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Abstract 51 

Agent-based modelling (ABM) simulates Social-Ecological-Systems (SESs) based 52 

on the decision-making and actions of individual actors or actor groups, their 53 

interactions with each other, and with ecosystems. Many ABM studies have focused 54 

at the scale of villages, rural landscapes, towns or cities. When considering a 55 

geographical, spatially-explicit domain, current ABM architecture is generally not 56 

easily translatable to a regional or global context, nor does it acknowledge SESs 57 

interactions across scales sufficiently; the model extent is usually determined by 58 

pragmatic considerations, which may well cut across dynamical boundaries. With a 59 

few exceptions, the internal structure of governments isnot included when 60 

representing them as agents. This is partly due to the lack of theory about how to 61 

represent such as actors, and because they are not static over the time-scales 62 

typical for social changes to have significant effects. Moreover, the relevant scale of 63 

analysis is often not known a priori, being dynamically determined, and may itself 64 

vary with time and circumstances. There is a need for ABM to cross the gap between 65 

micro-scale actors and larger-scale environmental, infrastructural and political 66 

systems in a way that allows realistic spatial and temporal phenomena to emerge; 67 

this is vital for models to be useful for policy analysis in an era when global crises 68 

can be triggered by small numbers of micro-level actors. We aim with this thought-69 

piece to suggest conceptual avenues for implementing ABM to simulate SESs 70 

across scales, and for using big data from social surveys, remote sensing or other 71 

sources for this purpose. 72 

 73 
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1. Introduction 79 

The social-ecological systems (SESs) concept describes the tight coupling of human 80 

and environmental systems that mutually influence each other [1-4]. An SES in this 81 

view includes the ecological components of an interdependent group of organisms or 82 

biological entities, within a bio-geophysical environment [5-6]; and a social 83 

component including the actors whose activities directly influence ecosystems and 84 

those that govern human-nature interactions which can be the same or different 85 

actors. Resulting interactions are mediated by the broader social, economic, and 86 

political settings and the larger ecosystems within which the SES is embedded [7]. 87 

Interactions are continuously changing due to feedbacks and internal or external 88 

factors, taking place across different temporal and spatial scales, making SESs 89 

highly dynamic systems [8-10]. 90 
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Agent-based modelling (ABM) has become a well-established computational 91 

approach for studying SESs [11-14]. Many ABM examples have focused on 92 

simulating case studies at the level of villages, rural landscapes, towns or cities [e.g. 93 

12, 15-17]. However, ABM architecture that focussed on case studies is not easily 94 

translatable to a regional or global context, nor does it acknowledge SESs’ 95 

interactions across temporal and spatial scales sufficiently [4, 18, 19]. Even within a 96 

single domain, such as ecosystem dynamics or economics, models must deal with 97 

cross-scale interactions; for example, models of infectious disease transmission may 98 

need to integrate processes at cellular, host and population level [20]. In economics, 99 

conventional models, which ignore agent heterogeneity and cross-scale interactions, 100 

cannot capture such phenomena as the default of a single firm triggering a 101 

macroeconomic bankruptcy avalanche [21, 22]. Moreover, international trade may 102 

show both fast and slow dynamics through coupling between political agreements, 103 

international markets, supranational bodies such as the World Trade Organisation, 104 

and biophysical processes that affect crop growth or the availability of fuel. With the 105 

growing active use of ABM in policy, national disaster planning and even global 106 

poverty analyses by the World Bank [23], it is timely to consider how scale issues 107 

might affect the usefulness and validity of model results. The main challenge for 108 

modelling SESs across scales is that the most relevant scales may themselves vary 109 

temporally depending on the system’s dynamics. Near a tipping point or phase 110 

change, small fluctuations in some parts of the system may propagate to affect the 111 

whole [e.g. 24], whereas at other times, change might remain spatially or temporally 112 

localised - a point that is generally true for many kinds of dynamical systems. 113 

In this thought-piece we discuss conceptual avenues for using ABM to simulate 114 

SESs across scales. The growing availability of Big Data such as social panel 115 

surveys, earth observation systems, and other available sources may help, but their 116 

partiality and bias could pose difficulties. Understanding the roles of multiple 117 

stakeholders such as political actors, resource users, citizens or agencies who may 118 

have direct or indirect influences and interest in decision making is integral for 119 

understanding SESs across scale. The core proposition is that in a world that is 120 

increasingly connected and multi-scale, solutions that support policy design and 121 

decision making must be as well. We aim to contribute to the ongoing debate on 122 

appropriate approaches for ABM to upscale dynamics emerging from lower level 123 

interactions to SESs representing larger geographical areas and the relevant high-124 

level social structures and institutions [4, 16, 19, 25, 26].  125 

In the remainder of this paper, section 2 sets the scene and introduces approaches 126 

for representing human behaviour across scales with a particular focus on 127 

economics, behaviour, and governance systems. Section 3 discusses fundamental 128 

aspects of using ABM to simulate SESs across scales, e.g. scaling mechanisms, 129 

parameterisation and uncertainty assessment. Section 4 then examines in more 130 

detail some specific conceptual and methodological directions, and section 5 131 

concludes the paper with an outlook on key next development steps. 132 

 133 

2. Theoretical considerations and conceptual challenges 134 
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Scale is a complex issue: spatial scale in particular has been the subject of 135 

considerable technical development in its analysis [27, 28] and of theoretical debate, 136 

with some authors even suggesting banishing the term [29], although in practice their 137 

main point is that the dynamics of scale are complex. In particular, it is important to 138 

distinguish the scale of analysis from that of processes [30], the danger being that 139 

pre-selection of a given spatial unit might prove to be inappropriate for the underlying 140 

dynamical system.  141 

Gibson et al. [31] and Cash et al. [32] have surveyed the cross-scale issue in the 142 

light of global environmental change and governance structures and define scaleas 143 

“the spatial, temporal, quantitative, or analytical dimensions to measure and study 144 

any phenomenon”, and levelsas “the units of analysis that are located at different 145 

positions on a scale” [32].Assuming that scale implies some sort of hierarchy of 146 

organisation, e.g. forms of jurisdiction from village to country, cross-scale then refers 147 

to interactions between different levels in the hierarchy, whereas referring to cross-148 

size could include horizontal interactions between two entities of different sizes. 149 

