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Abstract 28 

This paper describes the numerical simulation of two dynamic centrifuge tests on reduced scale 29 

models of shallow tunnels in dry sand, carried out using both an advanced bounding surface 30 

plasticity constitutive soil model and a simple Mohr-Coulomb elastic-perfectly plastic model with 31 

embedded non-linear and hysteretic behaviour. The predictive capabilities of the two constitutive 32 

models are assessed by comparing numerical predictions and experimental data in terms of 33 

accelerations at several positions in the model, and bending moment and hoop forces in the lining. 34 

Computed and recorded accelerations matches well and a quite good agreement is achieved also in 35 

terms of dynamic bending moments in the lining, while numerical and experimental values of the 36 

hoop force differ significantly with one another. The influence of the contact assumption between 37 

the tunnel and the soil is investigated by comparing the experimental data and the numerical results 38 

obtained with different interface conditions with the analytical solutions. The overall performance 39 

of the two models is very similar indicating that, at least for dry sand, where shear-volumetric 40 

coupling is less relevant, even a simple model can provide an adequate representation of soil 41 

behaviour under dynamic conditions.  42 

43 
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Introduction 44 

The recent literature reports a number of case histories of damage to tunnels during earthquakes 45 

(Hashash et al., 2001; Yashiro et al., 2007), most of them related to racking and ovaling of the 46 

cross-section due to shear waves propagation (Penzien, 2000). These observations have led several 47 

researchers to investigate further the behaviour of underground structures under seismic actions, 48 

both numerically (Amorosi & Boldini, 2009; Sedarat et al., 2009; Hatzigeorgiou & Beskos, 2010; 49 

Cilingir & Madabhushi, 2011a; Gomes, 2013; Kouretzis et al., 2013; Yu et al., 2013), 50 

experimentally (Yang et al., 2004; Cilingir & Madabhushi, 2011b, Lanzano et al., 2012), and with 51 

the analysis of specific case studies (Kontoe et al., 2008; Corigliano et al., 2011), mainly to verify 52 

the closed-form solutions commonly adopted in the seismic design of tunnels.  53 

Analytical solutions are generally developed for ovaling deformations of the transverse section of 54 

the tunnel, applying a quasi-static uniform strain field to the soil-tunnel system and assuming linear 55 

elastic behaviour for both the soil and the lining (St John & Zahrah, 1987; Wang, 1993; Penzien & 56 

Wu, 1998). Two limit cases are considered, in which either zero friction (full-slip condition) or 57 

perfect bond (no-slip condition) are assumed at the contact between the tunnel lining and the 58 

surrounding soil. As shown by Hashash et al. (2001), significant discrepancies can be expected in 59 

the maximum internal forces computed using the different solutions available in the literature and, 60 

also, the assumption on the contact condition plays a major role in the computation of the hoop 61 

force acting in the lining. 62 

Most numerical works presented in the literature have focused on the appropriate choice of the 63 

contact condition between the soil and the tunnel (Hashash et al., 2005; Sedarat et al., 2009; 64 

Kouretzis et al., 2013) and on the 3D modelling of soil-structure interaction (Hatzigeorgiou & 65 

Beskos, 2010; Yu et al., 2013) while paying less attention to the constitutive assumptions for the 66 

mechanical behaviour of the soil. As a matter of fact, Hashash et al. (2005) and Sedarat et al. (2009) 67 

used a linear-elastic model for the soil, in order to reproduce the same conditions adopted in the 68 
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closed-form solutions, while Kouretzis et al. (2013) and Yu et al. (2013) used a simple non-linear 69 

hysteretic constitutive relation based on the well-known Ramberg & Osgood (1943) model. 70 

A critical issue in the numerical simulation of dynamic soil-structure interaction phenomena is the 71 

choice of an adequate constitutive model for the soil (Kontoe et al., 2011). A number of constitutive 72 

models have been proposed to reproduce the behaviour of non-cohesive soils under cyclic loading 73 

(see, e.g., Andrianopoulos et al. (2010a) and Zhang & Wang (2012) for an extensive review). In 74 

principle, the constitutive model should permit to reproduce adequately at least: (i) the non-linear 75 

and hysteretic behaviour of soil with increasing deformation, which plays a crucial role in the 76 

amplification phenomena related to stress wave propagation, (ii) the attainment of critical state 77 

conditions at large deviatoric strains, and (iii) the static and dynamic liquefaction related to excess 78 

pore pressure build-up in undrained loading. Ideally, the model should use a single set of 79 

parameters, calibrated from the results of standard laboratory tests. 80 

The work described in this paper originated from an invitation to participate to a Round Robin 81 

numerical Test on the behaviour of Tunnels under seismic loading (RRTT) launched jointly by 82 

TC104, TC203 and TC204 of the ISSMGE.  The experimental results of one centrifuge test on a 83 

reduced scale model of a shallow tunnel in dense dry sand were made available to the scientific 84 

community in order to benchmark different numerical methods. At a later stage, the results of one 85 

further test on loose dry sand, recently presented by Lanzano et al. (2012), were made available to 86 

extend the original exercise of blind numerical prediction. 87 

In the work described in this paper, two different constitutive models were adopted for the soil, both 88 

implemented in the finite difference code FLAC (Itasca, 2005).  These were an advanced 89 

constitutive model proposed by Andrianopoulos et al. (2010a, 2010b) for non-cohesive soils (model 90 

