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SUMMARY

Three linear cascades of highly loaded, low aspect ratio turbine blades have been tested
in detail to investigate the mechanisms of secondary loss and the influence of non-radial
stacking (lean) on these mechanisms. The blades in all three cascades had the same section
but they were stacked perpendicular to the endwall in the first cascade, on a straight line
inclined at 20° from perpendicular in the second and on a circular arc inclined at 30° from
perpendicular at each end in the third cascade.

The boundary layer over much of the endwall within the blade passage was found to be
laminar. Despite this, skin friction coefficients and rates of loss generation are still very
high because this boundary layer is extremely thin.

Downstream mixing losses comprised a significant proportion of the overall loss. They
arise mainly as a result of the dissipation of the kinetic energy of the secondary flow. If
mixing is not complete before the subsequent bladerow is reached, acceleration in that
bladerow is likely to increase the mixing loss.

Lean has a marked effect upon blade loading and the state of boundary layers on the
blade suction surfaces and the endwalls. The distribution of loss generation is therefore
changed but the effect upon overall loss coefficient is minimal for this blade.

The major benefit of compound lean is a reduction in the strength of secondary flows.
The reasons for this are discussed. This reduces the downstream mixing losses and would
also substantially reduce unsteadiness and spanwise variations of mean incidence at entry to
the subsequent bladerow. In a turbine this would be likely to reduce losses in the
downstream bladerow as well as making matching easier and improving off-design
performance.

It seems that the details of the separation of the inlet endwall boundary layer and
formation of the horseshoe vortex have a strong influence on the subsequent development of
the secondary flow. Numerical calculations must model this correctly in order to obtain

good overall predictions.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The use of compound lean (i.e. a non-linear spanwise variation of dihedral) of turbine
blades dates back further than one might expect, to the work of John Smeaton published in
1759. The method of windmill construction at that time dictated that the vane stagger (or
“weathering") fixed the dihedral. Smeaton set out to determine the optimum variation of
weathering from heel to tip of a windmill vane but found that it was important to obtain the
correct variation of dihedral even if this resulted in non-optimum stagger at some radii. In

his own words:

"It appears that when the wind falls upon a concave surface, it is an
advantage to the power of the whole, tho' every part, taken separately,

should not be disposed to the best advantage."

Blade design has come a long way since 1759 but it is still far from straightforward.
Modern turbine flows, particularly at low aspect ratio and high hub/tip ratio, tend to be
dominated by secondary flow and so a fully three-dimensional approach to design is vital,
but it is only in recent years that the understanding of secondary flows and the ability to
predict them have made such an approach possible. Non-radial stacking (lean) is one
“three-dimensional” feature which is now employed by a number of gas turbine

manufacturers (see, for example, Williams, 1984, Woollatt et. al., 1989).

As a result of many theoretical and experimental studies over the past thirty years the
basic structure of turbine secondary flows is now well known but deficiencies remain,
particularly in the areas of secondary losses and the design of blades to reduce these losses.
This project is concerned with the mechanisms of secondary loss generation in turbines and

the influence of blade lean on losses.
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A thorough understanding of turbine loss generation is necessary in order to design to
minimise it. The present chapter will review the work published to date in four areas:

secondary flows; secondary losses; loss prediction techniques; three-dimensional design,

particularly blade lean. The project objectives will then be outlined.

1.2 "Classical" Secondary Flow

It was Hawthorne (1955) and Squire & Winter (1951) who developed the first detailed
analyses of idealized, inviscid flows. Hawthorne identified three components of streamwise
vorticity at exit from a bladerow, for which Came & Marsh (1974) later developed simplified
derivations. These three "classical" components are often identifiable at exit from a real ‘

bladerow:

e  Distributed secondary vorticity. This component results from the turning of the inlet
vortex filaments (i.e. wall boundary layer) so that they have a streamwise component

(see fig.1.1);

® Trailing filament vorticity. The fact that fluid passes more quickly over the blade
surface than the pressure surface causes the inlet vortex filaments to be stretched
(fig.l.lb), giving rise to this vortex sheet at the trailing edge. An alternative
explanation of this component is that the passage vortex causes an upwash (i.e. flow
away from the endwall) along the suction surface and a downwash, or more likely no
spanwise flow at all, along the pressure surface. These different spanwise flows cause

a net circulation in the wake which is in the opposite direction to the passage vortex.

®  Trailing shed vorticity. This is also a vortex sheet appearing at the trailing edge but it
arises from a spanwise variation of blade circulation. In a truly two-dimensional flow it
would appear concentrated at the endwall but in practice the secondary flow and
endwall boundary layer cause the blade loading to reduce near the endwall so the
trailing shed vorticity spreads away from the endwall into the wake. If the blade

circulation is designed to vary along the span, e.g. as a result of departure from free

vortex design, then the trailing shed vorticity will also be spread right across the span.
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This idealized approach provides an insight into the origins of secondary flow but has
limited analytical value because of the sweeping assumptions necessary. As well as inviscid
flow, it is usual to assume that either the inlet flow non-uniformity or the flow turning is
small so that Bernoulli surfaces (i.e. surfaces of constant stagnation pressure) remain
undistorted. Since none of these assumptions is applicable to turbines, Horlock (1977), in
his review of developments in secondary flow, concludes that numerical methods are

essential for predicting turbine flows.

Nevertheless, Gregory-Smith (1982) has incorporated an inviscid calculation based
upon the work of Came & Marsh (1974) and Glynn & Marsh (1980) into his loss prediction
program because the very small amounts of computer time needed for the solution make it
suitable for use in the early stages of blade design. This calculation will be discussed more

fully later.

1.3 Actual Secondary Flow Structure

There have been numerous experimental studies of secondary flows in turbomachines.
Among the earliest was that of Herzig & Hansen (1955) who demonstrated the existence of
the passage vortex and investigated the effect of tip clearance, relative endwall movement,
Mach number and annular geometry on the secondary flow. Langston et al. (1977),
working on a large scale, linear turbine cascade, identified most of the principal secondary

flow features and Sieverding (1985) has reviewed the work published up to 1984.

1.3.1 The Horseshoe Vortex

As the inlet flow approaches a blade it must diverge in order to flow around the
leading edge. This turning of the endwall boundary layer gives rise to streamwise
vorticity of opposite sign on each side of the leading edge: the horseshoe vortex. In
practice the horseshoe vortex originates at the "saddle point”, the point on the endwall

ahead of the blade where the inlet boundary layer separates (see fig.1.2a&b, based on

Langston et al., 1977 and Sjolander, 1975). Note that, except near the saddle point, the
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3D separation associated with the vortex is quite unlike a conventional 2D boundary

layer separation, so to avoid confusion the term "lift-off line" will usually be used.

There is some evidence (Sjolander, 1975, Marchal & Sieverding, 1977) that the
horseshoe vortex formation might be more complicated (fig.1.2c&d) with subsidiary
vortices and an extra endwall lift-off line. The fact that oil flow visualization often only
reveals a single lift-off line (Hodson & Dominy, 1987a, Moore, 1983, Langston et al.,
1977 etc.) suggests that if these extra vortices do form then they are very small, highly
unsteady or both. Ishii & Honami (1986), using smoke flow visualization near a wall
placed perpendicular to an incoming flow, found clear evidence for these subsidiary
vortices. Eckerle & Langston (1987), however, made detailed measurements of the
(more realistic) flow around a 298mm diameter cylinder and showed that there can be
two separate endwall lift-off lines even when there are no subsidiary vortices. They
observed only one vortex but found that the saddle point was some way upstream of the
point where the vortex began to form, with a very shallow separation angle (fig.1.2¢).
Oil flow visualization on the endwall therefore showed two separation lines: one
associated with the separation at the saddle point; and a "local” lift-off line, closer to the

cylinder, associated with the horseshoe vortex.

1_.3.2 The Passage Vortex

The passage vortex is the dominant secondary flow feature, resulting from the
action of the cross-passage pressure gradient on the low-momentum fluid in the inlet
endwall boundary layer and corresponding to the distributed secondary vorticity of
classical theory. The pressure side leg of the horseshoe vortex and the passage vortex
rotate in the same direction, since they both form in the same way, i.e. by turning of the
inlet boundary layer. They may develop separately (the model of Klein, 1966) or as a
single vortex (the model of Langston, 1980). Marchal & Sieverding (1977),
Sieverding et al. (1984) and Sharma et al. (1989) found a single horseshoe/passage

vortex, so it seems that the latter model is more likely to be correct.
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Moore & Ransmayr (1984) performed experiments on a linear turbine cascade with
- two different leading edge shapes (circular arc and wedge). Since the overall loss and
its distribution were the same in each case (within experimental certainty) they
concluded that the horseshoe vortex has little effect on loss. In the discussion on
Moore & Ransmayr's paper Langston suggests instead that it may be that the leading

edge geometry has little effect on the horseshoe vortex.

1.3.3 The Corner Vortex

The endwall boundary layer fluid is swept across the passage ahead of the main
lift-off line and when it reaches the blade suction surface it separates and forms a corner
vortex in much the same way as the horseshoe vortex forms at the leading edge. The
corner vortex is small and remains in the suction surface/endwall corner, preventing the
passage vortex lift-off line from reaching the blade suction surface (fig.1.2b). Evidence
for its existence has been found by Marchal & Sieverding (1977), Gregory-Smith and
Graves (1983), Jilek (1986) and Hodson & Dominy (1987a).

1.3.4 The Exit Flowfield

Most researchers into turbine secondary flows find broadly the same flow pattern
at the bladerow exit. An example, from Hodson & Dominy (1987b) is shown in
ﬁg 1.3. The passage vortex is clearly visible, but so is another vortex close to it in the
wake, rotating in the opposite direction. This vortex is observed by many workers but
referred to variously as the trailing shed vortex (Hodson & Dominy, 1987a,
Armstroﬁg, 1955, Perdichizzi, 1989) the suction side leg of the horseshoe vortex
(Jilek, 1986, Sharma et al., 1989) or the trailing shed/trailing filament vortex

(Gregory-Smith et al., 1983).

The mechanism of formation of the additional vortex is shown particularly clearly
in the flow visualization of Sonoda (1985) (see fig.1.4). Although this work should be

treated with caution because it was carried out at low Reynolds' number (1.6x10% inlet,

4.8x10* exit, based on axial chord) it shows the two legs of the horseshoe vortex
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winding around one another in the passage vortex (in agreement with the model of

- Sieverding and van den Bosche, 1983) and the "extra" vortex (labelled IV in fig.1.4)

developing separately as a result of the interaction between the passage vortex and the
suction surface boundary layer. (There is also a fourth, much smaller vortex which
becomes entrained into the passage vortex.) This interaction is as follows. The
passage vortex causes a spanwise component of flow along the suction surface which
introduces a skew (i.e. streamwise component of vorticity) into the suction surface
boundary layer. It also causes boundary layer fluid to accumulate near the lift-off line

on the suction surface, so a discrete vortex forms here.

If the flow had been inviscid there would have been no blade boundary layer so the
vortex could not have formed in this way, but there would still have been different
spanwise flows on either side of the wake, so this component of vorticity would still
exist in the wake. The additional vortex labelled "trailing shed vortex" in fig.1.3 is
therefore most closely associated with the trailing filament circulation of classical theory

but modified, of course, by the effects of viscosity.

Although Sonoda (1985) and Sieverding & van den Bosche (1983) report that the
suction side leg of the horseshoe vortex becomes entrained into the passage vortex other
workers, such as Sharma et al. (1989) show it merging into the suction surface
boundary layer and therefore either being dissipated before the trailing edge or

reinforcing the trailing filament vortex.

Trailing shed vorticity normally contributes very little to the trailing filament vortex
for an unleaned blade with constant section in a linear cascade: although there is some
spanwise variation of blade loading in the vicinity of the passage and trailing filament
vortices (Jilek, 1986), most of the variation in blade loading occurs much nearer to the
endwalls. Most of the trailing shed vorticity therefore appears in the corner vortex or as

skew in the endwall boundary layer where it is intersected by the blade wake (fig.1.3).

It should be noted that these secondary flow features, particularly the passage

vortex, are not insignificant. Maximum secondary velocities can be a large fraction of
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the free stream velocity and the effect on pitchwise average exit flow direction, i.e.

- overturning near the endwall and underturning nearer to midspan, can be several

degrees (e.g. Gregory-Smith & Graves, 1983).

1.3.5 Migration of Loss

In an inviscid turbine flow all vorticity and stagnation pressure deficit at the
bladerow exit would have originated in the upstream endwall boundary layer and been
convected by the secondary flows. Since maximum vorticity and maximum loss in the
upstream boundary layer generally occur together at the endwall, vortex cores and loss
cores at exit would be likely to coincide. Flow visualization by Gaugler & Russell
(1982) shows that indeed it is the high-loss fluid nearest the wall in the inlet boundary
layer which forms the horseshoe/passage vortex core and that fluid from further out in
the boundary layer is then entrained into this vortex. Eckerle & Langston (1987) also
found that the loss and vortex cores associated with the horseshoe vortex around a

cylinder were coincident.

In a real flow, of course, there is generation and diffusion of entropy (loss) and
vorticity, and vorticity can also be destroyed or cancelled. Most entropy generation
occurs near solid surfaces, i.e. near the edges of vortices rather than their cores, so the
effect of viscosity is to separate peak vorticity from peak stagnation pressure loss. The
extent to which this separation occurs depends on the precise flow. If the bladerow
acceleration is large then the inlet stagnation pressure deficit is small in terms of the exit
dynamic pressure. In other words the high velocities within and downstream of the
bladerow generate losses which are high compared with the inlet loss and so tend to
move the loss peak away from the vortex core. This will be less true of bladerows with

low overall acceleration. This is shown clearly by experiments on linear cascades (table

L.1).
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Author(s) Contraction 5*/h (%) Number Loss and
ratio CR of distinct vortex cores
(see text) loss cores coincident ?

per 1/, span

Hodson & Dominy 1.3 0.6 2 Yes

(1987a)

Jilek (1986) 1.4 0.9 2 Yes

(impulse cascade)

Moore & Adhye (1985) 1.6 2.1 2 Yes

Yamamoto (1987b) 1.6 1.3/27 1 (distorted) Nearly

(impulse cascade)

Zunino et al. (1987) 1.7 1.6 2 Exit velocity

field not shown

Gregory-Smith & Graves 1.9 3.9 1 (distorted) Nearly

(1983)

Perdichizz (1989) 2.4 34-42 1 No

Marchal & Sieverding 2.6 1.1 1 No

(1977)

Yamamoto (1987a) 2.7 1.7/3.0 1 No

(nozzle cascade)

Jilek (1986) 3.9 0.6 1 Unclear

(nozzle cascade)

Table 1.1 Linear turbine cascade tests:

coincidence of loss and vortex cores.

In table 1.1 the contraction ratio CR is defined as (h;cos®;)/(hycosd,) where h;

and h; are the inlet and exit blade heights (h;=h, except for Hodson & Dominy, 1987a)

and ¢; and ¢ are the inlet and exit flow angles (from axial). The contraction ratio is

approximately equal to the ratio of exit to inlet free stream velocities. &*/h is the ratio of

inlet wall boundary layer displacement thickness to inlet blade height (two values of this

ratio are given in table 1.1 for each of the Yamamoto references because there were

different boundary layers on the two walls of his cascade).
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Table 1.1 shows clearly that an impulse cascade is more likely to produce two loss
cores at exit, coincident with the principal secondary vortices, whereas an accelerating
cascade generally produces a single core which is not coincident with either of the

vortices. The inlet boundary layer thickness appears to have no bearing on this.

Yamamoto (1987 a & b) and Jilek (1986) each demonstrate the striking effect of
acceleration ratio on secondary flow and loss distribution. The flow at exit from an
impulse bladerow is dominated by the vortices and loss cores but flow from an
accelerating bladerow is influenced much less by secondary flow. Indeed, the flow at
exit from Jilek's nozzle (area ratio 3.9) is almost entirely two-dimensional, with a
secondary loss core so small that it is difficult to say whether it is coincident with the

passage vortex or not.

The other common feature of the exit loss distribution is a " gap" between the wake
and the endwall boundary layer. This is caused by the passage vortex, which sweeps
high-loss fluid away from the endwall, leaving a small accumulation of endwall

boundary layer fluid on the endwall behind the trailing edge.

If there are any boundary layer separations, either on the blade surface or in the
suction surface/endwall corner where secondary flow causes an accumulation of low-
momentum fluid, then these can affect both the generation and redistribution of loss by
allowing much stronger secondary flows to develop. For instance, Hunter (1982)
noted a reduction in radial migration of loss when a laminar separation bubble was

removed by tripping the suction surface boundary layer.

1.3.6 Effect of Annular Geometry

Most of the experimental work considered so far in this chapter was done on linear
cascades. This simplifies both measurement and interpretation of results but neglects

the radial pressure gradient present in annular bladerows.

Generally speaking, the secondary flow in an annular cascade is the same asina

linear one except for a radially inward migration of low-momentum fluid along the latter
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part of the suction surface and in the wake. Thus Herzig & Hansen (1955), Hunter
(1982) and Yamamoto & Yanagi (1985), working on accelerating nozzle bladerows
with axial inlet flow, exit flow 65°-70° from axial and hub/tip ratios around 0.7, all
observed a much greater accumulation of high loss fluid near the hub than near the
casing. Sieverding et al. (1984), working on a similar cascade, found in addition that
the passage vortices at hub and casing within the blade passage were in different
positions and had different strengths. The radial flows in the cascades tested by Herzig

& Hansen and Yamamoto & Yanagi were so strong that the hub passage vortex was

YRR PR EYRRS NS LU SEE PO TRT Ry W e

eliminated and a vortex rotating in the opposite direction was observed downstream.

