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Semiconductor nanodevices as a probe of strong electron

correlations
Pedro Manuel Trocado Vianez

An electron is usually considered to have only one type of kinetic energy, but could it have
more, for both its spin and charge, or by exciting other electrons? In one dimension (1D),
the physics of interacting electrons is captured well at low energies by the linear Tomonaga-
Luttinger Liquid (TLL) model, with hallmark predictions, such as spin-charge separation,
having already been observed. Recent theoretical work has focused on extending the theory
to deal with more realistic curved dispersions. However, experimental realisations have
remained elusive until recently. Here, we report on measurements of many-body modes using
a momentum-resolved tunnelling spectroscopy technique in gated 1D wires connected via
air-bridges. We map the 1D dispersion in a variety of devices, both in and out of equilibrium,
and observe the formation of two separate Fermi seas, associated with spin and charge
excitations, at energies up to five times that of the Fermi energy, which cannot be accounted
for by the noninteracting model. By reducing the length of the system, we also observe the
emergence of higher-order ‘replica’ parabolic dispersions with higher momenta or negative
effective mass, which is consistent with one of the leading nonlinear Luttinger theories.
Determining the bare electron mass my in crystals is also another problem often hindered
by many-body effects. Here, Fermi-liquid physics renormalises the band mass, making the
observed values density-dependent. In 1D geometries, however, the effect of interactions
is strongly amplified, and they naturally decouple from the mass. By changing the level of
confinement in the wires, we are able to tune the electron density down to about 18 electrons
per micron or, equivalently, an interaction parameter of ry ~ 4. This allows us to extract a
constant bare mass value of my = 0.0545m,, about 20% lighter than observed in GaAs in
geometries of higher dimensionality. Finally, by progressively occupying more 1D subbands,
our system also allows us to change the amount of inter-subband screening by over 50%,
consequently varying the effective interaction strength, in situ, all the way from the weakly
to the strongly interacting regime. This ability is the first of its kind for 1D solid-state system.
Our spectroscopy technique therefore offers itself as an important and powerful tool for
probing strongly correlated systems where new emerging phenomena are occurring. This
knowledge is now being used to develop systems for improved energy efficiency and could

prove useful in designing the next generation of sustainable materials.
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Chapter 1

Introduction

1.1 Motivation

The many-body problem could be an inconspicuous title for an Agatha Christie novel, yet
in this thesis it will mean a vast category of physical problems where one attempts to infer
the properties of the whole based on knowledge of its constituent parts. The challenge of
modelling systems made out of multiple interacting elements is probably as old as physics
itself, yet to date it remains largely an open field. Indeed, by many we mean anywhere from
three up to infinity, the two-body problem being so far the only one where a full analytical
solution has been found.

A particularly interesting facet of this problem concerns the study of electrons inside solid
crystals. While electron-electron interactions are known to be quite strong, a surprisingly
large number of models can make a number of accurate predictions despite simply disregard-
ing them. Landau solved this apparent disparity by developing what came to be known by the
name of Fermi liquid theory, therefore explaining why the properties of so many fermionic
systems seemingly resemble those of an ideal Fermi gas. While the Fermi liquid model
successfully captured the behaviour of many metals at low temperatures, soon an equally
if not larger number of systems were discovered where Landau’s quasiparticle formalism
apparently broke down. Such non-Fermi liquids, also commonly referred to as strange
metals, range nowadays from heavy-fermion compounds, Mott insulators, unconventional
superconductors, to topological insulators, to name but a few. Here, in general, interactions
take over the ability of electrons to freely move around, leading to the emergence of some
form of correlated response.

Possibly the simplest example of non-Fermi liquid behaviour concerns electrons in one
dimension. Here, geometry alone imposes strong correlations even in the absence of strong

interactions. The beauty of 1D, however, lies in the fact that unlike its higher dimension
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counterparts, a full analytical solution can now be achieved, albeit only at low energies, in
what has come to be known as Tomonaga-Luttinger liquids. These are qualitatively different
from Fermi liquids in many ways, the separation of the spin from the charge modes being a
well-known example. Other approximations made by this model include the assumption of
infinite system length and subband spacing.

The work now being reported started from the desire to investigate the emerging spectrum
of an experimental 1D system where the assumptions of the Tomonaga-Luttinger liquid
model were deliberately being broken. This included not only high energy, nonlinear regimes,
far from the Fermi surface, but also finite-length systems where multiple 1D subbands could
be occupied. The greater simplicity of modelling 1D geometries (at least when compared
to higher dimensions) makes these the perfect platform for testing theoretical tools and
approximations in a controlled way. That is the topic of the present thesis, as will be
discussed over the next few chapters.

1.2 Publications and pre-prints

The work presented in this thesis has resulted in the following pre-prints and publications:

 P. M. T. Vianez, Y. Jin, W. K. Tan, J. P. Griffiths, I. Farrer, D. A. Ritchie, O. Tsyply-
atyev, C. J. B. Ford, Decoupling of many-body effects from the electron mass in GaAs
by means of reduced dimensionality [arXiv: 2110.14539]

e« P. M. T. Vianez, Y. Jin, M. Moreno, A. Anirban, A. Anthore, W. K. Tan, J. P. Griffiths,
I. Farrer, D. A. Ritchie, A. J. Schofield, O. Tsyplyatyev, C. J. B. Ford, Observing spin

and charge separated Fermi seas in a strongly-correlated one-dimensional conductor

[arXiv: 2102.05584]

¢ Y. Jin, M. Moreno*, P. M. T. Vianez*, J. P. Griffiths, I. Farrer, D. A. Ritchie, C. J. B. Ford,
Microscopic metallic air-bridge arrays for connecting quantum devices, Appl. Phys.
Lett. 118, 162108 (2021) [* equal contribution]

In addition, most of chapter 2 has been reorganised and published as a book chapter:

* P. Vianez, O. Tsyplyatyev, C. Ford, Semiconductor nanodevices as a probe for strong
electron correlations. In: Semiconductors Nanodevices: Physics, Technology and
Applications, David Ritchie (Ed.), Elsevier (2021)
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1.3 Contributions to the original material

Below is an account of my own contributions to all the work mentioned above.

Regarding Vianez et al. arXiv 2110.14539 and 2102.05584, where I am the first and lead
author, my contributions include fabrication of the experimental devices, performance of the
transport measurements shown, analysis of the data, discussion of the results, and writing of
the manuscript. For both manuscripts I am also one of the corresponding authors.

Regarding the work Jin, Moreno*, Vianez*, et al., APL 118, 162108 (2021) [* equal
contribution], where I am joint-second author, my main contribution to this work was
improving the original air-bridge technique to fabricate longer bridges, pushing the maximum
length value by about an order of magnitude. This enabled improved results as well as greater
flexibility of use when compared to the shorter bridges. Specifically, I fabricated some of the
devices used, as well as optimised the resist profile and development time, and conducted the
transport measurements shown at the end of the paper. I also contributed significantly to the
writing of the manuscript.

Finally, regarding the work Vianez et al., Semiconductor nanodevices as a probe of
strong electron correlations, in: Semiconductor Nanodevices: Physics, Technology and
Applications, David Ritchie (Ed.), Elsevier (2021), where I am first-author, I wrote most of
the chapter, including all experimental sections and most of the theory sections (apart from
section 3.2).

1.4 Outline

This thesis is structured as follows. Chapter 2 introduces the many-body problem, start-
ing with a brief overview of Fermi-liquid theory and its general applicability to higher-
dimensional fermionic systems, before introducing the Tomonaga-Luttinger liquid (TLL)
model, valid only in one dimension (1D). Here, we review both early as well as more recent
developments in the field of 1D TLLs, including nonlinear and interaction effects. Most of
this chapter has been adapted from [123]. Chapter 3 introduces the experimental technique
behind most measurements reported in this thesis, magnetunnelling spectroscopy (MTS).
Here, we show how MTS can be performed with both energy and momentum resolution, and
discuss how the spectral function of a system can be inferred from the resulting tunnelling
dispersion maps. We conclude by modelling the capacitive effects which affect our mea-
surement, estimating their magnitude. Chapter 4 reports on the semiconductor nanodevices
used in this work, including design and material considerations, cleanroom fabrication, and

measurement setup. In this chapter we also discuss the implementation of a novel electron-
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beam-lithography technique for fabricating suspended air-bridge structures, which has since
been published in [58]. Chapter 5 reports on the observation of two separate Fermi seas
for spin and charge excitations respectively. Here, we start by characterising the 1D wire
array before discussing the measured dispersion maps. After ruling out a single Fermi sea
as a possible explanation for the observed spectra, we interpret the results based on the 1D
Fermi-Hubbard model. All data discussed in this chapter was obtained with only a single
1D subband occupied, with most of the results reported in [124]. Chapter 6 then expands
from the previous chapter by going into the multiple-subband regime. The first half of the
chapter discusses 1D-1D intersubband screening effects, showing how both Fermi seas are
seen to emerge as interaction strength is varied. The second half of the chapter applies the 1D
Fermi-Hubbard model to the extraction of the bare mass of electrons in GaAs (i.e., free from
many-body effects) as reported in [125]. Finally, chapter 7 discusses additional observed
signatures indicative of interaction effects in 1D. Here, we report on the observation of
higher-order 1D ‘replica’ modes, as predicted by the hierarchy of modes picture for nonlinear
Luttinger liquids. Chapter 8 summarises all main results reported in this thesis and provides

a perspective on future work.



Chapter 2
The many-body problem

Interactions between electrons in solids are often behind exciting novel effects such as
magnetism, superfluidity, and superconductivity. All these phenomena break away from
the single-electron picture, instead having to take into account the collective, correlated
behaviour of the system as a whole. In this chapter, we discuss the many-body problem
and its many manifestations within the specific context of condensed matter physics. We
start by discussing the Fermi liquid paradigm for a system of interacting electrons at low
temperatures, showing how it can be used to describe a vast array of systems in both three
and two dimensions (section 2.1). We then introduce the Tomonaga-Luttinger liquid (TLL)
model, valid for electron liquids in one dimension, showing how it marks a clear departure
from Fermi liquid theory, and discuss some of the early experimental evidence in support
of it (section 2.2). We conclude with an overview of more recent experimental results in
support of the TLL model, as well as its nonlinear counterparts, obtained using a variety
of experimental techniques (sections 2.3), as well as briefly commenting on some other 1D
effects reported in the literature (section 2.4).

The review presented in this chapter has been adapted from [123].

2.1 The Fermi liquid paradigm

Fermi liquid theory is probably one, if not the most well-known, theoretical model in many-
body condensed matter physics. Proposed by Lev Landau in 1956 [78], and later justified
microscopically by Abrikosov and Khalatnikov using the Green’s function formalism [3],
it describes the normal state of many metals at low temperatures. Interestingly, the initial
motivation was not to describe metals but instead liquid *He, whose heat capacity, despite
being a liquid, had been found to be very similar to that of an ideal (i.e., non-interacting) gas.

The resulting theory was capable of not only explaining why so many interacting fermionic
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systems often have properties resembling that of an ideal Fermi gas, but also why, how, and
when these can start to break down.

Landau’s model essentially relies on two underlying assumptions, the Pauli exclusion
principle and adiabaticity. The basic idea is that, for a system of interacting fermions with
repulsive interactions (such as, for example, electrons in solids), the low-energy spectra
can be constructed by directly mapping onto that of a non-interacting system. In other
words, starting with an hypothetical (ideal) system where no interactions are present, one can
establish a one-to-one correspondence between its excited states and those after interactions
are turned on, after which the approximate eigenstates and eigenenergies of the interacting
system can be obtained. Since a noninteracting system can always be specified by a set of
occupation numbers {4 s}, it follows that these can also be used to describe the equivalent
excitations in the interacting scenario. In order for this argument to be valid, however, the
transition from ideal to interacting system needs to occur slowly. As we will see, this sets a
maximum lifetime for the type of excitations that can be described using this model.

Let us start with an ideal gas. Here, any excited state can be described by the deviation of

its distribution function n from ground state,
o = —n 2.1
nk,c nk,c nk,O' ( : )

where ny ; represents the probability of a state of momentum k and spin state o = {*
,+} being occupied. For fermions at zero temperature, nﬁ - 18 given by the Fermi-Dirac
distribution, @ (kg — k), see Fig. 2.1. This allows us define the Fermi wavevector, kg, as the

boundary between occupied and unoccupied states.
O 4
1 —

N =0

0 —== >k

Fig. 2.1 The Fermi-Dirac distribution, showing the probability of a state being occupied, for
T=0and T > 0.
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We can also compute the change in total energy caused by this excitation as

SE[6n)=E[n]—Ey =) &dnko (2.2)

k.o

where g, = hk? /2m is the energy of a free particle. More generally, the energy of a particle

can be defined as
_ SE[)

& = .
5nk76

(2.3)

An arbitrary excitation will then consist of adding or removing particles from the ground
state, in other words, creating electron-hole pairs. Close to the Fermi surface, equation (2.3)

can be expanded to give
& = & + Veh(k —kg) + O((k — kg)?) (2.4)

where € is the Fermi energy and vg = Vk£k|k=kF = hkg/m is the Fermi velocity.

The crucial insight of Fermi liquid theory is realising that electron-electron scattering is
incredibly ineffective in changing the electron’s momentum close to the Fermi energy, since
most of the states in which it could end up after collision have already been occupied (see Fig.
2.2). As such, because of the Pauli exclusion principle, these will be unavailable, making the
scattering rate 7! o< |k — kg|? effectively vanish as k — kg. Note that this argument is valid

irrespective of the strength of the interactions.

e ————
- \\

/
|
|
1

Fig. 2.2 Schematic representation of a decay process for a quasiparticle near the Fermi energy
Er. Here, quasiparticle (1) transitions to (2) (no. of available states o< |k — kg|), creating in
the process an electron-hole pair (3) and (4) (no. of possible states also o< |k — kg|). The
shaded area marks the region from which the hole state may be created based on conservation
of energy and momentum.

Based on the above argument, it is then expected that for excitations whose lifetime is

shorter than 7, the occupation numbers describing them when interactions are present should
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not differ that much from the ideal gas scenario. In other words, .4 s will still be good
(albeit approximate) quantum numbers. Using Landau’s language, a low-energy excitation in
a Fermi liquid can then be described in terms of these quasi-excitations (creating what he
coined as a quasiparticle), in a similar fashion to how a low-energy excitation in an ideal
gas is described in terms of particles. This way, the model is capable of explaining why the
properties of an interacting system apparently resemble those of an ideal gas.

A quasiparticle is not an exact eigenstate of an interacting system. Rather, it can be
seen as a superposition of closely packed eigenstates of the ideal Fermi gas which, on a
timescale shorter than 7y, are essentially stationary. Physically, it is best visualised as a
dressed particle, that is, a particle which, when injected into a system, creates a disturbance
around itself— a composite of many other interacting particles— which effectively screen
it from its surroundings. This allows it to move around and only very weakly interact,
effectively as if interactions were not present.

Following from above, we can write the dispersion of a quasiparticle in analogy to that of
a free particle as

ek = M+ Veli(k— ke) + O ((k — kg)?) (2.5)

where p is now the chemical potential and Vg = hkp/m* is the effective Fermi velocity of
the quasiparticle, with m* being the effective mass. Similarly, the excitation (quasi)energy is
given by
1 /
OE[6n] = kZ: &kOnK 6 + ﬁf(k,k )5nk o 5”1(’,0’ (2.6)
0
where f(k,K )/V = 82E|n]/ 0n;0n,s is known as the Landau interaction function. Rewriting

equation (2.6), we can then define the energy of a quasiparticle as

. OE[on]
& =

1 :
S o =&ty ) fkk)ny (2.7)

I
K,o

The beauty of Fermi liquid theory is that all properties of this new composite entity can
now be easily encapsulated in just two parameters: the effective mass m™ and the Landau
function f(k, k,). Note that, having constructed &g, similar equilibrium properties such as
specific heat, compressibility and susceptibility can easily be derived from here. As expected,
these have a similar form to those of an ideal gas, apart for modifications due to m* and
higher-order corrections from f(k, k,).

There is, however, one caveat about Fermi liquid theory which we have so far not
discussed. Effectively, the argument used above when justifying that the scattering rate

should vanish close to the Fermi level is only valid in three (3D) or two (2D) dimensions.
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Indeed, it can be shown that in 3D 77! o (k — kg)? while in 2D 77! o (k — kg)?In|k — k|
(that is, slightly slower than in bulk but nevertheless still vanishing) [41]. In one dimension
(1D), however, this behaviour is completely different. That is because, in 1D, the Fermi
surface becomes discrete (in fact, just two points), instead of a continuous circle or sphere as
is the case for higher dimensions.

A simple way of understanding why Fermi liquid theory fails is realising that its con-
struction inherently assumes single-particle type excitations. In contrast, when confined to
1D, geometry alone imposes that all types of excitations must be collective responses of the
entire system, and as such, the notion of a quasiparticle, as defined by Landau, naturally
breaks down. As we will see in the next section, the correct paradigm in this situation is what

is called a Tomonaga-Luttinger liquid. This is an example of a non-Fermi liquid.

2.2 Electrons in one dimension

Many-body systems of electrons in three and two dimensions can, generally speaking, be
treated using Fermi liquid theory, discussed in the previous section. Non-Fermi liquids, on
the other hand, mark the departure from this paradigm which, in general, can occur in one of

two situations:

* in higher dimensions, such as a two- or three-dimensional system, if the electron liquid
is highly correlated, for instance, when the energy of the Coulomb interaction greatly
exceeds the kinetic energy;

* in lower dimensions, like one-dimensional wires, where spatial confinement alone

dictates strong correlations regardless of the strength of the interactions in question.

It is the purpose of this thesis to explore the later situation.

The fundamental problem of 1D physics is that electrons confined to this geometry can no
longer be modelled as Fermi quasiparticles (see Fig. 2.3). Effectively, unlike a normal Fermi
liquid where electrons are free to move around and remain screened from its surroundings,
essentially still behaving as free particles, in 1D spatial confinement alone blocks this from
occurring. That is because it is now impossible to go over, under or around other electrons,
the only option left being to try to go through, were this not prevented by the diverging
Coulomb repulsion at short distances. Hence, strong correlations arise.

One-dimensional wires then mark a drastic departure from their higher-dimensional
counterparts as, unlike the latter, there is no longer such a thing as locality of interactions.
Instead, the motion of one electron necessarily has to cause a collective response of the whole

system. This is why single-particle properties, on which Fermi liquid theory rests, break down
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Fig. 2.3 Schematic representation of a one-dimensional electron system with density per unit
length N/L = 1/a, where L is the length of the system and « is the inter-particle spacing.

completely. What emerges instead are the hydrodynamic modes of the Tomonaga-Luttinger
liquid (TLL) model, which as we will see exhibit bosonic statistics.

Proposed by Tomonaga is 1950 [116] and later refined by Luttinger in 1963 [89], the TLL
model was introduced as an attempt to describe interacting 1D electron systems at arbitrary
interaction strength. Unlike most other many-body models, it allows for a full analytical
rather than approximate solution to be obtained, as shown by Mattis and Lieb in 1965 [91]
and later improved by Luther and Peschel in 1974 [88]. The current version of the model is
credited to Haldane, who finalised it in 1981 [47].

The basic idea was that, in order to explain highly correlated interacting electrons in 1D
without having to resort to perturbation theory (as this would only be valid in the limit of
weak interactions), electron excitations should in principle be treatable using a Bose field, in
analogy to Bloch’s theory of sound waves. This effectively laid the ground-work for what
today is known as the method of bosonisation and indeed, in a TLL, the collective modes of
the system exhibit bosonic rather than fermionic statistics.

The model starts from two key assumptions, that the dispersion is linear near the Fermi
points, and that the 1D system is infinitely long, see Fig. 2.4. Starting with the first, note that
even though it is well established that for free electrons the dispersion is indeed parabolic,
E; = h?k?/(2m*), this can be approximately treated as being linear when in the low-energy
regime (i.e., close to the Fermi energy). In other words, a TLL is by construction a linear
model, valid in principle only as long as the curvature of the dispersion can be neglected and
electrons only move from just below to just above the Fermi level. The second assumption is,
as we will see in chapter 7, more subtle. For now, let us simply say that as long as end effects
in the wires do not play a significant role, and one can take the long wavelength limit of the
system, it should remain valid. A final assumption is that the wire is infinitely narrow, i.e.,
the subband spacing is infinite and so there is no mixing with higher 1D subbands. Note that,
in practice, this last point makes it hard to be sure whether the theory is applicable to any

particular experimental observation (where subband spacing is never huge compared with
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Fig. 2.4 The Tomonaga-Luttinger-liquid (TLL) model. (a) The original energy dispersion
relation is shown in black. For electrons in free space, this is parabolic. According to the TLL
picture, this can be approximated by a linear dispersion close to the Fermi points (red dashed
lines). (b) The linear dispersion used in the TLL model. Red and blue curves correspond,
respectively, to right- and left-moving electrons, while the shaded area marks the filled Dirac
sea below the Fermi energy.

the interaction energy). Single- and multiple-subband occupancy regimes will nevertheless

be discussed in chapters 5 and 6, respectively.

2.2.1 The Tomonaga-Luttinger liquid model

Let us start by assuming a system of spinless interacting fermions. In three or two dimensions,
low-energy excitations with arbitrarily low momenta can occur [40], as in both cases the
Fermi surface is well defined and as such electrons are free to occupy any state within it. In
1D, however, this is no longer the case, as the Fermi surface is now not only discontinuous
but also consists of only two specific points, at kr and —kp, respectively.

Following from the TLL assumptions, one can then write the Hamiltonian of a 1D

interacting electron system as
H = Hy+ Hiy. (2.8)

where Hj represents the kinetic energy, whilst Hjp refers to the interaction energy of the

system. They can be written, respectively, as

Hy= Y ve(ak—ke)a] ,a,, (2.9)
k,a==+1
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with U = hkp/m being the Fermi velocity, and d;i o and d, ., the creating and annihilation
operators at the right (o« = 1) and left (&¢ = —1) branches of the dispersion, and
A 1 A
Hine = 5+ ) VgP—qPq (2.10)
2L
q70

where p, is the electron density fluctuation operator, and v, the Fourier transform of the
interaction potential. Together, A accounts for particles moving in either of the right (R) and

left (L) branches, as well as for inter- and intra-branch interactions [41].

(a) (b) ‘
e(q)

Filled

Ep
17/ q

k‘ Empty ke q
—2kp 2kp

Fig. 2.5 Excitation spectrum for 1D fermions. (a) Single-particle excitations constituting
forward (blue) and backward (red) scattering for small and large momentum change across
the Fermi points, respectively. Occupied states are represented by filled dots and holes
by empty circles. (b) Electron-hole pair spectrum. Only shaded areas are energetically
accessible. The forbidden region indicated by the gap is unique to the 1D geometry and is
not present at higher dimensions (see inset). The position of the spectral edge, separating the
accessible and forbidden regions, is marked by the black curve. It can be observed directly,
for instance, by neutron scattering in some magnetic materials [77, 95, 76].

Generally speaking, it is Hi, that characterises the type of interactions present. For a
1D electron system with spacing a, these will be Coulomb in nature and of two types (see
Fig. 2.5a): if an electron is excited within the same branch (left or right) from a state just
below the Fermi energy, then only a small change of momentum is required, g ~ 0, with the
direction of motion remaining unchanged. This is called forward scattering. On the other
hand, if there is an exchange involving both branches, then a larger change in momentum
will be necessary, g ~ 2kg, with the direction of motion now being reversed. This constitutes
backward scattering. All of these processes appear naturally from the density fluctuation
operator when the particles are split into the left and right moving subbands around the +kp
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points,
(v(2t A I N
%<aqu,Rak,R +ay_y14;) forfgl~0
Pg =~ )k:dL%Ldk’R for g ~ 2kp, (2.11)
Y réiL for g ~ —2k.
W

By substituting equation (2.11) into equation (2.10), the interaction term in the Hamilto-
nian can be divided into two terms depending on the direction of motion of the interacting
electrons. Taking the long-wavelength limit, i.e., by considering a system of infinite length
or, in other words, by assuming arbitrarily high excitation energies, we find that the total
TLL Hamiltonian is given by

HTLL—H0+_ZV1 (P—gRPgR+P—gLPqgL)
q#O

ZVZ (P—gRPgL+P-g1LPgR),
q#O

(2.12)

with Vi(g) = v, and V»2(q) = vy — Va,.. Note that the choice of V; and V; is, in general,
completely arbitrary and highly dependent on the interaction process in question. Attempts
to verify their form have been made by Dash ef al. assuming a Gaussian-dependence [32],
by Creffield et al. using Monte-Carlo simulations [30, 29], and by Haiisler et al. [52] and
Matveev et al. [92] analytically.

It can also be shown that the TLL Hamiltonian is diagonalisable if written in a bosonic
basis. This means that every operator, including the fermionic creation and annihilation
operators, can be represented in terms of boson operators together with operators that raise
or lower the fotal number of particles. This is in stark contrast with the representation used
so far, which assumed action on individual electrons and not on the system as a whole. This
is, however, not surprising. As argued before, in 1D systems, collective response replaces
individual behaviour.

A full review of the bosonisation method can be found in Apostol [6] or von Delft
and Schoelle [128] as well as in several textbooks [5, 40]. The main result is that a one-

dimensional system, following the TLL assumptions, is equivalent to a system of independent

v = lim
q—0

, see Fig. 2.5b , with the velocity

Vi(q) g
v J—
Ft 2nh

2
Va(q) ‘ . (2.13)

2nh
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Rewriting v = vg/K in equation (2.13) allows one to extract the TLL parameter K as
) 1
K — hng) = = (2.14)
T Vi(q) Va(q)
\/’1 + 2711Ih1)]: =

Here, K encapsulates both the interaction potentials V;(g) and V»(q) as well as the Fermi

2mhVUg

velocity Vg. Note that all of these parameters are independent of temperature.

2.2.2 Spinful Tomonaga-Luttinger liquids

Any model attempting to describe electron behaviour must account for spin. Indeed, as
was shown by Luther et al. [87, 88], this can play an important role when considering
the interaction process given by forward and backward scattering, since both parallel and
anti-parallel configurations are now possible. One can generalise both the kinetic Ay and
the interaction Hiy, terms to include spin, see section 9.12 of [41]. The Hamiltonian for the
spinful Tomonaga-Luttinger liquid (sTLL) then becomes

N A 1 N N N A
Hgrip = Ho+ 2L Z Vi(q) (PR PgR +P—q1PqL)

| 470 2.15)

+ 5L Z V2(q) —Vi(q)] (Iﬁ—qu Pgo L+ P—go L ﬁQG,R) 3
q#0,0

where Py o = Pyt,a + Pqgy,a 18 the electron density operator and o =1, | is the spin index.
Note the similarities between the spinless (equation (2.12)) and the spinful (equation
(2.15)) Hamiltonians, the only difference being the potential prefactor of the last term. This
result suggests that the bosonisation method should remain applicable as long as both bosonic
operators and the density fluctuation operator are also modified to include spin.
One of the most striking features of the spinful TLL is what came to be known as spin-
charge separation. Once Hqri1 is rewritten in terms of the spinful bosonic operators, one

sees that it decouples into two independent Hamiltonians,
AL = He + Hs, (2.16)

which can be associated with charge and spin modes, respectively. This result is analogous

to the one discussed in the spinless case. Now, however, one has two independent collective
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excitations given by the characteristic frequencies wg = |g|v* and a)g = |g|vS, where

c_ Vilg)\* (Vilg)+Va(g)\?

is the velocity of the charge-density wave (CDW) and

. Vilg) —Va(q) )
VSZ;%\/D§—< 1(61)2ﬂﬁ2(61)> (2.18)

is the velocity of the spin-density wave (SDW). These are, generally speaking, different.

(a) & L. ®
A (k ;@ ) n k
i +ke
! >k
; A(k,w)
0 ; .
kvy kv, w 0 K¢ k

Fig. 2.6 Spectral function of the spinful TLL and occupation numbers. (a) Spectral function
A(k, @) of a spinful TLL, evaluated at fixed k, showing charge and spin power-law singulari-
ties at different energies [127, 93]. From [107]. Inset: elementary excitations of a spinful
TLL with v, # vs. Green and red lines mark charge- and spin-type modes, respectively. (b)
Occupation numbers n; within the TLL theory without spin. From [57].

Similarly to the spinless scenario, one can also define two interaction parameters for the
spinful TLL, K, & given by v, =V = vg/K, and vg =1° = vg /K, for the charge and spin
modes, respectively. A spinful TLL is therefore fully determined by four parameters, vy, Vg,

K, and K, compared to just two, v and K, in the spinless scenario.

2.2.3 Spectral functions and power-law behaviour

In many-body physics, the spectral function, A(k, @) is a rigorous way of describing single-
particle properties of a system and corresponds to the probability density of adding or

removing a single particle from a state characterised by a momentum k and energy @, see
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an example in Fig. 2.6a for a spinful TLL. For comparison, in the absence of interactions,
A(k, ) takes the form of a §-function in frequency [41], i.e., A(k, ®) =< & (@ — Ey), where
E; = h*k2 /2m. This means adding or removing a particle to/from a plane-wave state always
results in an exact eigenstate of the system. Note, however, that we are implicitly assuming
here zero disorder. In reality, as we will see later in section 3.4 , A(k, @) is more accurately
described by a Lorentzian function.

Spectral functions naturally emerge out of the Green’s function formalism. A full analysis
of many-body dynamics using this formalism is outside the scope of this thesis but can be
found in [2, 41]. In summary, it can be shown that A(k, ®) is derived from the retarded
Green’s function as

Alk,0) = —%ImGret(k, o) (2.19)

with the system’s momentum distribution function n; also being related to A(k, @) via the

Fourier transform of the real-space Green’s function
n(k) = / dxe ™G (x, 7 = 0). (2.20)

In chapter 3 we will derive the spectral function of a non-interacting 1D system. For now,
let us simply introduce it as

) T Hy(kya)e—a)’
Al,non—int(kkayaEar) = Z "( > )

o T2+ (48] =20

where a = mpw/h is the finite width of the wire, H,(x) are the Hermite polynomials, T’
is the spectral line width associated with the single-particle disorder broadening, u is the
chemical potential, and & is the energy spectra of the system. The latter is equal to

2k

E=E,+ zmi +E (2.22)

with E, = (n+ 1/2)hay being the energy of the nth subband and Ej the bottom of the 2D
band. It then follows that, at 7 = 0, and using equation (2.21), n(k) takes the form

-1
K+K -1

n(k) o< [k —ke| 2

(2.23)

meaning that, at k = k, the decay is characterised by an exponent & = (K +K~!)/2 — 1, see
Fig. 2.6b.
The importance of this result is that is establishes a natural connection between the

interaction parameter K, derived previously in the context of a spinless TLL, and correlation
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functions like n(k) [127]. Indeed, as we will see in the next section, early experimental
studies looking for TLL-type behaviour focussed exactly on this property, by trying to
establish the existence of an interaction parameter K by looking for power-law behaviour in
the density of states around the Fermi points.

2.2.4 Early signatures of Tomonaga-Luttinger liquid behaviour

Before proceeding onto more general forms of the Luttinger liquid model, let us first review
some of the early results in support of this theory. As discussed in the previous sections,
two clear signatures of TLL-type behaviour, as opposed to that of a Fermi liquid, include
power-law discontinuities near the Fermi points, with the decay exponent o being defined
in terms of the interaction parameter K, and separation of the spin and charge degrees of
freedom. Early experimental work therefore focused on measuring the spectral function
A(k,®) of a 1D interacting system, where all the relevant information about the energy and
momentum of the elementary excitations, both for particles and holes (i.e., when a particle is
removed), at arbitrary interaction strength, is combined. A distinct prediction of the TLL
model is, for example, that the spectral function should be double-peaked, leading as we saw,
to spin-charge separation, and that the height of those peaks should follow a power law in
both temperature 7 and source-drain bias V.

Following the experimental technique used, early evidence for TLL dynamics was
found using photoemission spectroscopy, momentum-resolved tunnelling spectroscopy, and
transport measurements. The range of systems utilised is large, and their claims to a 1D
geometry vary significantly. Nevertheless, important progress has been made using GaAs
quantum wires [10, 61], carbon nanotubes [16, 55, 72], the high T;. superconductor SrCuQO,
[70], the 1D metal Lig 9MogO17 [46], 1D organic conductors [135, 102], and quantum Hall
edge states [25, 44], to name but a few.

Photoemission spectroscopy

The most direct way of measuring a system’s spectral function is by photoemission spec-
troscopy. This is a difficult experiment to do with high resolution and as such made it difficult
to know if the 1D system was truly behaving as given by the TLL model. Nevertheless, it
provided some of the early evidence in support of both spin-charge separation and power-law
behaviour.

The basic principle of operation is relatively straightforward, see Fig. 2.7a. Here, an
incident photon Ey = h® of known energy causes the transition of an electron from an initial
band state at energy Ej to a final, plane-wave, state at energy Er above the vacuum energy,
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where Er = i%k2/ (2m) = E; + ho — ¢ and ¢ is the work function of the material. This
photo-emitted electron then leaves the crystal before being collected by a detector, giving the
emission intensity /(k, @) as

1(k, 0) = M(k)A(k, ®). (2.24)

Here, A(k, ®) is the spectral function of the system and M (k) is the photoemission matrix
element involving the initial and final states of the emitted photoelectrons. By mapping
the system’s response of photo-emitted electron energies as a function of analyser angle,
information about the band structure can be obtained. For a review of angle-resolved

photoemission spectroscopy (ARPES) experiments, see [109].
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Fig. 2.7 (a) Schematic representation of direct photoemission spectroscopy, used in mapping
the band structure of a system. From [69]. (b) Left: ARPES data showing the many-body
spectrum of SrCuQO,, where a two-peak spinon-holon structure can be seen, as predicted by
the spinful Tomonaga-Luttinger model. Right: comparison between experimental (symbols)
and theoretical (solid and dashed lines) dispersions. From [68].

This technique is, however, limited on two fronts. First, it assumes the 1D system is
relatively close to the surface on which the light is incident. While this is true for certain
classes of materials, such as anisotropic layered structures and specific high-temperature
superconductors, surface effects often require samples to have been prepared specifically
in situ, making otherwise the data also harder to interpret. On the other hand, by its very
nature, only occupied states can be probed using ARPES. While it is in principle possible
to map unoccupied bands by inserting an electron of known energy into an empty band
state and measuring the outgoing, ejected photon (this is known as inverse photoemission
spectroscopy), little work has been carried out in the 1D field using this technique.

Photoemission spectroscopy was first applied by both Kim et al. [70, 69, 68] and
Fujisawa et al. [38, 37] in studying the high-temperature superconductor SrCuO,. Here,
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good agreement to the experimental data was obtained by solving for the band structure using
the Hubbard model, with the broadness of the observed peak being interpreted as resulting
from the separation of the spinon and holon modes, see Fig. 2.7b. This work provided early
evidence of spin-charge separation in a 1D Mott insulator which, although not metallic, still
behaved as a 1D system as described by the TLL model.