M1), and a simple Mohr-Coulomb elastic-perfectly plastic model with embedded non-linear and 91 

hysteretic behaviour (model M2).  92 

The main objective of the work was to compare the predictive capabilities of the two constitutive 93 

models adopted for the soil, and to verify the influence of some numerical assumptions, such as the 94 
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contact condition between the lining and the soil, on the internal forces in the lining. For this 95 

purpose, the paper presents an extensive comparison between experimental data, numerical 96 

predictions and analytical results. 97 

 98 

Centrifuge model tests 99 

Lanzano et al. (2012) presented the results of four centrifuge dynamic tests on reduced scale models 100 

of shallow tunnels in dry sand, reconstituted at different values of relative density. In this paper, 101 

only the two experiments that were proposed for the RRTT are discussed, that is tests T3 102 

(DR = 75%) and T4 (DR = 40%), both prepared within a laminar box container. Figure 1 shows the 103 

main geometrical quantities for the problem, together with the layout of instrumentation.  104 

The tunnel lining was modelled using an aluminium-copper alloy tube (density,  = 2700 kg/m3;  105 

Young modulus, El = 68.5 GPa; Poisson’s ratio, l = 0.3), with an external diameter D = 75 mm and 106 

thickness t = 0.5 mm. 107 

A standard fine silica sand, that is Leighton Buzzard (LB) Sand, Fraction E, 100/170, was used to 108 

prepare the models. The specific gravity of LB sand is GS = 2.65, its maximum and minimum voids 109 

ratio are 1.014 and 0.613, respectively, and its constant volume friction angle is cv = 32°. A 110 

comprehensive characterisation of the mechanical behaviour of the sand has been presented by 111 

Visone (2008) and Visone & Santucci de Magistris (2009). 112 

Instrumentation was used to measure accelerations at different locations in the model and on its 113 

boundaries, bending moments and hoop forces in the lining, and vertical displacements at the soil 114 

surface (see Fig. 1). 115 

During each test, the model was subjected to a series of five trains of approximately sinusoidal 116 

waves with different nominal frequencies, finp, and amplitudes, amax, and a constant duration of 0.4 s 117 

at model scale. The input accelerations were applied at the base of the models in the horizontal 118 

direction and recorded by accelerometer A13. Table 1 shows the main features of the first four 119 
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earthquakes, applied at a centrifugal acceleration of 80 g, which will be discussed in the present 120 

work. 121 

In the following, accelerations are positive rightwards. All results are presented at model scale, 122 

unless explicitly stated. For sake of clarity, the main scale factors in geotechnical centrifuge 123 

modelling are reported in Table 2, where N is the ratio between the centrifugal and gravitational 124 

acceleration. 125 

 126 

Constitutive models for the soil 127 

Bounding surface plasticity (M1) 128 

Model M1 was developed by Andrianopoulos et al. (2010a, 2010b) within the framework of 129 

bounding surface plasticity and critical state soil mechanics, to simulate the mechanical behaviour 130 

of non-cohesive soils under small to large cyclic deformations. The main ingredients of the model, 131 

mostly derived from the original works by Manzari & Dafalias (1997) and Papadimitriou et al. 132 

(2001), are: (i) the existence of three conical surfaces in the stress space (critical state, bounding and 133 

dilatancy), interrelated through the state parameter  (Been & Jefferies, 1985); (ii) kinematic 134 

hardening; (iii) a non-linear hysteretic formulation for the “elastic” moduli, which defines the shear 135 

modulus degradation and the hysteretic damping increase at small-medium shear strains; (iv) a 136 

scalar multiplier for the plastic modulus, taking into account globally the sand fabric evolution 137 

during shearing. Note that, as the yield surface is not defined in the model, and hence no elastic 138 

domain exists, the terminology “elastic” used throughout the paper, and derived from 139 

Andrianopoulos et al. (2010a), refers simply to the behaviour of the soil at small strains. 140 

The evolution equations defining the constitutive model are discussed in detail in many works (see 141 

e.g. Manzari & Dafalias, 1997; Papadimitriou et al., 2001; Papadimitriou & Bouckovalas, 2002; 142 

Andrianopoulos et al., 2010a), and therefore they are not reported in this paper.  143 

The constitutive model requires the definition of 13 constants, which can be calibrated from the 144 

interpretation of standard laboratory tests (see e.g. Papadimitriou et al., 2001; Andrianopoulos et 145 
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al., 2010a). In this work, the model constants were calibrated using the experimental results 146 

presented by Visone & Santucci de Magistris (2009), obtained with a variety of laboratory tests 147 

carried out on samples of LB Sand, reconstituted at different values of relative density. The sole 148 

constants defining the shear modulus degradation curve were calibrated against the centrifuge 149 

experimental data presented by Conti & Viggiani (2012), as detailed in the following. Table 3 150 

presents the complete set of values for the model constants adopted in this work. For sake of clarity, 151 

the constitutive equations used for the calibration of some constants are recalled in Figure 2.    152 

Constants cM  and eM  define the slopes of the Critical State Lines (CSL) in compression and 153 

extension in the triaxial plane of the stress invariants q:p’, while   and   define the CSL in the 154 

e:lnp’ plane. These constants were obtained from undrained triaxial extension tests (TX-EU), 155 

drained triaxial compression tests (TX-CD) and drained triaxial compression tests at constant mean 156 

effective stress (TX-CDp), where a critical state was attained (see Fig. 2(a, b)).  157 

Constants b
ck  and d

ck , which relate the bounding and dilatancy surfaces to the critical state surface 158 

in the triaxial plane through the state parameter   (Been & Jefferies, 1985), were obtained from 159 

TX-CD and TX-CDp tests, by relating the deviatoric stress ratio q/p’ at peak and at phase 160 

transformation, respectively, to the values of   at which they are attained (see Fig. 2(c, d)). 161 

Constant B, which defines the shear modulus at small strains, was estimated from Resonant Column 162 

(RC) tests carried out at different values of mean effective stress and voids ratio (see Fig. 2(e)). As 163 

observed by Papadimitriou et al. (2001), values of B obtained from small strain measurements are 164 

usually too large for accurate simulation of monotonic loading. Accordingly, a reduced value of 165 

