conceptual change is constructed not 

simply as the development of a novel concept but as an alteration to the likelihood 

with which a concept is activated in a context (Mortimer, 1995). Following the 

descriptions of short timescale conceptual changes as constructed by the researcher in 
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the students’ transcripts, the next section examines student’s reports of change over 

short timescales. 

5.2.5.4 Emic descriptions of short timescale conceptual change 
At the start of each session, the interviewer asked the students to reflect on their 

recent learning experiences and to describe any changes they had experienced. A 

number of these reflections contained reports of apparently sudden changes in 

understanding. For example, Charlie described how, in learning about dimensional 

analysis, ‘…something’s just snapped in it’s oh yeah it’s got to be that’ (Session 12, 

12). In an earlier session, he had used the notion of ‘snapping’ to refer to a sudden 

change in his understanding of electronic configuration: 

 

Well, it’s, we’re, s p d f notation… It kind of snapped really 

‘cos, I thought, I thought ‘cos, when I first done it, I couldn’t 

remember it all, actually do it, ‘cos it took a while to think 

about before I could do it, but then I think it was a homework, 

we were just we’d just done it, and I could just do it, it just 

made sense so I could do it… It’s hard to explain because I 

kind of looked at it differently when I done it, ‘cos I saw it as 

like, I kind of mind blocked it as something that’s really hard 

(Charlie, 3, 205-211) 

 

Charlie’s description refers to being ‘mind blocked’ before a change in interpretation 

that led to the development of understanding. Researchers in science education have 

described how ‘functional fixedness’, an adherence to a particular strategy or 

interpretation of a situation, may precede a reconceptualisation of a problem resulting 

in an insight (Bing & Redish, 2009; Clement, 1989; Furió, Calatayud, Bárcenas, & 

Padilla, 2000). Ben reported a similar change in perspective: 

 

I was given a question which was why can nitrogen only 

form three covalent bonds… But phosphorous can form five 

and I think the problem was in GCSE I was taught that 

elements in the same group can form the same number of 

bonds… Nitrogen and phosphorous are in the same group so 
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I wrote out their actual configuration and then I stared at it 

for about ten minutes… And then suddenly I realised for 

nitrogen the next sub shell would be a completely different 

shell and for phosphorus it [sic] a completely empty subshell 

on the exact same shell… And so it can move its electrons 

to that subshell for phosphorus but nitrogen doesn’t have 

anywhere to move its electrons. (Ben, 3, 269-277) 

 

Ben attributed the difficulty of reaching an insight to his commitment to the belief 

that elements in the same group form the same number of bonds, an alternative 

interpretation channelled by teaching (Taber, 2001b). As argued above, 

reconceptualisation might occur through the activation of some prior knowledge, as in 

Edward’s thinking about the gradient of current-voltage graphs: 

 

E: …I think what we were doing the other lesson for 

instance, I was looking is looking [sic] at where a high 

temp would equal a low resistance, and low temp would 

equal a high resistance etc. 

I: Yes. 

E: At first I didn’t understand how the steeper the graph 

would like be lower resistance, but then, when I 

remembered the equation um over V what was it 

I: So, Ohm’s Law [pause] so R equals V over I 

E: Yeah, basically I suddenly realised why it would work 

(Edward, Session 3, 116-120) 

 

Moments of conceptual change over short timescales may be stimulated by an 

external prompt. Amy described struggling to make sense of a question about 

horizontal projectile motion, which led her to consult her teacher. She reported that: 

‘he just explained it to me in a different way and I suddenly remembered something 

and then I got it’. These reports suggest that students, on occasion, experience 

conceptual change as occurring at a relatively rapid rate. However, introspective 

reports of cognitions must be treated with caution, as at least some of our cognitive 
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processes occur beyond our awareness (Nisbett & Wilson, 1977), and an insight that 

appears suddenly may be the result of incremental changes in conceptual structure 

(Nersessian, 1999, pp. 13–14).  

5.2.5.5 Discussion: developing the concept of the rate of conceptual change 
Ben displays some degree of independence between the rates of conceptual change in 

different contexts. Ben is able to consistently apply the force linked-to-acceleration 

resource in two contexts in which an object drops vertically (Figure 5.34). His 

apparently stable-over-time application in one context, but not in others, indicates the 

importance of developing a description of conceptual resources over both time and 

across contexts. It might be assumed that expert scientists’ knowledge is, to some 

degree, disassociated from context, as experienced learners are capable of solving 

problems in situations they have not previously encountered. An important issue, that 

can be investigated using the two dimensional model presented here, is the manner in 

which students transition from relatively contextually situated understandings to more 

abstracted knowledge. diSessa and colleagues (diSessa, 2002; diSessa & Wagner, 

2005) argue that the gradual integration of contextually triggered elements into 

networks, known as coordination classes, explains this transition. However, there are, 

as yet, insufficient data that describe changes in students’ application of conceptual 

resources over multiple contexts and over time to begin to understand the processes 

involved in this change.  

 

If learning is modelled as the activation of multiple contextually-triggered resources 

(diSessa, 2002; diSessa & Sherin, 1998; Hammer, 2000), it may be appropriate to 

move away from conceptualisations of conceptual change as the simple replacement 

of one concept with another over a relatively short period of time. A more nuanced, 

novel, definition might suggest: conceptual change is an alteration in the frequency 

with which a concept is applied in a given context. A similar suggestion has been 

hinted at in Patrice Potvin and colleagues’ prevalence model of conceptual change 

(Potvin, 2013; Potvin, Sauriol, & Riopel, 2015). Potvin has argued that:  

 

If we consider conceptual prevalence instead of conceptual 

transformation, then the appropriate attitude toward initial 

misconceptions, from the moment they cease to manifest 
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themselves, would be to consider that they have not been defeated 

and are, most likely, just temporarily supplanted or masked. 

(Potvin, 2013, p. 32) 

 

However, the authors do not clearly define the term ‘conceptual prevalence’; nor do 

they present data displaying evidence of the patterns of change over multiple points in 

time. The definition above clarifies the meaning of prevalence as the oftenness with 

which a concept is applied in a given context. An oftenness model of conceptual 

change is useful as it fits with a model of cognition as contextually-triggered 

conceptual resources and allows for the occurrence of moments of rapid change 

within more gradual long-term variation. This conceptualisation highlights two issues 

for conceptual change researchers. 

 

When conceptual change is considered as a change in oftenness of the application of a 

concept in a given context, claims of conceptual change become challenging to 

substantiate. For example, consider Daniel’s application of concepts in the context of 

the pendulum (shown in figure 5.33 above). In session 2, he links force to both 

acceleration and motion; in session 15, he connects force with acceleration once; and, 

in the final session, he applies the two concepts on one occasion each. There are at 

least two possible interpretations of these data: a) Daniel possesses two 

understandings of force which are triggered with roughly equal oftenness; or, b) he is 

undergoing a shift towards a more frequent application of the force linked to 

acceleration concept. The oftenness model of conceptual change highlights the 

difficulty of substantiating claims to conceptual change, and suggests reports from 

probes at multiple points in time would be required to substantiate change. Imagine 

the case of the use of one concept, followed by the application of a different concept 

in the same context (see top of Figure 5.37). 
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Figure 5.37: A representation of the significance of extended periods of sampling in 

the oftenness model of conceptual change. The black dots represent activations of a 

concept in a given context at one time. 

 

Reports of the sequential application of two different concepts are insufficient to 

substantiate a claim for change. The data may indicate an isolated and short-lived 

usage (‘A’ in Figure 5.37) or a period in which the two concepts are applied with 

equal oftenness (‘B’ in Figure 5.37) - therefore a period in which change is not 

constructed as occurring. In order to substantiate a claim of change, an extended 

period of sampling, represented in section ‘C’ of Figure 5.3.7, would be required. In 

terms of what can be observed, conceptual change is likely to be a ‘messy’ process 

(Taber, 2013, p. 126), and is unlikely to occur in a discontinuous manner: it is 

suggested that moments of insight are likely to be rare occurrences (Brock, 2015). 

Typical change might be represented as gradual change in the oftenness with which 

multiple concepts are applied in a given context (see Figure 5.38).  
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.  

Figure 5.38: A representation of typical student conceptual change. Notice that, in this 

representation, it is impossible to define a moment in time when the conceptual 

change might be thought of as occurring. 

 

It is best to avoid claims that conceptual change has or has not occurred based on a 

small number of reports of application. It is difficult to define a number of data points 

that would stand as sufficient evidence of stable conceptual change. However, 

researchers should aim to present data from multiple points in time to provide 

evidence for an overall trend; the concept of ‘theoretical saturation’, developed in 

grounded theory, may be useful in making a case (Glaser & Strauss, 1967, p. 61). 

With such data, it may be more appropriate to claim that the oftenness with which a 

student applies a concept has altered, rather than asserting that conceptual change has 

occurred.  

 

A consequence of conceptual change research that has tended to sample data on 

students’ thinking through relatively few, widely-spaced probes is that changes to 

students’ ideas that occur over relatively short timescales have received insufficient 

attention. This section has presented evidence that students report sudden changes in 

their understanding and a number of potential examples of insight-like change were 

discussed. Though such moments may be rare (Fisher & Moody, 2002; Vosniadou, 

2008b; Vosniadou & Ioannides, 1998), their emotional resonance may mean they are 

powerful learning experiences that are worthy of further study (Brock, 2015). It might 

be tempting to consider short timescale changes in understanding as ‘noise’ that has 

little significance for further learning, but, without an extended period of sampling, it 

is impossible to know whether an apparent moment of insight develops into a more 

permanent change. A number of authors have hypothesised that short-lived constructs 

may become more stable features of cognition at a later time (Barsalou, 1983; Taber, 
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1995). For this reason, proponents of the microgenetic method, such as Flynn, Pine 

and Lewis (2006) recommend that short timescale variability in data should be seen as 

potentially meaningful rather than simply discarded as ‘noise’.  
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5.2.6 Conceptual change and conceptual span 
 
This section considers the manner in which students’ application of concepts across a 

range of contexts, their conceptual span, may be constructed, and the relationship of 

this construct to the notion of conceptual change. It was argued in Section 2.6.6 that 

representations of conceptual change should be developed in a particular context and 

separated from constructions of conceptual span, which require probes in a range of 

contexts. Two different approaches to representing conceptual change were used in 

the pervious section: a graphical approach (Figures 5.33 and 5.34) and representations 

of transcripts from interviews. The next section considers approaches to representing 

conceptual span. 

5.2.6.1 Approaches to representing conceptual span 
In order to allow comparisons with the models of conceptual change developed in the 

previous section, the analysis will focus on the two cases discussed above: Ben and 

Daniel. One way to represent Ben’s activation of concepts related to force is to 

present extracts of his transcript in a number of contexts. To develop these 

representations, initially all utterances in which Ben made a claim about the concept 

of force were coded. For example: 

 

 In the context of two balls dropped (Appendix 8.7.2(a)): 

…the gravitational force on each of the balls, although it is 

different because of the masses, they both accelerate by ten 

meters per second squared. (Ben, Session 1, 60) 

 

In the context of two balls rolled off table velocity (Appendix 

8.7.2(b)): 

I think, because the heavier ball has a higher mass, the 

gravitational force on it would be greater, and so as the 

gravitational force is acting downwards, it will be pulled 

downwards more strongly, and therefore the force acting to the 

side of it will be less, and therefore it will hit nearer to the table 

than the lighter ball. (Ben, Session 1, 72) 
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In the context of a stone dropped from a building (Appendix 

8.7.2(c)): 

It will accelerate by 10 meters per second squared …eventually 

the air resistance will cancel out the gravitational force and so 

due to Newton’s, I think, it’s first law, the ball will carry on at 

a constant speed. (Ben, Session 1, 78) 

 

In two of the contexts, that of objects falling with purely vertical motion, Ben 

activated an understanding of force-linked-to-acceleration. The context of 

horizontally projected objects appears to have activated an understanding that a 

horizontal force would act on the ball, indicating a concept of force-linked-to-motion, 

and a belief that the action of one force can affect another. In the next context that 

involves an object falling with a horizontal component to motion, an object dropped 

from a moving aeroplane (Appendix 8.7.2 (d)), Ben argued that after the projectile is 

fired, ‘the force acting on it would be slightly sideways’ (Session 1, 120). These data 

suggest that particular features of the contexts trigger different conceptual resources. 

 

A researcher attempting to display multiple incidences of the use of a concept 

encounters the challenge of retaining the detail of the data whilst carrying out 

necessary data reduction (Pope & Denicolo, 1986). A novel way of achieving this 

goal is the concept repertoire table, shown below (Table 5.7). In this representation, 

every reference to a concept, in this case, force, in the transcripts of Ben’s first two 

sessions has been summarised by the researcher.  
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Table 5.7: The concept repertoire table. A summary of interpretations of the concept 

of force in Ben’s first two sessions. A link to the probes in the Appendix is given in 

brackets. 

 

Session; 
Utterance Context Researcher’s interpretation of utterance(s) 

1; 60-66 Object falling vertically 
(8.7.2(a)) 

Force linked to acceleration. 

1; 72 
Object falling with 
horizontal velocity 

(8.7.2(b)) 

Believes there is a horizontal force during 
projectile motion which influences vertical force. 

1; 78 Object falling vertically 
(8.7.2(c)) 

Force linked to acceleration and clear 
understanding of Newton’s Frist Law. 

1; 88 Collision between lorry 
and car (8.7.2(e)) 

Uses scientific understanding of Newton’s Third 
Law. 

1; 106  
Object falling with 
horizontal velocity 

(8.7.2(d)) 

Suggests that there is no horizontal force on an 
object dropped from moving aeroplane but 

argues object will fall in a straight line. 

1; 120 
Object falling with 
horizontal velocity 

(8.7.2(d)) 

Claims horizontal force acts on projectile. Argues 
gravitational force acts only a certain time after 

projectile is fired. 

1; 125-128 
Object in a lift 

(8.7.2(f)) 
Argues upward motion of projectile requires 

upward force. 

2; 3-12 Forces on a car 
(8.7.2(h)) 

There must be a forward force acting on a car 
travelling at constant velocity. 

2; 17-18 
Forces on a car 

(8.7.2(h)) 

Argues resultant force is required for 
deceleration but then argues a stationary car has 

no forces acting on it. 

2; 106 Forces on pendulum 
(8.7.2(g)) 

Unable to describe force that would cause the 
pendulum to rise- no reference to tension. 

Implies force is required for motion. 

2; 107-108 
Forces on pendulum 

(8.7.2(g)) Stationary implies no forces act on a pendulum. 

2; 131-132 
Forces on pendulum 

(8.7.2(g)) 

At maximum displacement of pendulum, argues 
tension drops to zero and then draws tension 

acting vertically. 

2; 181 Forces on pendulum 
(8.7.2(g)) 

Argues, at equilibrium position, pendulum will 
have low velocity due to low tension 

2; 201 Forces on pendulum 
(8.7.2(g)) 

Argues greater mass on pendulum will lead to 
greater tension, greater acceleration, greater 
velocity and therefore shorter time period. 

2; 201 
Forces on pendulum 

(8.7.2(g)) 
Argues changing string length of pendulum will 

affect the tension in the string. 
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Application of two concepts of force across all sessions 

 

Different understandings are triggered in different contexts, though it is difficult, from 

these data, to understand the contingencies that trigger a particular concept. Whist the 

concept repertoire table is useful for retaining information about the context of 

utterances and giving a sense of the detail of a student’s thinking, it is not a 

particularly compact representation, and it does not give a reader a sense of the 

patterns of change. An alternative method of representation is to plot the activation of 

the two concepts of force analysed above: force-linked-to-acceleration, and force-

linked-to-motion; but, rather than plotting activations in particular contexts as shown 

in Figures 5.33 and 5.34, all activations across a range of contexts can be displayed. 

In Figure 5.39, below, the activation of an understanding of force linked to motion or 

force linked to acceleration is indicated on the y-axis. The x-axis is not continuous 

and displays the point at which the utterance occurred within a session- for example, a 

concept used at utterance 200 out of 400 in session 2 will be plotted at 2.5).  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39: Graphical representation of Ben’s application of two concepts of force 

over time: force linked to acceleration and force linked to motion.  

 

In order to construct change in the application of concepts across contexts, the 

sequence of twenty-two sessions was divided into three static intervals, over which it 

is assumed that no change in activation occurs. This decision was made as the static 

intervals consisted of time periods containing consecutive weekly sessions, with the 

Force linked to 
acceleration 

Force linked 
to motion 

First static interval Second static interval Third static 
interval 
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exception of the final session, separated by gaps of approximately two months. 

Studying change in activation requires exposure to multiple contexts, both novel and 

familiar; therefore extended static intervals are appropriate. The representation in 

figure 5.39 indicates that the number of contexts in which Ben activates an 

understating of force linked to motion decreases over the course of the sessions; that 

is, his conceptual span of that understanding is decreasing. An alternative 

representation, shown in Figure 5.40, represents the percentage of instances in which 

the two conceptualisations are activated in each static interval.  

 

 
 

Figure 5.40: Graphical representation of the relative frequency of the two concepts of 

force over three static intervals in Ben’s transcripts. 

 

Figure 5.40 displays the increasing likelihood of Ben activating a concept of force 

linked to acceleration. In the first static interval, around a third of contexts activate an 

understanding of force linked to motion. In the second and third static interval, all 

contexts trigger the force linked to acceleration interpretation. Though the 

representations in Figure 5.39 and 5.40 give information on the general trend in Ben’s 

application of concepts of force to different contexts, they do not provide information 

on the contexts that trigger particular understandings. An alternative representation, 

that displays the contexts that trigger different understandings of force, is shown in 

Table 5.8, below. 
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Table 5.8: Contexts triggering different concepts of force across the static intervals in 

Ben’s transcripts. The letters in brackets refer to interview prompts listed in Appendix 

8.7.2. 

 
1st Static Interval 2nd Static Interval 3rd Static Interval 

Contexts 

triggering force 

linked to 

acceleration 

Contexts 

triggering force 

linked to motion 

Contexts 

triggering force 

linked to 

acceleration 

Contexts 

triggering force 

linked to motion 

Contexts 

triggering force 

linked to 

acceleration 

Contexts 

triggering force 

linked to motion 

• Dropped balls 

(a) 

• Stone in free 

fall (c) 

• Balls rolled off 

table (b) 

• Forces on a 

braking car (h) 

• Lift (f)  

• Pendulum (g) 

• Astronaut in 

space (j) 

• Mass on a 

spring (i) 

• Swung ball (l) 

• Loop-the-loop 

(k) 

• Ball in a bowl 

(m) 

• Concept map 

 

• Balls rolled off 

table (b) 

• Ball dropped 

from a moving 

plane (d) 

• Lift (f) 

• Forces on a car 

at constant 

velocity (h) 

• Pendulum (g) 

• Astronaut in 

space (j) 

• Mass on a 

spring (i) 

 

• Dropped balls 

(a) 

• Ball in Bowl 

(m) 

• Skydiver 

• Bag in braking 

car (ah) 

• Describing 

properties of 

force  

• Concept map 

• Stone in free 

fall (c) 

• Balls rolled off 

table (b) 

• Mass on a 

spring (i) 

• Pendulum (g) 

• Astronaut in 

space (j) 

• Jumping from 

crouch (ai) 

 

 • Dropped balls 

(a) 

• Concept Map 

• Describing 

properties of 

force  

• Stone in free 

fall (c) 

• Ball dropped 

from a moving 

plane (d) 

• Lift (f) 

• Astronaut in 

space (j) 

• Pendulum (g) 

• Mass on a 

spring (i) 

• Pendulum (g) 

• Mass on a 

spring (i) 

 

 

In the first static interval, contexts that trigger a link between force and acceleration 

involve an object that is accelerating, whereas several of the contexts in which Ben 

links force to motion involve objects that are moving at constant velocity, or motion 

in two dimensions. The relatively rapid increase in conceptual span of the force linked 

to acceleration concept is reflected in the pattern of conceptual change seen in the 

repeated contexts Ben encounters (Figure 5.34). The frequency with which Ben uses 
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the concept of force linked to motion decreases greatly between the first and second 

static intervals in all of the contexts. 

 

By contrast, a different pattern of change in conceptual span can be constructed in 

Daniel’s transcripts. As shown in Figures 5.41 and 5.42, below, in the first static 

interval, Daniel’s concept of force linked to acceleration is triggered on five 

occasions, compared to twelve activations of the force linked motion understanding. 

 
Figure 5.41: Graphical representation of Daniels’s application of two concepts of 

force over time: force linked to acceleration and force in direction of motion.  

 
Figure 5.42: Graphical representation of the relative frequency of the two concepts of 

force over three static intervals in Daniel’s transcripts. 
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In contrast to Ben, Daniel’s data do not represent a simple pattern of increase in 

conceptual span, though, in both the second static interval and the final session, 

Daniel makes more frequent use of the force linked to acceleration concept than in the 

first five sessions. An analysis of the contexts that triggered different concepts is 

shown in Table 5.9, below. 

 

Table 5.9: Contexts triggering different concepts of force across the static intervals in 

Daniel’s transcripts. 
1st Static Interval 2nd Static Interval 3rd Static Interval 

Contexts 

triggering force 

linked to 

acceleration 

Contexts 

triggering force 

linked to motion 

Contexts 

triggering force 

linked to 

acceleration 

Contexts 

triggering force 

linked to motion 

Contexts 

triggering force 

linked to 

acceleration 

Contexts 

triggering force 

linked to motion 

• Ball dropped 

from a moving 

plane (d) 

• Pendulum (g) 

• Mass on a 

spring (i) 

• Concept map 

• Ball in a bowl 

(m) 

• Dropped balls 

(a) 

• Balls rolled off 

table (b) 

• Stone in free 

fall (c) 

• Collision (e) 

• Swung ball (l) 

• Lift (f) 

• Car at constant 

velocity (h) 

• Pendulum (g) 

• Astronaut in 

space (j) 

• Mass on a 

spring (i) 

• Loop the loop 

(k) 

• Concept map 

• Card sort 

• Concept 

discussion 

• Jumping from 

crouch (ai) 

• Discussion of 

learning 

• Concept map 

• Dropped balls 

(a) 

• Stone in free 

fall (c) 

• Ball in bowl 

(m) 

• Pendulum (g) 

 

• Ball thrown 

vertically (ag) 

• Ball on a ramp 

(card sort 

8.7.3.1) 

• Bag in braking 

car (ah) 

• Jumping from 

crouch (ai) 

• Ontology table 

• Concept map 

• Stone in free 

fall (c) 

• Collision 

• Mass on a 

spring (i) 

• Astronaut in 

space (j) 

• Lift (f) 

• Astronaut in 

space (j) 

• Pendulum (g) 

• Stone in free 

fall (c) 

• Ball dropped 

from a moving 

plane (d) 

• Mass on a 

spring (i) 

• Pendulum (g) 

 

 

 

It is not possible to know, and Daniel may not be aware, why some contexts triggered 

one concept in preference to another. Some contexts triggered both concepts of force, 

and different aspects of a context may lead to differing activations. For example, 

when describing the motion of the pendulum, Daniel comments that: ‘when it 

decelerates, starts to slow down, … the force going backwards gets greater than the 

force going forwards’ (Session 2, 58). However, when he is asked to predict how the 
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time period of the pendulum will change when the mass of the bob is increased, he 

argues: ‘the gravitational pull will be much more so it will basically swing ten times 

quicker’ (Session 2, 192). It is difficult to understand the factors that cause these 

different activations when considering different aspects of the same context. 

5.2.6.2 Patterns in the development of conceptual span 
It has been reported that the activation of knowledge elements in novice thinking is 

less reliable than might be expected of experts (Clough & Driver, 1986; diSessa, 

1993). In one conceptualisation, structures, labelled ‘coordination classes’, are 

imagined to guide the consistent activation of conceptual resources across contexts 

seen in experts (diSessa 2002; diSessa & Sherin, 1998). Over the course of the 

interviews, the range of contexts in which Ben activates an understanding of force 

related to acceleration increases and the use of the force linked to motion concept is 

suppressed. Despite Ben’s exclusive activation of the force linked to acceleration 

concept in all contexts in his later interviews, it is impossible to know whether Ben 

will apply the concept in all novel contexts he encounters. Some evidence suggests 

that even expert learners will reactivate novice knowledge elements that are generally 

suppressed, in certain kinds of context, for example if forced to reason rapidly 

(Kelemen et al., 2013). A task for teachers and researchers is to define a set of 

contexts in which they expect successful learners to activate scientific concepts. 

 

It might be expected that conceptual span developed in a consistent order across 

contexts for different students. For example, some research has suggested that 

contexts related to accelerated motion with non-collinear acceleration and velocity, 

may trigger the force linked to motion understanding even in students with some 

expertise (Galili & Bar, 1992, p. 79). Viennot (1979) proposed that the force linked to 

motion concept was more likely to occur in contexts when motion was in a different 

direction to the resultant force. However, the evidence from the two case studies 

above suggests that the order in which contexts began to trigger the force linked to 

acceleration concept was idiosyncratic. It has been proposed that novices and experts 

perceive different features of contexts as significant (Chi et al., 1981). Such personal 

perceptions and pre-existing knowledge, an ‘implicit’ context, make judgements of 

the factors driving contextual activation subtle and hard to predict (Palmer, 1993).   
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5.3 Students’ experience of the research process 
In their final session, the participants were given the opportunity to reflect on their 

experiences of the research process. As Amy chose to end her involvement in the 

research after her tenth interview, there was not an opportunity to seek her views on 

the process, though she reported that her decision to finish was related to the pressure 

of upcoming modular examinations. The other four students reported that the research 

was a positive experience, and that attendance at the weekly sessions was not onerous. 

It may be that, because the students felt they were learning in the sessions, they felt 

the activity was mutually beneficial: ‘…it was on what we’d been learning and 

although it was a lot of time overall it’s just one hour each week’ (Ben, Session 22, 

549). For Edward, the opportunity to receive one-to-one attention was attractive, and 

mitigated the burden of the sessions: ‘…in class it’s sort of about twenty to thirty 

students and they each have different needs weaknesses strengths and all that…But 

with me it’s just like you can just focus on me’ (Edward, Session 22, 10-12). Initially, 

I had been concerned that students would become frustrated with a process in which 

they were not told the correct answers, but Ben commented that the process allowed 

him to ‘go down routes and see where it will lead’ (Ben, Session 22, 533). He argued 

that this was different from his experience of learning in class: 

 

And even if it is wrong the problem is in class if you stop someone 

they won’t see what is wrong about it…Rather the good thing with 

being able to go all the way with it…Is one can see what the end 

result is…And therefore chase the problem and not do it again 

(Ben, 22, 535-541) 

 

Similarly, Daniel reported that being allowed to detect errors in his own thinking was 

a useful skill: 

 

Yeah um I think that’s better because if I if I can realise that I’ve 

made a mistake then it’s much better as well because I just know 

if I’m thinking of something in the way then I’ll know how to 

think of it if I get the change to ask answer a question like that 



 231 

again I’ll know what I have to basically go like I wouldn’t think 

of the same as thought about the other time (Daniel, 22, 16) 

 

In general, the students reported that the process had been a productive experience; 

and, although it may be have been difficult for them to express criticisms of the 

process to the researcher, that four of the five students chose to continue to participate 

in the research for twenty-two sessions, despite being repeatedly reminded that they 

could leave the process at any time, indicates that the sessions were, indeed, 

experienced positively.  
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6.0 Conclusions 
6.1 Summary of themes 
The following sections (6.1.1-6.1.6) discuss the key themes that emerged from the 

analysis, building towards a synthesis of ideas (6.2). The final sections present a 

critique of the research in the thesis (6.3) and examine the consequences of the 

conclusions for teaching (6.4), research (6.5), and describe my personal learning 

development (6.6). 

