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Abstract Studies about the genetic basis for disease are routinely conducted
through family studies under response-dependent sampling in which affected
individuals called probands are sampled from a disease registry, and their re-
spective family members (non-probands) are recruited for study. The extent to
which the dependence in some feature of the disease process (e.g. presence, age
of onset, severity) varies according to the kinship of individuals, reflects the
evidence of a genetic cause for disease. When the probands are selected from
a disease registry it is common for them to provide quite detailed information
regarding their disease history, but non-probands often simply provide their
disease status at the time of contact. We develop conditional second-order
estimating equations for studying the nature and extent of within-family de-
pendence which recognizes the biased sampling scheme employed in family
studies and the current status data provided by the non-probands. Simulation
studies are carried out to evaluate the finite sample performance of differ-
ent estimating functions and to quantify the empirical relative efficiency of
the various methods. Sensitivity to model misspecification is also explored.
An application to a motivating psoriatic arthritis family study is given for
illustration.
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1 Introduction

1.1 Introduction

The heritable nature of disease can be inferred by the structure of the within-
family dependence in disease manifestation [19]. For rare diseases, population-
based cohort studies are inefficient and impractical, so response-dependent
biased family designs are routinely employed to obtain enriched samples with
higher representation of diseased individuals and more variation in genetic
markers than would be seen in the unselected population. Much work has been
carried out for the analysis of such data when the disease status is modeled as a
binary trait. Conditional likelihood based on generalized linear mixed models
can be used for dealing with the dependence of binary phenotypes within
families [4,3], or estimating equations can be formed by specifying marginal
mean and dependence structures for the analysis of binary phenotypes from
case-control family studies [32].

The age of onset for many chronic diseases is highly variable, however,
and simply using the binary trait of the disease status does not account for
the variable times individuals have been at risk for disease in family studies.
MacLean et al. [21] and Shih and Chatterjee [27] point out that the estimators
of the covariate effects on the disease process may be less efficient and the
degree of familial aggregation may be underestimated if information on the age
of onset and the effect of censoring are not addressed. Models which consider
the disease onset time distribution and measure dependence in terms of these
times offer a preferable framework for analysis.

When interest in genetic effect or gene-environment treatment effect, case-
control or case-only family study are commonly used. Li et al. [20], Hsu et al.
[15] and Shih and Chatterjee [27] proposed likelihood methods based on dis-
ease onset time for case-control family study and Chatterjee et al. [6] proposed
methods to estimate the relative risk, cumulative risk, and residual familial
aggregation for case-control family data and modified method for case-only
family data. For their methods, modeling and estimation of the residual fa-
milial aggregation is key to adjustment for ascertainment bias but this is done
using an exchangeable dependence structure in which the association is the
same for different pairs of relatives. Gorfine et al. [14] use the frailty models
to account for heterogeneity in familial risk, but pointed out that frailty-based
methods may be affected by the uncertainty on the frailty parameter estimate.

In this article, we consider a simple family study, where an affected individ-
ual called a proband is selected from a registry of patients. Consenting family
members (non-probands) of each proband are then recruited and examined to
collect information on their disease status [5]. Probands are given a special
designation because their disease status led to the selection of their family.
Under such sampling scheme, one obtains a right-truncated onset time for the
proband, and current status (type I interval-censored) data for non-probands
[28]. While work has been done on the analysis of multivariate current status
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data [16,8], little has been done to our knowledge in the context of biased
sampling schemes.

Insight into the genetic basis for disease can be gained by comparing the
strength of the association in disease status between pairs of family mem-
bers with different kinships [7,18]. More elaborate dependence modeling also
plays a central role when studying the “parent of descent” hypothesis, where
the primary goal is to estimate and compare the strength of father-child and
mother-child associations in phenotype to elucidate the role of the sex chro-
mosomes in disease transmission [30]. With this in mind, we consider copula
models [22] as a basis for modeling the joint risk of disease among family
members. The dependence parameters can be interpreted as reflecting “resid-
ual familial aggregation” that is not explained by covariates in the marginal
models. Copula models have several advantages over frailty models. First, the
marginal models still retain simple interpretation when using copula models,
which is not the case under the frailty model. Second, copula models yield
dependence measures which are functionally independent of the parameters
in the marginal onset time distribution, so the marginal distribution can be
specified in any desirable way. Third, the dependence measure is directly spec-
ified under the copula model which has clear meaning and it also provides a
natural basis for regression of genetic effects, but the frailty model do not
provide simple measures of within-family dependence and which is difficult to
interpret the meaning of the dependence.

Analyses must address the biased sampling scheme employed in these stud-
ies. Likelihood contributions from each family which are proportional to joint
probability functions for the phenotypes of non-probands conditional on the
disease status of the proband will admit valid inference [29] under correct
model specification, but enumeration of all possible sample outcomes can be
computationally demanding with large families. We develop a class of condi-
tional second-order estimating equations in the spirit of Prentice [25]. We use
the term conditional to reflect the fact that moments in the second-order esti-
mating equation are all conditional on the disease onset time of the proband.
A supplementary estimating equation is incorporated to extract the limited
information about the marginal onset time distribution from the proband.

1.2 The University of Toronto Psoriatic Arthritis Family Study

The incidence of psoriatic arthritis (PsA) is reported to be between 0.3 and
1.0% [9] and hereditary factors are thought to be important, as some studies
have suggested that close blood relatives of individuals affected by psoriatic
arthritis are at higher risk of developing the disease compared to the general
population. Characterizing the within-family association nature and identi-
fying important genetic risk factors are important to understand the disease
etiology. Particular interest lies in assessing whether there is a higher rate of
paternal, rather than maternal, transmission of the disease, which is also called
“parent of origin” effect [2]. A family study of psoriatic arthritis is conducted
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in the Centre for Prognosis Studies in the Rheumatic Disease at the Univer-
sity of Toronto. Probands were selected from the members of the University of
Toronto Psoriatic Arthritis Registry, and their family members were recruited
into the family study with their consent. A total of 169 two-generation fam-
ilies ranging in size from 2 to 7 individuals were recruited; 54 families were
comprised of only one non-proband and 115 have more than one non-proband.
The disease onset times were only available for probands, but for other family
members only the disease status is available when they are examined, yielding
current status data. In total 538 individuals are in the family study and only
194 (169 probands and 25 nonprobands) were diagnosed with PsA. Except for
the demographic data, information of some HLA markers is also available for
individuals in the PsA family study. We focus on identifying the significant
HLA markers for the psoriatic arthritis and characterizing the within-family
association structure, also testing whether there is “parent of origin” effect for
the psoriatic arthritis.

