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Abstract

Time-domain astronomy has reached an incredible new era where unprecedented amounts
of data are becoming available. New large-scale astronomical surveys such as the Legacy
Survey of Space and Time (LSST) are going to revolutionise transient astronomy, providing
opportunities to discover entirely new classes of transients while also enabling a deeper
understanding of known classes. LSST is expected to observe over 10 million transient alerts
every night, at least two orders of magnitude more than any preceding survey. It has never
been more important that astronomers develop fast and automated methods of identifying
transient candidates for follow-up observations.

In this thesis, I tackle two major challenges facing the future of transient astronomy: the
early classification of transients and the detection of rare or previously unknown transients. I
detail my development of a number of novel methods dealing with these issues. In the first
chapter, I provide an introduction to the field of transient astronomy and motivate why new
methods of transient identification are necessary. In the second chapter, I detail the develop-
ment of a new photometric transient classifier, called RAPID, that is able to automatically
classify a range of astronomical transients in real-time. My deep neural network architecture
is the first method designed to provide early classifications of astronomical transients. In
Chapter 3, I identify the issue that with such large data volumes, the astronomical community
will struggle to identify rare and interesting anomalous transients that have previously been
found serendipitously. I outline my novel method that uses a Bayesian parametric fit of light
curves to identify anomalous transients in real-time. In Chapter 4, I highlight some issues
with current photometric classifiers and improve upon RAPID so that it is capable of dealing
with real data instead of just simulations. I present classifiers that perform effectively on real
data from the Zwicky Transient Facility and the PanSTARRS surveys. Finally, in the last
chapter, I discuss the conclusions of my work and highlight some future opportunities and
work needed in preparing for discovery in the new era of time-domain astronomy.
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Chapter 1

Introduction

1.1 Scientific Motivation

Over the last century, observations of the time-domain universe have led to some of the most
significant discoveries in cosmology and astronomy. In the early 20th century, Henrietta
Leavitt identified a relationship between the period and luminosity of Cepheid variable stars
(Leavitt, 1908; Leavitt & Pickering, 1912). In 1929, Edwin Hubble used Leavitt’s work
to discover that the universe was expanding (Hubble, 1929), and independently in 1927,
Georges Lemaître discovered a solution to Einstein’s equations for an expanding universe
(Lemaître, 1927). Around 70 years later, two teams of scientists (Perlmutter et al., 1999;
Riess et al., 1998) used the standardised luminosities of Type Ia supernovae (SNe Ia) to
independently discover that this expansion was accelerating and not slowing down. This
was a major challenge to our understanding of the universe and led to the introduction of
dark energy to explain the cosmic acceleration. The simplest dark energy model is Einstein’s
cosmological constant, with a fixed equation of state, w =−1. However, other explanations
of the acceleration such as modified gravity, scalar field theories or quintessence predict
different, or time varying values of w. The goal of modern supernova cosmology is to
constrain the precise behaviour of w using more and better supernova measurements. While
constraints on these cosmological parameters have improved as a result of cleaner and larger
datasets, and multiple cosmological probes, the nature of dark energy remains mysterious
(e.g. Weinberg et al., 2012). Nevertheless, despite this mystery, SNe Ia remain the most
important probes of late-time cosmic acceleration and support general relativity as the best
tested model for gravity on all length scales from torsion-balance pendulums in a lab to
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cosmological scales. Recently, this theory has passed another key test with the detection of
gravitational waves by LIGO.

In 2017, LIGO and Virgo’s interferometers detected gravitational waves from a neutron
star merger. Within seconds of this result and for several hours following the event, gamma
ray, optical, infrared and x-ray measurements were made, in what has been the largest joint
multi-messenger effort by astronomers (e.g. Abbott et al., 2017c; Arcavi et al., 2017; Coulter
et al., 2017; Cowperthwaite et al., 2017; Drout et al., 2017; Evans et al., 2017; Pian et al.,
2017; Savchenko et al., 2017; Shappee et al., 2017; Smartt et al., 2017; Soares-Santos et al.,
2017b; Tanvir et al., 2017; Troja et al., 2017; Valenti et al., 2017). For the first time, kilonovae
(Metzger, 2017) were directly observed as the electromagnetic signatures of neutron star
mergers - events which shine brighter than their host galaxy and are responsible for all the
heavy elements found in the universe today. The joint effort was also able to constrain the
speed of gravitational waves, and put general relativity on a stronger footing in cosmology,
with several modified theories of gravity being ruled out.

Cepheids, supernovae, and kilonovae have led to exciting discoveries in astronomy, and
are just three of the many classes of transient and variable objects in the universe. New large
scale surveys will observe orders of magnitude more transient objects than ever before. The
upcoming Legacy Survey of Space and Time (LSST) on the Vera Rubin Observatory (VRO),
for example, will scan the entire southern sky to observe thousands of new transients every
day, and is likely to discover new classes of objects never before seen. This unprecedented
opportunity comes with major new data-handling and identification challenges. The sheer
number makes it unfeasible to analyse these events one by one; and as such, automated
machine learning and data techniques are necessary to process, classify, and discover objects
from the data influx. I discuss the literature on machine learning for transient identification
in section 2.2.

A major challenge is that our resources for spectroscopic follow-up is limited. The future
of time-domain astronomy relies on the automation of identifying which of the millions of
transient alerts observed by upcoming surveys are most promising for follow-up observations.
In this thesis, I develop methods for classifying transients and discovering anomalous events
from survey telescopes. Using these methods, astronomers will be able to prioritise the
follow-up of transient candidates based on the photometric classification and the likelihood
of a transient candidate being anomalous.
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1.1.1 Supernova Cosmology

Supernovae (SNe) are the result of the violent destruction of entire stars. They are rare events.
Over the past millennium, only six supernovae have been confirmed in the Milky Way. The
expected rate of supernova events in a galaxy like the Milky Way is 2.84± 0.60 SNe per
century, while the expected volumetric rate of SNe in the local universe is on the order
of 10−5 to 10−4 SNe Mpc−3 year−1 (Li et al., 2011). In the past two decades, dedicated
telescope surveys monitoring changes in the sky has meant that supernovae are now found
regularly. The rise in transient surveys was, in part, motivated by the desire to obtain more
SNe Ia for use in cosmology. Several surveys, such as the Supernova Factory (Aldering
et al., 2002), the Supernova Legacy Survey (SNLS, Astier et al., 2006), ESSENCE (Davis
et al., 2007), the Harvard-Smithosonian Center for Astrophysics supernova program (Hicken
et al., 2009), the Carnegie Supernova Project (CSP, Folatelli et al., 2010), the Berkeley SNIa
Program (BSNIP, Silverman et al., 2012), and the Dark Energy Survey (DES, Dark Energy
Survey Collaboration et al., 2016) have had discovering or spectroscopically following up
more SNe Ia for cosmology as one of their key motivations. These surveys coupled with the
fact that SNe Ia are much brighter and thus easier to find than core-collapse supernovae, has
meant that the worldwide collection of supernova observations are significantly dominated
by SNe Ia.