B (= 600) was used for the numerical simulation of the static stage of the centrifuge tests, in plane 166 

strain (2D) analyses. 167 

The constants a1 and 1 define the shear modulus degradation curve: 1 (= 0.025%) is related to the 168 

volumetric threshold shear strain, which ranges from 0.0065% to 0.025% for non-plastic soils 169 

(Vucetic, 1994), and a1 is the corresponding value of G/G0. Two different sets of experimental data 170 
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were considered preliminary for the calibration of a1 (Fig. 3(f)): (i) the laboratory (RC and TS) data 171 

reported by Visone & Santucci de Magistris (2009), corresponding to which a1 = 0.85, and (ii) the 172 

centrifuge data presented by Conti & Viggiani (2012), obtained from the interpretation of a number 173 

of centrifuge dynamic tests on model layers of LB Sand, corresponding to which a1 = 0.50. The two 174 

sets of data are quite different, the latter showing a more rapid degradation of the shear modulus 175 

with increasing deformation, consistently with other literature data referring to LB Sand (Cavallaro 176 

et al., 2001; Dietz & Wood, 2007) and non-plastic soils (Seed & Idriss, 1970; Vucetic & Dobry, 177 

1991). As no convincing explanation could be found of the inconsistency between the two set of 178 

data, the value of a1 = 0.50 was used in the 2D analyses, which provides a better match between 179 

numerical and experimental accelerations within the soil layer. This is further discussed in the 180 

following section on the validation of the model.  181 

The dilatancy constant, A0, and the plastic modulus constant, h0, were computed with a trial-and-182 

error procedure, by fitting numerically the stress-strain response observed during TX-CD tests. 183 

Finally, in the absence of direct measurements, a value of 0.3 was used for the Poisson’s ratio, , 184 

while the value of the fabric constant, N0, was chosen within the typical range provided by 185 

Andrianopoulos et al. (2010a). 186 

 187 

Perfect plasticity with embedded hysteretic behaviour (M2) 188 

Model M2 is a simple Mohr-Coulomb elastic-perfectly plastic model in which, during the dynamic 189 

stages, non-linear and hysteretic behaviour is introduced for stress paths within the yield surface 190 

through a hysteretic model available in the library of FLAC 5.0 (Itasca, 2005). The hysteretic model 191 

consists in an extension to general strain conditions of the one-dimensional non-linear models that 192 

make use of the Masing (1926) rules to describe the unloading-reloading behaviour of soil during 193 

cyclic loading. Assuming that the stress state does not depend on the number of cycles, the 194 

relationship between shear stress,, and shear strain,  , can be written as: 195 
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  )()( 0 SS MGG           (1) 196 

where GS() is the secant shear modulus, G0 is the small strain shear modulus and MS() is the 197 

normalised secant shear modulus,  defined as: 198 
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         (2) 199 

where a, b, and x0 are model parameters that can be determined from the best fit of a specific 200 

modulus degradation curve. Strain reversals during cyclic loading are detected by a change of the 201 

sign of the scalar product between the current strain increment and the direction of the strain path at 202 

the previous time instant. At each strain reversal, the Masing rule is invoked and stress and strain 203 

axes are scaled by a factor of 0.5, resulting in hysteresis loops in the stress-strain curves with 204 

associated energy dissipation.  205 

The soil was modelled using a friction angle  = 32°, corresponding to the critical friction angle of 206 

LB Sand, and cohesion c' = 0, while a standard non-associated flow rule was adopted, with 207 

dilatancy angle  = 0. The small strain shear modulus was computed using the expression proposed 208 

by Hardin & Drnevich (1972): 209 
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
       (3) 210 

where p' is the mean effective stress, e0 is the initial voids ratio of the sand, and C = 3.9 is a constant 211 

obtained from the best-fit of small strain resonant column tests on reconstituted samples of LB Sand 212 

(Visone & Santucci de Magistris, 2009). Finally, soil parameters a = 1.0, b = -0.6 and x0 = -1.5 were 213 

used for the normalised secant shear modulus in Eq. (2), derived from the best fit of the modulus 214 

degradation curve obtained by Conti & Viggiani (2012). Figure 3 shows a comparison between 215 

model predictions and laboratory data in terms of: (a) the modulus degradation curve, G/G0, (b) the 216 

corresponding evolution of the damping ratio, D, with the mobilised shear strain, and (c) the small 217 

strain shear modulus. Figures 3(a, b) also report the upper and lower bound provided by Seed & 218 

Idriss (1970) for dry sand (shaded area) and the experimental curve suggested by Vucetic & Dobry 219 
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(1991) for cohesionless soils. The curves adopted for models M1 and M2 are almost coincident and 220 

provide a close match with literature data for non-plastic soils. 221 

 222 

Validation of the model: 1D analyses 223 

The performance of the two constitutive models during dynamic loading, as well as the introduction 224 

of a small Rayleigh damping to overcome the inability of the models to dissipate energy at small 225 

strains, was verified through 1D wave propagation analyses, in which the horizontal acceleration 226 

time histories recorded at the base of the model container during test T4 (accelerometer A13) were 227 

applied at the bottom of a 1D soil column. The horizontal accelerations computed from 1D analyses 228 

were compared with those recorded in the centrifuge model by transducers A14 and A9, which are 229 

considered representative of free-field soil conditions.  230 

Figure 4 shows a comparison between numerical and experimental accelerations (A9) during 231 

earthquake EQ1. The constitutive model M1 was adopted for the soil, using both a1 = 0.50 (Fig. 232 

