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Abstract
This paper presents a fully verified interactive theorem prover for higher-order logic, more specifically:
a fully verified clone of HOL Light. Our verification proof of this new system results in an end-to-end
correctness theorem that guarantees the soundness of the entire system down to the machine code
that executes at runtime. Our theorem states that every exported fact produced by this machine-code
program is valid in higher-order logic. Our implementation consists of a read-eval-print loop (REPL)
that executes the CakeML compiler internally. Throughout this work, we have strived to make the
REPL of the new system provide a user experience as close to HOL Light’s as possible. To this end,
we have, e.g., made the new system parse the same variant of OCaml syntax as HOL Light. All of
the work described in this paper has been carried out in the HOL4 theorem prover.

2012 ACM Subject Classification Software and its engineering → Software verification

Keywords and phrases Prover soundness, Higher-order logic, Interactive theorem proving

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.1

Supplementary Material Proofs and prebuilt binaries: https://cakeml.org/candle

Funding Oskar Abrahamsson: Swedish Foundation for Strategic Research
Magnus O. Myreen: Swedish Foundation for Strategic Research

Acknowledgements We want to thank Freek Wiedijk and Yong Kiam Tan. We are grateful for
Freek Wiedijk’s question at ITP’11. Following a presentation about the verification of a runtime for
Milawa [10] at ITP’11, Wiedijk asked: “Can you do the same for HOL Light, please?” Wiedijk’s
question can be seen as the seed that set us thinking about the possibility of a verified HOL Light
implementation and eventually lead us to construct the verified Candle ITP, presented in this paper.
We want to thank Yong Kiam Tan for helping with some proofs involving the the CakeML type
inferencer. These proofs were part of the proof of safety of CakeML’s new read-eval-print loop.

1 Introduction

Interactive theorem provers (ITPs) for higher-order logic, such as HOL4, HOL Light, Isa-
belle/HOL and ProofPower, are designed to be as sound as possible. Their implementations
follow an LCF-style architecture, which means that each prover has a small kernel that
implements the inference rules of the hosted logic (higher-order logic) and the rest of the
system is set up in such a way that all soundness-critical inferences must be performed by
the functions inside the small kernel. The beauty of this approach is that there is not much
soundness-critical source code, which means that this code can quite easily be manually
inspected (or even verified). As a result, soundness bugs in these ITPs are very rare.

In search of ever stronger assurance guarantees, one might ask: is it really the case that
only the code of the kernel needs to be trusted in order to trust the soundness of an entire
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ITP implementation? At the level of source code, the answer is yes. However, source code
is not what runs on real machines. As a result, one should also take into consideration
the implementation of the programming language that hosts the ITP. All of the ITPs
mentioned above rely on complex implementations of functional programming languages,
such as Poly/ML and OCaml, and they rely on their interactive implementations, where
users can (and do) provide new program text while the ITP is running. The implementations
of these hosting functional languages are far more complex than the kernels of these ITPs.

In this paper we address the question: is it possible to develop an ITP for higher-order
logic (HOL) for which soundness can be proved down to the machine code that runs it? In
prior work, soundness has been proved for kernels of ITPs, but not for entire HOL ITPs.
Our question requires us to consider a proof of soundness for the prover including the at
runtime user-provided source code, and beyond that, for the interactive implementation
of the underlying functional programming language. Our answer is: yes, it is possible to
develop such an end-to-end verified ITP for HOL, as we explain in this paper.

Contributions

This paper’s contribution is a new ITP called Candle1, which consists of a clone of HOL Light
running on top of a proved-to-be-safe CakeML-based read-eval-print loop (REPL).

Our verification efforts result in a machine-code program, the Candle prover, for which
we have proved that any theorem statement that it outputs follows by the inference rules
of HOL (and, since these rules are sound, is valid by the semantics of HOL). To the best
of our knowledge, this is the most comprehensive soundness result proved for a HOL ITP.
This development can be seen as a major case study of the CakeML project, since it
touches on almost every aspect of the CakeML project. This work is the first use of
CakeML’s new source primitive called Eval, which allows compilation and execution of
user-provided program text at runtime.
The resulting Candle ITP is designed to provide a user experience as close to HOL Light’s
as possible. For this purpose, we have made the new system parse the same variant of
OCaml syntax as HOL Light. Our aim is to make it as straightforward as possible to
port HOL Light developments to Candle.

The work described in this paper has been carried out in the HOL4 theorem prover [14]. Our
proofs and binaries of Candle are available at: https://cakeml.org/candle.

2 Approach

This section provides a high-level outline of our work on Candle. Subsequent sections provide
more details.

Prior work that we build on

The results described in this paper build on substantial prior work. In particular, we build on
our prior work on construction of a proved-to-be-sound implementation of a HOL Light-like
kernel [9]. In that work, we proved that CakeML implementations of HOL Light’s kernel
functions are sound w.r.t. a formalisation of higher-order logic. Our new work on Candle

1 The name Candle comes from the combination of CakeML and HOL Light.

https://cakeml.org/candle
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also depends on many parts of the CakeML ecosystem: in particular, our proved-to-be-safe
REPL relies on the CakeML compiler’s ability to compile itself (bootstrapping).

Overview of new work

The new work in this paper can be divided into the following three high-level steps:
1. We prove at the source level that any reasonable program that contains the Candle kernel

as a prefix can only output facts that follow from the inference rules of HOL (Sec. 3);
2. We use CakeML’s new Eval primitive to construct a proved-to-be-safe read-eval-print

loop (REPL) that is sufficient for HOL Light-like interaction (Sec. 4);
3. Using CakeML’s compiler correctness theorem, we transport the source-level soundness

results down to the machine code that is the real implementation (Sec. 5).