For cosmology, it is important to classify observed transients to distinguish a pure sample
of SNe Ia. Supernovae are categorised into several types based on features in their optical
spectrum taken near maximum brightness (Filippenko, 1997). SNe Ia can be spectroscopically
distinguished by the presence of Si II and the lack of hydrogen and helium in their spectral
features. Thus, conventional SNIa cosmological analyses are based on spectroscopically
confirmed samples (Scolnic et al., 2018). With rapidly increasing samples from transient
surveys, there are not enough resources available worldwide to spectroscopically confirm
each detection (Kessler et al., 2010a). Therefore, astronomers are interested in developing
methods to photometrically classify supernovae to make optimal use of the large data volumes
in future cosmological surveys.

Distinguishing SNe based on sparse light curves is a much more difficult challenge than
classification from spectra, and there is a risk of contamination due to misclassification.
Classifying a SNIa sample with photometric light curves alone means that there is a tradeoff
between the purity1 of the sample, the efficiency2 in retaining a large sample size, and the

1The fraction of classified SNe Ia that really are SNe Ia
2The fraction of true SNe Ia in the sample that have been classified as SNe Ia
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resulting systematic biases in the constraints on cosmological parameters. As new large
surveys decrease their fraction of spectroscopically confirmed SNe Ia in their sample, their
purity drops and hence the systematic errors in their cosmology increases. Consequently, the
quality of photometric classifiers needs to improve to meet this new challenge.

Recent work by Campbell et al. (2013) and Jones et al. (2017) used a photometrically
classified sample of SNe Ia for cosmology with data from SDSS-II and Pan-STARRS, respec-
tively. They used SNANA simulations (Kessler et al., 2009) to estimate that their photometric
SNIa sample was affected by up to 5% contamination from core collapse supernovae, which
both groups claimed had a small or insignificant effect on their cosmological constraints.
They each estimated that they had a SNIa typing efficiency of approximately 70%, limiting
their total sample size. LSST will observe orders of magnitude more SNe Ia than both of
these surveys, and being able to obtain a high purity and high efficiency photometric sample
from accurate classifications will allow for precision cosmological inferences.

1.1.1.1 Hubble tension

Observations of SNe Ia enable the expansion rate of the universe, the Hubble-Lemaître
constant H0, to be measured directly. The value of H0 has been measured to increasingly better
precision over the past decade. The most recent measurement from using the standard distance
ladder approach using SNe Ia calibrated with Cepheid variable stars reaches a precision of
1.8% and finds H0 = 73.2±1.3 km s−1 Mpc−1 comes from Riess et al. (2021). However,
this measurement is in direct tension with predictions from Planck CMB observations
that assume a ΛCDM cosmology. The most recent analysis from Planck derives a value
H0 = 67.44± 0.57 km s−1 Mpc−1 (Efstathiou & Gratton, 2019) which differs from the
distance ladder measurement by 4.2σ . This tension has come to be known as the Hubble

tension (see Verde et al. 2019 for a review from the recent workshop on this issue). As
illustrated in Figure 1.1, since the release of the Planck measurements in Planck Collaboration
et al. (2014), higher precision analyses have led to a continued increase in the tension.

The Planck analysis relies on the assumption of a ΛCDM model of cosmology. The
six-parameter ΛCDM cosmology is the Standard Model of Cosmology and has been ex-
traordinarily successful at explaining the cosmic microwave background radiation (CMB)
and a range of other astronomical data (e.g. Planck Collaboration et al., 2020). But, the
discrepancy between late-time universe measurements of H0 from the distance ladder and
the early-time universe derivations from Planck point to the possibility of new physics being
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Fig. 1.1 The Hubble tension evolving over time. Measurements of H0 from the local universe
based on Cepheids and SNe Ia are shown in blue, derived values of H0 from the CMB
assuming ΛCDM are shown in red, and direct measurements of H0 with kilonovae as standard
sirens is shown in green. The plot is taken from Figure 8 of Ezquiaga & Zumalacárregui
(2018).

required. Ongoing research is putting effort to constrain uncertainties in the analyses to
determine whether the tension is caused by an incomplete understanding of the physics of
the early-time universe or from systematic uncertainties in the analyses.

One of the largest systematic uncertainties in SNIa cosmology is the calibration of the
low-redshift SNIa sample (e.g. Betoule et al., 2014b; Foley et al., 2018b; Scolnic et al., 2018).
Thus, supernova surveys, such as the Foundation Supernova Survey (Foley et al., 2018b)
are working to provide a large and homogeneous sample of low-redshift (z < 0.1) SNe Ia.
Obtaining a larger sample of well-calibrated low-redshift SNe Ia will help to alleviate the
calibration uncertainty in supernova cosmology which will improve the precision on both w

and H0.

Furthermore, the recent binary neutron star merger observed as a gravitational wave
event, GW170817 (Abbott et al., 2017a), with an optical counterpart as a kilonova (Abbott
et al., 2017c) enabled the first use of standard sirens for cosmology (Abbott et al., 2017b).
Using the distance measured using gravitational waves and the recession velocity measured
from the electromagnetic signatures, an independent direct measure of the Hubble-Lemaître
constant was obtained. A larger collection of kilonovae with gravitational wave counterparts
will enable a more precise measurement of H0 in the future as illustrated in Figure 1.1 (Chen
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et al., 2018). For these reasons among others, future surveys are aiming to obtain larger and
pure samples of kilonovae and supernovae.

1.1.2 Progenitor Physics

Obtaining a large mostly pure SNIa sample will help to reduce the statistical errors in
cosmological analyses. However, understanding both the progenitors and the physical
explosion mechanisms is important for reducing the space for unknown systematics that
might be due to the evolution of SNIa progenitors with cosmic time. While it is widely
accepted that SNe Ia are the thermonuclear explosions of carbon-oxygen white dwarfs, the
progenitor scenarios are not well understood and two scenarios are commonly considered. In
the single degenerate (SD) scenario, a non-degenerate binary companion star deposits matter
onto a white dwarf until it reaches the Chandrasekhar limit and thermonuclear runaway
occurs (Whelan & Iben, 1973). The double degenerate (DD) model postulates that a binary
white dwarf system merges after a gravitational inspiral and explodes from the subsequent
carbon ignition (Iben & Tutukov, 1984). It remains uncertain whether SD or DD scenarios
result in the SNIa population, or whether both channels may contribute to the population -
perhaps explaining the overall population diversity. Furthermore, whether the thermonuclear
burning proceeds as a detonation, a deflagration, a transition from one to the other, or
some incomplete burning scenario is also still unresolved (Hillebrandt & Niemeyer, 2000;
Noebauer et al., 2017).