4(a, b)) and a1 = 0.85 (Fig. 4(c, d)), while three different values of the Rayleigh damping were used, 233 

that is D = 0, 2, 4 % and f = finp, where D is the minimum value of the viscous damping and f is the 234 

frequency at which the minimum is attained. It is evident that the particular choice of the viscous 235 

damping does not affect the numerical results up to about 180 Hz, where most part of the energy is 236 

contained in the input signal. On the other hand, higher frequencies are over-amplified in the 237 

numerical model if no Rayleigh damping is provided, resulting in unrealistic oscillations of 238 

accelerations within the soil mass. This fact, which does not depend on the constitutive assumptions 239 

of a1, that is on the shear modulus degradation with increasing strain level, is clearly due to the 240 

inability of hysteretic constitutive soil models to provide sufficient damping at small strains (Ghosh 241 

& Madabhushi, 2003; Kontoe et al., 2011). Based on these observations, a 4 % Rayleigh damping 242 

was used in the 2D analyses, with both soil models M1 and M2.  243 

Figure 5 shows a comparison between numerical and experimental accelerations during earthquakes 244 

EQ2 (a, b), EQ4 (c, d) and EQ1 (e, f). Numerical analyses with soil model M1 were carried out 245 
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adopting two different degradation curves for the shear modulus, that is a1 = 0.50 and a1 = 0.85. 246 

The shape of the G/G0 curve has a negligible influence on the numerical results of EQ1, during 247 

which small shear strains are induced into the soil column. On the other hand, the choice of a1 248 

clearly affects the numerical predictions for both EQ2 and EQ4, as high frequency components are 249 

amplified unrealistically when a1 is set equal to 0.85 (Figure 5(d, f)). This observation, which is 250 

even more evident at larger accelerations (see e.g. Conti, 2010), results from the fact that the G/G0 251 

curve derived from the best fit of the laboratory data reported by Visone & Santucci de Magistris 252 

(2009) does not describe adequately the non-linear behaviour exhibited by the soil with increasing 253 

strain. Finally, numerical analyses carried out with models M1 and M2 provide almost the same 254 

results, and both models describe adequately the shear wave propagation through the soil layer. 255 

 256 

Numerical model 257 

The two-dimensional plane-strain finite difference analyses were carried out at the model scale, by 258 

simulating both the static swing-up stage, during which the centrifugal acceleration into the model 259 

is increased from 1g to 80g, and the subsequent dynamic stages. Figure 6 shows the mesh adopted 260 

for the two tests, with a total of 1610 elements and a minimum size of 6 mm near the tunnel. A 261 

coarser mesh was used for the analyses carried out with the advanced constitutive model M1, in 262 

order to reduce the computational time. In both cases, however, the refinement of the grid was 263 

chosen in order not to influence the numerical results during both the static and the dynamic stages. 264 

To this end, the element size l always guarantees an accurate wave transmission through the 265 

model, that is l ≤ /8 (Kuhlemeyer & Lysmer, 1973), where  is the wavelength associated with 266 

the highest frequency of the input signals. 267 

The structural elements were modelled as elastic isotropic beams attached directly to the grid nodes 268 

(no-slip condition). However, in order to study the influence of the contact condition between the 269 

lining and the soil on the computed internal forces, a further analysis was carried out, for the sole 270 

test T3 and soil model M2, in which elastic-perfectly plastic interfaces were adopted. A friction 271 
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angle  = 12° was used, which is a realistic value for the contact friction angle between aluminium 272 

alloy plates and LB Sand (Madabhushi and  Zeng, 2007), while the normal and shear stiffness were 273 

set equal to ks = kn = 4107 kN/m2/m, which is about ten times the equivalent stiffness of the stiffest 274 

neighbouring zone (Itasca, 2005). 275 

The initial stress state was prescribed in terms of the earth pressure coefficient at rest 'h/'v = K0 (= 276 

1- sincv), while an initial void ratio e0 = 0.71 (Dr = 75%) and e0 = 0.85 (Dr = 40%) was adopted for 277 

test T3 and T4 respectively. It is worth observing that, while in model M1 the relative density 278 

governs both the small strain shear stiffness and the contractant-dilatant behaviour of the soil, 279 

through the state parameter , in model M2 the initial void ratio is taken into account for the sole 280 

definition of G0 via Eq. (3).   281 

During the swing-up stage, standard boundary conditions were applied to the model, i.e., zero 282 

horizontal displacements along the lateral boundaries and fixed nodes at the base of the grid, and 283 

the gravitational acceleration into the model was increased gradually from 1 g to 80 g in successive 284 

steps. 285 

After the swing-up stage, static constraints were removed from the boundaries. The input 286 

acceleration time histories (A13) were applied to the bottom nodes of the grid, together with a zero 287 

velocity condition in the vertical direction. Standard periodic constraints (Zienkiewicz et al., 1988) 288 

were applied to the nodes on the lateral boundaries of the grid, i.e., they were tied to one-another in 289 

order to enforce the same displacements in both the vertical and horizontal directions. 290 

Time increments of t = 1.010-7 s (model M1) and t = 5.010-8 s (model M2) were adopted in the 291 

analyses in order to guarantee the stability of the explicit time integration scheme, the difference 292 

arising from the fact that a different mesh refinement was chosen for the two models.  293 