It has already been shown that the amount of acceleration in the bladerow
determines the impact which the secondary flow has on the exit flowfield. Itis perhaps
not surprising, then, that Moustapha et al. (1985), working on a part-annular impulse
cascade with midspan inlet and exit angles 64° and 64.5° from axial respectively, found
that the exit flowfield was hardly affected by radial migration of boundary layer fluid.
1 Instead, they found two loss cores of roughly equal size, as in the equivalent linear
cascade but slightly closer together. The authors point out that the effects of annular
geometry will be due to a combination of radial pressure gradient and radial variations

of pitch/chord ratio and blade orientation.

l 1.4 Secondary Loss

1.4.1 Definition and Components of Secondary Loss

e T

There are several definitions of dimensionless loss coefficient (see Horlock,

1973a) but this dissertation will use:

EOI — EO (1 1)
Po1 — P2 ‘ ’

where po; is the inlet free stream stagnation pressure, pg is the local stagnation

| v -
%
¥
E
i

pressure and (pg;—p2) is the exit free stream dynamic pressure. A mass-average Y over
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the entire exit plane may be obtained using the formula given in Appendix 4.1. In

- incompressible, isenthalpic flow Y is a direct measure of the entropy of the flow, since

dhy - --dpo
Po

Tods

dhg = 0
To, po constant

01 — Po
po To

S 8—8 =

The overall loss coefficient at exit from a bladerow may be thought of as
comprising three components: inlet boundary layer loss; profile loss, which may be
defined as the midspan loss or as the predicted or measured loss coefficient of an
equivalent 2D cascade; and the remainder, termed "secondary loss". Actual
mechanisms of entropy generation are highly complex and interdependent but this
arbitrary division into three components provides a convenient starting point for

understanding loss generation processes.
A number of factors contribute to secondary loss:
®  The endwall boundary layer within the cascade;

*  The influence of secondary flows on the blade boundary layers. This may include
. "free stream" velocities different from a 2D cascade, a change in the position of

transition and possibly separation triggered in some way by the secondary flow;

e Dissipation of the useless kinetic energy of the secondary flow. Part of this occurs
within the cascade due to high levels of turbulence in the vortex cores (Gregory-
Smith & Graves, 1983, measured peak turbulence levels about 30% of local

velocity) and part will occur downstream.

Several investigators have concluded that the main loss mechanism is "corner

e e

stall”, i.e. boundary layer separation caused by accumulation of low-momentum fluid in

the suction surface / endwall corner. Belik (1972) observed by surface flow
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visualization that there was an "intense mass transport from the region of the inlet
- boundary layer" towards the suction surface / endwall corner and assumed that this was
"unquestionably associated with an intense separation in the corner region". In the light
of more recent research this assumption is clearly false. Belik also found that the
magnitude of the secondary loss could not be explained by his simple model of

dissipation of the horseshoe vortex, and so concluded that the corner separation was

responsible for the majority of the secondary loss.

Five years later Marchal & Sieverding (1977) made more detailed cascade
measurements and again concluded that severe local separation in the corner was likely
to be a major source of loss. They admitted to not having firm evidence of such a
separation but based their conclusion on an apparent increase in the rate of loss
generation downstream of the throat and the appearance of a loss core adjacent to the
suction surface near the endwall. However, since their measurements did not include
the blade boundary layers it is possible that both of these effects are attributable to the
accumulation of low-energy fluid on the suction surface (due to the action of the
passage vortex) becoming large enough to encroach into the five-hole probe traverse
area. Yamamoto (1987a) comes to similar conclusions for similar reasons, and with the

same shortcoming.

1.4.2 Calculation of Mixing Loss

Graves (1985) attributed 85% of secondary loss to dissipation of secondary kinetic
energy. O;her researchers (e.g. Langston et al., 1977, Moore & Adhye, 1985) have
found that a large proportion (typically over 1/3) of the overall loss appears downstream
of the trailing edge so clearly downstream mixing of secondary flows is a major
component of secondary loss. It is not one which can be directly measured in a
cascade, however, except by traversing very far downstream, in which case new loss

arising in the endwall boundary layers would have to be taken into account. In a full

stage even this is not possible, since much of the mixing takes place in the following

R e
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bladerow. It is therefore necessary to calculate mixing loss from measurements using a

* control volume analysis as follows:

The measured flow has velocities vy, vy and v, and flow area A perpendicular to
the x direction. Assume that it mixes out to a uniform flow with static and stagnation
pressures py and poMm and velocities vy and vyM (vz2M=0). The mixed-out flow area is
Ay and external forces F, and Fy are applied during the mixing process. If
incompressible flow is assumed then the following equations may be written, where all

integrals are evaluated over the inlet area A:
Continuity:

pfvxdA = PVxMAM (1,2)

X momentum:

For [p+pvddA =  (om+ pvaAn (1,3)
Yy momentum
Fy + [pvevydaA = pvyvymAM (1,4)

Stagnation pressure:

poM = M+ %P(VxM2+VyM2) (1,5)

Combining (1,2-5) we obtain:

1 +pfvxvydA [vxdA}
PoM = m{ Fy +f(P+PV3)dA} + % (Fy — dP}: - Au (1,6)
X
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and subtracting this from the mass-average total pressure at the measurement plane

_ [povxdA
Po = ~ 1,7)
JvxdA
gives the mixing loss. The mixing loss coefficient is defined as
Ymix - Po — pom (1,8)

Po1 — P2

If Fx and Fy can be assumed to be zero, for instance when considering mixing at
constant area downstream of the bladerow in question with no following bladerow and
neglecting endwall shear stresses, then eq.(1,6) is easily applied. However, if there is
a bladerow downstream or if a measurement plane within the bladerow is to be
considered, then F,/Ap and Fy/Am are of the same order of magnitude as the dynamic
head. Since the mixing loss is one or two orders of magnitude smaller than this then F,
and Fy must be known very accurately. In practice this means that mixing loss cannot
be calculated reliably in this way except for constant area mixing outside of bladerows,
so in practice eq.(1,6) can only been applied to planes downstream of the bladerows
and with Am=A and Fx=Fy=0. The validity of this calculation in practice will be

discussed in §1.4.3.

As an alternative to mixing loss some workers (e.g. Gregory-Smith, 1982 and
Belik, 1968) assume that all of the "secondary kinetic energy" is dissipated . A

secondary kinetic energy coefficient may be defined as

[%pwzu dA
Yskg = (1,9)
(po1 — p2) Ju dA

where u is the component of velocity in the primary (mean) direction and Iwl is the

secondary velocity, i.e. the component perpendicular to the primary direction. Note

that it is very important to define the primary direction correctly as the direction of the
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fully mixed-out flow, otherwise the primary flow may make a large contribution to the

calculated secondary kinetic energy.

Kinetic energy is a scalar and cannot strictly be resolved into components so Ysgg
does not necessarily have any physical significance. However, it is easy to evaluate
and Moore & Adhye (1985) shoWed that under certain circumstances it may be
approximately equal to the mixing loss. They rearranged the equation for mixing loss

as follows (notation has been changed to match the current work):

1
pM - D (u — up?)
bt Ysxe Po1 — P2 = Po1 — p2 (1,10)

pis the mass-average static pressure at the measurement plane. u is the component
of velocity in the primary direction (Moore & Adhye defined the nominal blade exit
angle rather than the mean flow direction as the primary direction but for this
approximate analysis the distinction should not be significant). u? and up? are
therefore the primary kinetic energy at the measurement plane and the mixed-out plane
respectively. Downstream of Moore & Adhye's cascade the primary flow terms (i.e.
the second and third terms on the right of equation 1,10) roughly cancelled one another
out. This lent weight to the rule-of-thumb that secondary kinetic energy and mixing
loss are equal. Moore et al. (1987) measured Reynolds' stresses downstream of the
same cascade and showed that they were compatible with the observed dissipation
rates. They also showed how transfer of mean kinetic energy between the three co-
ordinate directions via pressure terms and turbulence could account for the observation
that secondary kinetic energy is dissipated while the primary flow appears to be

reversible.

1.4.3 Validity of Mixing Calculation

Mixing loss can usually only be calculated from eq.(1,6) by assuming that mixing

assumes at constant flow area with no externally applied forces, and the approximate
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equality of Ymrx and Yskg has only been verified for such a flow. (Moore & Adhye

- calculated mixing loss based on the flow just upstream of the trailing edge by including

external forces due to blade surface pressures, but the measurement plane was so near
to the trailing edge that these forces, and hence the possibility for error, were small).
Such assumptions are clearly invalid when considering a full stage, so it is necessary to
consider how and where mixing occurs in reality. Hodson & Dominy (1987a) found
that the remaining mixing loss 0.42 axial chords downstream of the trailing edge was
10% of the measured loss at the same location. Moore & Adhye (1985) found that
losses were still increasing, but slowly, 1.4 axial chords downstream. Kawai et al.
(1985) did not measure losses but noted that secondary flow vortices were much
reduced in strength, although still present, 2.0 axial chords downstream. Binder &
Romey (1983) noted that the flow was almost completely mixed-out by 1.7 axial chords

from the trailing edge.

These distances are greater than the typical spacing between bladerows so some
mixing of secondary flow from one bladerow is bound to occur within, or even
downstream of, the following bladerow. Sharma et al. (1988) measured the interaction
between the flow in one bladerow and the exit flow from the previous bladerow. Since
they did this on a 11/, stage turbine they could look at a rotor with a following stator
and a stator with a following rotor. The flow at exit from the second stator exhibited
undertumin g near the walls and overturning near midspan. This is the opposite of the
effect normally expected from secondary flow so it was suggested that the rotor passage
vortices were persisting through the following stator and, furthermore, dominated over
the stator passage vortices in the time-averaged flow. This explanation is plausible but
a little surprising since the axes of rotation of the rotor passage vortices have a very
different orientation from those of the stator passage vortices and there was little
evidence of the passage vortex from the first stator persisting through the first rotor.
Contour plots of unsteady total pressure loss downstream of thé second stator appear to

show rotor loss cores passing but since velocity vectors are not presented it is not

possible to tell to what extent the rotor vortices persist at stator exit. There are other
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mechanisms which might cancel the stator passage vortices. For instance, Yamamoto
- & Yanagi (1985) found that radially inward flow in the later part of the stator suction
surface boundary layer and in the wake cancelled the stator hub passage vortex and set
up a vortex rotating in the opposite direction. This effect is likely to be more
pronounced in a stator wake than a rotor, since the "centrifuging" of a rotor wake tends
to counteract the effect of the radial pressure gradient. Hebert & Tiederman (1989)
looked at the effect of wakes from moving bars on the secondary flow in a linear
cascade and noted that, even though the bars generated no streamwise vortices, the
wakes caused a circulation to be set up in the cascade passage which was opposed to
the cascade passage vortices. In reality this effect may be even stronger, since blade
wakes, unlike the wakes from bars, are not uniform along the span but are concentrated
towards midspan by secondary flow and might therefore lead to overturning at midspan

in the following bladerpw.

Binder (1985) carried out an investigation into turbulence production and mixing of
a stator wake and passage vortex within the following rotor passage. Without the rotor
present (Binder & Romey, 1983) mixing occupied at least 1.7 axial chord lengths
downstream of the trailing edge (3.34 true chord lengths in the flow direction) but when
the rotor was fitted rapid dissipation of the vortex took place very early in the rotor
passage. A more detailed investigation (Binder et al., 1986) showed that the
bréakdown probably starts when the passage vortex is cut by a rotor blade and then
propagates along the vortex very quickly (at the speed of sound) so that there is a very
high rate of turbulence generation right across the passage immediately behind the
leading edge plane. This suggests that in a turbine most mixing loss is generated before
or just inside the following bladerow, so it may be acceptable to use eq.(1,6) after all.

The effect of downstream bladerows on mixing loss will be considered further in

chapter 4.
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1.5 Prediction of Turbine Loss

1.5.1 Empirical Correlations

The oldest way to predict turbine losses, and still the most convenient, is by using
correlations based on empirical data. Many correlations have been proposed, taking
into account such factors as blade inlet angle, incidence, blade exit angle, maximum
thickness, trailing edge thickness, pitch, chord, aspect ratio and tip clearance. Profile
loss correlations (e.g. Ainley and Mathieson (see Horlock, 1973a) and Baljé and

Binsley, 1968) are based on 2D cascade measurements and are generally presented

graphically.

The secondary loss, i.e. the total loss less the profile loss, may be correlated
against geometrical parameters in a similar manner. Dunham (1970) reviews such

correlations and proposes one himself:

2
Yy ‘= SfFb (QL- TM(O.ooss +0.078\/ §i| (1,11)
h {cos¢p; J\ s/c ) cos3iym ¢

where ¢p is the inlet blade angle,

tangy = 3 (tang; + tandy)

and

CL

2 %(tan(bl - tan@y) cosdm

An alternative, and simpler way, to estimate secondary losses is to assume that the
mean rate of loss generation in the endwall boundary layer is the same as in the blade

boundary layers, i.e.

secondary loss annulus wall area

profile loss - blade surface area
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This is the procedure proposed by Stewart et al. (1960) and Heurteux & Price (see

- Dunham, 1970) but for accurate predictions it is found to be necessary to increase the

secondary loss artificially. Sharma & Butler (1987) argued that this increase is to
account for the skew in the endwall boundary layer and, furthermore, that this skew is a
function of the distance by which the horseshoe vortex lift-off line has move up the
blade suction surface by the trailing edge (distance Zrg in fig.1.5). They correlated this
distance against blade turning (e, radians) and contraction ratio (CR) and used

throat/span (O/h) rather than annulus area/blade area to obtain a simple correlation:

Secondaryloss = 2D (profile) lossx(l + 4 %)% (1,12)

Empirical correlations have the advantage that they are quick and easy to apply and
require only basic input information. This makes them particularly suitable for
preliminary design, when detailed blade shapes etc. are not yet known. They suffer

from a number of disadvantages, though:

e  The implicit assumption is made that, provided blades are designed competently,
the detailed profile shape has no effect on loss. In practice this means that, as

designs improve, profile loss correlations become more pessimistic;
e Three-dimensional features, such as non-radial stacking, are not considered;

* The empirical data from which the correlations were derived were obtained at
various distances downstream of the bladerows in question, so mixing losses are

not consistently dealt with;
®  The inlet endwall boundary layer is not dealt with consistently.

The last of these shortcomings is a particular problem since many correlations, e.g.

€q.(1,11), include inlet boundary layer loss as part of the loss of the current bladerow

and consider that the exit boundary layer belongs to the subsequent bladerow. This
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probably originated out of convenience, since it meant that the exit boundary layer

- (which is very thin, skewed and non-axisymmetric) did not have to be measured

accurately, but it has meant that most correlations are fairly heavily dependent upon the
inlet boundary layer displacement thickness. Several investigators have found that the
"new" loss in the cascade (i.e. including the exit wall boundary layer but not the inlet
one) is independent of the boundary layer thickness. These include Atkins (1987),
Chen & Dixon (1986), Marchal & Sieverding (1977), Gregory-Smith & Graves
(1983), Richards & Johnson (1986) and Govardhan et al. (1986). It therefore seems
reasonable to exclude the inlet boundary layer but include the exit boundary layer when

formulating a loss correlation.

1.5.2 Numerical Predictions

Because empirical correlations ignore blade shape and because secondary flows,
particularly in turbines, are highly complex it is often argued (e.g. Marchal &
Sieverding, 1977; Carrick, 1977; Denton, 1973) that only fully-three-dimensional flow
prediction programs have a long-term future for turbine design. A number of such
programs are available (e.g. Moore & Moore, 1985; Denton, 1985; Dawes, 1986)

which have been used successfully for a variety of blade shapes.

The principal disadvantage of such methods is obvious: expense. They tend to
consume large amounts of computer memory and processing time, particularly if they
are to resolve boundary layers sufficiently accurately, and it is no simple matter to
prepare input data and obtain a good solution. As yet, it is generally agreed that such
programs do not predict absolute loss levels reliably. Nevertheless, advances in the
programs themselves and rapid improvements in computer hardware continue to make

these predictions more promising for routine design.

1.5.3 Simple Loss Calculations

Empirical loss correlations provide too little information and fully three-

dimensional numerical predictions, because of their cost and stringent input data
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requirements, are only useful for the later stages of design, once the blade shape is
defined precisely. There is therefore a need for simpler predictions which can

nevertheless model the effect of design changes moderately well.

Since calculation of the endwall boundary layer is crucial to secondary loss
predictions this will be considered first, followed by Gregory-Smith's simple method
based on classical secondary flow theory, and finally boundary layer loss predictions

based on the assumption of constant dissipation integral.

(i) The Endwall Boundary Laver

Senoo (1958) investigated the endwall boundary layer in a nozzle cascade using a
stethoscope and a hot-wire anemometer and concluded that the boundary layer just
upstream of the throat was laminar, with transition to turbulence occurring near the
throat. He found that the boundary layer within the passage was independent of the
state and thickness of the upstream boundary layer but, being unaware of the precise
details of secondary flows, thought that this was due to the large acceleration in the
passage causing relaminarization of the endwall boundary layer. Much later, Sjolander
(1975) noted that, in fact, the old boundary layer was swept off the endwall and that a

new boundary layer formed downstream of the horseshoe/ passage vortex lift-off line.

| Nevertheless, a 3D boundary layer calculation by Senoo gave reasonable
predictions. Surprisingly, a 2D prediction was equally accurate. This appeared to be
fortuitous, as the passage convergence tends to make the boundary layer thicker than a
2D boundary layer with the same pressure distribution but cross-flows tend to make it
thinner. However, he suggests that 2D predictions in many different nozzles might be

reasonably accurate for the same reason.

Johnson (1960) found from his own experimental data and from that of
Gruschwitz (1935) and Kuetha et al. (1949) that rather than expressing the crossflow
velocity w in a boundary layer as a separate function of height (and other parameters) it

was better to express it as a function of the main flow component u. This is Johnson's

L
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triangular model, shown in fig.1.6a. "A" may be determined from the main flow

- parameters. For instance, if main flow streamlines follow a circular arc with turning o
then A=—2a.. "e" represents the skew of the limiting streamlines relative to the main

flow and is treated as an unknown. The velocity is assumed to vary linearly with height

in the inner region. ‘ |

Boundary layer calculations using Johnson's triangular model have shown some
success. For example, Dring (1971) claims to calculate losses typically within 30%. (
Such methods have three drawbacks. The first has already been mentioned, i.e. that
they assume that the inlet boundary layer remains attached to the endwall. The second
is that they assume that the presence of the sides of the passage (i.e. the blade surfaces)
does not unduly influence the boundary layer. This implies that the boundary layer
thickness is small compared with the passage width, an assumption which is often not
valid for turbines. Horlock (1973b) considered a bounded three-dimensional boundary
layer, i.e. one which is thick compared with the passage width, but only obtained good

results for lightly loaded blades and low turning (up to around 30°).