6.1.1 The development of ontology 

The evidence from the two case studies discussed suggests that the development of 

ontology occurs over extended periods of time. Though Daniel showed limited 

ontological development, Ben displayed some evidence of a transition from poorly 

differentiated, loosely-clustered and contextualised concepts to more clearly 

differentiated, abstracted, expert-like categories. The process of development of 

ontology is a messy and gradual one; indeed, over the course of the six months of the 

case study, many aspects of Daniel’s understanding of the nature of force did not 

progress. Therefore, the more nuanced model of Gupta and colleagues (2011) seems a 

better fit for the changes observed than Chi’s (1992) model of change, in which novel 

classes are developed before transfer occurs (See Section 2.1.4). Rather, it appears 

that a gradual and complex process occurs in which existing facets of knowledge, 

which likely have plural ontological commitments, are adjusted to match a target of 

expert ontological categorisation that is rarely explicitly stated in the classroom. 

Though experienced scientists will use concepts, such as energy, in ways that imply 

an understanding of the properties of the concept, they may not be able to express 

their knowledge of ontology directly: 

 

I incline towards a position of agnostic realism about 

energy: we refer to something we-know-not-what with the 

word "energy”…We know that energy circulates and 

remains constant, as well as knowing the laws of its 

various manifestations, but we don`t know what it consists 

in-we have no positive descriptive conception of it… We 

know its abstract mathematical character, and its role in 

empirical theories, but our knowledge does not penetrate 
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to its underlying essence. We use the word “energy” to 

designate a theoretically useful enigma. (McGinn, 2011, p. 

174) 

 

Hence, learning and teaching about ontology is challenging, as the target knowledge 

is difficult to express explicitly, and students progress thorough a trial-and-error 

process that gradually refines different aspects of their understandings of categories. 

 

It is also significant that students sometimes develop personal notions of ontology. 

For example, Ben developed the belief that force is merely a construct used to explain 

the occurrence of acceleration, echoing Russell’s (1925/2009, pp. 123–130) argument 

for the abolition of the concept. Similarly, Daniel’s conflation of gravity and ‘free-

fall’ may be a construction that is found in few other learners’ ontologies. These 

students might be compared to the philosophers whose categorisations have been 

criticised for including ‘ontically undesirable objects’, thus creating an ‘ontological 

jungle’ (Jacquette, 1996) or ‘ontological slum’ (Haack, 1977). Haack (1977) critiqued 

Lewis’ ontology for allowing counterfactual entities such as Pegasus and Jacquette 

(1996, p. 18) argued Meinong’s work allows the existence of ‘impossible non-existent 

objects’. Rather than the, at least in some cases, exclusive and stable ontological 

categories proposed by Chi and colleagues (Chi, 1992; Chi & Slotta, 1993), the 

ontological landscape of the learner in science may resemble an ontological jungle. 

That is, there are few clearly defined categories, facets of ontological understanding 

are contextually triggered, distinctions are perceived within expert categories, and 

idiosyncratic categories exist. 

 

The difficulties students encounter in developing appropriate categories are well-

reported. However, little research has focused on developing an understanding of how 

novice learners’ ontologies develop towards expert understandings. A model of 

change over three dimensions was proposed: a) an increasing perception of similarity 

between the members of scientific concepts, b) an increasing differentiation between 

scientific concepts, c) a movement from categorisations based on instances and 

triggered in contexts to more abstracted notions of concepts. These processes are not 

seen as distinct; for example, an increased understanding of the similarity between 
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types of forces (increased clustering), is likely to increase the differentiation of force 

from other concepts. As a concept becomes increasingly understood as an abstraction, 

rather than a collection of special cases, it is likely to become increasingly clustered, 

and so on. A number of strategies to support ontological development are discussed in 

Section 6.4.1, below. 

6.1.2 The formation of conceptual compounds 
A trend in research into conceptual change in science education has seen a move from 

the cataloguing of students’ alternative conceptions in various domains (Taber, 2009, 

p. 326) towards a perspective that seeks to understand conceptual change as variations 

in a system of conceptual elements (Amin et al., 2014, p. 68). However, research into 

the dynamics of systems of conceptual resources is currently at an early stage, and 

more detailed reports of the process of the formation and dispersal of conceptual 

compounds is required. This programme would be supported by research that can 

describe both short and long timescale changes in the manner in which students 

activate and develop compounds of concepts. It is hoped that the construct of the 

conceptual compound, which separates representations of a learner’s activated and 

related conceptual resources in a particular context from underlying and inaccessible 

conceptual structure, will be a useful tool for researchers investigating conceptual 

change. Students’ conceptual compounds were argued to progress from initially 

unstable compounds, which link small numbers of elements, towards systems in 

experts that are more extensive and more stable, both over time and across contexts 

(See Section 5.2.2.4). In particular, the data collected have drawn attention to an 

intermediate phase of conceptual development (Figure 5.20), during which learners 

possess many expert concepts but their activation and combination into compounds is 

contextually sensitive and variable over time. Rather than assuming conceptual 

change can occur at a single moment in time, teachers and researchers should be 

sensitive to the contingent and variable nature of conceptual activation and 

combination, and develop resources that allow students to develop the stability and 

extent of their conceptual compounds (see section 6.4.2).  

6.1.3 The development of causality 

Little research has examined how students’ understanding of causality develops over 

time. In this research, the students’ responses were initially dominated by causal 
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claims at the macroscopic and symbolic levels; and some of the students developed a 

greater ability to use sub-microscopic causal explanations over time. It was argued 

that students should be supported to become able to use causal explanations of all 

three types. Scientists sometimes make use of different models, at different physical 

scales, to construct explanations of phenomena, an approach known as ‘multiscale 

modelling’ (Horstemeyer, 2010). Though this approach has explanatory power, it can 

cause difficulties for students: in biology, students struggle to connect explanations at 

the molecular level to phenomena at the level of cells, organs or the organism (van 

Mil, Boerwinkel, & Waarlo, 2011); and in chemistry, students may develop 

alternative understandings of the relationships between models at different levels 

(Ben-Zvi, Eylon, & Silberstein, 1986; Hinton & Nakhleh, 1999; Wu, 2003). Similarly 

students should be supported to understand different approaches to making causal 

claims. For example, consider the responses students gave to the following question: 

‘In the circuit below (Figure 6.0), why does the current decrease over time after the 

switch is moved from position a to b?’ 

 
Level Student response 

Macroscopic ‘the current would decrease as time goes on ‘cos of the 

gap [between the capacitor plates]’ (Charlie, 9, 90-92) 

Sub-

microscopic 

‘…the current decreases because I’m assuming if you’re 

putting more electrons onto the plate then it general 

positive charge would decrease so there would be less 

pull of the electrons and so the electrons will accelerate 

less’ (Ben, 9, 24) 

Symbolic I think because if there’s no current and supposedly you 

have still resistance then the potential difference must as 

some point be zero due to Ohm’s Law (Ben, 9, 144) 

 

Figure 6.0: Capacitor circuit with student responses at different levels 

A
a

b
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None of the responses is incorrect, however, they invoke different types of causality 

and display different facets of knowledge. The macroscopic answer allows the student 

to link causality with perceptions of the electrical circuit as a physical entity. The sub-

microscopic answer ascribes causality at the level of the commonly used sub-

microscopic model of current as a flow of electrons. The symbolic explanation 

displays knowledge of a causal relationship inferred from a mathematical relationship, 

and may allow the student to link calculations with an appreciation of causality. It has 

been argued that abstract explanations, that is, ones that rely on ‘formal relational 

features of a physical system’ (Pincock, 2007, p. 257), are the superior form of 

explanation because they remain valid even if some physical details of a system 

change. A similar case has been made for the understanding of causality: Piaget 

(1930/1970) argued that the most sophisticated form of causal understanding involved 

abstracted laws or principles. Alternatively, Noble (2013) reports that causation in 

science has, at certain times, been linked with the sub-microscopic level. The 

assumption that phenomena at lower levels determine what happens at higher levels 

has been described as ‘causal reductionism’ (Nelson, 2009, p. 46). However, Lewis 

(2013) and Noble (2013) argue that there is no privileged scale for causal arguments. 

Therefore, causal explanations are effective at many different levels of analysis 

(Fodor & Pylyshyn, 1988). Salmon (1989) describes how the forward motion of a 

helium balloon in an aircraft cabin during take-off can be explained via the motion of 

air molecules (a sub-microscopic cause) or Einstein’s principle of equivalence (a 

symbolic cause). He suggests both of these arguments are legitimate and illuminating 

in different ways. This seems to be the case with the causal claims in Figure 6.0: each 

is a useful expression, and fulfils a different role. The principle that there is no 

preferred scale for descriptions of causality is a significant caveat for teachers, 

especially when teaching the causally complex topic of electrical circuits. The ability 

to describe causality via a range of agents at different scales would seem to be a 

useful skill for students to develop.  

6.1.4 The development of coherence 
The drive towards coherence has been proposed as an explanatory mechanism for the 

manner in which learners develop conceptual compounds. However, the subjective 

nature of the concept suggests that any collection of ideas may be perceived to be 
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coherent; for example, the coherence of accounts of supernatural phenomena has been 

cited as reason for their ‘intuitive plausibility’ (Forrest, 2013, p. 269). Hence, the 

sense of ‘fit’ or ‘feeling of what’s right’ (Rohrlich, 1996, p. 1624), which makes 

coherence such an intriguing concept in science education, may be both a driver of 

expert understanding and create an inertia to change away from seemingly intuitive 

novice conceptions. Therefore, unpicking the influences that tacitly or explicitly 

shape perceptions of coherence is an important task for researchers. Researchers 

participating in the movement in science education research which models the 

interaction of systems of conceptual resources (Amin et al., 2014) must account for 

the choices students make regarding the manner in which concepts are combined. 

Coherence, which has been likened to a conceptual glue that binds a category together 

(Murphy & Medin, 1985), may therefore play a significant role in explaining 

conceptual dynamics. In this thesis, a triple constraint model of coherence was 

proposed, which may act as a starting-point for a discussion of the factors that 

underlie the perception of coherence. It was observed that pre-existing knowledge, 

epistemological assumptions and the nature of the particular context may drive 

perceptions of coherence. In addition, it was noted that, in some cases, the students 

acted to maintain coherences they had developed in the face of challenges from 

contradictory information. In other circumstances, it was possible to represent 

students’ understanding as consisting of multiple competing coherences. 

6.1.5 The rate of conceptual change 
It has been argued that the rate at which conceptual change occurs is a neglected 

feature of the extensive literature on conceptual change. This oversight may arise 

from a lack of studies that have collected data from multiple probes over an extended 

period of time in order to make claims about the shape of change. The growing trend 

for microgenetic studies in science education (Brock & Taber, 2017b), that is, studies 

that sample data at a rate that is high compared to the rate of change of the 

phenomenon of interest (Siegler & Crowley, 1991), may begin to remedy this deficit. 

A model of conceptual change as an alteration in the oftenness of the application of a 

concept in a particular context may be a useful construct for the analysis of data from 

microgenetic studies. Though studies that collect data from repeated probes over an 

extended period of time may be onerous for both the researcher and the participants, 

they offer the potential to open a novel research programme in science education that 
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focuses on describing the patterns of variation in the application of concepts over 

extended periods. 

 

The reports from students in this study suggest they felt learning was a generally 

gradual progression, which also included events experienced as relatively sudden 

changes to understanding. A potentially fruitful direction for future research would be 

to examine if this perception is echoed in their responses to prompts as conceptualised 

by a researcher. The long-term development and consequences for future learning of 

apparently transient concepts remains an intriguingly open question. An alternative 

focus for research arises from the evidence presented in Figures 5.33 and 5.34, which 

suggests conceptual change may proceed at different rates in different contexts. 

Further research might seek to uncover how students’ ability to apply ideas in 

individual contexts develops into more general application; and thence, to recommend 

an appropriate approach to the introduction of different contexts to students. These 

potential research directions suggest the rate of conceptual change is a novel concept 

that may be useful to researchers seeking to investigate learning in science. 

6.1.6 Conceptual change and conceptual span 
The two case studies of contextual application of concepts indicated that the pattern 

by which the students extended their application of concepts to novel contexts 

appeared to be idiosyncratic. Ben displayed a marked increase in the contexts to 

which he could apply an understanding of force linked to acceleration; but for Daniel, 

the pattern of change was less clear. In addition to measures of conceptual change 

(alteration in the application of a concept in a single context) the progression of 

learning might also be judged by increases in conceptual span, as shown in Figure 

5.42. The two axes of development, conceptual change and conceptual span (i.e. 

change in and across contexts) should be considered as two relatively independent 

axes of change (see Figure 6.1). 

  

Though the stream of consciousness may be experienced as a single stream, the 

underlying cognitive processes are likely to be multiple, parallel and partly tacit 

(Blackmore, 2002). However, research data tend to be constructed serially; that is, as 

a sequential report of a student’s concepts (see Figure 4.0). Once a researcher has 

constructed a report of the use of a single concept in a particular context, they face a 
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methodological choice for examining change related to the concept. They might 

repeat the same probe in the original context to construct change, or develop probes 

that might activate the same concept in different contexts to develop an understanding 

of the contextual activation of the concept, or a combination of the two approaches 

(see Figure 6.1). 

 

 
 

Figure 6.1: A representation of different data collection approaches across the axes of 

conceptual span and conceptual change. 

 

Each of the different approaches shown in Figure 6.1 is a useful approach for 

understanding the extent of, and changes in, conceptual resources. However, there is 

an onus on researchers to discuss the assumptions behind the representation of 

cognition that a particular approach constructs. 

 

• Only conceptual change- approaches that expose learners to 

identical repeated probes have the potential to develop a valid 

model of conceptual change, and, with sampling over extended 

periods of time with multiple probes, shed light on the stability of 

conceptual constructs. However, in this approach researchers should 

acknowledge that the context or contexts of focus will trigger only a 

subset of a student’s available resources; hence, it may not model 

the totality of change across contexts. 

 

Conceptual Span

Conceptual Change

Exploration of only conceptual change
For example, studies with
repeated, identical probes

in a single context.

= Data collection probe in one context

Conceptual Span

Conceptual Change

Exploration of only conceptual span
For example, studies of conceptual

integration which use a series of probes
in different contexts that activate the

same concept.
Conceptual Span

Conceptual Change

Exploration of both conceptual change
and conceptual span

For example, the repeated use of a
 concept inventory which activates one

concept in a range of contexts.

Assumed to be a static
interval over which

no signifcant conceptual
change occurs

 Use of concept inventory
 First static interval

Use of concept inventory
Second static interval

= Data collection probe in different context
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• Only conceptual span- approaches which seek to understand how 

a student applies their conceptual resources across a range of 

contexts are useful for beginning to understand the breadth of 

conceptual ecology. However, as sequential probes necessarily 

occur over a period of time, the researcher should present 

justifications that no significant conceptual change occurs over the 

period of observation. 

 

• Studies of both conceptual change and span- researchers 

undertaking studies in which both dimensions of change are 

investigated need to exercise caution in the claims they advance. 

Claims to conceptual change should be proposed in a single context, 

and claims regarding conceptual span should be developed from 

data collected over a period during which conceptual change is 

minimal, a static interval. Yet, approaches that cover both axes have 

the potential to develop rich models of cognition as they provide 

information on the contextual breadth and variation over time of 

conceptual resources.  

 

It is hoped that the construction of conceptual change and conceptual span as 

two methodological axes of investigation will encourage researchers to 

clarify assumptions regarding the manner in which change is constructed in 

their work. This study highlighted the complex representation of students’ 

conceptual development that can be constructed by examining change across 

a number of different contexts. Further research is required to better 

understand how conceptual understanding in particular contexts can develop 

into the more context-independent kind of understanding found in experts. 

6.2 Synthesis of themes 
As was argued in the introduction (1.3.4), making sense is perhaps most usefully 

conceptualised as an emergent potential that requires the possession of certain 

knowledge elements but, also, the ability to appropriately activate and relate 

conceptual resources, and is not reducible to any single fact or ability. This 

assumption was the basis of the epiconceptual model of conceptual change (see 
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Section 1.4) in that it considers factors beyond the concepts themselves such as their 

activation and relation in compounds. As White and Gunstone (1992, p. 5) have 

argued, ‘[i]t is doubtful even whether any particular element can be specified as 

essential to understanding’.  

 

The thesis began with the discussion of a student who had memorised the facts but 

failed to ‘make sense’, and it is hoped that the six themes of this thesis might go some 

way to understanding the nature of the student’s difficulty. The findings in each 

individual theme contribute to providing an answer to the research questions that 

arose from the definition of the concept of ‘making sense’ (see Figure 6.2). The 

concept of ‘making sense’ may be a useful concept in science education research as it 

highlights that acquiring scientific concepts is only part of a complex learning 

process. The six facets of the term suggest a number of strategies (discussed in 

Section 6.4, below) that teachers may use to support students in the challenging 

intermediate phase of learning, in which they possess, but do not yet appropriately 

combine and activate, expert concepts.  
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Figure 6.2: Synthesis of themes as they address the nature of making sense. 

 

The research question asked: ‘How do students make sense?’ That is, how do learners 

develop coherent compounds of concepts, including causal links, which may be 

transferred to novel contexts? Some of the students interviewed experienced a gradual 

increase in the definition of their conceptual categories, which became more 

abstracted and increasingly removed from particular contexts over time. The ability of 

some students to form more extended and stable conceptual compounds developed 

during the sessions. In the context of electricity, some students showed an increasing 

ability to make use of causal models at different levels. The students’ judgements of 

the coherence of conceptual compounds were idiosyncratic, and depended on prior 

knowledge, epistemological assumptions and the nature of the context. Though 

moments of rapid change in the application of concepts of force were noted, 

conceptual change, for the students interviewed, was generally gradual and the 

oftenness model was suggested. Finally, a distinction between conceptual change and 

span was highlighted and it was noted that changes to the activation of conceptual 

resources across contexts occurred in different orders for different individuals. 

6.1.1 Ontology: how are conceptual 
categories formed and modified?

6.1.2 Conceptual compounds: how are 
conceptual compounds: formed and

modified?

6.1.3 Causality: how does the conceptual
 relationship of causality change?

6.1.4. Coherence: what factors 
bind conceptual compounds together?

6.1.6. Conceptual span: how are concepts 
applied in novel contexts?

6.1.5 The nature of conceptual change: how 
can the rate of conceptual change 

be constructed in students' responses?

t a m y b

In the case of Ben's ontology, change could be constructed as a transition
from specific, contextually situated and loosely clustered groups to more 

general, abstracted and tightly-grouped structures. Daniel's ontology
displayed limited development.

In the cases of the students interviewed, instances of conceptual compounds
of a range of stabilities and extents were constructed. It is suggested that,

during an intermediate stage of learning, students may possess similar
resources to experts but struggle to develop stable compounds.

In the cases of the students interviewed, pre-existing knowledge, 
epistemological assumptions and contextual factors were 
constructed as constraining the formation of coherences.

Based on data constructed in the cases of two students' understandings
of forces and dynamics, conceptual change was conceptualised as a gradual

 alteration of the frequency with which a concept was applied in a context and
occurred at different rates in different contexts. 

Following an analysis of two students' ability to apply concepts of
force across contexts it was argued that the development of conceptual

span is an idiosyncratic process. 

In three of the four cases examined in the context of electricity, students' 
understanding of causality tended to develop from the use of largely 

macroscopic and symbolic causes to a greater appreciation of 
submicroscopic causality.
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6.3 Limitations of the research 
All research has inherent limitations; thus the onus on the researcher is therefore not 

to remove limitations, but, rather, to make the factors which impinge on the 

construction of data explicit to readers (Maxwell, 2013). This section outlines aspects 

of this research that place boundaries on the interpretations and applications of the 

data collected. 

6.3.1 Small sample size 
Case study research has been critiqued on the basis that studies with small sample 

sizes are not generalisable and so of limited usefulness to researchers (Flyvbjerg, 

2006; Merriam, 1995; Yin, 2009). However, as has been argued in the section on 

generalisability, above, this thesis did not set out to produce statistically generalisable 

descriptions of learning; instead, it sought to produce descriptions of the idiosyncratic 

processes learners use to make sense of novel stimuli, with the onus being placed on 

the reader to judge the applicability of the findings (Kvale, 1996; Taber, 2000a). The 

constructivist model of learning argues that though learning pathways will display 

some commonalties between learners, individuals are expected to progress on 

different paths and at different rates (Taber, 2009). In that case, approaches that are 

sensitive to both the particular and general, such as multiple case studies, are 

necessary to develop a full picture of learning. Taber (2009, p. 351) has suggested the 

progression of the science education research programme might be likened to a 

pendulum swinging between two extremes: in-depth studies with small sample sizes 

may provide fine-grained descriptions of phenomena, whilst studies with larger 

numbers of participants may provide complimentary data on commonalities and 

difference in certain populations. Both approaches are required for developing a full 

representation of learning. The research in this thesis is seen as having limited 

statistical generalisability, the findings are idiographic, rather than nomothetic, in 

nature (Gilbert & Watts, 1983). However the limited applicability of the claims 

should not be seen as a failing; rather, the detailed descriptions of students making 

sense are in themselves a contribution to the research programme and may 

compliment future larger-scale studies (see Section 6.5.2). 
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6.3.2 The challenge of investigating change within and across contexts 

Several models of learning in science suggest that features of a context may determine 

the concepts a learner activates (Clough & Driver, 1986; Mishler, 1979; Palmer, 

1993; White, 1985). As discussed in Section 2.4.6, a researcher may investigate 

conceptual change, that is, changes to the application of a concept over time in a 

particular context or conceptual span, the ability to apply a concept across a range of 

contexts. Typically, studies of conceptual change have made use of repeated identical 

probes applied at multiple points in time (Caballero et al., 2012; Lasry, Guillemette, 

& Mazur, 2014; Pearsall et al., 1997). However a number of studies have also 

explored how students apply concepts to a range of different contexts (Parnafes & 

diSessa, 2013; Taber, 2008b; Tao & Gunstone, 1999). This study attempted to explore 

both conceptual change and conceptual span, however, this meant examinations of 

each axis were limited. Studies that focused solely on conceptual change might 

present data from repeated identical probes at a greater number of points in time, and 

research into conceptual span might investigate application across a greater number of 

contexts than was possible in this research. It is hoped that the combination of both 

approaches presented a broad representation of making sense. 

6.3.3 The analysis of large qualitative data sets 

Pope and Denicolo (1986) described a dilemma that the researcher faces: analysis 

which leads to the identification of themes and commonalties in data is inherently a 

form of data reduction. However, qualitative researchers typically express a 

commitment to presenting detailed description of the phenomena they investigate. 

The data in this thesis was collected over 98 interviews leading to over 42 hours of 

audio recordings and around 360,000 words of transcribed text. When the sample size 

was chosen, it was expected that more students would drop out than was the case; 

hence, the final data set was larger than expected. A number of approaches to data 

reduction were developed in the analysis of the data, for example the concept 

repertoire table (see Table 5.7) and the graphical representations of the application of 

two understandings of force (see Figures 5.33, 5.34, 5.41 and 5.42). There is an 

ethical requirement for researchers to make use of a significant proportion of the data 

they collect, and all the data collected was analysed and led to the construction of the 

themes presented with some selection of particularly salient sections of transcripts.   
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6.4 Implications for teaching 
The findings of the research have a number of implications for pedagogy, which are 

described in the sections below.  

6.4.1 The development of ontology 
It has been suggested that teaching approaches typically fail to describe the nature of 

concepts being introduced (Constantinou & Papadouris, 2012, p. 164). The nature of 

the entities we ask students to engage with, from relatively young ages, are complex, 

and expert models of concepts may be difficult to articulate directly (McGinn, 2011, 

p. 174). Slotta and Chi (2006) have presented some evidence that ontological training 

for students can provide scaffolding in coming to develop appropriate categorisations. 

Their approach involved explaining ‘the general properties of emergent processes 

ontology’ (Slotta & Chi, 2006, p. 271). This approach would be challenging if we 

admit that the ontology of categories such as force and energy are difficult to describe 

directly. An alternative approach may be to include in curricula multiple occasions on 

which the boundaries and nature of concepts can be hinted at though a range of 

activities. The three dimensions over which ontology develops, suggested in this 

thesis, may provide a useful basis to structure learning activities which could be 

differentiated for students at different stages in their learning (see Table 6.0). 

 

Table 6.0: Suggested teaching approaches to support the development of ontology. 

Process Suggested activity 

a) Differentiation For a set of concepts - for example, force, energy, and momentum 

or current, potential difference and resistance - discuss the aspects 

that the concepts have in common and those that differentiate 

them. 

b) Clustering Introduce the members of a category - for example, types of force 

- and sort the elements onto a continuum by how well each 

member represents that category. 

c) Instances to 

abstraction 

Look at a range of contexts - for example, a set of force diagrams 

in different contexts - and discuss if there are any general rules 

that can transcend the details of each scenario.  
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6.4.2 The formation of conceptual compounds 

The conceptual compound model was proposed as it was argued (Section 2.2.5) that 

models of conceptual dynamics such as coordination classes (diSessa, 2002) and 

mental models (Johnson-Laird, 1983) carried assumptions about the stability and 

extent of constructs; conceptual compounds are seen as an umbrella term that 

encompass a range of constructs of different stabilities and extents. The term 

emphasises that understanding in science education is not simply a matter of 

acquisition of propositional knowledge; rather, it involves the appropriate 

coordination of conceptual resources into compounds in given contexts. This model 

suggests a two-phase approach to teaching: first teachers should assess whether a 

learner possesses the appropriate knowledge elements to understand a situation and 

rectify any deficits; second, teachers face the subtler task of assisting a student to 

trigger combinations of elements in different contexts. The ‘broaden-and-build’ 

approach to teaching (Fredrickson, 2001) suggests teaching the skill of generating, 

and then assessing, a wide range of different constructs in order to make sense of a 

situation. It may be beneficial if teachers modelled the skill of constructing multiple 

plausible conceptual compounds in a context and assessing their explanatory 

effectiveness before making necessary alterations to find the best possible explanation 

for that situation. Research into the formation of conceptual compounds is currently at 

an early stage, and more detailed reports of the nature and process of formation and 

dispersal of conceptual compounds are required in order to develop detailed teaching 

approaches. 

6.4.3 The development of causality 

Some resources have been developed to support students to develop appropriate 

understanding of causality in science. White (1995) argued that rather than 

introducing students to either mathematical abstractions (top-down teaching) or 

concepts in a range of contexts (bottom-up teaching), students should initially be 

taught a qualitative understanding of the causal mechanisms in a given context (the 

middle-out approach). Grotzer (2012) has proposed that students should be explicitly 

taught models of causality beyond simple linear causality, such as circular and 

sequential causality. The argument arising from the research presented in this thesis is 

that students need to develop fluency with causal explanations at different levels. In 

the case of models, Knippels (2002) devised the so-called ‘yo-yo’ strategy, which 
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encourages students to think up and down levels of biological organisation; a similar 

approach may be useful for learning about causality. A useful activity might be to 

support students’ ability to generate explanations at different levels of causality. For 

example, consider two of the responses students gave, and one imagined response, to 

the following question: ‘In the circuit below (Figure 6.3), why does the bulb light 

when the switch is pressed?’ 