Interactions may occur within or across scales, leading to substantial complexity in 150 

dynamics, and change in strength and direction over time. For example, 151 

decentralization reforms can produce periods of strong interaction among national 152 

institutions and local governments during struggles involving power, responsibilities, 153 

and accountability but then settle into a much more modest and steady degree of 154 

interaction [33, 34]. Understanding the dynamics of SESs across scales is crucial to 155 

support policy design and the sustainable management of natural resources, 156 

because it reveals insights into processes in both socio-economic and environmental 157 

subsystems and the feedbacks between them [8, 16]. 158 

SESs modellers, however, need to distinguish between, and deal simultaneously 159 

with spatial, temporal and social scale. For example, modelling a small isolated 160 

region for many years without considering possible cross-scale interactions is likely 161 

to lead to substantial error in future projections; while there may be fast financial 162 

dynamics, for other processes (e.g. access to resources of population migration) 163 

situations at greater spatial distance will typically tend to increase in importance as 164 

the simulation time is increased; social scale has both spatial and temporal aspects, 165 

but cannot be reduced to either. People in the modern world typically belong to many 166 

social formations, from households and friendship networks to cultures, polities and 167 

worldwide economic systems; and there is no simple relation between the number of 168 

members and their geographical spread or temporal endurance. Spatial, temporal 169 

and spatio-temporal entities all form tangled hierarchies [35], in which one entity may 170 

be a part of several larger entities which overlap each other, particularly when we 171 

consider multiple domains: for example, the boundaries of hydrologically, 172 

ecologically and politically defined regions rarely coincide. These complexities pose 173 

difficulties for the SESs modeller. 174 

 175 

2.1 Agent attributes and social interactions 176 

In the social world, organizational scales range from the single individual to all 177 

humans, and from small cooperative groups to large multinational organisations. 178 
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Various groups of people might be acting in the same space and be independent, in 179 

competition, or interdependent at different scales. These relationships between or 180 

within groups can be crucial for the dynamics of SESs across scale. 181 

Drawing inferences about the behaviour of individuals based on grouped or area-182 

level data needs to be avoided. On the other hand, individual-level data may not 183 

always be available due to commercial or privacy reasons or their partiality across 184 

temporal and spatial scales, in which case theory-based assumptions, e.g. about 185 

distributions of characteristics among agents of a group, can be used. However, 186 

cultural variations that shape norms and values, and which one acquires in youth 187 

may never directly reach consciousness [36], so that the drivers of behaviour may 188 

not be easy to understand. How much these dynamics need to be incorporated in a 189 

given model will depend on model purpose, but the complexities of variation across 190 

scale need to be considered. For example, while social networks are commonplace 191 

in many agent models, people will typically belong to multiple networks with different 192 

physical and social reach. The interaction between these networks is likely to be of 193 

as much importance for some phenomena as the networks on their own (e.g. see 194 

also Section 2.3 below). 195 

The anthropocentric nature of the ecosystem service concept has further re-focused 196 

attention in ecosystem analysis from the ecology of nature to the important influence 197 

of people on the environment and the role of ecosystems in supporting human 198 

wellbeing [12, 37]. Frameworks for agent-based SESs models increasingly seek to 199 

address the characteristics of people and their dynamic interactions with the 200 

environment, e.g. MoHuB (Modelling Human Behavior) [38]. A recent review by 201 

Groeneveld et al. [16] showed that the majority of human-decision making models 202 

focused on land use change were not explicitly based on theory. But in order to 203 

make use of the full potential of ABMs across scales in understanding global change, 204 

model purpose must drive design choices, specifically the modelling of human 205 

decision making and social interaction. Where rich understanding is the purpose, full 206 

use needs to be made of theories from sociology and cultural psychology [39] and 207 

any discipline offering a plausible or structurally valid description of the issue under 208 

study. It is particularly relevant to have a realistic representation of human decision 209 

making when one is interested in future scenarios as this can significantly affect 210 

model outcomes.  211 

 212 

2.2 Economic structure and interactions 213 

Many authors [e.g. 4, 40, 41] recognize that classical multivariate statistics and 214 

general equilibrium approaches cannot capture the dynamics of SESs. Mainstream 215 

macroeconomic theory, however, remains rooted in general equilibrium micro-216 

foundations, with utility maximizing households and profit maximizing companies. 217 

Equilibrium is reached by external imposition of conditions requiring fulfilled 218 

expectations and market clearing [42]. The representative agent framework is used 219 

to provide micro-foundation for aggregate behavior, in a setting in which equilibria 220 

are unique and stable. Several studies, starting from Sonnenschein [43] and Debreu 221 

[44] show that such conditions do not exist, so the representative agent is actually 222 
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not representing anyone [45]. In the social simulation literature, similar critiques are 223 

already accepted [46]. 224 

Agent-based computational economics [47, 48] aims to go beyond the behavioural 225 

assumptions of neoclassical economics and consider both agent-agent and agent-226 

environment interactions. Equilibrium conditions, homogeneity, or other external 227 

coordination devices, which have no real-world referents need not be imposed [49]. 228 

Interactions are not centralized but related to some concept of proximity, which can 229 

be geographical but also behavioral or cultural among other possibilities. Interaction 230 

among agents, with balance sheet constraints at the individual level, allows for a rich 231 

out-of-equilibrium dynamics. Endogenously-generated dynamics can then produce 232 

growth and business cycles [50]. 233 

ABMs are able to replicate empirical features at many levels. One can check 234 

features at the aggregate level (i.e. GDP, inflation, systemic risk), or at the micro 235 

level studying the evolution of single agents, or in distributions (e.g. firm sizes), 236 

comparing them with corresponding distributions from real economies [51]. In the 237 

field of climate change, Farmer et al. [52] declare the need for a third wave in the 238 

economics of integrated assessment modelling, examine the potential of dynamic 239 

stochastic general equilibrium models (DSGE) versus ABM, and point out the huge 240 

potential of ABM in particular for estimating damage functions and scenario analysis. 241 