The work for Step 1 centres around a whole-program simulation proof which establishes
that only acceptable values, v_ok, are present in the system. Here a value v is considered
v_ok if all the soundness-critical values, i.e., the values representing HOL types, terms and
theorems, within v are valid in the current logical context maintained by the Candle kernel.
These soundness-critical values flow around unmodified outside of the kernel. The interesting
case is when one of the kernel’s functions is called. At these calls, we make use of our prior
work on the soundness of the kernel functions. Throughout these proofs, a layer of complexity
is added by the fact that CakeML’s operational semantics is (almost completely) untyped.

Even though the proofs for Step 1 are mostly about maintaining v_ok throughout execution,
the final soundness theorem proved in Step 1 is not about values. Instead, it is about what
can be seen on the externally facing foreign-function interface (FFI). This is because our
compiler correctness theorem talks about events on the FFI channels. As a result, the
whole-program soundness theorem states that every output on a special theorem-printing
FFI channel will only ever contain valid theorem statements.

In Step 2, the challenge was to build a REPL that allows the kind of interactivity that
an ITP requires. Here we make use of an evaluate primitive, Eval, that has recently been
added to the CakeML source language. This Eval primitive evaluates, at runtime, arbitrary
user-provided code, which is exactly what one needs to build a program that implements a
REPL. (We hope that our REPL is sufficiently similar to HOL Light’s to be usable.) A key
insight in this part of the work is that a full functional specification for the REPL is not
required. For the purposes of our soundness theorem, it suffices to prove that the REPL is
safe, i.e., it never gets the (untyped) operational semantics stuck.

Step 3 is an important step, even though it only takes a few lines of proof to complete.
This step is a straightforward application of the compiler correctness theorem to: a theorem
describing an in-logic evaluation of the compiler; the Candle soundness theorem proved in
Step 1; and the safety theorem for the REPL from Step 2.

3 Proving source-level soundness of the Candle prover

This section explains our work for Step 1, i.e., how we prove, at the CakeML source level,
that any reasonable program built from the Candle kernel is sound.

3.1 Idea: soundness-critical values only produced by kernel functions
The idea of LCF-style ITPs is that the soundness of the kernel functions together with the
programming language-based protection of the soundness-critical datatypes (such as the
datatypes representing HOL types, terms and theorems) imply that no malformed or false
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types, terms or theorems can be constructed in the ITP, no matter what user-provided code
is executed at runtime.

The Candle ITP follows the LCF tradition. Our task is thus to formally show, in HOL4,
that this design makes the Candle ITP sound. More specifically, in our case, the task is
to prove that any reasonable program that contains the Candle kernel can only produce
well-formed and sound types, terms and theorems of HOL.

3.2 Setting: CakeML’s untyped operational semantics
In an LCF-style ITP, protection of soundness-critical datatypes is usually achieved by the
type system of the implementation language. In ML languages, the usual route is to make
the type, term, and theorem datatypes into abstract types using the module system. We
take a hybrid approach, where the type system provides some of the protection, while the
rest comes from syntactic safety-checks imposed by the REPL at runtime.

A source of complication arises, in our proofs, from the fact that CakeML’s operational
semantics is almost entirely untyped. CakeML’s operational semantics is written in a
functional big-step style that takes a CakeML program as input and either succeeds, returning
a value or a raising exception; or gets stuck with a runtime type error. CakeML values
include literals, vectors, type constructors, and function values. A function value contains
code and a semantic environment, but very little type information. The CakeML operational
semantics lacks information such as the type of function values.

The soundness of our type system and its inferencer implementation [16] allows us to
limit ourselves to considering only programs with a non-erroneous semantics in our theorems.
However, this does not rule out ill-typed programs from our proofs, as non-erroneous programs
can still have ill-typed parts, as long as those parts are never executed.

3.3 Target: a theorem about externally observable events
The top-level correctness statement needs to be in terms of externally visible I/O events on
the CakeML compiler’s foreign-function interface (FFI). This goes against the natural way
of thinking of soundness in terms of what values can and cannot be constructed during the
execution of a program.

This theorem should state that whenever a value of the HOL theorem type is rendered as
text and output on an FFI channel, then that value is indeed a true theorem of HOL. To
achieve this, we need to separate the output of theorems rendered as text from any other
output of the REPL, because the REPL can (and does) print all sorts of text during runtime;
indeed, a user may instruct it to print any string of text that looks like a theorem, but isn’t.
Worse, the HOL Light pretty-printer is user-customisable and installed at runtime; we have
no way of statically reasoning about this function in our proofs.

We put our soundness story on rock solid foundations by printing theorems on a special
kernel-controlled FFI channel using a printer function which sits within the kernel. The
output from this printer function is difficult to read, but it is unambiguous and invertible,
meaning that a theorem and its logical context can be recovered from the text.