Another experiment using photoemission spectroscopy was carried out by Gweon et
al. [46] using the quasi-1D metal Liy9MogO17, with results similar to those shown above
(i.e. spectral separation between the spinon and holon modes in the observed dispersion)
also being obtained. From the spectral functions, the velocities of each mode were also
estimated, giving v /vs = 2. Their experiment also yielded good theoretical agreement, with

a power-law exponent of about & = 0.9, characteristic of a system with strong backscattering.

Transport measurements

Another set of results showing early TLL-type signatures concerns measuring electrical
transport along a 1D system, such as the work on TLL power-law behaviour by Bockrath
et al. [16] and Yao et al. [133] using carbon nanotubes. These experiments consisted of
measuring electrical transport along single-walled carbon nanotubes (SWNTs) with different
contact geometries, either bulk or end. Taking the Luttinger-liquid parameter as being

approximately equal to

~1/2
2U} , (2.25)

K= |1+
p|:+A

where U is the charging energy of the nanotube and A is the single-particle level spacing.
Bockrath et al. showed that, in a 1D system, the conductance along the system is suppressed
at zero bias, vanishing as a power-law dependence with temperature 7" for small biases
leV| < kgT,

G(T) < T*, (2.26)

while with source-drain bias Vg at larger biases |eV| > kgT,
dI/dV < V¥, (2.27)

as predicted by the TLL model. Here, o¢ depends on the number of 1D channels and on
whether the tunnelling is happening into the bulk of the system or whether it is affected by
the ends. This can be found from the TLL theory by calculating the momentum distribution

function once the spectral function is known. In SWNTs, depending on the contact geometry,
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the power-law exponent o can then be related to K, as either

Ocna = (K, ' —1)/4 (2.28)

or
O = (K, ' +Kp —2)/8 (2.29)

as different contact geometries slightly change the prominence of the long-range Coulomb
interactions.

In the experiment, sometimes individual nanotubes were placed on top of two metallic
contacts, perturbing the nanotube only weakly and therefore yielding a long 1D system and
hence ‘bulk’ tunnelling. Alternatively, contact metal was deposited on top of the nanotube,
yielding a short 1D system in which any tunnelling excitation would propagate to the ends
and be affected by the boundary condition there, producing ‘end’ tunnelling. Whether the
tunnelling is ‘bulk’ or ‘end’ can be determined by comparing the energy of the tunneling
electron to AE = 2vgip/(KpL), which is related to the inverse time scale that it takes the
TLL quasi-particles to travel to the end of a wire of length L [118, 65]. For kgT, eVy. > AE,
and as such, the ends are unimportant.

Conductance measurements as a function of temperature 7 and source-drain bias V.
were then performed at zero magnetic field, resulting in Qepg ~ 0.6 and Qpyx ~ 0.3, in
good agreement with the theoretical predictions for SWNTS, Qgpq(theory) = 0.65 and
Opuik (theory) = 0.24 [64, 35], see insets in Fig. 2.8. Most importantly, while different
contact geometries translated into different transport mechanisms, both systems were ob-

served to still follow a power law in temperature once the data was rescaled using the

d/ eV 1+o eV
& AT%osh r
av cos (y2k3T> ’ ( 2 y27rkBT)

where I'(x) is the gamma function, 7 takes into account the voltage drops at the two tunnel

universal relation

2
: (2.30)

junctions, and A is an arbitrary constant (see Fig. 2.8). Note that this result assumed that
the leads were at T = 0. From here, the bulk-contacted nanotubes were observed to follow
Youlk ~ 0.46, while end-contacted nanotubes gave %nq ~ 0.63, in good agreement with
the theoretical predictions of Fisher and Kane [66], where Yk (theory) = 0.50+0.10 and
Yend (theory) = 0.60 +0.10. This was the first experimental evidence that electrons in a
metallic nanotube behaved as a TLL.
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Fig. 2.8 Differential conductance d//dV taken at various temperatures for both (a) bulk- and
(b) end-contacted carbon nanotubes. Insets show dI/dV on a log-log plot where power-law
behaviour, d/dV o T%, can be seen in both geometries (see straight line). Main panels
show the same data collapsed onto a single curve after using the scaling relation described in
equation (2.30). The extracted values of y were (a) Y = 0.46 and (b) ¥ = 0.63. From [16].

Tunnelling spectroscopy

Following Haldane’s suggestion in 1981 and after initial measurements done on the 1D
spectral function by Kardynal ef al. [67], Barnes proposed in 1999 a novel method for
probing TLL behaviour [4].

The idea was to measure the tunnelling conductance between a quantum wire and a
parallel two-dimensional electron system (2DES) as a function of both the potential difference
between them, V, and an in-plane magnetic field, B, see Fig. 2.9a. The dependence on wave
vector k and frequency w of the spectral function A(k, ) could then be determined by
analysing the differential tunnelling conductance d//dV. In particular, the authors argued
that presence of spin-charge separation should manifest itself as emerging singularities in
the I —V characteristics, in a markedly different fashion from what would be expected in
a non-interacting system. This idea was later further refined by Grigera et al. [45], who
extended it to arbitrary values of the interaction parameter K, while accounting for the effects
of Zeeman splitting in both the TLL and the 2DES.
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(a) (b)

Fig. 2.9 (a) Device configuration for mapping the dispersion of a 1D system by measuring tun-
nelling of electrons from it to a nearby 2DES. From [4]. (b) Magnetotunnelling spectroscopy.
Top panels show the overlap of the spectral functions of two 2D systems. Magnetic field B
displaces the blue paraboloid to the right, making the Fermi circles touch from the inside
(top left) or from the outside (top right). This allows the states of the red paraboloid near
—kp and kg to be probed at the Fermi energy Er. Bottom panel shows tunnelling between a
2D (blue) and a 1D (red) system at finite bias Vy.. Multiple 1D subbands can be probed by
varying both B and Vg.. From [59].

When an electron tunnels quantum-mechanically through a barrier between two regions,
it must conserve energy and momentum transverse to the barrier (modulo a reciprocal-lattice
vector, in a crystal). It must also obey the Pauli exclusion principle, so it cannot tunnel into
an occupied state. In a solid at low temperatures, nearly all the states below the Fermi energy
EF are occupied, providing therefore a reference energy below which tunnelling is forbidden.
We will focus on semiconductor heterostructures where a planar barrier separates two parallel
quantum wells containing electrons, which are free to move in two (or fewer) dimensions, so
that in those directions their wave functions are described by plane-wave Bloch states with
wave vector k. The tunnelling probability then depends on the overlap of the wave functions
on either side of the barrier, integrated perpendicular to the barrier, at a rate given by Fermi’s
golden rule [13, 108, 112]. A full derivation and analysis of this result will be done in chapter
3. For now, let us simply say that in order for tunnelling to occur, both initial and final states
must match in K, ensuring conservation of momentum, with resonances in / being observed
each time the 2D band and the nth 1D subband dispersions are aligned.

This, however, is unlikely to happen under equilibrium conditions, and therefore they
need to be offset in both energy and momentum in order for each dispersion to be fully
mapped. By applying a magnetic field B parallel to the layers, a Lorentz force is produced
as the electrons tunnel, boosting the momentum by an amount Ak = eBd /h, where d is the
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tunnelling distance (the distance between the centres of the wave functions). Similarly, a
voltage V. applied across the barrier can provide an extra energy eVy, to one of the systems.

Putting it all together, we obtain

1 o</dkdE[fT(E — Epip — €Vac) — fr(E — Epp))]

xAl(k,E)Az(k—i—ed(n X B)/ﬁ,E—eVdC).

(2.31)

Here, e is the electronic charge, fr(E) is the Fermi-Dirac distribution, n is a unit normal to
the plane, B = —BY is the (in-plane) magnetic-field vector, and A| (k,E) and A; (k,E) are
the corresponding spectral functions of the 1D and 2D systems, together with their Fermi
energies, Erp and Epop, respectively (see Fig. 2.9b). One can then map the dispersion of
one system with respect to the other by measuring the differential tunnelling conductance
G = dI/dV in both energy and momentum space.

Both the 1999 proposal of Barnes (Altland et al. [4]) and the subsequent work of Grigera
et al. [45] in 2004 concerned the idea of detecting spin-charge separation in a quantum wire.
Neither, however, made any attempt at modelling the anomalous suppression of tunnelling
current at zero bias, as predicted by the TLL model. This feature, commonly referred to as the
zero-bias anomaly (ZBA), is expected to depend strongly on the strength of the interactions
and to follow a power-law behaviour in both bias V and electron temperature T, see equations
(2.26) and (2.27).

The first experimental realisation of tunnelling from a 1D wire in the single-subband
regime was achieved by Auslaender ef al. [11, 10], with later theoretical analysis done by
Carpentier et al. [22]. Here, the authors used a pair of coupled quantum wires grown via
cleaved-edge overgrowth (CEO), meaning that the tunnelling process took place between
two 1D systems instead of between a wire and a 2DES as discussed before, see Fig. 2.10a
and b. The CEO technique allowed very strong confinement to be obtained, equal to roughly
the width of the well itself, and as such in principle well suited for observing interaction
effects. Unfortunately, the probe layer was now also of the same nature as the system being
probed, meaning that interpretation and disentanglement of each wire’s response became
significantly more complicated. These experiments, nevertheless, showed early evidence in
support of the TLL picture by observing an enhancement of the excitation velocity relative to
the bare electron velocity vg, see Fig. 2.10c and d. Previous work, done by the same authors,
also observed power-law behaviour of the tunnelling density of states around the zero-bias
suppression region [117, 118].

In 2009, Jompol et al. reported the first clear observation of spin-charge separation

together with power-law suppression of the tunnelling current at zero bias. In contrast to
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Carrier density (um™) Injection energy (meV)

Fig. 2.10 Probing spin-charge separation via momentum-resolved magnetotunnelling spec-
troscopy between two interacting 1D wires. (a) Schematic representation of double-wire
structure made via cleaved-edge overgrowth (CEO). The system resides at the edge of a
GaAs/AlGaAs double-well heterostructure. (b) Schematic of the circuit used in the 1D-1D
tunnelling process. Here, I, is the left-moving current, Ir the right-moving current and Vsp
the source-drain bias voltage. (c) Differential conductance G = dI/dV plotted as a function
of both Vgp (o< energy) and B (< momentum). Two features, labelled charge and spin, can
be seen branching away from each other at around zero energy and a magnetic field of 7 T.
(d) Measured spin velocities (open symbols) and charge velocities (filled symbols), plotted
as a function of carrier density and normalised with respect to the Fermi velocity vg. At
lower densities, repulsion between the electrons is stronger and hence the charge excitation
velocity larger, unlike the spin mode, which remains largely unaffected. Solid curves show
the theoretical fits. From [33].

the CEO samples, the authors fabricated an electrostatically gated 1D system and measured
tunnelling between it and a nearby 2DES. Thus, the probe layer used was now a well-
understood system, making interpretation therefore much more straightforward.

Figure 2.11 shows the tunnelling conductance G as a function of both inter-layer bias
V4c and in-plane magnetic field B at lattice temperatures of 1 K and ~ 40mK, when only
one 1D subband is occupied. The dashed and solid black curves mark the expected 1D and
2D parabolic dispersions, respectively, arising from single-particle tunnelling in the absence
of interactions. A parasitic 2D-2D tunnelling signal originating from the ungated injection
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region is also shown, as green dash-dotted lines. From the crossing points at V4. = 0, B~ and
B, the 1D Fermi wavevector kgip = ed(B'T — B™) /2 together with the 1D electron density
nip = 2kpip/ 7 can be extracted. For the data shown, the approximate electron density in the

wires was nip = 4Oum_1.
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Fig. 2.11 Tunnelling conductance G vs dc-bias V4. and magnetic field B, at lattice tempera-
tures T of (a) 1 K and (b) 40 mK. Tunnelling resonances between a system of 1D wires and
a 2DES as predicted by the non-interacting model are marked by solid and dashed black
lines while green dash-dotted curves indicate the location of unavoidable parasitic 2D-2D
tunnelling ‘p’. In addition, signs of interactions can be seen in the suppression of G around
zero bias (ZBA) and its abrupt drop at positive biases around B™. (c) dG/dB differential of
the data shown in (b). The non-interacting parabolae shown in (a) and (b) are labelled 1D,
2D, or p, depending on which system’s dispersion is being probed. The straight red line,
marking the position of the abrupt drop in G, is ~ 1.4 times steeper on this plot than the 1D
parabola at Vg, = 0. According to the TLL model, we identify the first as a charge-type mode
(holon) while the second as a spin-type excitation (spinon). From [62].

In both Fig. 2.11a and b, an additional region of high conductance at positive biases near
B can be observed. This can be more clearly seen in Fig. 2.11c by looking at the differential
dG/dB. In both cases, a feature moving diagonally up and to the left of BT is visible. Fig.
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2.12b shows detailed measurements taken around the same region, for a different device,
also in the single-subband regime.

For comparison, Fig. 2.12a and d show the theoretical prediction for a non-interacting
system. Here, a strong dark-blue feature of negative dG/dB can be seen. However, it follows
the 1D parabola, unlike what is observed experimentally, where it moves away from it (dashed
red line). It follows therefore that the 1D parabola and the dashed red line track the dispersion
of two independent features which, according to the TLL picture, can be associated with spin-
and charge-type excitations, respectively. The velocity of the charge mode was estimated
to be vp = 1.4v5, resulting, under the linear approximation, in an interaction parameter
K, ~0.71. For completeness, Fig. 2.12¢ and e show the theoretical result as expected for 1D
interacting electrons tunnelling to and from a 2D system according to the TLL model, where
a similar feature to that observed can also be seen.
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Fig. 2.12 Spin-charge separation around the +kr point: comparison between experiment
and theory. (a) dG/dB for a system of non-interacting electrons with disorder broadening
' = 0.6 meV. (b) High-resolution mapping of dG/dB. The red dashed line marks a feature
that does not follow the non-interacting parabola (black dashed) and is absent in (a). The
spinon velocity is given by vs = vgip. The extracted holon velocity was vy = 1.4vgip. (¢)
and (d) show, respectively, the calculation of G and dG/dI for both a non-interacting and a
TLL system of electrons. Spin and charge excitations are labeled by S and C, respectively,
while F labels the non-interacting 2D dispersion curve. The cuts were taken at a bias of
v =eVy/ EI%D = (.12 (given here in dimensionless units). (¢) dG/dB as a function of B and
v according to the TLL model. Note how, unlike (a), this model predicts a charge feature C
as seen in (b). From [62].

Another observation that cannot be explained by the non-interacting model is the zero-
bias anomaly (ZBA), visible as a dark blue horizontal line in Fig. 2.11a and b. As discussed

before, this anomalous suppression in the tunnelling current results from interaction effects
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and is likely to be associated with the extra energy cost for an electron to tunnel in or out of
the wire, at zero bias, as it inevitably disturbs the remaining electrons already present. The
tunnelling conductance G as a function of V. for different temperatures 7' can be seen in
Fig. 2.13a, at a field B approximately midway between B~ and B™. Similarly, Fig. 2.13b and
¢ show G(Vg. =0,T) and G(|Vy.|, T < 70 mK), respectively, on a log-log plot. Here, clear
variation as a power law in both Vi, and T over a range of orders of magnitude is observed.

Both Vg, and T play a similar role in smearing the energy, as illustrated in Fig. 2.13d.

T'(mK)

10° 5

G (uS)

102 10

eV, /kg (MK)

Fig. 2.13 The zero-bias anomaly. (a) Tunnelling conductance G as a function of bias Vjc,
taken at a field B = 2.33 T, for different temperatures 7 ranging from 43 mK to 1.9 K. (b)
Log-log plot of G(Vy4. = 0) versus T, showing power-law behaviour o< T% with o =~ 0.45.
(c) Same as in (b) but showing G(|Vy|) versus Vg, with ay =~ 0.52. (d) G(|Vq4|) versus
Vi = /[Vae? + (3kpT /)2 +- V2, obtained by adding different sources of energy smearing
as noise in quadrature. The value of 3kgT was chosen so that the curves in (b) and (c¢) and all
the curves in (d) would superpose. For comparison, using the scaling relation in Eq. (2.30)
results in a universal curve with & ~ 0.51. From [62].

The interaction parameter K, was obtained from the ZBA using the extracted power-
law exponents, ot ~ 0.45 +0.04 and ay ~ 0.52 +0.04, depending on whether excitations
from electrons tunnelling into or out of the wire generally propagated as far as the ends
(‘end tunnelling’) or not (‘bulk tunnelling’), see section 2.2.4. For the latter, the measured
exponents gave K, =~ 0.28 and 0.26 respectively, significantly smaller than the value extracted

from the holon branch in Fig. 2.12b. By considering ‘end’ tunnelling instead, the values
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obtained were of K, = 0.53 for ar and K, = 0.49 for ay, considerably closer to that obtained
in Fig. 2.12. However, this implies that the wire length was shorter than the thermal length
Ly =2vrip/(KpksT) at all temperatures measured (100 mK to 10K), or else the power-
law exponent would change at some temperature, as observed in 1D-1D tunnelling by
Tserkovnyak et al. [118].

Overall, the work carried out by Jompol et al. showed decise evidence in support of
the TLL model. It was surprising, though, that the ‘charge’ line observed persisted far
beyond the energy range over which the dispersion could be approximately treated as being
linear, suggesting that spin-charge separation might be a phenomenon more robust than that
expected from the range of validity of the TLL model. This naturally raised the question of
what happens to both spin and charge modes in the nonlinear region, that is, far from the
Fermi points, where the linear approximation should break down. The role of interactions in
1D wires at arbitrary energy and momentum has only recently started to be understood. Such

nonlinear Tomonaga-Luttinger liquids are the topic of the next section.

2.3 Away from the Fermi points

The Tomonaga-Luttinger liquid theory works remarkably well in describing the low-energy
behaviour of one-dimensional systems. As we have seen in section 2.2, these exhibit a
number of unusual properties, including long-lived plasmonic excitations, the separation of
the spin and charge degrees of freedom, and interaction-driven power-law behaviour [47]. In
general, however, the 1D spectrum is curved, i.e. nonlinear, meaning that deviations from
linearity are expected to occur away from the Fermi points. We will now focus our attention

on two particular nonlinear theories.

2.3.1 The mobile-impurity model of nonlinear Tomonaga-Luttinger lig-
uids

The first attempt at describing high-energy excitations in a 1D system came from what is now
known as the mobile-impurity model, see Fig. 2.14 [53, 54]. The idea behind this framework
is actually reminiscent of an early problem on X-ray scattering in metals, where it was shown
that nonlinear hydrodynamics could be used in describing the creation of a hole far below
the Fermi energy after adsorption of a high-energy photon. As in the TLL scenario, this
system was shown to also have power-law singularities around the Fermi level. However,
when applied in 1D, the model still failed in obtaining the resulting dynamics, as interaction

between the deep holes and the low-energy quasiparticles remained divergent.
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Fig. 2.14 (a) Dispersion of an interacting 1D system. Kinematically forbidden regions
are shown in white while the grey shaded area represents the many-body continuum of
excitations. The spectral edge marks the border between these two regions and is shown in
red. A higher-energy excitation (green circle) is obtained by changing the state of a heavy
hole (black circle) deep below the Fermi energy and simultaneously creating some linear
TLL excitations around the Fermi energy. This moves the total energy of the many-body
state away from the spectral edge as described by the mobile-impurity model—see text. (b)
Splitting of the fermionic dispersion into two subbands, one for a heavy hole deep in the
Fermi sea, with characteristic velocity given by k; /mp, and one for excitations close to the
Fermi point kg, with velocity vg. From [59].

Nozieres and De Dominicis [96] solved this problem by introducing the so-called heavy-
impurity model. This construction, unlike the previous one, considered Fermi-liquid-like
quasiparticles interacting with a hole state deep below the Fermi level, with the resulting
Hamiltonian being now diagonalisable, in a framework analogous to that of a TLL system.
As for the (linear) TLL, it succeeded in predicting power-law behaviour away from the
Fermi energy. Most interestingly, however, the 1D spectral function, as derived from the

mobile-impurity model, was shown to be

1
R

Ay (ky, E) (2.32)
implying that there was now a momentum dependence in the threshold exponent a(k,) of the
interacting 1D system [54]. The explicit expression for spinful fermions that is applicable for

electronic systems was found to be [120]

(1-Clky)*  Kp(1—D(ky))®
4K, 4 ’

a(ke) = 1 (2.33)
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where C(k) = (K — k) / <k2 /Ks — K2Ks /Kg) and D(k) = (k — k) (kF /K3 + k/Kg) /(K /K2 —
kg/K3).

One then observes that, having extended the universality of the TLL model from the low-
to the finite-energy regime, a momentum-dependent power law appears. This is a unique
feature of nonlinear hydrodynamics in 1D, and can be seen as a direct consequence of the
curvature of the spectral edge which had, until now, been neglected. Observation of such
behaviour would be a hallmark of nonlinear Tomonaga-Luttinger liquid (NLL) dynamics.

Another implication of this theory is the emergence of higher-order ‘replica’ modes (or
‘shadow bands’), in addition to the principal 1D dispersion, see red lines in Fig. 2.14a. These
features will be further discussed in the next section when discussing the hierarchy of modes
picture. Note, for now, that the mobile-impurity model simply states their existence, making
no predictions about what their relative spectral strengths might be.

Finally, yet another prediction from the NLL model is the drastic reduction of the
plasmon’s lifetime. Let us show this by analogy with the linear case. If the spectrum is linear,
each electron-hole pair can be identifiable by an energy linear in its momentum. If, instead,
the spectrum is curved, the possibility exists of having different electron-hole pairs with
different energies yet the same momentum. These can morph into a plasmon (for example,
a spinon and/or a holon) with wave number g once the interactions are turned on, with the

finite spectral width then being approximately equal to the spread in the energy, that is

0w(q) = 0 (q) — 0-(q). (2.34)

Hence, the resulting lifetime is reduced by 7 o< 1 /8 w.

The mobile-impurity model paved the way in releasing the Luttinger liquid from the
constraints of linearity, by introducing new tools for dealing with curved i.e., more realistic,
dispersions. Nevertheless, it still suffered from a number of limitations. For instance, as
constructed, it is a spinless theory, and as such unable to predict already observed phenomena
such as spin-charge separation. It also does not provide a description for arbitrary nonlinear
excitations as, similarly to the edge singularity in the X-ray scattering problem, the nonlinear
hydrodynamics become less well defined away from the spectral edge separating the forbid-
den zone from the many-body continuum, making such approach inconsistent. Finally, it
also still takes into account infinite length systems which, as we will see in the next section,

suppresses the natural length scale at which ‘replicas’ emerge.
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2.3.2 A hierarchy of modes

A more systematic understanding of the general picture for nonlinear excitations came from a
microscopic analysis via the Bethe ansatz. This is a method for finding the wavefunctions of
certain one-dimensional quantum many-body systems by making it two-body reducible, that
is, assuming many-body collisions happen as a sequence of two-body collisions and, as such,
the many-body wavefunction can be written in terms of two-body wavefunctions. It was then
found that [119, 121], when applied to a 1D fermionic system, an exponentially large number
of excitations are separated into levels of a mode hierarchy according to their respective
spectral strengths, which are proportional to integer powers of a small parameter R?/L?, with
R being the radius of the two-body interaction potential and L the length of the system. Note
that now, unlike before, the system is no longer taken to be infinite. A detailed analysis of
these amplitudes revealed formation of a parabola-like dispersion, see Fig. 2.15a, similar to
that of the original noninteracting fermions but with some renormalisation due to interactions,
by the strongest excitations with the zeroth power of R?/L?. All other many-body modes
have powers of R? / L? greater than zero, with the general trend being of increasing the integer
by one with each discrete step of 2k away from the principal parabola.

As an example, let us analyse the hole part of the principal parabola between the kg
points. This has the largest amplitude, but its mirror in the particle sector—a ‘replica’ or
‘shadow band’ in the shape of a dome marked as pOb in Fig. 2.15a—has a parametrically
smaller amplitude proportional to the first power of R?/L?. In the spectral function, the
strength of this mode is predicted to be

2 212
A (ko) o o (e gy, (235)
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Therefore, for almost all momenta, this mode will be unobservable in the thermodynamic
limit. The only exceptions are the regions around the £kp points, where the singularity in
the denominator starts to compete with the parametric smallness, resulting in an amplitude
overall large enough so that the mode is, in principle, observable. On the other hand,
the measurement of the whole mode requires using smaller systems, in which the R*/L?
parameter still leaves the amplitude of the whole mode above the background from the other
processes.

Whilst the mode hierarchy emerges away from the Fermi points, close to them (where
the spectrum is almost linear), it transitions into the usual linear TLL, see Fig. 2.15b. The
hydrodynamic modes of the latter consist of a huge number of many-body modes, all of

which are of similar spectral strengths, making the two regimes distinct already on the
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microscopic level. The change from one into the other can be traced using a macroscopic
quantity, the density of states, which is calculated exactly by numerical means using the
Bethe ansatz. The result exhibits both the power-law suppression around the Fermi energy Er
predicted by the TLL model as well as a crossover into a finite density, o< 1 /v/E, predicted by
the mode hierarchy away from the linear region, where the nonlinearity of the single-particle
dispersion already destroys the hydrodynamic modes of the TLL.

The hierarchy of modes model and, specifically the prediction that extra, higher-order
‘replica’ modes should emerge as the system length L is made progressively smaller, was
the main motivation behind the fabrication of progressively smaller and smaller 1D systems.
A full study on the length-dependence will be discussed in detail in chapter 7. Before this,

however, we briefly overview some of the other recent experimental work done on NLLs.
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Fig. 2.15 (a) Spectral function of spinless fermions according to the mode-hierarchy picture.
First (second)-level modes are shown in the region —kr < k < kg (kp < k < 3kp) and are
labelled by 0 (1), where kf is the Fermi wave vector. Accessible and forbidden regions
are marked by grey and white, respectively. Particle (hole) sectors are marked by p (h) for
positive (negative) energies, a, b and ¢ correspond respectively to the level in the mode-
hierarchy in powers of 0, 1 and 2 of R? / L? and (r,1) correspond to the origin in the range,
right or left. From [119]. (b) Bottom, regions of validity for different theories on the energy-
momentum plane. Top right, TLL hydrodynamic modes, where the deviations from the red
line mark a variation in density and which dominate at low energies (see cyan region in the
bottom panel). Top left, mode-hierarchy up to third order, where the bars denote qualitatively

the amplitude of different many-body modes and which is relevant for the rest of the plane.
From [121].
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2.3.3 Recent work on nonlinear effects

Experimentally speaking, nonlinear effects in one-dimensional systems have been tradition-
ally challenging to probe, in great part due to both the difficulty in measuring at high energies,
and the problem of creating a system where interactions are strong enough so that these
effects can be distinctively observed in the first place. To date, only two experimental plat-
forms have claimed observation of nonlinear Luttinger behaviour: semiconductor quantum
wires using tunnelling spectroscopy, and carbon nanotubes using infrared nano-imaging and

electrical transport measurements. Below we discuss their main conclusions.

Higher-order ‘replica’ modes

In 2015, the first observation of structure resembling higher-order excitations, as predicted by
the mode-hierarchy model, was reported in Tsyplyatyev et al. [119] in devices similar to that
used by Jompol et al. [62] but with air-bridges [58], see Fig. 2.16. The experiment consisted
of measuring momentum-resolved tunnelling to and from an array of one-dimensional
wires to a 2DES in a GaAs/AlGaAs heterostructure, for a variety of different wire lengths
down to 10 um. The authors observed structure resembling second-level spinon excitations,
near the +kg point, branching away from the 1D mode and dying away rapidly at high
momentum, in line with the theoretical predictions. Most interestingly, however, this feature
was observed to emerge as a function of system length, its spectral weight increasing
for shorter channels. It was also noted to be visible even when more subbands started
being occupied. A comprehensive review on the mode-hierarchy picture, highlighting both
theoretical and experimental progress, can be found in Tsyplyatyev et al. [121].

In 2016, Moreno et al. [94], also using tunnelling spectroscopy, found evidence for the
existence of another higher-order mode, this time a first-level inverted spinon band (see
Fig. 2.17). The tunnelling device used consisted of an array of 6000 GaAs wires, 1 um in
length, considerably shorter than previously used in Tsyplyatyev et al. [119, 121], which
were 10 um and 18 um in length. The mode reported by Moreno ef al. could not be observed
in the longer-length wires, further establishing the mode-hierarchy picture as one of the main

nonlinear TLL theories.

Momentum-dependent power law

As was discussed in section 2.3.1, the mobile impurity model, developed in the context of 1D
quantum fluids at finite energy and momentum, makes a remarkable prediction regarding the
power-law behaviour of the observed density of states near the spectral edge. Here, due to the

finite curvature of the 1D dispersion, the exponent becomes momentum dependent, in clear
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Fig. 2.16 Tunnelling differential conductance G = dI/dV for two samples, consisting of
a set of identical wires of length L = 10um (a)—(d) and L = 18 um (e). A schematic
representation of the device measured can be seen in inset (f). (a) dG/dVy. map obtained
at a lattice temperature of 7 = 300 mK. The 1D signal is marked by solid green curves for
the @ modes, dashed green for the » modes and dashed blue for the ¢ modes, see Fig. 2.15
for details. Magenta and blue curves indicate the parasitic 2D-2D signal while the black
curve follows the dispersion of the 2D system as probed by the 1D wires. Spin and charge
modes are labelled by the S and C lines, respectively. (b) and (c) show an enlargement of
the replica region to the right of +kg, as seen in (a), for vpg > 0 and vpg = 0, respectively,
where PG is a gate running over most of the parasitic ‘p’ region, see blue curves. (d) G vs
Ve at various fields B, around the replica region. The symbols + and X on each curve mark,
respectively, the dashed and solid green curves in (a) and (b). (¢) dG/dVy. map for a second
device obtained at 7 < 100 mK, showing a similar feature to that observed in (a)—(c). From
[119]. (g) Scanning electron micrographs of a tunnelling device with air-bridges, showing
how air-bridges are used not only to connect gates together across other gates, but also to
link together all the finger gates defining the 1D wires, which avoids variation of the gate
potential along each of these very short wires, as happens when the gates are joined together
at one end [58, 124]
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dc-bias (<excitation energy) V. (mV)
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Magnetic field («<momentum boost) B (T)

Fig. 2.17 Tunnelling conductance G plotted as a function of dc-bias V. and in-plane magnetic
field B, for the regime of a single 1D subband occupied. The electron density in the wires is
nip ~ 35um~". The solid green curves mark the dispersion of the 2D system as mapped by
the 1D wires, while the green dashed and dash-dotted lines indicate the resonances arising
from 2D-2D parasitic tunnelling. Spinon bands can be seen in the hole (s—) and particle (s+)
sectors, while a holon band is present in the particle sector (h+). The labels :I:B\TV’L indicate
specific magnetic fields at which each resonance crosses the V. = 0 axis. From [94].

contrast with the linear model, where no such dependence is expected. For electrons, i.e. spin-
1/2 fermions, the observation of a momentum dependence of the threshold exponent away
from the Fermi points would therefore constitute a hallmark of 1D nonlinear hydrodynamics.

In 2019, Jin et al. [59] reported the first observation of this new type of power-law using
a system of interacting electrons in a quantum wire, probed via tunnelling spectroscopy.
Here, a finite length-scale was present—given by the particle’s wavelength—in contrast
to, for example, what is the case in the usual physical picture of phase transitions where
length-scales become infinite. This was the first time a power law was observed in the
absence of scale invariance.

The authors observed that an enhancement of the tunnelling conductance below the
bottom of the 1D dispersion (see Fig. 2.18) could not be explained solely by considering
either a non-interacting or linear Luttinger framework (i.e. a momentum-independent power
law). Instead, the best fits to the data were obtained by considering a momentum-dependent
power law as predicted by the mobile-impurity model. In addition to the interaction effects,
the effects of disorder-induced broadening were also considered, with the result being
observed in multiple devices, of different wire length and measured at different temperatures.
The extracted Luttinger parameter from the nonlinear regime was then of K, = 0.704+0.03,

in good agreement with the values obtained from other 1D interaction effects, most notably
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the ZBA (K, = 0.59 4-0.13 assuming end-tunnelling) and the spin-charge separation (K, =
0.76 £0.07), both also present in this experiment. Note that throughout this analysis the
authors considered Ks = 1, in accordance to renormalisation-group arguments [40].
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Fig. 2.18 Momentum-dependent power law. (a) and (b) Fits to the tunnelling conductance
of two different samples, around the bottom of the 1D subband, for a variety of different
fields, normalised to their peak value and shifted vertically for clarity. Two different models,
non-interacting (x) and interacting with a momentum-dependent exponent (-), were used
when fitting the data. The effects of disorder-induced broadening were also considered.
Sample A, consisting of 18 tm long wires, was measured at 50 mK in a He? /He* dilution
refrigerator, while sample B, with 10 um, was measured at 330 mK in a He? cryostat. (c)
Fittings obtained using a momentum independent power law (- and +) and a non-interacting
model (x), matched to specific parts of the data. From [59].

Lifetime of spinons and holons at high energies

One of the early studies of NLL dynamics was done by Barack et al. [12] also using tunnelling
spectroscopy but instead on CEO wires. Here, the authors selectively injected holes and
particles into a quantum wire in order to study its relaxation properties. Their measurements
concluded that while energetic particles underwent a rapid thermal relaxation, holes remained
largely unchanged, in clear contrast with the linear TLL theory, in which energy relaxation is
largely forbidden. This set the limits on the relaxation times to T < 10~!'!'s for particles and
7> 10715 for holes.

It is important to highlight that while these results were important, they rest on the

assumption that the interactions were weak. Previous work done by the same authors on
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similar samples, for instance, obtained a Luttinger parameter for the electrons of K, ~ 0.55,
comfortably sitting in the strongly interacting regime. This apparent contradiction was
explained by suggesting that relaxation dynamics are largely independent of the strength
of the interactions as, indeed, the model derived showed good agreement with the data. Its
phenomenological nature, however, illustrated the clear need for a microscopic description

of kinetics and energy relaxation in the strongly interacting limit.