The third drawback of the triangular cross-flow model is that the boundary layer in
a turbine is not just the product of a simple flow turning. At any one point in the
boundary layer there may be fluid from different parts of the passage which may have
undergone different amounts of turning and been influenced by lift-off lines and
vortices. Langston (1980) measured the endwall boundary layer in a turbine cascade
and found "crossover crossflow" profiles like those shown in fig.1.6b&c. Sieverding
et al. (1984) presented more such profiles but concluded that they are too complex to
be useful, and only a full numerical solution of the Navier-Stokes equations can

accurately predict such a flow.

Nevertheless, a two-dimensional boundary layer calculation may provide a
reasonable approximation to the endwall loss, as Senoo suggested. Simple
axisymmetric models were not found to be accurate (Gregory-Smith, 1970 and Carrick,

1977) but Boyle et al. (1981) found that a 2D boundary layer calculation coupled with a

* o
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quasi-3D inviscid flow analysis predicted losses reasonably well. The more recent loss
- model of Gregory-Smith (1982) incorporating a 2D boundary layer model on the

endwall will be discussed below.

(ii) Gregory-Smith's Loss Model

It has already been seen that generation of secondary flow is primarily an inviscid
effect resulting from the turning of the vorticity in the upstream boundary layer, and
often turbine flows can be adequately predicted by inviscid techniques (e.g. Stow, 1985
and Arts, 1985). Gregory-Smith's model (1982) is therefore based on an inviscid
calculation of the exit flowfield using classical secondary flow theory (§1.2). This
gives a prediction of the exit flow angles and losses are calculated as the sum of a

number of components:

®  Aloss core, assumed to consist of all of the inlet boundary layer fluid but with no
additional loss. This is concentrated in a triangular area against the suction surface

and near the endwall;

° Anew endwall boundary layer, assumed to be turbulent and collateral and to start

at the throat;

* Extra secondary loss, taken to be equal to the secondary kinetic energy (see

€q.(1,9)) of the exit flow.

Comparisons with data of Marchal & Sieverding (1977) and Hunter (1979) and
later work by Graves (1985) show good qualitative agreement but so far poor

quantitative agreement.

(iii) __ Constant Dissipation Integral

As any boundary layer grows there is not only local entropy generation but also
generation of non-uniformities which lead to further entropy generation downstream as

mixing makes the flow uniform once again. For a collateral boundary layer the

relationship between the boundary layer parameters and the total loss (including
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downstream mixing) is straightforward (see for example Horlock, 1973a). The local
- loss coefficient (based on %pUz) is 8e/(s-8*) whereas if the flow subsequently mixes

out at constant area to a uniform flow the ultimate loss coefficient will be 20/s.

Prediction of 0 usually entails solution of the momentum integral equation:

6  1dU T _ Cr
d—x+ UEX-G(H.{-Z) = pU2 - (1,13)

This requires a knowledge of the shape factor H and the skin friction coefficient
Cr, which depends upon both H and Reg (fig.1.7b). In contrast, the energy integral

equation

%ad; (U%%.) = — = Cp (1,14)

uses the dissipation integral Cp, which is almost independent of H (fig.1.7a).
Note that %pU33e is the flux of kinetic energy deficit and D is the shear work done in
the boundary layer per unit solid surface area, given by

U
D = jr dv (1,15)
0

- Itis assumed that this is all dissipated, i.e. turbulence kinetic energy is neglected

(Truckenbrodt, 1955).

Based on work by Rotta, Truckenbrodt derived the relation:

P(H)

Cp = =
Ree

(1,16)

By assuming constant values of n and B (table 1.2) Truckenbrodt solved the

energy integral equation for 8, then obtained 6 by assuming a constant ratio 8./0 (also

given in table 1.2).
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Laminar Turbulent
n 1 /6
B 0.173 0.0056
0./0 1.57 1.72

Table 1.2 Constant values assumed by Truckenbrodt

The values of n and B assumed by Truckenbrodt lead to a variation of Cp with Reg

as given in fig.1.7c.

If all boundary layers are thin, then the local loss coefficient (i.. neglecting mixing
loss) is proportional to the integral J. U3CpdA evaluated over all solid surfaces. For a
turbulent boundary layer the dependence of Cp upon Reg is so weak that, within a
reasonable range of Reg, it may be considered to be constant. Moore & Moore (1983)
showed that for the boundary layer measured by Samuel & Joubert (1974), for which
5x103 < Reg < 18x103, Cp, took a fairly constant value of 0.0012. Denton & Cumpsty
(1987) suggested that an assumption of constant mean Cp might give a useful estimate
of loss but that a higher value, say 0.002, might be more appropriate for the levels of
Reg typically found in turbomachines. If this assumption is made then loss is simply
proportional to j U3dA, where U may be derived, for example, from inviscid three-
dimensional predictions or from axisymmetric streamline curvature calculations via the

method described by Walker (1988).

Some of the drawbacks of this method will be discussed in chapter 4 but it is worth
noting that the fact that entropy generation rates vary much less than skin friction may

partly explain why some simple boundary layer calculations have been moderately

successful at calculating loss even in the highly complex flow on turbine endwalls.
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1.6 Three-Dimensional Desi gn

There are a number of ways in which blade designs can be changed in an attempt to
reduce losses, some of which are reviewed by Tall (1977), Hourmouziadis & Hubner
(1985) and Richards (1985). By paying due attention to three-dimensional flows it may be

possible to reduce secondary losses by modifying blade angles to change the radial work

considered here: endwall grooves or fences; endwall profiling and blade lean. Particular

distribution but three particular design changes intended to reduce secondary loss will be
attention will be given to lean.

1.6.1 Endwall Fences ‘

It is sometimes assumed (e.g. Yamamoto & Yanagi, 1985) that the accumulation of
low-energy fluid into a loss "core" is itself a mechanism of loss generation. This is not [
necessarily true, but since secondary flows give rise to a mixing loss downstream as the |
secondary kinetic energy is dissipated it may nevertheless be advantageous to restrict {
the secondary flows. One way to do this is to put grooves or fences on the endwall f
aligned with the main flow. The flow over these will induce a loss but it is hoped that (
the reduction in secondary losses more than compensates for this. Prumper (1972) and }
Gallus & Kummel (1977) found that fences and grooves did reduce the overall loss.

1
Coghlan & Hodgson (1986), however, reported an increase in loss, despite earlier ]
|

encouraging results in a constant-area curved channel by Abraham & Bethel (1984).

1.6.2 Endwall Profiling

Whilst endwall grooves or fences inevitably cause some local extra entropy

generation and may present cooling problems, this is not necessarily true of changes to

the overall passage shape. Changes to the endwall shape are the most straightforward

from a practical point of view since the endwalls are virtually unstressed. Waterman & *

Tall (1976) tested three part-annular cascades of nozzle blades and concluded that

endwall contouring (in this case also involving passage contraction) redistributed the

losses but did not significantly change the overall level. Boletis (1985) and Kopper et
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al. (1981) reported overall improvements due to endwall contouring but in both cases

-there was an overall gas path contraction due to the revised endwall shape.

An overall contraction (with exit area fixed) may reduce losses simply by virtue of
the reduced velocity levels in the early part of the blade passage but this is not always an
option which is available to a turbine designer. Atkins (1987) reviewed other
investigations into endwall profiling and tested a variety of endwall shapes on a linear
cascade. He tested both axisymmetric and non-axisymmetric shapes with and without
overall passage contraction and found that most changes increased the loss. Any

improvements could generally be attributed to annulus contraction.

1.6.3 Blade Lean

Throughout this dissertation blade lean with an acute angle between the pressure

surface and the endwall will be called positive lean, and vice versa.

The stacking of sections to form a rotor blade is usually dictated by stress
considerations. There is no such restriction on stator blade design, though, and lean
can be used to powerful effect. Lean has been used in turbines in two ways. The first
is to control reaction in low hub/tip ratio stages. In such stages the swirl in between the
stator and the rotor tends to lead to a large radial static pressure gradients, giving a low
stage reaction at the hub and a high value at the casing. Leaning the stator so as to give
positive lean at the hub introduces a radial component of blade force which counteracts
the undesirable radial pressure gradient and thereby improves the reaction distribution.
This was the approach of Deych & Troyanovskiy. More recently, flow calculations by

Kirillov et al. (1984), Denton (1987) and Grant & Borthwick (1987) have demonstrated

that stator lean is a powerful aid to controllin g stage reaction.
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Lean can only influence reaction if its effect on pressure extends some way
downstream of the stator. Walker (1988) showed that this is only true if the aspect ratio

is large, or more precisely if the parameter Z is small, where

7 - 4 + tanZ(exit flow angle)
= 4(aspect ratio)

At low aspect ratios and high hub/tip ratios, as found in high pressure turbines,
lean only affects the pressures within the bladerow. Rather than controlling stage
reaction, then, lean can be used in an attempt to reduce stator losses and to improve the
flow onto the rotor. The effect of lean on flow within a bladerow is best described with
reference to contours of static pressure on a radial-circumferential plane, e.g. fig.1.8
taken from calculations by Walker (1988). The streamline curvature in the blade-blade
plane dominates the flow, so pressure contours remain nearly radial even when the
blades are leaned. This has a number of effects at the "positive” end (and of course the

opposite effects at the negative end):

e Mean velocities are lower, so rates of entropy generation in boundary layers are

smaller;

e The static pressure is increased so the incoming endwall boundary layer is
decelerated and therefore thickened as it approaches the bladerow. It therefore

tends to be turned more by the blade-to-blade pressure gradient and hence generate

more secondary flow;

® The above effect is countered by the fact that the blade loading is lower. It is not

immediately obvious whether the net effect will be to increase or decrease

crossflow on the endwall;

® There is a gradient of static pressure along the suction surface away from the

endwall. This tends to remove low momentum fluid and avoid an accumulation in

the suction surface/endwall corner.
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On the whole this would suggest that losses would be reduced at the positive
~endwall. This is confirmed by Fillipov & Van (1964). Since losses would be
increased at the negative end (or at midspan with compound lean) there is not
necessarily an overall improvement. Indeed, a numerical study by Dawes (1986)
predicted a redistribution of loss rather than a net reduction and Huber et al. (1985)

concluded that efficiency gains, if any, are due to the indirect effects of improved flow.

In a number of experimental investigations blade lean has been just one of several
changes made to blade designs to improve performance. Schlegel et al. (1976) reported
a 25% reduction in stator loss, giving a 1.2% point improvement in stage efficiency.
They did not deliberately incorporate lean but the fact that stator blade sections were
stacked on their trailing edges meant that in practice there was a strong negative
compound lean. The improvement in performance was largely due to unchoking the
stator at the design point. Liu et al. (1979) deliberately used positive compound lean of
a stator. Based largely on 3D viscous numerical predictions they report a net loss
reduction at high Mach number but at lower speed only the distribution of loss was
improved. Diakunchak (1988) reports a remarkable 6% point stage efficiency
improvement from a package of changes including simple stator lean (positive at the
hub) but this is compared with a previous design which was acknowledged to have
performed badly. In all of these cases, because several parameters were changed at

once, it is impossible to deduce the contribution of blade lean.

An early investigation, by Breugelmans et al. (1984), into the effect on a linear
cascade of lean alone was not encouraging. Straight lean reduced the losses at the
positive endwall but overall losses increased. Compound lean (using a different blade
profile and comparing with Salvage, 1974) also increased losses. However, this study
used compressor profiles and is therefore not directly applicable to turbines.

Furthermore, the study of straight lean used one set of aerofoils mounted at different

angles, so blade angles and blockage were not held constant.
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Wang et al. (1981) carried out a numerical study on turbines with some limited
experimental work and concluded, rather darin gly, that compound lean can always give
an efficiency improvement. Experiments on an annular cascade (Wang et al., 1987)
showed that the greatest effect of simple lean is prevention of loss accumulation in the
hub/suction surface corner which otherwise could lead to boundary layer separation. It
was also shown that there is an optimum lean angle, above which losses begin to
increase again. In the followin g year parallel experiments with straight lean in a linear
cascade (Wang et al., 1988) and an annular cascade (Han et al., 1988) confirmed that
the dominant effect of lean is on the radial pressure gradient acting on the latter part of
the suction surface boundary layer. The net effect of 20° straight lean on the linear
cascade was an increase in loss but on the annular cascade loss was reduced because
lean was able to counteract the radial pressure gradient resulting from the annular

geometry.

The above experiments (and intuition) indicate that better results could be obtained
using compound lean. This was confirmed by Shi et al. (1986) who recorded a 0.8%
point improvement in stage efficiency for a transonic turbine stage at its design point
and up to 2% point improvement at lower speeds. Nagayama et al. (1987) investigated
a turbine stator with very low turning (30°) as part of a full stage. They reported a loss
reduction due to compound lean and, surprisingly, even found that midspan loss was
reducéd. Walker (1988) measured a 2% point drop in stator loss coefficient with
compound lean but attributed this to "improved aerodynamics" (e.g. delayed boundary

layer transition) rather than secondary flow effects.

Project Objectives

The foregoing literature review has shown that stator lean may have a strong beneficial

effect upon losses in a low aspect ratio, high hub/tip ratio, high pressure turbine. There are,

however, a number of deficiencies in work published to date.
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1.7.1 _Secondary Loss Generation

Turbine secondary flows are reasonably well understood but loss generation is not.
There is disagreement over the relative si gnificance of the various mechanisms of loss
generation and how to predict them. This seems to be partly due to a confusion on the
part of some investigators between loss mi gration/accumulation and loss generation, but
mainly due to insufficient detail in measurements. Several experimental investigations
have included measurements within blade passages but it is vital that boundary layers
are measured in sufficient detail if sources of entropy are to be quantified. It is also
important to know the state of boundary layers (i.e. laminar or turbulent) and to take

full account of mixing losses, which can comprise a large fraction of the total loss,

1.7.2 The Influence of Lean

It has been established that the radial pressure gradients in an annular geometry can
cause inward migration of low-momentum fluid in the suction surface boundary layer
and the wake. This can have two detrimental effects: it causes an accumulation of
boundary layer fluid in the hub/suction surface corner which may lead to boundary
layer separation and it causes large secondary velocities in the wake which contribute to
the downstream mixing loss. Simple lean can counteract this migration and so reduce
losses. In any experiment with an annular geometry this performance improvement
may mask the other effects of lean so a detailed investigation of loss mechanisms on a

linear cascade is required if the other effects are to be understood.

Experiments on a full stage have a further drawback because stator lean will
inevitably change the flow onto the rotor. Since the rotor is usually not changed to

receive this flow, overall stage measurements must be interpreted with caution,

1.7.3 I.oss Prediction

A better understanding of mechanisms of loss generation will aid design and may

lead to more reliable prediction by simple techniques. Ultimately, though,
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improvements in predictive capability will be by three-dimensional numerical methods.
- These techniques are still at an early stage of development and therefore need reliable,

detailed experimental data against which they can be validated.

The above requirements may be satisfied by detailed flow and loss measurements
within and downstream of a large-scale, linear cascade, supplemented by measurement of
endwall boundary layer surface shear stresses and determination of the state of all boundary
layers. It was the aim of the present project to perform such measurements on unleaned,
simple leaned and compound leaned blades, giving particular attention to the mechanisms by

which entropy is generated and the ways in which blade lean influences these mechanisms,

and then to compare experimental results with current prediction techniques.
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CHAPTER 2

EXPERIMENTAL APPARATUS AND PROCEDURES

2.1 Choice of Cascade

The previous chapter has shown that blade lean can have a beneficial effect in an
annular geometry by opposing the radial migration of wake fluid, and therefore experiments
on a linear cascade are necessary to eliminate this effect and so investigate the other effects of
lean. It has also been shown that detailed boundary layer measurements are needed, and a

linear cascade is ideal for this because the blades can be much larger than in an annular

cascade.

The blades were chosen to be typical of modern high-pressure turbine blades, i.e. high
turning, high loading and low aspect ratio. Blade angles of +40° inlet and approximately
—65° exit (from axial) were chosen so that the flow would be strongly influenced by
secondary flows. The only departure from normal turbine practice was a very thin trailing
edge, so that trailing edge losses did not mask the other losses and manufacturing

differences between the different sets of blades had minimum effect.

The three different sets of blades tested are shown in fig.2.1, which also defines the
sign convention for lean. All blades had the same section, which was constant over the
entire span, and the lean was in the pitchwise direction. Blade sections remained parallel to
the endwalls, i.e. the blades were sheared rather than tilted, in order to maintain blade angles

and blockage.

2.2 Profile Design

A blade profile was designed specifically for this project in order to ensure that it

performed well at the low Mach numbers encountered. A profile was first of all sketched by

hand on a parabolic camberline and its performance analysed using the finite element
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analysis program FINEL. The blade pressures already matched the design intent fairly well
but improvements were made using FINEL's design mode. The final design was checked

using a Martensen code (Wilkinson, 1967), whose predictions agreed well with FINEL.

Predicted and measured blade pressures will be presented below.

Blade boundary layers were predicted using the "NGTE" code (Herbert & Calvert,
1982) with Martenesen pressure predictions. The "NGTE" code uses Thwaites' method for
the laminar part of the boundary layer and Green's lag entrainment method for the turbulent
part. There was uncertainty over the transition point and hence the turbulent boundary layer

parameters, but maximum shape factors in the turbulent part between 1.6 and 1.8 indicated

that turbulent separation would not be a problem.

The amount of lean was decided upon usin g Denton's inviscid, three-dimensional time-
marching code (Denton, 1985). It is hard to know what criterion should be used for this
choice so amounts of lean were chosen which had a strong effect on static pressures but did

not lead to excessive suction surface diffusion.

The profile had to be modified slightly to overcome a manufacturing error on the first
set of blades so only predictions for the final (i.e. manufactured) profile will be presented.
The profile is outlined in fig.2.2 and full details are given in Appendix 1. Fig.2.3 compares
2D predictions (by the Martensen method) with midspan measurements on the unleaned

blades. The midspan Zweifel coefficient on set 1 is 1.10.

2.3 Cascade Design and Operation

2.3.1 Cascade Construction and Equipment

The cascade was mounted on the "Duplex" low-speed wind tunnel. Having
decided that four blades were required to ensure periodic flow, the tunnel exit size fixed
the scale of the blades (pitch 230mm, true chord 278mm). To achieve a blade aspect

ratio close to unity inserts were fitted in the tunnel contraction to reduce the width

further, giving a blade span of 300mm.
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Blades were CNC machined from solid aluminium alloy. For batches of four this
method was no more expensive than epoxy moulding or construction from laminated
wood and had the advantage of superior dimensional accuracy and strength, particularly
important for the thin trailing edges. It also made surface static tappings easier to fit.
Slots were milled in the surface into which steel hypodermic tube was laid. The tubes
were covered over with "Plastic Padding" and 0.4mm diameter holes drilled into them
7, 50 and 150mm from each end on set 1 and 8, 25, 60, 100 and 150mm from each end
on sets 2 and 3. Tapping positions around the blade profile are shown in fig 2.2 and
included in Appendix 1. When measuring static pressures all tappings but one on each

tube were covered with tape 0.05mm thick.