 

 
Level Student and imagined responses 

Macroscopic ‘…once the circuit is complete it allows the current to 

go through instantaneously’  (Daniel, 20, 112) 

Sub-

microscopic 

‘…the electrons travel though the path and then …. 

they transfer energy…When they collide with vibrating 

ions’ (Ben, 20, 164-170) 

Symbolic Because the resistance of the circuit is reduced and the 

EMF drives a current through the circuit 

Figure 6.3: Circuit question: student and imagined responses 

 

As has been argued above, there is no preferred level for causal explanations (Lewis, 

2013; Noble, 2013; Salmon, 1989). None of the responses is incorrect, however, they 

invoke different types of causality and display different facets of knowledge. The 

macroscopic answer describes causality at the level of physical entities that make up 

the circuit, and can therefore be related to personal experiences with electrical 

circuits. The sub-microscopic answer links the macroscopic action of closing the 

switch to a sub-microscopic model of current as a flow of electrons. The symbolic 

explanation displays knowledge of the causal relationship between abstract concepts 

that are often used by physicists.  
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To help students develop their understanding of causality, teachers should reassure 

students that explanations at any level of description are equally valid, although they 

may not individually be considered to offer a full explanation, and allow students to 

practice developing different types of causal arguments. A teacher might, for 

example, set the type of question shown in Figure 6.3 and challenge students to 

develop three explanations with different levels of causation. This activity could lead 

to a discussion of the usefulness of each description and the assumptions it makes, 

developing students’ abilities to make conscious decisions about the type of causal 

explanation they can adopt in a given context. 

6.4.4 The development of coherence 

Some authors have argued that structuring learning progressions around ‘big ideas’ 

can support students to develop integrated knowledge structures (Fortus, Sutherland 

Adams, Krajcik, & Reiser, 2015). An alternative approach would be for teachers to 

discuss the assumptions that underlie both student-developed coherences and the 

coherence of scientific explanations. For example, a teacher might discuss with 

Daniel the factors he perceived drove his coherence in the context of circular motion 

in Figure 5.26 and compare this with the coherence of the accepted scientific 

explanation. This approach might focus on the three factors proposed in this thesis: 

First, teachers might assess whether any misconceived knowledge elements are being 

activated and seek to promote the use of more appropriate conceptual resources. 

Second, teachers may find it useful to probe students’ epistemological assumptions to 

uncover their expectations regarding coherence. It may be useful to teach the meta-

cognitive skill of monitoring one’s own thinking and making students aware of 

strategies to adopt in the case of feelings of incoherence or an awareness of multiple 

coherent positions (as in the case of Amy and Ben in Section 5.2.4.2). A key idea to 

convey to students is that feelings of coherence can be both a useful indicator of a 

well-made argument, and potentially misleading. It may, therefore, be helpful to 

introduce students to cases in which erroneous feeling of coherence have led to the 

development of alternative scientific models. The cases of ‘outsider physics’ 

described by Margaret Wertheim (2011), for example, Jim Carter’s ‘circlon’ atomic 

theory, and the historical examples discussed by Thagard (1992), such as the caloric 

model of heat, may be useful examples for students. Finally, to avoid the formation of 

alternative coherences that are driven by a particular context, students might be taught 
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the skill of checking if a constructed coherence applies to a slightly altered context or 

across a range of situations. This practice requires an appreciation of the assumption 

that explanations in science typically generalise across a defined range of different 

contexts. 

6.4.5 The rate of conceptual change 

It has been argued that conceptual change should be considered to be an alteration in 

the frequency with which a concept or set of concepts is applied in a given context. 

The data presented in this thesis suggest that the transition between different 

understandings of a scientific concept does not happen in a single discontinuous 

transition at one point in time. This observation suggests teachers may wish to adopt 

an approach that revisits a concept at multiple points in time, as proposed by Bruner 

(1960) in his notion of the spiral curriculum, in order to support students’ transition 

between ideas. The oftenness model of conceptual change suggests that evidence 

from multiple points in time is required to make claims that learning has occurred, a 

proposition that might encourage teachers to develop a more nuanced view of 

assessment. For example, evidence of change inferred from behaviour elicited 

between a starter question and plenary activity is not strong evidence for stable 

conceptual change. Teachers should be sensitive to variation in a student’s application 

of an idea in a particular context and continue to support change until sufficient 

evidence has accrued to suggest the change has some degree of stability. 

 

One description of strategy acquisition, the overlapping waves model, proposes that 

students typically possess multiple strategies at any given time, and, that over time, 

the relative frequency of application of some strategies increases while the frequency 

of others decreases (Siegler, 1999). The model implies that the rate of change of the 

application of strategies is not constant over time. Due to a lack of studies which 

sample data at sufficiently high frequencies, it is not, currently, possible to make a 

similar claim for conceptual learning related to science. Over a century ago, Edward 

Thorndike’s (1913) investigations of learning curves led to an argument that a student 

of chemistry, for example, may initially need to gain familiarity with a large number 

of pieces of information, a process that takes time; but, once the knowledge elements 

are sufficiently well known, more rapid progress might be expected. If teachers and 

researchers were to develop an understanding of the rate at which conceptual change 
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typically proceeded for different learners, it might be possible to develop resources to 

target particular moments during conceptual development where learning is slow. 

Alternatively, it may be useful for educators to gain an appreciation that learning 

cannot be expected to proceed at a constant rate for all learners, and to accept periods 

of apparent slow progress as part of normal conceptual development. It is hoped that 

the construct of the rate of conceptual change will spur further investigations into the 

manner in which learning about science progresses. 

6.4.6 Conceptual change and conceptual span 

The separation of conceptual change in a particular context from the ability to apply 

ideas across a range of contexts emphasises that a teacher’s role is not simply to 

encourage students to possess expert-like conceptual resources in their conceptual 

ecologies but also to develop expert-like usage of those elements across a range of 

contexts (Sabella & Redish, 2007). A particular challenge of teaching is that the 

ability to make sense like an expert implies an ability to find appropriate responses in 

situations that are novel to the learner; hence, making sense has been described as 

resulting in a potential for behaviour. Consider the case of a hypothetical student’s 

understanding of the behaviour of elastic materials. The student has correctly 

answered a number of questions describing how the extension of springs will vary if 

the load on the spring constant is changed. The student might therefore be described 

as having some level of understanding of this domain. They might then be set the 

following problem: 

 

A weight is hung on a spring. The original spring is replaced 

with a spring: 

 -made of the same kind of wire. 

 -with the same number of coils. 

 -but with coils that are twice as wide in diameter. 

Will the spring stretch from its natural length, more, less, or the 

same amount under the same weight? (Assume the mass of the 

spring is negligible compared to the mass of the weight). 

(Clement, 1989, p. 350) 
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It might be expected that the student described above possesses the knowledge to 

answer the question, but they may find develop an appropriate explanation 

challenging. Clement (1989, p. 351) reports that some professors and advanced 

graduate students, produced solutions which were ‘quite complex’ and some 

participants took up to 50 minutes to complete the task. A student’s ability to make 

sense cannot be assessed simply by determining whether they do, or do not, possess 

certain concepts; rather, it should evaluated by uncovering the range of contexts in 

which they can, and cannot, appropriately apply their knowledge. 

 

The ability to go beyond the replication of past performance to make use of 

knowledge in novel contexts might be a characteristic that differentiates rote learning 

from making sense. However, defining the nature of a novel context is challenging, as 

it has been observed that expert and novice physicists have different perceptions of 

the categorisation of problems (Chi et al., 1981). It seems that the kind of problems 

that are well suited to assessing students’ ability to make sense are those which 

activate knowledge a student already possesses but require the knowledge to be 

applied or organised in a novel manner. This condition may be challenging to meet 

practically as individual learners have varying experiences and those who have 

already encountered the solution to a problem can solve it via recollection. Vygotsky 

(1978) defined a learner’s zone of proximal development as the set of tasks that are 

not accessible to a student working independently, but which become achievable with 

support from teachers or peers. In a similar way, a set of tasks for the assessment of a 

student’s ability to make sense may be defined as those which a student requires no 

additional knowledge to solve, but for which the student has not previously 

encountered the solution. The problems in that set will exist across a spectrum of 

conceptual demand, from those that trivially differ from previously solved problems, 

to those that require novel approaches. Researchers have distinguished systematic 

problems, which require the application of known procedures, from insight problems, 

which are resistant to algorithmic solution (Maloney, 2011, p. 5). If making sense is 

considered as a potential, it may be distinguished from rote learning only on problems 

with solution paths that are unfamiliar to most students. However, it has been 

reported, at least in the case of some chemistry contexts, that the questions set by 
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examination boards in England are based largely on recall and direct application, with 

little examination of application to novel situations (Wheeldon et al., 2012). 

 

Making sense, like understanding, is not an all-or-nothing concept (Davidson, 2010; 

Newton, 2001; White & Gunstone, 1992), students may make sense to varying 

degrees. As has been argued, the presence of a particular piece of propositional or 

procedural knowledge is not a sufficient warrant for claiming a student has made 

sense. For example, Wittgenstein (1953, p. 48§143), who spent some years as a 

teacher, described assessing whether a pupil has understood how to write a series of 

number of numbers starting from 0 and increasing by one unit. He argued it was 

impossible to define a limit on the sequence that would indicate understanding had 

occurred. As Rudner (1953, p. 2) has suggested: ‘…since no scientific hypothesis is 

ever completely verified, in accepting a hypothesis the scientist must make the 

decision that the evidence is sufficiently strong or that the probability is sufficiently 

high to warrant the acceptance of the hypothesis’. The same principle may be applied 

to assessment: a student’s ability to make sense can never be completely verified, but 

a body of assessment evidence may be used to support a claim of understanding. 

Kosso (2006, p. 175) argues that multiple choice exams or true and false questions 

cannot be used to assess understanding, rather ‘longer answers in which ideas must 

cooperate’ are require to probe the concept.  

 

Some models of understanding claim that a few misconceived beliefs do not threaten 

a wider understanding of a domain (Elgin, 2009). Assessment of making sense, then, 

might be likened to the process of triangulation in social science research, that is, data 

from multiple sources may be presented to increase confidence in findings (Bryman, 

2003) but no single datum can count as necessary and sufficient evidence to support a 

claim of making sense. Learning science is not simply an additive process and even 

experienced scientists can, in certain contexts, revert to the use of intuitive concepts 

that differ from the generally accepted models of science (Goldberg & Thompson-

Schill, 2009; Kelemen et al., 2013; Shtulman & Valcarcel, 2012); and learners may 

possess multiple understandings of a concept that are triggered in different contexts 

(diSessa, 2002; Mortimer, 1995; Taber, 2000b). Therefore, assessment cannot 

resemble Popper’s (1963, p. 48) ‘falsifiability’ demarcation criterion, that is, evidence 
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of misconceived beliefs does precludes the possibility a student has made sense. For 

example, a student may possess both Newtonian and Aristotelian models of force, 

and, that a student may link force with motion on some occasions, does not 

necessarily indicate they lack understanding of the Newtonian model.  

6.5 Implications for research and future directions for research 
The findings of this research lead to a number of suggestions for changes to research 

and teaching practice. These proposals are outlined in the sections below, organised 

around the six themes of the research. 

6.5.1 Methodological implications 
A number of studies in science education have used the microgenetic method to 

develop representations of change; however, researchers investigating change often 

fail to mention assumptions related to the construction of change and, hence, a 

number of recommendations for future microgenetic research are proposed (Brock & 

Taber, 2017b): 

• The density of observation should be high compared to the rate of change of the 

phenomenon being studied. 
Authors should present evidence of meeting Siegler and Crowley’s (1991, p. 606) 

core criterion by providing an argument for an assumed rate of change of the 

phenomenon being studied and show that the pattern of observations made can be 

expected to reveal such changes. 

• Analysis may be quantitative or qualitative but should retain a sense of 
moment-by-moment change. 

A study that does not report moment-by-moment change does not have the character 

of a microgenetic study: reports of several disconnected incidents within an interview 

do not constitute a microgenetic study.  

• A discussion of the static interval and its relation to the phenomenon being 
studied is required.  

The object of study should be stated (a particular strategy, a single concept, a 

conceptual area) and a case made that the static interval is appropriate for that object. 

The static interval may be a whole or a part of a session. 
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• Researchers should justify the length of observation period. 

The extent of observations made is significant for distinguishing change in concepts 

from the presence of multiple concepts, and for assessing the stability of 

constructions. However, given reports of the extended nature of conceptual learning, 

Seigler and Crowley’s (1991, p. 606) requirement for observation to cover the entire 

period of change may not be feasible. On such occasions, useful data may be derived 

from observations covering shorter periods, providing suitable caveats regarding 

future change are made. For example, a two-year-long study of a student’s 

understanding of the nature of chemical bonding provided evidence of significant 

changes without a complete abandonment of initial alternative concepts (Taber, 

2001a). 

• The degree of similarity between measures should be appropriate to the 
phenomenon being investigated. 

The appropriateness of the types of probes for the phenomenon being investigated 

should be discussed and justified. Probes with higher or lower degrees of similarity 

are acceptable, though each type influences the data in particular ways. Where probes 

have lower surface similarity, researchers need to offer an explicit case for how the 

range of probes used can be considered to offer alternative prompts for accessing the 

same underlying skills or cognitive resources.  

 

Chinn’s (2006, pp. 443–444) criticisms of small-scale microgenetic studies apply 

inappropriate expectations of generalisability and validity to small-N studies. Instead 

researchers should justify the appropriateness of different methods for the study of 

different phenomena. It is appropriate to use counterbalanced tasks and identical 

measures for phenomena that can be studied in relatively short static intervals, for 

example, a strategy. However, phenomena that require longer static intervals are more 

challenging to study, and are likely to require more complex and non-identical probes.  

 

• The microgenetic method may be used in small-N studies providing caveats 

regarding generalisabilty, validity and reliability are provided. 
Similar kinds of justifications to those commonly found in small-scale research 

projects are required in small-scale microgenetic projects. It would be appropriate for 

a small-scale study to make use of analytical generalisability rather than statistical 
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generalisability (Taber, 2000a). A qualitative conception of validity (Creswell & 

Miller, 2000) would be appropriate for such work, and may be supported by: a) the 

use of multiple methods (such as concept-maps or concept inventories) within the 

microgenetic framework (Shenton, 2004, p. 65); b) a clear statement of theoretical 

position and assumptions (Creswell & Miller, 2000, p. 127); and c) rich description of 

data (Onwuegbuzie & Leech, 2007, p. 244). Reliability, as in case study research, 

might be conceptualised as reducing ‘errors and biases’, and could be supported by 

reporting details of the methods and data (Yin, 2009, p. 45).  

6.5.2 Research questions that arise from the themes of discussion 
The research in this thesis leads to a number of open questions that might form the 

basis of future studies: 

 

• Does a pattern of ontological development, from contextual, 

loosely grouped entities to more general abstracted concepts, occur 

for students in general? 

• What kinds of conceptual compounds form, and what factors 

determine their stability and application in different contexts? Are 

there patterns across students in the manner in which concepts are 

related? 

• Are patterns of development of causality common across topic 

areas and between students? 

• What factors lead to students’ judgements that concepts fit 

together? 

• What are the typical patterns of conceptual change over both 

short and long timescales? 

• Is there a typical pattern to the manner in which the activation of 

concepts in particular contexts develops into expert-like 

application? 

6.6 Development as a researcher 
The process of writing this thesis has had a profound effect on my development as a 

researcher. Over the pilot and main interviews, I have honed my ability to carry out 

qualitative interviews and practised the difficult skill of listening for, and responding 
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to, emerging themes in the moment. The application of a relatively little-used 

technique to science education, the microgenetic method, has allowed me to gain 

expertise in a specific technique and to publish a review paper on the use of the 

approach (Brock & Taber, 2017b). With the support of my supervisor, colleagues, 

editors and reviewers, I have developed my academic writing skills, leading to the 

publication of a number of book reviews, articles, chapters and a book (Agarkar & 

Brock, 2017; Baker, Evers, & Brock, 2017; Billingsley, Brock, Taber, & Riga, 2016; 

Brock, 2015, 2017; Brock & Taber, 2017a). I began the research assuming I would 

develop a model of what it means for students to make sense of topics in physics, but 

the project has shown me that making sense is a complex process that involves many 

different facets that are not easily reducible to a single process. The data gave me a 

new awareness of the difficulty of the task facing physics students: not only must they 

develop novel ontologies, which are rarely explicitly discussed, but they must also 

come to understand systems with complex causal relationships, relate abstract 

concepts and apply ideas in contexts which they perceive as disparate. I was, despite 

years of experience as teacher, surprised at the limited rate of conceptual development 

of some of the students, even during a period when they received nearly daily 

teaching. These observations have increased my interest in carrying out further 

research into making sense in order to develop pedagogies to support students’ 

learning about physics. 

6.7 Concluding remarks 
This research began from a student’s complaint that they had memorised many facts 

related to science, yet were left with the perception that the subject failed to ‘make 

sense’. It is hoped that, the themes raised in this work, suggest approaches to support 

such a student move beyond the simple acquisition of facts. For example, a teacher 

might examine the way in which the student had defined key concepts, and assist 

them to understand how those concepts related, with a particular focus on the role of 

causes, to help the student develop coherent conceptual compounds. Further, the 

student might be supported to broaden the range of contexts in which they could 

apply concepts, and reassured that conceptual change is often a slow and messy 

process. 
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The development of a model of making sense may go some way to unifying the 

different models of learning that have been proposed in science education. Recently, 

there has been a call for the development of models of how systems of conceptual 

resources interact (Amin et al., 2014; Taber, 2009, p. 326). In this thesis, an attempt 

has been made to generate an in-depth description of how five learners activated and 

combined concepts related to physics across a range of contexts. The application of 

the microgenetic approach allowed for the construction of processes of change that 

are not representable in typical longitudinal studies of conceptual change. The themes 

developed in this thesis have been used to propose some ideas for a pedagogy of 

making sense which is sensitive to the changeable and contextually-situated nature of 

learning about science (See Section 6.4). Such a pedagogy might develop students’ 

understandings of ontology and causality; encourage students to seek, and then 

question, perceptions of coherence; and develop forms of assessment that 

conceptualise making sense as an ‘emergent potential’ that is not reducible to the 

possession of particular skills or knowledge. Hence, the focus of teaching might move 

beyond a focus on the possession of concepts to an epiconceptual model, in which 

supporting the expert-like activation and combination of concepts is seem as a 

significant goal. A pedagogy that emphasises the appropriate activation and 

development of relationships between concepts may be able to avoid the 

unsatisfactory case of a student who knows many facts about science but finds the 

information meaningless and difficult to apply. If I were able to talk to the student 

who triggered the research again, I would advise her that she had achieved the first 

part of the processes of learning; and next came the harder, but more exciting, task of 

relating the elements, evolving conceptual compounds, learning when to apply 

principles and developing coherence. By analogy, science education researchers are in 

a similar position: they have completed the first stage of identifying many of the 

conceptual resources students may possess; but now begins the harder, and perhaps 

more exciting, task of understanding how patterns of conceptual relationships and 

contextual activation develop over time.  
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8.1 The Microgenetic method in science education 

8.1.1 Search criteria for developing a catalogue of microgenetic studies in science 

education 

 
• Studies that self-define as microgenetic were included, regardless of the density of 
observation (E.g., Van der Steen et al. (2014) has a spacing of 3 months between 
sessions and the research is defined as both longitudinal and microgenetic). Some 
studies that are defined as longitudinal may have relatively short intervals between 
observations (E.g. Pearsall, Skipper and Mintzes (1997) use a spacing of four weeks 
between observations): such studies have not been included where their authors do 
not describe them as microgenetic. 

• Only studies related to science education in school or university contexts were 
included. For example, the context of a research laboratory in the study by Roth 
(2014) was not deemed relevant to this catalogue. 
 
These criteria appeared in Brock and Taber, 2017 
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8.1.2 Microgenetic studies in science education 

Microgenetic studies in science education. Where details are unclear in the original study, this is indicated in the table. In cases where authors 
have described change as occurring over multiple tasks in one session (E.g. Opfer & Siegler, 2004), those tasks are defined as separate 
observations. The papers are listed by year of publication. This table appeared in Brock and Taber, 2017. 
Author(s)	 Number	and	

age	of	
Participants	

Phenomenon	
being	studied	
and	context	

Length	of	
Study	

Number	of	
observations	

Spacing	of	
observations	

Length	of	
individual	
observations	

Type	of	observation	

Kuhn	&	Phelps,	
1982	

15	students	
aged	9-11	years	
old	

Problem	
solving	in	
chemistry		

12	weeks	
(including	
1	week	of	
vacation)	

11	 1	week	 Unclear	 Questions	based	on	interactions	
with	practical	equipment	

15	students	
aged	9-11	years	
old	

Problem	
solving	in	
chemistry		

14	weeks	 Up	to	13	
sessions	but	
participants	
left	study	
after	8	
sessions	if	
stability	in	
strategy	use	
achieved	

1	week	 Unclear	 Questions	based	on	interactions	
with	practical	equipment	

Kuhn	&	
O’Loughlin,	
1988	(Study	5)	

20	students	
aged	8-12	years	
old	

Evaluating	
scientific	
evidence		

9	weeks	 9	sessions	 1	session	per	week	 30-45	
minutes	

Task	involving	evaluating	
evidence	related	to	different	
types	of	balls,	participants	
interviewed	whilst	completing	
task	

Kuhn,	Schauble,	
&	Garcia-Mila,	
1992	

12,	10-year	old,	
fourth	graders	

Theory	and	
strategy	
revision	about	
factors	
affecting	the	
speed	of	cars	
and	boats	

9	weeks	 19	 2	sessions	in	a	week	 20-30	
minutes	for	
car	domain	
	
30-45	
minutes	for	
boat	domain	

Problem	solving	sessions	with	
practical	equipment	or	computer	
simulation,	interview	sessions	
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20	fifth-sixth	
graders	

Scientific	
reasoning	
about	factors	
affecting	the	
speed	of	cars	
and	balls		

7	weeks	 7	 1	week	 30	minutes	 Problem	solving	sessions	with	
practical	equipment	or	computer	
simulation,	interview	sessions	

Nuthall	&	
Alton-Lee,	1993	
(Study	1)	

3	students	aged	
9-10	years	old	

Learning	about	
conservation,	
erosion	and	
endangered	
species	

31	days	 Transcript	
divided	into	
15	second	
long	sections-	
unclear	as	to	
total	number	
or	spacing	

Transcript	divided	into	
15	second	long	
sections-	unclear	as	to	
total	number	or	
spacing	

Total	of	129	
hours-	
unclear	as	to	
individual	
duration	or	
spacing	

Continuous	observation,	video	
and	audio	recorded.	Pre-test	then	
post-test	and	interviews	after	
observations,	and	again	12-
months	after	observation	

Johnson	&	
Mervis,	1994	

16	five-year-old	
students	

Knowledge	of	
shorebirds	

17	days	 5	 Four,	one	hour	long	
sessions	at	intervals	of	
3-5	days,	30	minute	
session	within	2	days	
of	fourth	session	

Four,	one	
hour	sessions	
and	one	30	
minute	
session	

Tests	of	knowledge,	triad	task,	
general	sorting	task	

1	four-year-old	
boy	

Knowledge	of	
shorebirds	

17	days	 5	 Four,	one	hour	long	
sessions	at	intervals	of	
3-5	days,	one	30	
minute	session	within	
2	days	of	fourth	session	

Four,	one	
hour	sessions	
and	one	30	
minute	
session	

Tests	of	knowledge,	triad	task,	
general	sorting	task	

Zohar,	1995	 25	students	at	
community	
college,	mean	
age,	32	years	

Reasoning	
about	variables	

10	weeks	 20	 Two	sessions	per	week	 30	minutes	 Five	tasks	on	reasoning	about	
variables,	recordings	of	sessions	

Magnusson,	
1996	

8	fourth	grade	
students	

Learning	about	
sound	

3	months	 Unclear	 Weekly	or	biweekly	 10	minutes	 Classroom	activities	videotaped	
and	observed,	student	
presentations	videotaped,	
individual	interviews	and	post	
intervention	interviews	
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Schauble,	1996	 10	fifth	and	
sixth	graders	
10	unrelated	
adults	

Scientific	
reasoning	
about	objects	
immersed	in	
fluids	and	
placed	on	
springs	

2	weeks	 6	 Six	sessions	over	2	
weeks	

40	minutes	 Interviews	at	start	and	end	of	
sessions,	data	record	cards	from	
practical	sessions	

Chinn,	1997	 61	sixth	and	
seventh	grade	
students	

Knowledge	
about	
molecules	and	
chemical	
reactions	

6.5	weeks	 13	 Two	sessions	per	week	 60-80	
minutes	

Guided	interviews	with	
instructors	involving	engagement	
with	experiments	and	texts.	Think	
aloud	protocols	produced	

Duit,	Roth,	
Komorek,	&	
Withers,	1998	

25	tenth	grade	
students	

Conceptual	
change	related	
to	chaotic	
systems	

2	weeks	 4	 Unclear	 90	minutes	 Pre-test,	students	interactions	
with	experiments	and	simulations	
videotaped	

Hogan,	1999	 12	eighth	grade	
students	

Personal	
frameworks	
related	to	the	
nature	of	
matter	

12	weeks	 Unclear	 Classes	recorded	two	
or	three	times	a	week	

Unclear	 Interviews	before	and	mid	way	
through	course.	Classes	video	and	
audio	taped	

Nuthall,	1999	
(Study	6)	

5	students	
(average	age	
11.8	years)	

Knowledge	of	
the	habitat	of	
Antarctica	
	

6	days	 Unclear-	13.4	
hours	of	
observation	
over	6	days	

Unclear-	13.4	hours	of	
observation	over	6	
days	

Unclear-	13.4	
hours	of	
observation	
over	6	days	

Written	multiple	choice	pre-	and	
post-tests,	classroom	observation	
with	video-cameras,	record	of	
students	writing	in	class,	records	
of	students	homework,	interviews	
at	end	of	observations	and	long-
term	(12-month	later)	post-test	
and	interview	

Chinn,	
O’Donnell,	&	
Jinks,	2000	
	

105	fifth	grade	
students	

Argument	
structure	in	
group	work	on	
electrical	
circuits		

2	sessions	
over	1	day	

2	 2	sessions	over	1	day	 50-60	
minutes	

Students	carried	out	experiments,	
wrote	conclusions	and	evaluated	
pre-written	conclusions.	
Discussions	were	recorded	and	
transcribed	
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Izsak,	2000	 24	eighth-grade	
students	
(students	
worked	in	
pairs)	

Knowledge	
structures	
related	to	the	
winch	

3-4	weeks	 3-4	
	

1	week	 60	minutes	 Problem	solving,	with	physical	
apparatus,	videotaped	

Azmitia	&	
Crowley,	2001	

24	
undergraduates		

Scientific	
thinking	in	the	
context	of	
building	towers	
to	withstand	
earthquakes	

1	week	 6	sessions	(4	
individual,	2	
collaborative.	
Individual	
sessions	
preceded	and	
followed	
collaborative	
sessions)	

1	week	 15	minutes	 Questioning,	and	collaborative	
sessions	videotaped	

Roth	&	Welzel,	
2001	

8	tenth	grade	
students	

Use	of	gestures	
and	scientific	
discourse	in	the	
context	of	
electrostatics	

10	weeks	 20	 2	per	week	 45	minutes	 Videotaped	lessons,	pre-	and	
post-	interviews,	and	written	
tests	in	week	4,	10	and	15	

Wiser	&	Amin,	
2001	

4	students	just	
finished	eighth	
grade	

Conceptual	
change	in	the	
domain	of	
thermal	physics	

5	weeks		 Unclear	 Several	mornings	a	
week		

	

2	hours	 Teaching-learning	sessions	
audiotaped.	Individual	interviews	
were	conducted	before,	during,	
immediately	after,	and	6	months	
after	the	teaching	sessions		

Gelman,	Romo,	
&	Francis,	2002	

22	ninth	grade,	
ESL	students	

Conceptual	and	
language	
learning	across	
various	science	
topics	studied	
by	ESL	students	

1	academic	
term	

10	units	 Unclear	 Unclear	 Students’	writing	and	concept	
maps	in	notebooks	based	on	
experimental	sessions	

Eichler,	Del	
Pino,	&	
Fagundes,	2004	

8	students	aged	
14-17	years	old	

Conceptual	
development	
linked	to	air	
pollution	

As	many	
sessions	as	
required	to	
complete	
the	task	

Unclear	 Unclear	 45	minutes	 Logfiles	from	engagement	with	
computer	simulation,	texts	
written	whilst	using	simulation,	
audio	transcripts	recorded	during	
use	of	simulation.	
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Opfer	&	Siegler,	
2004	

80	
kindergarten	
students	aged	
5-6	years	old	

Conceptual	
change	in	the	
categorisation	
of	living	things	

1	session	 3	tasks	in	1	
session	

3	tasks	in	1	session	 Unclear	 Pre-test,	post-test	categorisation	
tasks,	questioning	

Veal,	2004	 2	prospective	
secondary	
chemistry	
teachers	

Pedagogic	
content	
knowledge	

1	year	 Unclear	 Observations,	daily	for	
1	hour,	5	days	a	week	
for	first	semester.	
Vignettes	shown	to	
participants	once	every	
3	weeks	

Unclear	 Pre,	during	and	post	interviews	
Observations	of	teacher,	teachers’	
journals	and	responses	to	
vignettes		

Feldon	&	
Gilmore,	2006	

154	students	
(52	members	of	
sixth	grade	
science	class,	
42	free-choice	
users	of	online	
site)	

Scientific	
problem	
solving	in	the	
context	of	
infectious	
diseases	

Unclear	
and	user	
dependent	

2	Sessions	
(possible	
multiple	uses	
of	
simulations	
by	
participants	
in	each	
session)	

Unclear	and	user	
dependent	

Unclear	and	
user	
dependent	

Data	from	interaction	with	
computer	simulations	

Pata	&	Sarapuu,	
2006	

53	Secondary	
students	aged	
15-17	years	old	

Reasoning	
processes	in	
the	context	of	
genetics	

Unclear	 Use	of	
collaborative	
virtual	
workshop	
divided	into	4	
phases	

Unclear	 Unclear	 Pre-essay,	post-essay,	discussion	
whilst	using	collaborative	virtual	
workshop	

Garcia‐Mila	&	
Andersen,	2007	

15	fourth	grade	
students	and	
16	community	
college	
students	aged	
22-47	years	
old.	