Indeed agent-based analyses suggest climate damage may be greater than 242 

standard integrated assessment models [53]. However, the complexities of 243 

generating well validated ABMs could make policy makers at central banks rather 244 

sceptical about fitting ABM macro models to data, instead of using standard 245 

reduced-form models. Thus, policy makers might turn to ABMs primarily when trying 246 

to study economic propagation mechanisms in a controlled experimental setting. In 247 

particular, simulating the economy in extreme situations, such as financial crashes, 248 

where standard models have failed [49], or in assessing the effects of poverty, where 249 

measures such as GDP may miss the plight of the poor [23]. 250 

 251 

2.3 Governments and Governance systems 252 

With a few exceptions [e.g. 54, 55], governments are simulated by agent-based 253 

models as single agents without the consideration of internal structure. The 254 

representation of institutional and governance structures of SESs across 255 

organizational entities however is crucial in understanding the ways in which 256 

organizations and policy provide feedbacks to individual agent behaviour. Agent-257 

based interactions are affected by an interplay between stakeholders and institutions 258 

at multiple scales and across scales [32]. Adequately representing human decision-259 

making across scaleswill be an important prerequisite for future ABM in order to 260 

serve as tools for policy making and avoid unintended consequences [56, 57]. 261 

Attempts at modelling human decision making [38] have tended to concentrate on 262 

the behaviour of individuals’ in households, businesses or agricultural systems. 263 

Other approachessee also [4, 9, 12, 13, 14]use‘what-if’ scenariosto evaluate the 264 

potential impact of future policy options on SESs vis-a-vis in using ABM to assess 265 

policies in retro perspective with the drawback ofnot allowing for feedbacks between 266 
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modelling outcomes and policies. In other cases,the prospective impact of a certain 267 

policyis assessedby comparing simulation resultsof selectedoutput parameters or the 268 

behaviour of one or several subsystems [11, 22,51].However, some examples of 269 

models that simulate behaviours of governments and international organisations are 270 

available [58-63], and may take into account various hierarchies (typically citizens/ 271 

businesses at one level and governments above, or political parties and the media 272 

[64]). 273 

Local decision-making processes can have spillover effects and can influence 274 

dynamics at different scales. Conversely, different types of actors at regional, 275 

national or international scale influence individual livelihoods or localized ecosystems 276 

through institutions or market dynamics. Brondizio et al. [65] argued that governance 277 

of SESs requires social institutions that link multiple scales in order to be effective 278 

[see also: 66, 67]. Usually government action emerges from a complex set of 279 

interactions between state and non-state actors with differing roles (e.g. politicians 280 

versus civil servants) divided and conflicting interests and loyalties (e.g. conformity to 281 

party line versus personal advancement), formal and informal processes (committee 282 

structures versus informal alliances, lobbying), legal and regulatory frameworks, 283 

fiscal and financial pressures and influences from media and the public. These 284 

interact with wider actors that constitute the governance system (NGOs, public 285 

service organisations, municipalities, security forces, local communities etc.) in sets 286 

of overlapping self-organising structures. 287 

Current models thus fail to exploit the full potential of ABMs to represent governance, 288 

where collective behaviours and informal institutions are generated endogenously 289 

through the interaction of individual agents within institutional and biophysical 290 

environments. This results partly from a focus on a single scale (often the local 291 

village, town or region) but also from the high complexity involved in the interactions 292 

between the many actors involved and the nature of decisions and processes that 293 

define and characterise them. It is in fact often difficult to identify who is actually 294 

involved in the decision-making process and therefore whose behaviours should be 295 

captured. This complexity can make it difficult to decide for a given model purpose 296 

which actors and dynamics need to be modelled and which do not.Such decisions 297 

should therefore always be guided by the research question and model purpose 298 

which drives the choice what is included in a model.  299 

 300 

2.4 Ecosystem structure and processes 301 

Biophysical structures and processes have previously been integrated in ABM using 302 

a variety of approaches, depending on the research question, model purpose, data 303 

availability and the trade-off between model complexity and its expected payoff. In 304 

ecology, the IBM acronym (Individual Based Model) is preferred to ABM [68]. A 305 

range of cases is reviewed by Luus et al. [69], including those where the 306 

environment is (i) regarded as static [70, 71] assuming that environmental change is 307 

much slower than other processes, or insufficiently well-known to model; (ii) treated 308 

using statistical regression methods where feedbacks may not be important, or 309 

ecosystem measures are simply outputs; or (iii) regarded as if in equilibrium (e.g. 310 
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when cast into a General Equilibrium economic framework, [72]). Other cases 311 

include the modelling of an aggregate stock that changes dynamically through 312 

harvesting and population growth [73], or hybrid models that represent the 313 

biophysical side using an equation-based approach [74]. 314 

Dynamical models may also be dealt with using transition rules [75] if ecosystems 315 

are not the main model focus, or are not changing in character in response to human 316 

activity; or with stock and flow (system dynamics) type calculations [76] or more 317 

general flow calculations to look at ecosystem service provision [77]. However, more 318 

relevant for the current purposes is the combination of ABM with IBM [78, 79], as 319 

IBMs have been argued to be a necessity for next-generation ecosystem models to 320 

capture the complexity of ecosystem dynamics [68]. The most complex type of 321 

models in this regard are Earth System Models (ESM), incorporating Earth’s 322 

atmosphere, cryosphere, oceans and lands on a global scale [80]. To date, 323 

ecosystem dynamics in ESM have been limited to vegetation on the land surface 324 

and plankton-based biogeochemistry in the oceans, representing only the net 325 

primary productivity from photosynthesis. Rounsevell et al. [18] highlight the 326 

possibilities of integrating ABMs with ecosystem and vegetation models over larger 327 

geographical areas. More recent work has pointed out the need for such global 328 

models to be process-based and to include animals and marine ecosystems [81, 82]. 329 

At least one global scale treatment of coupled animal and vegetative ecosystems on 330 

land and in the ocean has now been created [83]. However, the general vision for 331 

development of these models still lacks representation of human agency, decision 332 

making and adaptation [25], and the focus remains on climate change rather than 333 

other anthropogenic-driven factors that affect ecosystems [84]. 334 

 335 

2.5 Infrastructure and Socio-Technical Systems  336 

Gotts and Polhill [35] propose extending approaches of SESs to socio-techno-337 

ecosystems, pointing out that human artefacts influence the interactions between 338 

people and the natural environment (the socio- and -ecosystem components of an 339 