 294 

Numerical results 295 
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Figure 7 shows the distribution of axial forces, N, and bending moments, M, in the tunnel at the end 296 

of the swing up stage, for test T3 (a, b) and T4 (c, d) respectively. Significant discrepancies can be 297 

observed between experimental data and numerical predictions, especially in terms of hoop forces, 298 

which are up to one order of magnitude larger than the experimental values. On the other hand, the 299 

results of the numerical analyses carried out using constitutive models M1 and M2 are almost the 300 

same, with a maximum difference of about 15% in terms of maximum hoop force. Moreover, as 301 

shown in Figure 7(a), the interface assumption between the lining and the soil does not affect 302 

substantially the numerical (static) predictions, at least for the contact friction angle considered in 303 

this work.  304 

As far as the axial forces are concerned, the hoop force in the lining has been computed also 305 

assuming a uniform distribution of contact stresses as N = 0R, where 0 = 80g z*(1+K0)/2 is the 306 

mean pressure acting on the lining, z* = 187.5 mm is the depth of the tunnel axis, and K0 = 1-sin is 307 

the earth pressure coefficient at rest. The values of N = 6.4 N/mm and N = 5.9 N/mm have been 308 

obtained for test T3 and T4 respectively, which are in close agreement with the mean values of N 309 

provided by the numerical analyses. Note that the theoretical value of N = 0R corresponds also to 310 

the mean value of the axial force that would be induced in the lining by a non-uniform distribution 311 

of contact stresses, as in the case of a tunnel under a geostatic stress field, and hence it is 312 

representative of the mean value of the hoop force that would be expected in the tunnel for the two 313 

centrifuge tests at hand. On the contrary, the maximum bending moment in the lining depends 314 

strongly on the particular distribution of stresses acting on the tunnel (see e.g. Carranza-Torres & 315 

Diederichs, 2009). Following these observations, it is believed that the discrepancies observed in 316 

terms of bending moment could be related to some differences between the numerical and the 317 

experimental models, such as e.g. local non-uniformities of the sand in the centrifuge tests, while 318 

the very large differences obtained in terms of axial forces could be hardly attributed to the 319 

particular choice of the constitutive model for the soil or of the contact condition between the tunnel 320 
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and the soil, and could be due instead to some error in the interpretation of the strain gauges 321 

measurements. 322 

Figure 8 shows a comparison between computed and recorded acceleration time histories along the 323 

tunnel vertical (accelerometers A4, A6, A8) during earthquakes (a) EQ2 and (b) EQ4 of test T3 and 324 

(c) earthquake EQ1 of test T4. As already observed in 1D analyses, numerical results are in quite 325 

good agreement with the experimental data, independently on the nominal frequency or amplitude 326 

of the applied signal, and no appreciable differences can be observed using the two different soil 327 

models M1 and M2. 328 

A further comparison between predicted and measured accelerations is presented in Figure 9, which 329 

shows the profiles of maximum accelerations along the free-field vertical (accelerometer A5, A7, 330 

A14, A9) for the four earthquakes applied in tests T3 (a) and T4 (b). In both tests, measured 331 

accelerations show a slight de-amplification at the tunnel depth and a successive amplification close 332 

to the soil surface, this trend being less pronounced in the numerical analyses. Moreover, while the 333 

numerical predictions for test T3 are in good agreement with the centrifuge data, maximum 334 

accelerations at shallow depths are always overestimated in the numerical simulation of test T4 on 335 

loose sand. 336 

Figure 10 shows the profile of maximum shear strains computed numerically along the free-field 337 

vertical during the four earthquakes applied in tests T3 (a) and T4 (b). Again, the two constitutive 338 

models M1 and M2 provide approximately the same description of the soil behaviour in all the 339 

applied earthquakes. Maximum deformations at the tunnel depth range from 0.01% (EQ1) to 0.1% 340 

in the stronger earthquake EQ4. The minimum wavelength associated with the applied accelerations 341 

can be computed as min = VS,min/fmax, where fmax  320 Hz is the highest frequency of the input 342 

signals and VS,min  160 m/s is the minimum shear wave velocity at the tunnel depth, corresponding 343 

to a shear strain of about 0.1% (G/G0 = 0.3). As min  0.5 m, and then D/min<<1, it follows that the 344 

tunnel can be assumed to interact with a soil layer subjected to a uniform strain field. 345 
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Figure 11 shows the time histories of bending moment and hoop force in the lining, at angles of 346 

 = 135° (NW) and  = 315° (SE) respectively. Only the dynamic increments associated to 347 

earthquakes (a) EQ1 and (b) EQ4 of test T3 and (c) EQ1 of test T4 are reported, together with the 348 

corresponding values obtained introducing the interface elements between the tunnel and the 349 

surrounding soil. As far as the bending moments are concerned, the maximum (transient) values 350 

provided by the numerical analyses are in reasonable agreement with the experimental data, but the 351 

final (permanent) values are significantly underestimated. Once again, no significant differences are 352 

observed between models M1 and M2 and, as expected, the interface elements do not affect the 353 

numerical results. As already observed by Lanzano et al. (2012), permanent increments of the 354 

internal forces in the lining are mainly due to sand densification. It is believed that the observed 355 

discrepancies in terms of permanent bending moments can be attributed to local disuniformities of 356 

the sand close to the tunnel in the centrifuge models, which are not reproduced in the numerical 357 

analyses. As a matter of fact, during sand pouring zones of smaller relative density could have been 358 

result close to the tunnel, due to the round shape of the lining.  359 

A completely different scenario takes place in terms of hoop forces, where the numerical dynamic 360 

increments are more than one order of magnitude larger than the corresponding centrifuge values, 361 

irrespective of the contact condition between the lining and the soil. Moreover, in this case the 362 

analyses carried out with soil model M1 provide larger values of the final (permanent) hoop force in 363 

the lining.  364 

The same result is even more evident by inspection of Figures 12 and 13, which show, for all the 365 

earthquakes of tests T3 and T4 respectively, the average values of the peak-to-peak amplitude of 366 

axial forces and bending moments, representative of the transient dynamic increments induced in 367 

the lining by the model excitation (Lanzano et al., 2012). Accordingly, the figures also report the 368 

theoretical values obtained with the closed form solutions for the no-slip condition (see Appendix 369 