3.4 Proof: values stay wellformed
The Candle kernel uses datatypes to represent soundness-critical HOL values: types, terms
and theorems (sequents). It also defines functions that consume and produce values of these
datatypes. Syntactic safety checks imposed by the REPL prevent values from being created
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f ∈ kernel_funs
inferred ctxt f

TYPE ctxt ty TYPE_TYPE ty v
inferred ctxt v

TERM ctxt tm TERM_TYPE tm v
inferred ctxt v

THM ctxt th THM_TYPE th v
inferred ctxt v

Figure 1 The defining rules of the inferred predicate. TYPE, TERM and THM are predicates from
the Candle soundness development, stating that a value is a well-formed type, term, or theorem, with
respect to a logical context. TYPE_TYPE, TERM_TYPE and THM_TYPE are relations invented
by the CakeML code synthesis tool [11] as it processes these types, stating that the deep-embedded
CakeML values v are refinements of the shallow-embedded HOL values: ty, tm, th.

inferred ctxt v
kernel_vals ctxt v

kernel_vals ctxt v
v_ok ctxt v

every (v_ok ctxt) vs
v_ok ctxt (Vectorv vs)

kernel_vals ctxt f v_ok ctxt v do_partial_app f v = Some g
kernel_vals ctxt g

every (v_ok ctxt) vs
∀ tag x. opt = Some (TypeStamp tag x) ⇒ x /∈ kernel_types

v_ok ctxt (Conv opt vs)

Figure 2 A few of the defining rules of the v_ok predicate. Here do_partial_app constructs a
partial application, but fails if the function is fully applied. Conv is a constructor value, and Vectorv
is a vector value, illustrating the recursive definition of v_ok.

using the HOL type constructors. Thus, the only way to create new values of these datatypes
at runtime is by using the kernel functions.

We wish to establish the soundness of this design formally: that any reasonable program
executed from a state which contains only well-formed HOL values should arrive in a state
which contains only well-formed values. Values and functions defined inside the kernel are
well-formed. So are types containing only defined type operators, well-typed terms containing
only known constants, and theorems for which there is a derivation in the HOL proof calculus.

We say that a value is safe, written v_ok, if it contains only well-formed HOL values,
written inferred v; or, if it is not a HOL specific value, all of its sub-values are v_ok. Type
constructors for HOL values are not v_ok (or they would satisfy inferred), nor are references
maintained by the kernel, as they could be used to modify the kernel state. Figure 1 shows
the definition of inferred, and some of the rules defining v_ok are shown in Figure 2.

We say that code is safe, written safe_dec, if it does not directly mention the kernel FFI
channel, nor call the constructors for the HOL datatypes. Safe code is still allowed to pattern
match on HOL constructors and call the kernel functions.

We lift the v_ok predicate to environments and semantics states. An environment is
env_ok if its values are v_ok, and if it maps the HOL constructor names to the correct HOL
types. The state predicate, state_ok, maintains that all non-kernel references contain v_ok
values, and ensures that all kernel-owned references point to values that are refinements of
the references in the state of the shallow-embedded kernel. It also guarantees that all events
on the kernel FFI channel come from well-formed theorems, written ok_event (defined in
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Section 3.6), and sets up the Eval mechanism (described in Section 4.1) in such a way that
it rejects code that is not safe_dec. Furthermore, state_ok asserts that the state has come far
enough in its type numbering to not reuse a type number belonging to the kernel types.

We can now state and explain the proof of the following simulation result.

I Theorem 1. Any execution of safe code (safe_dec), starting from a safe state (state_ok),
in a safe environment (env_ok) either:

diverges, producing a (potentially infinite) trace of ok_event I/O events; or
ends in a state_ok post-state and results in an env_ok environment.

The majority of the proof of Theorem 1 follows any run-of-the-mill CakeML simulation
proof. The most interesting case is when a kernel function is applied to an argument, since
this is the only case where soundness-critical values are not simply being propagated.

For each kernel function, we prove a safety result stating that, when the kernel function is
applied to v_ok arguments, it produces v_ok results. For these function-specific safety proofs,
we make use of theorems from prior work on verification of the functions of a HOL kernel.

The CakeML code implementing the kernel’s functions is automatically generated by a
proof-producing code synthesis tool [11]. This tool proves, for each shallow embedding of
a kernel function f , that, if the CakeML code generated for f is given arguments of the
correct form/type, then the CakeML code will compute the same result as an application
of f to those arguments (at the level of the shallow embedding of f ).
From prior work [9], we have a soundness theorem for each kernel function. These
theorems state that when they are applied to well-formed HOL values (i.e. satisfying
inferred), then they produce well-formed HOL values.

However, there is a challenge here brought by the untyped setting and the assumption “if
the CakeML code generated for f is given arguments of the correct form/type”. Our untyped
setting means that we cannot always immediately know that the arguments passed to the
kernel functions are of the right form/type. Instead, all we know is that they satisfy v_ok.

Our solution is to insert dead code that makes the operational semantics perform a
dynamic type check. For example, the kernel function ASSUME has type term -> thm, but
the operational semantics does not see that it will only be applied to values that are terms.
We insert a case-expression that pattern matches on a top-level constructor of the term type
(Var). This case-expression triggers a dynamic type check in our semantics.

fun ASSUME tm = ((case tm of Var _ _ => () | _ => ()); ...);

The inserted code, i.e. (case tm of Var _ _ => () | _ => ()), has no impact on per-
formance since the compiler removes it as dead code.

3.5 Towards a top-level soundness theorem
The Candle ITP program is made up from the CakeML basis library, the Candle kernel,
and the user-facing REPL. The safety of the REPL is discussed separately in Section 4.
To instantiate Theorem 1, we need to show that the initial state and environments satisfy
state_ok and env_ok, respectively.