The remainder of this paper is organized as follows. In Sect. 2 we de-
fine notation and formulate the conditional second-order estimating equation
for family data under response-dependent sampling, which are a combination
of right-truncated onset time from probands and current status data from
non-probands. We consider an illustrative example in which the dependence
structure is governed by a Gaussian copula and work with this model in sub-
sequent calculations and simulations where we examine specific estimating
equations involving different derivative matrices and working independence
assumptions. In Sect. 3 we explore the asymptotic relative efficiencies and fi-
nite sample properties of estimators from several variants of the estimating
equations introduced in Sect. 2; these results also permit sample size calcu-
lations for planning studies aiming to detect effects of genetic markers. The
impact of misspecification of the dependence structure on properties of esti-
mators and power of genetic tests is investigated in Sect. 4. An application
to the motivating psoriatic arthritis family study is given in Sect. 5 in which
we assess the genetic basis for the disease. Concluding remarks are given in
Sect. 6.

2 Conditional Estimating Equations Under Biased Sampling

2.1 Notation, Sampling and Observation Scheme for Family Studies

We consider the setting in which a registry of M individuals is created by
selecting a random sample from a population, screening each individual for
disease, and recruiting those found to have the condition of interest [10]. If
Ci0 denotes the age of individual 0 in family i at the time of sampling and
screening, and Ti0 denotes their age of disease onset, then this individual is
recruited to the registry if Yi0 = I(Ti0 ≤ Ci0) = 1; we assume Ti0 is verifiable
by a review of medical records for individuals recruited to the registry. When
a family study is carried out, we assume that probands are selected from the
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disease registry by simple random sampling and without loss of generality we
label the families of selected probands i = 1, . . . ,m.

We let Tij and Xij denote the event time and a p × 1 covariate vec-
tor of individual j in family i, where j = 1, . . . , ni are the labels for the
non-probands. Then if Ti = (Ti0, Ti1, . . . , Tini

)′ and Xi = (X ′i0, . . . , X
′
ini

)′,
we write the joint cumulative distribution function (j.c.d.f) for family i as

Fi(t) = P (Ti0 ≤ t0, . . . , Tini
≤ tni

|Xi). We assume Tij ⊥ X
(−j)
i |Xij where

X
(−j)
i = {Xij′ ; j

′ 6= j, 0 ≤ j′ ≤ ni}, and write Fij(t; θ) = P (Tij ≤ t|Xij ; θ).
The marginal hazard function for the disease onset time of individual j,
j = 0, 1, . . . , ni, in family i is

λij(t|Xij ; θ) = lim
∆t↓0

P (t ≤ Tij < t+∆t|t ≤ Tij , Xij ; θ)

∆t
,

where we write λij(t|Xij ; θ) = λ0(t;α) exp(X ′ijβ) under a proportional haz-
ards formulation. This gives Fij(tij ; θ) = 1−exp(−Λ0(tij ;α) exp(X ′ijβ)) where

Λ0(tij ;α) =
∫ tij
0

λ0(s;α)ds, α is a q×1 vector, β is a p×1 vector of regression
coefficients, θ = (α′, β′)′. We let γ parameterize the within-family dependence
and ψ = (θ′, γ′)′.

Classification of non-probands with respect to their disease status is made
at the time of recruitment and clinical examination, yielding current status
data. Let Cij denote the age of non-proband j in family i at the time of
assessment and let Yij = I(Tij ≤ Cij); we let C̄i = (Ci1, . . . , Cini

)′, Ȳi =
(Yi1, . . . , Yini

)′ and X̄i = (X ′i1, . . . , X
′
ini

)′. If Yi = (Yi0, Ȳ
′
i )′, Ci = (Ci0, C̄

′
i)
′

and Xi = (X ′i0, X̄
′
i)
′, the family data therefore consist of {Ti0, Yi, Ci, Xi} sub-

ject to Yi0 = 1.

2.2 Second-order Estimating Functions

The association parameter γ is of central importance here so we next formu-
late conditional second-order generalized estimating equations in the spirit of
Prentice [25] and Zhao and Prentice [33].

Let Z̄i = (Yi1Yi2, Yi1Yi3, . . . , Yi1Yini , Yi2Yi3, . . . , Yi,ni−1Yini)
′ be an ri × 1

vector of pairwise products of the elements in Ȳi, where ri = ni(ni − 1)/2; we
let Zijk denote the element of Z̄i corresponding to the pair (j, k) in family i.
To account for response-biased sampling we define conditional moments and
let µi = E[Ȳi|Ti0;ψ] and ηi = E[Z̄i|Ti0;ψ] be the contributions from the non-
probands and let µi0 = E[Ti0|Yi0 = 1; θ] for the proband where we suppress the
dependence on Xi and Ci. The conditional second-order estimating equations
(CGEE2) denoted by U(ψ) =

∑m
i=1 Ui(ψ) = 0 have the form

Ui(ψ) = G′iW
−1
i Ri +D′i V

−1
i (Ti0 − µi0) , (1)

with

Gi =

(
Gi11 Gi12
Gi21 Gi22

)
, Wi =

(
Wi11 Wi12

W ′i12 Wi22

)
, and Ri =

(
Ȳi − µi
Z̄i − ηi

)
,
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where Gi11 = ∂µi/∂θ
′, Gi12 = ∂µi/∂γ

′, Gi21 = ∂ηi/∂θ
′, and Gi22 = ∂ηi/∂γ

′,
Wi11 = Cov(Ȳi, Ȳ

′
i |Ti0), Wi22 = Cov(Z̄i, Z̄

′
i|Ti0), and Wi12 = Cov(Ȳi, Z̄

′
i|Ti0)

; note that unlike standard GEE2, Gi12 6= 0 since µi = E[Ȳi|Ti0;ψ] is func-
tionally dependent on γ. The covariance matrices can be parameterized by
the marginal and association parameters where the latter may be specified
in terms of Kendall’s τ ; an example is given in Sect. 2.3. Consistent esti-
mation of ψ is possible based on the first term in (1), but the second term
D′iV

−1
i (Ti0 − µi0) where Di = ∂µi0/∂ψ

′ and Vi = Var(Ti0|Yi0 = 1), improves
efficiency by exploiting the data on the onset time from the proband.

