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We consider the variable selection problem, which seeks to identify
important variables influencing a response Y out of many candidate
features X1, . . . , Xp. We wish to do so while offering finite-sample
guarantees about the fraction of false positives—selected variables Xj

that in fact have no effect on Y after the other features are known.
When the number of features p is large (perhaps even larger than the
sample size n), and we have no prior knowledge regarding the type
of dependence between Y and X, the model-X knockoffs framework
nonetheless allows us to select a model with a guaranteed bound
on the false discovery rate, as long as the distribution of the fea-
ture vector X = (X1, . . . , Xp) is exactly known. This model selection
procedure operates by constructing “knockoff copies” of each of the
p features, which are then used as a control group to ensure that
the model selection algorithm is not choosing too many irrelevant
features. In this work, we study the practical setting where the dis-
tribution of X can only be estimated, rather than known exactly, and
the knockoff copies of the Xj ’s are therefore constructed somewhat
incorrectly. Our results, which are free of any modeling assumption
whatsoever, show that the resulting model selection procedure incurs
an inflation of the false discovery rate that is proportional to our er-
rors in estimating the distribution of each feature Xj conditional on
the remaining features {Xk : k 6= j}. The model-X knockoffs frame-
work is therefore robust to errors in the underlying assumptions on
the distribution of X, making it an effective method for many prac-
tical applications, such as genome-wide association studies, where
the underlying distribution on the features X1, . . . , Xp is estimated
accurately but not known exactly.

1. Introduction. Our methods of data acquisition are such that we often
obtain information on an exhaustive collection of possible explanatory vari-
ables. We know a priori that a large proportion of these are irrelevant for
our purposes, but in an effort to cover all bases, we gather data on all what
we can measure and rely on subsequent analysis to identify the relevant vari-
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ables. For instance, to achieve a better understanding of biological processes
behind a disease, we may evaluate variation across the entire DNA sequence
and collect single nucleotide polymorphism (SNP) information, or quantify
the expression level of all genes, or consider a large panel of exposures, and
so on. We then expect the statistician or the scientist to sort through all
these and select those important variables that truly influence a response of
interest. For example, we would like the statistician to tell us which of the
many genetic variations affect the risk of a specific disease, or which of the
many gene expression profiles help determine the severity of a tumor.

This paper is about this variable selection problem. We consider situations
where we have observations on a response Y and a large collection of vari-
ables X1, . . . , Xp. With the goal of identifying the important variables, we
want to recover the smallest set S ⊆ {1, . . . , p} such that, conditionally
on {Xj}j∈S , the response Y is independent of all the remaining variables
{Xj}j 6∈S . In the literature on graphical models, the set S would be called the
Markov blanket of Y . Effectively, this means that the explanatory variables
X1, . . . , Xp provide information about the outcome Y only through the sub-
set {Xj}j∈S . To ensure reproducibility, we are interested in methods that

result in the estimation of a set Ŝ with false discovery rate (FDR) control
[Benjamini and Hochberg, 1995], in the sense that

FDR = E

[
#{j : j ∈ Ŝ \ S}

#{j : j ∈ Ŝ}

]
≤ q,

i.e. a bound on the expected proportion of our discoveries Ŝ which are not in
the smallest explanatory set S.1 (Here q is some predetermined target error
rate, e.g. q = 0.1.)

In truth, there are not many variable selection methods that would control
the FDR with finite-sample guarantees, especially when the number p of
variables far exceeds the sample size n. That said, one solution is provided
by the recent model-X knockoffs approach of Candès et al. [2018], which is a
new read on the earlier knockoff filter of Barber and Candès [2015]; see also
Barber and Candès [2019]. One singular aspect of the method of model-
X knockoffs is that it makes assumptions that are substantially different
from those commonly encountered in the statistical literature. Most of the
model selection literature relies on a specification of the model that links
together the response and the covariates, making assumptions on PY |X ,
the distribution of Y conditional on X—for instance, assuming that the

1As is standard in the FDR literature, in this expected value we treat 0/0 as 0, to incur

no penalty in the event that no variables are selected, i.e. when Ŝ = ∅.
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form of this distribution follows a generalized linear model or some other
parametrized model. In contrast, model-X knockoffs makes no assumption
whatsoever on the relation between the response Y and the variables X =
(X1, . . . , Xp); in other words, the distribution PY |X of Y conditional on X
is “model free”. The price of this generality is that we need to be able to
specify the distribution of the feature variables X = (X1, . . . , Xp), which we
denote by PX . This distribution is then used to construct knockoff feature
variables X̃ = (X̃1, . . . , X̃p), where each X̃j mimics the real feature Xj and
acts a “negative control” in any variable selection algorithm—if our variable
selection algorithm selects any of the knockoff features, this alerts us to a
high false positive rate in the algorithm. Knowledge of the distribution of X
is needed in order to construct the X̃j ’s appropriately—for instance, if X1

is a real signal while X2 is null, then we need X̃2 to mimic X2’s dependence
with X1 in order to act as an appropriate negative control.

As argued in Candès et al. [2018] and Janson [2017], this “shift” of the
burden of knowledge is interesting because we must recall that the object
of inference is on how Y relates to X, that is, on PY |X . It is, therefore, a
strong premise to posit the form of this relationship PY |X a priori—and in-
deed, there are many applications in which we objectively do not have any
understanding of how Y depends on X. Further, the shift is also appropriate
whenever we know much more about the distribution of X than on the con-
ditional distribution of Y |X. For instance, it is easy to imagine applications
in which we have many unlabeled samples—samples of X—whereas it may
be much harder to acquire labeled data or samples with a given value of the
response Y . A typical example is offered by genetic studies, where we now
have available hundreds of thousands or even millions of genotypes across
many different populations. At the same time, it may be difficult to recruit
patients with a given phenotype (the response variable Y ), and therefore,
we have substantially more data with which to estimate PX than PY |X .

The ease with which we can gather information about X does not imply
that we know the distribution PX exactly, but we often do have substan-
tial information about this distribution. Returning to our genetic example,
it has been shown that the joint distribution of SNPs may be accurately
modeled by hidden Markov models (see Stephens et al. [2001], Zhang et al.
[2002], Qin et al. [2002], Li and Stephens [2003] for some early formula-
tions), and there certainly is an abundance of genotype data to estimate the
various model parameters; compare for instance the success of a variety of
methods for genotype imputation [Marchini and Howie, 2010, Howie et al.,
2012] based on such models. More generally, if a large amount of unlabeled
data is available, the “deep knockoffs” methodology of Romano et al. [2018]
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proposes using a deep generative model to generate knockoffs, subject to
constraints that ensure that the knockoffs have approximately replicated
the dependencies among the Xj ’s. Empirically, they find that this method
is extremely effective at producing knockoff distributions that successfully
control the FDR.

The purpose of this paper, then, is precisely to investigate common situations
of this kind, namely, what happens when we run model-X knockoffs and only
assume approximate knowledge of the distribution of X rather than exact
knowledge, or equivalently, a construction of the knockoff features X̃ that
only approximately replicates the distribution of X. Our contribution is a
considerable extension of the original work on model-X knockoffs [Candès
et al., 2018], which assumed a perfect knowledge of the distribution of X
to achieve FDR control. If we only have access to an approximation of the
distribution of X, then it is certainly possible for model-X knockoffs to fail
to control FDR—for instance, see [Romano et al., 2018, Sec. 6.5,6.6] for
examples where estimating the distribution of X using only its first two
moments is not sufficient for FDR control if the true distribution is heavy-
tailed.

Here, we develop a new theory, which quantifies very precisely the inflation
in FDR when running the knockoff filter with estimates of the distribution of
X in place of the true distribution PX . We develop non-asymptotic bounds
which show that the possible FDR inflation is well-behaved whenever the
estimated distribution is reasonably close to the truth. These bounds are
general and apply to all possible statistics that the researcher may want to
use to tease out the signal from the noise. We also develop converse results
for some settings, showing that our bounds are fairly sharp in that it is
impossible to obtain tighter FDR control bounds in full generality. Thus,
our theory offers finite-sample guarantees that hold for any algorithm that
the analyst decides to employ, assuming no knowledge of the form of the
relationship between Y and X and only an estimate of the distribution of
X itself. On the other hand, since our bounds are worst-case, they may be
pessimistic in the sense that the realized FDR in any practical situation may
be much lower than that achieved in the worst possible case.

Underlying our novel model-X knockoffs theory is a completely new math-
ematical analysis and understanding of the knockoffs inferential machine.
The technical innovation here is essentially twofold. First, with only partial
knowledge of the distribution of X, we can no longer achieve a perfect ex-
changeability between the test statistics for the null variables and for their
knockoffs. Hence, we need tools that can deal with only a form of approxi-
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mate exchangeability. Second, our methods to prove FDR control no longer
rely on martingale arguments, and rather, involve leave-one-out type of ar-
guments. These new arguments are likely to have applications far outside
the scope of the present paper.