The program starts by running the basis library, for which state_ok does not hold: at this
stage, the kernel references are not yet allocated, and the counter for type numbering has
not yet reached the kernel types. Hence, Theorem 1 is not applicable.

We prove a separate simulation theorem, stating that evaluation of the basis program
produces an environment that is env_ok, and a state which contains only v_ok values and
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with a next type number counter set to the number used by the first HOL datatype definition.
The type counter and the number of references grow monotonically during execution, and all
values produced by a program refer only to type numbers and reference locations that do
not exceed the counts kept in state. Thus all values produced by this execution are trivially
v_ok. From the resulting state, it is possible to define the kernel types and its references,
and end up in a state that is state_ok.

Showing that the Candle post-state and post-environment (where the REPL starts
executing) is state_ok and env_ok is straightforward but tedious. We automate the process
by making use of some simple facts about env_ok environments:

All kernel functions and values are v_ok by definition.
When two env_ok environments are merged, the result is also env_ok.
When one adds a v_ok value to an env_ok environment, the result is also env_ok.

The result is a small piece of custom proof automation which steers HOL4 to a proof showing
that the concrete environments of the kernel values are env_ok, thereby allowing us to
establish state_ok and env_ok for the setting in which the REPL program executes.

We use these theorems together with Theorem 1 to show that the safety invariants v_ok,
env_ok and state_ok are preserved in any subsequent code executed by the program.

3.6 Source-level soundness theorem

Our source-level soundness proof builds up to the following top-level soundness theorem
stated in terms of CakeML’s observable semantics, semantics_prog.

Here semantics_prog returns a set of behaviours. A behaviour is Fail (for type error),
Terminate k l (for termination) or Diverge l l (for a non-terminating run). Here l is a list of
I/O events performed by the run and l l is a potentially infinite list of I/O events.

We prove that each generated I/O event must be well-formed according to ok_event, which
is defined to require that any event that communicates on the special kernel_ffi channel must
contain output that can be produced using a thm_to_string function applied to a sequent th
that can be derived (THM) by the inference rules of higher-order logic in a context ctxt.

ok_event (IO_event n out y) def=
n = kernel_ffi ⇒ ∃ ctxt th. THM ctxt th ∧ thm_to_string ctxt th = out

Since the thm_to_string function is crucial for our soundness theorem, we have made sure
that its output is invertible. The actual output is not particularly human readable in most
cases, but it is unambiguous. A small sample output is shown in Figure 3.

Our source-level soundness theorem states that every event satisfies ok_event, for any
non-Fail behaviour and for any program that consists of declarations candle_code ++ prog,
where prog is any list of declarations that syntactically satisfies every safe_dec.

I Theorem 2. Any non-Fail behaviour res that is in the behaviours of candle_code ++ prog
will only contain externally visible events that satisfy ok_event.

` res ∈ semantics_prog (init_eval_state_for cl fs) init_env (candle_code ++ prog) ∧
every safe_dec prog ∧ res 6= Fail ⇒
∀ e. e ∈ events_of res ⇒ ok_event e

ITP 2022
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# The following is a theorem of higher-order logic

(Sequent nil (Const T (Tyapp bool)))

# which is proved in the following context

(ConstSpec
((T . . .))
(Comb

(Comb . . .)
(Comb . . .)))

(NewConst = (Tyapp fun (Tyvar A) (Tyapp fun (Tyvar A) (Tyapp bool))))

(NewType bool 0)

(NewType fun 2)

Figure 3 Output of print_thm applied to the theorem ` T. Here Sequent contains nil to indicate
that there are no hypothesis on this theorem. This theorem is true in the context where T is defined
as T def= (λ p. p) = (λ p. p), which is its definition in HOL Light; equality = is a constant of type
α→ α→ bool; types bool and fun are defined. Some excess output is elided (. . .) above.

4 Construction of a proved-to-be-safe REPL for Candle

The previous section explained how we have proved that any reasonable program, one that
satisfies every safe_dec, constructed from the Candle kernel leads to a sound prover. This
section explains how we have built a program that satisfies every safe_dec and manages
to implement a proved to-be-safe read-eval-print loop (REPL) that provides the kind of
user-interaction that theorem proving with HOL Light requires.

4.1 CakeML’s new Eval source primitive
The most technically demanding part of a REPL is the implementation of the “E” in REPL,
i.e., the part that evaluates user input. This “E” must always run safely and efficiently.

To the best of our knowledge, most HOL Light users use HOL Light via the standard
OCaml REPL2 where the “E” compiles user input into bytecode and then interprets the
bytecode. For CakeML and Candle, we implement the “E” in REPL as: compile, at runtime,
the user input to machine code, drop that machine code into the code segment of the running
process and execute the new machine code by performing a jump to it.

Such runtime compilation can be achieved in CakeML by using CakeML’s new Eval
source primitive. The exact details, implementation and verification of the new Eval source
primitive will be the subject of a different publication. However, for this paper, it suffices to
have an approximate understanding of its semantics and to know that the Eval primitive
has been fully integrated into the CakeML compiler and its proofs.