The best way to distinguish between whether SNe Ia evolve under the SD or DD pro-
genitor scenarios, and which explosion mechanism is responsible for SNe Ia is by detailed
time-resolved observations at very early times. For example Kasen (2010) predicts that in
a SD scenario, the shock from the supernova explosion colliding with the companion star
will produce an early ultraviolet/blue excess in the first few days after explosion. Marion
et al. (2016) and Hosseinzadeh et al. (2017) recently observed an early blue bump in the
light curves of two SNe Ia (SN2012cg, SN2017cbv), providing evidence for the SD scenario.
These recent observations are an example of the exciting opportunities to learn about the
nature of the SNIa progenitor system and their deaths in current and future transient surveys.
As LSST plans to observe tens of thousands of transients per day, determining which of these
may be worth follow-up for improving our understanding of the SNIa population and hence
reducing unknown systematics in cosmology is an important challenge that our work hopes
to meet.
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While SNe Ia are of particular relevance to cosmologists, understanding the astrophysics
of stellar explosions is an interesting science case on its own. The physical mechanism
of some core-collapse supernovae (CCSNe) are still under debate (see Smartt (2009) for
a review of the progenitors of core-collapse supernovae). The discovery and early-time
observations of the famous nearby supernovae, SN1987A, and SN1993J enabled a deeper
understanding of the progenitors of CCSNe. However, it has so far been difficult to detect
progenitors of supernovae beyond 10 Mpc, and rapid and intense follow-up of supernovae in
nearby galaxies is necessary to characterise the explosions and progenitors of supernovae
(Smartt, 2009). Future deep and wide-field surveys will discover many more rare SNe in
much higher numbers. The opportunity for characterising these events relies on the rapid
identification of suitable supernovae for follow-up. Identifying the class of transients using
only early-time data, and following up interesting candidates spectroscopically will enable
us to understand the progenitors of many poorly understood transients.

1.2 Transient Diversity

The time-domain universe comprises a great variety of transient and variable phenomena that
are due to different physical origins. Figure 1.2 illustrates many classes of transients and
variables separated by their known causes. Throughout this thesis, we focus on a subset of
supernovae and other transients that are commonly confused as supernovae. In Figure 1.3,
we plot different classes of transients separated by their peak luminosity and characteristic
timescale. Common transients, such as SNe Ia (thermonuclear supernovae) are shown in grey,
while more poorly understood objects are shown in coloured regions. The gaps in Figure
1.3 are regions of the parameter space that have been largely unexplored by past surveys of
the transient universe. Upcoming and ongoing surveys, such as the LSST and the Transiting
Exoplanet Survey Satellite (TESS, Ricker et al., 2015) will explore fainter and faster than
ever before, and may reveal entirely new classes of objects. In the following subsections,
we detail the physical mechanism and light curve shapes of a range of transient objects that
are expected to be observed by current and upcoming transient surveys and that are used
throughout this thesis.



8 Introduction
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Fig. 1.3 Plot illustrating the characteristic timescale and peak luminosity of many transients.
The grey regions represent common transients where "Thermonuclear Supernovae" are SNe
Ia, the "Core-Collapse Supernovae" on the right are both SNe Ibc and SNe II. The coloured
regions represent rarer and often less understood classes of transients. The Figure is adapted
from (Kasliwal, 2011).
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1.2.1 Supernovae

Supernovae are the result of the core-collapse of massive stars or the thermonuclear explosions
of white dwarfs. Because the exact physical mechanism of many sub-classes of supernovae
are not well understood, they are typically classified based on their light curve shape and
the presence of certain chemicals in their optical spectrum observed near peak luminosity.
Example light curves of several supernova types are plotted in Figure 1.5.

1.2.1.1 Type Ia Supernovae

Type Ia supernovae (SNe Ia) are thought to be caused by the thermonuclear explosion of a
binary star system consisting of a white dwarf accreting matter from a companion star. The
white-dwarf eventually accretes so much mass that its core reaches a critical density - known
as the Chandrasekhar limit - that causes an uncontrolled fusion of carbon and oxygen. The
energy of the explosion of SNe Ia produces light curves that can be empirically standardised
using the Phillips relation (Phillips, 1993). Phillips (1993) showed that the peak luminosity
of SNe Ia is positively correlated with the timescale over which the light curve decays from
maximum. Correcting for this correlation as well as other small corrections to the colour
have enabled SNe Ia to be used as standardisable candles to measure cosmic distances.

SNe Ia are characterised by a lack of hydrogen in their spectra and strong silicon-II
features. In recent years, many subgroups in the SNIa class have been defined to account for
the diversity in the class. In Figure 1.4 we reproduce a figure by Taubenberger (2017) that
illustrates various sub-classes of observed thermonuclear supernovae on a plot of the B-band
magnitude against the light-curve decline rate expressed as the decline within 15 days after
peak in B-band, ∆m15. The plot can be considered a version of Figure 1.3 that has zoomed in
near the “Thermonuclear Supernovae” strip and reversed the timescale axis. For a full review
of the different sub-classes of SNe Ia see Taubenberger (2017) or Ruiter (2020). We list a
few common sub-classes of SNe Ia that we use throughout this thesis and briefly describe
how they differ from normal SNe Ia (SNIa-norm) below.

SNIa-91bg have a significantly lower luminosity than SNIa-norm and are also faster, having
narrower light curves. They are slightly redder at maximum light and often look similar
to the light curves of SNe Ibc. The first of this class was SN 1991bg (Filippenko et al.,
1992a).
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SNIa-91T are characterised by higher peak luminosities and broader light curves than SNIa-
norm. Their colours are very similar to normal SNe Ia except for sometimes being
slightly bluer pre-maximum. The first of this class was SN 1991T (Filippenko et al.,
1992b; Ruiz-Lapuente et al., 1992).

SNIa-x typically have lower luminosities and slower ejecta velocities than SNIa-norm. They
are often found in young stellar populations. See Foley et al. (2013) or Jha (2017) for
a full review of this sub-class.

SNIa-csm have higher luminosities and slower decline rates than SNIa-norm that are thought
to be caused by interaction with its circumstellar material.

SNIa-pec include all other transients that resemble SNe Ia but look slightly ‘peculiar’.

1.2.1.2 Type Ibc Supernovae

Type Ibc supernovae (SNe Ibc) (examples in Drout et al. 2011) are only found in regions of
star formation, and are thought to be the result of the core collapse of massive stars. They are
typically characterised from other supernovae by a lack of hydrogen and silicon features in
their spectra. Type Ib and Ic supernovae have both had their hydrogen envelopes stripped
prior to explosion and thus look quite similar. However, SNe Ic differ from SNe Ib because
they have had their helium envelopes stripped as well, and thus lack helium features in their
spectra (Modjaz et al., 2014).

Their light curve shape and spectra near maximum light look very similar to SNe Ia, but
tend to have magnitudes about 1.0-1.5 times fainter than a typical SNIa. This is however,
similar to sub-luminous SNe Ia (such as SNIa-91bg), which makes them difficult to identify
from light curves alone.