2. Robust inference with knockoffs. To begin with, imagine we have
data consisting of n i.i.d. draws from a joint distribution on (X,Y ), where
X = (X1, . . . , Xp) ∈ Rp is the feature vector while Y ∈ R is the response
variable. We will gather the n observed data points into a matrix X ∈ Rn×p
and vector Y ∈ Rn—that is, the pairs (Xi,∗,Yi) are i.i.d. copies of the pair
(X,Y ). The joint distribution of (X,Y ) is unknown—specifically, we do not
assume any information about the conditional distribution of Y given X
as discussed above. We work under the assumption that PX , the marginal
distribution of X, is known only approximately.

Since the Markov blanket of Y may be ill-defined (e.g. if two features are
identical then the choice of the minimal set S may not be unique), we follow
Candès et al. [2018] and define Xj to be a null variable if Xj ⊥⊥ Y | X−j , that
is if Xj and the response Y are independent conditionally on all the other
variables. (We use the terms “features” and “variables” interchangeably.)
Under very mild identifiability conditions, the set of non-nulls is nothing
other than the Markov blanket of Y . Writing H0 to denote the set of indices
corresponding to null variables, we can then reformulate the error we would

like to control as E
[
|Ŝ ∩ H0|/|Ŝ|

]
≤ q.

2.1. Exact model-X knockoffs. Consider first an ideal setting where the dis-
tribution PX is known. The model-X knockoffs method [Candès et al., 2018]
is defined by constructing knockoff features satisfying the following condi-
tions: X̃ is drawn conditional on the feature vector X without looking at
the response Y (i.e. X̃ ⊥⊥ Y | X), such that the joint distribution of (X, X̃)
satisfies a pairwise exchangeability condition, namely

(1) (X, X̃)swap(A)
d
= (X, X̃)

for any subset A ⊆ {1, . . . , p}, where
d
= denotes equality in distribution. (In

fact, to achieve FDR control, this condition only needs to hold for subsets
A ⊆ H0 containing only null variables.) Above, the family (X, X̃)swap(A) is

obtained from (X, X̃) by swapping the entries Xj and X̃j for each j ∈ A;
for example, with p = 3 and A = {2, 3},

(X1, X2, X3, X̃1, X̃2, X̃3)swap ({2,3}) = (X1, X̃2, X̃3, X̃1, X2, X3).
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Input: conditional distributions
Pj , for j = 1, . . . , p

Mechanism
for producing

knockoff distribution

Output: distribution PX̃|X
for generating knockoffs

Distribution

Input: features Xi,∗ ∼ PX

Distribution PX̃|X(·|Xi,∗)

Output: knockoffs

X̃i,∗ | Xi,∗ ∼ PX̃|X(·|Xi,∗)

Data (i = 1, 2, . . . , n)

(Xij , X̃ij ,Xi,−j , X̃i,−j)
satisfies exact pairwise

exchangeability (3).

Fig 1: Schematic representation of the exact model-X knockoffs construction.

As a consequence of the pairwise exchangeability property (1), we see that
the null knockoff variables {X̃j}j∈H0 are distributed in exactly the same
way as the original nulls {Xj}j∈H0 but some dependence is preserved: for

instance, for any pair j 6= k where k is a null, we have that (Xj , X̃k)
d
=

(Xj , Xk).

Given knowledge of the true distribution PX of the features X, our first step
to implement the method of model-X knockoffs is to construct a distribu-
tion for drawing X̃ conditional on X such that the pairwise exchangeability
property (1) holds for all subsets of features A. We can think of this mech-
anism as constructing some probability distribution P

X̃|X(·|x), which is a

conditional distribution of X̃ given X = x, chosen so that the resulting joint
distribution of (X, X̃), which is equal to

PX(x)P
X̃|X(x̃|x),

is symmetric in the pairs (xj , x̃j), and thus will satisfy the exchangeabil-
ity property (1). Now, when working with data (X,Y), we will treat each
data point (Xi,∗,Yi) independently. Specifically, after observing the data

(X,Y) ∈ Rn×p × Rn, the rows X̃i,∗ of the knockoff matrix are drawn from
P
X̃|X(·|Xi,∗), independently for each i and also independently of Y. Figure 1

shows a schematic representation of the exact model-X knockoffs construc-
tion.

It is important to point out that mechanisms for producing the pairwise
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exchangeability property (1) do exist and can be very concrete. As a specific
example, suppose we wish to sample knockoff copies of Gaussian features,
which follow a known Gaussian distribution PX = Np(0p,Σ). Then Candès

et al. [2018] show that the knockoffs X̃i,∗ can be drawn from the conditional
distribution

(2) P
X̃|X(·|Xi,∗) = Np

(
(Ip −DΣ−1)Xi,∗, 2D −DΣ−1D

)
for any fixed diagonal matrix D satisfying 0 � D � 2Σ. (This mechanism
provides valid knockoffs because it ensures that the joint distribution of
(Xi,∗, X̃i,∗) is given by

N2p

(
02p,

(
Σ Σ−D

Σ−D Σ

))
,

which satisfies pairwise exchangeability (1).) There are also fast algorithms
for the case where X follows either a Markov or a hidden Markov model
[Sesia et al., 2018]. More broadly, Candès et al. [2018] develop a general
abstract mechanism termed the Sequential Conditional Independent Pairs
(SCIP) algorithm, which always produces exchangeable knockoff copies and
can be applied to any distribution PX . Looking ahead, all of these algorithms
can be used in the case where PX is known only approximately, where the
exchangeability property (1) will be required to hold only with reference to
the estimated distribution of X, discussed in Section 2.2 below.

For assessing a model selection algorithm, the knockoff feature vectors X̃j

can be used as a “negative control”—a control group for testing the algo-
rithm’s ability to screen out false positives, since X̃j is known to have no
real effect on Y. Although details are given in Section 2.3, it is helpful to
build some intuition already at this stage. Imagine for simplicity that we
wish to assess the importance of a variable by measuring the strength of
the marginal correlation with the response, i.e. we compute Zj =

∣∣X>j Y
∣∣.

Then we can compare Zj with Z̃j =
∣∣X̃>j Y

∣∣, the marginal correlation for
the corresponding knockoff variable. The crucial point is that the pairwise
exchangeability property (1) implies that if j is null (recall that this means
that Xj and Y are conditionally independent given X−j), then

(Zj , Z̃j)
d
= (Z̃j , Zj).

This holds without any assumptions on the form of the relationship PY |X
between Y and X [Candès et al., 2018]. In particular, this means that the
test statistic Wj = Zj − Z̃j is equally likely to be positive or negative. Thus
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to reject the null, we would need to observe a large positive value of Wj .
As we will see in Section 2.3, this way of reasoning extends to any choice
of statistic Zj ; whatever statistic we choose, knockoff variables obeying (1)
offer corresponding values of the statistic which can be used as “negative
controls” for calibration purposes.

Throughout this paper, we will pay close attention to the distribution we
obtain when swapping only one variable and its knockoff (and do not swap
any of the other variables). In this context, we can reformulate the broad
exchangeability condition (1) in terms of single variable swaps.

Proposition 1 (Candès et al. [2018, Prop. 3.5]). The pairwise exchange-
ability property (1) holds for a subset A ⊆ {1, . . . , p} if and only if

(3)
(
Xj , X̃j , X−j , X̃−j

) d
=
(
X̃j , Xj , X−j , X̃−j

)
holds for all j ∈ A.

In other words, we can restrict our attention to the question of whether a
single given feature Xj and its knockoff X̃j are exchangeable with each other

(in the joint distribution that also includes X−j and X̃−j).

2.2. Approximate model-X knockoffs and pairwise exchangeability. Now we
will work towards constructing a version of this method when the true distri-
bution of the feature vector X is not known exactly. Here, we need to relax
the pairwise exchangeability assumption, since choosing a useful mechanism
P
X̃|X that satisfies this condition would generally require a very detailed

knowledge of the distribution of X, which is typically not available. This
section builds towards a definition of pairwise exchangeability with respect
to an approximate estimate of the distribution of X, in two steps.

From this point on, we will write PX to denote the assumed joint distribution
of X, and Pj for its conditionals; P ?X , and its conditionals P ?j , will denote the
unknown true distribution of X. Throughout we will assume that PX , our
assumed or estimated distribution of X, is fixed or is independent from the
data set (X,Y)—for example, it may have been estimated from a separate
unlabeled data set.