Subject to correct specification of the conditional moments, (1) is an un-

biased estimating function, so the estimator ψ̂ solving U(ψ) = 0 is consistent
with an asymptotic normal distribution

√
m(ψ̂ − ψ)

d−−→ N
(
0,A−1(ψ)B(ψ)

[
A−1(ψ)

)
]′
)
, (2)

where

A(ψ) = E[−∂Ui(ψ)/∂ψ ′] and B(ψ) = E[Ui(ψ)U ′i(ψ)] .

Natural empirical estimates of these matrices are

A(ψ̂) =
1

m

m∑
i=1

{
Ĝ′i Ŵ

−1
i Ĝi + D̂′i V̂

−1
i D̂i

}
, (3)

and

B(ψ̂) =
1

m

m∑
i=1

{
Ĝ′i Ŵ

−1
i R̂iR̂

′
iŴ
−1
i Ĝi + D̂′i V̂

−1
i (Ti0 − µ̂i0)2V̂ −1i D̂i

}
,

which yield âsvar(
√
m(ψ̂ − ψ)) = A−1(ψ̂)B(ψ̂)[A−1(ψ̂)]′.

Simplified forms of Gi can be obtained by setting Gi21 = ∂ηi/∂θ
′ = 0

(denoted by GI) or by letting both Gi12 = ∂µi/∂γ
′ = 0 and Gi21 = ∂ηi/∂θ

′ =
0 (denoted by GII). It is also common to simplify Wi and adopt a form in
which Wi12 = W ′i21 = 0 and Wi22 = diag{ηi(1 − ηi)} while retaining the full
structure of Wi11; we refer to this as a working partial independence (WPI)
matrix. Combining these simplifications we consider four different estimating
functions based on (1):

A. Full Gi and Full covariance matrix Wi denoted G-W
B. Full Gi and WPI Wi denoted G-WPI
C. GI and WPI Wi denoted GI-WPI, and
D. GII and WPI Wi denoted GII-WPI.
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2.3 An Illustrative Dependence Structure Based on a Gaussian Copula

The specific form of the moments for Ti|Ti0, Xi can be motivated by a cop-
ula model. Consider an (ni + 1) × 1 vector of uniform [0, 1] variables Ki =
(Ki0,Ki1, . . . ,Kini

)′, in which Kij = Fij(tij ; θ), j = 0, . . . , ni. The j.c.d.f. for
Ki, denoted by Hni+1(k; γ) = P (Ki0 ≤ ki0,Ki1 ≤ ki1, . . . ,Kini

≤ kini
; γ),

is a copula function in ni + 1 dimensions indexed by an r × 1 parameter γ
which characterizes the dependence [17,22]. The Gaussian copula is a member
of elliptical family of the form

Hni+1(ki0, . . . , kini
; γ) = Φni+1

(
Φ−1(ki0), . . . , Φ−1(kini

); γ
)
,

where Φ−1(·) is the inverse cumulative distribution function of a standard
normal random variable (r.v.), Φni+1(· ; γ) is the j.c.d.f. of an (ni + 1) × 1
multivariate normal r.v. with mean zero and (ni + 1) × (ni + 1) correlation
matrix Σi; Σi is indexed by γ and we denote the off-diagonal entries by σijk,
j 6= k = 0, . . . , ni. Specification of the Gaussian copula for Ki induces a joint
distribution for Ti|Xi given by

P (Ti0 ≤ ti0, . . . , Tini
≤ tini

|Xi;ψ) =

∫ qi0

−∞
· · ·
∫ qini

−∞

exp(−s′iΣ
−1
i si/2)√

(2π)ni+1|Σi|
dsi0 · · · dsini

,

(4)
where Si ∼ MVNni+1(0, Σi), si is a realization, and qij = Φ−1(Fij(tij ; θ)),
j = 0, . . . , ni. Copula functions such as this are attractive for dependence
modeling since pairwise associations are parameterized to be functionally in-
dependent of the marginal parameters and different pairwise associations is
permitted. The Kendall’s τ characterizing the association between Tij and Tik
givenXi, for example, is given by τijk = 2asin(σijk)/π, 0 ≤ j < k ≤ ni. Regres-
sion modeling of the within-family dependence can be achieved by specifying a
second-order model of the form g(τijk) = v′ijkγ where g(·) is a 1-1 differentiable
link function mapping Kendall’s τ onto the real line, vijk is an r× 1 covariate
vector characterizing individuals j and k in family i and their relationship,
and γ is the corresponding r × 1 vector of coefficients. This second-order re-
gression model can be helpful when investigating the effect of risk factors on
the pairwise association as vijk could represent family-level or individual-level
features, or information on the kinship of individuals j and k in family i; in-
ference on their effects can be easily carried out based on γ. For example,
in the PsA family study with two generations, when the “parent-of-origin”
hypothesis is of interest, we can formulate the second-order model as

g(τijk) = γ0 + γ1 I((j, k) pair are siblings) + γ2 I((j, k) pair is father-child)

+ γ3 I((j, k) pair is mother-child)

then comparing γ2 and γ3 (or testing H0 : γ2 = γ3) can inform us whether
there is “parent-of-origin” effect in the onset time of PsA. More elaborate
models which incorporate genetic covariates into the dependence model can
also be specified.
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Returning to the estimating function in (1), based on the Gaussian copula
we have µij = E[Yij |Ti0] = P (Tij ≤ Cij |Ti0) = Φ((qij − σi0jqi0)/(1− σ2

i0j)
1/2)

and ηijk = E[YijYik|Ti0] = Φ2

(
(qij − σi0jqi0), (qik − σi0kqi0);Σjk|0

)
where

qij = Φ−1(Fij(Cij)), j = 1, . . . , ni, and qi0 = Φ−1(Fi0(ti0)). The function
Φ2(·, · ;Σjk|0) is the j.c.d.f of a bivariate normal r.v. with mean zero and co-
variance matrix Σjk|0, where

Σjk|0 =

(
1− σ2

i0j σijk − σi0jσi0k
σijk − σi0jσi0k 1− σ2

i0k

)
.