Developmental	
change	during	
note	taking	in	
scientific	
inquiry	

10	weeks	 20	 2	in	a	week	 30-45	
minutes	

Students	carried	out	various	
practical,	computer	and	paper-
based	tasks.	Students’	notes	in	
notebooks	collected	
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Soong,	2008	 37	students	
aged	15-16	
years	old	

Computer	
mediated	
collaborative	
physics	
problem	
solving		

9	weeks	 4	 Weeks	1,	2	and	7,	8	 1.5	hours	 Computer	based	problem	solving.	
Data	taken	from	students’	chat	
logs	

Kuhn,	2010	 40	sixth	grade	
students	

Scientific	
argumentation	
skills	

7-8	weeks	 13	 2	in	a	week	over	7-8	
week	period	

Unclear	 Students	engaged	in	
argumentation	via	a	computer-
based	system,	reflection	sheets	

Parnafes	&	
diSessa,	2013;	
Parnafes,	2007,	
2010	
(Note:	Data	
from	one	study	
analysed	in	
three	papers)	

16	students	
aged	14-18	
years	old.	
Students	
worked	in	pairs	

Learning,	and	
the	
development	of	
epistemological	
complexity	
related	to	
simple	
harmonic	
motion	

1	session,	
1.5	hours	
long	

3	sections	
within	1	
session	

First	two	sections	last	
25-40	minutes.	Final	
section	10-15	minutes	

First	two	
sections	last	
25-40	
minutes.	
Final	session	
10-15	
minutes	

Students	videotaped	interacting	
with	physical	oscillators,	then	
with	computer	simulations	and	
finally	a	discussion	with	
researchers	about	the	main	
conceptual	issues	

Garcia-Mila,	
Andersen,	&	
Rojo,	2011	

34	sixth	
graders	aged	
11-13	years	old	

Laboratory	
record	keeping	
in	the	context	
of	plant	growth	

4	weeks	 7	 Twice	a	week	 30-45	
minutes	

Tests	of	content	knowledge	in	
first	and	final	sessions,	
questioning	during	sessions,	
students’	notes	

Srivastava	&	
Ramadas,	2013	

5	students,	
aged	17-19	
years	old,	in	the	
1st	year	of	a	
bachelor	
degree	course	

Understanding	
of	the	3D	
nature	of	DNA	

9	days	 6	 Unclear	 1-1.5	hours	 A	clinical	interview-cum-teaching	
sequence	was	videotaped.	The	
students	drew	diagrams	and	
engaged	with	models.	

diSessa,	2014	
	
	

1	grade	8-10	
student	

Construction	of	
causal	schemes	
related	to	
cooling	curves	

2	sessions	 Change	
within	one	
session	and	
into	start	of	
next		
	
	

2	days	 3	hours	 Students	carried	out	experiments,	
produced	a	computer	model	and	
were	videotaped	
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Unclear	but	
multiple,	grade	
8-10	students	

Construction	of	
causal	schemes	
related	to	
cooling	curves	

1	session	 Change	
within	1	
session	

Change	within	session	 22	minutes	 Students	were	videotaped	in	
discussions	around	drawing	a	
graph	following	a	practical	
experiment	

Van	Der	Steen,	
Steenbeek,	Van	
Dijk,	&	Van	
Geert,	2014	
	

1	boy	aged	4-
years	old	

Understanding	
of	air	pressure	

6	months	 3	 3	Months	(Change	also	
assessed	within	
sessions)	

15	minutes		 Practical	tasks	involving	syringes	
were	videotaped	

Berland	&	
Crucet,	2016	

2	fifth/sixth	
grade	students	

Epistemological	
sophistication	
related	to	plate	
tectonics	

1	session	
of	90	
minutes	

Change	
within	
session	

1	session	 Variable	 Students’	model	construction	was	
videotaped,	post	interview	

Ha,	Lee,	Lim,	&	
Yang,	2016	

9	sixth	grade	
students	

Understanding	
of	the	particle	
model	

6	days	 6	sessions	 1	day	 Unclear	 Students	were	videotaped	in	
semi-structured	interviews	
creating	models	

Haglund,	
Jeppsson,	&	
Schönborn,	
2016	

46	students	
aged	9-11	years	
old	
(Analysis	is	of	
subgroup	of	
students)	

Understanding	
of	heat	

9	minutes	
35	seconds	

4	 Session	divided	into	4	
episodes-	length	
unclear	

Unclear	 Practical	tasks	and	class	
presentations	and	
demonstrations	videotaped	
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8.2 Risk assessment form 

 

Fieldwork Risk Assessment 2006 !

 
!

RISK ASSESSMENT FORM 
!
!

Name: Richard Brock 
!
Course of study/area of work: PhD- Making Sense of making-sense 

!

Activity to be undertaken:  
Microgenetic interviews of year 12 students 
Location: Davenant Foundation School, Chester Road, Loughton, Essex, IG10 2LD 
Date of departure: September 2013 

Date of return: July 2014 

If working away, please give details of supervision arrangements for this period: 

I will continue my normal supervision arrangements during this period 

Brief details (write no more than is necessary for clarity): 

I will carry out frequent (one/twice) brief (20-30 mins) interviews with ¾ year 12 students to 
develop an understanding of how they make-sense. The interview will involve students’ 
reflections on their own learning and their attempts to make sense of a novel piece of 
apparatus.  

List particular hazards associated with the activity: 

There are no particular hazard associated with this research 
!
!

List only hazards which you could reasonably expect to result in harm to you or others under the conditions in which 
you are working. 

Are the risks adequately controlled?  If so, list the existing controls: 
N/A 



 313 

 

Fieldwork Risk Assessment 2006 !

!

!
!
!
!
!
!
!
!
!
!
!

List the precautions you have already taken against the risks from the hazards you have identified, or make a note 
where this information may be found. Include reference to staff training, if appropriate. 

List the risks which are not adequately controlled and the precautions to be taken. 
N/A 

 
 
!
!
!
!
!

Can the risk be removed? Is there a less risky alternative? Can the risk be reorganised to reduce the hazard? Can 
protection be provided? 

Do any other Risk Assessment relate to this activity? No  If so please attach a copy 
Emergency measures N/A 

Checklist have you specified  

When the activity will take place  ✓ 

Who is involved ✓ 
What the activity will involve ✓ 

The purpose of the activity ✓ 
Are there any special risks ✓ 
Cross ref to other risk assessments N/A 
Travelling arrangements in place? N/A 
Health issues checked? N/A 

Equipment requirements checked? ✓ 

Insurance issues check? N/A 
Where the information is kept/available ✓ 
All involved informed? ✓ 

!
!
Form completed by (signature):    
 
Date: Name (in capitals): R.BROCK  13/6/13 
!

In the case of students, signed by Supervisor:  
Date: 2013-06-16                          Name (in capitals): Dr KEITH S. TABER 

!
!
Head of Institution or nominee :  Date: 
Name (in capitals): 
!

One copy of this form must be retained by the signatory (signatories) and one copy sent to 
the Secretary of the Faculty for reference 
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8.3 Ethics checklist 

 

RESEARCH ETHICS REVIEW CHECKLIST 
FOR FACULTY OF EDUCATION 
 
Question: Who needs to complete this checklist? 
Answer: Any student or member of staff on the Faculty of Education’s payroll who is planning 
to undertake research involving the collection of information from children, young people, 
teachers or other adults working in educational organisations, parents and other human subjects.   
Note :  Do not  f i l l  in  th i s  fo rm i f  you are  a l r eady  comple t ing  the  Cambridge  Univer s i t y  
Psy cho logy  Resear ch  Ethi c s  fo rm 
 
The Faculty’s Three Stages of Ethical Clearance 
 
S tage  1  involves you in completion of this Ethics Review Checklist. This is the first stage of 
three. It will help you (and others) decide to what extent you need to become involved in the 
second and third stages. When you have completed it you (and the Faculty) will be in a position 
to make this judgement.  
 
Stage  2  will involve you in discussing any ethical dimensions of your research in some depth 
with another ‘knowledgeable person of standing’; this is a very likely outcome of completing the 
checklist. Further details are provided on page x. 
 
Stage  3  will involve you in obtaining formal ‘ethical clearance’ through the Faculty of 
Education’s procedures; some projects will need to proceed to this stage. Further details are 
provided on page 6. 
 
Details of the Project 
 
Project Title: Making Sense in Physics Education 
 
Name of Researcher: Richard Brock 
 
Position in Faculty: undergraduate student / PGCE student / Masters student / Research 
Student / Member of Staff 
 
Email address: rb423@cam.ac.uk 
 
Usual contact address: 9B Trevor Road, Woodford, Essex, IG8 (AJ 
 
Phone number: 07969404045 
 
Students Only 
 
Course of study: Part-time PhD 
 
Supervisor’s name: Keith Taber 
 
Supervisor’s email: kst24@cam.ac.uk 
 
Supervisor’s contact address: Faculty of Education, University of Cambridge,184 Hills Road, 

Cambridge, CB2 8PQ, UK 
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All the  ques t ions  on th i s  che ck l i s t  de l ibera t e ly  o f f e r  you jus t  two answers  ( ‘ y e s ’  o r  ‘no ’ ) .  
You wi l l  probab ly  f ind  that  you can answer  many o f  the  ques t ions  unequivoca l l y  one  way or  
the  o ther .  However ,  somet imes  you may wish  ther e  was an ‘ i t  depends ’  r e sponse  ca t egory .  I f  
you f ind yourse l f  in  th i s  pos i t ion ,  p l ease  g iv e  the  answer  whi ch  sugges t s  that ,  a t  th i s  
pre l iminary  s tage ,  ther e  might  be  an e th i ca l  i s su e  r equir ing  more  d i s cuss ion  a t  Stage  2 .  
 
Code of Practice relating to Educational Research 
1a) Have you read the Revised Ethical Guidelines for Educational Research (2004) of the British 
Educational Research Association (BERA)? (if you have not read it, the latest version is available 
at http://www.bera.ac.uk/files/2011/08/BERA-Ethical-Guidelines-2011.pdf  
Yes 
 
1b) Is this Code relevant to the conduct of your research? 
If you have answered ‘no’, please briefly explain why: 
 
Yes 
 
1c) Do you agree to subscribe to the Code in carrying out your own research?  
 
Yes 
 
2) Are there any aspects of your proposed research which, in the context of BERA’s Code of 
Practice, might give rise to concern amongst other educational researchers? 
If you have answered ‘yes’, please briefly list possible causes for concern below: 
 
No 
 
a) 
 
b) 
 
c) 
 
 
Obtaining ‘Informed Consent’ 
3) Are you familiar with the concept of ‘informed consent’? (if you are not familiar with this 
concept you should first consult the following source:  page 6 of the BERA guidelines above). 
 
Yes 
 
4) Does your research involve securing participation from children, young people or adults where 
the concept of ‘informed consent’ might apply? 
 
Yes 
 
If you have answered ‘yes’ to Question 4 above, please answer the following questions. 
 
5a) Do you believe that you are adopting suitable safeguards with respect to obtaining ‘informed 
consent’ from participants in your research in line with the Code of Practice? 
 
Yes 
 
5b) Will all the information about individuals and institutions be treated on an ‘in confidence’ 
basis at all stages of your research including writing up and publication? 
 
Yes 
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5c) Will all the information collected about individuals and institutions be presented in ways 
which guarantee their anonymity? 
 
Yes 
 
 
The Involvement of Adults in the Research 
6a) Will your research involve adults? 
 
No 
 
If you have answered ‘yes’ to Question 6a above, please answer the following questions; 
otherwise move to Question 7. 
 
6b) Will these adults be provided with sufficient information prior to agreeing to participate in 
your research to enable them to exercise ‘informed consent’? 
 
6c) Will the adults involved in your research be in a position to give ‘informed consent’ 
themselves with respect to their participation? 
 
6d) Will these adults be able to opt out of your research in its entirety if they wish to do so by, 
for example, declining to be interviewed or refusing to answer a questionnaire? 
 
6e) Will these adults be able to opt out of parts of your research by, for example, declining to 
participate in certain activities or answer particular questions? 
 
The Involvement of Children, Young People and other potentially Vulnerable Persons in 
the Research 
 
7a) Will your research involve children, young people or other potentially vulnerable persons 
(such as those with learning disabilities or your own students). 
 
Yes 
 
If you have answered ‘yes’ to Question 7a above, please answer the following questions; 
otherwise move to Question 8. 
 
In educational and social research ‘informed consent’ regarding access is often given by a 
‘gatekeeper’ on behalf of a wider group of persons (e.g. a head or class teacher with respect to 
their pupils, a youth worker working with young people, another person in an ‘authority’ 
position).  
 
7b) Who will act as the ‘gatekeeper(s)’ in your research?  
Please list their position(s) briefly below and, where this is not self-evident, describe the nature of 
their relationship with those on whose behalves they are giving ‘informed consent’. 
 
i) Chris Seward, Headteacher, Davenant Foundation School 
ii) David Liebeschuetz, Head of Science, Davenant Foundation School 
iii) 
 
7c) Will you be briefing your ‘gatekeeper(s)’ about the nature of the questions or activities you 
will be undertaking with the children, young people or other potentially vulnerable persons 
involved in your research?  
 
Yes 
 



 317 

7d) If another person (such as a teacher or parent of a child in your study) expressed concerns 
about any of the questions or activities involved in your research, would your ‘gatekeeper(s)’ have 
sufficient information to provide a brief justification for having given ‘informed consent’? 
 
Yes 
 
7e) If unforeseen problems were to arise during the course of the research, would your 
‘gatekeeper(s)’ be able to contact you at relatively short notice to seek advice, if they needed to do 
so? 
 
Yes 
 
7f) Could your ‘gatekeeper(s)’ withdraw consent during the research if, for whatever reason, they 
felt this to be necessary? 
 
Yes 
 
7g) Might other people consider that you yourself are the ‘gatekeeper’ for the research (e.g. 
projects involving gathering information from your own students or pupils)? 
 
No - reasonable precautions have been taken to avoid students considering the researcher as the 
gatekeeper. The consent form indicates the head of department as the point of contact with any 
concerns about data collection 
 
Other Ethical Aspects of the Research 
8) Will it be necessary for participants to take part in the study without their knowledge and 
consent at the time? (e.g. covert observation of people in public places) 
 
No 
 
9) Will the research involve the discussion of topics which some people may deem to be 
‘sensitive’? (e.g. sexual activity, drug use, certain matters relating to political attitudes or religious 
beliefs) 
 
No 
 
10) Does the research involve any questions or activities which might be considered 
inappropriate in an educational setting? 
 
No 
 
11) Are drugs, placebos or other substances (e.g. food substances, vitamins) to be administered 
to study participants or will the study involve invasive, intrusive or potentially harmful 
procedures of any kind? 
 
No 
 
12) Will blood, tissue or other samples be taken from the bodies of participants? 
 
No 
 
13) Is pain or more than mild discomfort likely to result from the study? 
 
No 
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14) Could the research involve psychological stress or anxiety or cause harm or negative 
consequences beyond the risks encountered in normal life? 
 
No 
 
15) Are there any other aspects of the research which could be interpreted as infringing the 
norms and expectations of behaviour prevailing in educational settings? 
 
No 
 
16) Are there any other aspects of the research which could be to the participants’ detriment? 
 
No 
 
17) Will the study involve prolonged or repetitive testing? 
 
No - although I do plan to use a microgenetic method which will involve a series of related 
sessions with the same student over a time period of weeks. In my judgement, the sessions will 
be not de unduly prolonged or repetitive for a 16/17 year old student  
 
18) Will financial inducements (other than reasonable expenses or compensation for time) be 
offered to participants? 
 
No
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What Further Steps to Secure Ethical Clearance are Required? 
Please transfer your responses to all the questions to the grid below by ticking the appropriate 
boxes. 
 
Question 1a 1b 1c 2 
Yes ✓ ✓ ✓  
No     
 
Question           3                4         5a         5b        5c 
Yes ✓ ✓ ✓ ✓ ✓ 
No      
 
Question         6a          6b         6c         6d        6e 
Yes      
No ✕     
 
Question          7a               7b         7c         7d        7e        7f            7g 
Yes ✓  ✓ ✓ ✓ ✓  
No       ✓ 
 
Question    8         9  10  11  12  13      14  15  16  17  18 
Yes            
No ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ 
 
Interpretation of Results 
If you have ticked any of the shaded cells above, then you should assume that further discussion 
involving Stage 2 procedures is required because some aspect of your proposed research is likely 
to be ‘ethically sensitive’. In practice, many issues can be resolved at this stage.  
 
Members of staff should be especially careful about research involving their own students 
(question 7g). If you have ticked ‘yes’ in response to one or more of questions 8 to 18, both Stage 2 and Stage 
3 clearance will definitely be required. 
 
Stage 2 Clearance 
Any ‘ethically sensitive’ responses identified above should be discussed with a ‘knowledgeable 
person of standing’.  
 
In the case of students within the Faculty, this person will, in almost every case, be the person 
supervising your research.  
 
Members of Faculty staff will need to exercise some care in selecting such a person. S/he is likely 
to be someone with considerable experience of research in a cognate area to your own and quite 
likely to be one of the more senior members of the Faculty. S/he should not be someone who is 
also involved in the research nor should they be someone with whom you regularly collaborate 
(whether in relation to research, teaching or administration). The test, in every case, should be 
whether an outsider would judge the person chosen to be ‘independent’. 
 
On completion of the discussion, the ‘knowledgeable person of standing’ is asked to choose one 
of the following three responses, to delete the other two and to affirm their views by adding their 
signature. 
 
 
a) I have discussed the ethical dimensions of this research and, as outlined to me, I do not 
foresee any ethical issues arising which require further clearance. In particular, I note that: 
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(re: 17) The microgenetic method does require repeated assessments, but is an acceptable 
research technique and is only valid as long as participants remain engaged in the activity (so 
Richard would not persist with any techniques unless his participants remain engaged). 
 
(re: 7a) We have talked in depth about appropriate safeguards, and I foresee no problems in this 
research involving young people. In any case Richard already has responsibilities towards these 
participants that are also the subject of professional ethics as a teacher.  
 
(re: 5c) As is always the case with practitioner research, i t  w i l l  no t  be  poss ib l e  for Richard to 
report his work in a way which is both open about his dual teacher-researcher role (which is 
important in producing an authentic account) AND yet avoids the possibility of others being able 
to identify the institution where the research will take place as his employment at the school is a 
matter of public record.   
 
 
Student signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
Date of discussion: November-December 2012  
 
Signature of ‘knowledgeable person of standing’ 

 2012-12-02 
(Supervisor)  
 
Lodging this form 
It is your responsibility as the researcher to lodge this form with the appropriate person well in 
advance of undertaking your research. 
 
Students should provide their supervisors with a copy which can be lodged with other papers 
their supervisors are keeping about their work. If Stage 3 clearance is required, supervisors will 
take steps to initiate these procedures. 
 
Members of staff should lodge a completed copy of this form with the Secretary to the Director 
of Research. They should draw attention, albeit briefly in the first instance, to the nature of the 
issue(s) arising. The Director of Research will then advise on the appropriate Faculty procedures 
to be followed to enable the research to be considered for Stage 3 clearance.  
 
Researchers should be aware that Stage 3 discussions could involve them in making 
modifications to their research design or proposed procedures and may, in certain circumstances, 
result in ethical clearance being withheld.  
 
 



 321 

8.4 Information sheet for participants 
 
Physics Learning Interviews 
Information Sheet for students 
 
 
What is the purpose of the study? 
This study aims to collect data to examine the way students learns physics concepts. The interview 
aims to examine your current understanding of a topic in physics and examine the way new 
information is integrated into existing ideas. The study is part of my PhD in physics education. 
 
Why am I being asked to take part? 
You have been identified as a student who has particular learning characteristics that may shed light on 
the process of learning. 
 
Do I have to take part? 
It is up to you to decide whether or not to take part. If you do decide to take part you will be given this 
information sheet to keep and be asked to sign a consent form. If you decide to take part you are still 
free to withdraw at any time and without giving a reason.  
 
Whilst choosing to take part in this project may help with your understanding of physics, the 
assessment of your thoughts about physics will be used only for the purposes of the research and not 
inform assessment decision for your school studies. 
 
What will happen to me if I take part? 
You will be asked to participate in a series of 5 interviews over this half-term. The interviews will last 
around 25 minutes. A mutually convenient time at lunchtime or after school will be arranged. During 
the interview I will ask you about your learning in the topic of forces and ask you to answer some 
questions. I will introduce you to some new apparatus you have never seen before. Do not consider this 
section an assessment; no part of the process is an assessment for the purposes of your course. The 
questions will explore the nature of your learning. There is the possibility, if you consent, to complete a 
series further series of 5 interviews in a subsequent half-term. 
 
The interview will be audio recorded and then a written record will be prepared. 
 
What are the possible benefits of taking part? 
Participation will allow you to engage in a piece of research and give your views on learning. The 
process may also help you consolidate your understanding of the topic. 
 
What are the possible risks of taking part? 
It will require you to give up some time- 5 sessions of around 25 minutes over the next half term. Your 
comments may be used in an anonymous form and may published in a thesis (the final report of this 
project), journal articles or other publications. The data may also be used in presentations to other 
teachers and researchers. 
 
Will what I say in this study be kept confidential? 
All information collected about the individual will be kept strictly confidential (subject to legal 
limitations).  The recording and transcript will be held securely and you will be assigned a pseudonym 
in the transcript and any subsequent published work including published papers and theses.  
 
What should I do if I want to take part? 
If you wish to take part please complete the consent form. 
 
What will happen to the results of the study? 
The results of this study will be analysed and may be used in my research. The data collected may 
appear in a thesis (the final report of this project), journal articles, presentations to teachers and 
researchers, and in other publications. To obtain a copy of any publications please e-mail 
rb423@cam.ac.uk 
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Who is organising and funding the research? 
My name is Richard Brock and I am carrying out the research as a PhD student at the Education 
Faculty, University of Cambridge. My supervisor’s name is Dr Keith Taber, E-mail: kst24@cam.ac.uk 
 
Contact for Further Information 
If you have any concerns about the way the research is being conducted please contact David 
Liebeshuetz, Head of Science, Davenant Foundation School, david.liebeschuetz@davenant.org If you 
have any further questions please contact me at rb423@cam.ac.uk 
 
Thank you for taking the time to read this form 
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8.5 Consent forms 

8.5.1 Headteacher consent form 

 
Headteacher Record of Consent Form 

 

Research project title: Physics learning interviews 

Researcher: Richard Brock, Faculty of Education, Cambridge University, 
rb423@cam.ac.uk  

Please read the statements below and, if you agree to the conditions, sign at the bottom 
of the form to indicate your consent.           

The above study has been fully explained to me and I have had the opportunity to ask 
questions and to withdraw the school from the research. 

Parents/guardians of each child participating in this study have been fully informed 
about the nature of the research by letter sent home to parents/guardians 

Parents/guardians have been given a reasonable period of to withdraw their child 
from participating in the study. 

 

 

 

 

 

______________________         ____________       ___________________ 

Name of Headteacher �  Date    Signature 

 

______________________        ___________       ___________________ 

Researcher   Date   Signature 

Researcher Contact Details: rb423@cam.ac.uk 

Project Supervisor Contact Details: kst24@cam.ac.uk 
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8.5.2 Parent information and consent form 

 
 

 

 

Dear parent/carer, 
 
Your son/daughter has been selected to take part in a research project into physics 
learning. The details of the study and issues relating to confidentiality are given on the 
enclosed information sheet. 
 
If you are willing for your son/daughter to participate in the research please complete 
the consent form attached. If you have any additional questions regarding the research 
please contact me at rb423@cam.ac.uk. 
 
Yours faithfully, 
 
 
 
Richard Brock 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 325 

 
 
Physics Learning Interviews 
Information Sheet for parents 
 
 
What is the purpose of the study? 
This study aims to collect data to examine the way students learns physics concepts. The interview 
aims to examine your current understanding of a topic in physics and examine the way new 
information is integrated into existing ideas. The study is part of my PhD in physics education. 
 
Why is my son/daughter being asked to take part? 
Your son/daughter has been as a student who has particular learning characteristics that may shed light 
on the process of learning. 
 
Does my son/daughter have to take part? 
It is up to you and your son/daughter to decide whether or not to take part. If you do decide to take part 
you will be given this information sheet to keep and be asked to sign a consent form. If you decide to 
take part you are still free to withdraw at any time and without giving a reason.  
 
Whilst choosing to take part in this project may help with your son/daughter’s understanding of 
physics, the assessment of their thoughts about physics will be used only for the purposes of the 
research and not inform assessment decision for their school studies. 
 
What will happen to your son/daughter if they take part? 
Your son/daughter will be asked to participate in a series of 5 interviews over this half-term. The 
interviews will last around 25 minutes. A mutually convenient time at lunchtime or after school will be 
arranged. During the interview I will ask your son/daughter about their learning in the topic of forces 
and them you to answer some questions. I will introduce them to some new apparatus they have never 
seen before. The interview is not an assessment; no part of the process is an assessment for the 
purposes of their school course. The questions will explore the nature of your learning. There is the 
possibility, if they consent, to complete a series further series of 5 interviews in a subsequent half-term. 
 
The interview will be audio recorded and then transcribed 
 
What are the possible benefits of taking part? 
Participation will allow your son/daughter to engage in a piece of research and give their views on 
learning. The process may also help them consolidate their understanding of the topic of forces. 
 