Plasmon lifetime in nonlinear carbon nanotubes

Recent work by Wang et al. [129] has provided further experimental evidence of nonlinear
TLL dynamics. By growing long and clean semiconducting carbon nanotubes (CNTs), the
authors were able to utilise low-noise near-field scanning optical measurements to map the
plasmonic excitations in a nanotube, even when in the low-density limit. Semiconducting
CNTs have a bandgap and as such the linear approximation is expected to break as one
approaches the bottom of the conduction band. By coupling the nanotube to a gate electrode,
the authors were able to tune the position of the Fermi level and use it to probe the effect of
the nonlinear dispersion on the plasmons. Similar measurements were also carried out on

metallic CNTs, where the band structure is gapless and so well captured by the linear model.
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Fig. 2.19 Nonlinear Luttinger plasmons in carbon nanotubes. (a) Plasmon quality factor as a
function of gate voltage. The experimental results match the NLL well (black) and cannot
be captured by alternative mechanisms like impurity scattering (red). (b) DSF diagram
characteristic of the NLL model. In a nonlinear TLL, the plasmon mode is not an exact
eigenstate of @(q) = vpq (dashed) but instead is broadened with upper and lower bounds given
by w4 (g), respectively. The spectral width, d®(g) = @+ (q) — w_(g), therefore increases
with ¢, indicating a reduction in the plasmon lifetime, as observed. From [129].
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One of the key predictions of the NLL theory is a drastic reduction of the plasmon
lifetime. By injecting a plasmon wave into the nanotube, Wang and collaborators were able
to observe the interference between the incident and reflected excitations at one end of the
nanotube and from there extract the quality factor and the wavelength of the mode in the
system. This led them to observe the increase of the quality factor (and consequently, of
the plasmon lifetime) as a function of the electron density, see Fig. 2.19a. By contrast, the
linear model predicts a drastically different scenario, with infinitely lived excitations and
as such no intrinsic relaxation mechanism, meaning that the quality factor should remain
gate-independent unlike what was observed. Optical and transport measurements on similar
samples also confirmed that the decay was indeed associated with nonlinear dynamics rather
than, for example, scattering off impurities.

These results can be understood from the dynamic structure factor (DSF) of a NLL,
see Fig. 2.19b. For a linear TLL, such as in a metallic nanotube, the DSF takes the form
S(g,®) =2K|q|6 (@ — vpq). This results in a linear dispersion for the plasmon mode, given
by @(q) = vpq. Here, K is the Luttinger parameter, v, is the plasmon velocity (charge mode),
and q is its wave vector.

In contrast, for a nonlinear TLL, as in a semiconducting CNT, the DSF is given by

> 2
S(q,0) = 2%6 (g—m - |a)—qu]), (2.36)
where 7 is an interaction-dependent effective mass and 0 is the Heaviside function. This
means that the plasmon mode is no longer an exact eigenstate of the system but instead is
broadened, with upper and lower limits given by @4 = v,g =+ g/ (2m). Consequently, for a
given frequency, i.e. energy, there will now be multiple available plasmons with different
momenta. A high-energy plasmon can then easily decay into multiple low-energy plasmons,
with the damping and lifetime associated with this process being determined by the width of
the broadening Sw(g) = ¢ /7.

2.4 Other work on one-dimensional interaction effects

Before we conclude, let us briefly mention some other important results obtained using 1D
systems which, although not directly related to the work discussed in the present thesis,
nevertheless complement its main conclusions, and further contextualise the current state of
the field.
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2.4.1 Coulomb drag

It is often the case that free carriers in semiconducting devices cannot screen each other
very efficiently with, indeed, the Coulomb interaction between them only being expected to
be screened out at finite, often rather long, distances. Interestingly then, when two parallel
conducting wires come together, separated only by a thin insulating barrier, it is possible
for a current through one of them to induce a net charge displacement in the other. This is
the so-called Coulomb drag effect which, while often negligible for large systems, can play
an important role in the electrical transport properties of nanoscale devices. Here, the drag
resistivity Rp = —Virag /larive is determined by the drive current in the inducing wire, Igive,
and the measured drag voltage in the induced wire, Virag.

Initially, this phenomenon was thought to be due to electrons in the drive wire transferring
their momentum to their counterparts in the other wire, via the Coulomb interaction, with
the direction of motion remaining unchanged. However, Laroche et al. [81, 82] strongly
challenged this picture. Here, the authors found that the drag resistance could be either
positive or negative, something surprising since the momentum-transfer model could only
account for the former. Negative Coulomb drag, however, had been predicted to exist
in models where the drag is induced by charge fluctuations, therefore introducing a new
transport paradigm in addition to the momentum-transfer picture.

Later work by the same group [83] also observed an upturn in drag resistance at a
temperature 7*. This confirmed a long-held prediction of the TLL model, wherein a crossover
between drag dominated by forward (for 7 > T*) or backward scattering (for 7 < 7*) should
occur, thus establishing a 1D—1D drag dependence on temperature. Note, however, that in this
experiment, both wires remained in the single-subband occupancy regime, in accordance with
the assumptions of the TLL model. It then remains an open question how multiple-subband
occupancy may change the screening profile of 1D systems. Results on 1D-1D intra-subband

screening will be discussed in chapter 6 .

2.4.2 Helical current

Conductance along a ballistic, ID quantum wire is quantised in units of 2¢?/h, with the
factor of 2 arising from the spin degenerancy of the electrons. After some initial debate
[65, 66, 64, 35], it was shown [79, 122, 130] that this value is not affected by interactions in
a clean system, but instead solely determined by the contact resistance of the Fermi leads. In
the presence of disorder, however, it is reduced following a TLL power law.

An early problem in the CEO wires work was that, systematically, these structures showed

a suppression of the height of the conductance plateau in a way which was not consistent
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with the TLL model. Recently, however, work carried out using similar samples in the
ultra-low-temperature regime (7" ~ 10 mK) revealed promising new evidence on what might
be helical nuclear magnetism in the TLL regime. Tracking the conductance of the first mode
as a function of temperature, Scheller et al. [106] observed the expected value of 2¢%/h
at T > 10K drop to ¢? /h as the temperature was lowered, becoming independent of T at
T < 0.1 K. This behaviour was also seen to be independent of both density and magnetic
field up to at least 3 T.

After ruling out several other potential interpretations, the authors concluded that the
most likely explanation was the appearance of a nuclear spin helix—an ordered state of
nuclear spins hosted by atoms of the same crystal—thus explaining the drop in conductance
by a factor of 2 at lower temperatures, since the wire could now only transmit spin-down
right- and spin-up left-movers. This interpretation is consistent with a recent theory proposed
by Braunecker er al. [19, 20, 18]. Note, however, that the model predicts a sharp phase
transition to occur at a given crossover temperature 7, rather than a broad reduction as
observed in this experiment. Attempts to explain this were made in [8], but the question
remains whether it truly was helical nuclear magnetism the most likely mechanism behind
the observation, as 7* could not be extracted. A potential way of answering this would
be using a 1D system where the interaction strength, on which 7™ is expected to depend
strongly, could be varied in situ. This, however, was not possible in CEO wires where the
confinement in the wires is defined by the width of the well (or, in other words, MBE), and
as such remains fixed.

2.4.3 Cold atoms

For completeness, we conclude by commenting on a different experimental platform, outside
solid state, for studying the physics of strongly correlated many-body systems. In recent
years, experiments have emerged reporting the formation of clean, disorder-free 1D chains
by trapping ultracold atoms in optical lattices [98, 17, 132]. Here, the confinement potential
is given by the laser field itself, therefore allowing the simulation of a very controlled
Fermi-Hubbard model not otherwise accessible to material systems. Recent work using
quantum gas microscopy, that is, probing the atomic chain with single-atom/single-lattice-site
resolution, revealed signatures of spin-charge separation [51, 105], with real-space tracking
of the deconfinement and evolution of each separate plasmon having also been reported
[126]. These systems are particularly attractive because of the relative ease of varying the
strength of the interactions within them, and because they also offer the prospect for tracking
crossover from 1D to 2D physics. Nevertheless, while they allow for the simulation of what
are essentially disorder-free, perfect lattices, and as such offer the possibility of testing the
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available theories to new limits, the issue remains that, unlike solid-state systems, real-world

integration in generally speaking not as straightforward.

2.5 Summary

In this chapter we have covered the many-body problem of electrons inside solid crystals.
We started by briefly discussing the Fermi-liquid model, valid for non-correlated systems
at higher dimensions, before introducing the Tomonaga-Luttinger liquid model for electron
systems in 1D. Note that this model implicitly assumes a linear dispersion and, as such,
is only strictly speaking valid at low-energies. Nevertheless, we showed how some of its
seminal predictions, including separation of spin and charge modes and interaction-driven
power-law behaviour, have since been observed experimentally in a variety of solid-state
systems. In the second half of the chapter we moved on to nonlinear Luttinger liquids, where
the dispersion of the electrons is no longer assumed to remain linear. Here, we reviewed some
of the more recent experimental work performed at high energies, where both momentum-
dependent power laws, short-lived plasmons excitations, and higher-order ‘replica’ modes, all
of which go beyond the original Luttinger picture, have since been observed. We concluded
by reviewing additional interaction effects reported in 1D systems, including spontaneous

nuclear spin magnetism, Coulomb drag, and time-resolved dynamics.






Chapter 3

Energy- and momentum-resolved
tunnelling spectroscopy

In this chapter, we introduce the experimental technique behind all measurements conducted
in this thesis, and which we have now named as magnetotunnelling spectroscopy. This allows
us to map the spectral function of one system with respect to a known, well-understood
spectrometer, while both energy and momentum are being varied. We start by giving a brief
overview of other, well-established, spectroscopy techniques, commenting on how their
performance compares to our method (section 3.1). We then derive the tunnelling current
and show how the measurement can be carried out with both energy (section 3.2) as well as
momentum resolution (section 3.3), to map the respective spectral functions of each system.
After that, we discuss how resonances in phase-space tunnelling dispersion maps can be
interpreted based on the underlying spectral functions for both 1D and 2D systems (section
3.4). Finally, we conclude by discussing and modelling the capacitive effects which impact
the measurement (section 3.5).

3.1 Beyond surface probing techniques

The ability to probe a system at smaller and smaller scales has often been associated with
breakthroughs in science. The invention of the optical microscope, for example, gave us a
new perspective into the biological world. Scanning tunnelling microscopy (STM), on the
other hand, allowed for a level of resolution otherwise unachievable via optical means, giving
us a fresh glimpse into the atomic landscape. The key development behind this discovery

was the concept of quantum tunnelling, that is, the observation that in quantum mechanics,
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subatomic particles can appear on the opposite side of a barrier that should, otherwise, be
impossible for them to penetrate.

As we saw in chapter 2, and particularly, sections 2.2.4 and 2.3.3, there are a number of
experimental techniques that can be employed when probing the underlying dynamics of a
solid-state system. While each presents its own set of advantages and limitations, the choice of
which one to use is often in practice determined by the experimental system being investigated.
For instance, as discussed in section 2.2.4, early work on Luttinger-type behaviour and
carbon nanotubes naturally suggested the use of ARPES (angle-resolved photoemission
spectroscopy) and indeed, this led to some of the very earliest observations indicative of
power-law behaviour and spin-charge separation. Later technological developments, like
STM, and refinements such as STS (scanning tunnelling spectroscopy), have also since been
successfully implemented in probing strongly-correlated systems and many-body dynamics,
in systems such as topological insulators, superconductors, majorana channels, and edge
states, amongst others.

As surface probes, however, their main limitation is that they are naturally subject to
every potential anomaly which may occur at a surface of a material. Specifically, since only
the top few layers of atoms are being probed, any amount of defects, impurities, and/or
atmospheric phenomena can get greatly enhanced. As we will see below and later in chapter
5, the key advantage of magnetotunnelling spectroscopy is that it works for systems buried
deep below the surface, and therefore, protected from the exterior. Unlike STS and ARPES,
where crystals have to be specifically prepared in situ in order for clean and regular interfaces
to be achieved, this is no longer the case for tunnelling spectroscopy. In other words, by
having the spectrometer built into the device so that measurements can take place well below
the surface, not only are the results less sensitive to surface effects, but also the system
of interest of potentially much higher quality. Furthermore, interaction with the sample
becomes much more flexibile as, for example, high vacuum is no longer required. One
can then envision using tunnelling spectroscopy while simultaneously varying pressure or
uniaxial stress, two other parameters often used when looking for new quantum materials,
and something which neither STS or ARPES currently allow for. In the following sections
we introduce the physical principles behind tunnelling spectroscopy, starting from a general

overview of the technique before applying it to the specific geometry of our tunnelling device.

3.2 Energy-resolved tunnelling spectroscopy

Our experiment consists of a vertical tunnelling spectrometer device where two parallel

quantum wells are placed in close proximity to one another. By appropriately engineering
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the barrier, one can ensure that tunnelling of electrons to and from each system can be
measured. In order to study 1D dynamics, one layer is modulated by a set of wire gates into
forming an array of 1D channels, while the other remains largely unperturbed, thus acting
as a well-understood 2D spectrometer. The dispersion of both systems can then be mapped
by measuring tunnelling to and from the 1D array to the 2D layer. As we will show, this
can be done while varying both energy as well as momentum. Before analysing the 1D-2D
geometry in question, however, let us first derive the tunnelling current for the more general
case of two fermionic 2D systems separated by a barrier.

In order to calculate this, we follow Bardeen’s approach, initially developed to study
metal-insulator-superconductor junctions [13]. It is well established that when an electron
tunnels quantum-mechanically through a barrier between two regions, it must conserve both
energy and momentum transverse to the barrier (modulo a reciprocal-lattice vector, in a
crystal). Since electrons are fermions, they must also obey the Pauli exclusion principle,
meaning they cannot tunnel into an occupied state. In a solid at low temperatures, nearly all
the states below the Fermi energy Ef are occupied, so we can use this energy as a reference
point below which tunnelling is forbidden.

In this work we focus on semiconductor heterostructures where a planar barrier separates
two parallel quantum wells containing electrons. This allows us to use Fermi’s golden rule in
order to determine the rate of tunnelling as

2r
Cuov = | Tuw 8 (B — EVY) (3.1)

where T,y = (W |U |yy) is the transmission matrix and U the potential of the barrier. Note
that here we are assuming that electrons tunnel from a state ( in the upper-well (UW) to
a state v the bottom-well (LW), though a simple change of sign can easily account for the
reverse process. Furthermore, conservation of energy is effectively enforced through the
o-function, so that tunnelling is only possible between an occupied and an empty state of the
same energy (i.e., elastic tunnelling).

Fermi’s golden rule is a general result of first-order time-dependent perturbation theory,
and its derivation can be found in a number of textbooks [27]. The tunnelling current /
is then proportional to eI’y ,y, where e is the elementary charge since we are describing
single-electron processes.

While the above formula describes tunnelling from (occupied) state p into (empty)
state v, we know that both wells are characterised by a continuum of states. Therefore,
the probability of a state being occupied is given by the Fermi-Dirac distribution f(E —
Er) = (1+exp[(E — Eg)/kgT])~! meaning that, in other words, the probability of it being
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unoccupied is simply described by 1 — f(E — Ef), see Fig. 2.1. The tunnelling currents are
then given by

4me
fow—iw = == Y F(E — B[ = FESY — B [Tuos PO (EYY —EY —ev)
uv

dre
hvosvw = - Y f(ER — EE)[1 = FEVY — B [Ty PO(ESY — EY — V)
uv
3.2)

where the extra factor of 2 accounts for the two possible spin states of the tunnelling electron.
The resulting net tunnelling current is obtained from the difference between the two currents

above

4w
1= Y IAEN — B = fEN — BT POE - EJY V) (33)
uv

We can now substitute the summation over discrete states by replacing it with an integral
over the density of states (DOS), n, running over all energies n(E) : }, — [n(E)dE

_4me LW _ — F(EIV
== /de[f(EF eV +e)— f(ESY +e)] (3.4)

x ™ (EEY — eV + e)n"W(EFY + )| T (EFY + &, EYV — eV + ¢)?

UW and n™V are the density of states of the upper and lower layers, respectively.

Here, n
As can be seen from equation (3.4), the tunnelling current depends directly on the
electronic structure of both systems, via their respective DOS. This is, in fact, identical to
the mechanism behind STM, which can be constructed in an analogous fashion simply by
substituting UW, LW — sample, tip.
At zero temperature, or if kT << AE, where AE is the desired energy resolution, the
Fermi distribution function is essentially given by a step function (see Fig. 2.1), simplifying

the above expression to
Ame [V | [w,pLw UW (- UW 2

which, at small biases, reduces to

4 LW/ LWy UW [/ zUW |72
I:TVn (Eg" )n" " (EF ")|TI". (3.6)
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In practice, what is measured, however, is often the differential conductance G = d//dV,

which following from (3.6), is given then by

ﬂ _ 4e? LW /LWy UW / -UW UW LW 2
Note that both occupied and unocupied states can be accessed in the upper well simply
by changing the sign of the bias V. The resolution in energy, on the other hand, is set by

max(edV,kgT).

3.3 Spectral functions and momentum-resolved tunnelling

spectroscopy

So far we have only discussed tunnelling processes where by varying the applied bias between
each layer one can probe both systems in energy-space. Let us know discuss how this can be
expanded in order for tunnelling to occur between states separated in momentum as well.
In section 2.2.3 we introduced the spectral function A(k,®) as a tool for describing
single-particle properties in many-body systems. To recap, it represents the probability
density of a state of momentum k and energy @ being occupied. The density of states n(®)

can then be defined in terms of A(k, @) by summing over all possible k-states, that is
n(w) =) Ax(). (3.8)
k

Substituting this expression in equation (3.5), and doing a change of variable £ =
Ep—eV + €, we get

=TV Y Tyl [ EAY (6, EJA™ (o B eV x [1(22Y) = f(e o).

ki ko
(3.9)
Following from Bardeen’s approach [13], we also know that
h? Wy IYLw
Thyots = 5y [ oy (yiow S50~y “EEY), (3.10)

meaning that all that is left to do is obtaining the respective wavefunctions for each system.
Let us now apply this framework to the specific geometry of our devices (see chapter 4

for details on device design). Defining the x — y plane as parallel to the sample surface, with
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the x-axis parallel to the 1D channels, we construct the electron wavefunctions of the two

layers as

Yuw ()C,y, Z) = eikXX¢n (y)XUW (Z) YLw (xayv Z) = eikxxeikyyXLW (Z) (31 1)

Here, x(z) defines the confinement potential along the z-direction for both wells, while ¢ (y)
is the confinement potential created by the wire-gate, which defines the 1D wire array. We
get

Thoge ki = (270)°1(2)8 (ke — k) By (3.12)

2 & x. .
where #(z) = ;iW ( ALW aiggw — Xow ag?’") , and ¢ is the Fourier transform. Note that & (ky —

k;) effectively imposes that momentum must be conserved in the x-direction during a
tunnelling process, in an analogous role to the §-function in energy in equation (3.1).

In order to determine ¢ (ky), we start by treating the confinement potential induced by the
gates and responsible for creating the 1D wire array as being parabolic, i.e., V (y) = %m* a)gyz.
Note that, in our geometry, y is a coordinate transverse to the 1D channels. It is then
well established that for a parabolic potential, the wavefunctions allowed are given by the

eigenstates of a quantum harmonic oscillator [27]

S T el v 3.13
¢n()’)—m n<7>exp<_ﬁ> (3.13)

with [ = \/m being the natural length and H,, the nth degree Hermite polynomial. Func-
tions of the form of ¢,(y) form an orthogonal eigenbasis to the Fourier transform operator,
meaning that the probability distributions given by |9 (y)|*> and | (ky)|? are mathematically
the same. Physically, ¢,(k,) represents the wavefunction in momentum space, which can
also be directly probed via our tunnelling technique.

So far we have seen that in order for a tunnelling process to occur, both the initial and
final electron states must match in energy as well as momentum along the x-direction. While
the first can be accounted for by applying a DC-bias between the wells, thus offsetting the
respective spectral functions in energy, a momentum offset along the x-direction can also be
achieved by applying an in-plane magnetic field along the y-direction, that is, transverse to the
wires. Indeed, it can be easily verified that, for a magnetic field vector B = (0, B, 0), satisfying
the Landau gauge A = (zB,0,0) so that B =V x A, the electron canonical momentum
p = ik + €A is boosted by hAk = eA = (eBd,0,0), where d is the separation between the

centres of the wavefunctions of the two states.
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Putting everything together, the tunnelling current between the two systems is then given
by

I o / dEdK[f(eLw) — f(euw + eV)]|Gn(ky) PA™Y (k, E)AVY (k + %ﬁ «B,E + ev) .
(3.14)
where n is the unit vector along the direction of the injected current in the wires, and
V = Vbc + Vac, with Vac being the additional AC signal introduced by the lock-in amplifier
when measuring.

Equation (3.14) essentially underpins all measurements reported in this thesis, effectively
establishing the foundations of the technique we have now coined as magnetotunnelling
spectroscopy. This is both an energy- and momentum-resolved tunnelling probe, whereby
measuring tunnelling to and from a system of interest (in our case a 1D wire array, AYW =
Ap) to a well-understood probe (such as a 2D Fermi liquid, AWV = Aop FL), one can map the
dispersion of both systems in all of the energy-momentum plane. Note, however, that strictly
speaking, I is proportional to the convolution of the spectral functions, not the spectral
functions themselves. In the next section, we will see how the conditions of maximum

overlap in both k and E can be used to infer the shape of A(Kk,E).

3.4 Tunnelling conductance and resonance conditions

We measure the tunnelling current between the two quantum wells via a phase-sensitive
lock-in detection technique,. This means that, effectively, the quantity being measured is not
I but instead the tunnelling conductance G,

dl/ d

= — o« — [ dEAKA™Y (k. E)AYWY (k + Ak, E 1
6= dv/dd (k, E)AUV (k + AK, E + V) (3.15)

Because G is proportional to the convolution of the spectral functions, and not the
spectral functions themselves, an interesting question to ask is whether the maximum in
the convolution stays at the maximum of the probed function. In order to do so, let us now

discuss the form of A(k, w) for the various systems of interest.

2D Fermi liquid

Let us assume, for now, that the electron gas in the lower well can be treated as a Fermi
liquid. It is then well-known that, in the absence of interactions, A(k, ®) takes the form of a
5-function, A(K, ®) o< § (@ — Ey), where Ej = h?(k? —|—k§)/(2m). In other words, adding or
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removing a particle to/from a plane-wave state always results in an exact eigenstate of the
system.

1
T ] !
10 v
paaney

)
5
|

1 5 1
K/ Ke

Fig. 3.1 Normalised spectral function of a 2D Fermi liquid, evaluated at eVpc =0, B =0,
for I'=0.25meV and hw = 1.7 meV. Note the high-degree of symmetry, as expected for a
system with translational invariance along two directions.

In order to account for broadening arising from disorder, the spectral function can be
convolved with a Lorentzian function. Following from the notation used in Kardynal e? al.

[67], we have
I'/n

et (1 —&ppr)?

where I is the spectral line width associated with the single-particle disorder broadening, u

Aop L (kx, kys (1) (3.16)

is the chemical potential, and &,p gy is the energy spectra of a Fermi liquid, given by

2012 112
he (ki + k)

ot Eorw (3.17)

éZD,FL =

where Eq 1w denotes the bottom of the 2D band in the lower well, see Fig. 3.1.

Non-interacting 1D system

A perfect, i.e., infinitely narrow, non-interacting 1D system can be modelled in the same way
as a 2D Fermi liquid, with &,p g1 being instead replaced by
1k,

ng,non—int. =E,+ 2_mx + EO,UW (3~18)

where E, = (n+1/2)hay
Experimentally, however, all (quasi-)1D materials do indeed have some sort of finite
transverse extension. In order to account for such, we treat the confinement potential as being

parabolic, with electron wavefunctions in the transverse direction being given by the eigen-
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states of a quantum harmonic oscillator, see section 3.3. Consequently, Ajp non-int. (K, 725 1t)
must be modified to account for a harmonic dependence along the y-direction, resulting in
energy levels known as 1D subbands. These are given by

, I H2(kya)e~ k)
AlD,non—int. (kx,ky,E,F) = /;5(.“ - élD, non-int. — Z)% . <1—)~)2 ?’_Zz

B Z r H,%(kya)e*(kya)2
w I2 + ([,L - élD, non—int.)2

(3.19)

where a = mip@/h is the finite width of the wire and H,(x) are the nth degree Hermite
polynomials, see Fig. 3.2.

Interacting 1D system

Finally, let us consider a 1D system of interacting electrons according to the Luttinger
liquid model. Here, it is known (see Fig. 2.6) that the spectral function must exhibit power-
law singularities near the spectral edge. It then follows that A(k,E) can be obtained by
substituting the §-function in equation (3.19) by a power-law

' 0(1 — &1p, non-int. —2) T Hy (k a)e*(kya)2
A, (ko E.T) = | wnondnt — 8~ Zn 1 . (320
lD’mt.( o ) ; (‘LL - ig,lD, non-int. — Z)a T 1"2 +Z2

In a linear system, the threshold exponent & above is constant, see Fig. 3.3. For a nonlinear
TLL, however, and as discussed in section 2.32, @ = a(k), meaning it will have a momentum

dependence, see equation (2.33).

Fig. 3.1-3.3 show the normalised spectral functions at B = 0, eVpc = 0 for each of the
three systems discussed above, calculated assuming I' = 0.25 meV, hw = 1.7 meV, and a
subband occupancy value from one to four. As we will see later in chapter 5, these are
representative of the experimental systems measured in our experiment.

As expected, the degree of symmetry between 2D and 1D systems varies significantly.
Furthermore, note that once interactions are turned on, spectral features tend, in general,
to become less sharp. Because equation (3.15) is proportional to the convolution of two
spectral functions rather than the spectral functions themselves, this means that the points
of maximum conductance do not necessarily have to correspond to the points of maximum

spectral weight. Overall, this effectively translates into a small deviation, though more
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(@) (b)

R R T A

Fig. 3.2 Normalised spectral functions of a non-interacting 1D system, evaluated at eVpc =0,
B =0, forI'=0.25meV and Aw = 1.7 meV. The number of occupied subbands is varied
from one to four, see (a) to (d).
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(a) (b)

| 2
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R T e

Fig. 3.3 Normalised spectral functions of an interacting 1D system according to the (linear)
TLL model, evaluated at eVpc =0, B=0, for I' = 0.25meV and A®w = 1.7 meV. Here, the
white lines mark the position of the Fermi wavevector kr. The number of occupied subbands
is varied from one to four, see (a) to (d). Note how the spectral weight moves away from the
spectral edge when compared to the non-interacting scenario.
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pronounced the stronger the interactions in question. We will return to this point later in this
section. First, however, let us introduce the energy-momentum tunnelling maps.

As shown from Figs. 3.1-3.3, the probability of there being any significant overlap, and
therefore any measurable tunnelling conductance, between the spectral functions of two
systems of different densities in close proximity to one another at B =0, eV = 0, is quite
small. Note that, from equation (3.14), a necessary condition for tunnelling to occur between
a filled and an empty state is matching in both energy and momentum; however, no overlap
necessarily means such is not possible.

In order to map the dispersion of both systems, an alternative workaround consists of
measuring the non-equilibrium tunnelling current as both energy and momentum of the
tunnelling electrons is being varied. Effectively, this is equivalent to offsetting the spectral
function of one system with respect to the other in both energy and momentum, whereby the
measured conductance tracks the amount of spectral overlap.

Fig. 3.4 illustrates this scenario for two 2D systems assuming Vpc = 0 (i.e. in momentum-
space only). Here, the Fermi surface of each system in the absence of interactions is a simple
Fermi circle, concentric at B = 0, with the difference in radius accounting for the difference
in density between the two. Let us take n; > n, and therefore, A; with a larger radius than
Aj. We then define B_ and B as, respectively, the magnetic field strength required to offset
A, with respect to A1 so that both circles touch from the inside or outside. The relative offsets
in k-space are

ed ed

Ak_ = kgy —kp1 = —B_ Akt = kg + kg1 = -

B 3.21
" + (3.21)

which, rearranging, gives us the respective Fermi wavevectors as

ed ed
ke = z—h(3+ —B_) kep = Z_h(B+ +B-) (3.22)

We can also repeat the above procedure but now offsetting in energy rather than just
momentum. In general terms the positions where maximum overlap occurs in energy-

momentum space are then given by

m [ Bd\*]
Vpe = —— |k, — <kF,2 + e—> (3.23)

2m* |

and

m [ eBd\* ]
eVDC = oy -(]q:,l ﬂ:—) —KER2 (324)



3.4 Tunnelling conductance and resonance conditions 5§

S

B=0

B=B,

Fig. 3.4 Zero-bias field intercepts, showing the two field magnitudes, B_ and B, for which
tunnelling resonances are obtained as one spectral function is shifted in momentum-space.
The red and blue circles represent, respectively, the 2D spectral functions of the upper and
lower layers. Note how kg1 >kp;, given that ni>n;.

where equations (3.23) and (3.24) refer, respectively, to A; being probed by A;, and vice
versa. Note that here m* is the effective electron mass in both systems, which we assume, for
now, to be the same.

Physically speaking, the curves traced by the two equations above mark the dispersion
of each system as mapped by one another. In chapters 5 and 6 we will analyse in detail
tunnelling dispersion maps and show how they allow us to infer the dynamics taking place
in both systems. For now, and as an example, Fig. 3.5 shows the dispersion curves when
tunnelling is occurring between two 2D systems.

Before we conclude, let us just go back to the initial point discussed at the beginning of
this section regarding the symmetry of A(k, ®). The analysis done above and, particularly,
illustrated in Fig. 3.4, assumes that a certain degree of symmetry is present in the spectral
function, so that kr can be well defined. If the spectral function and, therefore, the Fermi
surface, is asymmetric about E, kg will naturally vary, though with an analogous construction
similar to that discussed above being nevertheless possible. In both cases, however, the key
prerequisite is that the boundaries of these functions are sharp (within the limits of disorder
broadening I'), so that tunnelling resonances indeed occur when they touch. While this is
true for 2D-2D tunnelling measurements, where the dispersion curves are mapped using the
other 2D spectral function as a probe (which, accordingly, is a symmetric function of energy),
the same is no longer true in 1D, particularly as interactions are turned on. Here, when the
2D dispersion is probed by the spectral function of, for example, interacting fermions in 1D,
the maximum is shifted significantly even if no I" is included. This is because, for example,
taking the spinful (linear) TLL model, A(k, ®) is known to be pronouncedly asymmetric in
energy about Er, having a double-peaked structure due to spin-charge separation, see Fig.
2.6.
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Fig. 3.5 Energy-momentum tunnelling dispersion map of two 2D systems. Here, the red
and blue curves mark the positions where tunnelling resonances are expected to occur, as
given by equations (3.23) and (3.24). They correspond, respectively, to the dispersion of the
upper and lower layers as mapped by one another. The dashed curves account for the same
dispersions once capacitance is accounted for, see equations (3.29) and (3.30).

This effect has been quantified and shown to be, at most, of the order of a few meV
(typically, ~ 0.2 meV, see Fig. 3E in [60]), which, therefore, in comparable to the typical

energy broadening I" present in our experiment.

3.5 Modelling of the capacitive effects

In the previous section, we discussed how offsetting the spectral function of one system with
respect to another in both energy and momentum space, while also tracking the tunnelling
conductance between the two, allows their respective dispersions to be mapped. Indeed, we
will use this formalism later in chapter 5 when analysing the tunnelling data between an array
of 1D wires and a 2D layer. Before that, however, it is important to note that our tunnelling
measurement is subject to capacitive effects, not only between the two systems to and from

which tunnelling is occurring (in our case, the two quantum wells), but also between these
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and any existing surface gates. Therefore, equations (3.23) and (3.24) must first be modified
so that capacitive coupling can be taken into account.

When tunnelling across a dielectric barrier electrons are affected by its capacitance. In
our setup, for instance, owing to the finite capacitance C between each layer, a small increase
or reduction of the electron density +0np/ip occurs at each side of the barrier, which in
turn results in small distortions to the observed dispersions (making them no longer perfectly
symmetric), as we will now derive for the 1D and 2D scenarios.

Let us start by considering that a bias Vpc is applied across a dielectric barrier, the
corresponding change in electron density then being given by edn = VpcC. In our geometry,
we have ednyp = VpcC/A for a 2D system (of area A), and ednp = VpcC/L for the
corresponding 1D system (of total length L). The electron densities for 1D and 2D systems

are in turn given by

dN  2kgiD
= — = : 3.25
mp = 47 - (3.25)
and )
dN  kgop
= —= "= 3.26
mp = - o (3.26)

where kg |p and kgop are, respectively, the Fermi wavevectors in the 1D system (in the
absence of interactions), and the 2D system below it.

One can determine the Fermi wavevectors of each layer using the zero-bias crossing
points, By and B_, as seen in Fig. 3.4 for the 2D-2D tunnelling scenario. For the 1D-2D
configuration, on the other hand, kr; = kg |p while kp» = kpop, with kg < kg as, indeed, the
1D wire array, once defined (electrostatically) by the wire-gate, does have a Fermi wavevector
smaller than that of the 2D system below it.

Putting everything together, we get

_NiCVbc _ 2

onip =nip(Voc) —nip(0) L - (kg1p(Vbe) — krip(0)) (3.27)
and
CV1 1
Snmap = nap (Vo) —nap(0) = e ADC = ﬂ(k%JD(VDC) — ko (0)) (3.28)

which, when reorganised, gives the new Fermi wavevectors as a function of inter-layer bias

as

n;CVi
keip(Vbc) = ke 1p(0) + % (3.29)
el
and
27n;CV;
kr2p(Vbe) = \/ ki p(0) + %. (3.30)
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Here, n; = 1, with i = 1,2 corresponding to the upper and lower layers, respectively. This
is a sign factor associated with the polarity of the applied inter-layer bias, which results in the
electron density being increased in one layer and decreased in the other. In our experiment,
N1 = —1 and 1 = 1, since for Vpc > 0 the upper well is more positive than the lower well,
see dashed curves in Fig. 3.5.

As we will see in section 4.1 regarding device design, the lower well is always 2D in
nature, which means that kg = kpop(Vpc) with 1, = 1. The upper well, on the other hand,
can behave as either 2D, in the ‘parasitic’ injection region, or 1D, in the wires. For the latter,
we have kp; = kg 1p(Vpc) with 1) = —1. For the former, note that the measured upper-well
density is roughly double that in the lower well (as we will show in chapter 5, see Fig. 5.5),
s0 k1 = kEopy and ky = ko -

Finally, note that equation (3.30) also reduces to equation (3.29) when expanded in the

low-capacitance limit,

/ 271'111'CVDC 12
k =k 1+ ———— 3.31
F2D = KE2D ( A k%’ZD (3.31)
mn;CVpc
~k _ 3.32
F2D eAkran (3.32)

This means that, in the 1D wire region the capacitance correction can nevertheless be treated
as for a 2D system, provided the capacitances are transformed as C/L = C/A x 2 /kgp. This
result allows us to estimate the width of the wires as

C/L=wxC/A (3.33)

where both layers are assumed to be charge-neutral. For our wires, once defined, w can vary

between 20 — 50 nm, putting them strong-confinement limit.

3.5.1 Geometric and Quantum Capacitances

Having derived equations (3.29) and (3.30) for the modified Fermi wavevectors of, respec-
tively, 1D and 2D systems once capacitive effects are taken into account, let us now discuss
how such capacitive couplings may arise in the first place.