2.2.1. Exchangeability with respect to an input distribution PX . We are pro-
vided with data X and conditional distributions Pj(·|x−j) for each j. As a
warm-up, assume first that these conditionals are mutually compatible in
the sense that there is a joint distribution PX over Rp that matches these

imsart-aos ver. 2012/08/31 file: rk_rev2.tex date: April 18, 2019



ROBUST INFERENCE WITH KNOCKOFFS 9

p estimated conditionals—we will relax this assumption very soon. Then
as shown in Figure 2, we repeat the construction from Figure 1, only with
the Pj ’s as inputs. In words, the algorithm constructs knockoffs, which are
samples from P

X̃|X , a conditional distribution whose construction is based

on the conditionals Pj or, equivalently, the joint distribution PX . In place of
requiring that pairwise exchangeability of the features Xj and their knock-

offs X̃j holds relative to the true distribution of X, as in (1) and (3), we
instead require that the knockoff construction mechanism satisfy pairwise
exchangeability conditions relative to the estimated joint distribution PX
that it receives as input:

(4)
If (X, X̃) is drawn as X ∼ PX and X̃ | X ∼ P

X̃|X(·|X), then

(X, X̃)swap(A)
d
= (X, X̃), for any subset A ⊆ {1, . . . , p}.

When only estimated compatible conditionals are available, original and
knockoff features are required to be exchangeable with respect to the dis-
tribution PX , which is provided as input (but not with respect to the true
distribution of X, which is unknown). To rephrase, if the distribution of X
were in fact equal to PX , then we would have exchangeability.

2.2.2. Exchangeability with respect to potentially incompatible conditionals
Pj. We wish to provide an extension of (4) to cover the case where the
conditionals may not be compatible; that is, when a joint distribution with
the Pj ’s as conditionals may not exist. To understand why this is of interest,
imagine we have unlabeled data that we can use to estimate the distribution
of X. Then we may construct Pj by regressing the jth feature Xj onto
the p − 1 remaining features X−j . For instance, we may use a regression
technique promoting sparsity or some other assumed structure. In such a
case, it is easy to imagine that such a strategy may produce incompatible
conditionals. It is, therefore, important to develop a framework adapted to
this setting. To address this, we shall work throughout the paper with the
following definition:

Definition 1. P
X̃|X is pairwise exchangeable with respect to Pj if it sat-

isfies the following property:

(5)

For any distribution D(j) on Rp with jth conditional Pj,

if (X, X̃) is drawn as X ∼ D(j) and X̃ | X ∼ P
X̃|X(·|X),

then
(
Xj , X̃j , X−j , X̃−j

) d
=
(
X̃j , Xj , X−j , X̃−j

)
.
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Input: conditional distributions
Pj , for j = 1, . . . , p

Mechanism
for producing

knockoff distribution

Output: distribution PX̃|X
for generating knockoffs

Distribution

Input: features Xi,∗ ∼ P ?
X

Distribution PX̃|X(·|Xi,∗)

Output: knockoffs

X̃i,∗ | Xi,∗ ∼ PX̃|X(·|Xi,∗)

Data (i = 1, 2, . . . , n)

(Xij , X̃ij ,Xi,−j , X̃i,−j)
satisfies pairwise exchangeability

with respect to Pj (5).

Approximately satisfies (3)
if P ?

j ≈ Pj (see Lemma 1).

Fig 2: Schematic representation of the approximate model-X knockoffs construc-
tion. The two differences relative to Figure 1 are circled in red.

Above, D(j) is the product of an arbitrary marginal distribution for X−j and
of the conditional Pj.

In words, with estimated conditionals Pj , we choose P
X̃|X to satisfy pairwise

exchangeability with respect to these Pj ’s, for every j. (As before, we remark
that this only needs to hold for j ∈ H0 to ensure FDR control, but since in
practice we do not know which features are null, we require (5) to hold for
every j.)

To see why this is an extension of (4), note that if the Pj ’s are mutually
compatible, i.e. there is some distribution PX with conditionals Pj for each
j, then any algorithm operating such that (5) holds for each j, obeys (4)
as well—this is because, for each j, we can apply (5) with the distribution
D(j) = PX .

Now let’s consider the question of how we might generate knockoff copies
obeying (5). In the setting where our estimated conditionals Pj are all com-
patible with some joint distribution PX on X, constructing knockoff copies
in this approximate scenario is no different from the exact model-X knock-
offs framework—if we have some mechanism which, when we input the joint
distribution P ?X of X, will produce exchangeable knockoffs obeying (1), then
we can instead provide our estimated joint distribution PX as input to pro-
duce knockoff copies that satisfy (4) and, by extension, satisfy (5). Hence, if
the Pj ’s are mutually compatible, then all the mechanisms producing valid
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knockoffs under exact knowledge of P ?X—we mentioned a few in the previous
section—can be readily used for our purposes. Later in Section 4, we will
also give an example of a mechanism producing valid knockoffs satisfying (5)
under incompatible Pj ’s.

2.2.3. Probability of a swap. We next develop a key lemma that will al-
low us to characterize the quality of our constructed knockoffs. In an exact
model-X knockoffs framework, the key idea is that the knockoffs X̃j act as
controls for null variables Xj , because even after all observing all of the
data—all the covariates, and the response Y—we are unable to tell which of
the two, i.e. Xj and X̃j , is the real variable versus the knockoff. More pre-
cisely, each of the two is equally likely to be the real variable or the knockoff.
Our next step in the approximate setting, therefore, is to determine whether
this is approximately true when the estimated conditionals Pj are not too
far from the true conditionals P ?j .

From this point on, we will assume without comment that for each j, either
Xj and X̃j are both discrete variables or are both continuous variables, and
abusing notation, in these two settings we will use P ?j (·|x−j) and Pj(·|x−j)
to denote the conditional probability mass function or conditional density,
respectively, for the true and estimated conditional distribution of Xj given
X−j = x−j . Furthermore, we assume that P ?j (·|x−j) and Pj(·|x−j) are sup-
ported on the same (discrete or continuous) set for any x−j . Our theory can
be generalized to the setting of mixed distributions and/or varying supports,
but for clarity of the results we do not present these generalizations here.

The construction of the knockoff features as in Figure 2 yields the following
approximate pairwise exchangeability result (proved in Appendix A).

Lemma 1. Fix any feature index j such that pairwise exchangeability (5)
with respect to Pj is satisfied. If Xj , X̃j are discrete, then for any2 a, b,

P
{
Xj = a, X̃j = b

∣∣∣ X−j , X̃−j}
P
{
Xj = b, X̃j = a

∣∣∣ X−j , X̃−j} =
P ?j (a|X−j)Pj(b|X−j)
Pj(a|X−j)P ?j (b|X−j)

.

Furthermore, if index j corresponds to a null feature (i.e. Xj ⊥⊥ Y | X−j)
and we additionally assume that X̃ | X is drawn from P

X̃|X independently

2Formally, this result holds only for a, b lying in the support of P ?
j (·|X−j), which is

assumed to be equal to the support of Pj(·|X−j), as otherwise the ratio is 0/0; we ignore
this possibility here and throughout the paper since these results will be applied only in
settings where a, b do lie in this support.
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12 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

of Y , then the same result holds when we also condition on Y :

(6)
P
{
Xj = a, X̃j = b

∣∣∣ X−j , X̃−j , Y }
P
{
Xj = b, X̃j = a

∣∣∣ X−j , X̃−j , Y } =
P ?j (a|X−j)Pj(b|X−j)
Pj(a|X−j)P ?j (b|X−j)

.

The conclusion in the continuous case is identical except with ratios of prob-
abilities replaced with ratios of densities.

To better understand the roles of the various distributions at play, consider
the two following scenarios for the joint distribution of the feature vector X
and its knockoff copy X̃:

T
ru

e
d
is

tr
ib

u
ti

o
n 

X−j ∼ (any distribution)

Xj | X−j ∼ P ?
j (·|X−j)

X̃ | X ∼ PX̃|X(·|X)

A
ss

u
m

ed
d
is

tr
ib

. 
X−j ∼ (any distribution)

Xj | X−j ∼ Pj(·|X−j)

X̃ | X ∼ PX̃|X(·|X)

The knockoff generating mechanism P
X̃|X is designed with the estimated

conditional Pj in mind, and therefore by construction, Xj and X̃j are ex-
changeable under the “Assumed distribution” scenario on the right, defined
with the incorrect estimate Pj of the jth conditional. The real distribution

of (X, X̃) instead follows the scenario labeled as the “True distribution”, on
the left. When P ?j 6= Pj , this means that Xj and X̃j are only approximately
exchangeable under the true distribution of the data. Lemma 1 quantifies
the extent to which the pair (Xj , X̃j) deviate from exchangeability, giving
a useful formula for computing the ratio between the likelihoods of the two
configurations (Xj , X̃j) = (a, b) and (Xj , X̃j) = (b, a) (after conditioning on
the remaining data).