A), with reference to the maximum shear strain computed along the free-field vertical at the tunnel 370 

depth, in the analyses carried out with model M2. Internal forces computed in the standard analyses 371 
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(i.e. without interface elements) with the two constitutive models are quite similar to one another 372 

and in good agreement with the theoretical values, both in terms of bending moments and hoop 373 

forces. Moreover, as already shown in Figure 11, numerical dynamic bending moments are similar 374 

to the experimental ones, at least to those measured at the polar angles of  = 135° (NW) and 375 

 = 225° (SW). On the other hand, experimental values of the dynamic increment of hoop forces are 376 

always significantly smaller than the numerical ones, even to those obtained with a more realistic 377 

representation of the contact condition between the tunnel and the soil. The same results were 378 

obtained by Kouretzis et al. (2013) who observed that a better match with centrifuge data is 379 

achieved only when a zero-friction condition at the sand-tube interface is assumed, as in Bilotta et 380 

al. (2009).  381 

Tables 4 and 5 report the maximum dynamic increments of bending moments and hoop forces in 382 

the lining, obtained from the two centrifuge tests and the corresponding numerical simulations, and 383 

computed with the close-form solutions assuming both the no-slip and the full-slip condition. As 384 

expected, the contact condition does not affect significantly the analytical predictions in terms of 385 

bending moments, as the values computed with the full-slip assumption are only slightly larger that 386 

those evaluated under the no-slip condition. On the contrary, the analytical values of the hoop force 387 

can vary up to three orders of magnitude, depending on the contact assumption. It is worth 388 

observing, however, that no agreement is achieved between centrifuge data and closed form 389 

solutions even assuming zero-friction between the tunnel and the soil. Moreover, this assumption 390 

seems to be quite unrealistic for the problem at hand. In fact, as stated by many authors (see e.g. 391 

Hashash et al., 2005; Amorosi & Boldini, 2009), the full-slip condition at the interface is possible 392 

only under severe seismic loading conditions or for flexibility ratios F < 1, as in the case of tunnels 393 

in very soft ground, while for the two centrifuge tests under examination the flexibility ratio ranges 394 

between 800 and 2300, depending on the value of the shear modulus mobilised during each 395 

earthquake. Consistently with the results already discussed for the static condition, we believe that 396 
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the discrepancies between numerical and centrifuge data in terms of hoop forces in the lining cannot 397 

be attributed to an inaccurate reproduction of the experimental conditions in the numerical analyses. 398 

 399 

Discussion of results 400 

As shown in the previous sections, the two constitutive models, M1 and M2, provide almost the 401 

same predictions for the dynamic behaviour of the soil and, hence, for the overall soil-structure 402 

interaction problem analysed in this paper, the only significant difference being observed in terms 403 

of permanent internal forces in the lining. A further insight into the problem can be gained by 404 

inspection of Figure 14, which shows the shear stress and strain time histories and the - cycles 405 

computed along the free-field vertical (z = 0.182 m) during the earthquakes (a) EQ1 and (b) EQ2 of 406 

test T4.  407 

The shear stress provided by the two models closely match. On the other hand, model M1 predicts a 408 

progressive accumulation of permanent shear strains, the transient component being instead quite 409 

similar to that obtained using model M2. This evidence results in the fact that the corresponding - 410 

cycles have almost the same slope, i.e. are characterised by the same value of the secant shear 411 

modulus, but the stationary cycles predicted by model M1 differ significantly from those obtained 412 

with model M2, this trend being more pronounced for stronger earthquakes. 413 

These observations, which are intimately related to the ability of model M1 to reproduce sand fabric 414 

evolution during shearing (Papadimitriou et al., 2001; Andrianopoulos et al., 2010a), allow to 415 

explain the observed difference in terms of permanent internal forces in the lining between the two 416 

models. It is worth noting, however, that the constant N0, which governs the fabric evolution into 417 

the constitutive model M1, was chosen within the typical range provided by Andrianopoulos et al. 418 

(2010a), as no experimental data were available for a proper calibration. 419 

A final remark concerns the soil strength mobilisation during seismic loading. As shown in 420 

Figure 14, the shear stresses induced into the soil are always smaller than the limiting value 421 
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lim (= 61 kPa at z = 0.182 m), this being true for all the earthquakes applied, thus suggesting that 422 

plasticity effects played a minor role in the numerical simulation of the two centrifuge tests. 423 

However, this is by no means a general conclusion as plasticity has been recognised to play a 424 

crucial role in the soil-tunnel interaction problem when strong earthquake are applied to the 425 

structure (see e.g. Amorosi & Boldini, 2009). 426 

 427 

Conclusions 428 

This paper has described the numerical simulation of two dynamic centrifuge tests on reduced scale 429 

models of shallow tunnels in dry sand, obtained using two different constitutive models, in order to 430 

compare their predictive capabilities and verify the effect of assumptions on the contact condition 431 

between the lining and the soil.   432 

The values of bending moment and hoop force computed at the end of the swing-up stage with the 433 

two constitutive models are almost the same, with a maximum difference of about 15% in terms of 434 

maximum hoop force. The introduction of interfaces at the contact between the lining and the soil 435 

reduces the hoop forces by about 15%. The agreement between numerical and experimental values 436 

is not very good, particularly in terms of hoop forces, which are up to one order of magnitude larger 437 

than the experimental values. However, the values of hoop force computed assuming a uniform 438 

distribution of contact stress equal to the mean pressure at the depth of the tunnel axis are close to 439 

the mean values provided by the numerical analyses. 440 

For both tests T3 and T4, the computed and recorded acceleration are in good agreement with one 441 

another, independently on the nominal frequency or amplitude of the applied signal, and no 442 