The entries of Wi can also be derived based on the Gaussian copula where, for
example, cov(Yil, Zijk|Ti0) = E[YilYijYik|Ti0]− µilηijk for k 6= l 6= j with

E[YilYijYik|Ti0] = φ−1(qi0) ·
∫ qil

−∞

∫ qij

−∞

∫ qik

−∞
φ4
(
qi0, sil, sij , sik ; Σi(0, l, j, k)

)
dsikdsijdsil .

Note that this is a j.c.d.f for a multivariate normal r.v. with mean µ† and covari-
ance matrix Γ † denoted by Φ3(qil, qij , qik ; µ†, Γ †) where µ† = (σi0lqi0, σi0jqi0, σi0kqi0)′

and

Γ † =

 1− σ2
i0l σilj − σi0lσi0j σilk − σi0lσi0k

σilj − σi0lσi0j 1− σ2
i0j σijk − σi0jσi0k

σilk − σi0lσi0k σijk − σi0jσi0k 1− σ2
i0k

 .

These conditional moments are easily derived under a Gaussian copula.

3 Relative Efficiency Under Particular Estimating Equations

3.1 A Study of Asymptotic Relative Efficiency

Here we examine the asymptotic relative efficiency of four different conditional
estimating equations as a function of the strength of the within-family associ-
ation through the functions

AREB(ψ̂) =
asvarA(ψ̂)

asvarB(ψ̂)
, AREC(ψ̂) =

asvarA(ψ̂)

asvarC(ψ̂)
, and ARED(ψ̂) =

asvarA(ψ̂)

asvarD(ψ̂)
,

where asvar() denotes an asymptotic variance and its subscript indexes the
adopted conditional estimating equations proposed in Sect. 2.2 . All three
simplified conditional estimating equations are compared with the conditional
estimating equations with full Gi and full covariance matrix Wi.

Consider two-generation families comprised of two parents and two chil-
dren; ni = 3. The proband is randomly selected from the four family members,
and is indexed by j = 0. A Weibull distribution is adopted for the onset time
for all family members; F(tij |Xij ; θ) = exp

(
− (λtij)

κ exp(Xijβ)
)

where Xij

is a binary variable with P (Xij = 1) = 0.5, j = 0, 1, 2, 3, and we assume that
Xij ⊥ Xik, j 6= k; θ = (λ, κ, β)′. Let κ = 1.2, β = log 1.2, and choose λ to
give a median age of 45 years for disease onset for group with Xij = 0. The
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clinic entry time for the proband Ci0 is normally distributed with mean 50 and
variance 20, and families are recruited into the study only if their probands
satisfy the selection condition Ti0 ≤ Ci0. For non-proband j in the selected
family i, let Cij be the random age of contact, following N(µ = 60, σ2 = 10)
for individuals in the first generation and N(µ = 30, σ2 = 10) for the individ-
uals in the second generation, j = 1, 2, 3; the age at contact for individuals in
both generation are truncated at 90 years. We consider a Gaussian copula to
induce an exchangeable within-family association for simplicity here, and let
Kendall’s τ vary from 0 to 0.5 to reflect independence to strong within-family
association. The second-order model with a Fisher transformation link func-
tion is simply log

(
(1 + τijk)/(1− τijk)

)
= γ0, 0 ≤ j < k ≤ 3. The asymptotic

variances of estimators based on conditional estimating equations in (2) are
approximated by Monte Carlo simulation based on 20,000 samples.

Fig. 1 shows the trends of asymptotic relative efficiencies of estimators
under different conditional estimating equations as a function of the within-
family association. It is apparent that the conditional estimating equations
with full Gi and full Wi (G-W) leads to the most efficient estimators, and
the efficiency gain is most appreciable for the association parameter. With the
WPI matrix Wi, adopting GI yields more efficient estimators than that using
GII, especially when the within-family association is strong. This makes sense
as the former utilizes additional information about γ from the conditional
mean µi. The conditional estimating equations with the full Gi and WPI
matrixWi (G-WPI) perform worse than other approaches when the association
is less than 0.45; see Fig. 1. This indicates that with a working covariance
matrix, using the full derivative matrix increases the complexity, but does not
improve efficiency; on the contrary it leads to less efficient estimators. This is
similar to the findings reported by Balemi and Lee [1] where they compare the
performance of GEE1 and GEE2 estimators for clustered binary data.

3.2 Finite Sample Study of the Conditional Estimating Equations

Here we conduct a simulation study to assess the validity and finite sample
performance of these four conditional estimating equations for family data
from response-dependent sampling. The parameter settings are the same as in
Sect. 3.1 and we let Kendall’s τ = 0.0, 0.2 and 0.4 for an exchangeable Gaus-
sian copula. We also consider a more general case where the within-family as-
sociation is induced by a Gaussian copula with structured correlation matrix.
For the two-generation families comprised of two parents and two children,
let Kendall’s τpp = 0.1 for parents, Kendall’s τpc = 0.2 for parent-child, and
Kendall’s τss = 0.4 for siblings to reflect the existence of both environmental
and genetic effect on the age of onset. One thousand datasets of m = 200 and
1000 ascertained families are generated, the four proposed conditional estimat-
ing equations are used for analysis and the empirical properties of estimates
of β and γ0 are summarized in Table 1 for the exchangeable Gaussian copula
and β and γ = (γ0, γ1, γ2)′ for the structured Gaussian copula in Table 2. The
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Fig. 1 Asymptotic relative efficiencies of estimators under conditional estimating equations
with full Gi and WPI Wi (AREB), simplified GI and WPI Wi (AREC), simplified GII and
WPI Wi (ARED) compared with that under conditional estimating equation with full Gi

and full covariance matrix Wi; within-family dependence of disease onset times is induced
by a Gaussian copula with exchangeable structure with Kendall’s τ varying from 0 to 0.5;
(log λ, log κ, β) = (−4.11, log 1.2, log 1.2), ni = 3, m = 20, 000.

performance of the estimators for the parameters of the baseline hazard was
excellent under the (correct) Weibull specification in all settings and so we do
not tabulate these results.