In a classical Coulomb system, the capacitance C = dQ/Vpc, where Q is the charge on
the conductor, is a purely geometrical quantity. For example, it is well-known that for a
parallel-plate capacitor C = £€pA/d, A being the surface area of the plates, d their separation,
and & the relative permitivity of the dielectric material in between [56]. In systems with a low

density of states, however, such as the 2DEGs in our experiment, this result does not usually
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apply, as here, unlike in a perfect metal plate, the density of states is no longer infinite. This
results in a 2DEG being, in general, unable to perfectly screen the electric field generated by
the surface gates, meaning that the parallel-plate approximation is usually no longer valid.
This effect can nevertheless be accounted for by considering the effects of band-
filling/band-emptying as the gate voltages change the density of states in each system.
Following from the initial proposal made in [86] regarding capacitive coupling between
a surface gate and a nearby 2DEG, we start by modelling our system as two capacitors

connected in series,
1 1 1

=4 3.34
c = Co + Co (3.34)
where Cg is the usual geometric capacitance, and Cp = e2dnop /dEgA the new quantum
capacitance per unit area (or alternatively, Cq = e*dnp /dEEL, as appropriate), with Fp =
hzkl% /2m* being the Fermi energy. The latter is measured relative to the bottom of the band
and therefore varies as the occupation changes. Depending on dimensionality, and using

equations (3.25), (3.26), and (3.33), the ratio of the two capacitances is then given by

ﬁznzggow for gate-wire system
—n -
C_G _ 4m*€2D 1D g y ) (3 35)
Co h’meg
for gate-2DEG system,
m*e2D

where D is the distance from the wells to the surface, w is the width of the wire, and m*
is the electron effective mass in GaAs. Here, we assumed nip = nyp - w, with njp and
nyp as defined in equations (3.25) and (3.26), respectively. Taking w = 50 nm, D = 85 nm,
m* = 0.067me, € = 12, and n1p = 33 um_l as representative values, we get Cg/Cq = 0.036
and Cg/Cq = 0.028 for 1D and 2D systems, respectively. In both cases Cqo > Cg, and so
the geometric contribution is expected to largely dominate in any capacitance measurement.
In the next section, we will use the COMSOL Multiphysics software package, which takes

into account only the geometrical contributions, to simulate these effects.

3.5.2 Numerical simulations

Our system consists of a GaAs/AlGaAs double quantum-well heterostructure with transla-
tional invariance along the x- and y-directions. For reference, the wells are, roughly, 70 and
100 nm below the surface. A set of surface gates is used in defining an array of quantum
wires in the upper well only. There is then a capacitve coupling between the wells, and

between each well and the surface gates.
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Fig. 3.6 COMSOL numerical simulations. (a) Mesh grid utilised in our calculation. Note
how the size of each node decreases as one approaches the quantum wells. (b) Potential
distribution. Here, we assumed Vgg = —0.6V, Vyyg = —0.57V, and Vpg=0 as boundary
conditions (see chapter 4 for details on device design and operation). There are two regions
relevant for our tunnelling measurements, marked as ‘2D-2D’ and ‘1D-2D’. (¢) Simulation
results. From here, the capacitance (per unit area) was extracted, see text. (d) Electrical field
profile [z-component (colourbar) and total field (arrows)] along (top) and across (bottom) the
wires.

Using the COMSOL Multiphysics 5.5 software package [1] to simulate our device
electrostatically (not self-consistently), we computed the potential distribution (see Fig. 3.6b)
and the electrical field (see Fig. 3.6d) in the dielectrics, given the known charge distributions
in each well, one of which had wires defined by the surface gates (see chapter 4 for details
on device design and geometry). Specifically, we took U (r) in the Poisson equation as the
potential induced by the gates, and solved by equating to either U (r) = Vs at the gates, or
Neumann boundary conditions otherwise. In our simulation, we also accounted for the finite
width of the 2D electron systems, though this made little difference to the results. Poisson’s
equation was then solved using a finite-element grid, the number of nodes chosen so that the

computation was free from finite-size effects (see Fig. 3.6a). Finally, in our model, the effect
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of ionised donor layers on both sides of the wells was ignored, since these form a static layer
of charge which is not affected by changes to the gate voltages. The results are shown in
Fig. 3.6¢ for both 2D-2D and 1D-2D tunnelling scenarios. The capacitance values (per unit
area), C = Q/VpcA, obtained were Cg/A = 0.0047 Fm~2 for the 2D injection region and
Cg/A=0.0103 Fm~2 for the 1D wire region in the single-subband regime (assuming a width
w ~ 30 nm for a characteristic density of ~ 33 um™"). In chapter 5 we will see that, while the
first result does indeed match the experimental data quite well, the second is about 4 times
larger than the extracted value, implying that Cqo /A = 0.0035 Fm~2. This is not surprising,
as screening is less efficient in 1D than 2D geometries, meaning that quantum capacitance

contributions, not accounted for in the COMSOL simulation, should become more prevalent.

3.6 Summary

Tunnelling spectroscopy has proven itself over the past years as a powerful technique capable
of mapping the dynamics of many-body systems across the whole spectrum of momentum
and energy. This has been shown to be extremely important, for not only has it allowed the
confirmation of many of the predictions made by the original, linear TLL model, but also,
more recently, it has provided much-needed evidence in support of its nonlinear counterparts.
Improvements in wafer quality, nanofabrication and tunnelling resolution have also recently
allowed for a full mapping to occur at high energies, with early results suggesting signs
of physics beyond the Tomonaga-Luttinger paradigm. We anticipate that, provided that
two conductors lie close together with a well-controlled tunnel barrier in between, this
technique can be applied to study different classes of materials, such as topological insulators,
superconductors, and itinerant magnets, therefore offering itself as a powerful tool for
probing novel emerging many-body physics in new systems. Note that, because it is not a
surface probe, it can in principle be carried out whilst varying both temperature, chemical

composition, hydrostatic pressure, and/or uniaxial stress.






Chapter 4

Device design, fabrication, and

measurement

Having now introduced the main framework behind magnetotunnelling spectroscopy, our
aim is to use it in mapping the dynamics of a one-dimensional strongly-correlated system
which, as argued in chapter 2, is expected to behave in a pronouncedly different way
from a Fermi liquid. In order to do so, we use a semiconductor double-quantum-well
heterostructure to create a vertical tunnelling spectrometer device where tunnelling to and
from a (quasi-)1D array to a 2D layer (i.e., the spectrometer) can be measured. We start this
chapter by discussing the design considerations as well as the principle of operation behind
this device (section 4.1). We then give an overview of both the semiconductor materials
utilised (section 4.2), as well as the fabrication techniques employed (section 4.3). For
details on wafer assessment and step-by-step fabrication protocols, see Appendix A and B,
respectively. A particular unique feature of our devices is the presence of microscopic air-
bridge interconnections between the surface gates. Since nanofabrication usually takes place
in two rather than three dimensions, we discuss in detail how these structures, suspended
about 100 nm from the surface, can be fabricated with high yield. We conclude by discussing
how the measurement was performed electronically, as well as the cryogenic systems utilised
(section 4.4).

The fabrication protocol for producing air-bridge structures has been reported in [58].

4.1 Design of a vertical tunnelling spectrometer

All experimental work presented in this thesis was obtained using a series of vertical spec-

trometer devices embedded into a semiconductor heterostructure. This consisted of two
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two-dimensional electron gases (2DEGs) in close proximity to one another, separated by a
barrier, so that electrons could tunnel back and forth between the two systems. As we saw in
chapter 3, tunnelling spectroscopy can then be used in tracking the shape of the respective

spectral functions, as both energy and momentum of the tunnelling electrons are varied.

Fig. 4.1 A vertical tunnelling spectrometer device. (a) Scanning electron microscopy (SEM)
images of a tunnelling device, showing the various surface gates used in setting up the
experimental conditions. See text and section 5.1 for details on gate operation. The white-
shaded region corresponds to air-bridge interconnections, see section 4.3.4 for further details.
(b) Split-gate/mid-gate architecture, used to selectively inject current in the top well only.
(c) Schematic representation of tunnelling between the 1D array (only one wire shown for
simplicity) and the 2D spectrometer. We measure momentum-resolved tunnelling to and from
these two systems, and map the elementary excitations in each by measuring the tunnelling
conductance while varying both energy AE o Vpc and momentum Ak o B. Electrons flow
from the source into the wire and tunnel between the layers in order to reach the drain.

Fig. 4.1a shows some scanning electron microscopy (SEM) images of a 1 ttm tunnelling
device. It consists of a total of 6 electron-beam-defined surface gates, used in setting up
both the tunnelling conditions as well as defining the experimental 1D system. In order to
observe resonant tunnelling, we start by establishing independent electrical contact to each
2DEG. Note that, since the quantum wells are just ~ 14 nm apart (see section 4.2 for material
details), this has to be done using selective surface-gate depletion techniques, as the wells
are too close to one another for individual ohmic contacts to be feasible. Our method also
avoids the use of back gates. We use a split gate (SG)/mid-gate (MG) architecture in order to
inject electrical current into the top well only (see Fig. 4.1b), while simultaneously using a
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barrier gate (BG) on the other side to deplete just the top well. Under this configuration, the
source ohmic is then only connected to the top 2DEG, and the drain ohmic only to the bottom
2DEG, meaning that any current measured between the two cannot arise from transport but
rather has to be due to tunnelling between the two layers, see Fig. 4.1c and Fig. 4.2a.

We use a set of wire-gates (WG), interconnected via air-bridges, in order to squeeze the
top 2DEG only into forming an array of 1D channels. As argued in section 3.5, and as we
will later show in chapter 5 once we determine the density range for the 1D system, capacitive
measurements put the width of our gated wires at around 20 — 50 nm, depending on the Vyyg
applied, and as such comparable with other semiconductor quantum-wire structures e.g.,
CEO-wires. Use of an array averages out impurities, length resonances, and charging effects,
as well as increasing the overall signal-to-noise ratio in our experiment. Here, most of the
devices fabricated consisted of ~ 400 1D wires in single-column arrangements. A natural
question that arises then is how do we ensure that the 1D wire array is indeed uniform and
that it is conducting as a whole. We will discuss this issue again in chapter 5 when analysing
the tunnelling data. For now, let us simply highlight that use of air-bridges is crucial in
ensuring that short-wire devices (i.e., < 5 um in length) remain uniform across the entirety
of the 1D channel. For future reference, we will refer to the tunnelling signal coming from
the WG region (i.e., between the 1D channels and the bottom 2DEG) as ‘1D-2D tunnelling

signal’.

(a) (b)
BG<0

SG/MG WG BG=CG<0 SG/MG WG CG=0
L1 I [ 1] N

1D wire-array singlﬂri
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residual tunnelling
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Fig. 4.2 Device operation modes. (a) Tunnelling mode. We measure tunnelling to and from a
1D wire-array to a 2DEG by establishing independent ohmic contact to each quantum well.
This is achieved by selectively biasing both split-/mid-gate and barrier gates so that source
and drain are only connected to the top and bottom wells, respectively. (b) Transport mode.
Use of a cut-off gate allows us to locally open a gap in the barrier-gate potential. This enables
transport to be measured in the top well along one wire only. Note that while tunnelling to
the bottom well still occurs, it contributes to less than 1% of the total signal.

Another design consideration has to do with how electrons are injected into the wires.
Note that, as seen in Fig. 4.1a, current flows from the SG/MG point into the 1D channels via

a region running parallel to the length of array. This region is wide enough (0.45 — 0.6 um)
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that the electron gas is not significantly confined here, and as such can be treated as being
2D. Nevertheless, since current does have to flow through it in order to reach each wire,
electrons will also be able to tunnel from here into the bottom 2DEG. We collectively refer
to this region of the device as ‘parasitic’, for it will account for a constant background of
2D-2D tunnelling signal when mapping the wires. Accordingly, the gate running over it is
called the ‘parasitic’ gate (PG), and while it does not allow us to eliminate the additional,
undesirable 2D-2D background, it can be used to slightly modulate the electron density of
the 2DEG underneath it. This allows us to shift all background features in k-space, therefore
readily distinguishing them from those coming from the 1D array. Indeed, as we will see
later in chapter 7, use of a PG is crucial in establishing that ‘replica’ features are coming
from the 1D channels, instead of some form of background artifact. Note also that, when the
bias on WG is sufficiently negative, the wires will be pinched off and therefore unable to
conduct. Under these circumstances, the only region under which current can flow is exactly
that covered by PG. We will see in chapter 5 how this can be used in separately mapping the
2D-2D background signal, which can then be used to isolate the 1D-2D signal of interest.
A final gate also present in some of our devices is the ‘cut-off’ gate (CG). For most of
this work, this gate will be biased together with BG, fulfilling the same role of depleting the
top layer so that current is forced to tunnel in order to reach the drain. However, when set
to zero, CG allows us to locally open a gap in the BG, meaning that current can now flow
from source to drain along the top well only, without having to tunnel (see Fig. 4.2b). For
reference, since the transport resistance is typically of the order of kQ while the tunnelling
resistance ~MQ, the latter will be largely negligible with respect to the first. Using CG
therefore, we can measure the transport properties of a single wire rather than tunnelling in

the entire array.

4.2 Wafer materials

As stated in section 4.1, we use a semiconductor double-quantum-well heterostructure, grown
via molecular-beam epitaxy (MBE), in order to fabricate our vertical spectrometer. In total,
two different wafers were used across all devices present in this work, see Appendix A for
details on structure and characterisation results. In summary, each wafer comprised of two
identical 18 nm GaAs quantum wells separated by a 14 nm Al 165Gag g35As superlattice
tunnelling barrier [10 pairs of Alg 33Gag g7As and GaAs monolayers], and with 20 nm and
40nm Alg 33Gag g7As spacer layers above and below the wells, respectively. These were
followed in both cases by 40 nm Si-doped layers of Alg33Gag ¢7As (donor concentration
1x10% m_3). Wafer 1, however, differed from Wafer 2 by having a 100x2.5 nm/2.5 nm
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GaAs/AlGaAs superlattice below the 350 nm AlGaAs under the lower quantum well. The
distance from the top of the upper well to the surface was ~70 nm, including a GaAs cap
layer to prevent oxidation. The composition of both wafers is shown in Table A.1. Fig. 4.3
shows the profile of the conduction band.
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GaAs/AlGaAs superlattice
GaAs

AlGaAs
AlGaAs —

AlGaAs, Si-doped

+ bulk

0.2 -
L i E B Tronition
QuaLrJISLE):\rWeII Qual;mzrjvrirWell B
_02 | | | |
0 50 100 150 200 250

Thickness from surface (nm)

Fig. 4.3 Conduction-band structure of the semiconductor heterostructure used. Note than the
top and bottom wells are roughly 70 and 100 nm below the surface. The calculation was run
assuming a +0.5 eV Schottky barrier at the surface as well as fully ionised donors [adapted
from [57]]. Inset: side profile of the GaAs/AlGaAs heterostructure used. See Table A.1 for
details.

Note that, in order for this type of device to work, a crucial aspect of the design is
appropriate engineering of the (superlattice) tunnelling barrier. This is because, on one
hand, tunnelling spectroscopy requires that the barrier is thin enough so that a measurable
signal can be obtained. Indeed, it is well-established that the tunnelling probability typically
decays exponentially with barrier thickness. On the other hand, and as derived in section
3.3, the boost in momentum of the tunnelling electrons when subject to an in-plane field
is Ak = eBd / h. Depending on the size in momentum of the system which we wish to map
(i.e., its spectral function A(k, @), characterised by the Fermi wavevector kg), one is then
forced to go to either higher magnetic fields or, instead, use thicker barriers. By using a
superlattice we are able to find a compromise between these two competing conditions,
simultaneously increasing the physical separation between the two quantum wells, hence

minimising screening/inter-layer interactions, while also having a potential barrier low
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enough so that tunnelling signal can nevertheless still be detectable. This also ensures that
the maximum available momentum boost is increased and that both systems are kept separate
from one another.

Before starting device fabrication, transport characteristics, such as carrier density and
mobility, were also assessed in order to ensure good material quality. We measured 4-
terminal quantum-Hall and Shubnikov-de Haas effects using standard Hall-bar geometries,
see Appendix A for details. The electron concentrations obtained were of 3 (2.2)x 10" m—2
with mobilities of 120 (165)m>V~!s~! for the top (bottom) wells for Wafer 1, and 2.85
(1.54)x 10" m~2 and 191 (55) m*V~!s~! for Wafer 2, as measured at 1.4 K.

4.3 Nanofabrication

A significant challenge when fabricating nanodevices, such as the ones discussed here, is
that they all have components whose dimensions are significantly smaller than particles of
airborne contamination, often present in a standard laboratory environment. If many such
particles were to be present during fabrication, then the yield of the entire process would
be severely reduced. This can, however, be easily solved by fabricating in an environment
where concentration of contaminants is reduced to a minimum. Such controlled environment
is called a cleanroom.

The first three steps of fabrication, specifically development of the mesa, ohmics, and
optical gates, were all carried out using photolithography. This is a standard microfabrication
process which allows a pattern to be transferred from a pre-manufactured photomask, usually
a piece of quartz glass coated with a layer of chromium, onto a photo-sensitive coating
called a photoresist. A series of chemical treatments then allows for either the exposed or
unexposed regions to be removed, after which metal can be deposited, thus imprinting the
desired pattern onto the substrate. A photoresist is said to be positive if the region exposed
to light becomes soluble, and negative if the opposite. Because of its optical nature, the
dimensions of the smallest features that can be patterned using photolithography are limited
by the diffraction limit. Current state-of-the-art tools, using deep ultraviolet light, allow for
minimum feature sizes of about 50 nm. In practice, however, manual mask aligners are much
more commonly used and here, user errors can play a big role. Consequently, the lower limit
of pattern dimensions is more realistically placed at about ~ 1 um. Below we outline the
main steps involved in the fabrication of our devices. For a detailed step-by-step protocol,

see Appendix B.
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4.3.1 Mesa

A mesa is a type of structure commonly used in microelectronics where part of the substrate
is etched back, thus allowing a device to be isolated in the non-etched region. This is
usually done so as to reduce possible alternative current paths, as well as potential parasitic
capacitances arising from connections to the external world.

The surface structure of all devices present in this work was fabricated on a 200 x
1000 um long Hall bar, aligned so that the long edge would be parallel to the major flat i.e.,
the high-mobility direction of the wafer. Prior to all photolithography, all samples were
cleaned in acetone and IPA (isopropyl alcohol) while under ultrasonic agitation, before being
dried in nitrogen and baked on a 115°C hotplate to ensure all solvents dried out. They were
then coated with Shipley Microposit S1813 positive photoresist, spun so as to achieve an
approximate thickness of ~ 150nm, after which the Hall bar pattern was exposed, see Fig.
4.4a. The chips were then developed using Microposit MF-319 developer (Fig. 4.4b), with
the exposed resist being removed, while the unexposed regions remained to protect the mesa.

(a) (b) (©) (d)
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Fig. 4.4 Fabrication of the mesa using photolithography. (a) Exposure of the pattern. (b)
Development of the (exposed) photoresist. (c) Etching of the exposed region. (d) Removal
of the left-over resist. Note that both quantum wells have been etched away in every region
except the mesa.

We used a wet-etch process in defining the mesa. Here, the surface covered by the
(undeveloped) photoresist was protected from the chemicals, while the exposed regions were
dissolved away. There are several choices of etchant available for use in semiconductor
materials, the differences usually being etching speed (which controls the precision of the
etching depth) and, most importantly, etching profile (under-cut, over-cut, vertical, etc).
Because both of our quantum wells are quite deep below the surface, we aimed for a shallow,
over-cut profile in order to avoid possible discontinuities over the mesa edges. The etchant
used consisted of a 1:8:1000 H,O,:H>S0O4:H;0 solution, see Fig. 4.4c. Since we wanted both

2DEGs to remain isolated in the mesa, and since the lower quantum well is approximately
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100 nm below the surface, we aimed at etching between 150-170 nm. The etch rate was
determined using an iteration of DekTak surface profile measurements. For the present
volume ratio, the total etch time at room temperature (21°C) was usually 5-6 min. Once
etching was concluded, the sample was again cleaned in acetone and IPA to remove any

left-over resist, see Fig. 4.4d.

4.3.2 Ohmic contacts

In order for current to be injected into our devices, electrical contact to both 2DEGs must be
established. We achieved this by annealing an alloy of AuGeNi (gold-germanium-nickel)
into the crystal. This process is well established in the literature and allows for low-resistivity
contacts to be obtained at low temperatures. Because the metal-semiconductor junction

formed has a linear current-voltage response, these are commonly known as ohmic contacts.
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Fig. 4.5 Fabrication of the ohmic contacts. (a) Exposure of the pattern onto a LOR5SB+S1805
resist stack. (b) Development of the photoresist. Note that the choice of resists was made
so to ensure an under-cut profile. (c) Evaporation of the AuGeN:i alloy. (d) Lift-off using
positive resist remover SVC14. (e) Rapid thermal annealing of the evaporated alloy. This
is done so that the metal can diffuse into the sample, therefore establishing contact to both
wells.

The first half of the process used to fabricate the contacts was relatively similar to that
described in section 4.3.1. We patterned a total of four contacts so that current could be
injected both along and across the mesa. For the purposes of this work, however, source and
drain were normally chosen as the two contacts at the end of the mesa, meaning that injected
current flow along the major flat. We started by spinning two layers of photoresist onto the
sample, MicroChem LORSB followed by Microposit S1805, before exposing the pattern (Fig.
4.5a). These two resists differ from one another in that LOR5B has a higher sensitivity to UV
radiation than S1805, resulting in an under-cut profile when developed, see Fig. 4.5b. This
was crucial for ensuring good metal lift-off. After development, the samples were plasma

etched in order to remove any leftover resist, in a process known as descum, followed by an
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HCl dip (1:9 HC1:H;0), before being placed in a high-vacuum thermal evaporator, where
approximately 150-200 nm of AuGeNi alloy was deposited, see Fig. 4.5c.

Following evaporation, the chips were then immersed in positive resist remover SVC14
in order to separate the deposited metal from the photoresist (Fig. 4.5d). Only the metal in
direct contact with the substrate (i.e., evaporated onto the exposed regions) remained. Finally,
in order for the alloy to diffuse into the sample, we used a rapid-annealing oven, heating the
sample quickly up to 430°C, for about 80 seconds. This ensured that the alloy diffused well
into the heterostructure, establishing contact to both quantum wells, see Fig. 4.5e.

In order to check the quality of the electrical contacts obtained, we then tested these at
both room and nitrogen (77 K) temperatures using a probe station, with typical values being
of about ~6kQ and <1 kQ, respectively. Because GaAs is a photovoltaic material, these
values can change significantly if exposed to light. In order to increase the thickness of the
bond pads to the optical gates (discussed in section 4.3.3), ohmic metal was also deposited
off the mesa in the regions where the optical pads will later be defined. Note that here both
2DEGs have already been etched away (see section 4.3.1), and therefore these should not
be connected to the quantum wells. In order to check that this was indeed the case, typical
resistance values between the ohmic contacts and the ohmic gate pads should be of the order
of a few MQ, with anything significantly below this usually indicating that some 2DEG
remains outside the mesa and, therefore, was not successfully etched away.

The ohmic contacts fabricated typically have a (surface) contact resistance of Rc ~ 0.8 Q2
at 4 K, the highest temperature at which the devices are assessed, as reported in [15]. In
this work, using high-mobility GaAs/AlGaAs samples very similar to our own, a drop in
resistance to about Rc ~ 0.2 Q2 was observed when below 0.9 K, which the authors attributed
to the presence of a superconductor in the AuGeNi contact. Since superconductors typically
have low thermal conductivities, this result effectively limits one’s ability to cool down the
2DEQG to ultra-low temperature regimes (<10 mK) if using AuGeNi contacts. We highlight,
however, that this result does not hinder the analysis or conclusions of the present thesis, as

no measurements have been carried out below ~ 300 mK.

4.3.3 Surface gates

The final step of optical lithography is the optical gates, which allow electrical contact to
be established between the electron-beam-defined gates (discussed in section 4.3.4) and
the external world. The fabrication process is identical to that of the ohmic contacts up to
the metallisation stage (see Fig. 4.7a-d). Here, however, we instead evaporate gold (Au),
thus forming a Schottky barrier at the metal-semiconductor interface. In order to improve
adhesion, a thin layer of titanium (Ti) is usually also evaporated first, as it adheres strongly
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Fig. 4.6 Measurement of the surface resistance Ryop of an Ohmic contact used in this work,
courtesy of C. Beauchamp (Royal Holloway, University of London). Here, a current of
I =0.1mA is driven through the contact while Vi, is being measured. The dimensions of the
ohmic contact are 210x300 um. Note that in two-terminal measurements the resistance of
the leads, in this case the cryostat wiring connected to the sample, needs to be subtracted.
For this setup, that value was 14 Q. The ohmic contact is then observed to undergo what
seems like a broad transition into a superconducting phase, see [15] and text for discussion.
Adapted from [14].

to both the Au as well as to the GaAs surface. For the devices fabricated in this work, 25 nm
of Ti followed by 120-150 nm of Au was usually applied. Note that, in principle, one aims to
evaporate as much gold as possible (given, of course, the limits of the thickness of the resist

double-layer), to facilitate the bonding process.

4.3.4 Electron-beam lithography

As was discussed above, photolithography is limited in the size of the smallest features it
can pattern by the wavelength of the radiation used. For deep UV, this usually corresponds
to about ~ 1 um at its finest. In order to fabricate at sub-micron scales, electron-beam
lithography (EBL) can then be used for patterning an electronic device. The principle of
operation is identical to that of photolithography, whereas resist is spun onto a substrate after
which selective exposure allows for a pattern to be imprinted. Here, however, instead of
radiation (i.e., photons), which are constrained by the diffraction limit, a beam of highly-

energetic electrons is used instead. All EBL done in this work was carried out using a fully
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Fig. 4.7 Fabrication of the optical surface gates. All steps are similar to those used for the
ohmics. These are (a) exposure of the pattern, (b) development of the exposed regions, (c)
metal evaporation (here, Ti followed by Au), and (d) lift-off.

automated Vistec VB6 UHR EWF system operating at 100kV with a 4 nm spot size. The
best alignment precision of this system is < 15 nm. The primary sub-micron features present
in our device are the tunnelling device itself which, as we saw in section 4.1, is made up of
a number of surface gates used in establishing both independent electrical contact to each
2DEG as well as defining an array of 1D channels. A set of air-bridge interconnections is
also used to connect the wire array in a way that ensures channel uniformity. In order to
fabricate these structures, two stages of EBL were required. We will now outline each of
these in detail.

First EBL stage: surface gates

All surface gates, including split-, mid-, barrier-, cut-off, ‘parasitic’, and wire-gates, used
in setting up the tunnelling conditions and defining the 1D wire array, were patterned using
EBL (see Fig. 4.1a for SEM micrographs of a 1 um device). For reference, the mid-gate
corresponds to a 0.1 um wide gate in between two 0.1 — 0.2 um gaps (see Fig. 4.8a). The
wire-gates, on the other hand, can be 1 — 18 yum in length and 0.15 — 0.3 um wide, with their
separation varying between 0.15 —0.17 um (see Fig. 4.8b). Overall, these correspond to the
smallest lithographic features present in these devices. Note that change of the lithographical
dimensions, particularly regarding the wire-region, only slightly alters the voltage values
at which the devices are operated. This has been characterised and optimised (see [60]) as
to ensure that 3 —4 1D subbands can be defined in the top well before pinch-off, while the
bottom well remains unperturbed.

We started by spinning a layer of MMA(8.5)MAA copolymer (diluted 1:1 in ethyl-
lactate), followed by A4 (4% solid content in anisole) PMMA with a molecular weight of
950k [diluted 2:1 to methyl isobutyl ketone (MIBK)]. The spin speeds were calibrated so as

to result in a double-layer stack approximately 125 and 100 nm thick, respectively. After each
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Fig. 4.8 Electron-beam-defined gates and dimensions, showing (a) split-/mid- and (b) wire-
gate regions.

layer was applied and baked, the sample was exposed to a 100 kV ebeam (dose 550 pCcm™2).
The pattern was then developed using a HyO:IPA (3:7 ratio) mixture at 5°C.

After development, the remaining steps were identical to those done already under normal
photolithography: first, the sample was plasma etched to descum, followed by an HCI dip
to remove oxide and any scum remaining on top of it; after that, it was placed in a thermal
evaporator to be metallised. In order to ensure good lift-off, a standard rule of thumb when it
comes to EBL patterning is to not evaporate more metal than about a third of the thickness of
the base layer. In our samples, therefore, all surface gates were formed by evaporating about
5 nm of Ti, followed by 20 nm of Au. Lift-off was carried out overnight in acetone. Note
that at this stage, use of an ultrasonic bath to remove any excess metal was avoided as it was
found to damage many of the electron-beam-defined gates. For alignment reasons, the first

EBL stage was also often done before the optical gate lithography.

Second EBL stage: air-bridges

As will be discussed in chapter 7, one of the main experimental results presented in this thesis
has to do with the emergence of extra 1D ‘replica’ modes, in addition to the main 1D subband,
in one-dimensional systems at finite length. In order to explore such regime, however, it
became necessary to be able to fabricate wires at progressively shorter and shorter lengths:
for reference, the work done in [60] used tunnelling devices both 37.5 ym and 17.5 ym in
length, while [57] brought this value down to 10 tm; [94], on the other hand, managed to
fabricate a 1 um array, though in order to do so a multi-column geometry was required,
and so ‘parasitic’ and fringing effects were also greatly enhanced. In contrast, the results
presented in this thesis were all obtained using 1 — 5 um-long single-column wire arrays, in

a way that ‘parasitic’ background effects could be reliably suppressed and/or subtracted.
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Fabricating an array of 1D wires this short naturally then raised the question of how
to ensure that the channels remained uniform along their entire length. Indeed, initial use
of a backbone to connect all wire gates led to significant levels of non-uniformity being
observed, as expected, since the channels were being made significantly narrower towards
one end. We solved this problem by developing a novel electron-beam lithography technique
for patterning air-bridges, i.e., three-dimensional connections suspended above the surface.
While the initial motivation for developing this method was fabrication of uniform, shorter
wire arrays, air-bridge applications are vast and widespread. For instance, it is often the case
that when fabricating nanoscale devices, one ends up having to overlap different layers of
conductor, a way of doing so being via depositing insulating material in between layers to
prevent shorts. This is both complicated as well as detrimental to device operation, as both
insulator and metal need to be separately patterned. On the other hand, by using air-bridges,
one would have access to a straightforward and reliable process for connecting isolated
control gates and/or reducing the number of external leads by wiring two or more gates in
parallel, making it therefore a more desirable technique to use.

Our technique corresponds to a single-exposure, multi-resist EBL process capable of
forming air-bridge structures with strong metal-metal and metal-substrate adhesion, at very
high yield. These correspond to microscopic metallic bridges, suspended about 100 nm above
the surface, and which can be used to interconnect both surface gates defined in a first EBL
stage, as well as going over other gates. The latter greatly increases the flexibility in device
design, as one is now effectively fabricating in three, rather than the usual two, dimensions.
Using our technique we were able to fabricate up to 6000 bridges on each chip, as well as
individual bridges up to 10 um in length. Another advantage of air-bridge interconnections
is that, as the name suggests, they are suspended in air rather than on top of a solid dielectric.
This minimises the capacitive coupling between the bridge and the underlying 2DEG, which
for a given bridge height d, and taking into account the parallel-plate approximation, is given

by
A
c—_—_ %
d/'g +dsub/8sub

where dq,, and &}, are the equivalent substrate properties. Therefore, C can be minimised by

4.1)

either maximising d or, alternatively, minimising &, for instance by having an air gap rather
than PMMA.

Fig. 4.9 outlines the fabrication procedure. We started by coating the sample with PMMA
with a molecular weight of 950k (4% solid content in anisole diluted to a 2:1 ratio in MIBK),
followed by MMA(8.5)MAA copolymer (9%, 1:1 ratio in ethyl lactate), and finally 100k
PMMA (undiluted) (Fig. 4.9a). Note that, in between each layer being applied, the sample
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was baked at 110°C for 10 min. in order to dry off solvents and harden the resists. The
sample was then patterned by selective exposure to two doses, D}, and Dy, referred to as the
pedestal and bridge doses, respectively (Fig. 4.9b). While D, was high enough so that all
resist layers could be removed by the developer, Dy, only removed the top two layers, leaving
the bottom layer in place. The base doses used, after accounting for proximity correction,
were 880 and 600 uC/cm?, respectively. In the resist profile after development, therefore, the
regions exposed to Dy, remained covered with 950k as this has a much lower sensitivity than
the other resists. This is where the deck of the bridge will be formed. We also highlight that
because copolymer is much more sensitive than PMMA, the middle layer will be under-cut
with respect to the top layer. The next step was to evaporate metal in order to form the
bridges (Fig. 4.9¢). We evaporated approximately 110 — 130 nm of gold (i.e., roughly equal
to the thickness of the bottom-most resist layer), after which the sample was left overnight in
a bottle of acetone before being placed in a water bath at 45°C for about 90 min. before final
lift-off (Fig. 4.9d). The resulting air-bridges were suspended over the substrate at a height
roughly equal to the thickness of the bottom layer, as confirmed by SEM.

In order to achieve a reliable process, it was necessary to be able to control the thickness
and uniformity of the resists. We calibrated the thickness of each layer as a function of
spinner rotation speed for each type of resist used in the process. Using ellipsometry, we
then confirmed that the obtained values were within £10% of the target values: ~ 130nm
for 950k, ~ 300nm for copolymer, and ~ 130nm for 100k. We note, however, that there is
flexibility to change these numbers, with successful working samples having been obtained
within +£20% of these values, after adjustment of the e-beam dose. Fig. 4.10 and Fig. 4.11
show some SEM micrographs of air-bridge interconnections. We successfully fabricated
over 6000 bridges on-chip as well as individual bridges up to 10 um in length, with average
yields of about 90%.

By far the most challenging, and most common, cause of failure, in the air-bridge process
was achieving good adhesion between the pedestals and the underlying material. Because
the choice of developer has a significant impact on the surface roughness of the developed
region, we used a HyO:IPA (3:7 ratio) mixture at (54 0.5)°C as this was found to reduce
the amount of residue left behind. Numerical calculations using the average development
rates predicted an optimum development rate of about 35s. In reality, however, this was
found to be closer 60 —70s. A potential explanation for this mismatch might be due to
changes in the development rate of different resists as development progresses and solute
accumulates, something which was not accounted for in our model. While no significant
cases of over-development were detected, development times under 55 s were also found to

lead to poor metal adhesion. In practice, therefore, a simple way to home in on the optimum



4.3 Nanofabrication 77
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Fig. 4.9 Air-bridge fabrication via a three-layer PMMA single-exposure process. (a) Triple-
layer spin-coating of the sample. (b) Selective exposure by electron beam, followed by
development. Two EBL doses are used: the pedestal dose, D}, whose regions are completely
cleared from resist after development, and the bridge dose, Dy, which only affects the top
two layers, leaving the bottom layer intact. (c) Metallisation via thermal evaporation. (d)
Lift-off. The air-bridges are formed at a height slightly less than the original thickness of the
bottom layer.

development time for a particular sample, thickness profile, and/or device was to divide the
chip into multiple batches and proceed iteratively.