Some sub-classes of SNe Ibc are briefly described as follows:

SNIb are characterised by a lack of hydrogen and the presence of helium in their optical
spectra.

SNIbn are similar to SNe Ib but are distinguished by the presence of narrower emission
lines of helium in their early spectra (see Branch & Wheeler, 2017d).
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Fig. 1.4 The sub-classes of thermonuclear supernovae plotted on a parameter space showing
the peak B-band magnitude against the light-curve decline rate expressed as the decline
within 15 days after peak in B-band, ∆m15. Different classes are highlighted in different
colours and examples of each class are shown as the data points. The plot is very similar to
Figure 1.3, but effectively zooms in near the “Thermonuclear Supernovae” strip of the plot
with the horizontal axis being reversed. The plot is taken from Figure 1 of Taubenberger
(2017) where more detail about each of these classes can be found.
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SNIc are characterised by a lack of hydrogen and helium in their spectra. Their light curve
shapes look similar near peak brightness, but have a range of late-time decline rates
(see Branch & Wheeler, 2017e).

SNIc-BL have particularly broad spectral lines compared to normal SNe Ic.

SNIIb display much more similarity with SNe Ibc than SNe II. The spectral evolution of
SNe IIb reveal that their hydrogen features fade quickly and lines of helium become
much more prominent. After the appearance of helium, SNe IIb closely resemble
SNe Ib (Branch & Wheeler, 2017c), and thus we include them under the SNIbc class
instead of the SNII class throughout this thesis.

1.2.1.3 Type II Supernovae

Similar to SNe Ibc, Type II supernovae (SNe II) are only found in regions of star formation
and are thought to be the result of the core collapse of massive stars. They are characterised
by the presence of hydrogen emission in their spectra. They often remain luminous for an
extended period of time after maximum compared to Type I supernovae.

There is significant diversity within the class (Hillier & Dessart, 2019; Zampieri, 2017)
and we briefly describe a few sub-classes below.

SNIIP have prominent hydrogen spectral lines at all epochs in their transient phase. Their
light curve shape is characterised by a plateau, whereby after maximum brightness it
undergoes an extended phase of nearly constant brightness for up to 100 days before
declining. They are thought to also have a shock breakout very shortly after explosion
(this has seldom been observed, but has been reported in the x-rays in Fransson &
Lundqvist 1989, ultraviolet in Schawinski et al. 2008, Gezari et al. 2015, and optical in
Garnavich et al. 2016, for example).

SNIIL differ from SNIIP because their light curves decline linearly in magnitudes (log
scale) and do not undergo an extended plateau. See Branch & Wheeler (2017a) for a
detailed description of this class.

SNIIn are characterised by the presence of narrower lines of hydrogen in their spectra. These
narrower lines are thought to arise from interaction with the circumstellar medium.
SNIIn are typically brighter than SNIIP and have a wide variety of light curve shapes.
See Branch & Wheeler (2017b) for a detailed description.
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SNII-pec include all other transients that resemble SNe II but look slightly ‘peculiar’.

1.2.2 Point Ia Supernovae

Point-Ia supernovae (also known as .Ia SNe) are a hypothetical supernova type which are
one-tenth as bright as regular Type Ia supernovae, and have not yet been observed. They
are expected to be the result of the early onset of detonation of helium transferring white
dwarf binaries known as AM Canum Venacticorum systems (Shen et al., 2010). Helium
that accretes onto the carbon-oxygen white dwarfs undergoes unstable thermonuclear flashes
when the orbital period is short: in the 2.5–3.5 minute range (Bildsten et al., 2007). This
process is strong enough to result in the onset of a detonation.

1.2.3 Super Luminous Supernovae

Super-luminous supernovae (SLSN) (e.g. Quimby et al. 2007) are stellar explosions that
are substantially more luminous than normal supernova events: with a luminosity of at least
7×1043 erg/s (<−21mag). While the physical mechanism behind these events is not well
understood, some candidate models are described in this section, with example observed
light curves shown in Figure 1.5. As defined in Gal-Yam (2012b), there are three broad
classes of SLSNe: SLSN-II are hydrogen-rich events, SLSN-I lack spectroscopic signatures
of hydrogen, and a rarer class with broader and slowly evolving light curves. These were
originally called SLSN-R, as their luminosity was thought to be dominated by radioactivity
(Gal-Yam, 2012b), but more recent work has indicated that other powering mechanisms are
plausible. See Gal-Yam (2019) for a comprehensive review of SLSNe.

1.2.3.1 SLSN-II

SLSN-II are hydrogen-rich supernovae caused by the explosions of massive stars. Their
observational characteristics are diverse and they have brightnesses that vary from up to −∼
22 mag down to the typical brightnesses of the normal core-collapse supernova populations.
They are sometimes thought to fall under the SN IIn class. Their explosions typically occur
within thick hydrogen envelopes making investigations about their energy source still mostly
speculative (Gal-Yam, 2012b). The first well-studied example of SLSN-II was SN 2006gy
(Ofek et al., 2007; Smith & McCray, 2007).
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Fig. 1.5 The r-band light curves of the prototypical transients of various supernova classes.
The dashed black line shows the cutoff for the classification of super-luminous supernovae
(SLSN). The blue line shows a model of a SLSN-R powered by the radioactive decay of
56Co. The Figure is taken from Figure 1 of Gal-Yam (2012b).
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1.2.3.2 SLSN-I

SLSN-I are some of the brightest optical transients, but differ from SLSN-II because they
lack hydrogen in their spectra. Their central engine are thought to be magnetars which are
young and highly magnetised neutron stars. Their emission is powered by the decay of
enormous internal magnetic fields. They tend to be around 50 times brighter than SNe Ia and
their host galaxies are typically metal-poor dwarf galaxies (Gal-Yam, 2012b). Their observed
population consists of just 29 sources, but are expected to represent 10% of the entire young
neutron star population (Kaspi & Beloborodov, 2017).

1.2.3.3 Pair-Instability Supernovae

While massive stars generally explode as Type II or Ibc supernovae, the core-collapse of
even more massive stars between 130 and 250 solar masses are known as pair-instability
supernovae (PISN). PISNe are thought to be runaway thermonuclear explosions of massive
stars with oxygen cores initiated when the internal energy in the core is sufficiently high
to initiate pair production. This pair-production from γ-rays in turn leads to a dramatic
drop in pressure support, and partial collapse. The rapid contraction leads to accelerated
oxygen ignition, followed by explosion. These explosive transients naturally yield several
solar masses of Ni-56. While PISNe have never been confirmed (though evidence has been
reported in Gal-Yam et al. 2009, Cooke et al. 2012, and Kozyreva et al. 2018), they are
thought to be a candidate for the SLSN-R subgroup of super-luminous supernovae (Gal-Yam,
2012a; Ren et al., 2012). Other broad and slowly evolving superluminous supernovae that do
not require Ni-56 powering have been proposed (e.g. Nicholl et al., 2013, 2017a).