appreciable differences can be observed using the two different soil models M1 and M2.  In both 443 

tests the numerical trend of de-amplification of acceleration at tunnel depth and successive 444 

amplification close to the soil surface is slightly less pronounced than measured. Moreover, while 445 

the numerical predictions for test T3 are in good agreement with the centrifuge data, maximum 446 

accelerations at shallow depths are always overestimated in the numerical simulation of test T4 on 447 
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loose sand.  Finally, for both tests T3 and T4, the two constitutive models provide approximately 448 

the same profile of maximum shear strains along the free-field vertical. 449 

The computed maximum (transient) dynamic increments of bending moments are in good 450 

agreement with the experimental data, but the final (permanent) values are significantly 451 

underestimated.  The predictions obtained using the two constitutive models are the same, and the 452 

introduction of interfaces at the contact between the soil and the lining does not affect the numerical 453 

results.  On the other hand, the computed dynamic increments of hoop force are more than one 454 

order of magnitude larger than the corresponding experimental values, irrespective of the contact 455 

condition between the lining and the soil.  The difference between the predictions of the final 456 

(permanent) hoop force obtained using the two constitutive models is more pronounced. 457 

Based on a systematic comparison between experimental data, numerical predictions and theoretical 458 

results, both in static and dynamic conditions, it is believed that, while the discrepancies observed in 459 

terms of bending moments could be related to some differences between the numerical and the 460 

experimental models, such as local non-uniformities of the sand in the centrifuge tests, the very 461 

large differences obtained in terms of axial forces could be due instead to some error in the 462 

interpretation of the strain gauges measurements. 463 

The overall performance of the two constitutive models is very similar indicating that, at least for 464 

dry sand, where shear-volumetric coupling is less relevant, the simple elastic-perfectly plastic 465 

model with non-linear and hysteretic behaviour may provide an adequate representation of soil 466 

behaviour during the dynamic stages. 467 

 468 

Appendix A 469 

The dynamic response of the tunnel, in the transverse direction, can be evaluated using a 470 

pseudostatic approach with the closed-form solutions provided by Wang (1993), and extended 471 

recently by Kouretzis et al. (2013), which compute the maximum increment of the internal forces in 472 

the lining under vertical propagating shear waves. The solutions refer to the two limit cases of zero 473 
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friction (full-slip condition) and perfect bond (no-slip condition) between the tunnel and the 474 

surrounding soil, and are derived assuming: (i) plane strain conditions; (ii) the soil is a 475 

homogeneous, elastic and isotropic medium; (iii) the tunnel is circular and (iv) the ratio between the 476 

thickness of the lining and its diameter is small. 477 

Two coefficients can be defined to quantify the relative stiffness between the soil and the tunnel, 478 

that is the flexibility ratio, F, given by: 479 
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Under full-slip conditions, the maximum increment of the hoop force (Nmax) and the bending 483 

moment (Mmax) in the lining are given by: 484 
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Under no-slip conditions, the maximum increment of the internal forces in the lining are given by: 489 
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Equation (A7) for the bending moment is derived from Kouretzis et al. (2013), as no solution is 495 

provided by Wang (1993) for the no-slip case. 496 

 497 
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Table 1. Earthquake features (model scale) 

test 
  model T3   model T4 

 f amax  f amax 

 [Hz] [Ng]  [Hz] [Ng] 

EQ1  30 0.06  30 0.05 

EQ2  40 0.07  40 0.07 

EQ3  50 0.10  50 0.12 

EQ4   60 0.14   60 0.20 

 
 
Table 2. Main scale factors in geotechnical centrifuge modelling 

quantity scale factor 

length 1/N 

time (dynamic) 1/N 

acceleration N 

stress 1 

strain 1 

force/unit length 1/N 

 
 
Table 3. Model constants for the constitutive soil model M1 

Parameter Physical meaning Value 

 Void ratio at critical state (p'=1kPa) 0.825 

 Slope of CSL in the e-lnp' plane 0.037 

Mc Deviatoric stress ratio at critical state in triaxial compression (TXC) 1.346 

Me Deviatoric stress ratio at critical state in triaxial extension (TXE) 0.867 
b
ck  Effect of  on peak deviatoric stress ratio (TXC) 3.457 
d
ck  Effect of  on dilatancy deviatoric stress ratio (TXC) 1.041 

 Poisson's ratio 0.3 

B Elastic shear modulus constant 800 [600] 

a1 Non-linearity of elastic shear modulus 0.5 [0.85] 

1 Reference shear strain for non-linearity of elastic shear modulus 0.00025 

A0 Dilatancy constant 1 

h0 Plastic modulus constant 50000 

N0 Fabric evolution constant 30000 
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Table 4. Maximum dynamic increment of bending moment in the liner: comparison between 
centrifuge data, numerical results and analytical predictions. 

Mmax 

[Nmm/mm] 
exp 

  

numerical   analytical 

M1 M2 M2 (int) max [%]*  full slip no slip 

test 
T3 

EQ1 0.057 0.008 0.011 0.015 0.013  0.011 0.009 

EQ2 0.080 0.012 0.017 0.023 0.019  0.017 0.014 

EQ3 0.120 0.025 0.036 0.048 0.038  0.033 0.028 

EQ4 0.203 0.033 0.049 0.059 0.050   0.044 0.038 

test 
T4 

EQ1 0.081 0.014 0.016  - 0.016   0.014 0.012 

EQ2 0.099 0.017 0.020  - 0.021  0.019 0.016 

EQ3 0.177 0.053 0.061  - 0.065  0.057 0.048 

EQ4 0.292 0.092  0.106  - 0.101   0.089 0.075 
* free-field shear strain at the tunnel depth (from 2D analyses with soil model M2) 
 
 
Table 5. Maximum dynamic increment of hoop force in the liner: comparison between centrifuge 

data, numerical results and analytical predictions. 