The rest of the cascade was largely constructed from plywood on a wooden base
supported on steel trestles. The cascade layout is shown in fig.2.4a. The blades were
supported by dowels at each end into holes accurately drilled in the walls by CNC
machine. Traversing was through a sliding Perspex window so one blade had to be
cantilevered from the back wall and supported near the other end by a length of piano
wire. (This wire did not interfere in any way with the passage being measured). The
end of the cantilevered blade was sealed against the Perspex with a layer of felt.
Although the blades were precisely located onto the endwalls, the endwalls, being
wood, could distort slightly so care was taken when setting up the cascade to ensure

accurate positioning of blades relative to one another.

A row of tappings in the Perspex window allowed endwall static pressures to be
measured and probes could be inserted through a slot which was sealed with T-shaped
inserts. This arrangement allowed complete freedom of choice of measurement
location. The probe was mounted onto a small, manually operated turntable (Unislide
A3082TS) which allowed it to be rotated about its own axis. This in turn was mounted
onto a motorized dovetail slide (Unislide B2518) driven by stepper motor under
computer control. This drove the probe parallel to its own axis, i.e. in the spanwise

direction, and could be mounted perpendicular to the endwall (for sets 1 and 3) or at

20° from perpendicular (set 2). The motorized slide was supported on a long, manually
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operated dovetail slide (Unislide A4048) which allowed movement in the pitchwise
- direction, parallel to the slot in the Perspex window. This manual slide formed the
hypotenuse of a triangular frame (fig.2.4b) which could be traversed along a horizontal

bar fixed to the cascade.

Automated traversing and data logging were controlled by an Apricot Xen
microcomputer via a Biodata Microlink interface. All pressures were measured using a

Furness FC012 micromanometer, serial number FCB7577.

2.3.2 Periodic Flow

Ensuring periodic flow in a linear cascade with few blades can be difficult, and
particularly so on a cascade of leaned blades. The flow was adjusted using two
aluminium endplates (fig.2.4a). The initial endplate setting was calculated so that the
ratio of throat width to ideal inlet streamtube height was equal for all five flow passages
(see fig.2.5 for clarification). The plates were then adjusted and periodicity was

checked by a number of techniques:

® Midspan static pressures on the two middle blades were compared using a
manometer bank. This method was quick and easy but not particularly sensitive as
incidence changes tended to make pressures on the two blades move up and down

" nearly in unison. Slight errors in static tapping positions meant that pressures

could not be matched precisely in regions with high pressure gradients.

®  The wake orientation at the endwall, revealed by surface oil flow visualization, was
much more sensitive to periodicity. This was the main method used to check

periodicity on set 1.

e After cascade setup, exit five-hole probe traverses confirmed that the flow angle at

x/Cx=1.23 was periodic to within 1° on sets 1 and 3 and 2° on set 2.
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The above techniques were used on all three sets of blades. The following were

only used on the simple and compound leaned blades:

* Endwall static pressures along a line just upstream of the blade leading edges were

used in a similar way to blade static pressures.

e  Short, fine lengths of cotton were stuck to the blade leading edges to show the

position of the stagnation point.

e  Longer pieces of cotton (about 200mm) were stuck to the trailing edges of all four

blades to check the exit flow angle along the whole span.

2.3.3 Flow Conditions

Upstream flow conditions were determined using a mercury thermometer, Pitot
probe and single wall static pressure tapping at the top of the cascade. Atmospheric
pressure was taken as downstream static pressure. The exit free stream Mach number
was only 0.14 so incompressible flow has been assumed throughout and the errors
arising from this assumption will be discussed in Appendix 3. A hot wire probe

measured the upstream turbulence level, which was 0.4%rm:s.

Tunnel flow conditions tended to vary through a run as ambient temperature
changed but exit Reynolds' number, based on true chord, was kept between 8.5x105
and 9x10°. This is safely above the level at which one would expect cascade
performance to cease to depend strongly on Reynolds' number and is reasonably typical
of Reynolds' numbers encountered in engines. Exit free stream dynamic pressure
(Po1—Pa) Was measured after, at most, every three or four other pressure readings and
all pressures were normalized by this pressure in order to eliminate errors due to drift in
tunnel conditions. There was also higher frequency unsteadiness, notably fluctuations
of 1% to 1.5% of dynamic head (peak-peak) at a frequency of 1-2Hz. There was a
diffuser (part of another test rig) upstream of the wind tunnel inlet and a piece of paper

suspended near the wall of this diffuser flapped at roughly the same frequency, so it

was concluded that unsteady separation in the diffuser was largely to blame for this
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fluctuation. Trials with each probe used showed that averaging a large number of

readings over a period of at least 1.8s minimised errors due to unsteadiness. As an

additional check to eliminate the effect of large random fluctuations, the standard
deviation over each measuring period was monitored and if it exceeded an arbitrarily

specified limit then the averaging period for that reading was doubled.

2.3.4 Upstream Boundary Laver

The cascade inlet geometry was identical for the three cascade configurations so it
should be reasonable to assume that the upstream boundary layer was the same in each
case. As a check, the endwall boundary layer was traversed at the same point relative to
the blades (x=—124mm, y=250mm; see fig.2.2) on all three configurations and results
are presented in table 2.1 and fig.2.6a. The three-hole cobra probe was used on set 3
and the positive end of set 2 but there was no way to mount it at the negative end of set
2 so a flattened Pitot probe (1.22mmx0.38mm external dimensions) was used there.
The boundary layer upstream of set 1 was measured before the running conditions had
been finalised so the set 1 values presented in table 2.1 are the mean of values obtained
at Reynolds' numbers (based on true chord and exit flow) of 7.3x105 and 10.9x105.
Théy were obtained before the three-hole probe was available using a different flattened

Pitot probe (2.49mmx0.30mm external dimensions).

Set number | §"(mm) | 6(mm) de(mm) H 01~ Plocal Yeir
: Po1-Pa
1 2.6 1.9 3.3 1.36 0.28 0.0062
2 (+ve end) 4.0 2.6 4.5 1.50 0.23 0.0069
2(—ve end) 2.3 1.8 3.2 1.30 - 0.30 0.0063
3 2.7 2.0 3.5 1.34 0.26 0.0061

Table 2.1 Upstream Boundary Layer at x=-124mm, y=250mm
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It will be seen from table 2.1 that even at x=—124mm there is a slight influence of

the blade lean on static pressure. The entropy flux in the boundary layers can only be |

compared directly by referring each boundary layer to the same dynamic head. Noting

that the full span is 300mm, an effective loss coefficient based on the exit dynamic head
is:

Y _ 83 P01—Piocal
of 150-8* Po1—Pa

The accuracy of Ygr is estimated to be +0.0002 so table 2.1 confirms, except on
the positive wall of set 2, that the contribution of the upstream endwall boundary layer |
to overall loss coefficient was the same for each blade set. The discrepancy on set 2 ‘ |
may be because the horseshoe vortex lift-off line is further upstream on the positive
wall than on the negative wall or the other two blade sets (see chapter 3), so that the
boundary layer at (-124, 250) is influenced by the horseshoe vortex. Traverses were
therefore performed further upstream with the flattened Pitot probe to check that the
boundary layers upstream of set 2 were the same on each endwall. The traverse

positions relative to the blades were not identical ((—366, 13 on the positive wall and (-

315,61) on the negative wall) because the cascade layout would not permit this, but I
they were both the same distance downstream of the inlet flange. The results, shown in ‘;

fig.2.6b, confirm that the two inlet boundary layers were indeed similar. i

All of the values of Y. given in table 2.1 are relatively small compared with the
cascade exit loss coefficients (chapter 3) and the discrepancies between them are small
compared with the accuracy of area traverse measurements (appendix 3). The inlet
boundary layers to all three cascades will therefore be assumed to contribute 0.006 to

the overall cascade loss coefficients.

2.4 Flow Visualization

Surface flow visualization using a suspension of fluorescent powder in oil was used

successfully at the full Reynolds' number. Smoke flow visualization was unsuccessful
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except at unrealistically low Reynolds' numbers (at least two orders of magnitude less than

the normal test value) so these will not be presented.

Endwall heat transfer measurements were made using a sheet of encapsulated liquid
crystal which changes colour according to its temperature. This was stuck to the Perspex
endwall and heated using two 1kW lamps.' Accurate calibration was out of the question
because the input heat flux was non-uniform and unknown. For the purposes of this project
it was wall shear stresses, not heat transfer coefficients, which were required. The
technique was not quantitative in this respect because Reynolds' analogy does not apply if
the boundary layer is skewed or if the momentum and thermal boundary layers do not
originate in the same place. The liquid crystal showed endwall flow features clearly but in

less detail than oil flow visualization, so no results will be presented.

A flattened Pitot probe and stethoscope proved to be very good for detecting boundary
layer transition on the blade suction surface. If the probe was slid along the surface a rapid
increase in noise level, from near silence to a loud roar, was heard at transition. The
technique was not so successful on the endwall, for reasons which will be discussed in a

later chapter.

2.5 Pressure Probe Traverses

Five-hole probes were made by soldering together lengths of 1.07mm O.D. stainless
steel tubing and chamfering the outer tubes to give an included angle of about 100°
(fig.2.7a). The resulting probe head size was rather large but was necessary partly to give a
reasonably fast response but mainly to ensure a sufficiently large probe Reynolds' number
(5300 based on probe diameter and inlet free stream flow) to minimize sensitivity of the
calibration to Reynolds' number. The stem diameter was also larger than desired: a 10mm
O.D. stainless steel tube was necessary to avoid undue deflections under aerodynamic

loading (this was determined by simple calculations and rudimentary experiments).

A "shepherd's crook" probe shape was out of the question because of the necessity to

traverse near both endwalls so to reduce the influence of stem blockage on probe
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measurements the probe head was placed 30mm upstream of the stem. Two probes were
constructed, kinked in opposite directions so that when traversing near blade surfaces the
stem could be kept well away from the blade (see fig.2.2). Details of five-hole probe

calibration are given in Appendix 2 and accuracy is discussed in Appendix 3.

Area traverses were performed at the lbcaﬁons shown in table 2.2. The full span was
always covered on set 2 but on sets 1 and 3, once a coarse traverse at x/Cx=1.23 had
confirmed that the flow was symmetrical about midspan, only the half span near the Perspex
was covered. Where appropriate, data have been reflected about midspan for ease of

comparison with set 2 results.

X (mm) x/Cy Set 1 Set 2 Set 3
-65 -0.30 ° o °
7 0.03 o
50 0.22 ° o
100 0.45 o
150 0.67 J o
185 0.83 ° e
230 1.03 °
274 1.23 o o °

Table 2.2 Area Traverse Locations

The coarseness of the traverse grid was varied according to the detail required, from a
minimum spacing of 2mm in the passage vortex to 20mm in the free stream. The initial

coarse traverse downstream of set 1 located the passage vortex and thereafter a measurement

grid based on an educated guess of the regions of interest proved acceptable.
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The five-hole probes were traversed almost as close to solid surfaces as was physically
possible but measurements closer than 1.5 to 2.0 probe diameters are likely to be inaccurate.
For this reason a three-hole "cobra" probe (fig.2.7b) was used to traverse the endwall
boundary layer at each location except x/Cy=-0.30. Calibration of this probe is also
described in Appendix 2. At all locations except very near the blade suction surface, where
there are strong radial components of velocity, and at x/Cy=0.03 near the pressure surface,
where the velocity is low and the horseshoe vortex leads to extremely high boundary layer
skew (180° or more), the three-hole and five-hole probe data match one another well. The
two sets of data have been merged, with the crossover occurring about 5mm from the wall.
Within the regions covered by three-hole probe data, components of velocity perpendicular
to the wall were assumed to be zero, static pressure was linearly interpolated between the
endwall and the nearest five-hole probe measurement and stagnation pressure and flow

direction were derived from three-hole probe pressures.

Blade boundary layers were traversed using a flattened Pitot probe (fig.2.7¢). A
reference probe position was found by electrical contact with the blade and the probe head
was moved through the boundary layer by rotating the probe stem. The effective measuring
position was taken to be further from the blade than the centre of the probe by a distance
0.19 x the probe thickness (Quarmby & Das, 1969). Calibration tunnel measurements
showed that in a free stream, provided pitch angle and yaw angle remained less than 10°, the
error dué to probe incidence was less than 2% of local dynamic head. There was no
convenient way to check the error in a boundary layer, much less a skewed boundary layer.
Nevertheless, in skewed parts of the suction surface boundary layer, measurements were
repeated with the probe bent in increments of 20° and at each location the highest pressure
measured was taken to be the local stagnation pressure. Static pressure was linearly
interpolated between the blade surface and the nearest five-hole probe measurements, as

were flow direction cosines (the flow direction at the blade surface was known from blade

geometry and oil flow visualization).
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2.6 _Shear Stress Measurements

2.6.1 Hot Film Gauge

A stick-on hot film gauge, Dantec type 55R47, with dimensions 0.1mm x 0.9mm
was used to measure surface shear stress on the Perspex window. In fact, one gauge
was used for sets 1 and 2 but was damaged while measuring on set 3 so all set 3
measurements were repeated using a nominally similar gauge. The gauge was stuck
onto a small piece of acetate sheet which was taped to the Perspex window in such an
orientation that shear stresses parallel to the direction of sliding of the window (¢=—35°)
should be measured correctly. In each run, typically lasting 2-3 hours, the window
was moved so that shear stress readings could be taken at about 25 positions through
the cascade. The tunnel was then turned off while the gauge was moved to another
position on the window for the next run. The anemometer output low-pass filter was
set to 10kHz and at each gauge position data were logged at 20kHz for 0.5s,
investigations with an oscilloscope having shown that this was sufficient to record any

frequencies of interest present in the signal.

A relationship

E2 — Ea2\ 3
W = K (—AT—") @.1)

is assumed (Hanratty & Campbell, 1983), where AT is the difference between the
gauge temperature (140°C) and the air temperature. E is the anemometer output voltage
and Eg is thcr voltage at zero flow, with the anemometer output amplifier gain set to 5.
Eo was determined by holding a plastic cup over the gauge but the voltage took some
time to settle and values were not particularly consistent. Since E¢%/(gauge resistance)

represents the heat lost to the substrate it was assumed that

Ee2 = Ky AT




so that

K £ K ’ 2,2) ‘
T = — ,
v ! (AT 2) : ‘

For each run K; was determined from a number of measurements of Ep. Scatter in
values of K for different runs indicated an uncertainty of at least +10% in o “

2 {
Comparisons of mean (E_T— Kz) measured at given locations on different days |

indicated a greater overall uncertainty, possibly +20%. There are two major sources of
error in addition to this: |

® Measurements with different gauge orientations indicate that variation in shear
stress direction can cause the calculated value of Ty, to be too low by up to about

|
|
I
40% on sets 1 and 2 or about 60% on set 3. * [‘

e There will be a certain amount of heat transfer into the boundary layer via the V
substrate, so for mean shear stress measurements the effective gauge size will be ‘
larger than the actual size. At high frequencies this sideways conduction will be
less significant so the effective size and actual size will be very nearly equal. If the
effective gauge length and area are denoted by L, and A., a theoretical analysis
(Hanratty & Campbell, 1983) shows that ‘\

L. |

R v

so the value of K; for mean shear stress may not be constant and will be very

different from that for the fluctuating component.

It is clear that a hot film gauge can give little better than a qualitative picture of wall
shear stress, so no attempt has been made to correct for gauge incidence effects. A
single value of K;=150°CNm-2V-2 has been used for both gauges based on a small h

number of Law-of-the-Wall ("Clauser") plots of the upstream boundary layer (e.g.

fig.2.8) and comparisons with the oil dot measurements described below.
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Hanratty & Campbell (1983) and Bellhouse & Schultz (1967) quote a number of
criteria which should be satisfied for eq.(2,1) to be valid. It has been confirmed that,
for most of the measurements taken, these are indeed satisfied, but since absolute shear

stress values are so inaccurate in any case no details will be presented here.

2.6.2 0Oil Dot Measurements

The following measurements were carried out on blade set 1 by Ian Starling and
Enoch Lam as part of an undergraduate project supervised by Dr. J-J. Camus in 1988.
The author had virtually no involvement with this work but the method will be
discussed briefly here and results presented in the next chapter for comparison with hot
film data. This work was completed before the hot film measurements were

commenced.

The method is based on that of Tanner & Blows (1969). Drops of oil of known
viscosity are placed on the endwall and allowed to smear under the action of the shear
stress. Once a clear leading edge is visible the drops are photographed under laser light
so that their thickness can be measured by counting interference fringes from the
leading edge. The drops are photographed again after a known length of time (typically
1-2 hours in this case) and the wall shear stress may be derived from the rate of
smearing. It is possible to compensate for the effects of gravity but provided a suitable
viscosity and run time are chosen this correction is negligible. Based on comparisons

with other shear stress measurement techniques in collateral boundary layers in a

different wind tunnel, Camus, Starling and Lam claim £10% accuracy.
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CHAPTER 3

EXPERIMENTAL RESULTS

3.1 Introduction

This chapter will present the experimental results and outline the differences between
the three cascades but will not discuss the mechanisms of loss generation. Detailed

discussion of loss generation will appear in chapter 4.

Numerous figures are necessary to describe fully the complex flows in these cascades.
These are needed both in order to understand the flow structures and for detailed comparison
with theoretical predictions. Ideally, they should be studied en bloc and so they have been
presented in a sequence designed to facilitate this. The discussion in this chapter, however,
will not always follow the same sequence and some of the figures presented with this

chapter will actually be discussed in later chapters.

Note that five-hole probe traverses on sets 1 and 3 only cover a half span but that for
clarity and easy comparison with set 2 the data have been reflected about midspan.
Normalization of data, the definition of secondary velocity and the method for calculation of
vorticity are given in Appendix 4. Fig.2.1 shows the definition of "positive" and "negative"

walls of set 2.