What are the possible risks of taking part? 
It will require your son/daughter to give up some time- 5 sessions of around 25 minutes over the next 
half term. Their comments may be used in an anonymous form and may published in a thesis (the final 
report of this project), journal articles or other publications. The data may also be used in presentations 
to other teachers and researchers. 
 
Will what your son/daughter says in this study be kept confidential? 
All information collected about the individual will be kept strictly confidential (subject to legal 
limitations).  The recording and transcript will be held securely and only the researcher and his 
supervisor will have access to the information. Your son/daughter will be assigned a pseudonym in the 
transcript and any subsequent published work including published paper and theses to give them 
anonymity.  
 
What should I do if I want my son/daughter to take part? 
If you wish your son/daughter to take part please complete the form on the next page 
 
What will happen to the results of the research study? 
The results of this study will be analysed and may be used in my research. The data collected may 
appear in a thesis (the final report of this project), journal articles, presentations to teachers and 
researchers, and in other publications.  
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To obtain a copy of any publications please e-mail rb423@cam.ac.uk 
 
Who is organising and funding the research? 
My name is Richard Brock and I am carrying out the research as a PhD student at the Education 
Faculty, University of Cambridge. My supervisor’s name is Dr Keith Taber, E-mail: kst24@cam.ac.uk 
 
Contact for Further Information 
If you have any further questions please contact me at rb423@cam.ac.uk 
If you have any concerns about the way the study is conducted please contact David Liebeschuetz, 
Head of Science david.liebeschuetz@davenant.org 
 
Thank you 
Thank you for taking the time to read this form 
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Parent Record of Consent Form 
 
 
 
Research project title: Physics learning interviews 

Researcher: Richard Brock, Faculty of Education, Cambridge University, 
rb423@cam.ac.uk 
 
 
Please read the statements below and, if you agree to the conditions, sign at the 
bottom of the form to indicate your consent. 
 
I confirm that I have read and understand the information sheet for the above study 
and have had the opportunity to ask questions. 
 
I understand that my son/daughter’s participation is voluntary and that they are free 
to withdraw at any time, without giving reason.  
 
I agree to my son/daughter taking part in the above study. 
 
I agree that the data gathered in this study may be stored (after it has been 
anonymised) and may be used in a PhD thesis (the final report of this project), 
journal articles or other publications. The data may also be used in presentations to 
other teachers and researchers. 
 
 
I agree to the interview of my son/daughter being audio recorded 

I agree to the use of anonymised quotes ifrom my son/daughter in publications  
 
 
 
 
 
 
 
 
Name of Parent    Date    Signature 
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8.5.3 Participant consent form 

 
Student Record of Consent Form 
 
 
 
Research project title: Physics learning interviews 

Researcher: Richard Brock, Faculty of Education, Cambridge University, 
rb423@cam.ac.uk 
 
Please read the statements below and, if you agree to the conditions, sign at the bottom of the 
form to indicate your consent. 
 
I confirm that I have read and understand the information sheet for the above study and have had 
the opportunity to ask questions. 
 
I understand that my participation is voluntary and that I am free to withdraw at any time, without 
giving reason.  
 
I agree to take part in the above study. 
 
I agree that my data gathered in this study may be stored (after it has been anonymised) and may 
be used in a PhD thesis (the final report of this project), journal articles or other publications. I 
agree that the data may also be used in presentations to other teachers and researchers. 
 
 
I agree to the interview being audio recorded  

I agree to the use of anonymised quotes in publications  
 

 

 
 
 
 
 
 
 
Name of Participant    Date    Signature 
 
 
 
 
Name of Researcher    Date    Signature 
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8.6 Sample transcript 
 
Student: Amy Year: 12 Date: 14th Oct   Interview No: 3 
 
1	 I	 So	today	is	the	fourteenth	of	October	and	I	am	with	Amy	um	starting	

question	for	today	is	
2	 P	 Mhm	
3	 I	 Here	is	a	spaceman	
4	 P	 Yep	
5	 I	 They	are	far	away	from	any	planet	the	only	force	on	them		
6	 P	 Yep	
7	 I	 Is	that	thrust	
8	 P	 Yup	
9	 I	 Um	describe	how	they	will	move	
10	 P	 OK	um	so	[pause]	they	would	do	you	want	me	to	draw	the	graphs	
11	 I	 If	you	want	to	do	it	that	way	
12	 P	 With	displacement	would	just	move	from	that	would	just	go	from	zero	

to	positive	so	it	would	look	like	[pause]	er	like	that	[draws	diagonal	
straight	line]	
	

13	 I	 Yep	
14	 P	 Um	and	then	the	velocity	I	would	say	would	be	[pause]	he’d	move	at	a	

constant	velocity	so	I’d	say	[pause]	wait	no	because	it	would	accelerate	
because	there	is	not	backwards	force	on	him	so	it	would	probably	be	
something	like	[pause-	adds	curved	line]	that	um	and	then	acceleration	
however	would	be	constant	so	that	would	be	like	that	[adds	diagonal	

line]	

	
15	 I	 Is	that	a	graph	for	constant	acceleration?	
16	 P	 No	it’s	not.	No	that’s	constant	acceleration	on	a	velocity	graph	er	so	

that	would	be	something	[adds	horizontal	line]	like	that	
17	 I	 So	a	horizontal	line?	
18	 P	 Yes	a	horizontal	line	
19	 I	 OK	um	one	thing	to	think	about	look	at	the	velocity	graph	you’ve	

drawn		
20	 P	 No	No-that	would	be	a	straight	line	[changes	line	to	steeper	diagonal	

line]	
21	 I	 Why	would	it	be	a	straight	line?	
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22	 P	 Because	its	constant	acceleration	
23	 I	 Good	and	what	about	the	displacement	one	now	
24	 P	 Erm	the	displacement	[pause]	wait	would	that	be	a	curve	[adds	higher	

of	two	curves]	
25	 I	 Why	would	it	be	a	curve?	
26	 P	 Um	because	[pause]	if	it’s	accelerating	then	it’s	going	to	be	moving	a	

greater	distance	as	time	goes	by		
27	 I	 What	on	a	displacement	time	graph	links	to	velocity?	
28	 P	 Erm	the	gradient		
29	 I	 And	um	because	the	velocity	is	going	up	the	gradient	
30	 P	 The	gradient	will	be	getting	steeper	
31	 I	 Yep	excellent	one	more	question	on	there	if	I	doubled	the	mass	of	the	

spaceman.	Thrust	force	remains	the	same	
32	 P	 Yes	
33	 I	 What	would	change?	
34	 P	 Um	would	the	acceleration	change?	Yeah	because	I	know	I	am	relating	

it	to	the	equation	Force	equals	mass	times	acceleration	
35	 I	 Yes	
36	 P	 So	if	the	force	is	the	same	the	mass	is	the	same	then	the	acceleration	

must	change		
37	 I	 Yep	so	if	we	double	the	mass	the	and	the	thrust	is	the	same	the	

acceleration	would	be	
38	 P	 Half	
39	 I	 Half	and	what	would	happen	to	the	velocity	time	graph	
40	 P	 The	velocity	time	graphs	would	therefore	the	line	would	be	it	would	

still	be	constant	acceleration	but	the	line	would	be	a	bit	not	as	steep	
[adds	lower	gradient	diagonal	to	graph]	

41	 I	 OK	yep	good	and	on	the	displacement	time	graph?	
42	 P	 Erm	that	would	be	[pause]	[adds	lower	of	two	curves]	like	that	
43	 I	 Great	OK	just	before	we	start	playing	with	the	mass	on	the	spring	um	

any	moments	this	week	when	things	have	made	sense	or	
44	 P	 Um	not	really	no	[laughs]	well	obviously	its	made	sense	but	I	haven’t	if	

you	are	talking	about	moments	where	it	has	just	clicked	then	not	really	
relating	to	physics	no	

45	 I	 Do	you	think	those	kind	of	moments	are	rare?	
46	 P	 Er	well	thinks	week	in	physics	its	been	sort	of	much	of	the	stuff	in	GCSE	

so	it	does	vary	what	we’re	covering	
47	 I	 Yes	
48	 P	 If	it’s	new	things	then	I	will	have	moments	when	things	click	but	this	

week	it’s	been	stuff	that’s	quite	familiar	to	me	already	so	I	haven’t	had	
any	moments	like	that	

49	 I	 OK	great	now	we’re	going	to	look	at	this	mass	on	a	spring	um	first	
thing	I	want	to	think	about	is	um	how	does	the	force	vary	with	distance	
so	if	I	put	a	hundred	grams	on	there	do	you	want	to	just	measure	the	
length	of	the	spring		

50	 P	 Er	where	about	five	centimetres	
51	 I	 About	five	centimetres.		Um	actually	let’s	start	let’s	measure	it	like	that	

with	no	mass	on		
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52	 P	 About	two	point	two		
53	 I	 So	at	two	point	two	if	I	put	um	that	was	about	five	so	how	much	longer	

has	a	hundred	grams	made	it	eget?	
54	 P	 About	twice	as	long	
55	 I	 So	it’s	about	three	point	something.	It	was	two	point	two	
56	 P	 Yeah	so	now	it’s	five	so	it	would	be	two	point	something	
57	 I	 If	I	put	another	mass	on	what	you	expect	it	to	
58	 P	 Would	it	increase	by	[pause]	would	it[pause]	or	because	I	am	just	

trying	to	work	this	out	in	my	head	[laughs]	would	it	increase	by	the	
same	amount	again		

59	 I	 Yep	so	how	much	did	it	that	made	it	increase	by	two	point	
60	 P	 About	two	point	
61	 I	 Something	yeah	
62	 P	 So	it	would	increase	by	about	two	point	something	again	
63	 I	 So	it	should	be	about	seven	
64	 P	 Six	seven	[pause]	yeah	seven	point	something	
65	 I	 Lt’s	have	a	look	give	it	a		
66	 P	 That’s	increased	by	more	I	think	er	it’s	about	eight,	eight	point	five	
67	 I	 OK	I	know	our	equipment’	not	going	to	be	perfect	what	would	you	

expect	if	I	doubled	the	force	on	it	
68	 P	 If	you	double	the	force	on	it	you’d	expect	the	spring	to	be	double	as	

long	
69	 I	 So	if	I	drew	a	graph	of	force	against	displacement	
70	 P	 Er	you	would	would	it	just	be	a	[pause]	straight	line	

	

71	 I	 Yes	
72	 P	 ‘Cos	they’re	proportional	to	each	other	
73	 I	 Yep	now	what	I	want	to	do	rather	than	you	drawing	as	we	did	last	

week	for	the	pendulum	the	graphs	for	displacement	velocity	
acceleration	we	have	this	um	an	ultrasound	ranger	so	it	can	measure	
by	sending	out	little	ultrasound	clicks	which	bounce	off	the	mass	um	it	
can	measure	the	distance	to	the	um	mass	and	it	therefore	also	measure	
its	velocity	and	its	acceleration	

74	 P	 OK	
75	 I	 So	I	can	use	this	datalogger	to	um	get	all	those	graphs	
76	 P	 OK	
77	 I	 So	if	you	just	set	it	into	motion	
78	 P	 So	
79	 I	 Gently	pull	it	down	or	up	and	ok	[ranger	clicks]	
80	 P	 Ah	it’s	quite	cool	[ranger	clicks]	[computer	beeps]	
81	 I	 Right	what	your	job	is	now	is		
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82	 P	 Yes	
83	 I	 To	explain	those	shapes	of	graphs	
84	 P	 Each	of	the	graphs	OK	
85	 I	 And	there’s	space	there	if	you	want	to	sketch	them	
86	 P	 OK	so	if	I	sketch	it	out	first	I	

find	it	easier	to	read	off	the	
paper	than	the	screen	so	
[drawing]	that’s	just	like	that	
so	the	displacement	keeps	
moving	from	like	increasing	
and	decreasing		
	

87	 I	 How	just	explain	that	if	we	call	that	the	zero	point	[indicating	on	mass	
spring	system]	

88	 P	 OK	
89	 I	 So	that’s	the	equilibrium	so	if	its	above	it	
90	 P	 Yeah	
91	 I	 It’s	positive	displacement	
92	 P	 Positive	
93	 I	 And	below	is	negative	
94	 P	 So	it	keeps	returning	to	its	original	position	which	is	why	the	

displacement	keeps	increasing	and	then	decreasing	um	is	that	enough	
for	the	displacement	graph?	

95	 I	 We’ll	do	some	more	detail	in	just	a	second	
96	 P	 OK	
97	 I	 But	give	me	now	you’ve	just	got	to	be	careful	that	where	the	

displacement	is	kind	of	zero	which	is	kind	of	this	point	here	[indicating	
on	apparatus]	you’ve	got	to	read	down	because	you	started	yours	there	

98	 P	 Oh	right	OK		yeah	oh	yeah	yeah	yeah	so	it	started	a	bit	
99	 I	 Well	That’s	fine	so	where	would	you	start	your	velocity	graph?	If	that’s	

my	zero	disp	When	my	displacement	is	zero	
100	 P	 Yep	
101	 I	 What’s	the	velocity	like?	
102	 P	 The	velocity	at	it’s	highest	point	
103	 I	 Yeah	so	if	you	want	to	sketch	it	in	to	
104	 P	 OK	what	so	the	velocity	one?	
105	 I	 Yep	
106	 P	 So	it	would	be	[drawing	velocity	graph]	
107	 I	 Yeah	
108	 P	 Like	that	
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109	 I	 Yeah	
110	 P	 Yeah	so	the	velocity	it	starts	at	its	highest	point	and	slows	down	as	it	

moves	so	it	slows	down	when	the	mass	moves	upwards	
111	 I	 Yep	
112	 P	 Because	when	its	at	the	top	its	got	zero	velocity	so	then	it	then	[pause]	

yeah	so	as	it’s	moving	up	it’s	slowing	down	and	then	when	its	moving	
downwards	it’s	speeding	up	so	tat’s	why	there’s	a	curved	shape	for	the	
velocity	graph	

113	 I	 OK	do	you	want	to	sketch	in	the	acceleration	one	
114	 P	 OK	
115	 I	 This	should	start	well	can	you	tell	me	when	all	your	graphs	start	from	

the	equilibrium	position		
116	 P	 Yep	
117	 I	 Now	I	know	we	you’ve	got	to	think	about	not	a	zero	‘cos	if	it’s	in	the	

equilibrium	it’s	not	just	spontaneously	start	vibrating	so	think,	about	it	
we’ve	just	started	drawing	our	graphs	we	let	I	go	and	we	start	drawing	
our	graphs	when	it	is	going	through	the	mi	

118	 P	 When	it’s	going	through	the	motion	
119	 I	 The	middle	for	the	first	time	So	we’ve	let	it	go	it’s	go	through	the	

middle	
120	 P	 Yep	
121	 I	 And	then	we	start	drawing.	Displacement	goes	positive	
122	 P	 Yeah	
123	 I	 Yeah?	
124	 P	 Yep	
125	 I	 That	kind	of	idea	so	what’s	its	acceleration	like	at	that	equilibrium	

point	
126	 P	 So	when	at	the	equilibrium	point	it	would	be	decelerating	because	the	

velocity	is	decreasing	I	think	is	that	right	so	it	would	going	[pause]	
127	 I	 Do	you	think	um	what’s	another	way	to	tell	what	the	acceleration	from	

what	you’ve	already	got?	
128	 P	 Do	you	mean	like	the	gradient	of	the	velocity	graph?	
129	 I	 Yes	yeah	
130	 P	 So	it	would	be	decelerating	
131	 I	 Look	very	carefully	at	the	first	instant	
132	 P	 Oh	right	at	the	first	instant	it	would	be	what	so	where	it	would	start	off	

from	on	the	graph	
133	 I	 So	time	equals	zero	there	
134	 P	 Yes	
135	 I	 Well	if	you	look	at	this	velocity	time	graph	
136	 P	 Yeah	
137	 I	 What’s	the	gradient	right	at	that	first	instant	
138	 P	 It’s	[pause]	well	it’s	really	steep	
139	 I	 You	can	use	a	ruler	to	go	along	[indicating	with	ruler	on	graph	how	ot	

indicate	gradient]	
140	 P	 I	am	confused	
141	 I	 I	am	really	just	asking	what’s	the	gradient	because	
142	 P	 Yeah	
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143	 I	 We	want	to	find	the	acceleration	um	what’s	the	gradient	of	this	graph	
which	will	tell	us	the	acceleration	what’s	the	gradient	of	that	graph	
right	at	the	first	instant?	

144	 P	 Oh	so	that	would	be	t	at	this	one	
145	 I	 Yeah	
146	 P	 So	it	would	be	there	
147	 I	 You’re	saying	there’s	a	big	positive	gradient	at	the	start?	
148	 P	 [pause]	
149	 I	 Put	your	ruler	along	the	line	of	the	graph	and	follow	the	gradient	so	

there	[runs	ruler	along	graph]	
150	 P	 Like	that	
151	 I	 So	the	gradient	here	is	
152	 P	 Yep	
153	 I	 Kind	of	
154	 P	 Yep	
155	 I	 Fairly	steep	an	negative	now	as	we	go	back	to	zero	what’s	happening	to	

the	gradient?	
156	 P	 Er	
157	 I	 See	I’m	following	the	gradient	here	
158	 P	 It’s	getting	less	steep	which	means	it	would	be	accelerating	
159	 I	 And	right	at	the	point	here	
160	 P	 Yes	
161	 I	 If	I	try	and	make	my	ruler	go	right	along	the	top	of	the	graph.	What’s	

the	gradient	right	at	the	top?	
162	 P	 It’s	got	no	gradient	
163	 I	 Where	should	we	start?	
164	 P	 Here	
165	 I	 Yep	
166	 P	 And	would	it	be	then	it	wouldn’t	be	constant	acceleration		
167	 I	 Well	for	a	start	which	way	will	my	acceleration	which	way	is	the	

gradient?		
168	 P	 It	will	be	going	so	it	will	be	accelerating	because	the	gradient	is	getting	

less	steep	
169	 I	 Well	which	way	is	this	a	positive	or	a	negative	gradient	after?	
170	 P	 Oh	that’s	a	negative	gradient	
171	 I	 So	and	we	start	off	at	zero	and	the	gradient	gets	more	and	more	and	

more	steep		
172	 P	 So	it	would	be	getting	if	it	decelerating	
173	 I	 It’s	getting	a	bigger	and	bigger	
174	 P	 Bigger	and	bigger	deceleration	
175	 I	 Deceleration.	Starting	from	
176	 P	 Here	so	it	would	then	be	[pause]	so	it	would	be	if	it’s	getting	bigger	and	

bigger	would	it	be	something	like	that	[adds	acceleration	curve	up	to	x-
axis	in	first	t/4	period]	

177	 I	 And	then	um	so	it	gets	bigger	and	bigger	but	here	the	gradient	starts	
going	back	to	

178	 P	 Zero	then	it	so	then	it	starts	acceleration	which	would	be	like	that[adds	
line	up	to	first	maxima]	
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179	 I	 And	then	
180	 P	 And	then	would	it	just	follow	through	[completes	wave]	
181	 I	 That	kind	of	idea	
182	 P	 Like	that	
183	 I	 We	do	get	that	kind	of	curve	
184	 P	 Yep	
185	 I	 Same	kind	of	sine	wave	kind	of	shape	now	what	I	would	like	you	to	do	

given	what	we’ve	said	about	how	the	spring	works	so	double	the	
displacement	double	the	force	

186	 P	 Yeah	
187	 I	 Why	do	we	get	these	graphs.	You	might	want	to	start	thinking	about	

the	acceleration	one	
188	 P	 Acceleration	so	why	does	are	you	essentially	asking	why	does	it	

decelerate	and	then	accelerate?	
189	 I	 Yeah	why	do	we	get	these	shapes?	
190	 P	 OK	so	when	it	is	well	if	you	think	this	is	when	it’s	at	its	starting	point	its	

zero	velocity	and	then	when	it	goes	up	
191	 I	 Is	it	Is	it	zero	velocity	in	a	normal	cycle.	[pause]	Ping	it	so	middle	

position	is	somewhere		
192	 P	 Yeah	
193	 I	 Is	it	zero	velocity	when	it	goes	through	the	middle	position?	
194	 P	 No	
195	 I	 Where	is	the	velocity	zero?	
196	 P	 When	it’s	changing	direction.	So	when	it	is	when	it	springs	up	it	is	

essentially	slowing	down	
197	 I	 Yes	
198	 P	 So	it	would	be	accelerating	and	then	when	it	gets	to	the	top	it	will	then	

change	direction	and	then	it	will	speed	up	again	so	it	will	be	
accelerating	and	do	I	need	to	explain	why	it	goes	forward	and	back	
ward?	

199	 I	 Link	Link	link	to	in	terms	in	terms	of	forces	
200	 P	 Yep	
200	 I	 Explain	the	changes	in	acceleration	by	what’s	happening	with	the	

forces	
201	 P	 Oh	so	you’ve	got	the	mass	because	mass	is	two	hundred	grams	and	so	

the	force	of	weight	will	always	be	pulling	down	on	it	and	the	[pause]	
when	you	make	it	spring	the	upward	force	of	the	spring	isn’t	as	great	
as	the	weight	so	it	is	going	to	slow	down	as	it	moves	upwards	and	
speed	up	when	it	moves	down		

202	 I	 OK	why	does	it	speed	up	and	slow	down	when	it	is	moving?	
203	 P	 Because	the	weight	is	greater	than	the	upwards	force	the	tension	
204	 I	 The	wei…	so	is	this	when	it’s	moving	up	or	when	it’s	moving	down?	
205	 P	 Well	when	it’s	moving	up	it	slows	down	because	the	weight	is	greater	

than	the	upward	force	acting	on	it	the	weight	
206	 I	 OK	so	when	does	it	start	to	slow	down	at	which	part	of	its	motion	so	if	I	

release	it	from	the	bottom.	Initially	it	will	start	to	[pause]	it	starts	to	
207	 P	 It	would	[pause]	ss	[pause]	it	would	speed	up	then	slow	
208	 I	 So	up	to	where	does	it	speed	up?	
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209	 P	 Erm	it	would	speed	up	but	when	gets	to	the	equil	equilibrium	point	
that’s	where	it	speeds	up	but	when	it	gets	past	the	equilibrium	point	it	
will	slow	down	

210	 I	 Good	so	in	terms	of	forces	when	I	am	at	the	equilibrium	tell	me	what	
the	resultant	force	is	like	

211	 P	 There	is	no	resultant	force	it’s	balanced	
212	 I	 And	then	when	I	move	below	the	resultant	er	below	the	equilibrium	

point	the	further	down	I	move	
213	 P	 The	tension	in	the	spring	is	greater	than	the	weight	pulling	it	down	so	

that	is	why	it	speeds	up	when	it	gets	to	the	equilibrium	point	but	past	
the	equilibrium	point	the	weight	is	greater	than	the	tension	in	the	
spring	yeah	

214	 I	 So	there	is	a		
215	 P	 Um	
216	 I	 So	at	the	equilibrium	point	is	there	a	resultant	force	
217	 P	 No	but	below	it	there	is	a	resultant	force	upwards	and	above	it	there	is	

a	resultant	force	downwards	
218	 I	 Now	let’s	think	in	terms	of	the	acceleration	so	what	will	the	

acceleration	at	the	equilibrium	position	be?	
219	 P	 It	would	be	zero	
220	 I	 Because?	
221	 P	 Because	there	is	no	resultant	force	acting	on	it	however	below	the	

equilibrium	the	acceleration	would	be	positive	it	would	be	increasing	
because	it’s	moving	it	speeds	up	as	it	goes	but	past	the	equilibrium	
upwards	it	would	slow	it	would	be	negative	acceleration	because	the	
weight	is	greater	than	the	upward	force.		

222	 I	 Good	
223	 P	 That	makes	sense	now	[laughs]	
224	 I	 Good	what	I’d	like	to	do	now	is	go	back	to	last	week	
225	 P	 Mmmhmm	
226	 I	 And	we	looked	at	the	pendulum	
227	 P	 Yep	
228	 I	 Now	are	there	any	ways	in	which	um	those	two	situations	are	similar	

any	ways	in	which	they	are	different	
229	 P	 Um	well	they	are	similar	because	there	is	a	change	in	acceleration	and	

there’s	a	change	in	the	velocity	so	as	[pause]	in	what	sense	do	you	
mean	in	which	ways	are	they	similar	do	you	mean	

230	 I	 Is	there	anything	in	the	physics	between	those	two	version	that’s	
similar	

231	 P	 Well	when	there	both	like	still	not	moving	acceleration	at	equilibrium	
the	forces	are	balanced	on	them	and	the	force	when	they’re	pendulum	
moves	upwards	to	the	side	there’s	a	resultant	force	acting	on	it	which	
causes	it	to	slow	down	as	it	goes	up	and	then	with	the	mass	on	the	
spring	there’s	also	there’s	a	resultant	force	acting	on	it	that	causes	the	
change	in	velocity	um	yeah	[laughs]	

232	 I	 Are	they	particularly	similar?	
233	 P	 I	wouldn’t	say	they	are	that	similar	no	because	
234	 I	 What	makes	them	different?	
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235	 P	 Because	[pause]	this	one	with	the	pendulum	when	the	pendulum	
moves	to	the	side	it’s	the	[pause]	I	am	thinking	now	that	they	would	be	
similar	because	its	there	because	the	resultant	force	decreases	as	the	
pendulum	moves	to	the	side	which	causes	it	to	slow	down	and	with	
this	um	[mass	on	spring]	when	it’s	moving	upwards	[pause]	the	
resultant	force	[pause]	when	it’s	moving	up	to	the	equilibrium	point	
from	here	to	there	the	resultant	force	acting	on	it	upwards	decreases	
as	well	which	causes	a	change	in	velocity	so	yeah	I	don’t	really	know	
[laughs]	I	am	not	very	good	at	explaining	that	one	[laughs]	

236	 I	 Do	how	how	with	that	thought	how	how	similar	do	you	think	they	are?	
I’ll	ask	again	

237	 P	 Erm	I	wouldn’t	I’d	say	quite	similar	
238	 I	 Why	quite	similar	now?	
239	 P	 A	bit	because	it	is	the	change	in	the	resultant	the	resultant	forces	which	

act	which	changes	the	velocity	however	with	this	it’s	the	wait	because	
it’s	the	direction	of	the	resultant	that	changes	this		[mass/spring]	
velocity	where	as	it’s	not	necessarily	the	direction	of	this	[pendulum]	
resultant	force	it’s	the	size	of	the	resultant	force	causing	it	to	

240	 I	 Does	the	resultant	force	change	direction	in	the	pendulum?	
214	 P	 [long	pause]	um	when	it’s	moving	there	it’s	slowing	down	
242	 I	 So	when	you	are	holding	it	to	one	extreme	which	way	is	the	resultant	

force	
243	 P	 resultant	force	well	when	it’s	falling	that	way	resultant	force	is	that	

way	and	when	it’s	moving	up	like	that	the	resultant	force	has	got	to	be	
moving	that	way	so	yeah	it	is	a	change	in	I’ll	just	say	they	are	similar	
[laughs]	

244	 I	 So	we	said	on	with	the	mass	on	the	spring	if	I	displace	it	
245	 P	 Yeah	
246	 I	 I	have	a	resultant	force	which	moves	it	vertically.	Displace	it	down	
247	 P	 Yes	
248	 I	 There	is	a		
249	 P	 Resultant	force	upwards	
250	 I	 Yup	and	how	much	I	displace	it	if	I	double	the	displacement	from	the	

equilibrium	position	I	will	have		
251	 P	 A	double	resultant	force	
252	 I	 Double	the	resultant	force	OK	so	if	I	now	displace	the	pendulum	um	

which	was	is	the	resultant	
253	 P	 Resultant	force	is	[pause]	oh	if	move	it	
254	 I	 Let’s	rotate	it	so	its	easier	to	visualise	[rotates	pendulum]	so	if	I	move	

it	to	the	left	of	
255	 P	 The	resultant	force	would	be	that	way	[indicating	away	from	

equilibrium	position]	
256	 I	 It’d	be	left?	
257	 P	 Yeah,	Right,	left	
258	 I	 In	terms	of	the	equilibrium	position	is	it	towards	or	away	
259	 P	 Oh	away	to	the	left	
260	 I	 So	if	I	let	go	it	will	move	to	the	left	
261	 P	 No	it	will	move	to	the	right	
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262	 I	 Which	way	is	the	resultant	force?	
263	 P	 The	resultant	force	is	to	the	right	
264	 I	 If	I	hold	it	up	here	[out	to	other	side]	which	way	is	the	resultant	force	
265	 P	 To	the	left	
266	 I	 If	I	move	it	if	I	double	the	distance	I	move	it	away	what	will	happen	to	

the	size	of	the	resultant	force?	
267	 P	 It	will	double	so-	they	are	very	similar	yeah	
268	 I	 Why?	
269	 P	 Because	the	further	you	move	the	weight	so	in	this	case	the	pendulum	

in	this	case	the	mass	away	from	the	equilibrium	um	the	resultant	force	
doubles	like	it	increase	in	proportion	to	how	far	it	is	away	from	
equilibrium	so	in	that	case	they	are	similar		

270	 I	 What	would	happen	if	I	I	don’t	know	if	you	can	remember	back	what	
would	the	displacement	time	graph	for	the	pendulum	look	like?	