From a bird’s eye view, CakeML’s Eval primitive has the following semantics: it expects
as input (among other things): a value representing the AST for CakeML source declarations
to execute, and a value holding a semantic environment (mappings from names to values and

2 HOL Light adjusts the OCaml REPL so that it uses a custom HOL Light-specific OCaml parser.
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01: fun repl (parse, types, conf, env, decs, input_str) =
02: (* input_str is passed in here only for error reporting purposes *)
03: case check_and_tweak (decs, types, input_str) of
04: Inl msg => repl (parse, types, conf, env, report_error msg, "")
05: | Inr (safe_decs, new_types) =>
06: (* here safe_decs are guaranteed to not crash;
07: the last declaration of safe_decs calls !Repl.readNextString *)
08: case eval (conf, env, safe_decs) of
09: Compile_error msg => repl (parse, types, conf, env, report_error msg, "")
10: | Eval_exn e new_conf =>
11: repl (parse, roll_back (types, new_types), new_conf, env, show_exn e, "")
12: | Eval_result new_env new_conf =>
13: (* check whether the program that ran has loaded in new input *)
14: if !Repl.isEOF then () (* exit if there is no new input *) else
15: let val new_input = !Repl.nextString in
16: (* if there is new input: parse the input and recurse *)
17: case parse new_input of
18: Inl msg =>
19: repl (parse, new_types, new_conf, new_env, report_error msg, "")
20: | Inr new_decs =>
21: repl (parse, new_types, new_conf, new_env, new_decs, new_input)
22: end

Figure 4 CakeML code (in CakeML syntax) implementing the main loop of the new REPL.

type information); if called correctly, Eval evaluates the given declarations using the supplied
environment, and, on successful completion, returns a value holding a new environment that
can be used for subsequent calls to Eval.

4.2 Building a REPL in CakeML source code
The Eval primitive enables us to implement our REPL conveniently in CakeML source code.
The source code for the main loop of the REPL is shown in Figure 4. This section attempts
to explain the code shown in Figure 4.

When planning this implementation, a key insight was that we do not need to prove any
input-output-style functional correctness theorem of the REPL. Instead, for the purposes
of our top-level soundness theorem, it suffices to implement a REPL that we can prove to
be safe. This safety proof needs to result in a theorem stating that a semantics_prog run of
the REPL program can never result in the Fail behaviour, as can be seen in the assumption
res 6= Fail in Theorem 2. This insight means that we can leave it up to the user to decide
how input is to be read and can leave the pretty printing code quite open ended too, i.e.,
mostly unverified.

We will illustrate the working of the code in Figure 4 using an example. For the sake of
the example suppose the repl function is given the AST of the following CakeML declaration
as the decs argument.

let x = [1] @ [2];;

As can be seen on line 3 in Figure 4, check_and_tweak will be applied to the decs.
We can also see that the types argument (the state of the type inferencer) and input_str
are also passed to check_and_tweak. This check_and_tweak function will run the type
inferencer on the given decs. If the type inferencer rejects them, then an error message is

ITP 2022
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returned. If the type inferencer accepts decs, then the check_and_tweak function will return
a tweaked version of the original declarations. For this example, the tweaked declarations
are approximately the following. (In reality, the second line uses more specialised functions.)

let x = [1] @ [2];;
let _ = print ("x" ^ pp_list pp_int x ^ ": int list\n");;
let _ = (!Repl.readNextString)();;

Here the first line is, in this case, exactly the user’s input; the second line causes the computed
value to be printed to stdout; and, the third line runs a user-settable function for reading
the next input. In the general case, the check_and_tweak function also adds definitions of
pp-functions to the given declarations.

Once these adjusted declarations, called safe_decs on line 5, have been generated, the
repl function hands them over to eval, which runs them. Running these declarations can
result in one of three outcomes: the compiler might not be able to compile them (linking error
or similar); the evaluation might have caused a top-level exception, which eval catches and
returns as e on line 10; or, if all goes well, the evaluation will return a new declaration-level
semantic environment new_env and a new compiler configuration new_conf on line 12.

From line 12, the repl function continues by reading a few references that the execution of
!Repl.readNextString is to have assigned new values to; a true in !Repl.isEOF indicates
that there is no new input; if input exists, then the new input is in !Repl.nextString. In
the case of new input, the parser is called on the content of !Repl.nextString and the loop
begins from the top again.

The loop starts off by evaluating the declarations that correspond to the concrete syntax for
let _ = (!Repl.readNextString)();;. The initial value of this Repl.readNextString
reference is a function that returns the content of a user-modifiable start-up file candle_-
boot.ml. This file is supposed to install an appropriate new function in Repl.readNextString,
which includes a user-configurable parser for ‘...‘-terms, and support for special file loading
directives.

One can argue that some aspects of the implementation of the repl function seem peculiar,
e.g., that the call to !Repl.readNextString is always appended to the declarations sent to
eval. Our design of repl is arrange this way in order to collect all state changing code into
the execution of eval, since such a design makes the safety proof simpler.

4.3 Proving safety of the REPL
As mentioned above, we need to prove that the REPL is safe to execute. More specifically,
that semantics_prog cannot give the REPL program the Fail behaviour.

The conventional way to prove safety of a CakeML program is via type inference: if the
type inferencer accepts a program, then the program is typeable and, by type soundness, we
know that the program is safe, i.e., does not have Fail behaviour. Unfortunately, we cannot
take this route because the Eval primitive, in its current form, does not fit with CakeML’s
type system, since static typing information is not enough to show that the Eval won’t get
stuck when run. As a result, we prove safety of the REPL via an interactive proof.

We prove the following safety theorem for the REPL program called repl_source_prog.

I Theorem 3. The REPL program does not have Fail behaviour.