3.2 Flow Structure

3.2.1 Basic Flow : Set 1 (unleaned)

Fig.3.1 shows set 1 oil flow visualization. Where wall shear stresses are too low

to disturb the oil, e.g. on the wall near the pressure surface, brush marks are still

visible.

|
|
|
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The lift-off line around the blade leading edge, associated with the horseshoe
vortex, is very clearly visible in fig.3.1a with endwall flow converging strongly
towards it from the downstream side. Ahead of this line there is a diamond-shaped area
of low wall shear stress. On one side of this diamond, adjacent to the lift-off line, there
is a patch roughly 15mm across where the oil has been disturbed but no flow in any
particular direction is visible. (This mottled patch shows up much better in reality than
on the photograph). The appearance of this oil suggests a large unsteadiness and this is
probably the location of the saddle point. Its position corresponds to a local maximum
static pressure (fig.3.20c). The suction side leg of the lift-off line (Ss) as it passes
around the blade leading edge may in fact be two lines about 4mm apart but these are by
no means clear and even if two lines exist they combine before the line meets the blade
suction surface. The pressure side leg Sp is definitely a single line and no additional

separation or reattachment lines emanate from the saddle point.

These oil flow patterns match Eckerle and Langston's model of horseshoe vortex
formation (fig.1.2d&e) except that no line S; emanates from the saddle point, probably
because the separation there is highly unsteady. Line Sp (fig.3.1a) corresponds to S,
(fig.1.2d). Further evidence for this model is provided by a secondary velocity vector
plot at x/Cx=0.22 (fig.3.2) which shows both legs of the horseshoe vortex lying
directly over their respective lift-off lines rather than to one side as might be expected.
A inght kink in the secondary velocity vectors near the endwall under the pressure side
leg confirms that the position of the lift-off line is indeed where the oil flow

visualization shows it to be, and has not been shifted by probe interference effects.

Downstream of the point where Sg meets the blade suction surface, the fluid near
the endwall flows towards the blade surface, so a small corner vortex forms. The lift-
off line associated with this vortex is visible in fig.3.1a and shows that the vortex
grows until Sp meets the blade. Thereafter the corner vortex lift-off line remains about
8mm from the suction surface with Sp parallel to it and a further 3-4mm from the blade.

There is a reattachment line (i.e. with divergent rather than convergent flow) on the

suction surface associated with the corer vortex. It lies only a few millimetres from
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the endwall and once again it is clearer in reality than in fig.3.1b. This vortex, although
small, is strong enough to cause a "kink" in the oil flow pattern immediately
downstream of the trailing edge (fig.3.1a). Investigation with a wool tuft confirmed

that this kink in the flow is confined to within a few millimetres of the wall.

In common with the findings of ofher workers (e.g. Sjolander, 1975 and Langston
etal., 1977) the saddle point is some distance away from the leading edge, so formation
of the horseshoe vortex is not a process which is confined to the leading edge region.
A large proportion of the inlet endwall boundary layer fluid is therefore involved in the
formation of the horseshoe vortex. Some is entrained into it at an early stage and the
rest is swept across the passage between Sp and Sg and forced up the suction surface.
Fig.3.2 shows the development of the two legs of the horseshoe vortex and shows that
the pressure side leg grows and becomes the passage vortex rather than the two vortices
developing separately. The continuation of Sg after it meets the suction surface (line

"A" in fig.3.1b) is therefore another lift-off line associated with the passage vortex.

Another line on the suction surface, nearer to midspan than the passage vortex lift-
off line, can be seen in fig.3.1b (labelled "B"). The line appears to start where the
blade leading edge meets the endwall but there is no convergent or divergent flow
relative to it and on some runs it was not apparent at all. The line appears on the blade
surface even if only the endwall is initially coated with oil, so it clearly consists of oil
swept off the endwall. It is therefore concluded that this line does not represent a flow
feature but is caused by an accumulation of oil at the leading edge, either by gravity or
due to the action of the horseshoe vortex, which then flows along the blade surface,

washing dye with it.

Line "C" in fig.3.1b will be discussed in §3.4. There were no features of interest

on the pressure surface: the flow remained parallel to the endwalls.

1 "

Hawthorne's "classical" analysis of secondary flow should only be applied with

great caution to a real bladerow. Nevertheless, downstream of the cascade there are

clear vortices (fig.3.2b, x/Cx=1.23, and fig.3.3) which correspond broadly to the three
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classical components of streamwise vorticity (see §1.2): the passage vortex; the trailing
filament vortex just above it in the wake, rotating in the opposite direction; and the
trailing shed vorticity near the endwall (part in the corner vortex and part in the skewed
endwall boundary layer). These are further highlighted by contours of streamwise

vorticity (fig.3.4).

The passage vortex is surprisingly strong, with maximum secondary velocities
well over half the exit free stream velocity. The vortex causes a large amount of over-
and underturning (fig.3.18) and has a marked effect on static pressures (figs.3.5, 3.16a
and 3.17a). It causes a trough of low pressure along the endwall, and the pressure
minima on the endwall and suction surface are both moved away from the blade-

endwall corner.

3.2.2 The Effect of Lean : Set 2 (straight lean)

Fig.3.12 shows that, apart from the local effect of the passage vortices, the influence
of lean on static pressures is as discussed in §1.6.3. Isobars remain roughly
perpendicular to the endwalls so that at the positive wall the mean static pressure is high
and the cross-passage pressure gradient is low, while the converse is true at the
negative wall. There is therefore a spanwise static pressure gradient along the blade
surfaces which has a particularly strong effect on the suction surface towards the middle

of the passage (fig.3.16b).

The high pressure at the positive endwall results in lower velocities there. The first
effect of the component of blade force towards the positive wall is therefore to shift
streamlines in the opposite direction (fig.3.7), something which might not intuitively

have been expected.

Downstream of the trailing edge the streamline shift is in the opposite direction,
towards the positive wall, and this shift is not complete by x/Cx=1.23. The shift is not
the result of a boundary layer separation on the negative wall: streamwise velocities

remain reasonably large and positive. Numerical predictions (to be presented in chapter

H
|
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5) agree very well with fig.3.7, so the streamline shift is not a result of the termination
of the negative wall at x/Cx=1.55. (The positive wall is the sliding Perspex window,
which extends much further downstream.) The shift is unlikely to be affected
significantly by differences in wake and boundary layer thicknesses between the two
ends. The main cause is therefore the spanwise variation in flow angle: higher
velocities within the blade passage lead to greater blade loading (fig.3.16b), hence
greater flow turning (fig.3.18), hence lower exit axial velocity for a given streamwise

velocity.

The streamwise positions and velocity vectors in fig.3.7 are seen to be compatible
with one another, confirming that the net radial velocities observed in fig.3.10 are

genuine and not a result of measurement errors.

The potential effect of lean extends upstream of the bladerow. The upstream
boundary layer on the positive wall faces an adverse pressure gradient just upstream of
the blade, which thickens it. Since the inlet flow angle is not axial the boundary layer is
also skewed, with the incidence being increased near the wall. This results in a saddle
point (fig.3.8a) which is even further from the blade leading edge than on set 1 and a
clearly defined horseshoe vortex lift-off line which is further forward, probably
indicating a larger vortex. The lift-off line remains further forward as it crosses the
passage, indicating that although the pitchwise pressure gradient is lower it sweeps

endwall boundary layer fluid away more quickly because that fluid has less momentum.

An additional line is visible on the endwall in fig.3.8a, joining Ss from one blade
to Sp from the next. The cause of this line is unclear. It may be that, as the inlet
boundary layer is thick and the crossflow is strong, the boundary layer separates well
before the suction surface. This would cause much of the boundary layer fluid to
leave the wall at an early stage, possibly being entrained into the passage vortex. This

theory is supported by the observation that the corner vortex lift-off line only becomes

visible much later than on set 1.
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On the negative wall the flow pattern is quite different (fig.3.8b). Here the
upstream potential effect of the blades tends to thin the endwall boundary layer and
reduce the incidence, so the horseshoe vortex is much smaller and the saddle point is
directly opposite the blade leading edge. Furthermore, a distinct horseshoe/passage
vortex lift-off line is only apparent very near to the leading edge. No single line crosses
the blade passage, but there is clearly still crossflow at the endwall. The corner vortex
lift-off line (fig.3.8b) and the clear reattachment line on the suction surface ("D" in
fig.3.8c) show that the corner vortex is much larger than at the positive end. This
indicates that more boundary layer fluid remains against the endwall as it flows towards

the suction surface.

Also on the suction surface the passage vortex lift-off lines (A) are visible as on set
1. The additional lines (B) are present too, and once again they do not appear to
represent a local flow feature. The spanwise migration of the suction surface boundary
layer, particularly near the trailing edge, is clear but of course surface flow visualization
alone cannot show how great the spanwise mass flow is. Line C (which marks

transition) will be discussed in §3.4.

The reason for the difference between the two endwall flow patterns was partly
explained by using a wool tuft to identify vortex positions. This tuft, about 60mm
long, rotated vigorously in a vortex and the direction of rotation was determined by
holding a wire against it and observing which way the tuft wound around the wire.
Because access was from downstream the tuft could not be used upstream of mid-

chord.

On set 1 the tuft revealed the passage vortex, corner vortex and, downstream of the
trailing edge, the trailing filament vortex. These were quite clear and agreed with
positions shown by surface flow visualization and probe traverses (e.g. fig.3.3). On
set 2, however, the flow patterns at the two ends were different (fig.3.9). At the

positive end the passage (A), trailing filament (B) and corner (C) vortices were seen as

for set 1 but at the negative end, instead of a single passage vortex, there were two
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distinct but much weaker vortices rotating in the same direction. Vortex "A;" appears
to originate near the leading edge of the adjacent blade, i.e. it appears to be the pressure
side leg of the horseshoe vortex. Vortex "A," appears to originate near mid-passage,

1.e. it appears to be the passage vortex.

Comparison of fig.3.9 with figs.3.10 and 3.11 clarifies the flow pattern. Velocity
vector plots can sometimes be misleading because their appearance depends upon the
direction of projection chosen. A vortex which is not aligned with the projection
direction, for instance a streamwise vortex where the local flow has a spanwise
component, may not be shown clearly by vectors projected parallel to the endwalls.
Components of vorticity in the local flow direction, on the other hand, are likely to give
a truer representation of the vortices present. Fig.3.11 indicates, most clearly at
x/Cx=0.83, that whereas at the positive end the passage vorticity is concentrated in a
single vortex, at the negative end this is not the case. Although the two vortices may
not be quite as distinct as the wool tuft would suggest, it seems that the horseshoe and
passage vortices may be separate from one another. It follows that whether the
horseshoe and passage vortices develop together (Klein's model) or separately
(La_ngston's model, see §1.3.2), and whether there is a distinct lift-off line on the

endwall, depends upon the position of the endwall saddle point relative to the blades.

- The development of the main vortices within the blade passage is very different at
the two ends (fig.3.10). At the positive end the strong crossflow and clear lift-off line
cause the low-momentum fluid to roll up very quickly into a distinct vortex whereas at
the negative end it stays on the endwall for longer and is not so clearly identifiable as a
vortex until much nearer the trailing edge plane. Whereas high static pressure at the
positive wall leads to low streamwise velocities and hence a large vortex, the vortex at

the negative wall remains more compact right up to the trailing edge.

The influence of the horseshoe/passage vortex on static pressures at the positive

end can be seen in fig.3.17b. The strong endwall lift-off gives rise to a more prominent

pressure trough than on set 1. Further downstream, however, the vortex is larger than
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on set 1, so has a smaller influence on static pressures (compare fig.3.12 with
fig.3.5b). The pressure minimum on the endwall (fig.3.17b) is therefore not so

definite or so far from the blade.

Wall pressures were not measured at the negative end but the corner vortex at that
end is also seen to have a strong influence on static pressures (fig.3.17b). The pressure
8mm from the negative endwall (fig.3.16b) suddenly rises at x/C,=0.6 (i.e.
(po1—P)/(po1—p2) falls). This rise coincides with the point where the line of pressure

tappings crosses the corner vortex lift-off line (fig.3.8c).

It can be seen from figs.3.10 and 3.11 that what has been labeled the "trailing
filament" vortex at x/Cx=1.23 appears larger and stronger at the positive end than at the
negative end. An explanation for this, using the "classical" approach, is to recognize
that, even discounting the effects of secondary flow, there is a spanwise variation of
blade loading (see fig.3.16b). Trailing shed vorticity will therefore appear distributed
along the span rather than just at the blade ends. This has the same sense as the trailing
filament vorticity at the positive end, so the trailing filament vortex is reinforced, and
vice versa at the negative end. The physical mechanism by which this occurs is that the
pressure gradient along the suction surface sets up a secondary flow in the suction
surface boundary layer which reinforces and opposes the two trailing filament vortices

respectively.

3.2.3 Compound Lean : Set 3

Endwall flow visualization on cascade 3 (fig.3.14a) is as expected: the saddle point
and main lift-off line S, are further from the blade than on cascade 1 but not as far as on
the positive wall of cascade 2 and lines "A" and "B" appear on the suction surface
(fig.3.14c) as on set 1 (cf. §3.2.1 and fig.3.1b). The other features in fig.3.14¢ will be
discussed in §3.4. Probe traverses (fig.3.15) and investigation with a wool tuft show
that, as in cascade 1, the pressure side leg of the horseshoe vortex and the passage

vortex are indistinguishable. The flow structure is therefore not fundamentally different

from that in the unleaned bladerow.
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The effect of compound lean on static pressures (figs.3.16¢ and 3.17c) is also as
expected. Static pressures on the endwall are increased compared with set 1 but the
low-pressure trough on the endwall, following the line of the horseshoe/passage
vortex, is still present. Blade surface pressures, on the other hand, are decreased, with

a clear minimum at midspan on the suction surface.

One might expect the flow at exit from cascade 3 to be similar to that from the
positive half of cascade 2. This is not the case, however, since the plane of symmetry
at midspan prevents the net spanwise flow seen in the straight leaned bladerow.
Nevertheless, the "trailing filament" vortex is reinforced and there is a marked reduction

in over- and underturning (fig.3.18) compared with the straight blades.

3.3 Generation and Migration of I oss

Development of loss through cascade 1 is shown in fig.3.6 which is largely self-
explanatory. Secondary flow sweeps high-entropy fluid in the wake away from the endwall
and into the high-loss core, but the wake at midspan does not appear to have been

substantially influenced by the secondary flow.

The mean flow is 65.5°, 64.8° and 66.3° from axial respectively downstream of the
three cascades, giving contraction ratios (cosfi/cos¢y) between 1.8 and 1.9. Referring to
table 1.1 on p.7 it is therefore no surprise that there are two distinct loss cores in each half
span at x/Cy=1.23 (figs.3.6b, 3.13 and 3.15d) and that these cores are very nearly
coincident with the vortices (figs.3.4b, 3.11 and 3.15b).

Lean has a étﬁking effect on development of loss in the straight leaned cascade
(fig.3.13). Within the cascade the static pressure is high at the positive end and low at the
negative end, so the two main loss cores are very different sizes. However, they each carry
roughly the same loss, or entropy, flux. Downstream, therefore, where the pressure is more

uniform, they become similar sizes and the spanwise variation of pitchwise integral loss flux

(fig.3.19) is fairly symmetrical.
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The loss distribution at exit from set 3 (fig.3.15d) is similar to that at the positive half of
set 2 except in one respect. Lean causes a static pressure gradient along the suction surface
in the spanwise direction which, rather than always acting in the same direction, always acts
towards midspan. It therefore reinforces the secondary flow towards midspan and so the
wake at midspan is much thicker than for either of the other cascades. (This is also due to
the increased blade loading at midspan, fig.3.16.) This increased convergence towards
midspan along the suction surface is also apparent from flow visualization (compare

figs.3.1b, 3.8¢c and 3.14c).

Overall mass-averaged loss and mixing loss will be presented and discussed in chapter

3.4 Suction Surface Boundary Layer

3.4.1 Set] (unleaned)

The state of the suction surface boundary layer was determined using a flattened
probe and stethoscope. A sudden, large increase in noise level clearly identified
transition, which occurred over a surface distance of about 10mm at about 75% surface
distance at midspan and progressively earlier nearer the endwalls. Oil flow
visualization reveals a line just upstream of this (labelled "C" in fig.3.1b) which
probébly marks the position of a small laminar separation bubble which triggered
transition. The oil film just downstream of this line is relatively thin with definite
streaks, indicating a forward flow and showing that the extent of the separation bubble
is very small. As the blade surface is nearly vertical in this region it is possible that
gravity has slightly affected the position of the line in the oil. If the boundary layer was
tripped by holding a piece of wire against the blade just upstream of the line, then the
line disappeared. A sudden thinning of the oil film indicates that the surface shear

stress increased as the line was crossed but there was no evidence of reverse flow on

either side of the line: the mark at midspan in fig.1b is where accumulated oil had to be
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wiped away to prevent it from running back down the blade when the flow was turned

-Off.

Unsuccessful attempts were made to observe transition on the suction surface of
set 1 using a hot wire held a small distance away from the suction surface. In the
laminar boundary layer the hot wire defected a clear but incoherent signal at a frequency
of about 2kHz which confused the measurements. This frequency is an order of
magnitude lower than the expected Tollmein-Schlichting frequency (Schlichting, 1968)
so the signal probably does not originate in the boundary layer. No such signal was
observed in the free stream but it is conceivable that a disturbance which is too weak to
be detected in the free stream may disturb the boundary layer slightly and so be picked
up by a hot wire near the edge of the boundary layer. No firm conclusion has been

arrived at concerning the origin of the signal.

The 2kHz signal in the laminar boundary layer was only just detectable by a hot
film gauge glued to the surface, so this probably could have been used to pin-point
transition. Measurements taken far apart were inconclusive, however, and to take any
more measurements closer together would involve removing and remounting the film
each time, a process which is time-consumin g and risks damage to the film. In view of
this, the high thermal conductivity of the aluminium, which would compromise
accuracy, and the clear indication of transition already obtained by other methods, the

hot film was not used any further on the blade surfaces.

3.4.2 Sets2and3

Suction surface boundary layer transition on the leaned blades (set 2) is quite
different from that on the unleaned blades. The spanwise pressure gradient causes
marked spanwise flows within the laminar boundary layer (upstream of line "C" in
fig.3.8c) which seem to prevent a laminar separation bubble. Transition is indicated by
a change of direction in the oil patterns as the surface shear stress rises and forces the

flow near the surface more towards the free stream direction, and by a decrease in oil

thickness, indicating an increase in shear stress. This occurs at roughly 50% surface
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distance at midspan. An increase in noise level at transition was still heard using the

flattened probe and stethoscope but this increase was not as sudden as on set 1.