It is important to observe that if we are working in the exact model-X
framework, where the true distribution and assumed distribution are the
same (i.e. P ?j = Pj), then in this case the lemma yields

(7)
P
{
Xj = a, X̃j = b

∣∣∣ X−j , X̃−j , Y }
P
{
Xj = b, X̃j = a

∣∣∣ X−j , X̃−j , Y } = 1

for each null j. That is, the two configurations are equally likely. This result
for the exact model-X setting is proved in Candès et al. [2018, Lemma 3.2]
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ROBUST INFERENCE WITH KNOCKOFFS 13

and is critical for establishing FDR control properties. When we use esti-
mates Pj rather than the true conditionals P ?j , however, the property (7)
is no longer true, since Lemma 1 shows that the ratio is no longer equal to
1 in general. We can no longer use the knockoff statistics as exact negative
controls; only as approximate controls. This is where the major difficulty
comes in: if a knockoff statistic is only approximately distributed like its
corresponding null, what is the potential inflation of the type-I error that
this could cause? In other words, if Pj ≈ P ?j so that the ratio in (6) is slightly
different from 1, how much might this inflate the resulting FDR?

Before proceeding with this question, we first give some additional back-
ground on the knockoff filter, to see how the knockoff variables X̃j will be
used to test our hypotheses. We will then return in Section 3 to the question
of how errors in constructing the knockoffs can affect the resulting FDR.

2.3. The knockoff filter. After constructing the variables X̃j , we apply the
knockoff filter to select important variables. We here quickly rehearse the
main ingredients of this filter and refer the reader to Barber and Candès
[2015] and Candès et al. [2018] for additional details; our exposition bor-
rows from Barber and Candès [2019]. Suppose that for each variable Xj

(resp. each knockoff variable X̃j), we compute a score statistic Zj (resp. Z̃j),
such that

(Z1, . . . , Zp, Z̃1, . . . , Z̃p) = z
(
[X, X̃], Y

)
,

with the idea that Zj (resp. Z̃j) measures the importance of Xj (resp. X̃j)
in explaining Y . Assume that the scores are “knockoff agnostic” in the sense
that switching a variable with its knockoff simply switches the components
of Z in the same way. This means that

(8) z
(
[X, X̃]swap(A), Y

)
= z
(
[X, X̃], Y

)
swap(A)

i.e. swapping X1 and X̃1 before calculating Z has the effect of swapping
Z1 and Z̃1, and similarly swapping X2 and X̃2 swaps Z2 and Z̃2, and so
on. Here, we emphasize that Zj may be an arbitrarily complicated statistic.
For instance, it can be defined as the absolute value of a lasso coefficient,
or some random forest feature importance statistic; or, we may fit both a
lasso model and a random forest, and choose whichever one has the lowest
cross-validated error.

These scores are then combined in a single importance statistic for the vari-
able Xj as

Wj = fj(Zj , Z̃j) =: wj
(
[X, X̃], Y

)
,
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14 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

where fj is any anti-symmetric function, meaning that fj(v, u) = −fj(u, v).

As an example, we may have Wj = Zj − Z̃j , where the Zj ’s and Z̃j ’s are
the magnitudes of regression coefficients estimated by the lasso at a value
of the regularization parameter given by cross-validation, say. Again, any
choice of anti-symmetric function fj and score statistic Zj , no matter how
complicated, is allowed. By definition, the statistics Wj obey the flip-sign
property, which says that swapping the jth variable with its knockoff has
the effect of changing the sign of Wj (since, by (8) above, if we swap feature

vectors Xj and X̃j then Zj and Z̃j get swapped):

(9) wj
(
[X, X̃]swap(A), Y

)
=

{
wj
(
[X, X̃],Y

)
, j 6∈ A,

−wj
(
[X, X̃],Y

)
, j ∈ A.

The Wj ’s are the statistics that the knockoff filter will use. The idea is that
large positive values of Wj provide evidence against the hypothesis that the
distribution of Y is conditionally independent of Xj , while in contrast, if
j ∈ H0, then Wj has a symmetric distribution and, therefore, is equally
likely to take on positive or negative values.

In fact, it is equally valid for us to define Wj = wj
(
[X, X̃],Y

)
for any

function wj satisfying the flip-sign property (8), without passing through

the intermediate stage of defining Zj ’s and Z̃j ’s, and from this point on we

do not refer to the feature importance scores Zj , Z̃j in our theoretical results.
However, for better understanding of the intuition behind the method, we
should continue to think of Wj as comparing the apparent importance of

the feature Xj versus its knockoff X̃j for modeling the response Y.

Now that we have test statistics for each variable, we need a selection rule.
For the knockoff filter, we choose a threshold T0 > 0 by setting3

(10) T0 = min

{
t > 0 :

#{j : Wj ≤ −t}
#{j : Wj ≥ t}

≤ q
}
,

where q is the target FDR level. The output of the procedure is the selected
model Ŝ = {j : Wj ≥ T0}. In Barber and Candès [2015], it is argued that
the ratio appearing in the right-hand side of (10) is an estimate of the false
discovery proportion (FDP) if we were to use the threshold t—this is true
because P {Wj ≥ t} = P {Wj ≤ −t} for any null feature j ∈ H0, and so we

3We want T0 to be positive and the formal definition is that the minimum in (10) is
taken over all t > 0 taking on values in the set {|W1|, . . . , |Wp|}.
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ROBUST INFERENCE WITH KNOCKOFFS 15

would roughly expect

(11)

(# false positives at threshold t) = #{j ∈ H0 : Wj ≥ t}
≈ #{j ∈ H0 : Wj ≤ −t}
≤ #{j : Wj ≤ −t},

that is, the numerator in (10) is an (over)estimate of the number of false
positives selected at the threshold t. Hence, the selection rule can be in-
terpreted as a step-up rule, stopping the first time our estimate falls below
our target level. A slightly more conservative procedure, the knockoff+ fil-
ter, is given by incrementing the number of negatives by one, replacing the
threshold in (10) with the choice

(12) T+ = min

{
t > 0 :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t}

≤ q
}
,

and setting Ŝ = {j : Wj ≥ T+}. Formalizing the intuition of our rough
calculation (11), the false discovery rate control properties of these two pro-
cedures are studied in Barber and Candès [2015] under an exact pairwise
exchangeability setting.

3. FDR control results.

3.1. Measuring errors in the distribution. If the knockoff features are gen-
erated using a mechanism designed to mimic the estimated conditionals Pj
rather than the true conditional distributions P ?j , when can we hope for
error control? Intuitively, if the conditional distributions P ?j and Pj are sim-

ilar, then we might hope that the knockoff feature X̃j is a reasonably good
control group for the original feature Xj .

In order to quantify this, we begin by measuring the discrepancy between
the true conditional P ?j and its estimate Pj . Define the random variable

(13) K̂Lj :=
∑
i

log

(
P ?j (Xij |Xi,−j) · Pj(X̃ij |Xi,−j)

Pj(Xij |Xi,−j) · P ?j (X̃ij |Xi,−j)

)
,

where the notation K̂Lj suggests the KL divergence. In fact, K̂Lj is the ob-

served KL divergence between (Xj , X̃j ,X−j , X̃−j) and (X̃j ,Xj ,X−j , X̃−j).
To prove this, working in the discrete case for simplicity, Lemma 1 tells us
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16 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

that∑
i

log

(
P ?j (xij |xi,−j) · Pj(x̃ij |xi,−j)
Pj(xij |xi,−j) · P ?j (x̃ij |xi,−j)

)

= log

P
{

(Xj , X̃j ,X−j , X̃−j) = (xj , x̃j ,x−j , x̃−j)
}

P
{

(X̃j ,Xj ,X−j , X̃−j) = (xj , x̃j ,x−j , x̃−j)
}


for any xj , x̃j ,x−j , x̃−j . Therefore, we see that

E[K̂Lj ] = dKL

(
(Xj , X̃j ,X−j , X̃−j)

∥∥ (X̃j ,Xj ,X−j , X̃−j)
)
,

where dKL is the usual KL divergence between distributions. (Recall that the
approximate conditionals Pj and the knockoff mechanism P

X̃|X are assumed

to be chosen independent of the data (X,Y), and so this KL divergence
measures the difference between two fixed distributions.)

In the exact model-X setting, where the knockoff construction mechanism
P
X̃|X satisfies the pairwise exchangeability property (1), Proposition 1 im-

mediately implies that (Xj , X̃j ,X−j , X̃−j)
d
= (X̃j ,Xj ,X−j , X̃−j) and, thus,

E[K̂Lj ] = 0—and in fact, since we are using the true conditionals P ?j , or in

other words Pj = P ?j , we would have K̂Lj = 0 always.

In the approximate model-X framework, where Pj 6= P ?j , we will instead have

E[K̂Lj ] > 0 (although of course, for a given draw of the data, it may occur

that K̂Lj is zero or even negative.) We can interpret K̂Lj as measuring the
extent to which the pairwise exchangeability property (3) is violated for a

specific feature j. We will see in our results below that controlling the K̂Lj ’s
is sufficient to ensure control of the false discovery rate for the approximate
model-X knockoffs method. More precisely, we will be able to bound the
false positives coming from those null features which have small K̂Lj .