SES) in both intended and unintended ways, and that this influence has grown 340 

increasingly important over historical time. In particular, technological change has 341 

not only permitted and encouraged the long-term increase in human populations, it 342 

has also, particularly through the construction and maintenance of large-scale 343 

infrastructure such as road and rail systems, ports and airports, wired and wireless 344 

signal networks, radically altered the topology of the interaction networks among 345 

individuals, social groups, and ecosystems, by facilitating travel, goods transport and 346 

the accompanying transport of non-human organisms, both intended and 347 

unintended, and communication. At present the study of SESs and of socio-technical 348 

systems [85] are both recognised areas of study, but given the significant impact of 349 

human structures on ecosystem degradation as for example represented by roads 350 

opening up forested areas [86], we argue for a unification of the two areas. Whether 351 

or not we adopt new terminology such as socio-ecological-technical systems 352 

(SETSs), this points to one of the ways in which the concept of a SES, and 353 
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consequently, SESs model design, needs to be re-examined and extended to deal 354 

with cross-scale dynamics. 355 

 356 

3. Agent-based modelling for SESs across scale 357 

3.1 Model design 358 

To model SESs across scales adequately, modellers must deal with the dynamics of 359 

all the five aspects of these complex systems described in Section 2: human agency 360 

including social norms and culture, economic structures and processes, governance, 361 

ecosystem dynamics, and technology. All occur at multiple scales, and there is 362 

constant interaction not only within the same scale, but also across different scales. 363 

There are two main approaches in designing cross-scale agent-based models: 364 

building one complex model or the coupling of already existing domain-specific 365 

submodels as for example discussed by Verburg et al. [4] or Millington et al. [87]. In 366 

the first case, modular frameworks have been developed to facilitate modification 367 

and reuse of model components as for exampleshown with NetLogo 368 

(http://ccl.northwestern.edu/rp/levelspace/), wholeSEM 369 

(http://www.wholesem.ac.uk/research-models/linkages) or byGilbert et al. [67] While 370 

the modular approach takes advantage of already recognized disciplinary 371 

submodels, there are real challenges with regard to the matching of scales and 372 

spatial resolutions, and progress is often hindered by disciplinary jargon and implicit 373 

assumptions as well as the way uncertainties within components propagate 374 

throughout the whole model [19]. Parker et al. [88], discussing agent-based land use 375 

modelling, outline three possible modes of linking the natural and social components 376 

of such models: 377 

● Natural science models as inputs to social systems models, with no reciprocal 378 

linkage. 379 

● Natural-social-natural linkage in a one-way chain, where the natural systems 380 

modelled as providing inputs to and accepting outputs from the social system 381 

may be different (e.g. a crop growth model affecting modelled land use 382 

decisions, which in turn affect modelled wildlife). 383 

● Endogenous determination of common variables through interactions between 384 

natural and social system models. 385 

In agriculture, linking models of disease spread and mitigation procedures is 386 

accepted practice, as e.g. in the work of [89]that integrates a simplified individual-387 

level model of the spread of potato late blight (Phytophtora infestans), in a 388 

landscape-level model of farmer’s crop choice and management.  First, the natural 389 

system was modelled. Then, farmer practices were added, both in the model and in 390 

interactive sessions with farmers [90]. Similarly in [78] an individual ecosystem 391 

model for tree growth provided a dynamic landscape for farmers to both harvest 392 

trees and clear land for crop growth. The modification of the soil permeability then 393 

fed a hydrological model for simulation of the subsequent change in the profile of 394 

flooding. Coupling of these models was achieved through access to the source code 395 

for each sub-model and re-writing them to form a common framework in which the 396 

space and timescales could be matched to the smallest appropriate for the whole 397 

http://ccl.northwestern.edu/rp/levelspace/
http://www.wholesem.ac.uk/research-models/linkages
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model set. However, feedbacks from the environmental modification into farmer 398 

behaviour or forest dynamics from the altered pattern of flooding, and the potential 399 

effects of this downstream of the model catchment, either in terms of other residents, 400 

or on policy for forest conservation or flood management were not accounted for, 401 

despite a nominal model run time of hundreds of years. 402 

The implication we draw is that the last of thethree modes discussed above is really 403 

a requirement rather than an option: since the systems modelled are complex and 404 

the relative importance of dynamical aspects are unknown ahead of time, 405 

predetermining the direction of interactions could lead to expensive mistakes if 406 

applied to policy. 407 

In all cases, models must be linked via common variables, representing 408 

hypothesized causal connections between the natural and social systems. But the 409 

scales at which key processes are best modelled, and at which data is available, 410 

may differ between the natural and social domains, and causal connections may be 411 

indirect, crossing spatial and temporal scales: for example, the land use decisions of 412 

individual farm households may have a noticeable effect on potential pollution 413 

problems only in aggregate, so even if these effects react back on farmers, individual 414 

farms may not feel these secondary results of their own decisions. 415 

Voinov and Shugart [91] advocate integrating the empirical datasets used for 416 

calibration into models with multiple components. When module A feeds into module 417 

B, A should first be run using empirically-derived inputs (the “calibrated base run”), 418 

and its output compared with empirical data. When run in a different scenario, the 419 

output of A should then be modified “by the same increment as the scenario output 420 

from module A is different from the calibrated base run”, in order to avoid the risk of 421 

propagating modelling errors between model components. Of course, this approach 422 

assumes the required data are available, which as Parker et al. [88] point out, may 423 

not be the case. Whether Big Data can come to the rescue here we consider below. 424 

Different terminologies and conceptualizations of the involved domains also hinder 425 

the design of an integrated model. ABM requires the expression of concepts in a 426 

formal programming language without the residual ambiguities present in the natural 427 

language [92]. Therefore, while the integration of domains and scales remains 428 

laborious, ABM as a modelling approach provides a basis for such an integration 429 