It may seem surprising in view of the striking effect of lean on blade surface
pressures (fig.3.16) that there are no major turbulent separations on any of the “
bladerows, particularly at the negative end of set 2. Line plots of static pressure at a ;1‘
constant spanwise position are misleading in this case. Comparing contours of static
pressure over the whole surface (fig.3.17b) with surface oil flow visualization
(fig.3.8c) it is seen that no streamlines follow this rapid deceleration. Instead, low
momentum fluid is carried away from the corner al\ong a less unfavourable pressure

gradient by the secondary flow. "

Boundary layer behaviour on the suction surface of bladerow 3 is different again. ‘:\“
Line "C" (fig.3.14c) starts near the leading edge where, as on set 1, it is not a transition
or separation line but simply marks the interface between the laminar blade boundary
layer and the turbulent boundary layer consisting of fluid swept up from the endwall.-
Beyond 33% surface distance, however, the oil layer upstream of the line (i.e. near ‘i‘
midspan) is thick, with prominent streaks. Downstream of the line, around the 1/3 span
: positions near 40% surface distance, the shear stress is clearly very low, with no
streaks visible. Since the blade surface here is nearly vertical with the forward flow il
direction upwards, the absence of reverse oil flow suggests that there is no reverse air |
flow, i.e. the boundary layer is still attached. Nevertheless it must be close to I
separating, if not actually separated, and it is this which causes transition to turbulence.
Transition was detected by the stethoscope a little further downstream (around 55%

surface distance at midspan) and marked by dotted lines on fig.3.14c. [l

3.5 Endwall Boundary Laver \

Results of measurements by the oil dot technique on the endwall of set 1 are presented
in fig.3.20 together with "free stream" dynamic head derived from upstream stagnation ‘

pressure and local wall static pressure. The shear stress is very low near the saddle point

and there is a ridge of high shear stress corresponding to the ridge of high velocities along
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the line of the passage vortex. Behind the passage vortex lift-off line, particularly in the first
half of the passage, the shear stress coefficient rises dramatically as the boundary layer is

suddenly thinned by the passage vortex.

Hot film measurements in the same cascade are presented in fig.3.21 (N.B. fig.3.21cis
arepeat of fig.3.20c). Given the poor accuracy of mean shear stress measurements by a hot
film (see §2.6.1) and a number of seemingly spurious readings, the agreement between
figs.3.20 and 3.21 is quantitatively reasonable and qualitatively very good. The minimum
Tw near the saddle point, the ridge along the line of the passage vortex and the sudden

increase in Cr behind the lift-off line are all shown up by both methods.

Sets 2 and 3 (figs.3.22 and 3.23) show broadly similar behaviour. Shear stresses on
the positive endwall of set 2 are lower than on set 1 because free stream velocities are lower,
but shear stress coefficients are higher, possibly because the passage vortex is stronger and
therefore keeps the boundary layer thinner. Since set 3 endwall shear stresses were
measured using a different hot film gauge it would be unwise to compare absolute values of

shear stress with the other two cascades.

Near the main loss core the edge of the endwall boundary layer cannot be defined from
probe traverses because the loss core and boundary layer merge. Elsewhere, however, a
momentum thickness 6 based only on velocity magnitudes, i.e. neglecting skew, can be
derived from three-hole probe traverse data and contours of Reynolds' number Reg based on
this are presented in fig.3.24. These contours are approximate because they are based on
traverses only at the locations given in table 2.2 (p.41) and because in places the boundary
layer was too thin for an accurate evaluation of 8. Indeed, in part of the region labelled
Reg<50 the three-hole probe was too large to detect any boundary layer at all. The accuracy
was sufficient, though, to show up the kinks in two of the contours on set 1 as they cross
the lift-off line. These are further confirmation that the position of the lift-off line is not

influenced by the presence of the probe.

Fig.3.24 shows clearly the extreme thinning of the boundary layer responsible for the

high shear stress coefficients downstream of the lift-off line. Note that since the horseshoe/
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passage vortex lies over the lift-off line rather than to one side, the endwall boundary layer is ; ‘
thinned upstream as well as downstream of that line. This implies that the fluid in the outer
part of the incoming boundary layer does not reach the lift-off line. It must therefore either _ I
turn towards the suction surface more sharply than the lower-velocity fluid nearer the wall,

or leave the endwall altogether and (presumably) become part of the passage vortex. The

former option is highly unlikely so it seems that most of the incoming endwall boundary I
layer leaves the wall and enters the passage vortex at an early stage rather than first migrating ‘E;

across the endwall and up the suction surface.

Theoretical and experimental studies have shown that there is a limit of Reg below
which it is virtually impossible for a boundary layer to be turbulent. Schlichting (1968)
suggests that this limit is Reg=163 for a collateral boundary layer. This is the figure used in il
the transition model of Abu-Ghannam and Shaw (1980), although they report that under
high levels of free stream turbulence boundary layers with Reg as low as 130 have
sometimes been found to be turbulent. In practice the endwall boundary layer is far from |
collateral but one would expect the limiting value of Reg to be similar. Fig.3.24 therefore ] |

suggests that parts of the endwall boundary layer within the passage must be laminar. |

; The state of the endwall boundary layer could not be determined using a flattened probe i
and stethoscope, largely because it is extremely thin and highly skewed. A general increase
in noise was heard as the probe was moved downstream or towards the blade suction (
surface but this may have been due to the growth of the boundary layer enabling the flattened i
probe to penetrate further into it. Transition therefore has to be inferred from raw hot film

output traces.

Fig.3.25 shows a selection of hot film traces on the endwall of cascade 1. (Each trace
is drawn to the same time and shear stress scales and has a true origin). The traces confirm f
that the boundary layer is laminar wherever Reg is less than 100. Turbulent bursts indicating
transition cover a small area near the trailing edge plane, where the streamwise pressure

gradient is still favourable but reducing. Transition begins where Reg is around 100-200

and Cp=0.004 and ends where Reg=500. Only near the suction surface, i.e. close to the
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high turbulence in the passage vortex, does the endwall boundary layer remain turbulent

throughout.

On set 2 the lower free stream velocities near the positive endwall result in lower values
of Reg. Transition begins at about the same position as on set 1 (fig.3.26), where Reg is
still less than 200 (Cp=0.004), but covers a much greater area of the endwall. Over most of
the pitch the boundary layer is still not fully turbulent by the furthest downstream
measurement location and the later transition results in a much slower growth of Reg than on
set 1. The reason for the slower transition is that as the influence of lean on wall static
pressures diminishes downstream of the trailing edge plane the pressure tends to reduce.

The wall boundary layer thus experiences a slighly more favourable pressure gradient.

The extremely thin laminar boundary layer on the endwall is made possible because the
old endwall boundary layer is completely removed from the wall ahead of the lift-off line.
Oil flow visualization on the negative wall of set 2 (fig.3.8b) does not show a lift-off line
across the passage. This suggests that the old boundary layer may not be completely
removed and hence that the boundary layer on that wall may remain turbulent and (relatively)
thick throughout the passage. Unfortunately, the cascade design did not enable this to be

confirmed.

No endwall boundary layer traverses were performed on set 3 except at x/Cyx=1.23, so
values of Reg are not known within the blade passage. The lower free stream velocities near
the endwall compared with set 1 seem to have had little or no influence upon the boundary

layer state (fig.3.27). Note, though, how the lower exit flow angle near the wall of cascade

3 causes the transition patch to be inclined at a different angle from that on set 1 (fig.3.25).
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CHAPTER 4

DISCUSSION

Incompressible flow will be assumed throughout this chapter.

4.1. Overall Loss Measurements

Mass average loss coefficients for the three cascades at x/Cy=1.23 are 0.048, 0.050 and
0.048 respectively. The experimental accuracy of loss coefficient is estimated to be +0.003
(Appendix 3.5) so even the difference in overall loss between set 2 and the other two sets is
not significant. Trailing edge thicknesses were only consistent to £0.1mm within each set of
blades and mean thicknesses were 1.9mm, 2.4mm and 2.1mm respectively for the three sets
but the expected discrepancy in loss as a result of this is also less than experimental

accuracy.

The overall loss from set 1 is represented schematically in fig.4.1, where it is shown
divided into components in two different ways. The first is the conventional division into
inlet loss, "profile" loss (defined as being equal to the midspan loss) and "secondary" loss
(the remainder). As is to be expected from a low aspect ratio bladerow, the secondary loss

accounts for a large part of the total.

The second method used in fig.4.1 to divide the loss into components entails limited
area integration at x/Cx=1.23 (fig.4.2). Althou gh the division between the endwall
boundary layer and the passage vortex loss core is clear, that between the passage vortex and
trailing filament loss cores is not, so this method is very approximate. Nevertheless, it does
demonstrate that the main (i.e. passage vortex) loss core contains much more than just inlet
boundary layer fluid but also includes a large part of the wake loss. This explains why this

loss core dominates the exit flowfield even though the inlet boundary layer only accounts for

just over 10% of the total loss. It also accounts for the observation by other workers (see
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§1.5.1) that the "new" loss (i.e. exit minus inlet loss) is generally independent of the inlet

boundary layer thickness.

The area of flow which can clearly be recognized as the endwall boundary layer only
represents about a third of the "secondary loss" (as defined above) and only about 17% of
the total "new" loss. This is despite the fact that the area of endwall downstream of the lift-
off line, i.e. the area covered by "new" boundary layer, represents 23% of the total solid
surface area within —0.56<x/Cx<1.23. The remainder of the secondary loss will arise from

a number of sources, notably:

® Loss generated on the endwall but swept away by the passage vortex before

x/Cx=1.23.
® Increased mixing upstream of x/Cx=1.23 caused by the secondary flow.

® Increased suction surface boundary layer loss away from midspan due to earlier

transition.

Since the divisions in fig.4.1 are only approximate and since the midspan loss out of
sets 2 and 3 is more strongly influenced by secondary flows, similar breakdowns of sets 2

and 3 overall loss would not be informative.

4.2 Comparison with Simple Predictions

Measurements on set 1 have been compared with the empirical loss correlations
discussed in §1.5.1. Predicted profile loss coefficients were 0.078 (Ainley and Mathieson)
and 0.040 (Baljé and Binsley) compared with 0.020 measured at midspan. The low
measured loss is partly a result of the uncharacteristically thin trailing edge, but these figures
still highlight the limited usefulness of simplistic correlations which ignore the detailed

profile shape.

Dunham'’s secondary loss correlation, eq.(1,11), predicts 0.050. This includes the inlet

boundary layer loss and it is not clear whether it is also meant to include downstream mixing

losses. The mixing loss coefficient for set 1 calculated by €q.(1,6) is 0.013 so the prediction
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should be compared with an experimental figure of either 0.028 or 0.041. Once again the
limitation of a simplistic correlation is shown. In particular, the term in €q.(1,11) containing
the inlet boundary layer thickness amounts to 0.029, more than half of the predicted

secondary loss, compared with a measured inlet boundary layer loss of only 0.006.

Sharma and Butler's correlation, eq.(1;12), does not depend upon the inlet boundary
layer and is much more accurate. Predicted (secondary loss/profile loss) is 2.0, compared
with the measured value of 2.2. This method clearly has potential, although bear in mind

that it does not predict mixing loss or model, for instance, the effect of blade lean.

A 2D boundary layer prediction can only reliably be applied at midspan on set 1: away
from midspan on sets 1 and 3 and over the whole of set 2 there is considerable crossflow in
the suction surface boundary layer, and oil flow visualization shows strong convergence
towards midspan on the suction surface of set 3. The "NGTE" boundary layer program
(discussed in §2.2) has been tested against suction surface boundary layer traverses at
midspan on set 1. A good profile loss prediction based on a boundary layer calculation

relies on a number of other aspects of the flow being predicted accurately. These are:
e  The static pressure distribution;
e  The point of transition;
° The trailing edge loss.

These factors have been eliminated by using measured pressures and transition point as
input and only comparing the measured and predicted boundary layer upstream of the trailing
edge. The comparison (see fig.4.3) is good — the predicted exit momentum thickness is just
over 15% too small. This may not necessarily be an error in the prediction since secondary

flows will thicken the midspan boundary layer by an amount which can neither be predicted

by the 2D analysis nor measured.
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4.3 Boundary Layer Loss

1n §1.5.3(iii) it has been shown that one way to predict loss is to consider quite
separately the entropy generation in boundary layers and by mixing in the free stream. The
boundary layer loss can then be roughly predicted via the energy integral equation by
assuming a constant value of the dissipation integral Cp (eq.(1,15) and (1,16)). The

contribution of boundary layer loss to the cascade loss coefficient is then given by

Yoo = 2D fusa, 4.1

2
mU,

where m is the overall mass flow and the integral is evaluated over all solid surfaces.
Free stream velocities could be derived from inviscid two-dimensional or (ideally) three-
dimensional flow predictions or from measurements. In practice, though, it is often not
possible to define a "free-stream" velocity U near a given point on a solid surface, either
because a nearby loss core means that there is no local "free stream” or because there are
large velocity gradients even in the relatively loss-free parts of the flow. A better, and
simpler, way to define a local value of U is to base it upon the upstream (i.e. "free stream")

stagnation pressure po; and the local surface static PIESSUTE Py

Po1-Pw = 3pU2 (4.2)

This is how the values of [U3dA,, presented below have been derived. Since static
pressures were not measured on the negative wall of cascade 2, static pressures from the

nearest five-hole probe measurements have been used instead.

4.3.1 Accuracy of the simple formula

Clearly a formula as simple as eq.(4,1) has several limitations:

(1) The most obvious has already been stated: mixing losses are not considered.

These will include not only downstream mixing of boundary layers but also trailing




(ii)

(iv)
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edge losses and mixing of secondary flows both upstream and downstream of the

trailing edge;

The assumption of constant Cp holds for turbulent boundary layers only. For
laminar boundary layers the dependence of Cp on both shape factor and Reg is
stronger (fig.1.7¢). In the cascades tested the entire pressure surface, up to 40%
of the suction surface and a large area of the endwall are in fact covered by laminar
boundary layers. In places, particularly near the leading edge, these boundary
layers will be thin (i.e. Reg<100) and so will have a dissipation integral higher than
the assumed value. The converse will be true further downstream, since the
pressure surface boundary layer is still laminar at the trailing edge (with Reg
between 200 and 250) and transition at midspan on the suction surface does not
occur until Reg=1000, 500 and 700 respectively the three sets. On the endwall the
majority of the laminar part of the boundary layer has Reg>100, with values of 200
or 300 being reached before transition occurs (see previous chapter). It is therefore
not clear whether the overall average value of Cp will be higher or lower than

typical values for turbulent boundary layers.

T (iii) The line for turbulent boundary layers in fig.1.7c is based on Truckenbrodt's

(1955) experiments over a range of shape factors 1.2<H<2.0 (fig.1.7a). Even
where the boundary layer is turbulent, the formula will not apply if the shape factor
is well outside this range and Cp will not be constant if Reg varies widely. In
particular, a separated boundary layer will not obey the relationship. In practice the
dependence of Cp on Rey is only weak and no major separations were detected in
any of the cascades tested. Even so, Reg of turbulent boundary layers varies from
about 300 (Cp=0.0022) just after transition on the endwall to about 4000
(Cp=0.0014) at midspan just upstream of the trailing edge on the suction surface of

set 3.

Eq.(1,16) was derived from measurements of collateral boundary layers, so there

will be an error when the boundary layer is skewed. Gallus and Kummel (1977)
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|
split Cp in the skewed boundary layer on the endwall into two orthogonal |

components but since shear stresses were not measured as part of this project this
is not possible. A rough estimate of this error may be obtained using three-hole .
probe endwall boundary layer traverses from cascade 1. For a skewed boundary
layer eq.(1,15), giving the dissipation rate, becomes |

g |

D = pU3Cp = fz.d_v (4,3) ’
0

(see appendix 5). For a laminar boundary layer this becomes: !
5 8 ‘\
v v ‘f
D= [tay = J (E) dy (4.4) |
0

0 \“{

If the right hand side of eq.(4,4) is evaluated for a skewed laminar boundary \
layer by expressing the velocity v as a vector then this gives the true dissipation
integral Cp. If, on the other hand, it is evaluated by considering only velocity
magnitudes then a smaller value of Cp is obtained which represents the dissipation |
integral of a boundary layer with the same velocity profile but which is collateral. “*
The ratio of these two quantities will give an idea of the error due to the neglect of |
skew. (Although this argument is strictly only applicable to laminar boundary i
layers one would expect a similar relationship for turbulent boundary layers). |
Evaluating this ratio from endwall boundary layer traverses suggests an error less |

than 3% in most cases and below 10% in nearly all cases, despite boundary layer

skews in excess of 50°. This error is relatively small because large values of av/dy |

only occur in the inner part of the boundary layer, where the rate of skew is quite |

small (Johnston, 1960). “

In practice, then, (i) and (ii) are likely to lead to the largest‘ errors in the predicted

loss but (iii) and (iv) may also be significant.
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4.3.2 Midspan Prediction

To give an indication of actual values of Cp encountered, predictions and
measurements at midspan on set 1 are presented in fig.4.4. Note that it is only possible
to make this comparison on set 1 since the flow through set 2 is not symmetrical about
midspan and there is a strong convergence towards midspan on the suction surface of
set 3, causing the boundary layer to be much thicker than a 2D boundary layer would
be. The assumed value of Cp=0.0014, corresponding to a laminar boundary layer with
Reg=120 or a turbulent boundary layer with Reg=4000, was chosen arbitrarily.
Entropy generation is clearly dominated by the suction surface boundary layer and so
the variation of Cp along the blade is dominated by the variation of Reg on the suction

surface (figs.4.3 and 1.7c). Initially the true value of Cp is higher than the assumed

value of 0.0014 due to the very thin boundary layer near the leading edge. -

(Interpolating between x/Cx=0.00 and the first measurement location at x/Cx=0.22
yields a mean Cp=0.0017). The boundary layer then remains laminar but thickens so
Cp quickly drops (mean Cp=0.0008 between measurements at x/Cx=0.22 and 0.67).
After transition (x/Cx=0.80) Cp rises again to a mean of 0.0016 between x/Cx=0.83
and 0.99.