3.2. FDR control guarantee. We now present our guarantee for robust error
control with the model-X knockoffs filter. The proof of this theorem appears
in Appendix A.

Theorem 1. Under the definitions above, for any ε ≥ 0, consider the null
variables for which K̂Lj ≤ ε. If we use the knockoff+ filter, then the fraction
of the rejections that correspond to such nulls obeys

(14) E

[∣∣{j : j ∈ Ŝ ∩ H0 and K̂Lj ≤ ε}
∣∣

|Ŝ| ∨ 1

]
≤ q · eε.
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In particular, this implies that the false discovery rate is bounded as

(15) FDR ≤ min
ε≥0

{
q · eε + P

(
max
j∈H0

K̂Lj > ε

)}
.

Similarly, for the knockoff filter, for any ε ≥ 0, a slightly modified fraction
of the rejections that correspond to nulls with K̂Lj ≤ ε obeys

E

[∣∣{j : j ∈ Ŝ ∩ H0 and K̂Lj ≤ ε}
∣∣

|Ŝ|+ q−1

]
≤ q · eε,

and therefore, we obtain a bound on a modified false discovery rate:

E

[ ∣∣Ŝ ∩ H0

∣∣
|Ŝ|+ q−1

]
≤ min

ε≥0

{
q · eε + P

(
max
j∈H0

K̂Lj > ε

)}
.

In Section 4, we will see concrete examples where maxj=1,...,p K̂Lj is small
with high probability, yielding a meaningful result on FDR control.

It worth pausing to unpack our main result a little. Clearly, we cannot hope
to have error control over all nulls if we have done a poor job in constructing
some of their knockoff copies, because our knockoff “negative controls” may
be completely off. Having said this, (14) tells us that that if we restrict
our definition of false positives to only those nulls for which we have a
reasonable “negative control” via the knockoff construction, then the FDR
is controlled. Since we do not make any assumptions, this type of result is
all one can really hope for. In other words, exact model-X knockoffs make
the assumption that the knockoff features provide exact controls for each
null, thus ensuring control of the false positives; our new result removes
this assumption, and provides a bound on the false positives when counting
only those nulls for which the corresponding knockoff feature provides an
approximate control.

In a similar fashion, imagine running a multiple comparison procedure,
e.g. the Benjamini–Hochberg procedure, with p-values that are not uni-
formly distributed under the null. Then in such a situation, we cannot hope
to achieve error control over all nulls if some of the null p-values follow
grossly incorrect distributions. However, we may still hope to achieve rea-
sonable control over those nulls for which the p-value is close to uniform.

A noteworthy aspect of this result is that it makes no modeling assumption
whatsoever. Indeed, our FDR control guarantees hold in any setting—no
matter the relationship PY |X between Y and X, no matter the true distri-
bution P ?X of the feature vector X, and no matter the test statistics W the
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18 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

data analyst has decided to employ (as long as W obeys the flip-sign con-
dition). What the theorem says is that when we use estimated conditionals
Pj , if the Pj ’s are close to the true conditionals P ?j in the sense that the

quantities K̂Lj are small, then the FDR is well under control. (In the ideal

case where we use the true conditionals, then K̂Lj = 0 for all j ∈ H0, and
we automatically recover the FDR-control result from Candès et al. [2018];
that is, we get FDR control at the nominal level q since we can take ε = 0.)

Finally, we close this section by emphasizing that the proof of Theorem 1
employs arguments that are completely different from those one finds in the
existing literature on knockoffs. We discuss the novelties in our techniques
in Appendix A.

3.2.1. Is KL the right measure?. As mentioned above, our theorem applies
to any construction of the statistics W , including adversarial constructions
that might be chosen deliberately to try to detect the differences between
the Xj ’s and the X̃j ’s. It is therefore expected that in any practical scenario,
the achieved FDR would be lower than that suggested by our upper bounds.
In practice, W would be chosen to try to identify strong correlations with
Y , and we would not expect that this type of statistic is worst-case in terms
of finding discrepancies between the distributions of Xj and X̃j . In fact, em-
pirical studies [Candès et al., 2018, Sesia et al., 2018] have already reported
on the robustness of model-X knockoffs vis-à-vis possibly large model mis-
specifications when W is chosen to identify a strong dependence between X
and Y .

Examining our result more closely, we can see that our theorem applies
to any statistic W because the K̂Lj ’s measure our ability to distinguish

between each Xj and its knockoff copy X̃j , and therefore if the two are

virtually indistinguishable (i.e. K̂Lj is small), then any importance statistic
W is almost equally likely to have Wj > 0 or Wj < 0 (as long as W

obeys the “flip-sign” property (9)). In other words, if K̂Lj is low, then X̃j

provides a high quality “control group” for the null Xj , under any choice
of W . However, when we run the knockoff filter in practice, our statistics
W = (W1, . . . ,Wp) provide only a coarse summary of the data X, X̃,Y.

Even if the p-dimensional vectors Xj and X̃j contain sufficient information
for us to distinguish between the original null variable and its knockoff (due
to a poor approximation Pj of P ?j ), it is likely that much of this information
is lost when we observe only W instead of the full data. Therefore, a small
K̂Lj is sufficient, but by no means necessary, for FDR control—K̂Lj being
small means that we are unable to distinguish between a null and its knockoff
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when viewing the full data, while for FDR control we only need to establish
that the two are indistinguishable when viewing the statistics W1, . . . ,Wp.

To formalize this idea, suppose that we fix some choice of statistic W (i.e. a
map from the data (X, X̃,Y) to the statistic W = (W1, . . . ,Wp)). Suppose
that random variables E1, . . . , Ep satisfy the following property:

(16) P {Wj > 0, Ej ≤ ε | |Wj |,W−j}
≤ eε · P {Wj < 0 | |Wj |,W−j} ∀ ε ≥ 0, j ∈ H0.

(We would generally choose the Ej ’s to be functions of (X, X̃,Y), and would
then interpret the probability as being taken with respect to the joint distri-
bution of the data (X, X̃,Y).) For each null j, if Ej is low then this means
that, if we are only given access to the statistic W (rather than viewing the
full data), then we do not have much hope of distinguishing between the jth

feature and its knockoff copy. The following lemma verifies that the K̂Lj ’s
satisfy this property universally, i.e. for any choice of the feature importance
statistic W .

Lemma 2. For any choice of statistic W that obeys the “flip-sign” prop-
erty (9), the random variables K̂Lj defined in (13) satisfy the property (16).

We will now generalize our FDR control result, Theorem 1, to replace K̂Lj
with any knockoff quality measure Ej satisfying the property (16). The proof
of this theorem, and the lemma above, appear in Appendix A.

Theorem 2. Under the definitions above, let W be a statistic satisfying
the “flip-sign” property (9). Suppose that, for this choice of W , the random
variables E1, . . . , Ep satisfy the property (16), meaning that they measure the
quality of the knockoffs with respect to W . Then the conclusions of Theorem 1
hold with Ej in place of K̂Lj for each j.

In particular, if the statistic W reveals much less information than the full
data set X, X̃,Y, then it may be possible to construct Ej ’s that are in

general much lower than the K̂Lj ’s, thus yielding a tighter bound on FDR.
It remains to be seen whether, in specific settings for the distribution of the
data, there are natural examples of the statistic W that are amenable to
constructing tightly controlled Ej ’s to yield tighter bounds on the resulting
FDR. We aim to explore this question in future work, but here we give
one potential example. Suppose that the statistic W depends on the data
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X, X̃,Y only through some coarse summary statistics, for example, only
through X>Y and X̃>Y. In this setting, for any values a, b ∈ R, define

Ej(a, b) = log

P
{

(X>j Y, X̃>j Y) = (a, b)
∣∣∣ X−j , X̃−j ,Y

}
P
{

(X>j Y, X̃>j Y) = (b, a)
∣∣∣ X−j , X̃−j ,Y

}


(where the numerator and denominator are interpreted as conditional prob-
abilities or conditional densities, as appropriate). We can then take

Ej = Ej(X
>
j Y, X̃>j Y)

and, by our assumption on W , we can verify that these Ej ’s satisfy the
desired property (16). Now, will Ej yield a better bound on FDR? We can
see that Ej measures the extent to which the one-dimensional random vari-

ables X>j Y and X̃>j Y are distinguishable from each other, after observing

the remaining data, i.e. X−j , X̃−j ,Y. In contrast, K̂Lj measures the same

question for the full n-dimensional random vectors Xj and X̃j , and therefore
will in general be much larger than Ej .

3.3. A lower bound on FDR. Next, we ask whether it is possible to prove
a converse to Theorem 1, which guarantees FDR control as long as the
K̂Lj ’s are small. We are interested in knowing whether bounding the K̂Lj ’s
is in fact necessary for FDR control—or is it possible to achieve an FDR
control guarantee even when the K̂Lj ’s are large? Of course, as discussed in

Section 3.2.1, for a predefined choice of the statistic W , the K̂Lj ’s may yield
very conservative results. Here, however, we are interested in determining
whether the K̂Lj ’s are indeed the right measure of FDR inflation when we
are aiming for a result that is universal over all FDR control methods.