1.2.4 Intermediate Luminosity Optical Transients

In the energy gap between novae and supernovae, exists a rare transient explosion known as
Intermediate Luminosity Optical Transients (ILOT) (e.g. NGC 300 OT2008-1, Berger et al.
2009). The physical mechanism of these objects is not well understood, but they have been
modelled as either the eruption of red giants or interacting binary systems (see Pastorello &
Fraser 2019 for a useful review and Kashi & Soker 2017 and references therein for examples
of ILOTs).
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1.2.5 Calcium-Rich Gap Transients

Calcium-rich gap transients (CART) (e.g. PTF11kmb, Lunnan et al. 2017) are a recently
discovered transient class that have strong forbidden and permitted calcium lines in their
spectra. The physical mechanism of these events is not well understood, but they are known
to evolve much faster than average SNe Ia with rise times less than 15 days compared with
18 days for SNe Ia (see Figure 1.4). They have velocities of approximately 6000 to 10000
km s−1, and have absolute magnitudes in the range -15.5 to -16.5 (a factor of 10 to 30 times
fainter than SNe Ia) (Kasliwal et al., 2012; Sell et al., 2015). Their brightnesses lie in the
“gap” between classical novae and supernovae and the advent of new high-cadence wide-field
surveys has populated this region of parameter space. The morphology of their light curves is
similar to SNe Ia-91bg or fast evolving SNe Ibc (Taubenberger, 2017). The first recognised
CART was SN 2005E (Perets et al., 2010).

1.2.6 Kilonovae

Kilonovae are the mergers of either double neutron star (NS-NS) or black hole neutron star
(BH-NS) binaries. Only one kilonova has been confirmed so far, where it was observed as the
electromagnetic counterpart of the famous GW170817 gravitational wave event (Abbott et al.,
2017c). The neutron-rich ejecta from the binary merger undergoes rapid neutron capture
(r-process) nucleosynthesis to produce the Universe’s rare heavy elements. The radioactive
decay of these unstable nuclei power a rapidly evolving transient event (Metzger, 2017; Yu
et al., 2018).

1.2.7 Active Galactic Nuclei

Active Galactic Nuclei (AGN) are the very bright nuclei of galaxies powered by centrally
located supermassive black holes. Many AGN have rapidly varying light outputs changing
on the scale of hours to weeks, suggesting that the emitting source must be on the order of
light hours to light weeks in size (Padovani, 2017).
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1.2.8 Tidal Disruption Events

Tidal Disruption Events (TDE) (e.g. ASASSN-15lh, Leloudas et al. 2016) occur when a star
in the orbit of a massive black hole is pulled apart by the black hole’s tidal forces. Some
debris from the event is ejected at high speeds, while the remainder is swallowed by the black
hole, resulting in a bright flare lasting up to a few years (Rees, 1988).

1.2.9 Fast Blue Optical Transients

Observations in the past decade have revealed the existence of a growing number of luminous,
rare, and rapidly evolving extragalactic transients (e.g. Arcavi et al., 2016; Drout et al., 2014;
Rest et al., 2018). These events have optical light curves that rise and decay on a timescale
of only a few days and have recently been labelled as a new class of transient called Fast
Blue Optical Transients (FBOTs) (e.g. Fang et al., 2019). The most famous of these events is
AT2018cow, a transient that was detected very early (Smartt et al., 2018), and was followed
up extensively by several telescopes (e.g. Ho et al., 2019; Kuin et al., 2019; Margutti et al.,
2019; Perley et al., 2019; Prentice et al., 2018). AT2018cow is the brightest FBOT that has
been observed, and has a peak luminosity of ∼ 4× 1044 erg s−1, which exceeds the peak
brightness of typical supernovae. The central engine causing FBOTs is unknown. However,
recent modelling by Lyutikov & Toonen (2019) suggests that these events are fuelled by the
merger of an ONeMg white dwarf star with another white dwarf resulting in electron-capture
collapse to a neutron star. These events would be similar to one of the possible progenitors
of SNe Ia, except in this case, the white dwarf merger fails to detonate and instead collapses
via electron capture, leading to a much shorter time-scale transient.

1.2.10 Variables

Stellar variables are defined by their periodic light curves. RR Lyrae and Cepheids are two
common periodic variable stars which gained particular attention after a relation was found
between their period and luminosity (Leavitt, 1908; Leavitt & Pickering, 1912). This relation
has allowed them to act as some of best distance indicators for low-z cosmology and as the
anchors for the higher-z distance ladder. The period of Cepheids vary from a few days to a
few months while RR Lyraes have much shorter periods - on the scale of a few hours.
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Mira variables are another class of pulsating stars which are cool red giant stars in the
asymptotic giant branch in the H-R diagram (Neilson et al., 2016). They are characterised by
their periods in excess of 100 days.

Eclipsing binaries occur when one star eclipses another in a binary system. As it is
estimated that approximately half of all stars are in binary systems, it is not uncommon to
observe one of these stars eclipsing their binary partner in our line of sight. Their periods
and light curve shape can vary significantly depending on the binary orbit, the angle of
observation, and their stellar types. Examples of these events in the Kepler fields can be
found in Maxted & Hutcheon (2018).

1.2.11 M Dwarf Flares

M dwarf stars have very energetic flares with luminosities around 1034 erg. Their flares are
observed on a timescale of minutes to a few hours. They are caused by magnetic reconnection
within the M dwarf and have strong observational signatures in large time domain surveys
due to their frequency and luminosity (Hilton et al., 2010).

1.3 Transient classification

Typically, the classification of transients is based on their brightness and their optical spectrum
taken near maximum light. In work not shown in this thesis, I have developed a spectral
classification tool, called DASH3 (published in Muthukrishna et al. (2019b)) that classifies
supernovae into 17 different types. However, identifying supernovae based only on their
photometry is a much more challenging task. As a transient evolves, its chemical composition
changes, causing the observed spectrum to vary significantly with light curve phase (see
Figure 1.6). A passband filter effectively produces a single flux measurement by integrating
over the light that would be available in some wavelength range of a spectrum. Using multiple
passband filters helps to retrieve more of this information, but it is not as informative as
a spectrum would be. We describe briefly how light curves are obtained in the following
subsection.

3https://astrodash.readthedocs.io/

https://astrodash.readthedocs.io/
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Fig. 1.6 An example light curve of a Type Ia supernovae with a corresponding spectrum
in the B-Band. The light curve is shown at right, and the spectrum is shown at 16 days
after maximum luminosity (left), where a B-Band filter is shown in blue. Figure taken from
https://people.lam.fr/blondin.stephane/graphics/lcfig_anim.gif (Blondin & Tonry, 2007).