Nmax [N/mm] exp 
numerical   analytical 

M1 M2 M2 (int) max [%]*  full slip no slip 

test 
T3 

EQ1 0.0035 0.4640 0.4295 0.3133 0.013   0.0003 0.5213 

EQ2 0.0033 0.6505 0.6280 0.4484 0.019  0.0004 0.7110 

EQ3 0.0061 1.1474 1.1355 0.9004 0.038  0.0009 1.1463 

EQ4 0.0148 1.4384 1.3625 0.9135 0.050   0.0012 1.3625 

test 
T4 

EQ1 0.0099 0.533 0.5249  - 0.016   0.0004 0.5092 

EQ2 0.0141 0.621 0.5876  - 0.021  0.0005 0.6208 

EQ3 0.0201 1.491 1.3544  - 0.065  0.0015 1.2646 

EQ4 0.0305 1.711  1.5691  - 0.101   0.0024 1.5959 
* free-field shear strain at the tunnel depth (from 2D analyses with soil model M2) 
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Figure 1. Test T3 and T4: transducers layout 
 
 

0 2 4 6 8
ln p'

0.7

0.8

0.9

1.0

e =0.037
1

(b)

=0.993

e=-ln p'

-0.2 -0.15 -0.1 -0.05 0



0.8

1.2

1.6

2.0

q
/p

' (
a

t p
e

a
k)

0 200 400 600
p' [kPa]

-400

-200

0

200

400

600

800

q
 [k

P
a

] Mc=1.346

Me=0.867

1

1
(a)

M c
b=Mc+k c

b‹-›

Mc=1.346

1
-k c

b=3.457

(c)

0.0 0.5 1.0 1.5 2.0 2.5
(p'/pa)0.5

0

500

1000

1500

2000

G
0/

(f
(e

) . 
p

a)

1
B=800

G=B . f(e)pa
. (p'/pa)0.5

(e)

-0.2 -0.15 -0.1 -0.05 0



0.8

1.2

1.6

2.0

q
/p

' (
a

t p
h

a
se

 tr
a

n
sf

.)

M c
d=Mc+k c

d

k c
d=1.041

1
(d)

Mc=1.346

tests TX-CD & TX-CDp
tests TX-EU
tests RC & TS

0.0001 0.001 0.01 0.1 1

 (%)

0.0

0.2

0.4

0.6

0.8

1.0

G
/G

0
a1=0.50

a1=0.85

1=0.025%

(f)

Centrifuge
M1 (a1=0.50)
M1 (a1=0.85)

 
Figure 2.  Model M1: calibration of model constants from experimental data. 
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Figure 3.  Model M1 and M2. Calibration of model constants from laboratory and centrifuge data: 

(a) shear modulus degradation curve, (b) damping ratio and (c) small strain shear 
modulus 

 

0.20 0.22 0.24 0.26 0.28 0.30
t [s]

-0.08

-0.04

0.00

0.04

0.08

a
 [g

]

0 50 100 150 200 250 300
f [Hz]

0.000

0.004

0.008

0.012

0.016

A
 [g

]

-0.08

-0.04

0.00

0.04

0.08

a
 [g

]

0.000

0.004

0.008

0.012

0.016

A
 [g

]

exp
D = 4%
D = 2%
D = 0%

(a)

(c)

(b)

(d)

 
Figure 4.  Test T4, earthquake EQ1 (accelerometer A9): 1D wave propagation analyses with soil 

model M1: (a,b) a1 = 0.50 and (c,d) a1 = 0.85. Comparison between experimental data 
and numerical results obtained with different values of the Rayleigh damping. 
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Figure 5.  Test T4: 1D wave propagation analyses for EQ2 (accelerometer A9: a, b), EQ4 

(accelerometer A14: c, d) and EQ1 (accelerometer A9: e, f). Comparison between 
experimental data and numerical results.  

 
 

 
Figure 6.  Mesh used in the 2D numerical analyses (model scale).  
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Figure 7.  Distribution of bending moments and hoop forces in the lining after the swing up stage 

for: (a, b) model T3 and (c, d) model T4.  
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Figure 8.  Accelerations along the tunnel vertical (A4, A6, A8) during earthquakes: (a) EQ2 and 

(b) EQ4 of test T3 and (c) EQ1 of test T4. Comparison between experimental data and 
numerical results. 
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Figure 9.  Free-field vertical, distribution of maximum accelerations during the four earthquakes 

applied: (a) test T3 and (b) test T4). Comparison between experimental data and 
numerical results. 
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Figure 10.  Free-field vertical, distribution of maximum shear strain during the four earthquakes 

applied: (a) test T3 and (b) test T4). 
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Figure 11.  Dynamic increment of bending moment (NW) and hoop force (SE) in the lining during 

earthquakes: (a) EQ1 and (b) EQ4 of test T3 and (c) EQ1 of test T4. Comparison 
between experimental data and numerical results. 
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Figure 12.  Test T3. Maximum dynamic increment of bending moments and hoop forces in the 

lining during earthquakes: (a) EQ1, (b) EQ2, (c) EQ3 and (d) EQ4. Comparison between 
experimental data, numerical results and analytical solutions. 
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Figure 13.  Test T4. Dynamic increment of bending moments and hoop forces in the lining during 

earthquakes: (a) EQ1, (b) EQ2, (c) EQ3 and (d) EQ4. Comparison between experimental 
data, numerical results and analytical solutions. 
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Figure 14.  Test T4, free-field vertical, z = 0.182 m. Shear strain and shear stress time histories and 

- cycles during earthquake (a) EQ1 and (b) EQ2. 
 