The results under the exchangeable Gaussian copula in Table 1 show that
when the Weibull model is specified for the onset time distribution the em-
pirical biases are negligible for all conditional estimating equations; there is
very slight finite sample bias for the association parameter when m = 200
and the within-family association is strong (Kendall’s τ = 0.4). The empirical
standard errors (ESE) agree with the average standard errors (ASE) based on
the robust variance form, and the empirical coverage probabilities (ECP) of
nominal 95% confidence intervals are in general within the acceptable range.
Consistent with the theoretical results of Sect. 3.1, the greatest efficiency came
from the conditional estimating equations with the full derivative matrix and
full covariance matrix (G-W), followed by those with GI and WPI matrix Wi

(GI-WPI). The empirical performance of the conditional estimating equations
with the full Gi and WPI matrix Wi is worse than others, again in alignment
with the conclusion based on Fig. 1.
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When considering a more flexible marginal model with a piecewise con-
stant (3 pieces) baseline hazard function, we set the cut-points at t = 20 and
40. For the large sample size m = 1000, performance was excellent for infer-
ence regarding β and very good for the dependence parameter γ0 when the
association was small; properties of the estimator of γ0 became worse with
stronger within-family dependence, possibly as a result of the crude approx-
imation of the piecewise constant hazard. While one might expect superior
performance if more pieces were accommodated, convergence problems arose
even with just three pieces under the smaller sample sizes for some replicates
(typically less than 2.5%); the percentages of replicates failing to converge are
reported in the last column and where necessary the properties of estimators
from converged replicates are given. The GI-WPI estimating equation always
resulted in convergence. The convergence issues likely arose due to the right-
truncated nature of the proband onset time and the severe censoring from
a current status observation scheme of non-probands; these combine to yield
little information to estimate the hazard function in small samples.

Under more general association structure, results under GII-WPI estimat-
ing equation are not summarized because of high non-convergence percent-
age for such more general association structure. For other three conditional
estimating equations, their performance was again excellent under the cor-
rect Weibull model and again 100% of the replicates lead to convergence for
m = 200 and m = 1000; see Table 2. Empirical biases were general small,
there was good agreement between the empirical and average robust standard
errors, and the empirical coverage probability was generally within the accept-
able range. Under the piecewise constant model, convergence rate was 100%
when m = 1000 and the empirical properties of the estimators for β and γ
were good in such settings. When m = 200 performance remained good but
with small finite sample bias and good empirical coverage probability.

4 Impact of Misspecifying the Dependence Structure

4.1 Limiting Bias under Misspecified Conditional Estimating Equations

While standard GEE1 only requires correct specification of the marginal mean
for consistent estimation of the marginal parameters, the conditional estimat-
ing equations requires correct specification of the marginal distribution and the
dependence structure for consistent estimation, even for the simplified condi-
tional estimating equations GI-WPI and GII-WPI. As is often the case, the
efficiency gains coming from the use of higher-order moments in the conditional
estimating equations such as G-W, comes at the cost of poorer robustness. We
explore the limiting behaviour of estimators from misspecified models here
based on large sample theory [31]. Specifically if U(ψ) is an estimating func-

tion for ψ based on a misspecified model then the solution ψ̂ for U(ψ) = 0
asymptotically follows,

√
m(ψ̂ − ψ∗) ∼ N

(
0, Ā−1(ψ∗)B̄(ψ∗)[Ā−1(ψ∗)]′

)
(5)
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as m→∞, where Ā(ψ) = E[−∂Ui(ψ)/∂ψ′ ; ζ], B̄(ψ) = E[Ui(ψ)U ′i(ψ) ; ζ] and
ψ∗ is the solution to E[U(ψ) ; ζ] = 0, where E[ · ; ζ] denotes an expectation
taken with respect to the true distribution indexed by ζ. Note that E[U(ψ); ζ]
can be written as

m∑
i=1

E{Ui(ψ) ; ζ} =

m∑
i=1

E

{
G′iW

−1
i

(
µ∗i (ζ)− µi
η∗i (ζ)− ηi

)
+D′iV

−1
i (Ti0 − µi0)

}
(6)

where µ∗i (ζ) = E[Ȳi|Ti0, Xi, Ci] and η∗i (ζ) = E[Z̄i|Ti0, Xi, Ci] are the condi-
tional expectation of Ȳi and Z̄i given {Ti0, Xi, Ci} under the true model. The
expectation on the right hand side of (6) is taken with respect to the remaining
random variables {Ti0, Xi, Ci}. Of course when the model is correctly speci-
fied, then ψ∗ = ζ but this is not the case more generally; we investigate the
limiting bias of estimators under the misspecified model by examining ψ∗− ζ.

Here we consider two-generation families comprised of two parents and two
children, and the proband is randomly selected from the four family members.
The probands are recruited into the registry only if Ti0 ≤ Ci0. We adopt
the same parameter settings as in Sect. 3.1 but assume here that the true
within-family association structure is induced by the Clayton copula

H(k0, k1, . . . , kni
;φ) = (k−φ0 + k−φ1 + · · ·+ k−φni

− ni)−1/φ , (7)

where Kendall’s τ = φ/(φ+2). The adopted estimating functions are misspec-
ified in that the dependence structure is modeled based on a Gaussian copula
with an exchangeable association structure. We consider values of Kendall’s τ
ranging from 0 to 0.5 to reflect independence to strong within-family depen-
dence. We evaluate the limiting relative biases of estimators by using Monte
Carlo methods to take the expectation in (6) and solving the resulting equa-
tion.