Theorem 3 below proves that, if there is a feature j for which K̂Lj does
not concentrate near zero, then we can construct an honest model selection
method that, when assuming that the conditional distribution of Xj | X−j
is given by Pj , fails to control FDR at the desired level if the true con-
ditional distribution is in fact P ?j . By “honest”, we mean that the model
selection method would successfully control FDR at level q if Pj were the
true conditional distribution. Our construction does not run a knockoff filter
on the data; it is instead a hypothesis testing based procedure, meaning that
the K̂Lj ’s govern whether it is possible to control FDR in a general sense.
Hence, our converse is information-theoretic in nature and not specific to
the knockoff filter. The proof of Theorem 3 is given in the Supplementary
Material [Barber et al., 2018].
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Theorem 3. Fix any distribution P ?X , any feature index j, and any esti-
mated conditional distribution Pj. Suppose that there exists a knockoff sam-
pling mechanism P

X̃|X that is pairwise exchangeable with respect to Pj (5),

such that
P
{

K̂Lj ≥ ε
}
≥ c

for some ε, c > 0 when (X, X̃) is drawn from P ?X × PX̃|X . Then there exists

a conditional distribution PY |X , and a testing procedure Ŝ that maps data

(X,Y) ∈ Rn×p×Rn to a selected set of features Ŝ(X,Y) ⊆ {1, . . . , p}, such
that:

• If the data points (Xi,∗,Yi) are i.i.d. draws from the distribution PX×
PY |X , where PX is any distribution whose jth conditional is Pj (that
is, our estimated conditional distribution Pj for feature Xj is correct),
then

FDR
(
Ŝ
)

= q.

• On the other hand, if the data points (Xi,∗,Yi) are i.i.d. draws from
the distribution P ?X ×PY |X (i.e. our estimated conditional distribution
Pj is not correct, as the true conditional distribution is P ?j ), then

FDR
(
Ŝ
)
≥ q
(
1 + c(1− e−ε)

)
.

For the last case (where P ?X is the true distribution), if c ≈ 1 (i.e. K̂Lj ≥ ε

with high probability) then FDR
(
Ŝ
)
' q(2− e−ε); when ε ≈ 0 is small, we

have 2− e−ε ≈ 1 + ε ≈ eε, which is the same inflation factor on the FDR on
the upper bound in Theorem 1. In other words, Theorems 1 and 3 provide
(nearly) matching upper and lower bounds. With these theorems, we do
not aim to claim that the knockoffs methodology is universally robust, but
rather, to determine and quantify the robustness properties of this already
existing method. It is indeed true that substantial mistakes in the model of
X can lead to a loss of FDR control, and the theorems above show that the
K̂Lj ’s quantify exactly when, and to what extent, this issue has the potential
to occur. Of course, as discussed above in Section 3.2.1, if we restrict our
attention to prespecified statistics W , then the actual loss of FDR control
maybe much less severe than that predicted by the bounds in Theorem 1.

4. Examples. To make our FDR control results more concrete, we will
give two examples of settings where accurate estimates Pj of the condi-

tionals P ?j ensure that the K̂Lj ’s are bounded near zero. Examining the
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definition (13) of K̂Lj , we see that K̂Lj is a sum of n i.i.d. terms, and we can
therefore expect that large deviation bounds such as Hoeffding’s inequal-
ity can be used to provide an upper bound uniformly across all p features.
(Of course, as noted in Section 3.2.1, measuring knockoff quality via the

K̂Lj ’s is a “worst-case” analysis that will bound FDR universally over all
statistics W , and may therefore give a very conservative result; for a specific
predefined choice of W , it may be possible to compute a tighter bound.)

All theoretical results in this section are proved in the Supplementary Ma-
terial.

4.1. Bounded errors in the likelihood ratio. First, suppose that our esti-
mates Pj of the conditional distribution P ?j satisfy a likelihood ratio bound
uniformly over any values for the variables:

(17) log

(
P ?j (xj | x−j) · Pj(x′j | x−j)
Pj(xj | x−j) · P ?j (x′j | x−j)

)
≤ δ

for all j, all xj , x
′
j , and all x−j . In this setting, the following lemma, proved

via Hoeffding’s inequality, gives a bound on the K̂Lj ’s:

Lemma 3. If the condition (17) holds uniformly for all j and all xj , x
′
j , x−j,

then with probability at least 1− 1
p ,

max
j=1,...,p

K̂Lj ≤
nδ2

2
+ 2δ

√
n log(p).

In other words, if Pj satisfies (17) for some δ = o

(
1√

n log(p)

)
, then with

high probability every K̂Lj will be small. By Theorem 1, then, the FDR for
model-X knockoffs in this setting is controlled near the target level q.

4.2. Gaussian knockoffs. For a second example, suppose that the distribu-
tion of the feature vector X is mean zero and has covariance Θ−1, where Θ
is some unknown precision matrix. (We assume zero mean for simplicity, but
these results can of course be generalized to an arbitrary mean.) Suppose
that we have estimated Θ with some approximation Θ̃, and let Θj and Θ̃j

denote the jth columns of these matrices. Our results below will assume
that the error in estimating each column of Θ is small, i.e. Θ̃j −Θj is small
for all j.
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As described earlier in (2), Candès et al. [2018, eqn. (3.2)]’s Gaussian knock-
off construction consists of drawing the knockoffs according to the condi-
tional distribution P

X̃|X(·|X) given by

(18) X̃ | X ∼ Np
(
(Ip −DΘ̃)X, 2D −DΘ̃D

)
,

where D = diag{dj} is a nonnegative diagonal matrix chosen to satisfy

2D −DΘ̃D � 0, or equivalently, D � 2Θ̃−1. If the true precision matrix of
X were given by Θ̃ (assumed to be positive definite), then we can calculate
that the joint distribution of the pair (X, X̃) has first and second moments
given by

E
[(

X

X̃

)]
=

(
0
0

)
, Var

((
X

X̃

))
=

(
Θ̃−1 Θ̃−1 −D

Θ̃−1 −D Θ̃−1

)
.

In other words, for every j, Xj and X̃j are exchangeable if we only look at
the first and second moments of the joint distribution.

If the true distribution of X is in fact Gaussian, again with mean zero and co-
variance Θ̃−1, then a stronger claim follows—the joint distribution of (X, X̃)

is then multivariate Gaussian and therefore (X, X̃)swap(A)
d
= (X, X̃) for ev-

ery subset A ⊆ [p]. In other words, the knockoff construction determined
by P

X̃|X satisfies pairwise exchangeability, as defined in (4), with respect

to the distribution PX = Np(0, Θ̃−1). To frame this property in terms of
conditionals, Pj , rather than an estimated joint distribution, PX , we can
calculate the estimated conditional distributions Pj(·|X−j) as

(19) Xj | X−j ∼ N

(
X>−j

(
−Θ̃−j,j

Θ̃jj

)
,

1

Θ̃jj

)
,

where Θ̃−j,j ∈ Rp−1 is the column Θ̃j with entry Θ̃jj removed.

As noted in Section 2.2, we may want to work with estimated precision
matrices, which are not positive semidefinite (PSD). The rationale is that if
Θ̃ is fitted by regressing each Xj on the remaining features X−j to produce

the jth column, Θ̃j , then the result will not be PSD in general. If Θ̃ is not
PSD, although there is no corresponding joint distribution, the conditionals
Pj (19) are still well-defined as long as Θ̃jj > 0 for all j; they are just not
compatible. (Note that symmetry is a far easier constraint to enforce, e.g. by
simply replacing our initial estimate Θ̃ with (Θ̃ + Θ̃>)/2, which preserves
desirable features such as sparsity that might be present in the initial Θ̃;
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in contrast, projecting to the PSD cone while enforcing sparsity constraints
may be computationally challenging in high dimensions.)

Our first result verifies that this construction of P
X̃|X satisfies pairwise ex-

changeability with respect to the conditional distributions Pj given in (19):

Lemma 4. Let Θ̃ ∈ Rp×p be a symmetric matrix with a positive diagonal,
and let P

X̃|X be defined as in (18). Then, for each j = 1, . . . , p, P
X̃|X is

pairwise exchangeable with respect to the conditional distribution Pj given
in (19)—that is, the exchangeability condition (5) is satisfied.

In practice, we would construct Gaussian knockoffs in situations where the
distribution of X might be well approximated by a multivariate normal.
The lemma below gives a high probability bound on the K̂Lj ’s in the case
where the features are indeed Gaussian but with an unknown covariance
matrix Θ−1. Here, Gaussian concentration results can be used to control
the K̂Lj ’s, which then yields FDR control. (We note that recent work by
Fan et al. [2017] also studies the Gaussian model-X knockoffs procedure
with an estimated precision matrix Θ̃, under a different framework.)