1.3.1 Light curves and detecting transients

Difference imaging is the primary method used for detecting transient events. It entails
subtracting a new image from a real-time or archival image to detect a change in observed
flux, and has been shown to be effective, even in fields that are crowded or associated with
highly non-uniform unresolved surface brightnesses (Bond et al., 2001a; Tomaney & Crotts,
1996). Most transient surveys use this method, and “trigger” a transient event when there is a
detection in a difference image that exceeds some S/N threshold. We show an example of the
detection method in Figure 1.7. The total flux in a particular ellipse of the subtracted image
is integrated to obtain a flux measurement.

A light curve consists of a series of flux measurements as a function of time in a particular
passband. Time-domain surveys typically observe transients in a few different passbands.
The change in luminosity in each filter over time - illustrated as light curves - is used
to distinguish between different objects, and for understanding the nature of each object.
Transients are defined by light curves whose duration is temporary (e.g. stellar explosions
or collisions), while variables are defined by light curves which regularly oscillate in their
brightness (e.g. RR Lyraes and Cepheids).

https://people.lam.fr/blondin.stephane/graphics/lcfig_anim.gif
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Fig. 1.7 An example of how transients are detected. Images separated by a range of times
are subtracted from one another (NEW - REF = SUB). A reference image (REF) is selected
before the transient phase of the event (ideally containing only the background and host
galaxy), at some later time a new image (NEW) is observed, and the difference between
these ideally leaves just the transient object. The shown example is taken from Figure 4 of
Goobar & Leibundgut (2011)

1.4 Time-domain surveys

This thesis is largely motivated by the development of wide-field survey telescopes that will
increase the transient catalogue by orders of magnitude. The Legacy Survey of Space and
Time (LSST) is the most revolutionary of the upcoming surveys and is the primary motivation
for this thesis. However, ongoing surveys such as the Zwicky Transient Facility (ZTF), the
Panoramic Survey Telescope and Rapid Response System Telescope (Pan-STARRS, Cham-
bers et al., 2016), Catalina Real-Time Transient Survey, (CRTS, Djorgovski et al., 2011)), the
Planet Search Survey Telescope, (Dunham et al., 2004), and the Asteroid Terrestrial-impact
Last Alert System (ATLAS Tonry et al., 2018) are already observing several hundreds to thou-
sands of transient objects each day. In this thesis, we use data from ZTF and Pan-STARRS
because LSST has not begun operations yet. We show our methods’ success on these surveys
to demonstrate that they may eventually be effectively applied to LSST.

1.4.1 LSST

The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will likely
revolutionise our understanding of the transient universe. It is aiming to probe deeper, wider,
and faster than any survey before it, and expects to yield up to 250,000 SNe Ia observations
per year. This is at least a two order of magnitude increase from any previous survey. It will
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obtain larger samples of known transients, enabling detailed statistical studies of transient
populations, and enable follow-up of specific transients. The sheer number of transients that
it will observe means that it will also likely observe entirely new rarer classes of transients.

The Vera Rubin Observatory will have an effective aperture of 6.7 metres with a 9.6
deg2 field of view (LSST Science Collaboration et al., 2009). The LSST will regularly scan
20,000 square degrees of the southern sky in 6 broad passband filters (ugrizY ) from 0.35
to 1.1 microns. The transmission through these filters is illustrated in Figure 1.8. Each
exposure reaches a depth of ∼ 24 mag and it is expected to obtain 10 million transient alerts
each night. Over the course of the 10-year survey, each pointing will be observed 2,000
times, following a cadence pattern tentatively defined by the minion_10164 OpSims cadence
model (LSST Science Collaboration et al., 2009), to reach an integrated point-source depth of
r~27.5 magnitudes. However, several alternate observing strategies that improve the survey
characteristics for time-domain astrophysics are under active consideration (e.g. AltSched
Rothchild 2018). In addition to the primary Wide-Fast-Deep survey, LSST will conduct
several mini-surveys. The Deep Drilling Fields (DDF) survey, will aim to provide a higher
cadence with a longer exposure in a smaller patch of the sky.
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Fig. 1.8 Throughput of LSST filters as a function of wavelength. The atmospheric absorption
lines are shown in grey and each passband is shown in different shaded regions.

4https://www.lsst.org/scientists/simulations/opsim/opsim-survey-data

https://www.lsst.org/scientists/simulations/opsim/opsim-survey-data
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1.4.2 ZTF

The Zwicky Transient Facility (ZTF, Bellm et al., 2019) is laying the groundwork for the
future LSST. It is a wide-field synoptic survey that has been running since 2017. The public
Mid Scale Innovations Program (MSIP) scans the sky every three nights in the g and r

passbands with the 47 deg2 imager mounted on the Palomar 48-inch telescope. It has a
detection limit of r = 20.5 mag and issues around 105 transient alerts per night (about two
orders of magnitude less than that expected from LSST). ZTF has probed the previously
unexplored parameter space of shorter timescale transients and has discovered many new
fast transients, CARTs, and TDEs. The large field of view also means that the ZTF has
been essential in multi-messenger astronomy, whereby it has followed up the many potential
optical counterparts to gravitational wave events.

1.4.3 Pan-STARRS

The Panoramic Survey Telescope and Rapid Response System Telescope (Pan-STARRS,
Chambers et al. 2016) has recently released the first Petabyte-sized data release. It has
observed several new transients as it uses its 1.4 gigapixel camera with a 7.1 deg2 field of
view to survey the northern sky. The Pan-STARRS1 Medium Deep Survey (PS1-MDS)
covers a total sky-area of approximately 70 deg2 in four passband filters griz. It observes
each passband with a limiting magnitude of ∼ 23.3 per visit with a cadence of approximately
three days.

Recently, the Young Supernova Experiment (YSE, Jones et al., 2021b) is running on the
Pan-STARRS telescopes and will survey 1500 deg2 of the sky every three days. It aims to
detect and follow-up transients at early times. YSE can discover transients as faint as ∼ 21.1
mag in the gri and ∼ 20.5 mag in the z passbands. The survey expects to find ∼ 5000 new
SNe per year and at least two SNe within 3 days of explosion per month. For YSE’s success,
it is imperative that they can perform fast and early classification. A motivation of this thesis
is to identify YSE transients in real-time.
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1.4.4 TiDES

The Time-Domain Extra Galactic Survey5 (TiDES) is establishing a dedicated spectroscopic
follow-up survey using 4MOST (de Jong et al., 2012) that will target live transients discovered
photometrically by LSST. As LSST plans to probe wider and deeper than any survey before
it, it is likely that it will discover new and rare transient events, and the opportunity to identify
and follow-up these transients very early on should lead to exciting new transient physics.
Another motivation of our work is to automatically supply TiDES and other spectroscopic
surveys with follow-up candidates.