[93]. Polhill and Gotts [94] and Janssen et al. [95] describe the use of formal 430 

ontologies to improve the modularity and conceptual transparency of models in the 431 

area of agricultural systems. Such ontologies consist of a conceptual hierarchy of 432 

classes (generally a tangled hierarchy in which a concept may have multiple super-433 

concepts or generalizations), and an associated hierarchy of relations which may 434 

hold between members of specified classes. The ontology will typically be 435 

constructed using input from domain experts and/or stakeholders(actors whoare 436 

relevant because they play a role in and/or are significantly affected by the SES, 437 

including decision makers at a specific scale of interaction), so that it acts as an 438 

intermediate representation between natural language and computer code, which is 439 

frequently opaque to all but the programmer, and generally includes features such as 440 
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schedulers and displays, which are necessary to make the model work or to assist 441 

the user, but are not intended to correspond to anything in the system modelled. 442 

A key aspect here is to be sure to adopt sound principles of software engineering 443 

(use of version control, formal repeatable unit testing, continuous integration of 444 

software updates and testing, comprehensive documentation, open source code) as 445 

the norm for complex model development [96]. Otherwise problems with repeatability 446 

of model experiments are likely to persist and potentially become more severe as 447 

models are made more complicated. Establishment of trust for policy purposes must 448 

thus rest on a foundation of good model testing, built in at design time, although 449 

considerable challenges remain where software is built by multiple remote teams 450 

[97]. 451 

As a further issue, while ABM and IBM in principle allow for the inclusion of all 452 

possible dynamical scales down to the level of individuals, and seem ideally suited 453 

for integrated modelling of SESs, there are a number of difficulties with ecosystem 454 

models that go beyond the issues of commensurability of time and spatial scales that 455 

arise when coupling models together, or the issues of model complexity [69]. The 456 

sheer number both of species and of individuals leads to problems of coverage, 457 

especially as the smaller individuals can be both very numerous and significant in 458 

ecosystem change, and we may not have an obvious way to even make 459 

assumptions about their behaviour. By comparison, modelling every person on the 460 

planet is relatively less computationally difficult [98]. Harfoot et al. [83] adopt a 461 

functional type solution for animals, and Arneth et al. [25] suggest a similar approach 462 

for human agents. This at least allows for an encoding of generic behaviours, but still 463 

leaves the issue of agent numbers. An approach to deal with this is to fuse together 464 

the more numerous agents into collectives, (sometimes called cohorts, [83]) or 465 

super-individuals, although this can lead to some changes in the observed model 466 

dynamics [99]. 467 

 468 

3.2 Parameterisation, sensitivity analysis and validation 469 

The parameterisation of agent attributes and behavioural response functions to 470 

represent decision-making processes requires information from qualitative and/or 471 

quantitative empirical sources, e.g. expert knowledge, surveys, or interviews [100]. 472 

ABMs of SESs further require the incorporation of the biophysical environment 473 

resulting from natural processes and human behaviour insofar as it is relevant for the 474 

agents’ behaviour and to understand feedbacks between human behaviour and 475 

environmental processes [101]. 476 

Many scholars [e.g. 102, 103] argue that Big Data offer new avenues for applications 477 

such as ABM. Big data refers to the increasingly available and abundant information 478 

at a near-continuous timescale that are produced by web-based services, digital 479 

earth sources (e.g. satellites, climate stations), cheap field sensors, 480 

telecommunication and social networks, or open source applications such as 481 

OpenStreetMap. Many of these datasets are spatially and temporally referenced and 482 

offer many possibilities for enhancing geographical understanding, as they are 483 

directly or indirectly related to geospatial information.A potential drawback of these 484 
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datasets is their often commercial character making them sometimes not publicly 485 

available due to commercial reasons, privacy or national security issues. 486 

Using ABM across-scale to simulate behavioural responses of humans would require 487 

two fundamental steps in which empirical data are required: the development of 488 

behavioural categories and scaling to the whole population of agents. Smajgl et al. 489 

[100] suggests doing this by first characterising the existing heterogeneity of agent 490 

attributes and behavioural responses and then providing simplified descriptions of 491 

behavioural realities. Arneth et al. [25] discusses agent functional types, analogous 492 

to the plant functional types that are used in dynamic vegetation models: agent 493 

typologies to represent agent roles, attributes and behaviour in larger populations. 494 

With the advent of sufficiently rich data streams and a sufficient behavioural model 495 

the possibility of both improving predictions and obtaining parameter estimates 496 

continuously over time becomes available. These techniques have been used in 497 

weather forecasting models for some time, and allow one to correct model output to 498 

bring it closer to observations. Ward et al. [104] shows how such dynamic data 499 

assimilation techniques (technically, the Ensemble Kalman Filter) can provide more 500 

insights into the system state compared to standard time series or statistical 501 

methods. However, they emphasize the need for more efficient parallel-computation 502 

to enable the necessary large number of model runs, and a careful sensitivity 503 

analysis to ensure that model mechanisms are representing the microscopic 504 

dynamics.The software PCRaster (http://pcraster.geo.uu.nl/) can be drawn as an 505 

example that allows for dynamic and spatial-explicit modelling of SESs further 506 

allowing error propagation techniques such as Monte Carlo or Kalman Filter 507 

techniques. 508 

There are a few examples of ABM of SESs where extensive sensitivity analysis has 509 

been performed [12]. Often such ABMs focus on scenario comparison where highly 510 

aggregated model outputs, e.g. influence of food prices on policy or institutional 511 

arrangements is tested [19]. However, ABMs cannot be properly understood without 512 

exploring the range of behaviours exhibited under different parameter settings or 513 

structural assumptions (e.g. different functional forms of presenting human decision 514 

making processes) and the variation of model output measures stemming from both 515 

random and parametric variation. Hence, sensitivity analysis needs to emphasise the 516 

model’s entire range of behaviour, and to determine how sensitive model outputs are 517 

to different input variables caused by the (i) nonlinearity of interactions (at a single, 518 

multiple or across scale), (ii) non-normality of output distributions, and (iii) strength of 519 

higher-order effects and variable interdependence [105]. In contrast to common 520 

statistical approaches of sensitivity analysis [e.g. 100], computationally-intensive 521 

approaches are just becoming available, e.g. machine learning [106] or Bayesian 522 

inference [107] to estimate system states and the marginal likelihood of the 523 

parameters. Again, such approaches tend to require many (thousands) of model 524 

runs to be effective. 525 

Validation of ABMs that simulate SESs by comparing model results to real-world 526 

data or patterns is still in its infancy and is discussed controversially in literature (see: 527 