The constant Cp model only considers boundary layer loss. It takes no account of
mixing outside boundary layers and therefore does not attempt to model the sudden
increase in loss immediately downstream of the trailing edge. Downstream mixing loss

at midspan may be estimated by the formula

2
26 (5*+t) t de .5)

AY = — 4+ — -
s s s TB T o

where t is the trailing edge thickness, the pitch s is measured perpendicular to the

mean flow direction and the base pressure coefficient is given by

_ DPBP2
Crs Po2—P2
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where pp is the effective mean trailing edge pressure. A value Cpg=-0.1 is
assumed. Work by Sieverding and Heinemann (1989) suggests that this probably
gives a low estimate of the trailing edge loss. AY is marked on fig.4.4 and is seen to
compare reasonably with the jump in loss just downstream of the trailing edge. The

value of Cp=0.0014 which was assumed is seen to be reasonably accurate overall.

4.3.3 Endwall Boundary Layer Prediction

The only other area of the flow which can be clearly identified at x/Cy=1.23
(fig.4.2) is the endwall boundary layer, which is quite distinct from the wake. The
pressure side leg of the endwall lift-off line (fig.3.1a) is prevented from reaching the
blade suction surface by the corner vortex. It therefore seems reasonable to assume that
most of the "new" endwall boundary layer fluid remains on the endwall rather than
being swept up the suction surface with the "old" boundary layer fluid. It is therefore
assumed that the loss flux found within 18mm of the wall at x/Cx=1.23 is
approximately equal to the loss generation in the "new" boundary layer. On set 1 this
contributes 0.0031 per wall to the overall loss coefficient. The corresponding
calculated figure, assuming an average Cp=0.0014 over the endwall behind the lift-off
line, is also 0.0031. (N.B. a precise evaluation of [U3dA,, over this part of the endwall
would involve rather complex computation so for simplicity half the integral between
x/Cx=0.0 and 0.5 plus the full integral between x/Cx=0.5 and 1.23 has been taken.

The maximum error in fU3dAW from this approximation is 5%).

4.3.4 Overall Prediction

Fig.4.5 shows the growth of overall loss coefficient through the unleaned cascade.
Once again, predictions based on measured pressures with a constant Cp assumption
model the growth of loss well. In particular they show that an increase in the rate of

growth of loss just upstream of the trailing edge can be expcctéd simply as a result of

the high free stream velocities there and is not necessarily evidence for the existence of a
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corner separation, as has sometimes been suggested (see §1.4.1). (The sudden jump in

loss immediately downstream of the trailing edge is due to wake mixing, as in fig.4.4).

The Cp value assumed in fig.4.5 (0.0020) is very much higher than that which
was used for the comparisons at midspan (fig.4.4) and on the endwall. This will be
partly a result of earlier suction surface boundary layer transition away from midspan,
discussed above, but it also suggests that loss generated by mixing outside the

boundary layers is significant even upstream of the trailin g edge.

It is apparent that mean values of the dissipation integral over a large surface such
as the endwall or the entire blade surface at midspan may lie within a relatively narrow
band. This might explain, for instance, why attempts to predict the development of the
endwall boundary layer by two-dimensional prediction methods (e.g. Senoo, 1958,
Gregory-Smith, 1982) have been moderately successful, since the predicted boundary
layer, although it may be very different from the real boundary layer, is likely to have a
similar mean Cp. It is also apparent, though, that large local variations of Cp,
principally in the laminar boundary layers, and mixing losses outside the boundary
layers, render Denton and Cumpsty's assumption unsuitable for accurate loss
prediction. Nevertheless, it may still be useful for comparing different blade designs

and, in the context of the present project, for analysing some of the effects of blade

lean.

The Effect of Lean on Boundary Laver Loss

4.4.1 Free Stream Velocity

It is not possible to deduce the effect of lean on boundary layer loss directly from
loss measurements because loss generation and loss migration cannot be fully
separated. At x/Cx=1.23 on set 2, for instance, the "positive" half span carries 54.6%

of the total mass flux but only 49.8% of the total loss flux. However, no conclusions

can be drawn from this regarding the creation of entropy in the two halves because
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spanwise secondary flow in the suction surface boundary layer carries low energy fluid

between the two halves.

The first comparison will therefore be based on the fU3dAw model, since the
primary mechanism by which lean influences losses is via the free stream velocity. The
static pressure contours in fig.3.17 represent, in effect, U2. They show how both
simple and compound lean reduce the general levels of U near the high pressure
endwall but increase them at the opposite end (set 2) or midspan (set 3). Fig.4.6 shows
this more clearly. [U3dA,, over the high velocity endwall is nearly twice that over the
low velocity wall and compound lean reduces the endwall fuzaa,, by more than 10%
compared with zero lean. By comparison the proportional effect on blade surface
[U3dA,, is small — less than 5% — but the suction surface accounts for nearly 2/ of the

overall value and so the net effect of lean is seen to be negligible.

This result would not necessarily apply to any bladerow, but for lean to give a
significant reduction in [U3dA,, the endwall would have to have a greater overall
significance. This implies that a net benefit would only be seen if the bladerow had an

even higher pitch/chord ratio or lower aspect ratio than the one considered here.

4.4.2 Blade Boundary Laver Transition

For these cascades, then, lean does not affect overall loss by changing free stream

velocity levels. If there is an effect on boundary layer loss it must be through a change

of boundary layer state.

Pressure surface boundary layers were laminar throughout. It has been seen in
chapter 3 that lean can move the point of transition on the suction surface by up to 20%
surface distance at midspan. It is hard to quantify experimentally the effect on loss of
this movement of the transition line because transition could not be brought forward
substantially without using such a large trip that it would itself influence the loss. The

"NGTE" 2D boundary layer calculation (see §2.2) predicted that if transition is brought

forward by 20% surface distance then the midspan loss coefficient would rise by about
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0.004. The increase away from midspan would be less than this, since transition
occurs earlier in any case, so the effect on overall loss would be very small. In an
engine environment, high free stream turbulence would force earlier transition

irrespective of lean, so the influence of lean would be less still.

4.4.3 Endwall Boundary Laver Transition

Positive lean (i.e. tending to increase the static pressure at the endwall) will

influence the loss generated in the "new" endwall boundary layer in three ways:

(1) Free stream velocity levels are reduced (figs.3.17 and 4.6). This will reduce the

loss.
(i) Transition is delayed (figs.3.25-27). This will also tend to reduce the loss,

(iii) The area of endwall covered by a very thin laminar boundary layer (Reg<100) is

increased (fig.3.24). This is likely to increase the loss (see fig.1.7¢c).

Once again the assumption is made that the loss generated on thq endwall behind
the main lift-off line is all found within 18mm of the wall at x/Cx=1.23. In table 4.1
this is compared with predictions based on measured static pressures and assuming
Cp=0.0014, as in §4.3.3. The figures in table 4.1 represent the contribution from one

endwall to the overall exit loss coefficient.

Set 1 Set 2 Set 3
(positive end)
Measured loss within 18mm 0.0031 0.0025 0.0029
of endwall at x/C,=1.23
Predicted "new" endwall loss 0.0031 0.0022 0.0027
assuming Cp=0.0014

Table 4.1 Loss originating in new endwall boundary layer
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The reduction in free stream velocities due to lean does indeed reduce the new
-endwall loss, but by less than the constant Cp model predicts. These figures are only
approximate but they show that, at best, the reduction in endwall loss is no more than
might be expected from considerations of velocity changes alone. Even though positive
lean delays endwall boundary layer transition, any benefit which might arise from this

is cancelled by the overall reduction of the endwall boundary layer Reg within the

passage.

4.5 Mixing Loss

Loss, mixing loss and secondary kinetic energy coefficients are defined in appendix 4.1

and §1.4.2. Table 4.2 shows measured values of these quantities.

Set Y Yvx Yske Yske/Ymix
1 0.048 0.0132 0.0120 0.91

2 0.050 0.0207 0.0169 0.82

3 0.048 0.0116 0.0099 0.85

Table 4.2 Mixing loss etc. derived from measurements.

The calculation of mixing loss in §1.4.2 is based on the assumption that mixing takes
place at constant area to a completely uniform flow downstream. Before drawing

conclusions from values calculated in this way it is necessary to consider how realistic this

assumption is.

4.5.1 Spanwise variation of Mean Flow Angle

At exit from set 2 (fig.3.18b) there is an underlying linear variation of mean exit

flow angle of about +41/,°, arising from the spanwise variation of blade loading. This

would probably be recovered by a following bladerow with very little loss (provided
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that bladerow had been properly designed to accept the incidence variation). It is
therefore more appropriate to calculate set 2 mixing loss assuming that the mixed-out
flow still has a linear spanwise variation of flow angle of +41/,°. Appendix 6 shows

that if this is done then Yyrx should be reduced by 0.002.

Even after applying this correction, YMIX from set 2 is still much higher than from
sets 1 and 3. This is because there is a net radial flow at x/Cy=1.23 (fig.3.10) and
€q.(1,6) assumes that all radial velocities contribute directly to mixing loss. In practice,
however, these radial velocities would diminish further downstream as the mean
streamlines reached their equilibrium position (see fig.3.7). At this equilibrium position
the spanwise variation in axial velocity would be greater than at x/Cx=1.23 so the
variation in flow angle would be greater than +41/,°. The correction to mixing loss
should therefore be greater than the value of 0.002 derived in appendix 6. Itis hard to
see what the correction should be, however, so we will simply say that truly
representative values of Ymrx and Yskg for set 2 should be much lower than those

given in table 4.2.

At exit from all sets the passage vortex has a prominent effect on mean flow angle
(fig.3.18). If these mean variations remain as the vortices decay then they too could be
accommodated by a following bladerow without contributing to mixing loss. Most
measurements of the mixing process downstream of cascades (e. g. Binder and Romey,
1983, Hodson and Dominy, 1987b and Moore and Adhye, 1985) are inconclusive in
this respect. Kawai et al. (1985) show the decay process more clearly. They show the
passage vortex becoming more circular and axisymmetric (about its own axis) as it
decays, indicating that mean yaw angle variations are not preserved. Even if the
vortices do not decay fully before entering the next bladerow the vigorous manner in
which they are chopped makes it unlikely that the spanwise variation of mean yaw angle
would be recovered. It therefore seems reasonable to assume that none of the energy of

the passage vortices is recoverable and to calculate set 1 and 3 mixing losses based on a

completely uniform flow downstream.
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4.5.2 Effect of a following bladerow

§1.4.3 has shown that in a real turbine the stator exit flow will not be fully mixed
out before it enters the rotor, so the simplified mixing analysis of §1.4.2, even with the
correction for set 2 described above, does not represent the real mixing process. The
real flow, with acceleration, turning, wake and vortex chopping and unsteady effects is
extremely difficult to model but this section will attempt to show the effect of

acceleration by analyzing two idealized flows.

(1) _Collateral Boundary Laver or Wake

Consider a flow with free stream velocity Uy, free stream stagnation pressure po;
and mass average stagnation pressure po1, containing a collateral boundary layer or
wake with momentum thickness 6 in each pitch sy (measured perpendicular to the

flow). Since the flow is collateral the secondary kinetic energy is clearly zero.

Now consider isentropic acceleration or deceleration to a new condition denoted by
U, 6 and s, followed by mixing at constant area to a uniform flow with stagnation

pressure poM. Provided the wake or boundary layer is thin or shallow before mixing

occurs, the total loss coefficient is given by

PoiPom _ 26
e

dpoy _ _ d_ (pU26)
dU do\ s

By continuity, if the flow is incompressible and the wake is thin,

Us — U151
dpovy _ P d .4
dU = ~ Us; au U0

- __P 3&)
= =y (3U26+U

181 dU
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But since the velocity change is isentropic there are no external shear stresses so
the boundary layer momentum integral equation becomes

do

Ugo

— 6(H+2)

SO

dEOM _ pU26 _
a0 Us, (H-1)

The effect of the acceleration/deceleration on the mixin g loss based on the original

free stream conditions is therefore given by

4 vy = -4 |PorPom
dU du %PUIZ

2U20
- U1351 (H_l)

and since the shape factor H must always be greater than unity d(Ymmx)/dU must
always be negative. It follows that acceleration of a collateral flow before mixing

always decreases the mixing loss, and vice versa.

Denton and Cumpsty (1987) considered an initial flow with free stream velocity U
and a "wake" of uniform velocity (U;-AU) which filled 10% of the total flow area.
This flow is then accelerated to a new free stream velocity U, before mixing to a
uniform flow and the mixing loss coefficient (based on %pUlz) is calculated. The

results of their calculations are presented in fi g4.7.
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(i1) Streamwise Vortex

Consider an incompressible flow through a circular pipe of radius r3 comprising:
0Sr<n A forced vortex with uniform axial velocity;

ri<r<rp A free vortex with uniform axial velocity and hence uniform
stagnation pressure. Pressure and axial and tangential velocity are

continuous at radius r;. Maximum tangential velocity (at 11) = vgmax.

r<rsr3 Uniform axial velocity U; with zero swirl and uniform stagnation
pressure pp;. Static and stagnation pressures are continuous at radius

r; but axial and tangential velocities are not.

Now consider acceleration or deceleration (without mixing) to a new condition
where the velocity in the outer region is Us, followed by mixing at constant area with
no net external forces to a uniform flow with zero swirl. (Note that although zero net
external forces are assumed there must have been a net external torque to remove the
swirl. This is not necessarily unrepresentative of a real flow since at exit from a
symmetrical linear cascade there are two vortices, of opposite sign, which could be

assumed to cancel one another out without any externally applied torque.)

This flow has been calculated numerically (see appendix 7) and Y, Yyrx and Yske,
all normalised by %pUlz, have been evaluated for the accelerated/decelerated flow just
before mixing begins. Values assumed are (r1/12)=0.3, (r/r3)=0.7 and
(Vemax/U1)=0.25, estimated from set 1 measurements (x/Cx=1.23, fig.3.2). The effect
of acceleration or deceleration on mixing loss is the opposite to its effect on a collateral
flow. If the free stream velocity increases then the vortex radius reduces. As aresult
tangential velocities, and hence Yskg and Ypmyx, increase. The mixing loss is roughly

proportional to the free stream velocity at the start of mixing (seé fig.4.8) except at very

low velocities when the forced vortex core is close to reversing.
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Incidentally, this may be one explanation for the effectiveness of endwall grooves \

or fences: they cause the secondary vortices to mix out earlier, i.e. at a higher pressure, 1

thus incurring less mixing loss. .

4.5.3 Experimental Mixing Data

A number of points should be noted from table 4.2:

e It has already been pointed out in §4.5.1 that Ymrx and Yske for set 2 are ‘\

unrealistically large. I

D A ¢ —— Sy

e In common with other investigators' findings, the mixing losses are large ’14
compared to the measured losses (about 1/4). Mixing losses should never be
ignored when analysing blade performance and great care needs to be taken to

ensure that a realistic figure is arrived at.

¢  Ygskr/Ymrx must be zero for a collateral boundary layer or wake and it has been Iif
shown to be very close to unity for a streamwise vortex (appendix 7). Values of
Yske should be interpreted with caution since it has no physical meaning and since ‘W
Moore et al. (1987) have shown how kinetic energy can be transferred, via il
pressure terms and turbulence, between the three co-ordinate directions (see

§1.4.2). Nevertheless, actual values of Ysgp/Ymrx are large, indicating that the i

majority of mixing loss arises from destruction of the secondary vortices rather yw“

than as a result of primary velocity deficits in the endwall boundary layer and i

wake. Il

We would therefore expect from the arguments in §4.5.2 that acceleration in a ‘*‘w‘H\
following bladerow would increase rather than decrease the mixing loss, so the
values given in table 4.2 are probably an underestimate. Furthermore, since Yskg j;\‘

for set 3 is 17% less than set 1, the increase would be less severe downstream of 1“

set 3.
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Set 3 has a 12% lower Yyx than set 1. The reason for this can be explained by
comparing the ratio Ymrx/Y for a streamwise vortex and a collateral boundary

layer. For a collateral boundary layer

Y = SJSV
and Y +Yux) = 20/s
“ Ym/Y = 20/8, — 1

Truckenbrodt assumed 8./6=1.72 for a turbulent boundary layer (table 1.2, p.25)
s0 Yprx/Y is only 0.16. In contrast, appendix 7 has shown that Yyrx/Y is 2.6 for
a typical streamwise vortex. Thus a given amount of entropy occurring at midspan
acts only to thicken the wake and so is likely to contribute relatively little to the
mixing loss, whereas the same amount of entropy near the endwall is likely to
reinforce the passage vortex and therefore lead to much more mixing loss. The
overall loss from set 3 is the same as set 1 but Ysgxg and Ymix are lower because
more of the loss is concentrated at midspan (fig.3.19). This is partly because a
greater proportion of the overall loss is generated near midspan, for reasons which
have already been discussed (see for example fig.4.6). It is also because the

spanwise static pressure gradient tends to make suction surface boundary layer

fluid migrate towards midspan early in the bladerow.

4.6 Real Turbine Flow

It is recognized that the flow in a linear cascade is not representative in every respect of
the flow in a turbine. This section speculates on the effects of some of the features of

turbine flow on the findings of this investigation.

4.6.1 Stage Performance

It is assumed that the cascade tested for this project represents a stator row which

would, in practice, form part of a full turbine stage. Compound lean has been shown to
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decrease the mixed-out loss coefficient of the bladerow but the resultant improvement in

stage efficiency would depend upon a number of factors:
e The stage reaction.

©  The effect of the presence of the rotor on mixing losses arising from the stator

secondary flows. This has already been discussed in §4.5.2.

e The effect of the stator exit flow on the rotor losses.

The rotor loss may be affected in several ways. The overall mean stator exit flow
angles are —65.5°, —64.8° and —66.3° from axial respectively from the three sets. If
stator lean is to be introduced as a design change, due attention must be given to re-
matching the rotor, particularly with straight lean when the change of stator exit angle at
a given radius may be especially large. This would almost certainly result in a different
rotor loss coefficient. Alternatively, the stator could be redesigned to bring the exit
flow angle back to its original value, but this would probably change the stator loss

coefficient.

The passage vortices give rise to a significant spanwise variation of stator exit flow
angle (fig.3.18). Compound lean reduces the strength of the stator secondary flows
and hence reduces this variation from 12.7° to 7.9°. This is more significant than
ﬁg.3.‘18 would suggest because it is magnified by the relative motion of the bladerows.
For instance, fig.4.9 shows the stator exit flow viewed in a frame of reference relative
to the rotor of a 50% reaction stage. In such a stage, compound lean of the stator
would reduce spanwise variations of rotor incidence from 22.8° to 14.3°. This

improvement is likely to reduce rotor losses, particularly away from the design

operating point.