1.5 Transient Alert Brokers

The prospect of LSST with its huge data volumes has meant that dedicated transient alert

brokers have been set up to ingest, process, and distribute the data from LSST to the
astronomical community. Real-time transient alert brokers provide data management systems
that continuously associate the detections from individual images into full light curves,
characterise and classify them, as well as provide a filtering service to the astronomical
community. Three of the leading brokers bidding for the LSST brokerage status are the
USA-based ANTARES (Arizona-NOAO Temporal Analysis and Response to Events System)
(Saha et al., 2016), the UK-based Lasair (Smith et al., 2019), and the Chile-based ALerCE
(Automatic Learning for the Rapid Classification of Events, Förster et al., 2020). To prepare
for LSST, they are each currently processing alerts from ongoing surveys such as ZTF and
Pan-STARRS. The primary goal of these brokers is to streamline the classification and
follow-up paradigm of transients. This pipeline flows from the detection of transients in the
sky, to classification, and then to distributing follow-up alerts to the astronomical community,
so that scientifically interesting objects can be followed up spectroscopically and in different
wavelength bands.

These transient brokers require real-time classifiers capable of quickly identifying po-
tentially interesting transients for follow-up. A key motivation of this thesis is to develop
classifiers and anomaly detection frameworks for use by these brokers.

5https://www.4most.eu/cms/surveys/extragalactic/

https://www.4most.eu/cms/surveys/extragalactic/
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1.6 PLAsTiCC

One of the key issues with developing classifiers for upcoming transient surveys is that we do
not have a training set that is representative of each survey’s data stream, cadence and noise
properties. To meet this challenge for LSST, the PLAsTiCC (Photometric LSST Astronomical
Time-series Classification Challenge) collaboration has set up a community-wide challenge
to develop algorithms to classify astronomical transients. Its focus lies in preparing some of
the required software infrastructure for the upcoming LSST transient survey. In doing so, it
has developed model light curves simulating the expected transient catalogue that will be
observed by LSST. With the use of supernova analysis tools such as SNANA (Kessler et al.,
2009), transient templates, and model light curves from leading transient experts, a range of
transient models have been developed and included in the PLAsTiCC dataset (PLASTICC
Team & PLASTICC Modelers, 2019). This modelling procedure is illustrated in Figure
1.9 and detailed in Kessler et al. (2019). The simulated transients were provided to the
community as part of the classification challenge on Kaggle6. The results of the challenge
are described in Hložek et al. (2020).

Fig. 1.9 The modelling procedure of the PLAsTiCC simulations. Figure taken from Figure
13 of Kessler et al. (2019).

6https://www.kaggle.com/c/PLAsTiCC-2018

https://www.kaggle.com/c/PLAsTiCC-2018
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Throughout this thesis, I worked closely with the PLAsTiCC team to help validate the
simulations before they were released in the Kaggle challenge. I then used the simulation
software to create ZTF-like simulations that we have used extensively throughout this thesis.

1.7 Overview

The large influx of transients from upcoming surveys means that it is no longer feasible
to visually examine each object for follow-up purposes. The expected data deluge brings
new challenges. In this thesis, I detail novel methods of dealing with two important issues
brought about by these new large-scale surveys. The first challenge, is how can we categorise
the influx of transient objects into classes of interest, and importantly, how do we do this
early so that we can follow-up specific objects in real-time? The second challenge is the
question of serendipity. With such high volumes of data, are we still going to be able to make
serendipitous discoveries? Serendipity has often led to major new breakthroughs in transient
astrophysics. For example, the incidental discovery of pulsars by Jocelyn Bell, or the Fast
Radio Bursts (FRBs) discovered by Duncan Lorimer were both serendipitous discoveries that
may have been buried away if the data volumes were too large to deal with. Thus, the second
challenge we deal with in this thesis is whether we can automate serendipity by automatically
flagging anomalous transients.

In Chapter 2 of this thesis, I detail my development of a real-time classifier of transients,
called RAPID, and apply it to ZTF-like simulations. In Chapter 3, I develop two new
frameworks for real-time anomaly detection of transients and apply it to both ZTF-like
simulations and real data from the ZTF MSIP. Since supervised classification is not capable
of finding new classes of objects, anomaly detection is required to help identify novelties in
the dataset. In Chapter 4, I improve RAPID to be more applicable to real datasets. I train
classifiers to perform well on Pan-STARRS and ZTF light curves. Finally in Chapter 5, I
discuss conclusions and look forward to future directions of my work.



Chapter 2

RAPID: Early classification of explosive
transients using deep learning

This chapter is adapted from the paper published in Muthukrishna et al. (2019a). The
coauthors of that paper have only contributed indirectly through helping to secure the data
and by providing useful feedback on the analysis, results, and writing of the manuscript.

2.1 Summary

In this chapter, I present RAPID (Real-time Automated Photometric IDentification), a novel
time-series classification tool capable of automatically identifying transients from within
a day of the initial alert, to the full lifetime of a light curve. Using a deep recurrent
neural network with Gated Recurrent Units (GRUs), we present the first method specifically
designed to provide early classifications of astronomical time-series data, typing 12 different
transient classes. Our classifier can process light curves with any phase coverage, and it
does not rely on deriving computationally expensive features from the data, making RAPID

well-suited for processing the millions of alerts that ongoing and upcoming wide-field surveys
such as the Zwicky Transient Facility (ZTF), and the Legacy Survey of Space and Time
(LSST) will produce. The classification accuracy improves over the lifetime of the transient
as more photometric data becomes available, and across the 12 transient classes, we obtain
an average area under the receiver operating characteristic curve of 0.95 and 0.98 at early
and late epochs, respectively. We demonstrate RAPID’s ability to effectively provide early
classifications of observed transients from the ZTF data stream. We have made RAPID
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available as an open-source software package1 for machine learning-based alert-brokers to
use for the autonomous and quick classification of several thousand light curves within a few
seconds.

2.2 Introduction

Observations of the transient universe have led to some of the most significant discoveries
in astronomy and cosmology. From the use of Cepheids and type Ia supernovae (SNe Ia)
as standardisable candles for estimating cosmological distances, to the recent detection of a
kilonova event as the electromagnetic counterpart of GW170817, the transient sky continues
to provide exciting new astronomical discoveries.

In the past, transient science has had significant successes using visual classification
by experienced astronomers to rank interesting new events and prioritize spectroscopic
follow-up. Nevertheless, the visual classification process inevitably introduces latency into
follow-up studies, and spectra for many objects are obtained several days to weeks after the
initial detection. Existing and upcoming wide-field surveys and facilities will produce several
million transient alerts per night, e.g. the Legacy Survey of Space and Time (LSST, Ivezić
et al., 2019), the Dark Energy Survey (DES, Dark Energy Survey Collaboration et al., 2016),
the Zwicky Transient Facility (ZTF, Bellm, 2014), the Catalina Real-Time Transient Survey
(CRTS, Djorgovski et al., 2011), the Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS, Chambers et al., 2016), the Asteroid Terrestrial-impact Last Alert
System (ATLAS, Tonry et al., 2018), and the Planet Search Survey Telescope (PSST,
Dunham et al., 2004). This unprecedented number means that it will be possible to obtain
early-time observations of a large sample of transients, which in turn will enable detailed
studies of their progenitor systems and a deeper understanding of their explosion physics.
However, with this deluge of data comes new challenges, and individual visual classification
for spectroscopic follow-up is utterly unfeasible.