As a final comment, the integrity of the air-bridge structures can often be easily checked
using optical microscopy. Here, even though individual bridge resolution is not possible, the
whole structure should nevertheless be visible as a thin, iridescent and, most importantly,
uniform stripe, making potential breaks and/or regions of poor adhesion easy to detect. Note
that, apart from sacrificial samples, we refrained from using SEM so as to avoid potential
contamination by electron-beam-induced deposition. Furthermore, samples were also tested
for electrical continuity between contacts, as well as potential shortages to nearby gates. For
the purpose of our tunnelling devices, there are a set number of tests which can be carried
out in order to ensure good bridge adhesion and continuity while simultaneously avoiding
having to image them directly. These will be discussed later when analysing and discussing

the main results in chapter 5.
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Fig. 4.10 SEM micrographs of an air-bridge device. Once calibrated, the process can be
repeated and scaled up in number to very high yields, with devices containing over 6000
on-chip air-bridges having successfully been fabricated.

(b)

Fig. 4.11 SEM micrographs showing (a) a 5 gm and (b) 10 um air-bridge interconnection.
The air-bridge process can therefore also be scaled up in length. Note that in (a) accidental
misalignment put the right-hand pedestal in a gap. On the other hand, the curvature seen in
(b) is suspected to result from surface tension with the developer during the development
and drying process. Presence of a shadow, nevertheless, establishes that the structure is still
suspended.

4.3.5 Sample packaging and bonding

The final step of the fabrication process concerns bonding the sample onto a package so that it
could be loaded into a cryostat in order to be measured. Overall, all the steps described above
were usually done on a 12 mm x 12 mm chip, which allowed a 5x5 chip array to be patterned,
each containing 4 separate tunnelling devices, giving a total of 100 potential working devices.
Typical yields of the entire process usually ran between 40 — 50 %. Individual chips were
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then separately scribed off and cleaved away from the processed chip before being glued onto
a 20-pin ceramic lead-less chip carrier (LCC) with GE varnish, see Fig. 4.12. Bonding to the
LCC pins was done using gold wires on a wedge-bonding machine. Use of a wedge bonder,
as opposed to, for example, a ball bonder, was crucial to ensure that the electron-beam gates
were not damaged by possible electrostatic discharges. In order to further minimise this risk,
an air ioniser was also utilised whilst bonding was taking place. Note that by far the most
common cause of device failure was damage to the mid-gate, one of the smallest features
patterned in our devices. Therefore, it was important that both during bonding as well as
every time the device was handled from there onwards, care was taken so that the sample

remained grounded, in order to minimise static.

Fig. 4.12 Images of a complete device. All devices were bonded to an LCC package before
being measured in a cryostat. Care was taken so as to minimise the risk of electrostatic
discharge. For reference, each chip contains a total of 4 potentially working tunnelling
devices, see red dashed boxes.

4.4 Low-noise and low-temperature measurement setup

Having now outlined both the considerations that went into the design of our experimental
device, as well as how it was fabricated, we conclude this chapter by discussing the mea-
surement setup. As seen before, the 1D system of interest in our experiment corresponds
to an array of, approximately, 400 wires, of variable length (1 — 18 um) and carrier density
(ne ~ 15— 60 um~"), meaning that, at its lowest density and length, the dynamics being

probed arise from, at most, 6000 electrons. This results in a signal of interest which is, unsur-
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prisingly, quite small. Overall, the total current is of the order of 10~'9 A, making therefore

both data acquisition as well as noise filtering techniques of incredibly high importance.
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Fig. 4.13 Schematic of the circuit used for measuring the tunnelling conductance. See text
for details.

All measurements present in this work were carried out at temperatures between 300 mK
and 4 K using a sorption-pumped >He cryostat. The circuit setup used can be seen in Fig.
4.13. Here, a sinusoidal excitation voltage Vac = 1V at 73 Hz was used to drive a current
across the sample, with the frequency having been selected to avoid pickup from the mains.
Note that a 1:1 transformer was used so to decouple the DC and the AC grounds, so as to
minimise mains pickup due to earth loops. The AC signal then went through a potential
divider in order to be reduced by a fraction R,/R; = 10~* before reaching the sample.
We then performed our tunnelling spectroscopy measurement (see chapter 3 and section
4.1 for details), with a DC bias Vpc = 10V being applied in order to offset the Fermi
energies of each system in the sample, after having also been reduced by R, /R3 = 1073,
This measurement was repeated as an external, in-plane magnetic field B was varied, so that
momentum-resolution could also be achieved, with the highest field used in our experiment
being 7 T. The outgoing, tunnelling current was then converted into a voltage using a current
pre-amp at 10% — 107 V/A gain, before being measured by a lock-in amplifier. Note that this
introduces an input offset voltage Vpc, which has been accounted for in all measurements
shown. Vg 1s the voltage bias applied to each surface gate, each coupled to its own gate
filter (two 1 MQ resistors and one 100 nF capacitor) to protect from voltage surges such as
electrostatic discharges. All electronic devices were disconnected from the main electrical
network and ran on battery power to minimise noise. The cryogenic system inside which the

measurements were performed also sat on low vibration supports.
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4.5 Summary

Since its inception, one of the biggest challenges in the field of one-dimensional strongly-
correlated systems has been the development of experimental devices capable of emulating
Luttinger-liquid-like behaviour. In the absence of perfect 1D systems, several candidates
where quasi-1D geometries are present, such as carbon nanotubes, edge states, and particular
classes of superconductors have since been explored. This thesis focuses on a different
platform for exploring 1D physics, that of semiconductor quantum wires. In this chapter we
have discussed the considerations that went into the design and fabrication of all devices
presented in this thesis, together with the measurement protocol employed. One of the
key outputs of this work has been the development of a novel electron-beam-lithography
technique for fabricating microscopic air-bridge structures suspended above the surface. This
allowed for much-improved flexibility in both design as well as number of gates implemented
on each device. We expect that due to its simplicity, together with potential scalability
both in number and in length (having successfully fabricated over 6000 bridges on a single
device and single bridges up to 10 um), this technique should be of use to anyone involved
in nanofabrication. A straighforward and reliable way for bridging between regions is a
particularly needed solution in areas such as quantum computing, where interconnecting

qubits can often prove challenging.






Chapter 5
Two Fermi seas for spin and charge

In this chapter we report on the main experimental finding of this work, the observation
of two separate Fermi seas for spin and charge excitations respectively. We start by giving
an overview of how independent electrical contact can be established to each layer so that
tunnelling spectroscopy can be performed (section 5.1). The discussion in this section fol-
lows largely from that started in section 4.1, where we discussed device design. We then
characterise the 1D wire array by mapping the 1D subbands and extracting the respective
electron densities (section 5.2), before using them to estimate the interaction strength in our
systems via the interaction parameter rg (section 5.3). We then analyse the full dispersion
maps obtained from performing tunnelling spectroscopy on our devices. We start by dis-
cussing the 2D-2D ‘parasitic’ tunnelling signal, showing how it can be used to calibrate for a
number of known parameters (section 5.4), before analysing the 1D-2D tunnelling signal of
interest (section 5.5). Here, we show how a single Fermi sea, even when assuming separate
dispersions for spin and charge, is unable to fully capture the observed resonances. Next, we
introduce the 1D Fermi-Hubbard model, using it to calculate the full dispersion spectra (i.e.,
both at low and high energies) of our system (section 5.6). We conclude by showing how
the 1D signal discussed before can now be fully explained if two Fermi seas, rather than the
usual one, are assumed, as predicted by Hubbard (section 5.7). Note that all data presented
and discussed in this chapter were obtained in the single-subband regime. Multiple-subband
occupancy data will be discussed later in chapter 6.

All the material and results reported in this chapter can be found in [124]. The theoretical
discussion and numerical simulations presented in section 5.6 and later applied to our data

were carried out by O. Tsyplyatyev.
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5.1 Setting up of the tunnelling conditions

In section 4.1 we discussed the design considerations that went into the fabrication of the
vertical tunnelling spectrometer devices. In particular, we saw how selectively biasing a
number of electron-beam-defined surface gates could be used in setting both tunnelling
as well as transport configurations (see Fig. 5.1a). Let us now discuss in more detail how
tunnelling mode was achieved

In order for tunnelling spectroscopy to be used in mapping the dynamics of both 2D
and 1D systems, current must only be allowed to flow from source to drain via inter-layer
tunnelling. When ohmic contacts are annealed into the sample, however, electrical contact is
established to both layers. This means that, in the absence of any biases applied to the surface
gates, most of current will instead flow along each individual layer, bypassing tunnelling. In
order to establish independent contact to each layer (while avoiding the use of alternative
structures such as back gates), we therefore use a combination of split-gates (SG)/mid-gates
(MQG), barrier gates (BG) and cut-off gates (CG).
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Fig. 5.1 Setting of the device in tunnelling mode. (a) Scanning electron microscopy (SEM)
micrograph of a tunnelling device, showing all relevant electron-beam-defined surface gates.
(b) Gate operation and setting of tunnelling conditions. We start by negatively biasing SG
(1), followed by positively biasing MG so that conductance is only allowed in the upper
well (2). Next, we negatively bias both CG (3) and BG (4) but enough to only deplete the
upper well. In this configuration, any signal measured between source and drain must result
from direct tunnelling between each well. Inset: by varying WG and/or PG one can observe,
respectively, 1D-2D and 2D-2D tunnelling between the wells (5 and 6). (c) Side profile of a
device in tunnelling mode.
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We start by first negatively biasing the SG so that both layers are depleted underneath it,
see sweep @ in Fig. 5.1b. Two sharp drops in conductance are observed, first at ~ —0.3V
followed by ~ —0.7V, each corresponding to the point at which the electron gas is depleted
in the upper and lower layers, respectively. The fact that the conductance value does not drop
immediately to zero past ~ —0.7 V reflects the fact that there is a gap in SG, see also Fig.
4.8a. Beyond this point, as Vg is made progressively more negative, a series of conductance
plateaux start being observed. These can be understood within the context of the Landauer-
Biittiker formalism, where each plateau corresponds to a conduction channel contributing
Go = 2¢?/h to the total conductance. Therefore, as the confinement potential in the gap is
made progressively stronger, fewer channels are allowed to conduct until eventually G hits
zero. The MG can then be positively biased so that a narrow conduction channel opens in
the top layer only, see sweep @ Under this configuration, one of the ohmics is now only
connected to the top layer.
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Fig. 5.2 Split-gate/mid-gate characterisation. (a) Conductance G vs split-gate voltage Vsg as
mid-gate voltage Vg 1s increased from O to +0.8 V in increments of 0.02 V. (b) Same data
as that shown in (a) but now normalised in units of the conductance quantum Gy = 262 /h,
after having subtracted a series conductance of Gg =1650 uS. Note how the conductance
increases in steps of Gg up to about (7 — 8)Gy, as expected from a ballistic channel.

In order to ensure that current is indeed only being injected into the top layer, we can
further analyse the use of a SG/MG geometry. Fig. 5.2a shows a series of G vs Vsg sweeps
as Vg 1s increased from O to +0.8 V. Fig. 5.2b, on the other hand, shows the same data in
units of G once a series resistance (Ry = 606 Q, Gy =1650 uS in units of conductance) has
been subtracted. Note how the conductance signal increases in steps of either Gg or 2Gy,
depending on whether one channel, in either layer, or two channels, one per layer, are being

activated. This can be more easily visualised from Fig. 5.3, where three different regions,



86 Two Fermi seas for spin and charge

each corresponding to either the top, bottom, or a mix of both layers, are observed. In order
to ensure that only channels in the top layer are able to conduct, therefore, we choose Vsg

and V)G so that they lie in upper-well region.
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Fig. 5.3 Independent ohmic contacts. Conductance differential dG/dVsg vs mid-gate voltage
VMg and split-gate voltage Vs of the data shown in Fig. 5.2. Here, three regions can be
identified, based on whether the device is conducting in only one or both wells. Note that
this can already be seen from Fig. 5.2b where G is observed to increase in units of either
Gy or 2Gy. Based on this map, the values of Vsg and V) g are chosen so that current is only
being injected into the top well.

Once the SG/MG are set up, at the other end of the device, the BG and the CG are biased
together so that only the top layer is depleted. This makes the ohmic contact on this side now
only connected to the bottom layer, see sweeps @ and @ Under these conditions, any
current measured between source and drain must then have tunnelled between the layers, see
Fig. 5.1c. Note, however, that at B = 0, Vpc = 0, the overlap between the spectral functions
of each layer is negligible, reason why G ~ 0.

In order to increase the amount of tunnelling signal observed, two gates going over the
experimental tunnelling area, the wire-gate (WQG) and the ‘parasitic’ gate (PG), are used to
control, respectively, the 1D system as well as the (2D) injection region. Sweeps @ and @
show therefore, both 1D-2D and 2D-2D tunnelling between the upper and lower layers as the
bias on each is varied. Comparing the magnitude of sweep @ with sweeps @ and @, we
estimate the tunnelling resistance to be of the order of MQ while transport across each layer
of the order kQ. Once the biases on the SG/MG and the BG/CG are set-up, they remain fixed

for the remainder of the experiment.
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5.2 Characterising the 1D wire-array

Before analysing the tunnelling dispersion maps, let us first discuss how the 1D wire array
has been characterised.

Fig. 5.4a shows the tunnelling conductance differential dG/dVyyg as a function of both
wire-gate voltage Vg and in-plane magnetic field B. As can be seen, a number of resonant
features are observed. In section 3.4 (and specifically, Fig. 3.4), it was argued that in k-space
(i.e., along B) two tunnelling resonances should occur as the spectral functions of each well
(effectively, two 2D systems) touch from both the inside and the outside. Indeed, this is what
is observed, with both B%FD and B?P moving closer to each other as Viyg is decreased up to
about —0.3 V. For this voltage range, therefore, the electron gas in the upper layer is still
largely 2D in nature, with the observed resonances marking the position of the 2D band.

As Wy 1s made more negative, however, and as expected, at some point the electron gas
underneath the wire gates will become fully depleted. When this happens, the only states
that remain populated are those in-between the wire gates, forming a 1D channel, reason
why the upper layer can no longer be described as a simple 2DEG. Instead, from —0.3 V
to about —0.6 V, additional resonances are observed, each corresponding to a 1D subband
arising from the wire array. The number, as well as the spacing between each subband can be
tuned based on the lithographic dimensions, see [60]. For this work, however, the maximum
number of subbands will always be three or four. Note that, by tuning Vi g, the number of
1D subbands occupied can then be progressively changed. As we will show later in chapter 6,
this will be used to study 1D dynamics under different subband occupancy values, as well as
inter-subband screening effects. Beyond —0.6 'V, the signal drops to zero, marking the point
at which the wire-array pinches off, with no current being injected into the wires.

Fig. 5.4a, therefore, sets the range in Viyg over which the electron gas in the upper
layer under the wire-gate array can be tuned to behave as either 2D or 1D (with variable
number of occupied subbands), before being fully depleted. A zoom in around the subband
region can be seen in Fig. 5.4b. Note that, when looking at the dG/dB differential, two
additional vertical features can be seen in conductance, at ~1 and ~4.7 T. These arise from
the ‘parasitic’ 2D injection region and, as expect, show no dependence on Vyyg.

Another important analysis that can be done based on measurements such as those shown
in Fig. 5.4a and b has to do with the uniformity of the wire-array. As argued in section
4.1, use of an array allows us to both increase the signal-to-noise ratio as well as average
out any potential disorder effects. The question that naturally arises then is how to ensure
that this geometry indeed results in a uniform 1D system, with each channel being roughly
identical to one another. As can be seen from the data, the fact that well-defined resonances
in conductance can be observed strongly suggests that this is the case. Note that here the
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Fig. 5.4 Characterisation of the 1D wire system. (a) Tunnelling conductance differential
dG/dVy as a function of both wire-gate voltage Viyg and in-plane magnetic field B, obtained
under equilibrium conditions Vpc = 0 for a 1.7 um device. Here, three fully developed 1D
subbands can be seen below the 2D band at Viyg =~ —0.35 V and up to about the pinch-off
point Viyg =~ —0.55V, below which the wires cannot conduct. (b) Zoom in of the data shown
in (a) around the 1D subband region, showing both dG/dVy g and dG/dB. Note how, for the
latter, two vertical tunnelling features (i.e., independent of Vi) can be seen, corresponding
to the tunnelling resonances coming from the 2D ‘parasitic’ injection region. (c) Line-cuts of
the data shown in (a) and (b) at voltages where either the 2D band (left) or two 1D subbands
(right) are defined. From here, the tunnelling resonance fields B_ and B for the respective
2D, 1D (W1, W2) or parasitic (p) regions can be extracted.
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resulting signal arises from a total of, approximately, 400 wires meaning that if there was
significant non-uniformity along the channels, then the different minima and maxima of
the signal coming from each would effectively end up overlaping completely in the total
tunnelling signal, with the 1D parabolae becoming consequently impossible to observe.
Of course, effects of disorder due to averaging, charge traps, lithographic roughness, and
well-width fluctuations by one atomic layer should also cause some level of blurring in the
observed spectra. Nevertheless, data like that shown in Fig. 5.4a allows for a quantitative
assessment of the array uniformity to be made.

Fitting the lineshapes of G vs B gives a minimum broadening I" of 0.2 — 0.3 meV, even
when only one 1D subband is occupied, see [57]. Therefore, by measuring the current
from all wires in parallel, each wire with different impurity configurations and wire-width
fluctuations, we conclude that if the spread of wire widths were too large, then no signs of 1D
subbands would be observable. Given that this is not the case, each 1D channel must then be,
on average, approximately equal to one another, within I'. Furthermore, as we will see later
in chapter 7, for 1 — 18 um wires, the conductance in such arrays scales with both length
as well as total number of wires, whilst leaving the conductance structure unchanged. This
further suggests that most wires, and indeed most of each wire, is contributing to tunnelling.

Extracting both B and B_ for each subband as the confinement in the wires is made
progressively stronger, allows us to extract both the 1D (in the upper well) and 2D (in the
lower well) electron densities, njp and n;p, in terms of Vyyg, see equations (3.22), (3.25)
and (3.26), and Fig. 5.4c. From here, the Fermi wavelength A can also be obtained which,
for our wires, is usually 70 — 150 nm, resulting in a estimated wire width of 20 — 50 nm.
Similarly, the 2D densities in both wells in the ‘parasitic’ region can also be extracted.

Our tunnelling device, therefore, allows us to create a 1D system where both the number
of occupied subbands as well as the electron density in each, can be tuned in situ by
changing Viyg. In the next section we introduce the interaction parameter s, showing how it
allows us to obtain an initial estimate of the interaction strength in a system irregardless of

dimensionality.
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Fig. 5.5 1D wire subbands. (a) Equilibrium 1D densities in both the upper (circles) and lower
(squares) wells for each occupied subband. Note that the electrons are not laterally confined
in the bottom well and as such the lower well 1D densities have no physical meaning and are
only shown for comparison. (b) 2D electron densities in both upper (blue) and lower (green)
wells’ “parasitic’ regions. The overall independence of the 2D densities on the wire-gate
voltage and the proximity of the (now physical) 2D electron density of the bottom well below
the wire region (red) to that of the injection region shows that the bottom 2DEG remains
largely unaffected by Viyg. This allows us to use this layer as a well-understood 2D probe.
(c) Subband energies relative to the chemical potential 4 = 0 as a function of Vyyg.
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5.3 Interaction parameter r;

The Wigner-Seitz radius rg is often used as a generic interaction parameter for Fermi systems.
While multiple constructions of this parameter are often found in the literature, the most
common definition is usually done in terms of the ratio of the potential to the kinetic
energies. Here, while the kinetic energy (i.e., the Fermi energy) in a Fermi system is inversely
proportional to the inter-particle distance squared, (K.E.) ~ k& ~ 1/AZ, the Coulomb energy,
on the other hand, is (I.E.) ~ €?/(x) (assuming two-body dynamics only), where (x) ~ Ag is
the average distance between two particles, therefore resulting in

(LE.)
(K.E.)

~ A 2 () (5.1)

It can then be seen that, once the density is low enough (and, therefore, (x) is high),
interactions will always dominate over the kinetic energy. Indeed, in the extreme scenario,
this can even force the electrons to crystallise in place, as they try to remain as far away as
possible from one another, in what is known as a Wigner crystal. The main advantage of
this parameter, however, is that it works in all dimensions, including 1D, making it therefore
ideally suited for comparing the magnitude of interactions in systems of different geometries.

We parameterise the average inter-particle distance in units of the Bohr radius ag, so that
(x) = rsap. Note that under this definition ry is now dimensionless. Taking n as the electron

density and Vp as the volume of a D-dimensional sphere of radius rgag, we can write

1
b(aprs) = (5.2)
which gives
1
2agrs 1D
n=9zaz 2D (5.3)
3
477:a]33r§ 3D’

In other words, 7 is simply a re-parameterisation of density
Let us now focus on the energy ratio. For a Fermi system, we know that the kinetic

energy is given by
212
Eg = K (5.4)
2m

while a Coulomb energy scale is
kee?
AF

Ec= (5.5)
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Note that here k. = 1/(4mgp) is the Coulomb constant, while Ap = 27 /kp is the Fermi
wavelength.

The ratio of these energies is then given by

Ec kee? 2m7Ll% B 2mikee?

Ex A R2(2m)2 (27:)2/527“: (56)

Finally, we need to relate Ag to rs. We know that the density of electrons in a Fermi sea is

given by the integral over the Fermi function

dPk

where the occupation numbers are a step function, ny = 0 (kg — |k|). Here, we have included

the electron spin degeneracy 2, as this quantity is evaluated for free particles. This gives

2k 4
T AR 1D
2
n={2% =08 2p (5.8)
T A1:
ﬁ 3 3p
372 303 '

Equating equation (5.3) to equation (5.8), we get

8agprs 1D
Ar =< 232gagr, 2D (5.9)

24/3 2/3
32—7/1341131’S 3D.

Finally, inserting the above result in equation (5.6)

8 1D
Ec 2mkee> /2
— = _———aprsx {232x 2D (5.10)
Ex (271') h 24/3,72/3

W 3D,

together with the Bohr radius of electrons in GaAs

47'58()7”22
ag —

(5.11)

mez



5.4 Fitting of the tunnelling resonances 93

results in
4 ~041 1D
V(5
Ec _ Y2 ~04 ) (5.12)
EK - rS 7 — 0 5 D .

Therefore, while Ec/Ex is proportional to the average distance between particles in all
dimensions, the proportionality coefficient depends on dimensionality.

As a final comment, note that while r; can be seen as a measure of density, it does not ac-
count for details of the interactions, meaning it has no knowledge of the interaction dynamics
(two-body or otherwise) and/or the screening potential. Indeed, it is worth highlighting that
the biggest uncertainty in the numbers of equation (5.12) comes from how E¢ was defined in
the first place, see equation (5.5). Indeed, note that the shape of the screening potential is,
generally speaking, unknown, and can differ significantly from the Thomas-Fermi solution,
meaning (5.5) should be used with caution. This problem will be solved later in section 5.6.3
for 1D once the interaction parameter 7 is introduced based on a microscopic analysis of
the Hubbard model using the Bethe ansatz. In the meantime, we will use equation (5.3) to
calculate r¢ given the electron density 7.

In this chapter, all data discussed will be in the range ry = 1 — 1.5, with chapter 6 being
dedicated to multiple-subband data where ry = 1.5 — 4.

5.4 Fitting of the tunnelling resonances

Having shown how the upper layer can be tuned to display both 2D and 1D dynamics, and
having characterised the resulting 1D wire-array, we will now use tunnelling spectroscopy to
map the full dispersion of each layer in both energy and momentum space. Here, multiple
tunnelling resonances are expected to be observed, as the overlap of the spectral function of
each system is changed, see section 3.4. We will analyse all observed tunnelling dispersions
based on this interpretation, including the capacitive corrections discussed in section 3.5.
Let us start by discussing the 2D-2D tunnelling maps before proceeding to the 1D-2D

measurements.

5.4.1 2D-2D tunnelling signal

It is inevitable that, when mapping a device, in addition to the tunnelling processes happening
between the wire array and the 2D spectrometer (which will be discussed in the next section),

some tunnelling will also occur between the 2D leads in the upper well and the spectrometer
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in the lower well. This is because, in order for current to be injected in the wires, an
injection region running parallel to the array needs to be present. This region is set by
design and is always wide enough (~ 0.45 — 0.6 um) so that the 2DEG underneath it is not
significantly confined. This means that, as we will see, it can safely be treated as a 2D system.
Nevertheless, the resulting outcome is that, in addition to the 1D-2D signal of interest coming
from the wire-region, some 2D-2D ‘parasitic’ signal will also be present in the data.

In order to separate the ‘parasitic’ signal from the overall tunnelling data, we map it
separately so that it can later be subtracted. This is achieved by setting the wire-gate voltage
Vwg negative enough (i.e., below the bottom subband) so that the wires do not conduct. Under
these conditions, only the injection region in the upper well is allowed to conduct, meaning
that all the tunnelling signal must arise from there. Fig. 5.6 shows some representative
data of the 2D-2D tunnelling signal measured, with dG/dVpc and dG/dB corresponding to
the tunnelling conductance differentials with respect to in-plane magnetic field B and inter-
layer bias Vpc. Dashed and dash-dotted curves correspond, respectively, to the capacitance
corrected and uncorrected dispersion curves for each layer.

Following from the discussion in sections 3.4 and 3.5, the location of the tunnelling
resonances can be fully determined given seven parameters. These are: the capacitances (per
unit area) of both the upper and lower wells, c%]%v and c%]\?v, their respective effective electron
masses, myw and myy, the separation between the centres of the wavefunctions in the two
wells, d, and the zero-bias field intercepts, BP and BR. Let us now discuss each individually,
showing how strong constraints can be obtained for all.

Starting with c%l%v and c]%\?v, it was found that the best results were obtained taking
¢ = (0.0047 £0.0003) Fm~2 and ¢%, = (0.0033 £ 0.0003) Fm~2. Note that this is in
very good agreement with the COMSOL simulation results discussed in section 3.5.2, where
¢ = 0.0047 Fm~—2. We attribute the slight asymmetry in values, cﬁl\?\, / C%R,v ~ (.7, to the likely
presence of screening effects between both wells, as well as capacitive coupling to the surface
gates.

Similarly, regarding the effective electron masses, both myw and myw were found to be
equal to 0.93my,, where my, = 0.067m, is the electron band mass in GaAs. The extracted 2D
effective mass, m5p = 0.93m, = 0.062m,., measured using tunnelling spectroscopy, is also
in very good agreement with independent work carried out in GaAs/AlGaAs heterostructures
with similar densities and mobilities to our own, probed using a variety of techniques, such
as Shubnikov—de-Haas oscillations [49, 28, 115], microwave-induced resistance oscillations
[48], quantum Monte-Carlo calculations [75], and cyclotron-resonance measurements [74].
We will come back to the effect of dimensionality on electron mass renormalisation later in

chapter 6 when discussing the extraction of the bare (1D) electron mass.
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Fig. 5.6 2D-2D background signal. (a) Conductance tunnelling differentials dG/dVpc and
dG/dB vs DC-bias Vpc and in-plane magnetic field B of a 1.7 um-long device, mapped at
Vwg = —0.57 V. At this voltage, the wires are pinched off and cannot conduct. The spectrum
observed arises, therefore, solely from tunnelling between both wells in the 2D ‘parasitic’
injection region. Dashed- and dash-dotted curves mark the positions of, respectively, the
capacitance corrected and uncorrected resonance curves, as discussed in section 3.4, see also
Fig. 3.5.

The next parameter that needs to be determined is d, the separation between the wave-
functions in the two wells. For this, we know from the MBE growth data that each well
is ~18 nm thick, with the superlattice barrier in between being ~14 nm, making therefore
d ~ 32nm. Even though it is reasonable to expect deviations from this value to occur due
to, for example, monolayer fluctuations, the current status of MBE technology means that
the resulting structures are unlikely to differ from the target by more than a few nanometres.
Indeed, it was found that a systematic value of d = 31 nm worked best for all devices fabri-
cated from wafer W939, while d = 33 nm for devices coming from wafer C2617. It is worth
also noting that, particularly at high fields where the sign of k£ changes while tunnelling, one
could argue that a Lorentz force could act in such a way as to force the carriers in each well
further apart, effectively increasing d. This would, in practice, translate into having d = d(B).
While we cannot rule out such an effect, it can be seen from Fig. 5.6 that no such correction
was required up to at least 7 T, the highest field used in this experiment.

Finally, the zero-bias crossing points BP and B, corresponding to the field magnitudes at
which tunnelling resonances are observed (see Fig. 3.4), can be easily determined by visual
inspection of both the DC-B (see Fig. 5.6) and WG-B (see Fig. 5.4) tunnelling maps.

As can be seen from Fig. 5.6, the level of agreement between experiment and theory

allows us to confidently treat the signal arising from the ‘parasitic’ injection region as being
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Fig. 5.7 Subtraction of the ‘parasitic’ 2D-2D tunnelling signal. Here, (a) and (b) show,
respectively, data from a 1.7 um-long device in the single-subband regime, before and after
the 2D-2D background (shown in Fig. 5.6) was subtracted.

2D-2D in nature, with the set of parameters used having been reproduced across a total of
5 devices. For the remainder of this work we will refer to the 2D-2D tunnelling maps as
‘background’. Every tunnelling map that follows will have had this data subtracted from it
(see Fig. 5.7 for an example) unless mentioned otherwise, so that the only signal remaining
comes from the wire-region. This is the topic of the next section.
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5.5 1D-2D tunnelling signal

In the previous section we discussed how to constrain c%%v, ci]\?v, ng, and d from the

background data, i.e., using the tunnelling-conductance maps with the wires past pinch-off.
We will now focus on the signal arising from the wire-region, where 1D dynamics are
expected to be present. In order to isolate this signal and analyse it free from ‘parasitic’ 2D
influences, we subtract the 2D-2D background as discussed in the previous section. Note that
this is possible because the modulation of the wire gate to the injection region is observed to
be negligible, even as the wires start conducting. Furthermore, the density under the parasitic
and wire regions also closely matches across a range of Vyyg (see Fig. 5.5b), making the
2D-2D signal therefore very weakly dependent on Vyyg.

We characterise the 1D system by mapping its subbands as discussed in section 5.2.
As can be seen, under our chosen geometry, most devices display between three and four
subbands, that is, after the 2DEG in between the lithographic wires has been depleted. Using
maps such as that of Fig. 5.4 allows us to map the dispersion of the 1D system at any subband
occupancy value by choosing appropriate values for Vyyg. In this chapter, we will focus on
the single-subband regime, with chapter 6 being dedicated to multiple-subband occupancy.

The procedure followed when analysing the tunnelling signal arising from the wire
region is analogous to what was done for the 2D injection region. Since ¢y, cin and
d have already been obtained, the only free/unknown parameters in this region are: the
zero-bias field intersects, BY and BXV, the effective mass of the 1D electrons in the upper

well, myw = m7p, and the capacitances per unit area of both wells in this region, c(lj%\, and
1D

CLw-

The capacitance values found to work best were c{hy, = ¢} 5 = (0.0026 £ 0.0005) Fm™.
These are significantly lower than those predicted in COMSOL, where ¢ = 0.0103 Fm™, see
section 3.5.2. Using larger values for the capacitance (and indeed taking c%]%v and ci]\%, as an
upper bound) completely distorts the dispersions, even when accounting for larger errors in
the remaining parameters (which have already been calibrated using the background data).
We interpret the observed deviations as arising from the quantum capacitance, Cq, since in a
1D wire, interactions effectively push down the band, reducing the rate of filling of the wire,
that is, dn|p/dEp. This means that the energy required in order to add an extra electron to the
1D chain is increased, leading to a decrease of Cq o< dnjp/dEg. Note that this is essentially
the same mechanism as that behind the zero-bias anomaly (see Fig. 2.13), where conductance
is strongly suppressed at zero bias since it is no longer energetically favourable to tunnel in
or out of the wire.

Using the framework presented in section 3.5.1, we estimate Cq /A = 4e’m* /P hPwnp =
0.0326 Fm—2, where m* = 0.067me, nip = 33 um_l, and w = 50 nm were chosen as rep-
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resentative values in the single-subband regime. Similarly, using the data shown in Fig.
5.5, and taking dnip/dEf ~ An|p/AEf, we get Co/A = 0.0218 Fm~2. While both esti-
mates agree in magnitude, Cq is still about ten times larger than what experiment suggests
(Cq/A =0.0035 Fm™2, see section 3.5.2), suggesting a larger effect of the interactions than
accounted for in our model. Nevertheless, because the total capacitance C is determined
by the sum of both geometrical and quantum capacitances, 1/C = 1/Cq + 1/Cg, and since
Cq < Cg, there is no reason to expect the results of the COMSOL simulation done in section
3.5.2 to remain valid, since this only took into account electrostatics. Note that, in com-
parison, the results from COMSOL closely matched the experiment when in the 2D-2D
tunnelling regime, as expected since here the effects from Cq are largely negligible.

Regarding BY and BY, these can be obtained as before, that is, by visual inspection of
both the DC-B and WG-B maps.

The last parameter that remains to be determined is then m7p,.

5.5.1 Single Fermi sea and single plasmon

As a starting point, the simplest assumption one can make is that the 1D dispersion is
completely described by a single 1D effective mass, m}. This should, in principle, be able
to take any value. Let us start by assuming it matches the 2D non-interacting effective mass,
i.e., mjp = myp. We will refer to the Vpc > 0 sector as the particle sector, corresponding
to electrons tunnelling into the wire, while Vpc < 0 is the hole sector, corresponding to the
reverse process whereby electrons tunnel out.

From Fig. 5.8 it can be seen that while the behaviour of the 1D mode is nicely captured
in the hole sector (Vpc < 0), the same does not happen in the particle sector (Vpc > 0),
particularly at high biases, even when correcting for mass. It is therefore our experimental
statement that the 1D dispersion cannot be fully accounted for by a single parabola (i.e., a

single mass) in both hole and particle sectors.

5.5.2 Single Fermi sea and two plasmons

We now assume that there are both spin- and charge-type excitations in the 1D system.
Note that based on previous work, most specifically well-established observations such as
spin-charge separation [10, 60], this is the natural starting point, as spin and charge modes
are known to propagate along a 1D wire at different velocities, therefore suggesting different
masses. We label these masses mg and m, referring, respectively, to spin-type and charge-type

excitations.
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Fig. 5.8 One Fermi sea and one plasmon. Tunnelling conductance differentials dG/dVpc
and dG/dB as a function of DC-bias V¢ and in-plane magnetic field B, for a 1.7 um device,
mapped at Viyg = —0.515 V. Here, the 1D signal was fitted assuming a single plasmon
type, where mj, = m5 = 0.93my,. The dashed black curves indicate the location of the
subtracted 2D-2D ‘parasitic’ signal mapped in Fig. 5.6. The dashed- and dashed-dotted
magenta curves mark the capacitance corrected and uncorrected resonances arising from the
tunnelling between the lower-well (LW) ground states and the upper-well (UW) wire region.
They reveal the dispersion of the elementary excitations in the 1D UW wire region. Similarly,
the dashed and dash-dotted blue curves mark the location of the resonances resulting from
the reverse tunnelling process, between the UW ground states and the LW, revealing the
dispersion of the 2D LW.