By reducing the strength of the stator secondary flows, compound lean also

reduces the unsteadiness in the relative inlet flow to the rotor. This, too, would

probably reduce rotor losses.




h S e T

80

4.6.2 Blade Reynolds' Number and Free Stream Turbulence

The cascade tests were performed at a Reynolds' number (based on exit flow and
true chord) between 8.5x10° and 9.0x105. This is reasonably representative of turbine
flow conditions. Higher Reynolds' numbers would bring transition forward whereas
lower speeds would delay transition and might therefore allow a laminar separation to
occur on the suction surface. No measurements were taken at any other flow speed but
it was confirmed using a wool tuft that there were no major boundary layer separations

on set 3 even when the Reynolds' number was reduced to 1.0x105.

The inlet turbulence (r.m.s./mean velocity) for the cascade tests was only 0.4%,
which is much less than would be encountered in practice. Suction surface transition in
the cascade occurred quite late at midspan (see §4.4) whereas realistic turbulence levels
would be likely to bring this forward. Boundary layer predictions on the suction
surface at midspan on set 1 (see §4.2) indicate that if transition occurred as soon as Reg
reached 160 (i.e. at 13% surface distance) it would result in a 0.43mm larger
momentum thickness at the trailing edge. This would give rise to an increase of nearly
0.010 in midspan loss coefficient. The change in overall Y would obviously be less
than this, perhaps around 0.003, because transition occurred earlier away from midspan

even in the wind tunnel.

.In contrast the endwall boundary layer only remained laminar while it was very
thin (Reg<200). The boundary layer state would therefore probably be the same in a
turbine as in the cascade, irrespective of the free stream turbulence level, provided the

lift-off of the inlet boundary layer was not fundamentally changed.

4.6.3 Endwall Boundary Laver Lift-off

On set 2 at the low pressure end the acceleration of the incoming boundary layer
causes it to skew in such a way that the blade incidence within the boundary layer is

reduced. This has the effect of moving the saddle point right up to the blade leading

edge (fig.3.8) so that the lift-off line is only a local phenomenon which does not cross
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the passage. It can be surmised that most of the endwall boundary layer remains on the
endwall and therefore remains relatively thick and turbulent, although this could not be
confirmed experimentally. At inlet to all bladerows in a turbine except the first nozzle
the relative motion of the blades results in the inlet boundary layer being skewed in
roughly the same way (without acceleration). It is conceivable that it might influence
the endwall flow in the same way, too. Note, however, that Walsh and Gregory-Smith
(1987) did not find this to be the case. Inlet boundary layer skew changed the position

of their lift-off lines but did not remove them altogether.

4.6.4 Other Influences

The effect of the radial pressure gradient in an annular geometry and the use of

simple lean to counteract this have been discussed in chapter 1.

A high subsonic Mach number would change the static pressure field for a given
blade shape, but the influence of lean would not be expected to be fundamentally
different. Lean might have a more radical effect on a transonic flow, however, by
changing the position of, or even causing or preventing, shock waves. A particularly
powerful example of this is the use of stator simple lean in low hub/tip ratio turbines to

reduce the hub Mach number.

If the bladerow inlet flow is heavily distorted in some way (non-uniform stagnation
temperature, stagnation pressure or flow direction) then this will clearly affect the flow.
Lean might be used to counteract detrimental effects but this is outside the scope of the

present project. Each individual case would have to be considered on its merits.

The very large unsteadiness associated with passing of upstream blade wakes may
change the endwall flow but this connot be determined from the current experiments.
Work by Hebert and Tiederman (1989) on a cascade with moving bars upstream

indicate that the effect of a passing wake is only temporary, with the secondary flow

reverting to a quasi-steady state in between wakes.




CHAPTER 5

NUMERICAL PREDICTIONS

Two-dimensional flow predictions are useful in the early stages of turbine design but

they cannot, in general, deal with blade lean and they can never predict secondary flows.
For the kind of turbine blade tested in this project, whose performance is dominated by
secondary flows, a truly three-dimensional prediction technique is necessary. In this chapter il

one such technique, Denton's time-marching program, is compared with cascade test data.

5.1 Practical Details | i‘
Two versions of Denton's program were used: |

(i) The basic (inviscid) Euler solver, BAS3D28; I “\

|
(i) A viscous version, LOSS3D30, which has a simple boundary layer loss model w
incorporated. In LOSS3D30 the skin friction is calculated by assuming a law-of- [l

the-wall profile between the wall and the next calculation node and an eddy 0

viscosity is derived from simple mixing-length theory. The version used |

|
(subroutine LOSSS5) assumes that all boundary layers are turbulent. I
|

The grid used was 32x65x32, extending from x/Cx=—0.97 to x/C,=1.61, and is shown

in fig.5.1. For the symmetrical bladerows (sets 1 and 3) only half a span was used so the

density of nodes in the spanwise direction, on average, was twice that on set 2. The same ‘IM”“
grids were used for the inviscid and viscous versions, although in principle the inviscid il

program does not need such a fine grid near the blade surfaces since there should be no

blade boundary layers. i

The endwall boundary layer used as the upstream boundary condition at x/C,=—0.97
was based on measurements at x/C,=—0.56 but the discrepancy was not thought to be i

significant as the predicted increase in loss coefficient between these two locations was less
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than 0.005. Details are given in table 5.1. The downstream static pressure was set to
90000 Nm~2 and the inlet boundary layers on the two endwalls of set 2 were identical.
Fig.5.2 shows that the outer part of the boundary layer was resolved well but that even this

fine mesh could not resolve the inner part.

Sets 1 and 3 Set 2
z (mm) po (Nm~2) z (mm) Po (Nm~2)

0.00 97281 0.00 97281
0.30 98000 0.53 98099
0.65 98150 1.26 98325
1.09 98280 2.32 98564
1.66 98430 3.79 98801
2.40 98580 5.90 99067
3.34 98740 8.85 99401
4.53 98900 13.06 99809
6.01 99080 19.38 99989
7.84 99291 28.86 99998
10.21 99550 42.03 100000
13.17 99819 57.83 100000
16.86 99980

21.30 99995

26.48 99998

32.40 99999

39.05 100000

46.45 100000

Table 5.1 Inlet endwall boundary layer input to time-marching

To convert bbundary layer measurements to stagnation pressures for use as an upstream
boundary condition, a value of upstream static pressure has to be assumed. The assumed
value turned out to be wrong, so that the predicted upstream static pressure (97500 Nm-2)
was higher than the stagnation pressure at the wall. The program corrects for this by locally

altering the static pressure so that the velocity remains finite. Additional inviscid predictions

with a modified stagnation pressure at the wall were obtained. They are not presented here
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but they confirmed that the change in wall stagnation pressure had no effect on the overall

predictions, particularly the results reported in §5.2 below.

The program becomes slow to converge at very low Mach numbers so an exit free
stream Mach number 0.39 was specified, compared with 0.14 for the experiments. Program
convergence is monitored by calculating the 'change in meridional velocity per time step at
each node and expressing the maximum and average magnitudes of this as percentages of the
mean velocity for the entire flowfield. In all cases the calculation was allowed to proceed
until this quantity ceased to diminish. Final average values were between 0.001% and
0.003%. The program consumed approximately 3 hours CPU per 1000 time steps on an
Alliant FX/80 single vector processor and full convergence generally took between 2000 and

3000 steps. LOSS3D30 did not take appreciably longer to run than BAS3D28.

5.2 Inviscid Predictions (set 1)

The blade profile in question has a particularly large radius of curvature at its minimum
axial position. This leads to a highly distorted calculation grid which tends to give rise to
generation of numerical entropy (i.e. entropy arising out of numerical errors rather than the
flow physics). A close grid spacing was used near this point and several grids tried until a
suitable one was found. With no inlet boundary layer, and hence no secondary flow, the
numerical entropy generation by the inviscid program was negligible. With an inlet
boundary layer it was still small at the leading edge but there was considerable entropy
generation near and at the trailing edge (fig.5.3). This is probably a result of the skewed grid
in the latter part of the passage (fig.5.1) and the fact that secondary flow causes the axial

component of velocity to fall very near to zero near the endwall (fig.5.4).

When performing a number of similar time-marching calculations CPU time can be
saved by using one solution as an initial guess, or "restart", for another calculation. Two
inviscid solutions are shown in figs.5.3 & 5.4. These used identical input datasets and were
both fully converged, but they started from different restart files. The principal difference
was that run A started from a viscous solution whereas run B used an inviscid solution. The

only other differences between the restarts were in the second level of multigrid and the
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amount of negative feedback used to supress instabilities. Runs A and B will be compared

with set 1 experimental results before proposing reasons for the discrepancy between the

two predictions.

3.2.1 Comparison Between Predictions and Measurements i

ol

The predicted endwall flow is shown in fig.5.4, which should be compared with
flow visualization (fig.3.1a). Figs.5.5-5.8 show secondary velocities and stagnation ‘u“;“‘
pressures. These are directly comparable with figs.3.2 & 3.6 except that the pitchwise

positions relative to the blades of the measurement and calculation "windows" il

—

downstream of the trailing edge are different and to save space the predicted data are not “wh !

reflected about midspan. i

\
Neither prediction shows the suction side leg of the horseshoe vortex. This is not ”
surprising since the centre of the horseshoe vortex, where it forms, is only six grid “:‘““UJ
‘ nodes away from the endwall and the suction side leg would have to pass in the
pitchwise direction around the leading edge through a region where the grid is highly
distorted. There is some evidence for a suction side leg, however, in the fact that at
— x/Cx=0.03 and x/C4=0.22 the endwall boundary layer is markedly thinner adjacent to

the suction surface.

J
|

il
The pressure side leg is not so clear as in the measurements but it is discernible at I {
x/Cx=0.22. Both predictions show very clearly the pressure side leg growing into the “(!“‘ f
passage vortex and moving towards and along the suction surface, but at very different

rates, so that the vortices are in very different positions at the exit plane. The physical Il

size of the vortex is predicted correctly but in both cases it is too weak. Secondary

velocities are much lower than were measured and hence the predicted secondary kinetic il

energy coefficient Yskg at x/Cx=1.23 is too small (0.0056 and 0.0036 from runs A and f!g |
B and 0.0041 from the viscous prediction compared with 0.0120 from experiment).

This finding is not unique to this program or this bladerow. Gregory-Smith (1989) iFH |

found that three similar time-marching programs, including Denton's, all predicted
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secondary flows which were too weak on a turbine bladerow tested at Durham

university.

Fig.5.9 shows three predictions of pitchwise average exit flow angle. Only the
position of the passage vortex varies: the overall mean angle (—66.2°) and the amount of

over- and under-turning are the same in each case.

Two other features of the real flow at x/Cy=1.23 are predicted: the trailing filament
vortex in the wake, rotating in the opposite direction to the passage vortex; and the
accumulation of endwall boundary layer loss near the suction side. This latter feature is
surprising since there should be no "new" endwall boundary layer loss from an inviscid
prediction. Either the inner part of the inlet endwall boundary layer remains on the wall
and is not swept across the passage until a late stage or, more likely, some numerical

entropy does indeed arise at the endwall because of the boundary layer skew.

5.2.2 Discrepancies Between Inviscid Predictions

The discrepancies between the two inviscid predictions appear to stem from the
formation of the horseshoe vortex (fig.5.4). The saddle point (i.e. the point where the
incorhing boundary layer first separates) is further upstream in run A and there is more
reverse flow immediately behind it. This is thought to be because of a "switch" in the
program when the axial velocity becomes negative. The viscous solution from which
run A started may have had more reverse flow which did not switch back after the
restart. The pressure side leg of the endwall lift-off line can be identified by following
the velocity vectors from the saddle point to the point on the suction surface where the
flow direction suddenly ceases to be parallel to the blade outline. In both cases the lift-
off line is too far upstream compared with fig.3.1a: run A puts it furthest upstream and

more distinct, with the flow behind it skewed further from axial.

If the details of the separation of the upstream boundary layer and formation of the
horseshoe vortex can have such a marked effect on inviscid predictions this implies that

such details must be predicted correctly if the overall predicted flow is to be correct.
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One important distinction between the predictions and measurement has yet to be
mentioned. The measurements show loss and vortex cores to be roughly coincident at
bladerow exit whereas both predictions show them to be completely separate. Also, in
the first half of the passage, measurements reveal two loss peaks corresponding to the
two legs of the horseshoe vortex whereas there are no peaks shown by the predictions,
only a general migration towards the suction surface. An explanation for this is that in
practice most of the incoming endwall boundary layer fluid leaves the endwall ahead of
the lift-off line and forms a strong passage vortex/loss core, whereas in the prediction
most of it remains on the endwall. The little which does lift off forms a discrete but
weak passage vortex. The rest is swept along the endwall and suction surface by this
vortex and by the blade-to-blade pressure gradient, so at bladerow exit it is found in the

wake rather than in the passage vortex.

In an inviscid flow through a bladerow the total exit secondary circulation is fixed
by the inlet endwall boundary layer and the bladerow turning. One might therefore
expect that, provided the effects of viscosity are small, any three-dimensional flow
calculation should predict the overall secondary flow reasonably well even though the
details may not be accurately modelled. However, although the turning angle fixes the
total secondary circulation it does not fix the strength of the secondary flows, which
depend also on the precise blade shape. Prediction of the strength of the secondary
flow .is therefore dependant to some extent on detailed flow predictions rather than
merely the gross flow. The differences between runs A and B have shown that the
overall secondary flow prediction may be extremely sensitive to certain detailed
predictions, hotably the endwall boundary layer separation and horseshoe vortex

formation.

Viscous Predictions (all three sets)

In view of the uncertainty which has been demonstrated in inviscid predictions it would

not be constructive to compare the two programs to determine the influence of viscosity on

secondary flows. However, given the choice between the two programs, since the viscous
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I
one has the potential to model the growth of blade and endwall boundary layers without any “(

appreciable penalty in CPU time (for the same grid), there is no reason not to use it in ’
r preference to the inviscid program. Viscous predictions for the three sets of blades tested : "

will now be presented and discussed.

= 5.3.1 Overall Predictions- i

iR Overall measured and predicted quantities for the three blade sets are shown in ”ﬂ
table 5.2. The flow angle predictions are quite good, and broadly reflect the measured \\H
differences between the three bladerows. The predicted loss is consistently too high:
this will be partly a result of numerical entropy but will also be due to the assumption of
turbulent boundary layers throughout. The accuracy and consistency of time-marching |
loss predictions are unfortunately not good enough to draw a conclusion from the }
similarity between the three predicted values. The predicted mixing loss is only slightly “H\
low, although it should be remembered that the low predicted secondary kinetic energy I

\
and the high predicted loss will tend to have opposite effects on mixing loss. |

=

Mean exit Ymix Yske | YBL (eq.4.6) | |
flow angle Cp=0.0020 i

\\
Measurement —65.5° 0.048 0.0132 | 0.0120 0.034 ”‘M

: I
st Prediction -66.2° | 0.064 | 0.0089 | 0.0041 0.031 (Yh{““ﬂ
Measurement | —64.8° | 0.050 | 0.0207 | 0.0169 0.034 i

- Prediction —64.9° | 0.064 | 0.0189 | 0.0130 0.031
_ ‘h

Ser 3 Measurement -66.3° 0.048 0.0116 | 0.0099 0.034 ‘{“1‘1‘

Prediction —66.2° 0.066 0.0111 | 0.0056 0.032 i

Table 5.2 Measured and Predicted Overall Flow at x/Cyx=1.23
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The spanwise variations of loss flux (fig.5.10) confirm that the predicted loss is
too high and that the positions of the loss cores are not predicted consistently. On set 3
the loss cores even merge at midspan, a feature which is not seen in the measurements.
Pitchwise average exit flow angles (fig.5.11), however, show that not only is the
overall mean flow direction predicted fairly accurately but also the gross spanwise
variation from set 2 is modelled well. The characteristic over- and under-turning due to

the passage vortex is apparent but is generally much too weak.

Boundary layer losses predicted from surface static pressures using eq.(4,6) have
been presented in table 5.2. The value Cp=0.0020 was chosen to be consistent with the
previous chapter. Measured and predicted values are in broad agreement except that
predicted values are all slightly lower than measured ones. This is partly because the
predictions have been carried out at a higher Mach number, so since all pressures and
losses are normalized using exit dynamic head the predicted inlet dynamic head is lower

than the measured one.

5.3.2 Detailed flow predictions

Predicted flow at exit from sets 1 and 3 is shown in fig.5.12. As with the inviscid
predictions on set 1 the passage vortices are too weak and do not coincide with the loss
cores. Because there is a suction surface boundary layer as well as an endwall
boundary layer, high-loss fluid is carried further around the vortex than in the inviscid

predictions.

Comparing fig.5.13 with fig.3.12 it is seen that the effect of lean on static
pressures is modelled well, with contours generally remaining roughly normal to the
endwalls. Since pressures and gross variations in exit flow angle are well modelled, so
is the deflection of the mean streamlines (fi gs.5.14 and 3.7). This affects the two inlet
endwall boundary layers in the way which has been discussed in chapter 3, so that the
difference between the two endwall flows (figs.5.15 and 3.8) is seen clearly. At the
positive wall the saddle point is well upstream and away from the leading edges with a

prominent lift-off line crossing the passage near the leading edge plane. There is no
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evidence of a corner vortex to prevent the line from reaching the suction surface and the
point where it does so is marked by a sudden change in flow direction. At the negative
wall the thinner boundary layer and slightly lower incidence within the boundary layer
cause the saddle point to be very near to the leading edge. Although a lift-off line can
be traced from this point there is only a weakly convergent flow towards it and it meets

the suction surface almost at a tangent.

The contrast between the flow at the two ends of the leaned bladerow results
largely from the difference in static pressure and so figs.5.16 and 5.17 show this
contrast reasonably well (compare figs.3.10 and 3.13). The thicker inlet boundary
layer at the positive end gives rise to a more prominent loss core, although there is still
no evidence of a suction side leg of the horseshoe vortex as seen at x/Cx=0.22 in
fig.3.13. The passage vortex at the positive end is not as strong as in the measurements
but it is stronger than at the negative end.The contrast between the flows in the two
halves at x/Cx=0.67 and 0.83 is partially obscured in fig.5.17 by the fact that the
suction surface boundary layer is too thick and there is no tight hor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>