271	 P	 Erm	the	disp	[pause]	would	it	[pause]	would	it	be	something	similar	to	
the	first	one	about	the	same	

272	 I	 What	would	the	velocity	time	graph	for	the	pendulum	look	like?	
273	 P	 That	would	be	the	same	as	well	and	then	would	the	acceleration	be	the	

same	as	well.	So	yeah	they	are	very	similar	
274	 I	 They	are	very	similar	yeah.	What	underlying	thing	is	causing	their	

motion	to	be	very	similar	
275	 P	 The	resultant	forces	acting	on	them	and	their	[pause]	direction	
276	 I	 So	the	key	fact	is	that	the	resultant	force	depends	on	
277	 P	 The	mass	of	the	
278	 I	 What	does	the	resultant	force	depend	on	
279	 P	 The	dr	what	do	what	
280	 I	 Look	at	your	graph	[indicating	force	displacement	graph]	
281	 P	 Oh	the	displacement	
282	 I	 So	in	both	cases	the	resultant	force	depends	on	
283	 P	 The	displacement	and	how	far	it	is	away	from	equilibrium	
284	 I	 And	in	both	case	the	resultant	force	always	acts	
285	 P	 In	proportion	to	displacement	
286	 I	 And	in	which	direction	so	if	I	displace	it	up	
287	 P	 If	you	displace	it	up	it	will	act	downwards	
288	 I	 And	the	same	in	the	pendulum	
289	 P	 Yep	
290	 I	 So	the	resultant	force	always	acts	back	towards	
291	 P	 The	opposite	direction	
292	 I	 Yeah	or	back	towards	the	equilibrium		
293	 P	 Back	towards	
294	 I	 OK	that’s	interesting.	[pause]	I	think	we	shall	finish	there	
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8.7 Interview prompts 

8.7.1 Sample Semi-structured prompts (Interview 3) 

 
Astronaut Question 

 

 
 

 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
• Review any moments of making sense in previous week 
• Examine mass on spring system- elicit ideas around relationship between force and 
displacement and sketch graph 
• Use datalogger and ultrasounder to plot displacement, velocity and acceleration time 
graphs for mass spring system 
• Ask for explanation of graphs 
• Ask student to draw force diagram 
• Ask for prediction of effect of different displacements on motion of mass and spring 
• Ask student to reflect on similarities and differences between mass spring system 
and pendulum observed in pervious week 
 
 

a) The astronaut below is in space, far from any planets? What will the 
astronaut do? Describe how its displacement, velocity and acceleration will 
change over time? 
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8.7.2 Interview Prompts 

 

(a) Dropped Balls, Interview 1, 15, 22
(Adapated from Epstein, 2009, p. 27) 

(d) Projectiles from a plane, Interview 1, 15, 22
Adapated from Epstein, 2009, p. 133

Two metal balls are dropped at the same time, from
the same height. The balls have the same diameter

but one ball has a greater mass than the other. 
Which option best describes the outcome?

Explain your answer.

a) the ball with greater mass hits first
b) the lower mass hits first

c) the balls hit at the same time

An aeroplane is travelling with constant velocity when
it drops a ball. Which path best describes how

 the trajectory of the ball would look to an observer
on the ground? Explain your answer

A B C D E

(c) Free fall,  Interview 1, 15, 22
(Adapated from Hestenes, Wells & Swackhamer, 

1992, Q3)

A stone is dropped from the top of a building. Which
of the following sentences best describes its

subsequent motion:

a) accelerates then reaches constant velocity
b) constantly speeds up as gravitational atraction

increases as it gets close to Earth
c) speeds up because of constant force acting on it

d) falls because gravity and air resistance push
it down 

(e) Collision,  Interview 1, 15, 22
(Adapated from Hestenes, Wells & Swackhamer, 

1992, Q4)

A lorry travelling at constant velocity collides with
a stationary small car. During the collision:

a) The lorry exerts more force on the car than the
car exerts on the lorry

b) The car exerts more force on the lorry than the
lorry exerts on the car

c) Neither exerts a force, the car is smashed as it
is in the way

d) Only the lorry exerts a force on the car, the car does
not exert a force

e) The lorry exerts the same force on the car as the car
exerts on the lorry 

(b) Balls projected off table,  Interview 1, 15, 22
(Adapated from Hestenes, Wells & Swackhamer, 
1992, Q2)

The two metal balls in the pervious question roll off 
the edge of a table with the same speed. Which option 
best describes the outcome:
a) both balls hit the floor at about the same horizontal 
distance from the base of the table
b) the heavier ball hits the floor at about  horizontal 
distance from the base of the tablethan the lighter one
c) the lighter ball hits the floor at about  horizontal 
distance from the base of the table than the heavier 
one
d) the heavier ball hits closer than the lighter one but
not necessarily half the distance
d) the lighter ball hits closer than the heavier one but
not necessarily half the distance  

A person travels in a lift whilst standing on a set of 
scales. Describe the reading on the scale relative to 
their 'normal' mass in each situation. Label the forces 
that act.

(f) Forces on a person in a  lift, Interview 1, 4, 15, 22
(Adapted from Pople, 1982, p. 27)
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(j) Astronaut in space, Interview 3, 16, 22

The astronaut below is in space, far from any 
planets? What will the astronaut do? Describe 
how its displacement, velocity and acceleration 
will change over time? Sketch a graph of each.

(k) Marble Loop-the-loop, Interview 4

Release the marble and let it run round the loop. 
How can the marble travel upside down at the 
top of the loop? Describe the forces which act on 
the marble.

(l) Swung ball, Interview 4

A child swings a ball on a string in a horizontal 
circle. Explain how the ball can travel in that 
motion. What will happen if the string breaks?

(i) Mass on a spring, Interview 2, 15, 22
Student is shown a mass-and-spring oscilator

The student is given the following prompts:
• Describe the motion of the mass (sketch graphs 
of displacement, velocity and acceleration against
time
• Explain the motion of the mass
• Draw force diagram to illustrate your answer
• Predict what will happen when the mass on the
spring is increased

(h) Forces on a car, Interview 2

a)	Describe	the	forces	acting	on	the	car	when	it	is	
moving	at	a	constant	speed	of	30mph
b)	Describe	the	forces	acting	on	the	car	when	it	is	
moving	at	a	constant	speed	of	70mph
c)	Describe	what	happens	to	the	forces	acting	on	
the	car	when	it	brakes	to	a	complete	stop.	Which	
way	is	the	resultant	force
When	the	car	is	stopped	are	there	any	forces	
acting	on	the	car?

(g) Simple pendulum Interview 2, 15, 22
Student is shown a simple pendulum system

The student is given the following prompts:
• Describe the motion of the bob (sketch graphs 
of displacement, velocity and acceleration against
time
• Explain the motion of the bob
• Draw force diagram to illustrate your answer
• Predict what will happen when the mass of the
bob is increased

,	
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(n) Comparing Currents, Interview 6, 17, 21
(Adapted from Engelhardt & Beichner, 2004, Q8)

(o) Lighting a bulb, Interview 6, 17, 21
(Adapted from Engelhardt & Beichner, 2004, Q9)

In which circuit will the bulb light?

(p) Speed of current, Interview 6, 17, 21
(Adapted from Engelhardt & Beichner, 2004, 

1992, Q11)

Explain why the lights in your home come on almost
immediately

A) Charges are already in the wire. When the switch
is closed there is a rapid rearangement of charge

B) Charges store energy. When the switch is closed
energy is released

C) Charges in the wire travel very fast
D) The circuits are wired in parallel. There is already

current flowing in the wires 

(q) Parallel Circuit, , Interview 6, 17, 21
(Adapted from Engelhardt & Beichner, 2004, Q15)
What happens to the potential difference between 1 

and 2 if bulb A is removed?

(r) Current Ranking, , Interview 6, 17, 21 
(Adapted from Engelhardt & Beichner, 2004,  Q17)

Rank the currents at the marked points from 
highest to lowest

1 2

Compare	the	current	at	point	1	and	2.	
A)	The	current	is	larger	at	point	1	than	pont	2
B)	The	current	is	larger	at	point	2	than	pont	1
C)	The	currents	are	the	same

A B C D

1 2

A) Increases
B) Decreases
C) Remains the same

A

B

3 4

A) 5, 1, 3, 2, 4, 6
B) 5, 3, 1, 4, 2, 6
C) 5=6, 3=4, 1=2
D) 5=6, 1=2=3=4
E) 1=2=3=4=5=6

1 2

5 6

(m) Ball in a bowl, interview 5,15,16, 22
Place the marble on the side of the cooking bowl and

release it-observe the oscilations

Describe the motion of
the ball. Explain its 
motion. Use the 
diagrams to support 
your answer.
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(t) Circuit Connection, Interview 6, 17, 21
(Adapted from Engelhardt & Beichner, 2004, Q19) 

(u) Increasing Resistance, Interview 6, 17, 21
(Adapted from Engelhardt & Beichner, 2004, Q26)

(v) Switch Circuit, Interview 7, 17, 21
(Adapted from Engelhardt & Beichner, 2004, Q29) 

(w) Variable resistor, Interview 7 (x) Potential divider, Interview 7
Simulated using PHET simulation available at:

https://phet.colorado.edu/en/simulation/
circuit-construction-kit-dc 

2

1

A	wire	is	connected	between	points	1	and	2.	What
happens	to	the	brightness	of	bulbs	A	and	B?
A)	Increases		B)	Decreases
C)	Stays	the	same		D)	A	becomes	brighter	than	B
E)	Neither	bulb	will	light

A

B

AB C

If	resistance	C	is	increased,	what	happens	to	the
brightness	of	bulbs	B	and	C?

A)	A	stays	the	same,	B	dims
B)	A	dims,	B	stays	the	same
C)	A	and	B	increase
D)	A	and	B	decrease
E)	A	and	B	remain	the	same

What happens to the brightness of bulbs A and B
when the switch is closed?

B

A
C

A)	A	stays	the	same,	B	dims			B)	A	brighter,	B	dims
C)	A	and	B	increase			D)	A	and	B	decrease
E)	A	and	B	remain	the	same

•	What	happens	to	resistance of	the	resistor	
when	slider	is	moved?
•	What	happens	to	current	in	the	circuit	at	A?	at	
B?
•	What	happens	to	the	P.D. across	resistor?
•	What	happens	to	the	EMF	across	the	battery?

A B
100	ohms100	ohms

12V

Predict	the	potential	difference	across	each
resistor
What	is	the	general	rule,	if	the	resistances	and
the	EMF	change?

(s) Circuit Comparison, Interview 6, 17, 21
(Adapted from Engelhardt & Beichner, 2004, Q8)

Circuit	1
A

Circuit	2
B C

Compare	the	brightness	of	bulbs	A	and	B	with	bulb
C.	Which	bulb	or	bubls	is	the	brightest?

A)	A		B)	B		C)	C		D)	A=B		E)	A=C
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(z) Bird on Bulb, Interview 8
(Adapted from Epstein, 2009, p. 409) 

(aa) Two birds on a wire, Interview 8
(Adapted from Epstein, 2009, p. 411)

(ab) Switch Circuit, Interview 8
(Adapted from Grimvall, 2007, p. 32) 

(ac) Potential Difference, Interview 8 (ad) Internal Resistance, Interview 9
Simulated using PHET simulation available at:

https://phet.colorado.edu/en/simulation/
circuit-construction-kit-dc 

When	the	switch	is	closed,	will	the	bird	get	a
shock?	Explain	your	reasoning.

When	the	switch	is	closed,		does	either	of	the	birds	
get	a	shock?	Explain	your	reasoning.

Switch	B

Switch	A

Which	bulbs	light	when:	a)	no	switches	are	closed;
b)	A	only	is	closed;	c)	B	only	is	closed;	d)	both	A	
and	B	are	closed?

Choose	two	points	where	a	voltmeter	may	be
connected	to	give	a	reading	of	zero	volts

What	is	the	potential	difference	across	the	100Ω?
Why	is	it	less	than	6V?

1 2 3

12V

10KΩ 20KΩ 3KΩ 20KΩ 3KΩ 10KΩ

10KΩ 56KΩ

33KΩ 33KΩ

10Ω

100Ω

6V

(y) The motor lifiting a load, Interview 7
A motor lifts a load attached to it by a string

How will the potential difference and current
measured on the meters shown be different when

a heavier load is lifted? Explain your answer.

V

A
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(af) Wheatstone Bridge Circuit, Interview 10
Simulated using PHET simulation available at:

https://phet.colorado.edu/en/simulation/
circuit-construction-kit-dc 

(ag) Ball thrown vertically, Interview 11 (ah) Bag in braking car, Interview 12

(ai) Leaping from a crouch, Interview 13 (aj) Weightlessness, Interview 14 

Watch the following clips of astronauts:

[Astronauts on space station]
https://www.youtube.com/watch?v=QF2w2Dx_QMs

[Astronauts on training aircraft]
https://www.youtube.com/watch?v=2V9h42yspbo

The state of the astronauts is sometimes
described as 'weightlessness'. Why are they 

'weightless'? Are the two situations the same? 

Predict the potential difference when:
R1=10Ω, R2=10Ω, R3=10Ω, R4=10Ω
R1=10Ω, R2=20Ω, R3=10Ω, R4=20Ω
R1=50Ω, R2=50Ω, R3=50Ω, R4=50Ω

A ball is thrown vertically. Describe its motion
and label the forces at the points on its flight

A girl crouches down and leaps into the air. Explain 
how she is able to jump above the ground.

R1 R3

R2 R4

V

Ω

A shopping bag rests on a car seat. The car
brakes. Describe and explain the motion of 
the bag.

(ae) The capacitor and potential difference,
Interview 9

A
a

b

V

Move	the	switch	from	a	to	b.
Describe	what	happens	to	the	potenital	difference
and	current	(sketch	a	graph).
Explain	your	observations.
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(al) Potential Energy, Interview 18

(am) Circuit Problem, Interview 18

(an) Capacitor and Burette, Interview 18
(Adapted from Taber, 2007, p. 40) 

(ao) Sequence of circuits, Interview 19

Calculate the p.d. across each resistor

1

Describe how the potential energy of an 
electron varies as it passes round the circuit.

CA B

12V

2 3 4
12V

A
a

b

V

Predict the shape of current and p.d. against 
time graphs and explain.
Predict the shape of volume against time 
graph for burette.
Compare to data and reflect on differences.
Discus similarites between contexts.
Draw a concept map of each scenario.
Draw links between the two maps to show
similarities between the situations.

A)

100	Ω

12V

100	Ω100	Ω

100	Ω

12V

100	Ω

100	Ω

100	Ω

12V

100	Ω

100	Ω

B)

C)

E)

12V

D)

100	Ω

100	Ω

CA B

12V

Find the potential difference across bulbs A, B, C
and D

(ak) Sliding wire potentiometer, Interview 17

A

100Ω ??? Ω

Bare wire attached to
meter ruler

Crocodile
Clip

6V

Move the wire till the Ammeter reads zero amps.
What can you deduce about the unknown resistor?
Explain your reasoning

D
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(ap) Circuit Problems, Interview 20 (aq) Circuit with two sources of EMF,
Interview 21

12V
A)

100	Ω

100	Ω

12V
B)

100	Ω

100	Ω

100	Ω

12V
A)

100	Ω

100	Ω

100	Ω

100	Ω

9V

10	Ω

10	Ω

15V
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8.7.3 Card Sorts 

8.7.3.1 Situation card sort 

Sort these questions into groups you think are similar. Describe what makes the 
groups similar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

A) A ball rolling down a slope 

  

F) A parachutist in free-fall 

  
 

E) A book at rest on a table 

 

D) A car driving along at 
constant speed 

 
  

C) A tennis ball thrown 
upwards 

 

  

B) The Earth orbiting the sun 
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8.7.3.2 Problem card sort 

Sort these problems into groups you think are similar. Describe what makes the 
groups similar. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A) A coin is dropped from a tower of height 100m. Calculate how long it will take 
to hit the ground. Ignore air resistance and assume g=9.8N/Kg 

B) A car’s engine develops a thrust of 2000N. As it drives along a road, a force due 
to air resistance of 500N and of friction of 1500N act. The car’s initial velocity is 
20m/s. How far will it travel in 10 seconds? 

C) A ball is placed on a slope of angle 30° to the horizontal. The slope is 2m long. 
How long will it take the ball to run down? Ignore air resistance and assume 
g=9.8N/Kg 

D) An electron is placed in an electric field that causes it to accelerate at 1.2x10-30 
m/s/s. How long will it take to travel one meter? 

E) A thrust force of 5000N causes a jet-ski to travel at constant velocity of 15m/s. 
What distance will it cover in 1 minute? 

F) A sprinter runs at 8.2m/s how long will it take them to cover 50m? 

G) A projectile is fired from the ground at 10m/s at an angle of 30°	to	the	
horizontal.	What	horizontal	distance	will	it	travel	from	its	starting	point? 
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8.7.3.3 Causality Card sort 

 
Place the concept cards below along the continuum of cause and effect below. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Displacement 

Velocity 

Force 

Acceleration 

Mass 

Time 

Weight 

Momentum 

Energy 
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Cause 

Effect 

Both cause and effect 

Neither 
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8.7.4 Personal epistemology prompts 

 
Prompts are taken from (Adams, Perkins, Dubson, Finkelstein, & Wieman, 2005). 
 
To what extent does the statement describe your attitude to learning about physics? 
 
Q11	 	I	am	not	satisfied	until	I	understand	why	something	works	the	way	it	

does.	
Q13	 	I	do	not	expect	physics	equations	to	help	my	understanding	of	the	ideas;	

they	are	just	for	doing	calculations.	
Q23	 	In	doing	a	physics	problem,	if	my	calculation	gives	a	result	very	different	

from	what	I’d	expect,	I’d	trust	the	calculation	rather	than	going	back	
through	the	problem.	

Q24	 	In	physics,	it	is	important	for	me	to	make	sense	out	of	formulas	before	I	
can	use	them	correctly.	

Q32	 	Spending	a	lot	of	time	understanding	where	formulas	come	from	is	a	
waste	of	time.	

Q36	 	There	are	times	I	solve	a	physics	problem	more	than	one	way	to	help	my	
understanding.	

Q41	 	It	is	possible	for	physicists	to	carefully	perform	the	same	experiment	
and	get	two	very	different	results	that	are	both	correct.	

Q42	 	When	studying	physics,	I	relate	the	important	information	to	what	I	
already	know	rather	than	just	memorizing	it	the	way	it	is	presented.	
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8.7.5 Student’s pre-drawn concept map 

Look at the concept map drawn by a student. Are there any changes you would make 
to the map? Explain your reasoning 
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8.7.6 Causal links between electrical concepts 

 
Use arrows to indicate the relationships between causes and effects. Arrows should 
start at a cause and point to an effect. 
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8.8 Coded transcripts 

8.8.1 Codes related to causality 

8.8.1.1 Codes related to causality in Ben’s transcripts 

 
Session; 
utterance 

Utterance Code 

6; 32 Yes sir um I think I would link current and charge because I think 
they’re directly proportional because if you’re going to have a 
greater charge the they’ll be more charge passing a fixed amount 
of time and so the current would increase um as I think one amp is 
actually one coulomb over 

Symbolic 

6; 32-34 would increase um as I think one amp is actually one coulomb 
over One coulomb per second 

Symbolic 

6;38 I think that they oppose each other because if you have the same 
amount of potential difference but more resistance then it would 
be harder for the current to get through but if you’ve got the same 
current and you increase the potential then you decrease the 
resistance providing the temperature isn’t changing um [pause]  

Symbolic 

6; 38 I think I would link current with potential difference because of 
Ohm’s law that the current is directly proportional to the voltage 
across a conductor provided the temperature remains constant um 
[pause] 

Symbolic 

6; 38 I think in the same way that potential difference and resistance 
oppose each other current and resistance oppose each other ‘cos if 
you have more resistance then the electrons are going to have a 
lower average drift velocity so the current is going to be less 
[pause] I think that’s most of it 

Sub-microscopic 

6; 58 I think that point will probably have a lower current because one 
amp is one coulomb per second  

Symbolic 

6; 58 and if it’s passed through a filament with resistance then it will 
have a lower velocity when it reaches point one so it will have a 
lower drift velocity so the current will be less 

Sub-microscopic 

6; 94  [reading] um [pause] on display um [pause] [indistinct] um I think 
both one and two will increase because no will it no [pause] I 
correct I think they will stay the same because you’ve got the 
same you’re pushing the electrons by the same amount you’re 
going to have more electrons through point one and two but 
they’re not necessarily going to be travelling any faster than they 
were originally  

Sub-microscopic 

6; 94 so it’d be the same amount of coulombs per second so it would 
stay the same 

Symbolic 

6; 128 current should split evenly because you have equal resistance on 
the branches and so using that mode [pause muttering] so I think 
D is the right answer 

Symbolic 

6; 130  [reading] I think bulb C will be brightest um I think less because 
you’ve got more current so in a fixed amount of them you’ve got 
more electrons passing through the filament at point C and 
because of that you’ll have more collisions and more energy will 
be transferred to the ions and so the temperature will and due to 
the photoelectric effect light will be emitted 

Sub-microscopic 

6; 132 Because is it because the current splits at the junction for A and B 
while here the series it’s a series circuit so the current hasn’t split 
at any point 

Macroscopic 

6; 138 So both bulbs will stay/ I think because although you’re giving 
another route for the electricity to flow [pause for talking in 
background] shall I carry on? 

Macro 
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6; 140 Yes I think that because although you’ve got more than one route 
the current if the resistance of the wires is equal will halve at that 
route and so effectively you’ve got the same current going to 
points two and one as before it’s just the current along each route 
is halved the original value 

Macroscopic 
Symbolic 

6; 148 I think A will stay as bright because the it hasn’t reached the new 
resistance yet because it will pass point C after point B so point B 
brightness will stay but then the resistance at point C would 
decrease the current so bulb A will be less bright  

Macroscopic 
Symbolic 

6; 152 A will be less bright because you’ve slowed down the electrons so 
less electrons is reaching the bulb second so they’ll be less 
collisions less light energy emitted while the bulb B will stay the 
same brightness because it hasn’t yet reached the resistor so if you 
change the resistance the bulb B will have the same brightness 

Sub-microscopic 

6; 154 I think that bulb A would have the same brightness because the 
current will converge at the end of the junction and so the current 
reaching A will be the same no matter what route the current takes 
through B and C um I think B will be less bright because it opens 
up a new route by closing the switch so half as much current will 
flow through B as before so it would be half as bright and I think 
brightness well originally it wouldn’t have lit up but now it will be 
much brighter because you allows the current to flow through 
point C so there’s no longer a gap in the circuit 

Macroscopic 

7; 40 Because you have twice the resistance there so it’s going to use 
two times the amount of energy to get through per coulomb but all 
of it has to add up to nine so that we get two thirds of nine that’s 
one third of nine 

Symbolic 

7; 74 Will the [pause] current become [pause] three no will it be if it’s 
going down then it will be three times as much but if it’s going up 
then will it be a third ‘cos the motor is probably going to turn 
slower because there is more mass on the string which will 
generate 

Macroscopic 

7; 80 Because um is it because the same of electricity has to pull up 
more weight so it’s going to so the turns going to be turning less 
fast and so the current’s going to be less 

Macroscopic 

7; 96 More Oh it has to do more work so there’s going to be more 
coulombs passing it second because more work needs to be done 
so the current’s going to increase 

Symbolic 

7; 100 Will that also yes I think that will also um increase because more 
work is needed to be done so more energy will need to be 
transferred and because one volt is one joule per coulomb the 
voltage will be higher 

Symbolic 

7; 114 So more work is having to be done but if the but would the current 
compensate for the work um is it because [pause] we’re using the 
same supply so it’s only going to be giving the same EMF and the 
work being done that only increases because the current increases 
and so the voltage can remain the same 

Symbolic 

7; 124-126 W is equal V Q oh is it because the work no but the work being 
done has increased as well um / Yes and the charge transferred is 
more [pause] the for the voltage to decrease the charge coming 
must be greater than the increase in the time um [long pause]  

Symbolic 

7; 152 Is it because the wire is heating up at a greater extent ‘cos the 
current is increasing so more electrons are flowing through and so 
the ions are vibrating and so they are going to have to push 
through harder to pass though the wire and so the actual amount of 
potential difference that reaches the motor is less 

Sub-microscopic 

8; 30-32 Um is it the work done by the electrons when they transfer energy 
from electrical to other forms um the potential um depends 
generally on the resistance but also the EMF due to Kirchhoff’s is 
it Kirchhoff’s second law / Um I think that’s [pause] it also 

Symbolic 
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depends on the current and the potential difference can also be 
used to then measure the power because it’s the current times by 
the potential difference um it’s the potential difference that causes 
things to get hot and emit light and usually there’s a lot of 
potential difference so things like lamps aren’t very efficient 
because so little energy is actually transferred as light most is 
transferred as heat um [pause]  

8; 48 Yes because the here’s a high resistance so the electricity is likely 
to pass through the bird and also there would be a lot less current 
passing through to the other side of the bird because they’d be lots 
of potential difference here [the bulb] so the actual current 
reaching the bulb the bird at this point [right foot of bird on bulb] 
will be low 

Symbolic 

8; 98 [pause] I think they will all light but bulbs one and two will be 
dimmer because the current would have split between the 
junctions and bulb three will remain as bright because the current 
when it when the junction ends meets together and so the current 
reaching bulb three will be the same 

Macroscopic 

9; 72 Um will the current decrease because if you close the switch then 
what assumably [sic] would happen is the electrons would um the 
metal wire would heat or that metal plate would heat and so the 
electrons  feed through the circuit from this plate to the battery 
should be gradually decreasing in general 

Macroscopic 

9; 94 Um [pause] will will the current decrease because I’m assuming if 
you’re putting more electrons onto the plate then it general 
positive charge would decrease so there would be less pull of the 
electrons and so the electrons will accelerate less and therefore 
have a lower velocity when they reach the metal plate 