[19] for a review). For example, Polhill et al. [8] argue that validation methods 528 
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appropriate for ABM could be expert validation or pattern-oriented modelling [108]. 529 

Verburg et al. [4] state that agent-based modelling should be used to explain why 530 

SESs behave in an observed pattern, either spatially or temporally or as combination 531 

of both. Once more, a particular challenge for ABM across scales will be also data 532 

availability because information of SESs across scale will be not always available at 533 

all scales considered nor for the interactions between different SES subsystems, e.g. 534 

actors, governance, ecosystems, infrastructure. However, the mechanistic 535 

underpinnings of ABMs, which couple together different processes, may mean that 536 

partial data obtained intermittently constrain the model more strongly when using 537 

multiple observational patterns, than when data in different dimensions is considered 538 

independently. Where sensitivity analysis shows interactions between parameters, 539 

this may help to pick out the appropriate datasets, eliminate certain classes of 540 

models or reduce the parameter ranges. Here lies the real power of Big Data, in its 541 

use as a model constraint, provided that the model couplings across different scales 542 

and dimensions are included in sufficient detail. Such models, in contrast to being 543 

data-driven, are theory-driven but data-constrained. However, data to approach 544 

these challenges are only now becoming available for implementation. 545 

 546 

3.3 Results interpretation and uncertainty assessment 547 

Model application should match the target audience as simulation results can be 548 

assessed as correct or incorrect simply because, e.g. the visualizations do not 549 

represent the results in a manner that is understandable or useful to the user. 550 

Besides the technical issues addressed here in trying to interpreting simulation 551 

results and assess inherent uncertainties, there are open challenges relating to 552 

identifying the needs of different decision-makers and communication of the results 553 

in an appropriate manner. Matching these needs to the interpretation of the model 554 

results in an automated fashion could significantly increase the efficacy in the use of 555 

the model, e.g. as a distributed cognition system [105, 108]. 556 

There are different challenges specific to synthesizing ABM output across-scale as 557 

well as different sources of uncertainty. It is not only that ABMs may be using Big 558 

Data as input or calibration and validation data, ABMs are also producers of large, 559 

high-dimensional data sets. Thus, while increasing computing power enables us to 560 

simulate systems of interest in ever greater detail, synthesis of model results is far 561 

from trivial [105]. This may further require distributed, parallel computing systems, or 562 

server-/cloud-based network architecture to meet the high computational demands 563 

needed to complete simulations in a reasonable time as is quite common in climate 564 

change and hydrological modelling applications to date. On the other hand, it is not 565 

only computational power that might restrict model size;usability and user 566 

understanding which might ‘self-restrict’ the size of the model as well [67]. In 567 

addition, open questions remain as regards the representation and thus identification 568 

of spatial structures across scales in models [110], as well as the uncertainty in 569 

results due to the model structure. For example, inconsistencies in assumptions 570 

between different models being coupled might lead to erroneous results [90], or 571 

emergent behaviour might simply be an artefact of the chosen modularization of the 572 
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model [111]. Upscaling and downscaling of input data to match represented scales in 573 

the model or of intermediate results to bridge scales is another source of uncertainty 574 

inherent to ABM across-scale [e.g. 112]. 575 

One approach to synthesize an ABM across-scale can be to estimate a reduced-576 

form description of the effective dynamics on a different system level, using for 577 

example mean-field approximations that study the expected trajectory of the system 578 

[e.g. 113-115]. Pagel et al. [116] used this approach to reduce a spatially-explicit 579 

ABM in the context of grassland conservation management, to a spatially non-580 

explicit deterministic matrix population model. In this way, reduced-form models link 581 

microscopic behavior with properties and dynamics on other scales. Other 582 

approaches to reduced-form descriptions of agent-based simulations include the 583 

equation-free framework, which enables the analysis of macroscopic patterns 584 

without requiring an associated equation [117, 118] and approaches that cluster 585 

state space in such a way that the dynamics on the partition are approximately 586 

Markovian [119-121]. These reduced-form models not only support the analysis of 587 

agent-based models, they lead also to more efficient simulations over longer time 588 

horizons or for larger populations and can be a basis for bridging across scales. 589 

However, care must be taken to ensure that the appropriate dynamics are 590 

adequately captured so that the illusion of simplicity does not lead to 591 

misinterpretation. For example, since model outcomes of spatially-explicit ABMs are 592 

scale-dependent, and the scale dependency may change over time, models may 593 

need to be run at various spatial scales, and possibly nested with coarse scale or 594 

reduced form models providing boundary conditions for more fine-scale or detailed 595 

simulations in areas of interest. One pattern matching approach that builds on fitting 596 

multiple resolutions is for example spatial windowing [122, 123]. 597 

A number of authors propose using ABMs as virtual laboratories to simplify the view 598 

of SESs to reveal “first principles of human environment interaction” [124], or even 599 

suggest providing “agent based models as a service” [23], or through the use of 600 

simplified web interfaces [125]. What we still lack, however, are the long time series 601 

and multiple examples of ABM run against real-world case studies that are required 602 

to reveal which types of model work well, and which do not. Big Data cannot fix this 603 

by itself – we need to keep developing models in concert with data gathering to build 604 

up the necessary experience over time. Even so, the complexity and boundary/initial 605 

condition sensitivity of the models, together with our limited understanding of human 606 

decision making, may fundamentally limit the degree of detail that our models can 607 

reproduce: the types and characteristics of output may be captured, in a statistical 608 

sense, but timing and size of specific individual events are likely to remain beyond 609 

the reach of forecasting. 610 

 611 

4: Conceptual and methodological directions 612 

Cross-scale issues have been recognised as challenging for adaptation and climate 613 

change [126, 127], governance and SESs such as the collapse of cooperation 614 

across scales when two groups/communities are connected through resource flows 615 

[32, 65], political systems and the withdrawal of the state [128], political economy 616 



15 

and resource management [129], and human aspects of global change more 617 

generally [31]. The idea that social attitudes may be important for climate change 618 

policy modelling goes back at least to Janssen and de Vries [130], although current 619 

integrated assessment models for climate remain fixed in traditional frameworks 620 