From Fig. 2 we see that the conditional estimating equations with the full
Gi and WPI matrix Wi is the most sensitive to misspecification. Although one
might anticipate that the full Gi and full covariance matrix Wi (G-W) would
be less robust than GI-WPI or GII-WPI, the asymptotic relative biases of esti-
mators defined through G-W are in general no larger than those under GI-WPI
and GII-WPI when Kendall’s τ is less than 0.3; the sensitivity of estimators
from G-W to misspecification become more apparent, compared to those based
on GI-WPI and GII-WPI, when Kendall’s τ is larger (i.e. > 0.3); GI-WPI is
slightly more sensitive to this form of misspecification than GII-WPI. Further-
more, the asymptotic relative biases for β under the conditional estimating
equations are all relatively modest when Kendall’s τ is small to modest. If
one is primarily interested in estimation of β, then the proposed conditional
estimating equations are reasonably robust to misspecification of the copula
function for modest Kendall’s τ , but the asymptotic biases of the dependence
parameters are appreciable under misspecification of the dependence struc-
ture. This conclusion is analogous to those made regarding misspecification
of the random effect distribution with response-dependent sampling [11,13,
23]. We also conducted supplementary simulation studies demonstrating good
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agreement between the finite sample and asymptotic biases in studies with 200
and 1000 families (See Supplementary Material).
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Fig. 2 Asymptotic relative biases of estimators under conditional estimating equations
when a Gaussian copula with an exchangeable structure is adopted for within-family de-
pendence modeling; the true within-family dependence structure is induced by a Clayton
copula; (log λ, log κ, β) = (−4.11, log 1.2, log 1.2).

4.2 Power Implications of Dependence Structure Misspecification

We next investigate the effect of dependence structure misspecification on
the power of tests regarding covariate effects. Based on our previous findings
regarding asymptotic relative efficiency and robustness, we focus attention
here on the preferred estimating functions G-W and GI-WPI. We consider a
test of H0 : β = β0 = 0 vs HA : β 6= 0, and let βA be the clinically important
effect. When both the marginal and association models are correctly specified
from (2) we have,

√
m(β̂ − β)

d−→ N(0, σ2(ψ)) , (8)

as m → ∞, where σ2(ψ) is the diagonal element in the robust covariance

matrix A−1(ψ)B(ψ)
[
A−1(ψ)

]′
corresponding to β. Under a two-sided Wald
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test with significance level 100α1%, the required number of families to ensure
100(1− α2)% power to detect βA is the smallest m satisfying

m ≥
{
zα1/2 σ(ψ0) + zα2

σ(ψA)

βA

}2

, (9)

where σ(ψ0) and σ(ψA) are the square root of asymptotic variances of
√
m(β̂−

β) under the null and alternative hypotheses; ψ0 = (λ, κ, β0, γ
′) and ψA =

(λ, κ, βA, γ
′). zu is the 100(1−u)% percentile of standard normal distribution.

When the dependence structure is misspecified, the limiting value of es-
timators under the conditional estimating equations is ψ∗(6= ζ) (Sect. 4.1).

Then based on (6), we can calculate the limiting values of ψ̂ under the null
and alternative hypotheses when the dependence structure is misspecified, and
denote them as ψ∗0 and ψ∗A, respectively. Furthermore, we can show that un-
der the null hypothesis, the estimator based on the misspecified conditional
estimating equations satisfies

√
m(ψ̂ − ψ∗0)

d−→ N(0, Γ ∗0 ) , (10)

as m→∞, and under the alternative hypothesis

√
m(ψ̂ − ψ∗A)

d−→ N(0, Γ ∗A) , (11)

where

Γ ∗0 = Ā−1(ψ)B̄(ψ)[Ā−1(ψ)]′
∣∣∣∣
ψ=ψ∗0

, and Γ ∗A = Ā−1(ψ)B̄(ψ)[Ā−1(ψ)]′
∣∣∣∣
ψ=ψ∗A

.

Hence the asymptotic properties of β̂ can be determined by considering the
corresponding component of ψ̂. When the copula model is misspecified, the
actual power of such two-sided Wald test of H0 : β = β0 = 0 vs HA : β 6= 0,
at the clinically important effect βA given sample size m and significance level
α1, is

POWER = Φ

(−zα1/2 σ
∗
0 −
√
m β∗A

σ∗A

)
+ Φ

(−zα1/2 σ
∗
0 +
√
m β∗A

σ∗A

)
, (12)

where σ∗0 and σ∗A are the square roots of the diagonal elements of Γ ∗0 and Γ ∗A ,
respectively, corresponding to β.

Here we report on an asymptotic study to examine the effect of copula mis-
specification on the power. Assume each family consist of two parents and two
children, and the proband is randomly selected from the four family members.
As before we presume families are recruited to the study only if Ti0 ≤ Ci0.
The parameter settings are the same as in Sect. 3.1 but we consider two spe-
cific scenarios: i) the true within-family association structure is based on a
Gaussian copula with an exchangeable association structure and ii) the true
within-family association structure is based on a Clayton copula (7); in both
cases we set Kendall’s τ = 0.4. At the design stage we adopt a Gaussian copula
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with an exchangeable association structure for the within-family dependence,
and let Kendall’s τ = 0.4. We therefore only consider the case in which the
form of the dependence structure is misspecified. In this setting we calculate
the required sample size to achieve 80% power to reject H0 at βA = log 1.2 by
(9), where σ(ψ) is obtained from the Gaussian copula. The minimum number
of families are 420 and 422 based on estimating equation G-W and GI-WPI,
respectively. Under these sample sizes, the actual power of such a design can be
computed by (12) for values of β ranging from 0 to log 1.2. The power curves
are plotted in Fig. 3 from which infer that when the association model is cor-
rectly specified, tests based on the conditional estimating equations G-W and
GI-WPI have the desired power at the clinically important effect; as expected
the power decreases when the true value of β approaches 0. When the copula
is misspecified (i.e. the true dependence structure is set by a Clayton copula
but a Gaussian copula is used for sample size calculation), tests based on both
conditional estimating equations lead to a loss in power, with a greater loss
in power under G-W compared to GI-WPI. This is reasonable since the G-W
estimating equations exploit information from higher-order dependencies more
than GI-WPI, which is less robust than the latter. In summary, based on the
comprehensive investigation of these conditional estimating equations in terms
of the efficiency and robustness, estimating equation GI-WPI is suitable in the
absence of information about the association structure, but if information is
available about the structure, estimating equation G-W could be adopted to
achieve higher efficiency.