Sub-microscopic 

9; 98 Because at first [indistinct] at fist you the because sorry because 
the um charge is decreasing the force decreases and so the current 
will decrease and its not necessarily constant because the more 
electrons you have the less force you will have and so the current 
because the force will be decreasing over time we’ll get less and 
less and les but by smaller and smaller amounts 

Sub-microscopic 

9; 124 Because you’ve got a because charge is moving and as charge 
builds up the actual difference between them in terms of the 
energy will increase because yes you’ve got more charge 

Sub-microscopic 

9; 132 Because because as because the charge difference increases and so 
the well the difference between the plates should increase and as 
the electrons are moving  in roughly the same pattern as here 
[indicating current graph]it should be the inverse to the graph of 
the current and the inverse graph should look like this 

Sub-microscopic 

9; 144 I think because if there’s no current and supposedly you have still 
resistance then the potential difference must as some point be zero 
due to Ohm’s Law 

Symbolic 

9; 184 Because at that point the electrons are stationary because there’s 
two high negative charges when more negative to go onto the plate 

Sub-microscopic 

9; 188/190 Um [pause] when the current is zero amps the potential difference 
is at it’s maximum and when the current is decreasing the potential 
difference is increasing/ Um is it because this particular the 
resistance of that [capacitor] as the current as the time increases 
the resistance increases to a degree 

Symbolic 

10; 66 Um I begin with Ohm’s law because I think that summarises the 
main parts of electricity the resistance current and the voltage and 
then I think I would link the resistance to the internal resistance 
caused by the battery [pause] and then I think I would link the 
internal resistance back to the terminal potential and the internal 
so the terminal potential difference 

Macroscopic 

17; 168 Because you’ve got more er here the potential difference or the 
voltage itself splits across the junction rather here all of the energy 

Macroscopic 
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of each coulomb is used to get past the bulb 
17; 184-
186 

I think I think the answer is D because one two three and four 
must all be equal / Because you’ve got the same resistance and 
voltage and five and six there isn’t any resistance essentially 
between them is we’re assuming the battery doesn’t have any 
internal resistance 

Symbolic 

17; 225 Because the I think the main idea is if you’re going to if you’re 
going to have more current you’re going to have more electrons 
passing and if you’ve got um and so the voltage would then 
increase if R remains constant 

Symbolic 

17; 233 Um and then the resistance I won’t link that with current first 
because if you haven’t got any resistance irrelevant to whether 
you’ve got a current or not you won’t have any voltage 

Symbolic 

18; 30 [pause] I think er one thing about is it is can be alerted so you it 
can unlike some things like energy etcetera it can change its value 
when it goes through a resistor  

Macroscopic 

18; 58 Um [pause] is it um the energy the chemical energy that is given 
by the battery 

Macroscopic 

19;20-22 Is it um the electrostatic repulsion between charges/ Um energy 
transferred from the battery 

Sub-microscopic 

19; 30 Um [pause] when a material has some resistance casing the 
electrons to lose kinetic energy 

Sub-microscopic 

19; 38-46 is it something impeding the movement of electrons/ It causes 
them to lose energy /And therefore the current stays down because 
they can’t move as fast through it 

Sub-microscopic 

20; 43-46 So maybe just write on there to make it clear maybe R are you 
saying R causes p.d.? Yes OK can you tell me a bit me a bit about 
that? Because electrons only transfer energy they need to push 
through something which uses up their kinetic energy in some way 

Sub-microscopic 

20; 50 And potential difference can’t cause resistance ‘cos it the they’re 
still potential for resistance even if you don’t have any current 
going through it 

Symbolic 

20; 64-66 I think [pause] in combination with current and potential 
difference in some cases…might cause resistance 

Symbolic 

20; 82-84 I think [pause] EMF [pause] causes current because it’s the initial 
that provides the energy…Oh [pause] I think if more [indistinct] 
[pause] EMF to some extent causes the potential in the sense that 
if you vary the EMF you will change the potential difference 

Symbolic 

20; 91-92 So does changing potential difference alter the EMF? Um [pause] 
across an entire a circuit yes if you were just going to change on 
component it would therefore just change the potential difference 
of another 

Macroscopic 

20; 164 There’s a gap in the circuit allowing the electrons to move  Macroscopic 
20; 164 so the new battery provides kinetic energy and then the electrons 

travel though the path and then they can breach the gap and so 
they carry on going and then they transfer energy until the energy 
turns into heat os the current well should temporarily decreases 
but by a tiny amount and then 

Sub-microscopic 

20; 165-
166 

Why does the current decrease? Because I think because they 
transfer some energy to the bulb they should be moving slower 

Sub-microscopic 

20; 178 There’s a chemical reaction going on I think with lithium and acid 
and that provides some chemical which the electrons receive but 
then they have to use some energy to get past all the reactions and 
molecules and so when they exit the terminal is greater than zero 
but small enough general to discard 

Sub-microscopic 

20; 198-
200 

And then I remembered that the electrons are just going to go well 
hopefully they’re just going to go in one direction …And so 
they’re going to transfer all of their energy 

Sub-microscopic 

21; 332- OK what causes this to exist when do we get a current? Symbolic 
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333 Um when a [pause] potential [pause] applied across a point 
21; 335 Um oh when sorry electrons um [pause] I suppose it would well 

occasionally that doesn’t always happen electrons move through 
material [pause] plus transfer energy [pause] and then in 
processing of moving they have to transfer energy  

Sub-microscopic 

21; 336 Um so [writing] It think the best word is blockage so um ions Sub-microscopic 
21; 391-
395 

Um [pause] wait yes and let if you got the upwards thing 
resistance I think most of these yes providing the other two remain 
the same /  with potential difference if you have the same sources 
the same EMF well if you have the same EMF then yes definitely / 
And through a particular component it would depend on the total 
resistance across the whole circuit 

Symbolic 

21; 557 and so they’re going to effectively move slower and because 
they’re moving slower the current would decrease meaning the 
resistance across the component would I mean the potential 
difference across the component would decrease 

Symbolic 

 
 

8.8.1.2 Codes related to causality in Charlie’s transcripts 

Session; 
utterance 

Utterance Code 

6; 38 Er potential difference links to current because that gives the 
amount of I dunno if power is the right word but power for the 
current the amount of voltage for the current to go round 

Symbolic 

6; 42 current would link to resistance because resistance would be 
acting against the current er to slow it down um  

Symbolic 

6; 42 er potential difference would be linked to resistance erm because 
[pause] potential difference has got to be more than the resistance 
for there to be a current so it’d class as a link 

Symbolic 

6;44 Er then there wouldn’t be a current because the resistance would 
just stop it  

Symbolic 

6; 54 Erm charge goes through the light and then friction cause friction 
and then that’d I’m not sure ‘cos I think it would convert as well 
but that answer just doesn’t seem 

Macroscopic 

6; 62 [pause] because [pause] it’s um it’s a series circuit and so every 
point would be er equal current 

Macroscopic 

6; 82 Um because the some of the current is pushed er in the parallel so 
that’s where A is but if it’s it’s not more current would be pushed 
er into series so then B would increase 

Macroscopic 

6; 84-86 Yeah the voltage would there’d be more voltage to go to it so  / So 
it would be lighter 

Symbolic 

6; 94 ‘Cos it’s in  series and tht’s parallel [indicating 1 and 2] so more er 
coulombs would go through the shorter route 

Macroscopic 

7; 101-104 The current will decrease?/Yeah/Um why?/Because it’s more 
heavy so the voltage going stays the same so that so like a resistor 
I think 

Macroscopic 

7; 126-128 Um [pause- sound of motor] is it ‘cos more is needed to lift er the 
weights / So it’s going to be more 

Macroscopic 

7; 130 Er because this [indicating masses] is against the current more 
current is going to have to be needed so it can pull up the weights 

Macroscopic 

7; 142 Er [pause] because er [pause] more volts is gonna er be needed to 
[pause] put the um go into the current er to lift the weights 

Macroscopic 

8; 90-92 And one would be dimmer erm two would be dimmer three would 
be brighter/ Um because current splits so one current splits at 
switch A 

Macroscopic 

8; 125-127 Oh why there why do you think that will be zero? / ‘Cos there’s 
more it’s a bigger er resistance than the voltage going in  

Symbolic 
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9; 90-92 Um because the current would decrease as time goes on ‘cos of 
the gap/Why would the gap cause the current to 
decrease?/Because all the electrons would er would slow down 
and some of the electrons wouldn’t go though the circuit 

Sub-microscopic 

9; 95-98 Would get to zero? Would it/ Only if [indistinct]/ Sorry?/ Only if 
the battery ran out but it wouldn’t do that in the time 

Macroscopic 

9; 103-104 Ok um what what would let the current keep flowing? / Um 
[pause] the battery 

Macroscopic 

9; 116 Um [pause] because the current would go down so the p.d. would 
also then increase and then level off because the current would as 
well 

Symbolic 

9; 118 Er how much goes through the circuit so the amount of p.d. 
depends on the er circuit going round the amount of er voltage 
going round er the circuit 

Symbolic 

9; 124 Because [Teacher asks questions] there would be more resistance 
acting against the current so the current would slow down and then 
it would slow down so it would [Teacher asks questions]  

Symbolic 

10; 32 Because the cell produces the voltage and the voltage is the same 
as p.d. um [pause] er current and cells ‘cos a cell um [pause] 
produces the power power for current 

Macroscopic 

10; 38-40 Er [pause] current and er parallel and series / Because a current 
can go to parts of erm[pause] a circuit whether its parallel or series 
um the electron charge [pause] um [pause] can link to current er 
because of the [pause] I can’t remember what equation it was N A  

Macroscopic 

17; 96 Because it’s a series circuit and it’s the only bulb and with circuit 
one there’s a parallel so the current splits 

Macroscopic 

17; 121-
124 

Why why does most go through three and four/ Because it is the 
shortest/ Yep / Um distance from Y from the bulb 

Macroscopic 

17; 162 Mmm can I pout like tri these three are all linked because in V 
equals I R the equation er changing one of these would have an 
effect on the others as well so they would all link 

Symbolic 

18; 30 [Of resistance] Um it er [pause] it lowers the amount of current 
around a circuit 

Symbolic 

18; 36-38 [Of resistance] Or [pause] like slow it down how fast it is/ How 
fast the energy?/ Er is used 

Symbolic 

18; 194 So then at the start there’s high repulsion so it would be a quick 
current 

Sub-microscopic 

19; 17-24 Good the next row is what causes there to be a current? / Um 
[pause]/ Why do currents flow what makes them flow?/ Er 
because charged particles er travel in a general direction/ What 
makes the charged particles move?/ Um er their repulsion/ Yeah 
what what repels them?/ Er everything that has er the same charge 
/ Yeah/ So they repel each other as well 

Sub-microscopic 

19; 29-32 So if we had to think about in a battery why does charge flow out 
of one end why are electrons given off from one end of the 
battery?/ Because er they’ve got different charges on both sides of 
the battery/ Yeah/ So the negative would go come out of the 
positive 

Sub-microscopic 

19; 35-50 To the positive yeah nest why do we get potential differences in a 
circuit what causes there to be a potential difference?/ Erm can I 
say if it’s parallel/ Yeah /That’s used [writing]/ Could you give me 
an example of how  [pause] that works?/ Erm so [coughs] if there 
was [coughs] in [pause] er series you measure it from before a 
bulb and after a bulb /Yeah /Er some of the charge is used for the 
bulb /Yeah /So then they’ll be less voltage voltage read  / Yep / So 
then they’d be a er potential difference Across Between between 
the two points / Yeah/ and Across the battery 

Macroscopic 

19; 56-58 Erm [pause] done this the other day er it’s they split the amount 
/Right/ I think the closest loop gets more 

Macroscopic 
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19; 63-68 No no I’ve got that on form the conversation great and lastly what 
causes resistance? What causes things to have resistance? / Er the 
temperature of a wire /Yep/ And internal resistance and er we 
calculate from a V=IR / Yeah /Sometimes 

Macroscopic 

20; 37-54 Um resistance is a cause of potential difference / Give me an 
example/ Um so there’s a cell  / Yeah/ With six volts and um 
[pause] in a there’s a component with er three ohms maybe /Yes/ 
Three ohms? Say ten then ohms er if you [pause] I just making 
things up on the spot erm / So you’re saying would that resistance 
or  / The um [pause] if there was more resistance in a current then 
there’d be a bigger p.d./ Mmmm /Er because voltage would be 
lowered by the resistance /So voltage would be lowered by the 
resistance? /No it won’t [pause] it would it would lower the 
current /Yeah/ Of the voltage getting to that part of the circuit Yes 
/So then there would be a bigger potential difference and lower if 
there’s lower resistance/ So less current would give more potential 
difference at that point? /Yeah 

Symbolic 

20; 56-62 [pause] resistance would cause current /How does resistance / Or 
not qu like cause a certain current like not the actual current but 
like like effective / So you’re saying if I have a hundred ohms I 
get current x if I double it I halve the current kind of idea? / Yeah 
that kind of thing / So the amount of resistance affects the amount 
current in a circuit / Yeah 

Symbolic 

20; 80 And say if there’s a um [pause] increase of resistance you could 
say using V equals I R there is a decrease in current 

Symbolic 

20; 128 Oh OK could you say the EMF causes the p.d. because that’s got 
to be the same 

Symbolic 

20; 158-
160 

And then because there’s that when you touch it  Yeah It allows 
the coulombs to go across the switch 

Macroscopic 

20; 216-
217 

What makes them move? / ‘Cos they’re negatively charged and 
they come yeah so they have repulsion between each other and 
they have a general direction where they flow 

Sub-microscopic 

21; 8 Er these three [current, voltage, resistance] because they’re in the 
same V equals I R 

Symbolic 

21; 104-
106 

Erm [pause] to [pause] current er there’s nothing like resistors to 
change / But there’s nothing really to [pause] erm the voltage stays 
the same er and that’s a constant resistance so they’ll be no change 
in the amps 

Symbolic 

21; 118-
120 

Er because a bulb charge is carried through the bulb so it doesn’t 
affect the current / And with resistance it would slow down the 
current  

Macroscopic 

21; 124-
126 

Because resistors are made to slow down or act against / Yeah/ A 
current 

Macroscopic 

21; 182-
183 

Er because the [pause] the current has to split and three and four is 
closest to the cell so that would have more than one and two / 
Yeah  How does distance affect it? /Er current wants to go shortest 
route 

Macroscopic 

21; 227-
235 

Can I say it’s like a force? /Yeah /[pause writing] /So that says 
force like acts against current  / it’s /in the circuit/ It’s force like / 
But not a real force? /No So acts like a force 

Sub-microscopic 

21; 246-
251 

Ok um when do I get current what causes a current to flow?/ 
[pause] when there’s charge in a circuit /Yep/ So [pause to write]/ 
Would it automatically flow if there’s charge?/ Er yeah if it’s all 
closed 

Sub-microscopic 

21; 256-
259 

And [pause] what causes objects to have resistance /Would that be 
like heat? / Is heat the only thing?/ No er [pause] heat be [pause] I 
can’t think what else would go for resistance [pause] erm 

Macroscopic 
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8.8.1.3 Codes related to causality in Daniel’s transcripts 

Session; 
utterance 

Utterance Code 

6; 30 Resistance is urgh resistance is something that resists the current 
basically so like something that’s in a way slowing down the 
current for some reason in a way  

Symbolic 

6; 44-46 It would have a certain amount of volts is that how much the cur 
not the current ‘cos there’s ‘cos what miss was showing us is that 
if in a circuit there’s like six volts from the from the er battery/ 
Means that six joules is going through I think it’s joules I can’t 
remember I think it’s six joules is going through the circuit 

Symbolic 

6; 54-60 OK um resistance links to current because um resistance resists 
the current and the current is trying to get through the resist so if 
there’s a resistor the current is trying to get through it so that that 
links together then er charge links to current as well because 
current is the rate of flow of charge/ And the um charge no [pause] 
er resistance links to potential difference similar to how what I 
was saying before I don’t know how to word it exactly so it’s like 
if there’s two resistors in a circuit um the resistance [pause] does it 
halve the potential difference?/  So that links together there. 
Current hmmm [pause] I’m not quite sure how the rest link to 
potential difference/ Er [pause] yeah charge and resistance in a 
way because er the resistance is trying to resist the current and the 
current is the rate of flow of charge so resistance in effect is trying 
to resist charge as well  

Symbolic 

6; 104 er would it increase because it doesn’t have to share it with bulb A Macroscopic 
6; 112-114 In circuit two because its on its own/ And I think in circuit one 

bulb A’s going to be brighter than bulb B because it’s in parallel 
so does that mean that er more goes more voltage or current goes 
through A than it does in B 

Macroscopic 

6; 122 Because it’s on its own but its either these two [A,B] will either be 
the same or one will be brighter than the other 

Macroscopic 

6; 132 Is it because if the [pause] it’s coming through this was [from 
negative terminal] would it have already gone through here [A,B] 
and used up by the two bulbs  

Macroscopic 

6; 138- 
140 

Is it because its already gone through A and there’s nothing lie 
blocking nothing like resisting the current through A/ Until it gets 
until it comes back out of A and the resistances resisting against 
the current that wants to get to B 

Macroscopic 

7; 6-10 If you increase the resistance [pause] does the current go up?/ 
Why would/ I am just thinking because if it’s R equals V over I/ 
Yep/ To get I you have to times R by V so and it’ll give you a 
bigger number than it would 

Symbolic 

7; 18 Um would it be like the amount going in is used up by the resistor 
then there’s nothing coming out till it goes back to the cell and 
picks up more 

Macroscopic 

7; 50 Um there’s more like the resistor is resisting the the er current 
that’s going through so not all of it is going to go through as easy 
as it would ifn the resistance was lower 

Macroscopic 

7; 116 Um basically it [pause} I worked out that you can just find the 
ratio of it and then all you do is divide it by what goes how many 
times they all go into each other basically  goes into each other 
three times so you just divide ten by three  

Symbolic 

7; 132 Mmmm [pause] is it ‘cos it has more [pause] ‘cos it’s like using 
more power to lift it up so there’s more like [pasue] there’s just 
more current because then if the current was the same it wouldn’t 
be able to lift it up as it would last time so it needs more power 
basically I think 

Symbolic 

8; 2-4 Um potential difference is measured in volts/ Um is it the driving Symbolic 
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force behind the current 
8; 16-20 Is it because it’s [the bird] like stopping the current from going 

through and has to go through it and then by the time it gets to 
here [bird on wire] there’s no current because it’s all in/ Stopping 
it from going to the bulb so the current has to go through this bird 
first then as it by the time it’s gone through there’s no more 
current left 

Macroscopic 

8; 38 ‘Cos the circuit if it’s like closed here [switch A] then it’s got um 
a way to go through here [switch A] and as it’s coming up there’s 
one here [junction between 2 and 3] I’m not sure whether it will 
split but because this is not open [Switch B] this [bulb 3] wouldn’t 
turn on 

Macroscopic 

9; 34 Is it because not as much er  of the current is going through 
because the resistance inside the battery is a lot already and then 
by the time it gets to er the resistor there’s not nine volts of like 
potential difference there basically I don’t know how to explain it 
but  

Macroscopic 

9; 62-64 Would it start off like high and then once it reaches the plate 
would it go lower because it’s not going directly through it has to 
like  go electrons have to transfer from one plate to another / Then 
into the circuit 

Sub-microscopic 

9; 70-76 Is it because it’s just flowing freely until it gets to that point 
[positive side of capacitor]/ And then it’s like slowing down 
because it the it’s starting to charge the metal plate I think it would 
just I think it would just move slower than/ Than it would 
normally/ Mm I’m not sure would the is the metal plate acting sort 
of like a resistor 

Sub-microscopic 

9; 82 Mmm um is it because [pause] when it when the electrons touch 
the metal plate is it like ‘cos it’s building up and erm so the 
current that would go is getting lower ‘cos there’s already charge 
on the metal plate and over time the is it like the plate has too m 
like in a limit of charge kind of thing and that’s when it starts to 
plateau out  

Sub-microscopic 

9; 100- 102 Er I think it’s like similar to the the current one but ‘cos um the 
circuit not like connected it’s like being blocked by the metal sheet 
so the the voltage that it could produce isn’t being produced as 
much because of the metal sheets in the way I think/ I think it 
could like [pause] I don’t know how to explain it’s like protect it 
could have let the voltage go across it 

Symbolic 

9; 118-124 Because because there’s like only so much it can have and it’s 
starting from zero the more the more that build up on it / The more 
electrons that build up on it it’s like they over time the there’s too 
much on the sheet so it starts to plateau out but ‘cos it’s starting 
from zero the potential difference is going up but it won’t reach 
it’s full potential difference and then it starts to plateau basically/ 
Like ‘cos there’s sort of like a limit that it could have on the sheet/ 
Mmmm not sure is it might is just be like the size of the sheet 

Sub-microscopic 

9; 132 Is it because um potential difference is the is the voltage across 
two across a component so and if there’s only one component then 
it’s the potential difference across them is the same as the potential 
difference being given from the battery so basically it plateaus at 
ten because that’s just the highest amount of potential difference 
that can go through the circuit 

Symbolic 

9; 174 So then like the whole potential difference the potential energy is 
ten so when you put when you allow the current to go through the 
current will start as high as it can and then it will start to drop 
because there’s loads of electrons on the sheet already and then the 
potential difference eventually goes to um [pause] ten on the sheet 
and ten on the battery which makes it zero 

Sub-microscopic 

10; 38-42 there’s always  going to be some sort of like resistance inside the Symbolic 
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bulb so you don’t get the the full potential um potential difference 
um resistance links to no current links to potential difference and 
both of them link to resistance because to find the resistance you 
have to do current divided by you have to do current [pause] you 
have to do voltage over current to get resistance / So that links 
together there um [pause] potential difference links to potential 
divider because the potential difference across one component is 
different from the potential difference across two/Depending on 
what current is going through everything so current will link to 
that as well erm [pause] does resistance link to potential divider as 
well because because there’s resisatnce in in the erm in the 
component does that mean that the potential [pause] it’s not it’s 
not like it’s maximum potential I don’t know the word like pot I 
dunno It’s not it’s not at it’s maximum 

10; 54 Erm current is what pushes potential difference no isn’t potential 
difference that pushes the current round the circuit 

Symbolic 

10; 74 like potential difference pushes the current through so that 
potential difference could be like say if it’s a hose connected to it 
how open how much the tap is open by could be like the potential 
difference but I don’t know what you would call that for water 

Symbolic 

17; 146-
148 

I’m just thinking ‘os if like they’re in a um they’re in that’s that’s 
one circuit [loop with bulb A and cell in]/ Then this is like extra 
added on [loop with B in] 

Macroscopic 

17; 164-
168 

Yeah um [pause] I think the answer is B erm not a hundred per 
cent sure why but I just remember us talking about it and how it’s 
like when they’re when the circuit’s complete like the energy’s 
just quickly it’s it’s like charge’s already there/ But like when you 
when you close the circuit you’re allowing the charge to go 
through / Straight away so it’s like almost instantaneous 

Sub-microscopic 

17; 182-
186 

Because the potential difference is er depen muh the voltage that 
goes through the whole circuit / So if um at one say if it was like 
nine volts at one it’s nine/ And after it’d be nothing init 

Symbolic 

17; 209-
211 

‘Cos basially um the resistance is higher here then ‘os R equals V 
over I then if you was to rearrange that to I to V times R equals I 
there less current going through wiat if the resistance is higher/ 
Then the current is less in B yeah 

Symbolic 

17; 221-
225 

Then B would be a bit dimmer / ‘Cos there’s more that has to split 
the current in two/ But A’s not affected? /Yeah yeah because it’s 
in one circuit 

Macroscopic 

17; 239-
241 

So it links to amps um current is the rate of flow of charge / So it 
links to charge um [pause] resistance links to potential difference 
and current because to find the resistance you do potential 
difference over current 

Symbolic 

17; 249-
253 

Erm [pause] internal resistance [pause] [indistinct] er chemical 
energy [pause] is it chemical energy that causes internal 
resistance/Chemical energy inside the a battery/ Er causes the 
voltage not to be as high a it would be if there was no internal 
resistance 

Symbolic 

17; 259-
261 

Oh OK [pause] so chemical energy turn is converted into electrical 
energy/ Which causes internal resistance so they’ll link um ohms 
um resistance is measured in ohms 

Symbolic 

18; 36 [Of resistance] It resists current [pause writing] um [pause] does it 
affect the p.d. across circuits 

Symbolic 
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18; 277  Sub-microscopic 

18; 304-
306 

But then over time that current drops off erm/ Is it to do with the 
resistance? 

Symbolic 

19; 17-18 Next one what causes it what makes a current flow? When do I get 
a current?/ Um in a complete circuit 

Macroscopic 

19; 25-26 Yeah and a complete circuit good ok when do I get potential 
differences?/Depending on the amount of components there are in 
a circuit um depends on how the potential is shared basically  

Macroscopic 

19; 31-32 Why do some components have more potential difference and 
some have less potential difference?/ Um [pause] is it because the 
[pause] the charge’s not fully it’s not being able to like flow like 
perfectly  

Sub-microscopic 

19; 37-40 And lastly why do things have resistance?/Um [pause] is it 
because the [pause] the charge’s not fully it’s not being able to 
like flow like perfectly/That’s true yeah but do you know what 
might cause that? [pause] in a bit of wire or in a resistor?[pause] 
what’s physically going on?/Is it getting hotter 

Sub-microscopic 

20; 24 Um [pause] is resistance caused by a current in a way like it’s not 
caused by the current it’s caused by what’s inside the component 
the current’s trying to go through so 
 

Macroscopic 

20; 30 No actually resistance causes current because different resistances 
mean different currents  

Symbolic 

20; 121-
122 

Um why do the electrons move?/ Um is it because of potential 
difference is pushing them 

Symbolic 

20; 126 Um because heat energy is like heat energy um which causes the 
filament inside to light up ‘cos it glows and it’s hot 

Macroscopic 

20; 128 Um [pause] is it like when the electrons are is that to do with 
friction in a way like [pause] how to explain it um [pause] when 
the current is going through 

Sub-microscopic 

20; 144 They have more coming in ‘cos the voltage is there pushing them 
through 

Symbolic 

21; 18-22 
 

Um Ohm’s law and Ohm’s connects to [pause] both resistance 
Ohm’s because Ohm’s law is that [pause] the v I think is the 
voltage across a component is proportional to the current if the 
temperature is constant/ Um voltage links to both resistance and 

Symbolic 
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current because in the in the erm the equation / V equals I R you 
like to find the voltage you do resistance times current/ 

21; 24  Um resistance and currents links together because resistance can 
make the current smaller or bigger because going through it it’s 
being used up in the thing erm Kirchhoff’s first law Kirchhoff’s 
first law links to current and his second links to voltage 

Symbolic 

21; 69-72 So it’s is the charge turned into light or?/ Um [pause] well not 
directly it has to like when it’s moving and it’s causing friction / 
Yeah/ Which then causes heat and the he the filament in the bulb 
gets hotter gonna start to glow 

Macroscopic 

21; 102 Because Kirchhoff’s second law says that the sum of the EMF or 
sum of the p.d. and EMF in one in a loop is the same going in and 
out and A is in one loop and so is C 

Symbolic 

21; 126 Um Kirchhoff’s second law again is that the sum of the p,d, or the 
EMF in a loop is the same as in an and out 

Symbolic 

21; 172- 
174 

Because when the current is going through coming from the 
positive side it’s going into the first component which is A so that 
has a bright like a certain brightness and then ‘cos the resistor is 
in-between it means it resisting some of the current that’s like it’s 
not allowing the full current to go through/ So that B doesn’t have 
as much um current as A has so it’d be dimmer 

Macroscopic 

21; 217-
219 

So and there’s two components as well so [pause]  I think I might 
be getting this wrong but the potential difference across is like it’s 
only it’s not shared between two/ Like so it’s I think that’s the 
only explanation I can give is that A is on it’s own it’s not being 
shared with anything so it’s more likely to be brighter than the 
other two 

Macroscopic 

21; 274-
277 

Ok then what makes a current flow?/Erm [pause] /Why do we get  
a curent at all?/ Is it when a circuit’s complete  

Macroscopic 

21; 280- 
281 

Actually is that the only thing we need?/ Need a battery as well Macroscopic 

21; 288- 
289 

When do we get potential differences?/ Across a component  Macroscopic 

21; 292- 
295 

And lastly what causes there to be resistance?/ Um [pause] could it 
be anything from like heat in a circuit / Mmm/ Something that will 
use up [pause] the I just I don’t know how to something that will 
use up the current 

Macroscopic 

21; 353- 
355 

Um if you increase the resistance then the current going gets 
lower/ Erm and if you was to decrease it would get bigger 
 

Symbolic 

 

8.8.1.4 Codes related to causality in Edward’s transcripts 

Session; 
utterance 

Utterance Code 

6; 22 Er well charge is basically measured in coulombs and that is a 
collection of electrons and these electrons try to get through the 
particles but is it the particles in the solids or the ions / If there’s 
more resistance then there’s more collisions um so the current 
doesn’t get through as easier er that’s basically resistance in a  
nutshell 

Sub-microscopic 

6; 30 Erm well less energy is transferred with a lower is it a lower 
current er ‘cos of a higher resistance/If there’s a higher resistance 
the current’s less therefore potential difference or energy 
transferred is less 

Symbolic 

6; 40 Because the potential is difference is the main factor in producing 
light but potential difference is the transfer of energy 

Symbolic 

6; 72 That’s sort of joined to the positive side and I think electrons ar 
produced they have a negative charge so they’re produced from 

Sub-microscopic 
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the negative side  
6; 114 the resistance must be the same between the two points because 

they’ve both only got one bulb at the same time 
Macroscopic 

6; 116 Current sort of usually splits depending on the resistance but if the 
resistance is the same then the current would split about half and 
half between the two links if er you were to take out bulb A 
[pause]  I mean do you mean the entire wire? 