[131]. However, an exclusive focus on climate misses important factors, such as the 621 

environmentally damaging consequences of cascading collapses of fisheries across 622 

the world or global trade imbalance [e.g. 132]. Consideration of SESs may miss 623 

further important aspects of technical and infrastructural aspects that are so far not 624 

well represented in the underlying theories [e.g. 66]. Many modellers are well aware 625 

that there are cross-scale interactions between systems which can considered 626 

independent but in the long term impact each other(see also [12, 13, 15, 16, 19]). 627 

Hence the overall aim will be to balance model complexity and the simulated 628 

interactions between systems cross-scale to derive outputs that are meaningful and 629 

help to derive implications for decision making and policy design[133, 134]. This 630 

leads us to make the following suggestions: 631 

 632 

1. Acknowledge scale to be a dynamic issue 633 

What process scale is relevant for a particular SES’s outcomes can change over 634 

time and depend on inter-system couplings. This may mean having to run models at 635 

multiple scales in order to capture the possibilities of tipping points, phase changes 636 

or cascading failure, for example. In particular, spatially isolated case studies that 637 

need to run for many years should allow for changes at the boundary, possibly 638 

driven by a coarser scale model or equivalent length time series data.While available 639 

computing power enables us to simulate such cross-scale interactions in ever 640 

greater detail, this can only be made possible using modular modelling structures 641 

such as are available in NetLogo, but more importantly will require larger-scale 642 

distributed computing systems rather than a single desktop or laptop. Where model 643 

run-time is long but acceptable, then cloud-based approaches using platforms such 644 

as Microsoft Azure© or Amazon AWS© might be sufficient to allow for the multiple 645 

model runs needed for parameter space exploration or what-if scenario generation. 646 

Where models need to be accelerated even in single runs (models so large that run-647 

times might otherwise be months or even years) more traditional high performance 648 

computing architectures can be exploited with frameworks such as RepastHPC, 649 

which provides the ability to scale to very large numbers (billions) of agents in both 650 

gridded and networked configurations[135]. Some of the associated technical 651 

difficulties in dealing with this kind of large model in languages like Java are covered 652 

in [96]. 653 

 654 

2. Traditional links between scales may lose validity or be transformed by the 655 

superimposition of newly emerging cross-scale links  656 

We have been used to rather stable characteristic spatio-temporal relationships in 657 

biology/ecology between space, time and organizational levels: e.g. cell dynamics to 658 

be studied over seconds/minutes and at the spatial scale of microns (small size, 659 

lower organizational level, short time steps), moving to higher scales with increasing 660 
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dimensions, such as populations, studied on an annual basis over landscapes of 661 

several squared kilometres in size, and countries at scales of decades. This may no 662 

longer be true as there are also emerging cross-scale links that also need to be 663 

taken into consideration, e.g. in the case of the global finance systems with relevant 664 

dynamics within fractions of seconds. Price fluctuations can then trigger outbreaks of 665 

violence and collapse of political systems far from their origin. On the other hand, 666 

resource exhaustion and associated ecosystem degradation may play out over 667 

decades, but couple together remote locations across the globe through the effects 668 

of trade networks and link to fast dynamics in political and financial systems. Again, 669 

isolated case study locations will struggle to deal with this kind of phenomenon.   670 

 671 

3. Adequate representation of governance structure 672 

Governance, i.e. actors and institutions involved in managing SESs, has been rarely 673 

and overall not adequately represented in agent-based models to date: here 674 

traditional single-agent economics focusing on homo economicus is not enough. The 675 

multi-scalar, multi-actor nature of governance systems requires careful simulation, 676 

including the range of human individual and collective behaviour that such systems 677 

display. To model the influence of relevant actors on the selected dynamics across 678 

scales, we need to collect data to inform their behaviours. As increasingly 679 

recognised by literature on cross-scale dynamics, research should directly involve 680 

policy-makers and practitioners to identify questions and develop tools that will prove 681 

useful to address environmental governance problems [136]. However, stakeholder 682 

views of relevant scales may be limited by their previous experience: this may mean 683 

moving them out of their comfort zone, and not relying on the stakeholders or other 684 

experts to be the sole determinants of the model ontology. For this reason, we 685 

advocate for a significant use of participatory methods in the design of experiments 686 

aimed at collecting behavioural data for key stakeholders for example using scenario 687 

workshops [137, 138] or role-playing games [139, 140]. These workshops can be 688 

designed in multiple ways, but usually rely on the provision of scenarios regarding 689 

plausible future situations, to which participants need to respond [141]. This method 690 

has proven successful in raising awareness in participants towards specific subjects 691 

(e.g. unintended consequences of behaviours implemented, see for instance [142]). 692 

Robust statistical methods for the identification of representative stakeholders to be 693 

involved in the participatory process are crucial. On the other hand, there is also a 694 

need to adopt a reflexive position to take into account the complexity of the social 695 

contexts and to strategically deal with existing power asymmetries among 696 

stakeholders [143]. 697 

Sketching the phases of a research project can help to operationalise the ideas 698 

discussed above as part of such an ABM development cycle.While using the 699 

example of international food trade, the first step could involve mapping relevant 700 

actors across different scales and levels, e.g. (i) relevant ministries such as foreign 701 

affairs and trade for the decisions made in regards to international agreements and 702 

agriculture to capturechanging policies that affect agricultural practises and crops 703 

grown; (ii) multi-national firms as they are especially relevant as price makers in the 704 
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food sector, due to their big role in agricultural technology development, and their 705 

influence on policies through lobbying; (iii) farming communities and associations as 706 

they represent the primary sector, receive and implement policies and the same 707 

timelobby governments. This would be followed by scoping interviews with 708 

representatives from the key actors to identify what dynamics they influence, and 709 

how they interact with other stakeholders. Further interviews could be undertaken 710 

with actors that have been identified as relevant by the first round of interviews and 711 

were not involved. Part of the interviews could involve questions aimed at mapping 712 

both actors and relationships between them. The second stage of the project could 713 

involve scenario-based workshops with key members of relevant stakeholder 714 

groups, where they will be presented with a future scenario (e.g. future drought in 715 