5 Application to The Psoriatic Arthritis Family Study

Hereditary factors are thought to be important in psoriatic arthritis, as some
studies have suggested that close blood relatives of affected individuals are
at higher risk of developing the disease compared to the general population.
Interest therefore lies in characterizing the effect of genetic markers on risk of
disease; we consider four human leukocyte antigen (HLA) markers reported in
the literature as being associated with psoriasis or psoriatic arthritis including
HLA-B8, HLA-B27, HLA-C6 and HLA-C12. Characterizing the nature of the
within-family association structure can also provide useful insight into the
genetic basis for disease. Particular interest lies in assessing the “parent of
origin” effect; preliminary evidence suggests there may be a stronger risk of
paternal transmission, over maternal transmission, of risk of disease; we refer
readers to Pollock et al. [24] for associated results based on binary analyses.

Here we consider an application to the motivating family study on the ge-
netic basis for psoriatic arthritis conducted in the Centre for Prognosis Stud-
ies in the Rheumatic Diseases at the University of Toronto. One hundred and
sixty-nine families comprised of 2 to 7 members, including the proband, were
recruited for study. The date of disease onset is available for probands from the
clinic registry but only the disease status of other individuals is available when
they are examined, yielding current status data. A Weibull model is adopted
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Fig. 3 Power curves of a two-sided Wald test for H0 : β = 0 under conditional estimat-
ing equations G-W and GI-WPI when the within-family dependence structure is correct
specified or misspecified; true within-family dependence is induced by Gaussian copula with
exchangeable structure or Clayton copula, adopted family dependence structure in the de-
sign stage is Gaussian copula with exchangeable association; Kendall’s τ = 0.4, βA = log 1.2.

for the marginal distribution of the PsA onset time with survivor function
F(t|Xij ; θ) = exp(−(λt)κ exp(X ′ijβ)) where θ = (λ, κ, β′)′, j = 1, . . . , ni, and
i = 1, . . . , 169. A flexible model for the within-family dependence is formulated
based on a Gaussian copula with different pairwise dependencies between par-
ents (τpp), between siblings (τss), between a father and his child (τfc), and
between a mother and her child (τmc). This can be formulated in terms of a
second-order regression model given by

log
(
(1 + τijk)/(1− τijk)

)
= γ0 + γ1vijk1 + γ2vijk2 + γ3vijk3 , (13)

where vijk1 = I((j, k) pair are siblings), vijk2 = I((j, k) pair is father− child),
and vijk3 = I((j, k) pair is mother− child). The hypotheses H0 : γ2 − γ3 = 0
and HA : γ2 − γ3 6= 0 are the basis of a test regarding the parent of origin
question. There are only 8 pairs of parents, which leads to insufficient data to
estimate the intercept in (13) and so we constrain that parameter to be zero
with the implicit assumption that there are no environmental determinants of
PsA.

Table 3 summarizes the results with the top half obtained from the full
derivative and covariance matrices (G-W) and the bottom half reporting the
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results from GI-WPI. A model with no HLA covariate is given in the first
column followed by four univariate models, with the last column containing
results from a multivariate model including all four markers. The estimates
for the association parameters are given in terms of γ and the three Kendall’s
τ parameters.

Based on the model with no HLA covariates, we find τ̂ss = 0.337 (95%
CI : 0.113, 0.528; p−value = 0.002), indicating highly significant association
between siblings in the disease onset time. The father-child association is lower
at τ̂fc = 0.225 (95% CI : -0.030, 0.452) and not quite statistically significant
(p−value = 0.072). For the mother-child association we find τ̂mc = 0.130 (95%
CI : -0.153, 0.393) which is weaker still and insignificant (p−value = 0.364). A
test of the parent of origin hypothesis based on H0 : γ2−γ3 = 0 yields a Wald
statistic of 1.435 (p−value = 0.151). As this is not statistically significant at
the 5% significance level, there is insufficient evidence to claim a statistically
significant “parent of origin” effect. The results are broadly comparable for the
HLA regression analyses based on the other conditional estimating equation
(GI-WPI). For the association parameters the estimates are somewhat lower
with τ̂ss = 0.220 (95% CI : -0.003, 0.423; p−value = 0.046), τ̂fs = 0.104 (95%
CI : -0.128, 0.324; p−value = 0.378), and τ̂ms = −0.018 (95% CI : -0.256,
0.222; p−value = 0.886). The Wald statistic of 1.682 (p−value = 0.092) does
not suggest a “parent of origin” effect.

The large sample theory we develop can be used to plan a future family
study and it is possible to calculate how many families would be required
to ensure adequate power to test the parent of origin hypothesis in a future
study. In a new study we may consider recruitment of families of members
of the registry, and presume that the distribution of family members, ages at
assessment and other factors are similar in the new study. We use the sample
size formula similar to (9) but for γ2−γ3 and determine that 627 families would
be required to ensure 80% power to detect a significant difference between the
father-child and mother-child association using estimating function G-W when
the true effects correspond to those seen in the first column of Table 3. The
current study therefore appears to be grossly under-powered to formally test
the parent of origin hypothesis.

None of the HLA markers were shown to have a significant effect on the
time to the onset of PsA. Based on the G-W estimating equations, there is a
trend toward a reduction in risk with HLA-B8 and a trend toward an increased
risk with the presence of each of the other HLA markers.

6 Discussion

Estimating functions have been developed to model the nature and extent
of within-family dependence in disease onset times from family studies under
response-dependent sampling. A novel aspect of this work is the formulation
of the dependence measures on the basis of the disease onset time and the
recognition that the available data on family members are handled more nat-
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Table 3 Estimates of analyses of HLA markers and time to disease onset based on condi-
tional estimating equations using response-biased psoriatic arthritis family data; associated
standard errors are in the parentheses.