` has_repl_flag (tl cl) ∧ basis_init_ok cl fs ⇒
Fail /∈ semantics_prog (init_eval_state_for cl fs) init_env repl_source_prog
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# let T_DEF = new_basic_definition ‘T = ((\p:bool. p) = (\p:bool. p))‘;;
val T_DEF = |- T <=> (\p. p) = (\p. p): thm
# let th1 = SYM T_DEF

and th2 = REFL ‘\p:bool. p‘;;
val th1 = |- (\p. p) = (\p. p) <=> T: thm
val th2 = |- (\p. p) = (\p. p): thm
# let TRUTH = EQ_MP th1 th2;;
val TRUTH = |- T: thm

Figure 5 Sample interaction with the Candle REPL in the OCaml syntax of HOL Light.

The most challenging aspect of the proof of Theorem 3 is that it requires bringing together
results from different parts of the CakeML ecosystem. Fortunately, all proofs to do with
type inference could quite cleanly be separated from the proofs about stepping through
the operational semantics. It is worth noting that the REPL implementation uses the type
inferencer to establish safety of the user-provided code, which means that the user can
unfortunately not currently mention the Eval primitive because Eval is not typeable.

We also prove the following syntactic property about the REPL program in order to meet
the assumptions of the Candle soundness theorem, Theorem 2.

I Theorem 4. The REPL program has candle_code as a prefix and satisfies every safe_dec.

` ∃ prog. repl_source_prog = candle_code ++ prog ∧ every safe_dec prog

This theorem is proved by rewriting and evaluation. It is used in Section 5.

4.4 A REPL with a parser for HOL Light-style OCaml syntax
The sharp-eyed reader might have noticed that the CakeML code of Figure 4 does not use
the OCaml syntax that HOL Light users expect. Instead it uses the standard way to write
CakeML code, i.e., in syntax that is aligned with Standard ML. In order to make the user
experience as close as possible to that of HOL Light, we have equipped the Candle REPL
with a parser for HOL Light’s version of OCaml syntax. Figure 5 shows a snippet of an
interaction with the Candle REPL, where one can see a glimpse of OCaml-style concrete
syntax supported by Candle. Figure 5 also shows our quote filter in action: it processes the
quoted terms ‘...‘ correctly.

5 Proving soundness for the machine-code implementation

In this section, we apply the compiler to the source-level REPL implementation of Candle,
and transport the safety and soundness proofs down to the level of the machine code that
runs when the Candle prover is used.

We evaluate the CakeML compiler on the repl_source_prog program inside HOL4 in order
to arrive at the concrete machine_code implementation of the REPL by proof in the logic.
The resulting theorem is the following.

I Theorem 5. The CakeML compiler produces machine_code when applied to repl_source_prog.

` compile init_conf repl_source_prog = Some (machine_code,ro_data,result_conf)

We use the CakeML compiler’s correctness theorem to transport correctness properties
down to the level of machine code. Theorem 6 below is an instantiated version of the relevant
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CakeML compiler correctness theorem. In this theorem, we collect a bunch of assumptions
into a constant repl_ready_to_run cl fs ms which, among other things, requires that the
generated machine_code is installed in memory in machine state ms and the program counter
of ms points at the start of the code.

I Theorem 6. If the source-level program repl_source_prog does not have Fail behaviour, then
any machine-code level execution starting from a repl_ready_to_run machine state ms can
only produce behaviours that are contained in the set of source-level behaviours (extended
with the possibility of early exits due to hitting resource limits, extend_with_resource_limit).

` Fail /∈ semantics_prog (init_eval_state_for cl fs) init_env repl_source_prog ∧
repl_ready_to_run cl fs ms ⇒
machine_sem (basis_ffi cl fs) ms ⊆
extend_with_resource_limit
(semantics_prog (init_eval_state_for cl fs) init_env repl_source_prog)

We will not go into details of extend_with_resource_limit, but only note that it is trivial to
prove the following interaction between events_of and extend_with_resource_limit.

` e ∈ events_of res1 ∧ res1 ∈ sem1 ∧ sem1 ⊆ extend_with_resource_limit sem2 ⇒
∃ res2. e ∈ events_of res2 ∧ res2 ∈ sem2

We now have all of the parts required to prove a soundness theorem for Candle that
relates the level of machine code to the ok_event from Section 3.

I Theorem 7. Any behaviour res of a machine execution from a repl_ready_to_run machine
state ms will not Fail, and any event e in res will always satisfy ok_event.

` res ∈ machine_sem (basis_ffi cl fs) ms ∧ repl_ready_to_run cl fs ms ⇒
res 6= Fail ∧ ∀ e. e ∈ events_of res ⇒ ok_event e

The proof of this theorem is a simple combination of the source-level soundness theorem
(Theorem 2), the two theorems about the source-level REPL program (Theorems 3 and 4),
and the instantiated compiler correctness theorem (Theorem 6).

The theorem above states that any program built inside the Candle REPL can only ever
export statements that are true according to the inference rules of higher-order logic.

6 Porting HOL Light scripts to Candle

Candle aims to be a verified clone of HOL Light. While the previous sections have focused on
the verified part of the system, it is important to note that there is much more to HOL Light
than the kernel and the basic setup of the REPL. In this section, we describe our efforts to
port HOL Light’s standard library to Candle.

At the time of writing, our porting efforts are still work in progress. Candle runs the
majority of the scripts HOL Light executes at startup, as well as many proof scripts in the
100 and Library directories. Figure 6 shows a side-by-side comparison of the Candle and
HOL Light REPLs.