Ukraine will result in 8% cereal production loss), and their responses to different 716 

checkpoints captured in the scenario (e.g. drought results in a 100% increase in the 717 

international price. What is the reaction of the actors?). Once this information has 718 

been collected and collated, the development of a meta-model for the behaviour of 719 

these actors could start by generating a general framework of responses for each 720 

actor based on their reactions to prompts or be informed by relevant theories from 721 

cognitive and behavioural sciences. Follow-up interviews could be organised with 722 

key stakeholders to fill the gaps or clarify specific reactions and therefore finalise the 723 

behavioural meta-model for the different actors.   724 

 725 

4. Infrastructure and technology as part of SESs 726 

Put more emphasis on technical and infrastructure issues in SESs descriptions and 727 

frameworks. There are almost no pristine ecosystems, and the built environment has 728 

a major impact on ecosystems, but is multi-scalar in nature. These infrastructure 729 

systems are themselves complex and often composed of multiple overlapping 730 

networks. As data from smart cities and building infrastructure management systems 731 

begins to come online, the data on the built environment will only become richer and 732 

more detailed. The effects of these human developments on ecosystems is non-733 

trivial, widespread and changing over time. We need to include it on our SESs 734 

models. 735 

 736 

5. Big Data vs. Big Understanding 737 

Machine learning has promise for analysis of interpretation of complex model output, 738 

especially to see where and when scale separation is important, and for suggesting 739 

ways to reduce complexity when confronted with modelling scaling-up or scaling-740 

down. Big Data has promise for calibration and validation, especially in the light of 741 

pattern-oriented modelling or data assimilation but is not a substitute for theoretical 742 

underpinnings, particularly as Big Data may be heavily biased (consider e.g. social 743 

media echo chambers), partial (satellite data obscured by clouds), temporally- or 744 

spatially-limited (e.g. public transport data from a single city) or highly aggregated 745 

(10-yearly census data records). We therefore also need Big Understanding to 746 

actually make sense of the data, select the relevant parts, and to guide further data 747 

gathering effort by creating data-constrained but process-based models. In this way 748 
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we make tools to help people who are overwhelmed by the amount of information 749 

and do not have the means to discern between authoritative and inaccurate 750 

information.  751 

The use of machine learning to understand complex model output will require 752 

significant computational resources (i.e. cloud-based or multi-core/multi-node 753 

systems)and the development of models that can run fast enough in an individual or 754 

parallel-sense. Even so, use of black box machine learning, such as the highly 755 

successful deep learning tools now available, may not only make insight difficult, but 756 

be misleading where the tools report high accuracy despite being incorrect. More 757 

transparent ways to archive and interpret machine learning outputs are needed[144]. 758 

 759 

6. Using participatory, transdisciplinary procedures to keep model output users 760 

‘close-by’ 761 

Models play different roles in scientific investigations, the management of SESs, 762 

policy appraisals (ex-ante analysis) and evaluation (ex-post analysis) [4].  Keeping 763 

the user of modelling results close-by is essential to avoid the tendency of modellers 764 

of ABM to focus too much on the question of how to represent SESs and too little on 765 

how to actually learn from these models. Thus, we recommend iterative model 766 

development where early simplified model versions are thoroughly analysed, with all 767 

relevant model outputs and testing methods implemented. Participatory procedures 768 

[e.g. 145, 146] and transdisciplinary frameworks [e.g. 147] can play a prominent role 769 

in this. Co-design and co-production of research are becoming more and more 770 

acknowledged as important components of ABM [57], although, the participatory, 771 

transdisciplinary approach is not necessarily straightforward. Deciding who should 772 

be involved at which part of a modelling cycle is complex and different actors and 773 

stakeholders can have diverse interests. For example, interrogation of models and 774 

model results can be done quantitatively (i.e. through multiple simulations, sensitivity 775 

analysis, or ‘what-if’ tests), but may also be done in qualitative and participatory 776 

fashion, with stakeholders involved in the actual design as opposed to just being 777 

shown the results, see for example Le Page et al. [148]. The choice should be driven 778 

by the purpose of the modelling process and the needs of stakeholders. In both ex-779 

ante and ex-post evaluation, using ABMs across scales can be a powerful tool to use 780 

as a route for engaging and informing stakeholders, including the public, about 781 

policies and their implications [149]. This may be by including stakeholders in the 782 

process, decisions, and validation of model design; or it may be later in the process, 783 

in using the results of a model to open up discussions with stakeholders, and/or even 784 

using the model live to explore connections between assumptions, scenarios, and 785 

outcomes [150]. 786 

 787 

5. Concluding remarks 788 

The issues we have discussed here emphasize the need for ABM of SESs to include 789 

the feedbacks that are implied by the presence of both multiple time and spatial 790 

scales. The core proposition of this paper is that in a world that is 791 

increasinglyrecognized as being connected and multi-scale, solutions must be as 792 
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well. This might lead to complex and intricate models, but perhaps the complexity of 793 

the real world requires us to embrace this in our modelling efforts. While large scale 794 

modelling has received much criticism in the past [151], most of these issues could 795 

be addressed by increasing computing power [152], and can be further overcome by 796 

ensuring transparency and reproducibility of model code and clarity of model 797 

purpose.  798 

Teleconnections in our globalized human-environment system now mean that in 799 

practice anything less than global scale modelling is not likely to be able to address 800 

any of the pressing policy problems of our time. These go beyond climate change to 801 

encompass pandemics, financial instability, resource exhaustion, ecosystem 802 

collapse and species extinctions, persistent global poverty, inequality and 803 

overconsumption, food security, civil violence, state failures and warfare. The 804 

implication is that a global effort is needed to make progress in assessment of and 805 

encourage development of ABM approaches that enables the simulation of SESs 806 

across scales in all facets. Such an effort needs to involve multiple research groups 807 

across the globe, taking a multiplicity of approaches into account, preferably sharing 808 

and jointly developing their model code. It should not only focus on producing 809 

models with substantial improvements in their capacity to simulate the socio-810 

economic components of SESs, but more importantly should be inclusive, 811 

transparent, well tested and, as far as possible, using open sourcemodel code and 812 

data policies to make it available to all.    813 
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