As can be seen from Fig. 5.9, while mg = m3, provides a good match to the data, even
when taking m. < m3p one still fails to fully capture the observed behaviour for this mode.
This is particularly noticeable in the particle sector when taking the dG/dB differential.
Furthermore, note that any dispersion for the holon branch in this sector should also catch
the low-energy charge mode, that is, the holon branch in the hole sector, when extended back

to it, something which is clearly not the case, see Fig. 5.9 inset.

Both models introduced above have proven insufficient in fully capturing the observed 1D
tunnelling dispersions. While it is clear that a single parabola cannot satisfactorily account
for the observed dynamics, separating the dispersion in two, for spin and charge modes
respectively, still does not fully explain the position of the measured resonances. In the next
section we will introduce the 1D Fermi-Hubbard model, which will be used to further analyse

the 1D-2D tunnelling maps.
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Fig. 5.9 One Fermi sea and two plasmons. Same data as that shown in Fig. 5.8 but now fitted
assuming two different dispersions, for spin and charge respectively. The dashed black and
blue lines have the same interpretations as in Fig. 5.8. The green curves correspond to the
spinon mode with ms = m3p,. The magenta lines, on the other hand, mark the location of the
holon mode with m. < mjy,. Inset: spin-charge separation, marked by dashed black ‘S’ and
‘C’ lines, near the +kp point, at low bias.

5.6 The Hubbard model

The Hubbard model is a microscopic model used in treating interacting particles, usually
fermions, subject to a periodic potential (i.e., in a lattice). At its core, it consists of only two
parameters, one kinetic term which allows ‘hopping’ of particles between nearby sites, and
one potential term reflecting on-site interactions. Nevertheless, for its apparent simplicity,
it has been successfully applied in explaining a wide range of phenomena, including the
transition between conducting and Mott insulating systems, the study of high-temperature
superconductors, quantum magnetism, and charge-density waves. For the purposes of this
work, however, the advantage of this model stems from the fact that it is fully integrable
in 1D, meaning that it allows full analytical solutions of the dispersion spectra, both in the
linear (i.e., low-energy) and nonlinear (i.e., high-energy) regimes to be obtained. We begin
our discussion by introducing second-quantisation operators, in terms of which the Hubbard

model can be written.

5.6.1 Creation and annihilation operators

Creation and annihilation operators are often used in many-body physics as an alternative
to having to deal explicitly with many-body wavefunction symmetry, providing a simple
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and straightforward language for constructing the Hamiltonian. Their most well-known
application is probably in the context of the quantum harmonic oscillator (QHO), which we
will use to start our analysis. For a QHO, the creation and annihilation operators are defined

in terms of the position X and momentum p operators as

mao 1 mao 1
i= ) —%+i\/=—=p At = £ —i 5. 5.13
SN TN omer? TN 2N 2men? (5-13)

From here, and using the commutation relation [£, p| = if, one can rewrite the QHO

Hamiltonian as

N 1 1 1 1
A= %ﬁz-i—ima)zﬁzzﬁco(ﬁd—f—i) :ﬁw<ﬁ+§> (5.14)
where [d,4"] = 1 and /2 = @7 is defined as the number operator.
Let us now construct the eigenstates of this system. For the ground state, |0), we define it
such that 5
A (0]
alo)=0 H|0) = > |0) . (5.15)
The remaining excited states can then be constructed by repeatedly applying the creation

operator to |0),

a'n) = v+ 1|n+1) Fl|n>:ﬁa)<n+%> In). (5.16)

Knowing that the finite-temperature expectation value of a quantum mechanical operator
A is given by (A) = Z~'Tr[Aexp —(BH)], where Z is the partition function and g = 1/kgT
with kg being the Boltzmann constant, we obtain (i) = 1/(eP"® — 1), that is, the Bose-
Einstein distribution function, thus confirming that the states created/destroyed follow Bose
statistics.

The Hubbard model for electrons in solids differs from this paradigm in the sense that
it deals with fermions and therefore needs to be defined in terms of fermionic creation and
jo
creation and destruction of a fermion of spin ¢ on site j, where ¢ = {1,]}. Note that

annihilation operators. We introduce them as ¢ . and ¢, referring, respectively, to the

jo>
these differ from 4 and 4@ in a number of ways, starting with the fact that they are not
defined in terms of either X or p. Most interestingly, the new degrees of freedom ¢ and j
also imply a certain level of locality to the model, with the occupation number states no
longer being defined by a single value n, but instead by a collection of numbers 75, where

\nypnppny ny| .. .) corresponds to sites 1, 2, ..., respectively.
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We define ¢ as second-quantisation fermionic operators, which obey the following

anticommutation relations

{06010} = o Alell} =0 {85,601 =0 (5.17)

Like before, a fermion can simply be created by acting on the vacuum state, éj.c |0) = |1).
Note, however, that now as a consequence of the anticommutation relations above, 6;6 1) =
Aj o Aj & |0) = 0. This is, of course, nothing more than the Pauli exclusion principle, where the
maximum occupation of a site with a particular spin state is limited to 1. Another property of
these fermionic operators is that they ensure that the wavefunction remains antisymmetric

when exchanging labels of two particular states, i.e., 6T cl . —6;66j6

5.6.2 The Hubbard Hamiltonian

We are now ready to write down the Hubbard Hamiltonian. In 1D, it takes the form of

L/a L/a L/a

A=—t Y (6505 +E400)+U Y njnj —uY (njr+njy), (5.18)
j=l,o0=1,1 Jj=1 j=1

where ¢ s are the second-quantisation operators as defined in section 5.6.1, njc = c;Gc io is

the local density operator, L is the length of the wire, and a is the crystal’s lattice parameter.
The key assumption of the Hubbard model is that it simplifies the positions of atoms in a
crystal to a number of lattice points, each with a single energy level, therefore ignoring any
possible sub-atomic structure. When imposing the Pauli exclusion principle, this results in
each site only being allowed one out of four configurations: empty, single up fermion, single
down fermion, or double occupancy (by different spin states necessarily). While electrons
moving around naturally interact with one another via a screened Coulomb interaction, it is
expected that this will be at its strongest for those that are forced to occupy the same site.
Therefore, in the Hubbard model, the interaction energy U is zero for an empty or singly
occupied site, and U when double occupied. This property is naturally captured by the term
Un jyn;, . Furthermore, note that, in addition to on-site interactions, nearest- or second-nearest
neighbours interactions between electrons in different sites can also be included, via terms
such as Vn joljtlo and Vn joljt2.o These, however, will not be considered here.
Looking at equation (5.18), the Hubbard model is then fully determined by just two
microscopic parameters, the hopping amplitude 7, and the two-body interaction energy U.
Here, the first term, associated with the kinetic energy, describes the destruction of a fermion

of spin o in lattice site / and its creation on site j (or vice-versa). Physically, its magnitude
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is determined by the amount of overlap between the wavefunctions of any pair of electrons.
These normally decay exponentially fast away from the lattice points and, therefore, only
nearest-neighbour hopping is generally accounted for. The second term, on the other hand, is
associated with the interaction energy and, as discussed above, is only non-zero for doubly
occupied sites. Finally, the last term is the system’s chemical potential, which controls the
filling. For a lattice of N sites, the total filling will be 2N given spin degenerancy, while a
half-filled state will correspond to N.

The local nature of U means that it is sensitive to both the Coulomb interaction strength,
via the electronic charge e, and the interaction radius R, the latter of which we can vary in our
experiment (see chapters 6 and 7). Furthermore, note that even though Coulomb interactions
between same-charge fermions are normally repulsive (i.e., U < 0), the Hubbard model can
also be used in attractive regimes simply by flipping the sign of the interaction parameter.

Let us now construct the many-body eigenstates of the Hubbard model in 1D following
the approach used in [39, 131]. For a given N-particle state described by lattice positions

J1,---,JN = j and spin configuration ¢, ..., 0 = @, the wavefunction can be constructed as
T T
Zajoccjlm1 - Ciian 10D (5.19)
jo

where the amplitudes are given by a superposition of plane-waves

ajq = Y. Apgee' PRV (), (5.20)
P

Here, Q is the permutation that orders all N coordinates such that Q; < --- < Qp,, k=
ki,...,ky is the momentum of all N particles, A is a phase factor (see equation (5.21)), and
Y p is the sum over all possible permutations P of the charge momenta, similar to the Slater
determinant for free particles.

Unlike the Slater determinant, however, when exchanging two electrons, this does not
simply result in a sign change but instead introduces a phase factor Appy Which depends on

the spin configuration Qo as

RA, —RA,, — Y
Apga = (—1)"° ( 2t>
“ )3 Kll—m[SM RA, — RA,,

R

M iU -1 . iU
5 U RA; —sinPkja— (521)

X 1 il
[IIRAI —sinPkja + % ]I:II RA; — Siﬂijd—I— %
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where s = s1,...,s) are the coordinates of the M spins 71 in the configuration ¢ of all spins
of N particles, A = Ay,..., Ay are the respective spin momenta, and Y p is the sum over all
possible permutations of these.

Let us consider a simple example. For a spin configuration of N = 8 electrons where 5

spins are | and 3 spins are T, we have

o, oy =TT (5.22)

Here, the positions of the 1 spins are s = 3,5,6 which, following from above, are interpreted
as coordinates of M = 3 excitations in the spin chain of total length N = 8. In order to
change these spins, one can consider electrons of opposite spin interacting via the Coulomb
interaction, which changes their coordinates along the wire, making the spin eigenmodes
extended, at least when in the low-density limit (i.e., less than half-filling) away from the
Mott-insulator regime. Alternatively, electrons with the same momentum can also interact
with one another, making their spins also interact with each other and causing many-spin
states consisting of M individual spins to be correlated in their own right.

The allowed momenta are quantised by boundary conditions. If periodic, these give the
Lieb-Wu equations

M
kKiL—Y ¢ (Aw—kja) =27}, (5.23)
m=1
N M
Y o (An—kja) = Y (An/2—2X/2) = 270, (5.24)
j=1 =1
) 4tx
with ¢ (x) = —2arctan (7) ) (5.25)

with N non-equal integers /; and M non-equal integers J,, defining the solution for the orbital
kj and the spin momenta A, of an N-electron state for a given value of the microscopic
parameter U /t. Note that the simultaneous quantisation of both the spin and charge degrees of
freedom results in a system of N 4+ M connected nonlinear equations for any finite interaction
parameter U. Here, the eigenenergy of the many-body state is E = ta’ Zlle k2, while its
momentum is k = Zz};l kj

5.6.3 Two Fermi seas and the interaction parameter y

Having now obtained the many-body eigenstates and eigenenergies of the 1D Hubbard model

we can start analysing the emerging picture.



5.6 The Hubbard model 105

The 1D wavefunction in equations (5.19) and (5.20) is zero for any equal pair of either
kj or A,,, meaning that both the charge and spin momenta always correspond to non-equal
integer numbers /; and J,,,. This can be described by two different Fermi seas, with both
kinds of modes being filled with spin or charge excitations up to some finite density. For
comparison, the usual Fermi sea is filled with non-interacting fermions up to a finite Fermi
energy. The difference here is that interactions give rise to a non-trivial relation between the
occupation numbers /; and J,,, as well as the momenta k; and A,,. These are the solutions of
a system of nonlinear coupled equations for any finite interaction U, making the resulting
dispersions generally dependent, therefore, on the interaction strength. From now on we will
refer to this emerging picture as the two-Fermi-sea model.

In our experiment, the maximum applied field is ~ 77. This means that the numbers of
spin-up and spin-down electrons in our wires are equal within 10%, and therefore, these can
be treated as remaining largely unpolarised, with M = N /2 spin states. This then implies that
the holon Fermi sea has approximately twice as many filled states as the spinon Fermi sea, in
other words, it has twice the density. The Lieb-Wu equations can then be used to give the
two distributions of their momenta at the infinite-interaction point U = oo.

We define the Fermi wavevector kg as the maximum momentum allowed in a free-electron
system, i.e., when N /2 fermions are doubly degenerate with respect to spin for U = 0. As
U is increased, however, this degeneracy is naturally broken. By making the interactions
stronger, the charges delocalise, increasing its density by up to a factor of two, and thus giving
rise to a second Fermi sea. The spin Fermi sea, on the other hand, is a type of Heisenberg
spin chain, where the spin-momenta have a pronounced higher density towards the Fermi
points than at the bottom of the band. Note that Fermi seas of this kind have already been
observed in neutron scattering experiments of non-itinerant magnets [77, 76, 95].

Numerical solutions of the Lieb-Wu equations for various interaction energies U away
from the infinite point are given in Fig. 5.10. Down to an intermediate value, both Fermi
seas remain stable. When the interactions are made weak, however, the free-fermion picture
is recovered, with the holon Fermi sea becoming doubly degenerate, and the spinon Fermi
sea giving the spin part of the free-electron function that describes +1 permutation signs for
electrons of different or the same spin.

The dimensionless parameter that controls this phase transition emerges from the Hubbard

model itself microscopically and was first identified in [120] as

B A U 1
B 16at N/le oo) (

(5.26)
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Fig. 5.10 The 1D Fermi-Hubbard model. (a) Solutions of the Lieb-Wu equations (5.23)
and (5.24) for the charge and the spin degrees of freedom of the ground state in the infinite
interactions limit U = oo. (b) and (c) then show, respectively, the evolution of the charge and
spin Fermi seas, as a function of U /1, for a system of N = 10, M = 5 unpolarised electrons.
Note that the charge momenta are normalised with respect to the free-electron Fermi wavector,
k$ = k;/kp, where kg = TN /(2L), while the spin momenta k} = —2arctan[U /(4¢A;)] /A are
normalised with respect to the solution of the integral Orbach equation A. This plays the
same role as the Fermi momentum for Heisenberg spin chains, see [97]. The dimensionless
parameter 7, defined in equation (5.26), plays a role similar to r, see text for discussion. In
the grey area, for ¥ > 1, interactions are strong enough so that the two Fermi seas are fully
developed and can be separately resolved.

Here, Ap = 4L/N is the Fermi wavelength (of the 1D free-electron gas), a is the lattice
parameter, and A; (o) the spin part of the solution of equations (5.23) and (5.24) in the infinite-
interaction limit U = c. Taking the thermodynamic limit and assuming an unpolarised
Heisenberg chain, we determine the numerical value of the sum in the denominator to be
1-Y,.../N=1.193(1), thus reducing to

Y= 0.032%%. (5.27)

As we will see later, y plays a role similar to the interaction parameter rg, already
introduced in section 5.3. Its construction, however, is more encompassing, for it has
knowledge not only of the density of the system, via Ag, but also of the Coulomb screening
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potential, via U. When the interactions are strong, ¥ > 1, both the spinon and holon Fermi
seas are fully developed. On the other hand, when y < 1, the holon Fermi sea is still too close

to the double occupancy of the free Fermi gas and cannot, therefore, be separately resolved.

5.6.4 Spin and charge excitations

Let us conclude by discussing the resulting dispersion spectra for both spin and charge
excitations.

We saw in chapter 2 that for 1D systems, all allowed types of excitations must correspond
to collective responses of the entire system. This means that, for example, when adding an
electron into a wire, with its charge and spin, this must eventually lead to the creation of
two new excitations, one holon and one spinon. With two Fermi seas, however, the question
naturally becomes, where are these excitations being created, and with what properties.

Starting with states of energy E = p, the first option is adding a holon to its Fermi sea
at the 2kp point and a spinon to its Fermi sea at —kp, resulting in a net momentum for the
total excitation of k = kg. Alternatively, one can add the holon and the spinon on the same
side of their respective Fermi seas, say 2kr and kg, which produces a net momentum k = 3kr.
Because our wires have inversion symmetry, the mirror of this argument also produces the
k = —kg and k = —3kg points, see Fig. 5.11.

After identifying the Fermi points +kp, one can also consider pairs of excitations at some
finite momenta, AP, and AP, above (or below) these. For simplicity, let us consider the Fermi
point k = kp. As described above, the set of nonlinear Lieb-Wu equations that governs these
excitations results in distorted Fermi seas, with all states in the spinon Fermi sea becoming
asymmetric and non-equidistant from the ground-state, while the holon Fermi sea as a whole
shifts by the total spinon momentum. Most importantly, however, the total momentum of the
electronic excitation remains a good quantum number, with k = 27(Y.; /; + Y., Jm)/L being
summed over the entire set of quantisation integer numbers /; and J,,. Note that k here is
independent of U.

Since the total momentum is conserved in a many-body system, one can find the momen-

tum of the holon and the spinon excitations as
k =kp+ AP, k = kg + AP (5.28)

where AP, = 211 /L and APy = 2);,1 /L. The distance in momentum between neighbouring
points is then always equal to 27 /L, which we define as the quantum of momentum. Because
this is independent of U, the crossing points at E = 1, +kp and £3kp, are always fixed,

regardless of how strong or weak the interactions may be.
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Two Fermi seas for spin and charge
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Fig. 5.11 Two Fermi seas for spin and charge. (a) Holon(-type) excitation. Here, the spinon
mode is placed at the lowest possible momentum state while the holon is excited by some
momenta AP, over its lowest momenta configuration. (b) Same as (a) but now for spinon
(type) excitations. (c) Full dispersion spectra for both holons (green) and spinons (blue)
obtained by solving the Lieb-Wu equations (5.23) and (5.24) for N = 550 and M = 275, at
an interaction strength Y = 2. The thin red lines mark parabolic fits to each mode. The black
lines at the Fermi point 4+kp, on the other hand, mark the linear dispersion of holons v¢ and
spinons v* of the linear spinful Tomonaga-Luttinger model. Numerical calculations were

performed by O. Tsyplyatyev.
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In order to obtain the set of energies associated with these excitations, we solve the
Lieb-Wu equations numerically for different values of U. At low energies (i.e., AE < 1),
the solutions form two linear dispersions with non-commensurate slopes, v¢ and v*. These
are nothing more than the pair of Luttinger parameters already derived in the context of the
spinful linear Tomonaga-Luttinger model, see section 2.2.2. When the interactions are weak
(i.e., in the limit of U — 0), their ratio tends to v¢ /v = 1, while for stronger U it increases.
In the spectral function, these v¢ and v* are identified as a pair of divergences, see Fig. 2.6a.

Extending these modes in both momentum and energy away from the Fermi points
provides their natural generalisation to the nonlinear regime. Note that, unlike before, where
two branches would meet at £k, there are now three. This is a manifestation of the different
densities of the spinon and the holon Fermi seas discussed above, the latter which now has
the second crossing point at +3kg. It is also interesting to note that, even though the obtained
dispersions are not, strictly speaking, parabolic, they are indeed very close to this for finite
U. Because they are very close to parabolae, therefore, we can introduce two new masses,
m¢ and myg, for holons and spinons respectively, which are given by the curvature of their

respective dispersions.

5.7 Two Fermi seas and two plasmons

Let us now go back to the data first introduced in section 5.5. We have seen in section 5.6
that the 1D Fermi-Hubbard model predicts different dispersions for both charge and spin
across the whole spectrum. These are, as seen in Fig. 5.11, very close to parabolae. Most
interestingly, however, is the fact that they are also expected to have different degeneracies,
with the degeneracy of spinons being twice that of holons, as seen in Fig. 5.11.

Starting from the assumption that the dispersion of each mode is parabolic, before
correcting for capacitance, we get

K h?

s __ 2 12
Es(k) = o, Ep = —2ms (k kp) (5.29)
and 2( )2 )
E(k)=—~ _FEt= kr)° —4ks | . .
(k) o = e [(k+ kp)” — 4kg] (5.30)

Here, E}, mg and Ef, m, are the respective Fermi energies and renormalised masses for each

mode, with kg = kg 1p.
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From each dispersion, one can then obtain the resulting group velocity at low energies.
Since v = dw/dk = h~'dE /dk, this results in

1d hk hk
o 1A Bk Ak (5.31)
ﬁ dk k:kF mS kaF mS
and 1d h(k+k 2hk
= 1df _ Ik + k) = F (5.32)
hodk [ M k—kp M
giving
¢ K 2
Vo2 s (5.33)

v K. me

Equation (5.33) allows us to relate the spin-to-charge mass ratio to the phenomenological
Luttinger parameters K., first introduced in section 2.2.2 as v = vg/K, and v* = vg/Kj.
Note that, in general, K. # K.

The ratio K. /K; is a common figure of merit found in the literature for estimating the
interaction strength in 1D systems. We highlight however that, strictly speaking, K. s are
defined within the Luttinger model and are therefore only valid at low energies. Nevertheless,
the beauty of equation (5.33) is that it relates a global quantity, the mass, found from fitting
parabolae to the whole spectrum (i.e., both at low and high energies), to a local one, the
velocity, taken from the gradient of the dispersion around the £kp points. It remains valid as
long as the dispersions of each mode (as predicted from the Hubbard model) do not deviate
significantly from parabolae. Furthermore, note that the extra factor of 2 in the last term of
equation (5.33) essentially arises because k is twice as large for holons as it is for spinons.
Specifically, for repulsive interactions, since Kg >1 and K. <1, we have m. < 2ms.

Fig. 5.12 shows some example data of 1D-2D tunnelling in the single-subband regime
fitted use the two-Fermi-sea model. Here, the dashed lines were obtained from the parabolic
model described in this section while the open circles using the solutions of the Fermi-
Hubbard model. Both models are in very good agreement across the whole momentum and
energy range probed experimentally.

Let us analyse specific areas of the tunnelling map in more detail. In section 5.5.1 and
5.5.2 we saw that assuming a single Fermi sea, even when taking separate dispersions for
spin and charge, still failed to explain the position of the tunnelling resonance observed at
high energies in the particle sector (i.e., Vpc > 0). Specifically, it was observed that this
could not be extended to either the spin mode or the charge branch in the hole sector (i.e.,
Vpc < 0). In contrast note how, unlike before, the holon mode emanating from +kp is now
fully captured both in the hole and particle sectors, see Fig. 5.13.
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Fig. 5.12 Two Fermi seas with two plasmons. Same data as that shown in Figs. 5.8 and
5.9 but now fitted using two Fermi seas as predicted in section 5.6, see text for discussion.
Dashed black and blue curves have the same meanings as before. The dashed green and
magenta lines mark the 1D dispersions for spinons and holons, respectively. The open-circle
curves are the corresponding solutions of the 1D Fermi-Hubbard model for N = 54. Inset:
spin-charge separation near the +kg point at low bias.
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Fig. 5.13 The holon mode at +kg. (a) Tunnelling conductance differential dG/dVpc around
the +kp point for a device mapped at Vpg = 0. Note that Bﬂ < 5T. (b) Same device as in
(a) but now mapped with Vpg = 0.8 V. Here, Bﬂ > 5T, with the whole 2D-2D ‘parasitic’
tunnelling signal having now moved ~ 1T to the right. This allows the region around +kf to
be mapped free from ‘parasitic’ effects. Left and right panels show, respectively, the data
before and after the background was subtracted. All curves have the same meaning as in Fig.
5.12.
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Another tunnelling feature that can only be accounted for once two Fermi seas are
assumed can be found by looking at the line-shape of the various tunnelling processes
happening at zero magnetic field. Fig. 5.14a shows dG/dVyg vs wire-gate voltage Vyyg and
DC-bias Vpc for two values of the ‘parasitic’-region gate voltage, Vpg = 0 and Vpg = +0.3V.
Note that PG is a gate going over the ‘parasitic’ (2D) injection region and, therefore, it allows
us to modulate the electron density in this region without affecting the 1D wires.

By comparing both panels in Fig. 5.14a one can then see which features are ‘parasitic’
and which are coming from the 1D wires, by looking at how they respond to Vpg. For
instance, all features at negative DC bias move away for positive Vpg, indicating that they are
not related to the 1D wires themselves. They correspond to the 2D-2D ‘parasitic’ tunnelling
coming from the injection region and already discussed in section 5.4.1. On the other hand,
at positive Vpc, the main contribution comes from the superposition of both 1D and 2D
tunnelling happening in the wire region. As expected, this is not affected by changes in Vpg.
It also disappears at around Vg = —0.6 V, the same value at which the wires are known to
pinch off, see Fig. 5.4.

At B = 0 it is expected that the tunneling current / should peak as Vpc is changed,
corresponding to the 1D and 2D spectral functions coming in and out of alignment. The
tunnelling conductance, G = dI/dV should therefore have a peak and a trough (negative
differential conductance, NDC) like that shown at small wire-gate voltages in Fig. 5.14b,
which shows the line profiles of the data in Fig. 5.14a for Vpg > 0. Further analysing the
tunnelling signal, it can be seen that the tunnelling resonance slowly broadens as Vyyg is made
progressively more negative, that is, by making the confinement stronger. Simultaneously,
higher 1D subbands and the small overlap of a large number of states in the two systems
(note that at B = 0 they are not offset in momentum), enhance the tunnelling above the peak,
moving it to higher bias while also suppressing the NDC.

As the wires are squeezed, from —0.53 V onwards, first a kink, then two defined features
can be seen. As discussed before, these are unaffected by Vpg and therefore cannot arise
from the ‘parasitic’ region. While this feature could indicate tunnelling into an empty 1D
subband, there is no sign of such anywhere else in our data. The splitting is also far too great
to be explained as simple energy broadening (where typically I" ~ 0.2 —0.3meV). Note also
that I" has always been observed to remain constant regardless of the confinement in the
wires, while here we observe strong dependence on V. Finally, the splitting can also not be
explained by different masses of the 2D Fermi-liquid quasi-particles (determined in section
5.4.1) and/or the 1D spinon modes. Note that, for the latter case, the spinon mode would

be equivalent to that coming from the +kp point, which we observe to be systematically
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Fig. 5.14 Tunnelling processes at zero field. (a) dG/dVyg vs wire-gate voltage Vg and
DC-bias Vpc, at B = 0, for both Vpg = 0 and Vpg = 0.3 V. Note how the latter moves the
fringes arising in the ‘parasitic’ region out of the range of the plot. The conductance peak
seen at Vpc > 0 also disappears at Viyg =~ —0.6V, the same value at which the wires pinch
off, see Fig. 5.5a. (b) Horizontal line-cuts of the conductance data shown in (a) for positive
Vpg. Here, the signal can be seen to slowly broaden as Vyyg is made progressively more
negative (i.e., by increasing the level of confinement in the wires and hence decreasing the
density), eventually separating into two distinct features, with a similar spacing to that of
the 2D and 1D holon modes in the particle sector (see blue and magenta arrows which mark,
respectively, the centre of each dispersion according to the two-Fermi-sea model, and also
Fig. 5.15). Every curve, except Viyg = —0.48 V, has been offset for clarity. The left-hand
panel shows, without any offsets, the line-cuts for Vyyg < —0.57V, just as the 1D channels
are about to pinch off.
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absent in our data in the particle sector (see discussion below), and which is also therefore
not expected here below —kr.

We interpret the observed feature as resulting from the separation of the 1D holon mode
coming from the —kg point and the 2D dispersion of the bottom well as mapped by the wires.
This is in good agreement with the position of these modes at B = 0 as predicted from the
full dispersion maps, see Fig. 5.15b. Furthermore, this feature is also completely missed
when assuming just a single Fermi sea, see Fig. 5.15a. We note, however, that while NDC
would in principle be expected to remain regardless of Vyyg, its observed suppression could
instead be indicative of a power-law similar to what has already been reported in [57] near
the bottom of the 1D subband. Such interpretation, however, is far too speculative given
the lack of knowledge of the shape of these modes which, we highlight, is still unknown
theoretically. Nevertheless, the fact that the splitting is observed to strongly depend on Vyyg
rules out disorder effects. A tentative explanation instead can be found in a analogous way
to spin-charge separation already reported in [60] around the +kp point, but where now the
holon mode coming from —k is seen to separate from the 2D dispersion.

As we have seen, the dispersion of the strongest features observed in the tunnelling of the
experimental 1D signal cannot simply be interpreted as a single parabola, corresponding to a
single Fermi sea (see section 5.5.1), even if separate modes for spin and charge are considered
(see section 5.5.2). If, instead of one parabola we use two, corresponding to two Fermi seas,
such as those predicted by the 1D Fermi-Hubbard model, then we can match the result of
the experiment well. Note that the two modes observed in the data mark the dispersions
of the pure (i.e., single-particle-like) excitations, with each Fermi sea being formed by the
nonlinear spinon and holon quasi-particles out of the many-body continuum away from the
Fermi points.

As one final point, let us comment on the fate of the spinon mode in the particle sector.
As seen from Fig. 5.12, we observe two separate dispersions (for spin and charge) in the hole
sector, but only one (for charge) in the particle sector, the latter being identified as its gradient
matches that of the charge line in the hole sector. No fourth dispersion, in principle expected
for spin in the particle sector, is observed in any of the devices measured. Indeed, taking a
naive extension from the hole sector (green dashed), we see that it is systematically absent
in the data. A tentative explanation can be found in particle-hole asymmetry in relaxation
times as previously reported in [12]. Here, even though spin and charge excitations were not
separately resolved (indeed, the authors took a perturbative approach, assuming a weakly
interacting regime), if we assume that the spinon branch in the particle sector is unstable (so
that we do not observe it), then it would be expected that hot electrons have an accelerated

relaxation as they split between holons and spinons.
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Fig. 5.15 Tunnelling modes at zero field. (a) Maps of the tunnelling conductance differential
dG/dVpc for a 5 um device. Here, we analyse the data assuming one Fermi sea and two
plasmons (left, see also Fig. 5.9), and two Fermi seas (right, see also Fig. 5.12). Note how
the position of the holon mode (magenta) at B = 0 axis varies significantly between the two
models. (b) Line-cuts of conductance G as a function of DC-bias Vpc, showing both 2D-2D
(subtracted from the data in (a)) and 1D-2D tunnelling resonances. Note how, unlike in
the 1D-2D case, negative differential conductance (NDC) is present in the 2D-2D signal.
Nevertheless, assuming two Fermi seas, the position of the holon and the 2D modes is
compatible with the observed line-shape.
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Further evidence that this might indeed be the case can also be found from neutron
scattering experiments in antiferromagnetic spin chains realised in insulating materials
[77, 95, 76]. Here, probing the dynamic structure factor instead of the spectral function
measured in the present work, the spinon Fermi sea was observed as a spectral edge with a
nonlinear dispersion separating the multi-spinon continuum from a forbidden region [43, 23].
In these experiments the spectral power of the available excitations dropped very rapidly
towards the particle part of the spinon dispersion, likely justifying why we are not detecting
it. Unlike in these experiments, however, in our experiment the charges are delocalised, and
this is the reason why we can see two Fermi seas.

Below we summarise the main figures of merit, extracted from fitting the tunnelling maps

from a total of five different devices in the single-subband regime.

L(um) np@m™) Ap(m) rg  Ep (meV) ¥ (x100ms™") v¢(x103ms™Y) v /v mg/me me/2me me/2ms ¥

1 38.8 103.1 1.36 2.11 0.87 1.89 046 0.067 0.037 0.55 2.04
1.7 40.5 98.8 1.30 2.30 0.95 1.99 0.48 0.067 0.038 0.57 1.97
3 40.3 99.3 1.31 2.28 0.89 1.91 047 0.065 0.039 0.60 1.93
5 42.0 95.2 1.26 248 0.97 2.02 0.48 0.065 0.037 0.57 1.97
18 423 94.6 1.25 251 0.96 1.94 049 0.069 0.039 0.57 1.91

Table 5.1 Different parameters, extracted from a total of five different devices, by using the
two-Fermi-sea model while in the single-subband regime.

5.8 Summary

In this chapter we have discussed the 1D spectra measured using tunnelling spectroscopy.
We started by characterising the 1D wire-array, showing how the density as well as number
of occupied 1D subbands could be tuned in sifu. Note that all data presented in this chapter
was obtained exclusively in the single-subband regime. We then discussed the fitting to the
2D-2D ‘parasitic’ tunnelling signal, showing how it could be used to calibrate a number
of experimental parameters independently of the 1D signal. We showed how assuming a
single Fermi sea, even with separate dispersions for spin and charge, proved insufficient for
explaining the observed spectra. We then introduced the 1D Fermi-Hubbard model from
which the many-body spectra, both at low and high energies, was obtained. Our results are
compatible with a picture where two Fermi seas, for spin and charge excitations respectively,
are seen to emerge. These are also observed to follow approximately parabolic dispersions.
This is quite remarkable, for it establishes that in 1D, out of the many-body continuum, some
single-particle-like properties still remain, and that composite excitations such as spinons

and holons can take place both at low as well as high energies.



Chapter 6

Screening and mass renormalisation
effects

In the previous chapter we introduced the two-Fermi-sea model, showing how two dispersions
with different degeneracies are required in order to fully capture the observed spin and charge
dynamics. All data presented and discussed in chapter 5 were obtained in the single-subband
regime. In our devices, however, we can change the number of occupied subbands, up to four,
by changing the degree of confinement in the wires. This chapter is divided into two parts,
both relating to multiple-subband occupancy regimes. We start the first part by discussing
how tunnelling dispersion maps can be analysed when more than one subband is occupied
(section 6.1). We then show how, by varying the interaction parameter y from the weakly to
the strongly interacting regimes, one can follow the emergence of both Fermi seas separately,
simultaneously quantifying the amount of 1D-1D inter-subband screening present in the
system (section 6.2). We conclude this part by briefly commenting on the applicability of
the 1D Fermi-Hubbard model in analysing our 1D semiconducting system (section 6.3).
In the second part, we use the two-Fermi-sea picture to extract the electron mass in 1D
(section 6.4), comparing it with previous results already reported in the literature for GaAs
samples of higher dimensionality. This chapter follows from the discussion started in chapter
5, and establishes the overall robustness of the two-Fermi-sea picture by going beyond the
single-subband regime.

All the material discussed in this chapter can be found in [125], apart from sections 6.1
and 6.2 which are reported in [124].
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6.1 Multiple-subband occupancy regime

As was seen in section 5.2, by changing the level of confinement in the wires (i.e., Viyg) we
can change the number of 1D subbands that take part in the tunnelling process. In particular,
once the 1D wires have been characterised (see Fig. 5.4), one can choose Vg so that either
two, three, or even four subbands are occupied. From here, tunnelling spectroscopy can be
performed in an identical fashion to what was done before, when only one 1D subband was
occupied.

Every time a new subband starts being occupied, another four parameters, BY, Biv, mg,
and mc, relative to that new subband, need to be added. The capacitances of each layer,
c{By and ¢{ X, also need to be updated, with their values now lying somewhere in between
the single-subband 1D-2D and the 2D-2D regimes. This leads to, for example, a total of
6 +4 44+ 442 =20 parameters when in the three-subband regime.

Fig. 6.1a and Fig. 6.1b show examples of tunnelling dispersion maps obtained with,
respectively, two and three 1D subbands occupied. As can be seen from the data, progres-
sively occupying more and more subbands translates into an increase of map complexity.
Nevertheless, accurate parameters for both spin and charge Fermi seas can still be extracted,
albeit with larger uncertainties, as we will now outline.