The rest of this section describes the changes and additions we make when porting
HOL Lights scripts to Candle.
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# g ‘!(x:A) y z. (x = y)
/\ (y = z) ==> (x = z)‘;;

1 subgoal (1 total)

‘!x y z. x = y /\ y = z ==> x = z‘

val it = (): unit
# e (REPEAT STRIP_TAC);;
1 subgoal (1 total)

0 [‘x = y‘]
1 [‘y = z‘]

‘x = z‘

val it = (): unit
# e (PURE_ASM_REWRITE_TAC []);;
1 subgoal (1 total)

0 [‘x = y‘]
1 [‘y = z‘]

‘z = z‘

val it = (): unit
# e REFL_TAC;;
No subgoals

val it = (): unit

# g ‘!(x:A) y z. (x = y)
/\ (y = z) ==> (x = z)‘;;

val it : goalstack = 1 subgoal (1 total)

‘!x y z. x = y /\ y = z ==> x = z‘

# e (REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘x = y‘]
1 [‘y = z‘]

‘x = z‘

# e (PURE_ASM_REWRITE_TAC []);;
val it : goalstack = 1 subgoal (1 total)

0 [‘x = y‘]
1 [‘y = z‘]

‘z = z‘

# e REFL_TAC;;
val it : goalstack = No subgoals

Figure 6 Side-by-side comparison of an interactive tactic proof in Candle (left) and HOL Light
(right). Here g sets up a new proof goal and e applies a given tactic to the top goal.

6.1 Changes necessary in HOL Light scripts

With our new parser, the CakeML language supports most, but not all, of the language
features HOL Light expects of its compiler. Here are the adaptations that we have made to
the original HOL Light sources in order to make them compatible with Candle:

The OCaml stdlib and CakeML’s basis library uses different naming conventions. The
effect of this on our efforts is mostly mitigated by HOL Light’s own ‘standard library’
implementation lib.ml. However, some functions are present in both CakeML and
OCaml (e.g. String.sub) but with different type signatures or semantics. In such cases,
we replace OCaml names with the corresponding CakeML name.
HOL Light makes use of OCaml’s polymorphic comparison operator (Pervasives.compare).
Where possible, we have replaced all such code with concretely typed comparison operators
(e.g., Int.compare for integers).
HOL Light makes use of OCaml’s polymorphic hash function Hashtbl.hash which maps
arbitrary data to the integers. We don’t have anything of the sort, and have to rewrite or
remove this code.
CakeML’s type system imposes a value restriction. This is mostly a nuisance, but some
code has to be re-structured as a consequence.
Our parser does not deal with let rec forms without explicit arguments. We have to
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give fresh arguments to such definitions manually.
At present, CakeML does not support open or include. We have to manually bring
values into scope.
A few files in the HOL Light basis make use of OCaml’s record syntax. CakeML does
not support record types at present. We omit these files in our current builds, but must
either implement record types in CakeML or rework these files in order to include them.
All special pragmas recognisable by the OCaml REPL (e.g. for installing pretty-printers)
are removed. The CakeML REPL has a different way of dealing with pretty printers.
We have made minor changes throughout HOL Light files: hol.ml, system.ml, and
lib.ml.

6.2 Additional scripts
Here are the additions required for our REPL to be able to support HOL Light:

Added file: candle_pretty.ml (Replacement for Format)
We implement a functional pretty printer from a tree of pretty-printer tokens to a tree of
string lists. We build an imperative interface on top of the functional printer, modelled
after (a small subset of) the interface provided by the Format module. (250 loc.)
Added file: candle_nums.ml (Replacement for Num)
The Num library integrates both arbitrary precision integers and arbitrary precision rational
numbers in one type. All integers in CakeML are arbitrary precision, and CakeML has a
library for rational number arithmetic. We build a small wrapper around the CakeML
integers and rationals, and provide the interface which HOL Light expects. (285 loc.)
Added file: candle_boot.ml (REPL code)
We build a read-eval-print loop (REPL) on top of the functionality provided by the
CakeML compiler (see Section 4). The REPL splits user input into chunks separated
by ;;-tokens at the top-level. It supports multi-line editing, and configurable quote
substitution, and a mechanism for file loading that can deal with recursive load calls.
Added file: candle_kernel.ml (essentially the same as open Kernel)
Our current workaround for CakeML’s lack of support for open, as in open Kernel.

7 Related work

In this section, we describe related work in the area of verification of interactive theorem
provers and their logics. We observe that Candle seems to be the first verified interactive
theorem prover that combines: an expressive hosted logic (higher-order logic), an interactive
implementation, and an end-to-end soundness theorem that reaches down to the machine
code that executes the prover implementation.

7.1 Higher-order logic
Harrison [8] formalised a version of the HOL Light logic (omitting its definitional mechanisms)
as well as its set-theoretic semantics, in HOL Light itself. The actual artefact being verified
is a shallow-embedded implementation of HOL Light, shown to be sound with respect to the
semantics. Two consistency results are proved: HOL without the axiom of infinity is shown
consistent in HOL; and HOL is shown consistent in HOL extended with a larger universe of
sets. However, the scope of verification does not extend past the shallow embedding; there is
no formal connection between it and the actual system, which runs on interpreted OCaml
and its C runtime.
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Our work rests heavily on the work by Kumar et al. [9]. They build on Harrison’s work
and expand it along several dimensions; they formalise the definitional mechanisms omitted
by Harrison [8] using contexts, and contribute a sequent calculus which is proven sound with
respect to the HOL semantics. A shallow-embedded implementation is shown to refine the
proof calculus. Notably, this shallow embedding can be extracted to machine code using the
CakeML ecosystem, establishing a formal connection between the model-theoretic semantics
and the machine code executing the kernel functions.