Symbolic 

6; 124 And if there is a higher current er potential difference is calculated 
by current times resistance so double current would just increase it 
the overall potenetial difference 

Symbolic 

6; 126 I would say the points all  match each other ‘cos the charge going 
in is the same as the charge coming out um  

Sub-microscopic 

6; 130 it is more at C I think if A’s sort of A’s measures a collection of 
the whole current as it’s gone round the whole circuit and there’s 
junctions after A 

Macroscopic 

6; 134 C would also only get all of the electrical energy seeing as it’s in 
series and it doesn’t really split at all so and [pause] the same 
charge is being produced by the battery 

Macroscopic 

6; 140 What happens to the brightness of bulbs A and B [pause] mmmm 
[pause] B proobaly becomes dimmer ‘cos the switch closes that 
completes the circuit for where C is so any current so before the 
current wouldn’t have would probably have not have split ‘cos the 
circuit doesn’t split there 

Macroscopic 

6; 160 Mmm I would have said it stays the [pause] er I’d say C stays the 
same the electrical energy reaches the bulb before like the wire 
connecting one and two anyway 

Macroscopic 

7; 80 Now that there’s more weight acting down er em probably give 
more gravitational potential energy so the current probably go up  

Macroscopic 

7; 102 Erm I reckon voltage will probably go up because the formula 
current time resistance if there’s more current then there should be 
more voltage overall 

Symbolic 

8; 22 Um [pause] I think perhaps the one with just its feet on the wire 
normally not like either side because it’s like in series with the rest 
of the thing but with the one with the feet either side maybe the 
mmm the bulb’s resistance might reduce the shock on the bird 

Macroscopic 

8; 36 Kirchhoff’s law says that a volt the input voltage should be the 
same as the output voltage or something like that  

Symbolic 

8; 68 well voltage is like a measure of current and resistance er because 
current only really flows in one direction er one a circuit so 
joining them two the current wouldn’t flow between er er [pause] 

Symbolic 

8; 118 Mmmm doesn’t it act sort of like a as a parallel junction and split 
the voltage evenly between the two things 

Macroscopic 

8; 140 Er unless [pause] unless that parallel junction [wire joining 
between 2 and 3] took some of it because of the bulb has 
resistance 

Macroscopic 

8; 150 Would it be eight volt? I don’t know actually [pause] potential 
difference at B would be four volts because of the two bulbs there 
would have a potential difference of eight volts and then er would 
it have an overall potential difference of four volts? 

Symbolic 

8; 176 Well the current should still be able to reach the bulbs with the 
switches being open because it would just create an in series 
circuit 

Macroscopic 

8; 207 Well if the current goes round in the circuit properly then potential 
at bulb one would be four volts so the potential difference at bulb 
one would be four volts because twelve before and eight after but 
when reaching switch B the point before two bulb two and the 
point after point three would both have a potential difference of 
eight due to that being used due to the potential at bulb one being 
four volts so [indistinct] potential difference 

Symbolic 
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9; 88 Mmmmm [pause] I [pause] you were saying ti was an insulator it 
means it can’t conduct electricity so it might work at first but then 
it wouldn’t go past the two metal plates ‘cos electronic charge 
can’t be con… er transferred from one side to the other 

Macroscopic 

9; 104 But as soon as it has conducted it there’d be an increase in current 
cos current’s the rate of flow of charge and if there’s like more 
[indistinct] for charge [??] um repelling like the other negative 
charge then it would make the current flow faster [initially line 
with increasing gradient drawn] 
 

Symbolic 

9; 120 Er does it make it harder for the um it’s already got negative 
charge on it so it makes it harder for the other electrons to get on 
to get conducted 

Sub-microscopic 

9; 148 Er the current increases erm but its only on one side and er it’s it’s 
like the same theory as the current really potential difference is 
basically measuring the difference between cells in voltage or 
potential and um like current times resistance equals er voltage so 
if there’s more current there’s more voltage basically 

Symbolic 

9; 174 Maybe it’s not increased resistance I don’t know what it is Symbolic 
9; 186 There are more electrons already on the plate Sub-microscopic 
9; 221 Um because the despite the increased resistance the plate can only 

still conduct a certain amount of electrons 
Sub-microscopic 

9; 237 [pause] Er probably ten volts because if the potential difference 
between one and two i.e. the resistor A is six volts that means 
basically lost six volts between one and two leaves you with four 
volts and if B C and D all have er are the same then the potential 
difference after them should be zero and between one and six at 
one it was ten volts but six it would be zero volts  

Symbolic 

9; 243 Same thought of theory really it’s just it’s like lost six volts at A 
and then it will would lose another six volts at D when it would 
bring it down to below zero but the lowest it can be is zero volts 

Symbolic 

9; 247 Erm ‘cos between one and two it lost six volts so at two it starts 
off with four volts and then um B C and D would take away the 
rest of the voltage 

Symbolic 

9; 253 Because um sort of the it’s connected in parallel with each other 
the two branches and to the voltage would be four and then it 
splits at the junctions actually [pause] trying to think of what a 
third of four is now 

Macroscopic 

9; 259 Er because there’d be the same potential at both four and five and 
there’s no resistance in between 

Symbolic 

9; 267 Erm because at two they’d be four volts and then it splits between 
the two junctions so that erm the junction where three is would 
have like er [pause] a third actually it could be one and a third I’m 
not sure 

Macroscopic 

10; 132 Because um the voltage would be the same at both points because 
it’s split evenly at point A between them into five volts and five 
volts 

Macroscopic 

10; 134 well they’d be a change in the strength of the voltage this time 
‘cos R one and R three are different resistance  

Symbolic 

17; 138 Because of Kir one of Kirchhoff Law I can’t remember which one Symbolic 
17; 150 The current has to split at the junctions and it’s shared between the 

bulbs A and B 
Macroscopic 

17; 188 Right hand side it still splits at the junction at the same thing erm 
like splitness if that makes sense 

Macroscopic 

17; 207 Mmm er because voltage is current times resistance and increased 
resistance would increases er voltage 

Symbolic 

17; 213 Er ‘cos the current entering a junction is the same as the current 
leaving it because of Kirchhoff’s law and um it would still to be it 
would  have to be split e evenly if the switch closes 

Symbolic 
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17; 241 that could link in with the equation R equals rho resistivity times 
length over cross-sectional area 

Symbolic 

18; 102 Er there’s no other passage way for the current to flow Macroscopic 
18; 110 Um as there’s less resistance for the current will flow that way  Symbolic 
18; 120 Er the current will flow through the switch B Macroscopic 
18; 186 Er ‘cos they’re all negatively charged so they’re all repelling each 

other  
Sub-microscopic 

18; 190 [pause to write] [All electrons are negatively charged and repel 
each other, the more electrons the faster the rate of flow of charge 
(current) with less electrons theres less to repel each other so the 
rate of flow of charge is higher and  

Sub-microscopic 

18; 190 as p.d.=IR, a lower current means a lower p.d. 
 

Symbolic 

19; 10 Increases slash decease in current/Or a change in resistance Symbolic 
19; 24 Erm let’s see [pause] length of the wire / or cross sectional area or 

resistivity 
Macroscopic 

19; 28 Isn’t it vibrating particles colliding with the electrons or something Sub-microscopic 
19; 90 Well when the current er the electrons in the current collide with 

the lattice ions /Erm again both things are sort of cause a 
[indistinct] converted into heat and light energy 

Sub-microscopic 

20; 36 Them two sort of cause potential difference Symbolic 
20; 96 Er [pause] energy in the battery is stored as chemical potential/ 

And as energy and when it’s converted into electrical and heat 
energy / And electricity is the useful one in this case 

Symbolic 

20; 104 The charge carriers erm [pause] when they collide with the ions 
/That’s what causes the bulb to light up 

Sub-microscopic 

20; 116 But as soon as you make the link the electrons can flow through 
the circuit/ Er they all repel each other 

Sub-microscopic 

20; 124 Er [pause] sort of releases the energy as it collides with the ions in Sub-microscopic 
21; 8 Obviously linked by like Ohm’s law equation Symbolic 
21; 18 Erm you can use the V equals I R current but just exchange 

voltage for potential difference 
Symbolic 

21; 102 Kirchhoff’s first law Symbolic 
21; 108-
110 

Yeah it’s difficult to explain that with C erm obviously there is 
just one bulb so there’s only one direction for the current to flow/ 
Erm but with circuit the current would sort of be split at the first 
junction 

Macroscopic 

21; 142 The p.d. across a closed loop is equal to the EMF so that total P.d. 
across the two bulbs is always going to be the same  

Symbolic 

21; 142 but erm when the current is split at the junction erm ‘cos I am 
assuming the bulbs have equal resistance 

Macroscopic 

21; 144 And as V equals I R Symbolic 
21; 168 Erm the wire would be after where the current’s just flowed 

anyway 
Macroscopic 

21; 182 Erm well V equals I R and as the resistance increases the current 
decreases 

Symbolic 

21; 194-
196 

I know A stays the same because it’s still have the same current 
flowing through to/ Erm the current split at the junction 

Macroscopic 

21; 211 Um [pause] negative [pause] Sub-microscopic 
21; 219 Er V equals I R or in this case p.d. Symbolic 
21; 223 Erm the ions make up its structure Sub-microscopic 
21; 255 Erm when the electrons flow in the er current collide with the ions 

um [pause] it’s energy is transferred into heat and light 
Sub-microscopic 

21; 269  Um [pause] it’s used up to um produce heat and light in the lamps Macroscopic 
21; 273 Erm when the electrons collide with the ions Sub-microscopic 
21; 285 Collisions with the ions sort of constantly Sub-microscopic 
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8.8.2 Codes related to concepts of force 

8.8.2.1 Codes related to concepts of force in Ben’s transcripts 

Code 1= Force linked to acceleration 
Code 0= Force linked to motion 
 
Session Code Context Excerpt 
1.45 1 Dropped 

balls 
I think it will probably be that the same for both balls because the 
gravitational force on each of the balls although it is different because 
of the masses they both accelerate by ten meters per second squared 

1.49 1 Dropped 
balls 

I think um I think it is obvious when you think about force as 
something that accelerates something instead of something that is just 
pushing on something 

1.54 1 Balls 
rolled off 
table 

I think probably the heavier one will land closer because although they 
accelerate by the same amount  

1.54 0 Balls 
rolled off 
table 

Therefore the force acting to the side of it will be less  

1.57 1 Dropped 
stone 

Um it will accelerate by 10 meters per second squared um however as 
it increases in its velocity the air resistance will increase and because 
the air resistance will increase eventually the air resistance will cancel 
out the gravitational force and so due to Newton’s I think it’s first law  

1.90 0 Ball from 
plane 

Because I think it would probably the force acting on it would be 
slightly sideways  

1.96 0 Forces on 
lift 

I think the force pulling the lift upwards will be greater than the force 
of gravity because if there was equal force then the lift would 
probably be stationary and if there was a force where the gravity was 
greater then the lift would move down. Therefore for the lift to move 
up the force pulling on it must be greater. 

2.02 0 Car at 
constant 
velocity 

There’s going to be a lot of air resistance because of the high speed 
although there will be greater push from the en engine pushing the car 
forward because its travelling in the forwards direction.  

2.03 0 Car at 
constant 
velocity 

The force from the engine is much greater. 

2.06 0 Car at 
constant 
velocity 

The friction increases and therefore the resultant force will gradually 
decrease so that the car will begin to de-accelerate because the friction 
is in that case bigger than the forwards push from the ending 

2.34 1 Pendulum The gravitational force causes it to accelerate  
2.34 0 Pendulum I am not sure what force would be acting would be acting to cause it to 

moving upwards 
2.36 1 Pendulum If there was a force it should be accelerating  
2.45 1 Pendulum Because the force of the weight is greater than the force of the tension 

so the resultant force is acting downwards so it must move downwards 
and accelerate 

2.59 1 Pendulum The force of tension in its horizontal component when its diagonal 
component is at is greatest so it will accelerate the most  

2.60 1 Pendulum And well when it drops ‘cos there’s a force acting on it its velocity 
will increase  

2.60 0 Pendulum When it has reached its centre then it would have a low velocity ‘cos 
there’s very little force of tension acting upon  

2.60 1 Pendulum The acceleration will decrease as gets um farther away from the swing 
because the force of the tension acting that way trying to pull it to the 
centre is greater so the resultant force would be less 

2.64 1 Pendulum The force causing to accelerate would be greater and so it will 
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accelerate more and so its average velocity will be higher 
2.85 1 Dropped 

balls 
Because the mass increase but the force increases so the increases 
cancel out because you have to divide the force by the mass to get the 
acceleration 

2.93 1 Pendulum Is it because if as its shorter there’s more tension acting on it and so it 
will move and so it will accelerate more  

3.02 0 Astronaut 
in space 

He will move at a constant velocity in whichever direction the thrust 
force’s acting 

3.05 0 Astronaut 
in space 

Um he’s not accelerating [pause] then that would be the zero end and 
there should be no change in velocity so the acceleration should be 
zero let’s 

3.07 1 Astronaut 
in space 

He’s continually accelerating 

3.32 1 Mass on 
Spring 

Firstly because you lower there’ll be a high force of tension on the 
spring pulling it upwards. It will accelerate quickly upwards and as the 
tension decreases the force would decrease so it would it’s 
acceleration will lessen so that we get to here and then 

3.39 1 Mass on 
Spring 

Resultant force will be less so the acceleration will um be the gradient 
of the acceleration will be less  

3.42 1 Mass on 
Spring 

So it’s velocity will increase and accelerate and then here we would  

3.47 0 Mass on 
Spring 

Because the well it’s stopped moving completely because the resultant 
force is zero Newtons. 

3.80 1 Mass on 
Spring 

Here it will be stationary at the top because um the tension because the 
it will de-accelerate as the tension is pulling it up and the gravity is 
pulling it down  

4.44 1 Loop-the-
loop 

Is it because gravity is causing it to um de celebrate well accelerate 
towards the centre?  

4.59 1 Loop-the-
loop 

At the top well it’s moving it’s got velocity when its de-accelerating 
the only force acting upon it is gravity um it will be moving always 
about forty-five degrees to gravity  

4.70 1 Loop-the-
loop 

Zero Newtons so it wouldn’t accelerate oh so [pause] is it the reaction 
force bigger 

4.79 0 Lift Because he has to at some point accelerated because he’s not 
stationary but at the same time he’s not accelerating any more and so 
they should be equal and so I am not sure whether the resultant force 
is greater or the same 

4.79 1 Lift Because he has to at some point accelerated because he’s not 
stationary but at the same time he’s not accelerating any more and so 
they should be equal and so I am not sure whether the resultant force 
is greater or the same 

4.84 1 Lift Then the resultant force is resultant the reaction force is definitely 
bigger this time and the weight is the same as previously 

5.37 1 Concept 
map 

Cos a resultant force always results in acceleration  

5.38 1 Ball in 
bowl 

So the force acting on it downwards decreases because the force is 
gravitational field strength times by sin theta I think for the 
acceleration and so as the angle becomes flatter it should the 
acceleration should be less  

11.91 1 Ball 
thrown 
vertically 

Yes Um here it will still left the hand there doesn’t seem to be any I 
think I until it reaches the hand again 

12.19 1 Causal 
Card sort 

Or in conjunction with force acceleration 

12.21 1 Causal 
Card sort 

Um [pause] velocity [pause] um that’s definitely an effect because it’s 
caused by force or by a lack of force if it’s constant velocity 

12.42 1 Causal 
Card sort 

And I think in similar way of thinking in line of force acceleration  

12.90 1 Bag in well I suppose if it’s slowing down then the friction must be then be 
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braking 
car 

greater than the thrust 

13.07 1 Discussio
n of 
concept 

 I think force is something that causes something to accelerate  

13.60 1 Situtation 
card sort 

essentially de-accelerating this way and gravity is acting downwards  

13.67 1 Jump 
from 
crouch 

gravity would cause them to de-accelerate  

13.77 1 Jump 
from 
crouch 

Oh is it zero but she moves at constant velocity so for the gravity 

13.98 1 Jump 
from 
crouch 

A bigger reaction force so when the electron repulsion force is greater 
than her weight and she accelerates well then she temporarily 
accelerates upwards 

14.15 1 Ontology 
Table 

Um they cause acceleration 

14.34 1 Ontology 
Table 

 I think something that will change its momentum 

14.82 1 Student 
concept 
map 

Force causes objects to move I would um I would there write I would 
add accelerates  

15.10 1 Concept 
map 

then I would link link force with acceleration  

15.20 1 Concept 
map 

But I would link velocity um no we don’t no actually I wouldn’t do 
that I was going to say I’d link velocity with force but I’ve linked 
acceleration with force and I think that’s more accurate 

15.31 1 Concept 
map 

if we call something force that force wouldn’t be able to make 
anything accelerate it wouldn’t have any impact on the universe 

15.40 1 Dropped 
balls 

Because the increased causes an increase in the weight itself of the 
ball but both balls are being affected by the same gravitational field 
and therefore will fall with the same acceleration 

15.44 1 Balls 
rolled off 
table 

But the gravitational force is making them both accelerate by the same 
amount because force is equal to mass times acceleration 

15.46 1 Dropped 
stone 

Because I think if there because of the gravitational force it will 
accelerate and it’s weight won’t change because it has it’s own mass 

15.59 1 Swung 
ball 

tension force acting on it there won’t be any well except for gravity 
but there won’t be any forces causing it to change its direction from 
left to right it will carry on  

15.70 1 Ball in 
bowl 

Um I’m trying because I’m trying to think how the friction cause its 
velocity to change ‘cos I know it must be well or the resultant force 
and therefore how the direction the friction acting on it would cause it 
to change 

15.90 1 Ball in 
bowl 

And this means that the ball it would sort of supposedly accelerate but 
it would accelerate less and less and less 

15.98 1 Pendulum But as it moves nearer the top the tension on the string decreases and 
so it um the acceleration decrease  

16.32 1 Concept 
map 

And then link the forces to um the effect of forces so acceleration 
types of forces 

16.71 1 Astronaut 
in space 

Um and the accel [pause] eration time ‘cos the force constant 
acceleration is constant 

22.01 1 Concept 
map 

Like so I’ll put the ideas otherwise I’m going to be linking all forces 
to the same things sometimes so let acceleration  

22.11 1 Concept 
map 

Um so the weight causes acceleration 

22.34 1 Dropped 
balls 

And so essentially they’re going to their accelerations should be the 
same 
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22.38 1 Dropped 
stone 

And so what because the forces will then be equal it’s not going to 
accelerate 

22.44 1 Ball from 
plane 

 I know the response were [pause] Um well it’d have the same 
horizontal velocity [pause] but it’s going to be accelerating 
downwards and so it be D 

22.45 1 Forces on 
lift 

Because it will have because it’s going on at constant velocity there 
can’t be a net force acting on it that is not zero 

22.50 1 Astronaut 
in space 

er that mean the level of acceleration should be constant  

22.52 1 Ontology 
Table 

Um [pause] I think moment change in momentum 

22.88 1 Ball in 
bowl 

It decelerates because then the reaction force 

22.90 1 Ball in 
bowl 

I think what’s happening is there is a force acting on it but it’s acting 
completely opposite to the direction of motion 

22.92 1 Ball in 
bowl 

Because um it the force just causes change in momentum and 
therefore providing it’s change in momentum is not nothing 

 

8.8.2.2 Codes related to concepts of force in Daniel’s transcritps 

Code 1= Force linked to acceleration 
Code 0= Force linked to motion 
 

Session Code Context Excerpt 
1.35 0 Dropped 

Balls 
So if one ball is twice as heavy as the other it will make more sense 
for the heavy ball to go down faster because its more dense and it will 
probably move faster in the air 

1.46 0 Balls off 
table 

Because it’s heavier when its coming down it will be coming down 
quicker  

1.57 0 Stone I think it will go at a constant speed like this until it hits the floor.  
1.62 0 Collision I think the large truck will have more force on it because its moving  
1.67 0 Circular 

motion 
Like there’s more force coming from behind it  

1.78 1 Projectile 
from 
plane 

It is falling directly down like no matter where the aeroplane is going 
it is still going to go down  

1.83 0 Lift The force of gravity is getting bigger [pause] yeah I think the force is 
getting bigger as it goes up 

1.90 0 Lift That the gravity the force of gravity is getting bigger but in some ways 
I feel there is not really an upward force because it’s getting wound up 
by a cable 

2.04 0 Car at 
constant 
velocity 

Then the then the force going forwards is higher than the force going 
backwards 

2.28 1 Pendulum It’s going to go the right more at one point then when it decelerates 
starts to slow down the force acting behind it gets to an equal point 
then the force going backwards gets greater than the force going 
forwards making it go in the other direction.  

2.91 0 Pendulum Does it mean the gravitational pull will be much more so it will 
basically swing ten times quicker  

3.03 0 Astronaut 
in space 

If the forces acting on him is to the right he is just going to go to the 
right at would it be at a constant speed 

3.69 1 Mass on 
spring 

Gravity is greater than the force acting against it so that’s when it 
comes down at the deceleration and it ends at this point here 

3.77 0 Mass on 
spring 

So that means that arr the thing is going to go in that direction 
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4.61 0 Loop the 
loop 

The force of your foot like when after you kicked it 

4.68 0 Loop the 
loop 

Is it because the force [pause] the forward force is only being acted on 
against the force of gravity  

5.50 1 Concept 
map 

It’s accelerating oh it’s like something with a force acting on it to 
make it move 

5.60 1 Concept 
map 

Forces and acceleration because acceleration is something moving 
with a force  

5.94 1 Ball in 
bowl 

Um [pause]  Is it acceleration accelerating most at this part [side of 
bowl] again because gravity is pulling it down?  

11.08 1 Concept 
map 

I mean the the force of a parachutist for example you that they’re 
going they’re accelerating downwards at nine point eight 

11.44 1 Card sort But um for me just because I always get it mixed up with acceleration 
yeah and um I always um velocity I always keep thinking there’s a 
force acting on it velocity as well to make something go faster  

11.60 0 Ball 
thrown 
vertically 

And when you throw a tennis ball the gravity er gravitational energy 
er is trying to er equal with the would you say this is thrust upwards? 

11.62 0 Ball on 
ramp 

It’s rolling down at a constant velocity I think because there’s no like 
acc there’s no force acting on it except from the downwards force  

11.83 0 Ball 
thrown 
vertically 

On the way up the force of thrust is like much bigger than the force of 
gravity 

12.02 1 Card sort Ok um a force and acceleration I think they’re both because for 
something to accelerate you need a force acting on it 

12.07 1 Card sort Acceleration so it’s both um [pause] um so I’d say acceleration is an 
effect of force 

12.72 0 Bag in car Move 
12.79 0 Bag in car Um there’d be a force that’s [pause] there’s a force on it after it hits 

the um the wall  
13.06 0 Concept 

discussion 
Is a force that acts on something else to like make it move or 
something like that 

13.45 1 Leap from 
crouch 

There’s no force on her when she’s going upward because she’s 
already she’s off the ground  

14.05 1 Discussio
n of 
learning 

Because the way I always thinking about it is if something’s moving 
and in velocity and acceleration just automatically think it’s moving 
and if something’s moving then there has to be a force on it  

14.19 0 Ontology 
Table 

Ok um forces usually cause um movement  

14.55 0 Concept 
map 

Forces cause velocity  

15.04 1 Concept 
map 

acceleration for and force link together because for something to 
accelerate a force has to be acting on it  

15.08 1 Concept 
map 

gravity links to force because it’s a force a down acting force um 
gravity can make things accelerate  

15.18 1 Dropped 
Balls 

The same Oh 

15.22 0 Balls off 
table 

The lighter ball hasn’t got as big a mass as the other one so it has like 
more time to travel before it hits the ground 

15.26 1 Stone Yeah it just keeps at a constant speed because if it was accelerating it 
would have to have a force acting on it 

15.28 0 Stone Speed and then it starts to fall down at a constant speed until it hits the 
floor then it has no velocity 

15.35 0 Collision But then E because it’s like depending on how quick if they’re both 
going at the same speed than they have like the same the same like 
force acting on them 

15.54 1 Ball in 
bowl 

Um is it ‘cos when it’s coming down from the left hand side it’s 
accelerating because the force of gravity’s acting downwards on it  
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15.68 0 Mass on 
spring 

So it’s like yeah it does yeah it does ‘cos the resultant force is upwards 
so then it would um follow the direction of the up upward force then  

15.77 1 Pendulum So that like makes it accelerate 
15.97 1 Ball in 

bowl 
The gravity gravitational force pulling it down which makes it um 
accelerate 

16.26 1 Concept 
map 

To create acceleration you need a force 

16.42 1 Card sort That um once a force stops acting on you you’re not accelerating more 
16.56 1 Astronaut 

in space 
It’s constant force does that mean that it’s always accelerating 

22.14 1 Concept 
map 

Acceleration links to friction because if there’s a high friction then 
acceleration won’t be like maximum  

22.27 0 Stone Is that if there was a force acting on it for the whole time like a fixed 
force 

22.41 0 Ball from 
aeroplane 

Yeah so the resultant is like a diagonal 

22.41 1 Lift It says that it’s moving at a constant speed so that means that there 
can’t that the resultant force has to be zero 

22.70 1 Astronaut 
in space 

Because if the acceleration is constant it means that I won’t go up or 
down 

22.86 1 Pendulum Zero 
22.90 0 Mass on 

spring 
It’s moving fastest once you release it from the highest tension 

22.96 0 Pendulum Just when no like no force is acting on it 

 
 

 