We have restricted our analysis to, when applicable, the bottom two subbands even when
more are occupied. One of the difficulties in analysing the data is that, as the number of
occupied subbands increases, it becomes visually more difficult to reliably extract BY. We
know, however, that the centres of all subbands must allign at k = 0, as evidenced by the high
degree of symmetry seen from Fig. 5.4. This is not surprising, as the 1D channels are created
by, approximately, parabolic confinement potentials. Therefore, we expect that

W2 W2 W1 W1
BY? +BY2 _ BY' 4B
2 2

6.1)

where BY" denotes the zero-bias field crossing points of the nth subband. This allows us to
obtain an initial estimate of, for example, BWY?, given knowledge of BV BYLVI , and Bivz.

Similarly, we can look at the zero-field bias crossing points VOW " between the nth subband
and the Vpc axis at B = 0. This gives

ed?
*
dmsnmy

BY' BV (mip+mg) . (6.2)

n (kl%,LW B ki uwan
2

eVon=+t—+ * ):>V0Wn:i
m m
2D S

Here, kg uw,, corresponds to the Fermi wavevector of the spinon mode of the nth subband

while + labels the upper and lower layers, respectively. The second equality is obtained by



6.1 Multiple-subband occupancy regime 119

(a)

dG/dVpc (US/mV) 0.4 dG/dB (pS/T)1

0.5

-0.5

0.5

Magnetic field B (T) Magnetic field B (T)

Fig. 6.1 Multiple-subband regime. Tunnelling conductance differentials dG/dVpc and dG/dB
plotted as a function of DC-bias Vpc and in-plane magnetic field B, for a 1.7 um device,
mapped when (a) two (Viyg = —0.455V) and (b) three (Viwyg = —0.405 V) subbands are
occupied. The dashed coloured curves have the same meaning as before, see Fig. 5.8 and
5.9. Insets show the dG/dB differential near the +kp point for the bottom-most occupied
subband.



120 Screening and mass renormalisation effects

converting kg into B‘ivn using equation (3.22). Combining both equations (6.1) and (6.2) we
arrive at

W2 W2 W1 W1\ 2
_ BB BV BYING  we  Mapms
2 2 O (m

Equation (6.3) allows us to determine the positions of the second subband by varying V(}N 2
and plotting the dispersions with the resulting BY? until the best match is obtained. Since
B\fz is usually well-observed from the data, this effectively imposes a strong constraint on
BY2,

w2

w2
B— S

Having discussed how to obtain both and BYFVZ, let us now turn our attention to m
and mY'2. Starting with the latter, m" > can normally be obtained by looking at the holon
branch emerging from the B\fz point at high bias, see arrows in Fig. 6.3a and b. However, as
more subbands come into play, these become progressively harder to resolve separately. As
in the single-subband regime, we can obtain a second constraint on m > by looking at the
peak broadening at B = 0. On the other hand, mY'? can be extracted by looking at the spinon
mode in the hole sector. This is usually clearly observed for at least the bottom two subbands,
allowing us therefore to extract both masses similarly to what has already been done for the
bottom-most 1D subband. Note, however, that unlike before, we can no longer compare
the spin-to-charge mass ratio with the (independently) extracted velocity ratio (see insets in
Fig. 6.3a and b showing the dG/dB differential around the +kguw,| region). This is because
as more subbands become progressively occupied, v* and v* can no longer be accurately
observed. Overall, this results into a slight increase of the uncertainty as the number of
occupied subbands increases.

Tables 6.1 and 6.2 show, respectively, the extracted parameters for both the first and

second subbands as either two or three subbands are occupied.
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1% subband
L (um) npm™Y Ap(m) rg  Ep (meV) ¥ (x100ms™!) v¢(x103ms™Y) vV mg/me me/2me me/2ms ¥
1 49.3 81.1 1.07 3.41 1.21 1.97 0.61 0064 0047 0.73 1.19
1.7 48.0 83.3 110 3.23 1.19 1.85 0.64 0065 0047 072 1.16
48.0 83.3 1.10 323 1.13 1.91 059 0064 0047  0.73 1.24
49.5 80.8 1.07 3.44 1.23 1.95 0.63 0.065 0.045  0.69 1.22
18 50.1 79.8 1.05 3.52 1.18 1.97 0.60 0.065 0047 072 1.25
2M sybband
L (um) np (um™) Ap (am) 7 Ep (meV) mg/me me/2me me/2ms Y
376 1064 140 198 0.073 0.043 059 1.92
1.7 375 106.7 141 197 0.072 0.041 057 2.05
37.0 108.1 143 192 0.069 0.041  0.59 1.89
35.4 113.0 145 1.76 0.069 0.041  0.59 1.84
18 36.7 109.0 144 1.89 0.070  0.040  0.57 2.01

Table 6.1 Different parameters, extracted from a total of five different devices, by using the
two-Fermi-sea model while in the two-subband regime.

15t subband
L(um) np@m™) Ap(m) rg  Ep (meV) ¥ (x100ms™!) v¢(x100ms™l) V)V mg/me me/2me me/2ms ¥
1 55.5 72.1 0.95 4.32 1.43 1.96 073 0062 0053 085 0.73
1.7 54.0 74.1 0.98 4.09 1.29 1.86 0.69 0.064 0.051  0.80 0.89
54.4 73.5 0.97 4.15 1.40 1.96 071 0062 0052 0.84 0.78
54.3 73.7 097 4.14 1.45 1.97 0.74 0.062 0.050 0.8l 0.82
18 55.1 72.6 0.96 4.26 1.36 2.02 0.67 0062 0051 082 0.88
2nd gubband
L(um) np(um™Y) Ap (am) 7 Ep (meV) mg/me me/2me me/2ms Y
1 43.0 93.0 123 2.59 0.064 0.048  0.75 1.13
1.7 424 94.3 124 252 0.066 0.047  0.71 1.32
3 442 90.5 1.19 274 0.067 0.048  0.72 1.27
5 44 4 90.1 1.19 277 0.066 0.048  0.73 1.26
18 447 89.5 1.18 2.80 0.064 0.048 075 1.13

Table 6.2 Different parameters, extracted from a total of five different devices, by using
the two-Fermi-sea model while in the three-subband regime. Only the two bottom-most
subbands were analysed.
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6.2 Emergence of two Fermi seas and 1D-1D screening ef-
fects

Having discussed how to extract a variety of parameters for each Fermi sea, both in the single-
and multiple-subband regimes, let us now analyse the collected statistics. Fig. 6.2a shows
the mass and velocity ratios as the interaction parameter rg is varied. The data shown has
been summarised in Tables 5.1, 6.1, and 6.2 and corresponds to one or the two bottom-most
occupied subbands as the occupancy value is changed from one to three.

As can be seen, the measured m./2mg ratio systematically deviates from the non-
interacting limit (i.e., m¢/2ms = 1) as rg increases, in other words as the 1D density is
made progressively lower. A very similar dependence on r; can also be observed from the
ratio of the Luttinger parameters v*/v¢, simultaneously extracted from the data. Fig. 6.2a
allows us therefore to claim a 1D system where the strength of the interactions can be varied
in situ by progressively changing the density and the number of occupied 1D subbands in
the wires. In practice, as seen in section 5.2, this is achieved by changing the strength of
confinement potential.

(a) (b)
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. " | @ 1% subband masses
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2 09} - m 2" subband masses - PN
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Fig. 6.2 A tunable 1D system. (a) Ratio of the holon-to-spinon masses and the spinon-
to-holon velocities as a function of interaction parameter rg (i.e., density), for a variety of
different-length devices. (b) Same data as in (a) but now plotted against the microscopic
interaction Hubbard parameter y. The Fermi-Hubbard model can reproduce the observed
experimental dependence well, see black dashed line and text for discussion.

Going back now to the 1D Fermi-Hubbard model and, specifically, the discussion started

in section 5.6.3, instead of r; we can use Y as a way of estimating the interaction strength
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between electrons in the system
AU

Y=0.032——, (6.4)
at
where a is the lattice parameter of the underlying crystal. Note that, unlike rg, 7y itself emerges
from the Fermi-Hubbard model in 1D when taking a microscopic approach based on the
Bethe ansatz. Therefore, while v still retains knowledge of the system’s density, via Ag,
it goes further in that it also takes into account the screening potential, via the Hubbard
parameter U.

For ¥ < 1, the weakly interacting electrons are almost spin-degenerate, having double
occupancy for each momentum state, as for free particles. Here, since the holon Fermi sea is
still close to the double occupancy of the free Fermi gas, it cannot be separately resolved
from the spinon Fermi sea. On the other hand, for ¥ > 1, each momentum state is occupied
by only one electron due to strong Coulomb repulsion. Effectively, such a dependence of the
system’s behaviour on Y is qualitatively identical to that on rg in all dimensions which, as we
saw in section 5.3, reflects the ratio of the total interaction energy to the kinetic energy.

Analysing the same tunnelling maps shown before, but now with the dispersion solutions
produced by the Fermi-Hubbard model, we can extract the evolution of each Fermi sea with
respect to Y. Plotting the same mass and velocity ratios as shown in Fig. 6.2a, but now
instead against Y rather than rg, we are able to collapse all data points on to a set of universal
curves, see Fig. 6.2b. Note that here the data shown corresponds to a total of five different
devices, fabricated from two different wafers, measured at different density and subband
occupancy values, and over independent thermal cycles. As can be seen, the agreement
between experiment and theory further reinforces our claim of two separate Fermi seas for
spinons and holons, having now observed their emergence as 7 is varied from the weakly- to
the strongly-interacting regime.

Let us now compare the extracted values of rg with y. Solely considering the single-
subband data, we find that y ~ 1.5rs, see dashed-line in Fig. 6.3a. Note that these values are
consistent with the estimate performed in [42], where the long-range Coulomb interaction
between the electrons was assumed to be screened by a conducting plate a certain distance
away from the wire. We interpret the still-observable discrepancy of the remaining data
points as a manisfestation of 1D-1D inter-subband screening, which is not captured by rg but
is taken into account explicitly in y via the Hubbard two-body interaction energy U. This is
proportional to the integral of the screened Coulomb potential, which we can change in our
devices by changing the screening radius.

Using equation (6.4) we can extract the evolution of U as the number of occupied
subbands is changed, see Fig. 6.3b. Here, two clear trends can be seen to emerge. First, U

decreases as more subbands are progressively filled. This results in relative reductions of
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Fig. 6.3 1D-1D screening effects. (a) Microscopic parameter ¥ vs r¢ where an approximate
linear dependence can be seen. The dashed line corresponds to a fit using only the single-
subband data and marks the minimal screening boundary. Note how every other point,
corresponding to multiple-subband occupancy regimes systematically falls below this line.
We interpret this as evidence of 1D-1D inter-subband screening, see text for discussion. (b)
Hubbard parameter U /¢ vs number of occupied subbands, as extracted using equation (6.4).
Data points have been offset horizontally from each other for clarity. Inset: rg vs number of
occupied subbands. We change rg by tuning the confinement potential of the 1D wires, see
Fig. 5.2.

~ 459% for the 1%t subband and ~ 25 % for the 2" subband. Second, the first subband is
systematically more strongly screened than the second, result which we interpret as arising
due to the difference in density between the two subbands. Furthermore, note that these
trends are also visible from Fig. 6.3a, where all data points except those coming from the
single-subband regime systematically fall below the minimal screening boundary. As far as
the author is aware, this is the first report of observation of screening effects between two 1D

systems, with a similar conclusion having also been reported in [71] for 2D systems.

6.3 Comments on the applicability of the Fermi-Hubbard

model

Before we conclude, let us briefly comment on the applicability of the Fermi-Hubbard model
to our particular 1D experimental system of choice.
The Fermi-Hubbard model is a particularly special microscopic construction in the sense

that it is fully integrable. As we saw before, this means that the full dispersion spectra, both
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at low and high energies, can be obtained. In fact, for 1D, it is currently the only available
theoretical tool capable of calculating the dispersion of both pure holons and spinons outside
the low-energy limit. In contrast, this is no longer possible if using a more generic finite-range
interaction potential, even when in the weakly-interacting limit, as spin-charge separation is
a nonperturbative effect.

It could be argued, however, that in our experiment, we are effectively applying the
Fermi-Hubbard model to a 1D geometry of electrons created using a semiconductor material
(GaAs) where the Fermi wavelength is ~ 100 — 200 times the size of the lattice parameter
(a =5.6531 A), and the screening length of the Coulomb potential also at least some tens of
lattice parameters. The Fermi-Hubbard model is based on an on-site tight-binding approach,
something which would therefore a priori seem to not be valid on the microscopic level here.

Nevertheless, the spectra predicted with only on-site interactions still collapse the ob-
served mass and velocity ratios of holon/spinon seas, extracted directly without any models
for a large number of experimental points, onto a single curve with remarkably good accuracy,
see Fig. 6.7b.

As one final point, note that a series of other 1D systems have been found to behave in
a manner closely matching the predictions of the Fermi-Hubbard model. In section 2.2.4,
when discussing the early results in Luttinger-liquid-type behaviour using ARPES, we saw
how the works of both Kim et al. [70, 69, 68] and Fujisawa et al. [38, 37] found evidence of
spin-charge separation when studying the high-temperature superconductor SrCuQ,. In both
cases, the spectra was obtained using the 1D Fermi-Hubbard model in the strong interaction
limit. More recently, Google Al Quantum has also reported the simulation of the 1D Fermi-
Hubbard model using a 16-qubit superconducting quantum processor, with both spinon and
holon modes being observed to separate beyond the low-energy regime, in a way compatible
with our results [7]. Note, however, that here the simulation was carried out in a small system,

whereas we instead do it using a real semiconducting material with hundreds of electrons.

6.4 Mass renormalisation effects

In the preceding sections we saw how two separate Fermi seas, for spin and charge excitations
respectively, emerge from the mapped dispersion of the 1D wires, as interactions are tuned
from the weakly to the strongly interacting regime. We will now show how expanding from
the two-Fermi-sea model one can use it to extract the bare mass of electrons in GaAs. Before
this, however, let us give an overview of some past results already reported for GaAs in
samples of higher dimensionality.
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6.4.1 Electron mass in 3D and 2D GaAs geometries

One of the basic parameters of any material is the band mass of its electrons, mg. For GaAs,
this is often quoted as the effective bulk, that is, three-dimensional (3D), mass value of

m3p, = 0.067m, obtained at low densities, where m, is the free-space electron mass. Fig. 6.4a

shows the evolution of n3y in terms of the electron density n3p, as reported in [103].
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Fig. 6.4 Electron effective mass m* in 3D and 2D GaAs geometries. (a) 3D (bulk) effective
mass m§D as a function of carrier density n3p. Data reproduced from [103, 114, 24, 50,
113, 21, 101, 63, 84]. (b) 2D electron mass m}p, as a function of carrier density nyp. Data
reproduced from [115, 9, 75]. In addition, % marks the 2D mass result as extracted using
tunnelling spectroscopy, see section 5.4.1 for details.

It is a well-established result that in a crystal the effective carrier mass often differs
from its free-space counterpart as a direct consequence of the wavefunction interfering with
the ionic lattice. Indeed, the enhancement or suppression of the effective electron mass
has been measured in several materials, sometimes by up to several orders of magnitude.
Additional degrees of freedom, such as phonons, spin waves, plasmons, spin-orbit coupling,
and impurity scattering, have also been observed to play a role.

One can, however, enquire if, at a deeper level, the presence of electron-electron interac-
tions could also affect the mass. These are known to be quite strong and, strictly speaking,
unavoidable, yet as seen in section 2.1, Fermi liquid theory tells us that their effect should be
indistinguishable from the renormalisation due to the band-structure of the material.

As argued in chapter 2, a way of exploring the effect of electron-electron interactions can
be achieved via systems of reduced dimensionality. Note that, experimentally, by changing
the dimensionality D of a system, one is effectively changing the coordination number, that

is, the average number of neighbours that surround each electron.
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After Esaki and Tsu’s breakthrough with the invention of semiconductor quantum wells
[36], two-dimensional electron systems became available, which have since been perfected to
extremely high standards. In specific, regarding GaAs/AlGaAs heterostructures, a number of
studies using techniques such as Shubnikov-de-Haas oscillations [49, 28, 115], microwave-
induced resistance oscillations [48], quantum Monte-Carlo calculations [75], and cyclotron-
resonance measurements [74], have since reported the extraction of the two-dimensional
(2D) effective electron mass m3p,, see as an example Fig. 6.4b which reproduces the results
reported in [115]. Note that here, % marks the m3;, mass value as measured using tunnelling
spectroscopy in the 2D regions of our devices (section 5.4.1), which is in excellent agreement
with the results reported. In contrast to the 3D data, however, values both above and below
the band-mass value of 0.067m, are observed as the electron density nyp is varied.

Going further to a 1D geometry changes the effect of interactions drastically, from
single-electron mass renormalisation, to collective spin and charge excitations, as seen before.
Extracting the effective mass of electrons in 1D GaAs geometries is the topic of the next

section.

6.4.2 Electron mass in 1D GaAs geometries

In 1D, geometry alone imposes strong correlations even when only at modest interaction
strengths. As a result, the Fermi sea of electrons described by only one mass separates itself
into two bands for excitations of spin and charge, which as we have seen, can in turn be
described by two incommensurate masses mg and m,. This offers a new method for estimating
my, in which it is given by the value where mg and m. /2 converge in the non-interacting limit
(i.e., Y = 0). Note that here the extra factor of two arises from the difference in degeneracy
between the spinon and holon Fermi seas already discussed in section 5.7.

In order to extract the dependence of the holon and spinon masses on Y, we repeat the
calculation of the dispersion of these two bands based on the 1D Fermi-Hubbard model for
Y varying from O to a large value, see Fig. 5.11 for an example for y = 2. Fig. 6.5a shows
the calculated dependence of each mass on 7, with Fig. 6.5b showing the evolution of the
corresponding ratio. Note that, at large 7y, the masses are very different from one another,
with 2mg/m. becoming infinite as y — oo. This is because, while m, remains finite, the
spinon band flattens out, with mg — co. On the other hand, for small 7y, the two masses are
close to each other, approaching the single-particle mass mg as Y — 0.

Our goal is to extract mg in 1D GaAs wires as the electron density np is varied. Note
than for all previously discussed data (see chapter 5 and section 6.1), s = 0.8 — 1.5. In order
to go to as low densities as possible or, in other words, higher rg, we can instead map near
the bottom of each 1D subband, just as it is about to become depleted. Ideally then, the
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Fig. 6.5 Numerical calculation of the spinon (green) and holon (magenta) masses as a
function of the microscopic Hubbard interaction parameter 7. (b) Dependence of the mass
ratio 2mg/m. on 7y obtained from (a).

best place to start would be when only a single subband is occupied, for here the number of
tunnelling features to analyse is reduced; however, as the 1D channels approach pinch-off, the
signal becomes largely dominated by the ‘parasitic’ 2D region, making it hard to accurately
decouple 1D from 2D features. Another alternative would be to map at the bottom of the
third, or even fourth, occupied subbands, for here the 1D signal would vastly outweigh any
‘parasitic’ contribution; similarly to before, however, proximity to the 2D band as well as
overall increase in map complexity as more subbands become occupied makes this approach
inadequate. The solution was found by mapping near the bottom of the second occupied
subband, allowing us to raise rs up to ~ 4, see Fig. 6.6.

For each dispersion map measured at a different density, we obtained Y from the directly
extracted 2mg/m, ratio using the 1D Fermi-Hubbard model, see Fig. 6.5b. Note that, in
addition, for the single-subband data, the observed v*/v¢ ratio was also used as a second,
independent, estimate of y. Fig. 6.7 shows the resulting individual evolution for each mass.

As can be seen, we are able to follow the evolution of the holon mass m. across a
large range of y with good agreement with the theory. Similarly, we can also follow the
evolution of the spinon mass my, as extracted from the same set of measurements, up to y ~ 3.
Above this point, the spinon mode becomes obstructed by the zero-bias anomaly (ZBA), first
discussed in see Fig. 2.13, which greatly suppresses all signal falling within 0.5 mV of zero
bias. Note further that, unlike the charge mode, the spinon mode can only be found in the
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Fig. 6.6 Mapping a 1D system at low densities. (a) Tunnelling conductance differential
dG/dVy as a function of wire-gate voltage Vyy and in-plane magnetic field B. The yellow
shaded area marks the bottom of the second subband, where the device was mapped in
order to reach r¢ > 1.5. (b) Equilibrium 1D electron density n;p for each of the conducting
subbands shown in (a), see closed symbols. Open symbols correspond to the equivalent
density values as extracted from the full energy-momentum maps. (c) Interaction parameter
rs as a function of density.

hole sector, overall making the extraction of its mass more challenging. Nevertheless, the
extracted values are also seen to evolve systematically with 7, in good agreement with our
model. As the mass of each mode converges to the bare electron mass mg as interactions
are turned off (i.e., ¥ = 0), taking the interpolation from the best fit to the data we find
mgy = (0.0525+£0.0015)m,. Note that this value is ~ 22% smaller than the band mass value
of 0.067m., suggesting that a sizeable percentage of the electron mass in GaAs may be due

to electron-electron interactions.
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Fig. 6.7 Extraction of the bare electron mass mg in GaAs. We obtain both the spinon ()
and the holon (m.) masses for a variety of different-length 1D devices at different interaction
strengths 7y, which is o~ r¢ but also includes screening effects that are quite sizeable in our
samples—see details below. In a 1D geometry, my is then given as the convergence point of
these two masses in the limit as interactions are turned off (i.e., Y — 0). Here, the dashed
curves represent a one-parameter fit for the evolution of mg and m, according to the 1D
Fermi-Hubbard model, see Fig. 6.5a. Note that the obtained value of my is significantly
below 0.067m, (dotted line). The yellow shaded area marks the region in which mg cannot
be accurately determined, due to the presence of the zero-bias anomaly (ZBA), see text for
details.

In addition to obtaining y from the measured 2ms/m, ratio, we can use the Hubbard
spectra to fit the observed tunnelling resonances, as first discussed in section 5.6.3, by scaling
the overall energy axis by 1/my, see Fig. 6.8. This allows us to obtain individual values of
both mg per data set, rather than one cumulative extraction as seen in Fig. 6.7. The obtained
average mass was nmg = (0.051540.0015)me for ry < 1.6, see closed symbols in Fig. 6.9b.
Across this range mg shows no dependence, within error, on density, being also in good
agreement with the previously measured value.

At higher rg (open symbols in Fig. 6.9b), and as discussed before, individual extraction
of my is hindered by the fact that mg cannot be reliably observed due to the ZBA. In order to
obtain a confidence interval on its value, we estimate my by fitting the spinon mode up to the
point where the ZBA takes over, from which we extract a minimal value for the interaction
strength, Ymin. Similarly, assuming a minimal screening scenario allows us to extract Ypmax.,
see Fig. 6.10, which follows from Fig. 6.3a but now also includes data for the bottom of
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Fig. 6.8 Theoretically obtained spinon ([J) and holon (A) spectra as given by the Lieb-Wu
equations for unpolarised electrons (i.e., M=N/2) for an interaction strength y = 2, see
section 5.6 for full details. Note that the energy scale is o< my.

the second occupied subband. From here, lower and upper bounds on the value of mg can
be obtained given knowledge of m, as shown in Fig. 6.9b, where open symbols mark the
average value between these two limits.

Even though our current level of resolution of the spinon mode does not allow us to
accurately discern between different mass models, our results are compatible with a scenario
where mg remains constant in density, as expected since in 1D the many-body effects
naturally decouple from the electron mass. Note that, even within the error, mg systematically
falls below the m3 and m5p values previously shown in Fig. 6.4a and Fig. 6.4b and now
reproduced in terms of rg in Fig. 6.9a. Furthermore, even if such a dependence between
mgq and rg exists, it can already be seen, within error, to be much weaker than that already
observed in both 2D and 3D over a comparable range. Finally, note that the upper bound
of mg was obtained assuming minimal screening, an unlikely scenario as all data for ry 2> 2
was obtained when two subbands were occupied, making the real error therefore most likely
smaller than that shown.

Let us now comment on some other effects that could also affect the value of the measured
electron mass myg. At high densities (i.e., rs < 1), it is expected that the nonparabolicity of
the GaAs band will further enhance the effective electron mass with respect to the band mass.

However, following from the calculations performed in [31], at the highest density probed
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Fig. 6.9 Density dependence of the electron mass in GaAs at different dimensionalities.
(a) Three-dimensional (bulk), m3p,, and two-dimensional, m},, effective mass of electrons
in GaAs as a function of interaction parameter rg (data taken from [103, 114, 24, 50, 113,
21, 101, 63, 115, 84, 9, 75]). (b) Bare electron mass my as extracted using our tunnelling-
spectroscopy technique, for a variety of different-length devices. Closed symbols correspond
to datasets where both mg and m. can be extracted, while for open symbols only m, is
obtained, see text for discussion.
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Fig. 6.10 1D-1D inter-subband screening. Same data as that initially shown in Fig. 6.3 but
now also including measurements at s > 1.5. Open symbols have the same interpretation as
that in Fig. 6.9b, see text for discussion.

in this experiment, this would correspond to, at most, 5% relative increase, so it cannot by
itself explain the observed 22% suppression (seen at both high and low densities). Another
effect that is also known to change the mass of carriers in semiconductor structures is lattice
strain. This is particularly relevant in our 1D system, as slight crystal distortions could indeed
lead to significant deformations in the position and shape of the electrostatically-defined
wires. In our samples, it is expected that most of the strain should be caused by the deposited
surface gates, as GaAs and AlxGaj_4As are essentially lattice-matched at x = 0.3 (mistmatch
~ 4.26 x 10~*). Independent work carried out by [100, 99] in wafers and using Ti/Au surface
gates very similar to ours found a stress-induced tilt of the crystallographic planes of about
0.015°, corresponding to a stress of about 57 MPa and an in-place strain of &, ~ 4 x 10-°.
We highlight, however, that according to the authors of that work the measurements were
carried out at room temperature, and that it is expected that the strain value may decrease by
up to a factor of 2 when cooled down to cryogenic temperatures [80]. Nevertheless, even
when taking the worst-case scenario, these figures are still about three orders of magnitude
too small to account for any significant change in the curvature of the measured 1D dispersion,
and therefore justify the observed mass change.

A systematic interpretation of the emerging picture can be given by Fermi liquid theory
which, as discussed in section 2.1, is valid only for D > 1. In specific, the bare mass my
of electrons is now renormalised due to the many-body effect of the Coulomb interaction,
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leading to an effective mass m*, see section 2.1. In the high-density limit, that is, weak inter-
actions (rs < 1), this can be modelled by the well-understood random-phase approximation
[90], which gives

*

Z— — 1+ birsInrg+byrg+0(r2) < 1, 6.5)
0

where the positive coefficients b; depend on dimensionality and details of the interaction
potential. Note that here the large amount of screening (expected at high densities) will
generally speaking contribute to a decrease of the effect of interactions.

For intermediate-to-strong interactions (i.e., rs = 1), the effective mass is expected to get
heavier, m* /mg > 1, as a larger degree of dressing of the quasi-particles starts competing
with the screening effects. A microscopic calculation of the phenomenological Fermi liquid
parameters in this regime, however, is still an open problem, with efforts having been made
both on the analytical [134, 9, 104] as well as numerical [110, 34, 26] fronts. Overall, most
works tend to converge on the qualitative level, though no exact calculation of how m*
evolves with rg as yet been achieved beyond the high-density limit. For completeness, note
that at extremely strong interactions (i.e., rg = 20 — 30), Fermi liquid theory is also expected
to break down, as the electrons start forming what is known as a Wigner crystal. This regime
is well beyond the limits of our experiment, though recent progress has been claimed in
monolayer semiconducting systems [111].

Given the state of the theory, we can conclude from the data that for g ~ 1 — 2 the Fermi
liquid is already in the regime where the quasi-particles consist of a large enough number
of electrons to make the effective mass heavier than the single-particle mass. From Fig.
6.9a, we can see that m* is heaviest for D = 3, in which the largest coordination number
makes the quasi-particles build out of the largest number of electrons geometrically. Then,
m* decreases for D = 2, as expected for a smaller coordination number, and is lightest
when D = 1, in which the phenomenon of spin-charge separation and the emergence of two
separate Fermi seas fully decouples the interaction effects from the mass renormalisation,
allowing the observation of the bare band mass my directly. A further argument to support
this interpretation is the strong dependence of the observed electron mass on density in
D = 2,3 but no variation of the mass, within the error, for the density range observed in
D=1.

The fact that in GaAs about 22% of the carrier mass may be accounted for by many-body
interaction effects is something that was not anticipated by the present understanding of Fermi-
liquid theory on the microscopic level, stressing the need for further development on the
fundamentals of the many-body theory. In any case, this result alone already provides reliable
experimental data on the decoupling of the single- from the many-particle contributions to

electronic parameters such as the carrier mass, which could lead to direct improvements in
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the modelling of materials. Simultaneously, it also opens a new opportunity for improving
the operational efficiency of electronic devices, as additional control of the carrier mass can
be achieved via the toolbox of many-body physics. Indeed, lower carrier mass should lead to
lower resistivities, resulting in better energy efficiency, as well as faster transistors, e.g. [85].

6.5 Summary

In this chapter we have expanded on the work presented in the chapter 5 by measuring the
1D spectra when multiple 1D subbands are occupied. This allowed the emergence of each
Fermi sea to be mapped as the wires were tuned from the weakly to the strongly correlated
regime. Furthermore, by decoupling the screening from the density effects, we showed how
1D-1D inter-subband screening could also be observed in our devices. The second half of
the chapter used the 1D Fermi-Hubbard model to extract the (bare) mass of electrons free
from many-body effects, in GaAs. Here, we showed how by mapping near the bottom of
the second occupied subband, interaction parameters as high as rg ~ 4 could be obtained.
The extracted mass value was then compared with earlier, independent work in both bulk
and 2D GaAs geometries, where it was observed to be about 22% lighter. This suggests an
unexpectedly large contribution of the interactions, not anticipated by the current state of
Fermi-liquid theory. Given that GaAs is the second most used semiconductor in industry,
this result opens up the possibility of engineering new technologies where energy losses may

be reduced via optimisation of the carrier mass.






Chapter 7

Further signatures of interaction effects
in 1D

In the previous chapters, both when discussing the emergence of two Fermi seas as well as
extracting the bare mass of electrons in GaAs, statistics were collected by measuring a total
of five devices where the length of the 1D wires was varied from 1 — 18 um. At no point,
however, did we justify why length was being varied in the first place. In this chapter we
address the original motivation for doing so, by contrasting the observed 1D spectra with
one of the main nonlinear Luttinger liquid pictures, the hierarchy-of-modes model. This is a
particularly unique theoretical picture as, unlike both the (linear) Luttinger model and the
mobile-impurity picture, here physical length is seen a meaningful parameter, rather than
simply taken to be infinite. We start by discussing how the hierarchy picture is constructed,
putting particular emphasis on how it differs from its closest counterpart, the mobile-impurity
model (section 7.1). We then revisit the tunnelling maps, already discussed in chapter 5 and
6, showing how a series of features, not accounted for by the non-interacting model, are seen

to emerge as system length is varied (section 7.2).

7.1 A microscopic approach to nonlinear Luttinger liquids

In chapter 2 we saw how early attempts at describing many-body systems of interacting
electrons relied on the assumption of a linear relationship between energy and momentum.
This led to the well-known Fermi-liquid model at higher dimensions (see section 2.1), valid
for both 3D and 2D systems, and the Tomonaga-Luttinger-liquid model in 1D (see section
2.2). As expected, both of these models were, strictly speaking, only valid for low-energy
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and low-momentum excitations (i.e., close to the Fermi points where linearity is expected to
hold), leaving the problem of high energy largely untreated.

For the specific case of one-dimensional systems, attempts at accounting for the curva-
ture of the dispersion led to what is now commonly known as the mobile-impurity model
[53], first discussed in section 2.3.1. Experimentally, evidence in support of this picture,
where nonlinearities are expected to manifest as both short-lived plasmonic excitations
and momentum-dependent power laws, have so far been reported in both semiconducting
quantum wires [59] and carbon nanotubes [129], see also section 2.3.3.

In this chapter we focus on a second approach to dealing with the nonlinear regime in
one-dimensional systems, known as the hierarchy-of-modes model [119, 121], see section
2.3.2. Early results in support of this picture, whose key prediction is a length-dependent
emergence of higher-order ‘replica’ modes, have been reported using semiconductor quantum
wires similar to our own [94, 119, 121].
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Fig. 7.1 1D spectral function for spinless fermions according to the hierarchy-of-modes
picture. First- (0) and second-order (1) modes are shown between —kp < k < kp and
kp < k < 3kg, respectively, for both particle (p) and hole (h) sectors. Here, white (grey)
corresponds to the forbidden region (many-body continuum). Finally, a, b, and ¢ denote the
level in hierarchy in powers of 0, 1, or 2 of R? / L?, with r/l identifying the origin in the range,
right or left. For more details, see [119].

Unlike the mobile-impurity model, the hierarchy-of-modes picture takes a full micro-
scopic approach at solving a system of spinless fermions where only short-range interactions

are allowed
L)2
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pxa 1

hxa 1

pxb  16Z°kgk? /(K — (ke +7)*)* 422V (k—kr+37)%/ (k= ke +7)* (k — ke +27)?
pxb(l) 472 (kg +k)? /I

pxb(r) 472 (kg — k)? /I
hxb 47% (kg — k — 7)* (kp + k)? /K2 (k — kg + 7)?
hxb(l)  AZ2Y)(k+ kg +27)? 222K ) ((k+7)* — k&)?

hxb(r) 4729/ (k — kg — 27)?
Table 7.1 Spectral weights A(k, &) for the modes shown in Fig. 7.1. For details on notation,
see caption to Fig. 7.1 and [119]. Here, y=2n/% and Z=mU /(mU +1)/[.£ —NmU /(1 +

mU)], where . = L/R, U is the screening potential, R is the screening radius, L the length
of the system, N the particle number, and m the mass.

with the field operators y(x) satisfying Fermi relations y(x)y'(x') = §(x —x), p(x) =
v (x)y(x) being the density operator, m the bare mass of electrons, U the interaction
potential, and L the length of the system.

From the many-body solutions, obtained using Bethe ansatz methods, and assuming
solely a repulsive regime (i.e., U > 0), it is found that in addition to the main 1D mode, where
the dispersion is expected to remain largely parabolic, with the mass simply renormalised
by the Luttinger parameter K (note that in its current form this remains a spinless theory,
making K. and Kj, first introduced in section 2.2.2, degenerate), a hierarchy of extra, higher-
order excitations is also expected to emerge. The prediction that multiple, higher-order
modes should emerge is, on itself, not unique to the hierarchy-of-modes model, having first
been made by Imambekov and Glazmann in [53]. There, however, no statement was made
regarding the strength (or, in other words, the spectral weight) of these modes. Here, instead,
the spectral weight of each mode is given in powers of R?/L?, where R is the screening
radius in the system. Note that in every other model concerning 1D electron systems, linear
or otherwise, the length of the system is always taken to be essentially infinite, making this
therefore currently the only available theoretical picture where L is expected to physically
manifest itself in the observed spectrum.