Lemma 5. Let Θ, Θ̃ ∈ Rp×p be any matrices, where Θ is positive def-

inite and Θ̃ is symmetric with a positive diagonal. Suppose that Xi,∗
iid∼

Np(0,Θ−1), while X̃ | X is drawn according to the distribution P
X̃|X given

in (18). Define

(20) δΘ = max
j=1,...,p

(Θjj)
−1/2 · ‖Θ−1/2(Θ̃j −Θj)‖2.

Then with probability at least 1− 1
p ,

max
j=1,...,p

K̂Lj ≤ 4δΘ

√
n log(p) · (1 + o(1)),

where the o(1) term refers to terms that are vanishing when we assume that
log(p)
n = o(1) and that this upper bound is itself bounded by a constant.

(A formal bound making the o(1) term explicit is provided in the proof.) In
particular, comparing to our FDR control result, Theorem 1, we see that as
long as the columnwise error in estimating the precision matrix Θ satisfies

δΘ = o

(
1√

n log(p)

)
, the FDR will be controlled near the target level q.

When might we be able to attain such a bound on the error in estimat-
ing Θ? As mentioned earlier, in many applied settings, we may have access
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to substantially more unlabeled data (i.e. the feature vector X without an
associated response Y ) than labeled data (pairs (X,Y )). Suppose that, for
the purpose of estimating Θ, we have access to N � n draws of the fea-
ture vector X ∼ P ?X . When the distribution of X is multivariate Gaussian
with a sparse inverse covariance matrix Θ, the graphical Lasso [Yuan, 2007,
Friedman et al., 2008] estimates Θ as

Θ̂λ = arg min
A�0

{
− log det(A) + 〈A, ŜN 〉+ λ

∑
j 6=k
|Ajk|

}
,

where ŜN is the sample covariance matrix of the unlabeled training data
while λ > 0 is a penalty parameter inducing sparsity in the resulting solution.
Ravikumar et al. [2011] proved that, if Θ is sufficiently sparse, then under
certain additional assumptions and with an appropriate choice of penalty
parameter λ, the graphical Lasso solution Θ̂λ satisfies an entrywise error

bound ‖Θ̂λ −Θ‖∞ .
√

log(p)
N , and furthermore, is asymptotically guaran-

teed to avoid any false positives (i.e. if Θjk = 0 then (Θ̂λ)jk = 0). Therefore,
if each column of Θ has at sparsity at most sΘ (i.e. at most sΘ nonzeros)
and Θ has bounded condition number, this then proves that the bound (20)

on the error in estimating Θ holds with δΘ �
√

sΘ log(p)
N . We conclude that

the results of Lemma 5 give a meaningful bound on FDR control as long as

4δΘ ·
√
n log(p) �

√
sΘ log(p)

N
·
√
n log(p) = o(1).

Equivalently, it is sufficient to have an unlabeled sample size N satisfying

N � n · sΘ log2(p).

5. Discussion. In this paper, we established that the method of model-X
knockoffs is robust to errors in the underlying assumptions on the distribu-
tion of the feature vectorX, making it an effective method for many practical
applications, such as genome-wide association studies, where the underlying
distribution on the features X1, . . . , Xp can be estimated accurately. One no-
table aspect is that our theory is free of any modeling assumptions, since our
theoretical guarantees hold no matter the data distribution or the statistics
that the data analyst wishes to use, even if they are designed to exploit some
weakness in the construction of knockoffs. Looking forward, it would be in-
teresting to develop a theory for fixed statistics, as outlined in Section 3.2.1.
For instance, if the researcher commits to using a pre-specified random for-
est feature importance statistic, or some statistic based on the magnitudes
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26 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

of lasso coefficients (perhaps calculated at a data-dependent value of the
regularization parameter), then what can be said about FDR control? In
other words, what can we say when the statistics W only probe the data in
certain directions? We leave such interesting questions for further research.
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APPENDIX A: PROOFS OF MAIN RESULTS

Whereas all proofs of FDR control for the knockoff methods thus far have
relied on martingale arguments (see Barber and Candès [2015], Barber and
Candès [2019], Candès et al. [2018]), here we will prove our main theorem us-
ing a novel leave-one-out argument. Before we begin, we would like to draw
a loose analogy. To prove FDR controlling properties of the Benjamini–
Hochberg procedure under independence of the p-values, Storey et al. [2004]
developed a very elegant martingale argument. Other proof techniques, how-
ever, operate by removing or leaving out one hypothesis (or one p-value);
see Benjamini and Yekutieli [2001], Ferreira and Zwinderman [2006] for ex-
amples. At a very high level, our own methods are partially inspired by the
latter approach.

A.1. Proofs of FDR control results, Theorems 1 and 2. Theorem 1
follows directly from Theorem 2 combined with Lemma 2, and thus requires
no separate proof. To prove Theorem 2, for any ε ≥ 0 and for any threshold
t > 0, define

Rε(t) :=

∑
j∈H0

1

{
Wj ≥ t, K̂Lj ≤ ε

}
1 +

∑
j∈H0

1 {Wj ≤ −t}
.
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Then, for the knockoff+ filter with threshold T+, we can write

∣∣{j : j ∈ Ŝ ∩ H0 and K̂Lj ≤ ε}
∣∣

|Ŝ| ∨ 1
=

∑
j∈H0

1

{
Wj ≥ T+, K̂Lj ≤ ε

}
1 ∨

∑
j 1 {Wj ≥ T+}

=
1 +

∑
j 1 {Wj ≤ −T+}

1 ∨
∑

j 1 {Wj ≥ T+}
·

∑
j∈H0

1

{
Wj ≥ T+, K̂Lj ≤ ε

}
1 +

∑
j 1 {Wj ≤ −T+}

≤
1 +

∑
j 1 {Wj ≤ −T+}

1 ∨
∑

j 1 {Wj ≥ T+}
·Rε(T+) ≤ q ·Rε(T+),

where the next-to-last step holds by definition of Rε, and the last step holds
by the construction of the knockoff+ filter. If we instead use the knockoff
filter (rather than knockoff+), then we use the threshold T0 and similarly
obtain∣∣{j : j ∈ Ŝ ∩ H0 and K̂Lj ≤ ε}

∣∣
q−1 + |Ŝ|

≤
1 +

∑
j 1 {Wj ≤ −T0}

q−1 +
∑

j 1 {Wj ≥ T0}
·Rε(T0)

≤ q ·Rε(T0),

where the two steps hold by definition of Rε and the construction of the
knockoff filter, respectively. Either way, then, it is sufficient to prove that
E [Rε(T )] ≤ eε, where T is either T+ or T0.

Next, given a threshold rule T = T (W ) mapping statistics W ∈ Rp to a
threshold T > 0 (i.e. the knockoff or knockoff+ filter threshold, T0 or T+),
for each index j = 1, . . . , p we define

Tj = T
(

(W1, . . . ,Wj−1, |Wj |,Wj+1, . . . ,Wp)
)
> 0,

i.e. the threshold that we would obtain if Wj were replaced with |Wj |. The
following lemma (proved in the Supplementary Material) establishes a prop-
erty of the Tj ’s in the context of the knockoff filter:

Lemma 6. Let T = T (W ) be the threshold for either the knockoff or the
knockoff+.4 For any j, k,

(21) If Wj ≤ −min{Tj , Tk} and Wk ≤ −min{Tj , Tk}, then Tj = Tk.

4More generally, this result holds for any function T = T (W ) that satisfies a “stopping
time condition” with respect to the signs of the Wj ’s, defined as follows: for any t > 0,
the event 1 {T ≤ t} depends on W only through (1) the magnitudes |W |, (2) sign(Wj) for
each j with |Wj | < t, and (3)

∑
j:|Wj |≥t sign(Wj).
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Now with T being either the knockoff or knockoff+ thresholding rule, we
have

E [Rε(T )] = E

[∑
j∈H0

1 {Wj ≥ T,Ej ≤ ε}
1 +

∑
j∈H0

1 {Wj ≤ −T}

]

=
∑
j∈H0

E

[
1 {Wj ≥ Tj , Ej ≤ ε}

1 +
∑

k∈H0,k 6=j 1 {Wk ≤ −Tj}

]
,

where the last step holds since T > 0 by definition, so if Wj ≥ T then
Wj 6≤ −T , and, by definition of Tj , we also have T = Tj in this case.
Continuing from this last step, we can rewrite the expectation as

E [Rε(T )] =
∑
j∈H0

E

[
1 {Wj > 0, Ej ≤ ε} · 1 {|Wj | ≥ Tj}

1 +
∑

k∈H0,k 6=j 1 {Wk ≤ −Tj}

]
(*)
=
∑
j∈H0

E

[
P {Wj > 0, Ej ≤ ε | |Wj |,W−j} · 1 {|Wj | ≥ Tj}

1 +
∑

k∈H0,k 6=j 1 {Wk ≤ −Tj}

]