Gengelbach and Åman Pohjola [13, 7] further extend the work by Kumar et al. [9], adding
support for ad-hoc overloading of constant definitions. This sort of mechanism is used by
e.g. Isabelle/HOL to let one logical constant receive different meanings depending on what
concrete types the variables in its type signature are instantiated to. At the time of writing,
work on a verified cyclicity checker, which is required to ensure the soundness of instantiations
of overloaded constants, has recently been completed [6]. We see no reason that our work
should not build on their kernel implementation in the future.

Nipkow and Roßkopf [12] have formalised the meta-logic of Isabelle, as well as its proof-
terms, and a proof checker for its proof terms. The meta-logic is used in Isabelle to define its
many object logics. They formalise a proof calculus (but not a semantics) for the meta-logic in
Isabelle/HOL, and implement and verify the correctness of a proof-checker for Isabelle proof-
terms. Using Isabelle’s (unverified) code extraction, they are able to obtain an executable
checker in Standard ML. This checker can be used to check real proofs of Isabelle theorems
within Isabelle, but relies on an unverified translation from Isabelle’s actual proof structures
into the proof-terms used by the checker. In addition, one must trust the Poly/ML compiler
and its C++ runtime, which hosts both Isabelle and the checker artefact.

7.2 First-order logic
The most comprehensive ITP verification result prior to ours is Milawa by Davis and
Myreen [5]. Milawa implements a quantifier-free fragment of first-order logic with recursive
functions in the spirit of Nqthm and ACL2. It can execute on top of the verified Jitawa [10]
Lisp runtime, and is proven sound with respect to a formal semantics. By verifying and
implementing both the prover and its runtime within HOL4, the authors are able to obtain
a soundness theorem which shows the soundness of the machine code that executes the
Milawa system at runtime. The scope of Milawa’s verification is similarly far-reaching to ours.
However, it implements a fragment of first-order logic with functions, which is simpler than
HOL, and relies on a Lisp runtime which is considerably less complex than the ML compilers
used by LCF-style systems. An interesting feature of Milawa is its ability to bootstrap itself
by successively performing conservative extensions of its own proof checker; no LCF-style
system can accomplish this as far as we know.

MetaMath Zero by Carneiro [4] is a proof checker for a many-sorted first-order logic.
Its logic is intended to act as a host for other object logics. A bootstrapping effort is
ongoing; the proof rules of MetaMath Zero have been formalised within MetaMath Zero
itself, as well as a model of the x86-64 ISA [3]. However, there is no formal connection
between the formalised proof rules and any machine code refinement of said rules: the current
checker implementation is unverified. As it lacks a formal semantics, verification is limited to
correctness of the proof calculus, leaving out soundness. Compared to our system, MetaMath
Zero is very low-level; its logic is simpler, and it offers no interactivity or proof automation,
and cannot be extended at runtime. In return, one does not have to trust nor verify a
complex programming language implementation. Still, the language appears practical enough
to host itself and a ISA artefact [3]. Because it lacks interactivity, users do not interact
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directly with MetaMath Zero. Instead, they see a higher-level (unverified) ITP-like system
called MM1, which produces proofs that are checked by MetaMath Zero; a design somewhat
similar in spirit to that of LCF-style systems.

7.3 Dependent type theory
Barras [2] formalised the Calculus of Constructions (CC), a simpler version of the Calculus of
Inductive Constructions (CIC) which is the type theory used by Coq. Barras’ formalisation
is done in the same spirit as Harrison’s work [8], by defining a set-theoretic model of the
calculus, and proving its soundness wholly inside Coq itself.

Sozeau et al. [15] present a formalisation as well as a proven-correct efficient type
checker implementation for a substantial part of CIC. Their work continues the tradition
of Harrison [8], Kumar et al. [9] and Barras [2], by formalising the meta-theory of Coq in
Coq. The fragment of CIC under consideration omits modules and template polymorphism.
An OCaml version of the verified type checker can be obtained using the unverified Coq
extraction mechanism. Due to faults in the implementation of Coq’s code extraction, Sozeau
et al. implement and verify their own extraction mechanism, which can be used to obtain
an executable checker. However, the formal verification of the extraction is done against an
untyped λ-calculus, and not the actual OCaml language.

Anand and Rahli [1] have formalised the proof calculus and semantics of Nuprl in Coq, and
proved soundness of the Calculus. They do not provide a verified program which implements
the calculus, but their plan is extract a verified implementation from the formalisation of
their calculus, and to implement and verify a type checker for a large part of Nuprl.

8 Summary

The result of our efforts is an interactive theorem prover called Candle that:
1. has been proved to be sound down to the machine code that runs it (the binary is

guaranteed to only output facts that are sound w.r.t. the rules of higher-order logic);
2. offers a user experience that we have made as similar as possible to that of HOL Light

(Candle supports the same syntax and interactive proof manager as HOL Light).
To the best of our knowledge, Candle is the most complete and comprehensive verified
LCF-style interactive theorem prover to date.

Future work

All of the proofs about the Candle prover have been completed, but some practical challenges
remain before Candle can be considered a drop-in replacement for HOL Light. Most
importantly, we need to port the remainder of the HOL Light base libraries.
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