For completeness, Table 7.1 shows the spectral weights along all modes seen in Fig.7.1
(reproduced from [119]). In the next section we show evidence for both pOb and p1b modes

by revisiting the tunnelling spectroscopy maps first discussed in chapter 5.
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7.2 A hierarchy of 1D ‘replica’ modes

In chapter 5 we identified two separate Fermi seas, for spin and charge excitations respectively,

by probing an array of 1D wires mapped using tunnelling spectroscopy. Let us now further

analyse the measured 1D dispersion.

dG/dVpc (US/mV)

dG/dB (uS/T)

T 1 1
/ Vi 7, /
/ / ,/ /
51 & // . 5| Ve /, ..
~—cs A . ‘ , .
IN / \\
N
< 7 —~ 7
E \\\\ A ) N /B particle E A \ / particle
% /
<0 = > 10 ~0 SN 10
N N A8 C hole a 3 N hole
B N~ — - Bt \ > B \\ - ~ BT
\ \
\ \ \
\ \ \
-5 \ A 05 5 \ 3 -0.5
\ \ \ \
\ \ \ \
\ \ \ \
\ \ -1 )Y \ -1
0 1 2 5 0 1 2 5

3 3
Magnetic field B (T) Magnetic field B (T)

Fig. 7.2 Simulated tunnelling conductance differentials dG/dVpc and dG/dB between a
1D non-interacting system (magenta) and a 2DEG (black). The 1D systems was modelled
according to equation (3.19). Note that the resulting 1D tunnelling resonance is well captured
with a single parabola, as expected since, in the absence of interactions, the spinon and holon
dispersions are degenerate with each other.

Fig. 7.2 shows both dG/dVpc and dG/dB differentials for a simulated conductance map
between a non-interacting 1D system (described by equation (3.19)) and a 2DEG. Note how,
unlike what is seen in the experiment, here the observed tunnelling resonances can be fully
captured, both in the hole as well as particle sector, using a single parabola (dashed magenta).
This is not surprising and follows from Fig. 5.10 where, in the absence of interactions, both
Fermi seas are expected to be degenerate with one another.

Let us start by analysing region B in Fig. 7.2 just above the B (i.e., +kr) point. Fig. 7.3
shows region B for a variety of different-length tunnelling devices where a clear feature, not
accounted for by the non-interacting picture, can be seen. Looking at both the dG/dVpc and
d*G / dV]%C, as well as G vs Vpc line-cuts of the raw data, it can be seen that the tunnelling
conductance peak broadens and splits, with one boundary following the 1D holon mode
(magenta x) while the other branches away from it (blue +).

In order to ensure that the enhancement in tunnelling marked by the blue + is not coming
from the 2D ‘parasitic’ region, all data shown in Fig. 7.3 was obtained while applying a

positive bias to a gate going this region, Vpg > 0 (see section 5.1 for more details). This
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Fig. 7.3 Second-order pIb ‘replica’ mode. dG/dVpc (left) and d*G / dV]%C (centre) differen-
tials, for devices ranging from 1 — 5 pm in length. Right: G vs Vpc line-cuts at k > kr (i.e.,
B > B™). ‘x’ and ‘+” symbols mark, respectively, the position of the fitted dispersions in the
particle sector for the holon branch (magenta dashed) and the second-order spinon ‘replica’
mode (blue dotted). Dashed green and black mark, respectively, the extension of the spinon
Fermi sea into the particle sector and the dispersion of the bottom 2D spectrometer. Note
that conductance has been normalised by device length.
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allowed the parasitic 2D features to be moved further to the right, away from B,.. As before
(see section 5.4.1), these were then separately mapped before being subtracted from the
signal of interest. As an example, Fig. 7.4 shows region B mapped for a 1 um long device
where it can be seen that the observed extra feature in conductance is independent of the
‘parasitic’ tunnelling signal. Note how use of the ‘parasitic’ gate is crucial for being able to
clearly observe the region around B . Furthermore, the extra feature in conductance was also
no longer observed once the wires stop conducting, see Fig. 7.5 where the wire-gate voltage
Vwg was varied just past pinch-off, further suggesting that this feature is 1D in nature and

cannot originate from the ‘parasitic’ 2D region.
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Fig. 7.4 Use of the ‘parasitic’ PG gate in mapping at high momenta. First and second rows
show, respectively, tunnelling spectroscopy performed while Vpg is equal to or larger than
zero. Note that PG is a gate going over the ‘parasitic’ 2D injection region, allowing the
density is this region to be changed and therefore the position of the 2D-2D background
signal, shown here moving further to higher momenta, away from +kg. Left column shows
the raw data, while centre and right columns show the tunnelling maps after the 2D-2D
background was subtracted.

The feature seen to the right of the B point in Fig. 7.3 is compatible with the second-order
replica mode, p1b, as predicted by the hierarchy-of-modes picture. Here, it is expected that
the strength of the mode marked by the dotted blue curve, which is a ‘replica’ of the spinon
parabola formed between kg, decreases as one moves higher in momentum away from B .
Note also that in Fig. 7.3, once the background has been subtracted and G normalised by
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Fig. 7.5 Dependence of the p/b ‘replica’ mode on the wire-gate voltage Viyg. As can be
observed, the ‘replica’ responds to changes in Vyyg, completely disappearing once the wires
are pinched-off.

length, one can see qualitatively that the decay away from B is slower the shorter the 1D
system, as expected, since the spectral weight of this mode is predicted to be proportional to
1/L2.

In order to test the predictions of the hierarchy-of-modes model further, we have looked
at another sector of the tunnelling maps, see region A in Fig. 7.2. It was first reported in
[94] that, in addition to the 1D spinon mode observed between +kr in the hole sector, a
symmetric spinon mode in the particle sector was also observed.

Following from the nonlinear Luttinger-liquid theory, in the main |k| < kg region of the
hole sector, the edge of support, marking the boundary between the forbidden region and
the many-body continuum (see white and grey areas in Fig. 7.1 respectively), is expected
to coincide with the spinon mass shell, &(k), which we have already observed to be very
close to a parabola, see section 5.5. Furthermore, note that the same result has also been
independently verified by several neutron-scattering experiments in antiferromagnetic spin
chains [77, 95, 76]. In the same region but now in the particle sector, the edge of support is
also expected to be given by —&g(k), in what is commonly referred to as a spinon shadow
band. According to the hierarchy-of-modes picture, this would correspond to mode pOb.

Fig. 7.6 shows an inverted ‘replica’ in the particle sector, symmetric to the 1D spinon
mode, in all mapped devices up to 5 um. Note that this feature was already visible in some
of the tunnelling maps discussed previously, see for example Fig. 5.10. As before, the
hierarchy-of-modes picture also predicts a length-dependent emergence of this mode. Even
though such is not particularly clear from 1 — 5 pum, the mode can be seen not to be present
at all for the 18 um device.

Both replica features discussed emerge as the effective length of the 1D system is reduced,
compatible with the hierarchy-of-modes picture where a level hierarchy emerges as powers
of L. We attribute the different lengths at which they become visible in this experiment, with
the p1b replica only present at L < 3 um and the pOb replica visible to at least L = 5 um, to
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different numerical prefactors, which are still unknown theoretically. Therefore, while the
spectral weight of each mode does indeed decrease rapidly with distance from kg, it remains
an open question on how to make quantitative estimates of this observation. Note that, in its
current form, the hierarchy-of-modes model (see Table 7.1) is valid only for spinless systems,

while our system, as expected, has spin.
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Fig. 7.6 First-order pOb ‘replica’ mode (dotted magenta). dG/dB for devices ranging from
1 — 18 um in length mapped around k < kg (i.e. B < B™). The spinon Fermi sea is marked
in dashed magenta with the dispersion of the 2D spectrometer in dashed black. As can
be observed, pOb is visible from 1 —5 um, but completely absent at 18 um. As before,
conductance here has also been normalised by device length.

7.3 Summary

In this chapter we concluded the analysis of the measured 1D spectra by comparing it with
the hierarchy-of-modes model, one of the leading theories on nonlinear Luttinger liquids.
This model is quite unique in the sense that, to our knowledge, is the only one so far that
explicitly accounts for the length L of the 1D system as a physical parameter. In specific, it
predicts that, in addition to the main 1D mode, higher-order ‘replica’ modes should also start
to emerge, their spectral weight varying in powers o< 1/L*. Note that, in its current form, this
is a spinless model. Experimentally, two features compatible with first- and second-order
‘replica’ modes were observed in our data, with a full length study being carried out by
varying the length of the 1D wires from 1 — 18 um. These results were also compared with
simulated tunnelling data for a 1D non-interacting system, further establishing tunnelling
spectroscopy as a technique capable of detecting signatures of correlated physics in the
many-body spectra.



Chapter 8
Conclusion and outlook

Over the past few chapters we have discussed the many-body problem of electrons inside
solids. This is a complex and challenging problem, probably as old as the field of solid-state
physics itself, yet it remains far from closed. Theoretically, an analytical approach often
proves unfeasible, meaning it is not uncommon for multiple, often contradicting models to
exist regarding the same observation. It is then the job of experiment to narrow down the field
of available options, and test the validity of each approximation. However, experimentally,
the great level of complexity coupled together with defects, disorder, and other known issues
most condensed matter systems suffer from often makes it hard to pinpoint an exact source
and mechanism.

In this thesis we attempted to tackle the many-body problem by stripping it down to one
of its most simple forms, a one-dimensional (1D) wire. This is because, unlike its higher-
dimensional counterparts, the dynamics of electrons in 1D can, at least at low energies, be
fully captured analytically, in what has come to be known as the Tomonaga-Luttinger liquid
(TLL) model. This makes 1D systems the perfect playground in which theory can be put to a
test, serving as a starting point for developing new tools capable of tackling non-Fermi-liquid
behaviour in higher dimensions. In chapter 2 we reviewed some of the early experimental
work done on TLLs, including seminal observations such as power-law behaviour and spin-
charge separation. We then discussed some of the more recent developments, both theoretical
and experimental, attempting to bring the model to high energies, by dealing with the finite
curvature of the dispersion. Work on the so-called nonlinear Luttinger liquids is at the
forefront of research in 1D systems, with experimental studies having so far only been carried
out using carbon nanotubes and, as in this work, semiconductor quantum wires. Here, early
results include the observation of short-lived plasmons, a momentum-dependent power law,
and higher-order ‘replica’ modes, all of which seem to be in agreement with two of the most

well-established theories in the field, the mobile-impurity model and the hierarchy-of-modes
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model. From the outset, the goal of this thesis was to explore in more detail this high-energy,
nonlinear region of the 1D spectrum.

One of the unique aspects of our work was the use of an experimental technique called
magnetotunnelling spectroscopy (MTS), discussed in chapter 3. This is an energy- and
momentum-resolved tool where quantum mechanical tunnelling between the system of
interest and a neighbouring control layer embedded beneath the sample surface (a two-
dimensional electron gas) is exploited to determine the energy spectrum of the emergent
quasiparticles in a many-body system. Unlike other well-known spectroscopy tools, such
as ARPES (angle-resolved photoemission spectroscopy) and STS (scanning tunnelling
spectroscopy), MTS is not a surface probe, with both system and probe being buried tens
of nanometres below the surface. This means the sample is naturally protected from the
environment and does not need to be maintained at high vacuum, both which make interacting
with it much more straightforward.

In chapter 4 we discussed how to experimentally implement MTS in the study of 1D
dynamics, by fabricating a series of semiconductor nanodevices where tunnelling between
a 1D array and a control 2DEG could be measured. Here, one of the key improvements
over previous work was the development of a novel electron-beam lithography technique
for fabricating suspended air-bridge structures. This allowed not only the number of surface
gates per device to be increased at no cost of extra contacts but also a higher degree of control
over the ‘parasitic’ 2D region. This was crucial in order to bring the length of the wires down
by over an order of magnitude without relying on multiple-column architectures, which had
been used previously.

Separate control over the ‘parasitic’ 2D region also allowed us to subtract, for the first
time, the 2D-2D background from the 1D-2D tunnelling signal of interest. This was the key
improvement that allowed us to quantitatively investigate, for the first time, the high-energy,
nonlinear region of the 1D spectrum, as reported in chapter 5. Specifically, the observation
of separate spin and charge modes at low energies, the latter of which we were able to follow
into the high-energy regime (up to five times the Fermi energy), led us to conclude the
presence of two, rather than the usual one, Fermi seas. This, in turn, is in close agreement
with the predictions of the 1D Fermi-Hubbard model.

Most of the work done on 1D systems, both theoretical and experimental, often assumes
single-subband occupancy. Even though there have been some experiments where multiple
1D subbands are occupied, conclusions had remained up to now mostly qualitative. In
chapter 6 we expanded on the two-Fermi-sea model by bringing it into the multiple-subband
regime. This allowed us to observe the emergence of each Fermi sea as the system was

tuned from the weakly to the strongly interacting regime. In particular, by decoupling the
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effects of the wire’s density on the interaction strength from the screening potential, we were
able to observe, for the first time, 1D-1D inter-subband screening. The second half of the
chapter was then dedicated to the extraction of the bare electron mass of electrons in GaAs,
that is, free from many-body effects. While studies in both bulk (i.e., 3D) GaAs and 2D
GaAs/AlGaAs heterostructures had already been done, work in 1D had been hindered due to
their higher-sensitivity to disorder, a problem which we solved by using an array of wires in
order to average out the signal. Comparing the extracted mass to previous results obtained in
higher dimensions led to the remarkable observation that over 20 % of the electron mass in
GaAs may be due to many-body effects, something that was not anticipated by the current
understanding of Fermi-liquid theory.

Finally, in chapter 7 we explored the effect of system length L on the emerging many-
body spectrum. While most of the work done in 1D often disregards length as a meaningful
physical parameter, one of the key predictions of the hierarchy-of-modes model for nonlinear
Luttinger liquids is the emergence of higher-order ‘replica’ modes, in addition to the main 1D
subband itself, as length is reduced. By systematically fabricating and measuring a number of
nanodevices 1 — 18 um in length, we observed the emergence of two of the ‘replica’ modes
predicted, pOb and p1b. While in its current form the hierarchy model still remains a spinless
theory, meaning quantitative tests are hard to perform, our results nevertheless point to its
support. This further establishes MTS as a spectroscopy tool on a par with ARPES and STS
for detecting signatures of nonlinear behaviour across the whole energy-momentum space.

Overall, the main significance of this thesis is the demonstration of the generic robustness
of the spin-charge separation, something first observed over two decades ago at low energies,
by mapping its evolution into the nonlinear, high-energy regime. Effectively, our observations
invalidate the prediction of the currently available nonlinear-Luttinger-liquid theory about the
fate of spinon and holon excitations deep in the many-body continuum, by establishing that
the quasiparticle picture does indeed still remain valid even when at energies five times that
of the Fermi energy. This sets the question of new conceptual development to the theory of
many-body system in lower dimensions, something quite timely as evidenced over the past
two years by a new wave of interest in experimentally studying the physics of spin-charge
separation and Luttinger liquids in systems like cold atoms, carbon nanotubes and edge
states.

The work in 1D systems remains therefore far from finished. For instance, a particu-
larly interesting avenue yet unexplored would be a full temperature study of the emerging
dynamics as the interaction strength is varied, with features such as the zero-bias anomaly
showing promise for ultra-low temperature thermometry. Furthermore, recent work reported

in cleaved-edge-overgrown wires suggests that electron-electron interactions may lead to
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spontaneous nuclear spin magnetism forming around the miliKelvin regime, something so
far typically only observed at microKelvins. As the lowest temperature accessible in this
work was ~ 300 mK, such study was not possible. Nevertheless, the nanodevices already
developed should allow for both tunnelling and transport measurements to be performed in a
system where interaction strength can be easily tuned. Finally, an important question left
open by the two-Fermi-sea picture is that, at low energies, spinons and holons are expected
to follow bosonic statistics, yet the observation of separate Fermi seas seems to suggest that
at high enough energies the statistics may switch to fermionic. A full study of the statistical

nature of these collective modes is therefore highly needed.
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Appendix A

Wafer characterisation

All devices measured in this thesis were fabricated out of two wafers, W939 and C2617. For
details on wafer structure, see Table A.1. A calculation of the resulting conduction band
profile can be found in Fig. 4.3. Results on wafer assessment can be found in [57] for wafer
W939 and [60] for wafer C2617. Fig. A.1 reproduces the results for wafer W939. In summary,
electron concentrations of 3 (2.2)x 10" m~2 with mobilities of 120 (165) m*V~!s~! were
obtained for the top (bottom) well of wafer W939, while 2.85 (1.54)x 10> m~2 and 191
(55) m2V—1s~! for wafer C2617, as measured at 1.4 K. For completeness, below we outline
the assessment protocol.

Low-dimensional quantum systems at low temperatures exhibit quantum behaviour which
can be used to characterise and quantify certain structural properties. In order to assess the
overall quality of the wafer material, we use a Hall bar geometry in order to measure both the
longitudinal, Ryx = Vi« /I, as well as transverse resistance, Ryy = Viy /1, of the sample. This
allows us to extract both the carrier density, n, as well as the mobility, tt, for each quantum
well. Specifically, we do so by measuring both the quantum Hall effect (QHE) as well as
Shubnikov-de Haas (SdH) oscillations.

According to the semiclassical Boltzmann formalism, the resistance of system, for
instance across a Hall bar, should rise linearly with magnetic field. As observed in the
seminal paper by Klitzing et al. [73], however, when a high-quality 2DEG is subject to a
perpendicular field at low enough temperatures, then after an initial linear rise, Rxy becomes
quantised instead, in multiples of //e”. This is the (integer) QHE and can be explained
in terms of the Landau levels rising above the Fermi level: when Ef is in between two
Landau levels there is no backscattering between states on opposite edges, and so the
resistance remains constant; when a new level crosses it, however, there is backscattering,
with conductance increase to ¢>N /h, where N is the number of edge channels (and equal to

the number of populated Landau levels).
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A related phenomenon, SdH oscillations, refers to the simultaneous oscillation of Ryx
between zero and some finite value as the Landau levels cross the Fermi level, see Fig. A.la
for a series of sweeps of Rxx vs B as Vgate (i.e., the density) is varied. It can be shown that the
period of these oscillations (in inverse magnetic field) is related to the electron density of the

system as
2e¢ 1

nzﬁ@

Fig. A.1b shows the Fourier transform of Ry as a function of both electron density » and

(A.1)

Vgate. Notice how a total of two frequencies of oscillations are detected, each arising from
one of the quantum wells. From +0.4 V to —0.35V one frequency decreases linearly while
the other remains essentially constant. The former corresponds to the electron density in
the upper well, nypper. On the other hand, the lower well is screened by the upper one and
does not start getting depleted until —0.35 V (with njoyer remaining constant while the upper
well is present), before starting to also decrease linearly until depletion around —0.6 V. The
extracted densities are both observed to depend linearly on gate voltage, see Fig. A.1c. Here,
nyan Was obtained from the Hall resistivity as npa = (edpxy/ dB)~!, which is observed to
closely match nypper + Miower-
In order to extract the electron mobility, i, we use the longitudinal conductivity, Ox,
where
Oxx = nell (A.2)

from which we get L, the effective total mobility of the sample as

GX X

e (nupper + nlower) ‘

(A.3)

Hett =

Note that this combines both 2DEGs.
In order to obtain p individually for each system, we assume that each layer can be

treated as an independent conductor, with the conductivity oxx being then given by
Oxx = Oupper + Olower- (A4)

This approximation should remain valid as so long as the properties of the lower 2DEG

remain unchanged while the upper 2DEG is filled. This gives us

Nupper Hupper + Mlower Hlower (A.5)
, .
e (nupper + nlower)

Heff =

see Fig. A.le.
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In order to extract the mobility of the lower layer, note that, after the upper layer is fully
depleted (i.e., when nypper = 0), Ueff = Uiower- This is valid as long as Ve < —0.35'V. For
Veate > —0.35'V, Uypper can be extracted given knowledge of nypper and njower, determined
before, as well as Ujower- The results are shown in Fig. A.1f.

Material Thickness (nm) Ratio Repeat Purpose

GaAs 10 Protective cap (avoids oxidisation)
AlGaAs 40 0.33 Doping layer with 1x10'8 cm™2 of Si
AlGaAs 20 0.33 Modulation doping spacer

GaAs 18 Upper quantum well

GaAs/AlGaAs 0.556/0.833 10 Superlattice tunnel barrier

GaAs 18 Lower quantum well

AlGaAs 25 0.33 Modulation doping spacer

GaAs 0.56 Spacer

AlGaAs 15 0.33 Spacer

AlGaAs 40 0.33 Doping layer with 1x10'8 cm~2 of Si
GaAs 0.56 Spacer

AlGaAs 350 0.33 Transition to bulk

GaAs/AlGaAs 2.5/2.5 100 Superlattice (only present in wafer C2617)
GaAs 1000 Substrate

Table A.1 Growth specifications for the wafers used in this work. From surface to substrate.
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Cleanroom fabrication protocol

Photomask for Mesa, Ohmics, and Optical gates: CAV-SP-TLL.

Mesa

1. Prepare etching solution for overcut profile:
(a) H,SO4:H>0,:H,0 (1:8:1000);

2. Clean the wafer: acetone (1 min. ultrasound) + IPA (1 min. ultrasound) + N, + bake
(5 min. @115°C)

3. Check the orientation of the major flat. The mesa should be aligned along it. This can
be done under the optical microscope by looking for the direction along which surface
defects distort.

4. Apply photoresist:

(a) test spinner: 5500rpm for 60s

(b) place sample on the spinning stage and spin for 10 — 15s while applying N»;
(c) apply Shipley Microposit S1813 positive photoresist;

(d) spin @5500rpm for 60s;

(e) remove sample and clean back with acetone;

(f) bake for 1 min. @115°C to harden the resist;

(g) let the sample cool down for about 1 min.;

5. Photolithography:
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(a) clean photomask: acetone+IPA+Nj;

(b) align mesa pattern to sample (ensuring that pattern is aligned along the major
axis);

(c) check for good contact to the sample;

(d) expose for 6.5s (if using SP orange mask aligner) or equivalent dose/time to
ensure that the exposed regions can be developed away. Note that for the resist
and spin settings used one should expect about 150 nm of S1813.

6. Development:

(a) after exposure, develop the sample in Microposit MF-319 developer for 30 — 40s;

(b) clean the sample in Weir DI water until R>10 MQ +Nj (note: do not use acetone
and/or IPA as this will also remove the resist in the unexposed regions);

(c) check pattern under the optical microscope to ensure correct alignment and/or
development; if necessary, increase the development time iteratively until satis-
factory profiles are obtained;

(d) if sample is grossly misaligned and/or other severe problems are detected, clean
sample with acetone and IPA, ensuring all resist is removed, before starting over;
7. Dektak:
(a) find one or more features and mark their position; these will be used as reference
points to determine the etch rate as well as actual depth etched;

(b) Dektak the selected features and obtain a reference level;
8. Etching:

(a) target etch: ~ 150 — 170 nm to ensure it goes through both quantum wells;
(b) 1%t dip: ~3 min.;
(c) Dektak same feature as before in order to obtain etch rate;

(d) 2" dip: dip for the required time, based on the calculated etch rate, until target
etch is achieved;

(e) Dektak again to confirm actual depth etched; if necessary, dip again to ensure
target etch is reached;

9. Clean the wafer: acetone (1 min. ultrasound) + IPA (1 min. ultrasound) + N,
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Ohmics

1. Apply photoresists:

(a) pre-bake @115°C for 5 min.;

(b) set hotplate @180°C

(c) test spinner: 6000rpm for 60s

(d) place sample on the spinning stage and spin for 10 — 15s while applying N»;

(e) apply MicroChem LORS5B; if using LORSB directly from the fridge, wait until it

warms up to room temperature

(f) spin @6000rpm for 60s;

(g) remove sample and clean back with MF-319;

(h) bake for 10 min. @180°C to harden the resist;

(1) let the sample cool down for about 1 min.;

(j) test spinner: 5500rpm for 60s

(k) place sample on the spinning stage and spin for 10 — 15s while applying Nj;

() apply Shipley Microposit S1805 positive photoresist;
(m) spin @5500rpm for 60s;

(n) remove sample and clean back with acetone;

(o) bake for 1 min. @115°C to harden the resist;

(p) let the sample cool down for about 1 min.;
2. Photolithography:

(a) clean photomask: acetone+IPA+Nj;

(b) align ohmic pattern to sample (ensuring that pattern is aligned to the mesa pattern

already patterned);
(c) check for good contact to the sample;

(d) expose for 3.5s (if using SP orange mask aligner) or equivalent dose/time to

ensure that the exposed regions can be developed away.

3. Development:

(a) after exposure, develop the sample in Microposit MF-319 developer for 30 — 40s;
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(b) clean the sample in Weir DI water until R>10 MQ +N, (note: do not use acetone

and/or IPA as this will also remove the resist in the unexposed regions);

(c) check pattern under the optical microscope to ensure correct alignment and/or
development; if necessary, increase the development time iteratively until satis-

factory profiles are obtained;
(d) if sample is grossly misaligned and/or other severe problems are detected, clean

sample with acetone and IPA, ensuring all resist is removed, before starting over;
4. Prepare Ohmics evaporator
(a) 350 —400 mg AuGeN:i alloy;
5. Descum:

(a) prepare HCI:H,O solution (1:9);

(b) RF Plasma ash for 1 min.;

(c) dip sample in HCI for 15s;

(d) clean the sample in Weir DI water until R>10 MQ +N»;

6. Evaporation:

(a) load the sample onto the thermal evaporator;
(b) leave it pumping until a base pressure of ~ 10~/ mbar is reached;

(c) start evaporation at a rate of ~ 0.1 nm/s for the first 3 nm before increasing it to
~ 0.3 nm/s;

(d) evaporate about ~150 — 200 nm of metal;
7. Lift-off:
(a) after evaporation, place the sample in acetone for 10min, followed by 30min in

SVC14 @70°C;

(b) flush the sample in acetone so that the excess metal is removed; ultrasound if

necessary,

(c) place the sample into a petri dish with IPA and check under the optical microscope
to ensure satisfactory lift-off; if not, repeat the previous step iteratively until so;

(d) dry the sample in N»;

8. Annealing (RTP600s Rapid Annealer):
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(a) anneal at 430°C for 80s;
(b) for details on the recipe used, see SP FSO1.rpd;

9. Testing the ohmics:

(a) test the ohmics using a probe station at both room and nitrogen temperatures; the
resistance values should be ~ 6 kQ and < 1 k€, respectively;

Optical gates
1. Apply photoresists:

(a) pre-bake @115°C for 5 min.;

(b) set hotplate @180°C

(c) test spinner: 6000rpm for 60s

(d) place sample on the spinning stage and spin for 10 — 15s while applying N»;

(e) apply MicroChem LORSB; if using LORSB directly from the fridge, wait until it

warms up to room temperature

(f) spin @6000rpm for 60s;

(g) remove sample and clean back with MF-319;

(h) bake for 10 min. @180°C to harden the resist;

(i) let the sample cool down for about 1 min.;

(j) test spinner: 5500rpm for 60s

(k) place sample on the spinning stage and spin for 10 — 15s while applying N»;

(I) apply Shipley Microposit S1805 positive photoresist;
(m) spin @5500rpm for 60s;

(n) remove sample and clean back with acetone;

(o) bake for 1 min. @115°C to harden the resist;

(p) let the sample cool down for about 1 min.;

2. Photolithography:

(a) clean photomask: acetone+IPA+Nj;



168 Cleanroom fabrication protocol

(b) align optical gates pattern to sample (ensuring that pattern is aligned to patterns

already in place);

(c) check for good contact to the sample;

(d) expose for 3.5s (if using SP orange mask aligner) or equivalent dose/time to
ensure that the exposed regions can be developed away.

3. Development:

(a) after exposure, develop the sample in Microposit MF-319 developer for 30 — 40s;

(b) clean the sample in Weir DI water until R>10 MQ +N, (note: do not use acetone

and/or IPA as this will also remove the resist in the unexposed regions);

(c) check pattern under the optical microscope to ensure correct alignment and/or
development; if necessary, increase the development time iteratively until satis-

factory profiles are obtained;

(d) if sample is grossly misaligned and/or other severe problems are detected, clean

sample with acetone and IPA, ensuring all resist is removed, before starting over;
4. Prepare thermal evaporator
(a) Ti+Au;
5. Descum:
(a) prepare HCl:H,O solution (1:9);
(b) RF Plasma ash for 1 min.;

(c) dip sample in HCI for 15s;
(d) clean the sample in Weir DI water until R>10 MQ +N»;

6. Evaporation:

(a) load the sample onto the thermal evaporator;
(b) leave it pumping until a base pressure of ~ 10~/ mbar is reached;
(c) evaporate about ~25 nm of Ti, followed by ~ 120 — 150 nm of Au, at a rate of
~ 0.3 —0.4nm/s
7. Lift-off:

(a) after evaporation, place the sample in acetone for 10 min., followed by 30 min.
in SVC14 @70°C;
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(b) flush the sample in acetone so that any excess metal is removed; ultrasound if

necessary;

(c) place the sample into a petri dish with IPA and check under the optical microscope
to ensure satisfactory lift-off; if not, repeat the previous step iteratively until so;

(d) dry the sample in Nj;

E-beam gates

1. Apply photoresists:

(a) pre-bake @125°C for 3 min.;

(b) set hotplate @180°C

(c) test spinner: 3500rpm for 60s

(d) place sample on the spinning stage and spin for 10 — 15s while applying N»;
(e) apply MMA(8.5)MAA copolymer (9%, 1:1 ratio in ethyl lactate)

(f) spin @3500rpm for 60s;

(g) remove sample and clean back with MF-319;

(h) bake for 5 min. @115°C to harden the resist;

(1) let the sample cool down for about 1 min.;

(j) test spinner: 8000rpm for 60s

(k) place sample on the spinning stage and spin for 10 — 15s while applying N»;

() apply PMMA with a molecular weight of 950k (4% solid content in anisole
diluted to a 2:1 ratio in MIBK);

(m) spin @8000rpm for 60s;
(n) remove sample and clean back with acetone;
(0) bake for 3 min. @180°C to harden the resist;

(p) let the sample cool down for about 1 min.;

2. Submit samples to the e-beam suite. Base dose (accounting for proximity correction):
D =550 ,uC/cmz, see section 4.3.4 for details.

3. Development:



170 Cleanroom fabrication protocol

(a) prepare the HyO:IPA (3:7) developer;
(b) use a water bath to cool down the developer to ~5°C;
(c) wait at least an hour to ensure the temperature has stabilised;

(d) develop the sample for 60s;
4. Descum:

(a) prepare HCl:H,O solution (1:4);

(b) RF Plasma ash for 20s;

(c) dip sample in HCI for 10s;

(d) clean the sample in Weir DI water until R>10 MQ +N»;

5. Evaporation:

(a) load the sample onto the thermal evaporator;
(b) leave it pumping until a base pressure of ~ 10~/ mbar is reached;
(c) evaporate about ~5nm of Ti, followed by ~20nm of Au, at a rate of ~ 0.3 —
0.4 nm/s;
6. Lift-off:

(a) after evaporation, leave the sample in acetone overnight;

(b) the next day, place the sample (still in acetone) in a hot water bath @45°C, 50rpm
for 30 — 45 min.;

(c) flush the sample in acetone so that the excess metal is removed; do not ultrasound

as this will most likely damage the gates;

(d) place the sample in a petri dish with IPA and check under the optical microscope

to ensure satisfactory lift-off; if not, repeat the previous step iteratively until so;

(e) dry the sample in Ny;

Air-bridges

For calibration data see [58]. * values were calibrated for target ticknesses of 130, 300, and

130 nm, respectively.

1. Apply photoresists:
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(a) pre-bake @150°C for 10 min.;
(b) test spinner: 5700rpm for 60s
(c) place sample on the spinning stage and spin for 10 — 15s while applying N»;

(d) apply PMMA with a molecular weight of 950k (4% solid content in anisole
diluted to a 2:1 ratio in MIBK);

(e) spin @5700rpm* for 60s;

(f) remove sample and clean back with MF-319;

(g) bake for 10 min. @110°C to harden the resist;

(h) let the sample cool down for about 1 min.;

(i) test spinner: 4500rpm for 60s

(j) place sample on the spinning stage and spin for 10 — 15s while applying N»;
(k) apply MMA(8.5)MAA copolymer (9%, 1:1 ratio in ethyl lactate);

(1) spin @4500rpm* for 60s;
(m) remove sample and clean back with MF-319;

(n) bake for 10 min. @110°C to harden the resist;

(o) let the sample cool down for about 1 min.;

(p) test spinner: 6000rpm for 60s

(q) place sample on the spinning stage and spin for 10 — 15s while applying N»;
(r) apply 100k PMMA (undiluted);

(s) spin @6000rpm* for 60s;

(t) remove sample and clean back with MF-319;

(u) bake for 10 min. @110°C to harden the resist;

(v) let the sample cool down for about 1 min.;

2. Submit samples to the e-beam suite. Base doses (accounting for proximity correction):
D, =830 uC/ecm? and Dy, = 600 pC/cm?, see section 4.3.4 for details.

3. Development:

(a) prepare H,O:IPA (3:7) developer;
(b) use a water bath to cool down the developer to ~5°C;

(c) wait at least an hour to ensure the temperature has stabilised;
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(d) develop the sample for 60s;
(e) check pattern under the optical microscope; if necessary, increase the development
time iteratively until satisfactory profiles are obtained;

4. Descum:

(a) prepare HCI:H,O solution (1:4);

(b) RF Plasma ash for 25s;

(c) dip sample in HCl for 10s;

(d) clean the sample in Weir DI water until R>10 MQ +N5;

5. Evaporation:

(a) load the sample onto the thermal evaporator;

(b) leave it pumping until a base pressure of ~ 10~/ mbar is reached;

(c) evaporate about ~5nm of Ti, followed by ~20nm of Au, at a rate of ~ 0.3 —
0.4 nm/s;

6. Evaporation:

(a) load the sample onto the thermal evaporator;
(b) leave it pumping until a base pressure of ~ 10~7 mbar is reached,;

(c) evaporate ~ 110 — 130 nm of Au, at a rate of ~ 0.2 — 0.3 nm/s;
7. Lift-off:

(a) after evaporation, leave the sample in acetone overnight;

(b) the next day, place the sample (still in acetone) in a hot water bath @45°C, 50rpm

for 90 min.;

(c) flush the sample in acetone so that any excess metal is removed; do not ultrasound
as this will most likely damage the air-bridges;

(d) place the sample in a petri dish with IPA and check under the optical microscope
to ensure satisfactory lift-off; if not, repeat the previous step iteratively until so;

the air-bridges should be visible as black, iridescent stripes;

(e) dry the sample in Ny;
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Packaging and bonding

1. Cleave the sample in individual chips;

2. Use GE varnish to fix the sample onto a LCC ceramic package (20 connections), or

equivalent;

3. Use a wedge wire-bonding machine to make the bonds (note: ball bonding should
be avoided as it was found to significantly damage most electron-beam defined gates,
mostly likely caused by the spark used to form the ball); care should be taken to ensure
that appropriate grounding is in place; if possible, have an air ioniser in the vicinity

whilst bonding.
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