≤ eε ·
∑
j∈H0

E

[
P {Wj < 0 | |Wj |,W−j} · 1 {|Wj | ≥ Tj}

1 +
∑

k∈H0,k 6=j 1 {Wk ≤ −Tj}

]
(*)
= eε ·

∑
j∈H0

E

[
1 {Wj < 0} · 1 {|Wj | ≥ Tj}

1 +
∑

k∈H0,k 6=j 1 {Wk ≤ −Tj}

]

= eε · E

∑
j∈H0

1 {Wj ≤ −Tj}
1 +

∑
k∈H0,k 6=j 1 {Wk ≤ −Tj}

 ,
where the two steps marked with (*) hold because Tj is a function of
|Wj |,W−j by its definition, and so we can treat it as known when we condi-
tion on |Wj |,W−j .
Finally, the summation inside the last expected value above can be simplified
as follows: if for all null j, Wj > −Tj , then the sum is equal to zero, while
otherwise, we can write∑

j∈H0

1 {Wj ≤ −Tj}
1 +

∑
k∈H0,k 6=j 1 {Wk ≤ −Tj}

=
∑
j∈H0

1 {Wj ≤ −Tj}
1 +

∑
k∈H0,k 6=j 1 {Wk ≤ −Tk}

=
∑
j∈H0

1 {Wj ≤ −Tj}∑
k∈H0

1 {Wk ≤ −Tk}
= 1,

where the first step applies Lemma 6. Combining everything, we have shown
that E [Rε(T )] ≤ eε, which proves the theorem.
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A.2. Proof of Lemma 2. We need to prove that

P
{
Wj > 0, K̂Lj ≤ ε

∣∣∣ |Wj |,W−j
}
≤ eε · P {Wj < 0 | |Wj |,W−j}

for any null j and any ε ≥ 0. To proceed, we will be conditioning on observing
X−j , X̃−j ,Y, and on observing the unordered pair {Xj , X̃j}—that is, we
observe both the original and knockoff features but do not know which is
which. It follows from the flip-sign property that having observed all this, we
know all the knockoff statistics W except for the sign of the jth component
Wj . Put differently, W−j and |Wj | are both functions of the variables we are
conditioning on, but sign(Wj) is not. Without loss of generality, label the

unordered pair of feature vectors {Xj , X̃j}, as X
(0)
j and X

(1)
j , such that:

(22)

{
If Xj = X

(0)
j and X̃j = X

(1)
j , then Wj ≥ 0;

If Xj = X
(1)
j and X̃j = X

(0)
j , then Wj ≤ 0.

We can therefore write

P
{
Wj > 0, K̂Lj ≤ ε

∣∣∣ |Wj |,W−j
}

= E
[
P
{
Wj > 0, K̂Lj ≤ ε

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

} ∣∣∣ |Wj |,W−j
]

and similarly

P {Wj < 0 | |Wj |,W−j}

= E
[
P
{
Wj < 0

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

} ∣∣∣ |Wj |,W−j
]
.

Therefore, it will be sufficient to prove that

P
{
Wj > 0, K̂Lj ≤ ε

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
≤ eε · P

{
Wj < 0

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
.(23)

Now, if X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y are such that |Wj | = 0, clearly this bound

holds trivially, so from this point on we ignore this trivial case and assume

that |Wj | > 0. By our definition (22) of X
(0)
j and X

(1)
j , we have

(24)
P
{
Wj > 0

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
P
{
Wj < 0

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
=

P
{

(Xj , X̃j) = (X
(0)
j ,X

(1)
j )

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
P
{

(Xj , X̃j) = (X
(1)
j ,X

(0)
j )

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

} ,
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where this last ratio should be interpreted as a ratio of conditional proba-
bilities or conditional densities, as appropriate. Since the observations i =
1, . . . , n are independent, this can be rewritten as

(25)
n∏
i=1

P
{

(Xij , X̃ij) = (X
(0)
ij ,X

(1)
ij )

∣∣∣ X
(0)
ij ,X

(1)
ij ,Xi,−j , X̃i,−j ,Yi

}
P
{

(Xij , X̃ij) = (X
(1)
ij ,X

(0)
ij )

∣∣∣ X
(0)
ij ,X

(1)
ij ,Xi,−j , X̃i,−j ,Yi

}
=

n∏
i=1

P ?j (X
(0)
ij | Xi,−j) · Pj(X(1)

ij | Xi,−j)

Pj(X
(0)
ij | Xi,−j) · P ?j (X

(1)
ij | Xi,−j)

=: eρj ,

where the first equality holds by Lemma 1 (recalling that j is assumed to be a

null feature). Next, from the definition (13) of K̂Lj and the definition (22) of

X
(0)
j and X

(1)
j , we can see that K̂Lj = ρj if Wj > 0, or otherwise K̂Lj = −ρj

if Wj < 0. Therefore,

P
{
Wj > 0, K̂Lj ≤ ε

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
= P

{
Wj > 0, ρj ≤ ε

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
= 1 {ρj ≤ ε} · P

{
Wj > 0

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
= 1 {ρj ≤ ε} · eρj · P

{
Wj < 0

∣∣∣ X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y

}
,

where the next-to-last step holds since ρj is a function of X
(0)
j ,X

(1)
j ,X−j , X̃−j ,Y,

while the last step uses our work in (24) and (25). Since 1 {ρj ≤ ε} · eρj ≤ eε
trivially, we have proved the desired bound (23), which concludes the proof
of the lemma.

A.3. Proof of Lemma 1. We prove the lemma in the case where all
features are discrete; the case where some of the features may be continuous
is proved analogously. First, consider any null feature index j. By definition
of the nulls, we know that Xj ⊥⊥ Y | X−j . Furthermore, X̃ ⊥⊥ Y | X by

construction. Therefore, the distribution of Y | (X, X̃) depends only on
X−j , and in particular, Y ⊥⊥ (Xj , X̃j) | (X−j , X̃−j). This proves that
(26)

P
{
Xj = a, X̃j = b

∣∣∣ X−j , X̃−j , Y }
P
{
Xj = b, X̃j = a

∣∣∣ X−j , X̃−j , Y } =
P
{
Xj = a, X̃j = b

∣∣∣ X−j , X̃−j}
P
{
Xj = b, X̃j = a

∣∣∣ X−j , X̃−j} ,
because the numerator and denominator are each unchanged whether we
do or do not condition on Y . Thus, for null features j, it is now sufficient
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to prove only the first claim of the lemma, namely that the right-hand side

above is equal to
P ?
j (a|X−j)Pj(b|X−j)

Pj(a|X−j)P ?
j (b|X−j) .

From this point on, let j be any feature (null or non-null). We will now prove
the first claim in the lemma. Recalling the assumption that P

X̃|X is pairwise

exchangeable with respect to Pj (5), we introduce a pair of random variables
drawn as follows: first, draw X ′−j ∼ P ?X−j

, where P ?X−j
is the distribution

of X−j ; then draw X ′j | X ′−j ∼ Pj(·|X ′−j); and finally, draw X̃ ′ | X ′ ∼
P
X̃|X(·|X ′). Then by (5),

(27)
(
X ′j , X̃

′
j , X

′
−j , X̃

′
−j
) d

=
(
X̃ ′j , X

′
j , X

′
−j , X̃

′
−j
)
.

By construction, the joint distribution of (X ′, X̃ ′) is given by

P
{
X ′ = x, X̃ ′ = x̃

}
= P ?X−j

(x−j)Pj(xj |x−j)PX̃|X(x̃ |x).

Now, fixing any x−j , x̃−j ∈ Rp−1, write xa as the vector in Rp with en-
try j given by a and all other entries given by x−j , and define xb, x̃a, x̃b

analogously. Then (27) is equivalent to
(28)
P ?X−j

(x−j)Pj(a |x−j)PX̃|X(x̃b |xa) = P ?X−j
(x−j)Pj(b |x−j)PX̃|X(x̃a |xb).

Now we turn to the true distribution of the data, generated as X ∼ P ?X and

X̃ | X ∼ P
X̃|X . This means that the joint distribution of (X, X̃) is given by

P
{
X = x, X̃ = x̃

}
= P ?X−j

(x−j)P
?
j (xj |x−j)PX̃|X(x̃ |x).

We can therefore calculate

P
{
Xj = a, X̃j = b,X−j = x−j , X̃−j = x̃−j

}
P
{
X ′j = a, X̃ ′j = b,X ′−j = x−j , X̃ ′−j = x̃−j

}
=
P ?X−j

(x−j)P
?
j (a |x−j)PX̃|X(x̃b |xa)

P ?X−j
(x−j)P ?j (b |x−j)PX̃|X(x̃a |xb)

=
P ?j (a | x−j)
Pj(a | x−j)

· Pj(b | x−j)
P ?j (b | x−j)

,

where the last step holds by (28). This proves the lemma.
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