Univariate models Multivariate

No HLA HLA-B8 HLA-B27 HLA-C6 HLA-C12 model

Full G and Full W (G-W)

log λ -5.461 (0.531) -5.353 (0.455) -5.573 (0.609) -5.650 (0.590) -5.342 (0.464) -5.544 (0.543)

log κ 1.347 (0.086) 1.347 (0.086) 1.348 (0.086) 1.349 (0.086) 1.346 (0.087) 1.349 (0.086)

βB8 - -0.483 (0.709) - - - -0.195 (0.751)

βB27 - - 1.161 (0.755) - - 1.308 (0.771)

βC6 - - - 0.397 (0.593) - 0.458 (0.625)

βC12 - - - - 0.788 (0.769) 0.982 (0.830)

γ1 0.700 (0.242) 0.660 (0.224) 0.741 (0.261) 0.777 (0.242) 0.620 (0.234) 0.695 (0.244)

γ2 0.458 (0.264) 0.414 (0.242) 0.470 (0.281) 0.536 (0.259) 0.378 (0.264) 0.423 (0.269)

γ3 0.261 (0.291) 0.220 (0.268) 0.300 (0.310) 0.343 (0.285) 0.173 (0.289) 0.252 (0.287)

τss 0.337 (0.107) 0.318 (0.101) 0.354 (0.114) 0.370 (0.104) 0.301 (0.106) 0.334 (0.108)

τfc 0.225 (0.125) 0.204 (0.116) 0.231 (0.133) 0.262 (0.121) 0.187 (0.127) 0.209 (0.129)

τmc 0.130 (0.143) 0.110 (0.132) 0.149 (0.151) 0.170 (0.138) 0.086 (0.143) 0.125 (0.141)

GI and WPI W (GI-WPI)

log λ -5.037 (0.326) -5.007 (0.313) -5.105 (0.358) -5.034 (0.325) -5.052 (0.317) -5.105 (0.331)

log κ 1.337 (0.087) 1.338 (0.087) 1.339 (0.087) 1.337 (0.087) 1.338 (0.088) 1.340 (0.087)

βB8 - -0.490 (0.644) - - - -0.325 (0.669)

βB27 - - 0.849 (0.587) - - 0.969 (0.580)

βC6 - - - -0.037 (0.492) - 0.060 (0.537)

βC12 - - - - 0.767 (0.644) 0.911 (0.667)

γ1 0.448 (0.232) 0.447 (0.234) 0.481 (0.237) 0.447 (0.238) 0.437 (0.227) 0.465 (0.238)

γ2 0.208 (0.237) 0.199 (0.234) 0.208 (0.238) 0.206 (0.241) 0.195 (0.241) 0.180 (0.244)

γ3 -0.036 (0.249) -0.039 (0.246) -0.005 (0.250) -0.037 (0.256) -0.059 (0.251) -0.036 (0.254)

τss 0.220 (0.110) 0.220 (0.111) 0.236 (0.112) 0.220 (0.113) 0.215 (0.108) 0.228 (0.113)

τfc 0.104 (0.117) 0.099 (0.116) 0.104 (0.118) 0.103 (0.119) 0.097 (0.119) 0.090 (0.121)

τmc -0.018 (0.124) -0.019 (0.123) -0.002 (0.125) -0.019 (0.128) -0.030 (0.125) -0.018 (0.127)

urally as current status data rather than binary data. This approach utilises
all available data from probands and their relatives in assessing association
between age of onset and covariates, and in evaluating association structure
of age of onset among family members. The biased sampling scheme typically
employed in family studies is addressed by the use of conditional estimating
equations where the conditioning event reflects the selection criteria. Several
specific estimating functions within the class proposed are assessed in terms
of efficiency and robustness; these results complement the standard results of
second-order estimating functions since all moments in the proposed equations
are conditional. We also outline how sample size requirements for family stud-
ies can be assessed based on this framework to ensure power objectives are
met. Code for solving the conditional second-order estimating equations (1)
and for obtaining the variance estimates of Section 2.2 are available at Github
https://github.com/Yujie-Zhong/CGEE2.

We have focused on the use of estimating functions for the analysis of
family data in part because the likelihood can be challenging to compute
when the size of the family is large. Nevertheless, some assessment of the loss
of efficiency in comparison to this optimal approach would be worthwhile.
The validity of the proposed conditional second-order estimating equations
hinges on correct specification of the dependence structure, a requirement that
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is analogous to the need for correct specification of the mixing distribution
in random effects models for data obtained based on a response-dependent
sampling scheme [23]. Assessing model adequacy is best done by testing for the
need for model expansion; this could be carried out by testing the need for more
cut-points in the baseline hazard function to accommodate a more flexible
hazard function, or the need to test for a more general dependence structure.
In the present setting the dependence structure is most easily formulated by
selecting a working copula model for the joint distribution of the onset times
in the population. If this dependence structure is misspecified, inconsistent
estimates are obtained, and we examine the consequences of that in Sect. 4
to make recommendations on the use of a particular derivative and working
covariance matrix. The properties of estimators under model misspecification
can be explored using large sample theory [31], but these will be influenced by
response-dependent sampling schemes and so more general study of the effect
of misspecification in this framework represents an important area for further
research.

We have restricted attention to parametric models for the onset time dis-
tribution. Natural extensions would be to introduce non-parametric or semi-
parametric methods for estimating the marginal distributions. In the latter
case one can look at multiplicative Cox models, accelerated failure time mod-
els, Aalen’s additive model, among many other methods. Joint estimation
based on the most general conditional estimating equation can be challenging
in this setting, but two-stage estimation procedures may be feasible; this is
an area of current research. The preliminary work based on the piecewise con-
stant baseline hazard model, however, suggests studies may need to recruit a
lot of families if the incidence rate is low to estimate the marginal onset time
distribution. If the disease onset times are available for all or even some of the
non-probands found to have the disease, this data could help in estimation; the
estimating equations we present can be modified in this case to incorporate
such data. Auxiliary samples can also be useful to enhance inferences.

While there is an increasing amount of attention given to the use of disease
onset time as a basis for modeling within-family dependence, there remain
challenging issues that warrant further attention. The primary challenge is in
quantifying dependence in the presence of the competing risk of death [26,
12]. The classical illness-death process is a natural framework for modeling
the occurrence of disease in individuals who are at risk, and generalization of
this set-up to model within-family dependence is an area warranting attention.
This issue is not unique to analyses based on disease onset times; when current
status data are treated as binary data the requirement that individuals are
alive at the time of contact is ignored.
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