Developing methods to automate the classification of photometric data is of particular
importance to the transient community. In the case of SNe Ia, cosmological analyses
to measure the equation of state of the dark energy w and its evolution requires large
samples with low contamination. The need for a high purity sample necessitates expensive
spectroscopic observations to determine the type of each candidate, as classifying SNe Ia

1https://astrorapid.readthedocs.io

https://astrorapid.readthedocs.io
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based on sparse light curves2 runs the risk of contamination with other transients, particularly
type Ibc supernovae. Even with human inspection, the differing cadence, observer frame
passbands, photometric properties, and contextual information of each transient light curve
constitute a complex mixture of sparse information, which can confound our visual sense,
leading to potentially inconsistent classifications. This failing of visual classification, coupled
with the large volumes of data, necessitates a streamlined automated classification process.
This is our motivation for the development of our deep neural network (DNN) for Real-time
Automated Photometric IDentification (RAPID), the focus of this work.

2.2.1 Previous Work on Automated Photometric Classification

In 2010, the Supernova Photometric Classification Challenge (SNPhotCC, Kessler et al.,
2010a,b), in preparation for the Dark Energy Survey (DES), spurred the development of
several innovative classification techniques. The goal of the challenge was to determine
which techniques could distinguish SNe Ia from several other classes of supernovae using
light curves simulated with the properties of the DES. The techniques used for classification
varied widely, from fitting light curves with a variety of templates (Sako et al., 2008), to
much more complex methodologies that use semi-supervised learning approaches (Richards
et al., 2012) or parametric fitting of light curves (Karpenka et al., 2013). A measure of the
value of the SNPhotCC is that the dataset is still used as the reference standard to benchmark
contemporary supernova light curve classification schemes, such as Bloom et al. (2012);
Charnock & Moss (2017); Ishida & de Souza (2013); Lochner et al. (2016); Narayan et al.
(2018); Pasquet et al. (2019); Revsbech et al. (2018); Richards et al. (2012).

Nearly all approaches to automated classification developed using the SNPhotCC dataset
have either used empirical template-fitting methods (Sako et al., 2008, 2011) or have extracted
features from supernova light curves as inputs to machine learning classification algorithms
(Karpenka et al., 2013; Lochner et al., 2016; Möller et al., 2016; Narayan et al., 2018; Newling
et al., 2011; Sooknunan et al., 2018). Lochner et al. (2016) used a feature-based approach,
computing features using either parametric fits to the light curve, template fitting with SALT2
(Guy et al., 2007), or model-independent wavelet decomposition of the data. These features
were independently fed into a range of machine learning architectures including Naive Bayes,
k-nearest neighbours, multilayer perceptrons, support vector machines, and boosted decision

2We define light curves as photometric time-series measurements of a transient in multiple passbands. Full
light curves refer to time series of objects observed over nearly their full transient phase. We refer to early light
curves as time series observed up to 2 days after a trigger alert, defined in §2.3.2.
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trees (see Lochner et al. 2016 for a brief description of these) and were used to classify just
three broad supernova types. The work concluded that the non-parametric feature extraction
approaches were most effective for all classifiers, and that boosted decision trees performed
most effectively. Surprisingly, they further showed that the classifiers did not improve with
the addition of redshift information. These previous approaches share two characteristics:

1. they are largely tuned to discriminate between different classes of supernovae, and

2. they require the full phase coverage of each light curve for classification.

Both characteristics arise from the SNPhotCC dataset. As it was developed to test photometric
classification for an experiment using SNe Ia as cosmological probes, the training set
represented only a few types of non-SNe Ia that were likely contaminants, whereas the
transient sky is a menagerie. Additionally, SNPhotCC presented astronomers with full light
curves, rather than the streaming data that is generated by real-time transient searches, such
as ZTF. While previous methods can be extended with a larger, more diverse training set,
the second characteristic they share is a more severe limitation. Requiring complete phase
coverage of each light curve for classification (e.g. Lochner et al. 2016) is a fundamental
design choice when developing the architecture for automated photometric classification,
and methods cannot trivially be re-engineered to work with sparse data.

2.2.2 Early Classification

While retrospective classification after the full light curve of an event has been observed
is useful, it also limits the scientific questions that can be answered about these events,
many of which exhibit interesting physics at early-times. Detailed observations, including
high-cadence photometry, time-resolved spectroscopy, and spectropolarimetry, shortly after
the explosion provides insights into the progenitor systems that power the event and hence
improves our understanding of the objects’ physical mechanism. Therefore, ensuring a short
latency between a transient detection and its follow-up is an important scientific challenge.
Thus, a key goal of our work on RAPID has been to develop a classifier capable of identifying
transient types within 2 days of detection. We refer to photometric typing with observations
obtained in this narrow time-range as early classification.

The discovery of the electromagnetic counterpart (Abbott et al., 2017c; Arcavi et al., 2017;
Coulter et al., 2017; Soares-Santos et al., 2017a) from the binary neutron star merger event,
GW170817, has thrown the need for automated photometric classifiers capable of identifying
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exotic events from sparse data into sharp relief. As we enter the era of multi-messenger
astrophysics, it will become evermore important to decrease the latency between the detection
and follow-up of transients. While the massive effort to optically follow up GW170817
was heroic, it involved a disarray of resource coordination. With the large volumes of
interesting and unique data expected by surveys such as LSST (∼ 107 alerts per night), the
need to streamline follow-up processes is crucial. The automated early classification scheme
developed in this work alongside the new transient brokers3 such as ALeRCE4 (Förster et al.,
2020), LASAIR5 (Smith et al., 2019), ANTARES6 (Saha et al., 2016) are necessary to ensure
organized and streamlined follow-up of the high density of exciting transients in upcoming
surveys.

There have been a few notable efforts at early-time photometric classification, particularly
using additional contextual data. Sullivan et al. (2006) successfully discriminated between
SNe Ia and core-collapse SNe in the Supernova Legacy Survey using a template fitting
technique on only two to three epochs of multiband photometry. Poznanski et al. (2007)
similarly attempted to distinguish between SNe Ia and core-collapse SNe using only single-
epoch photometry along with a photometric redshift estimate from the probable host-galaxy.
A few contemporary techniques such as Foley & Mandel (2013) and the sherlock package7

use only host galaxy and contextual information with limited accuracy to predict transient
classes (e.g. the metallicity of the host galaxy is correlated with supernova type).

The most widely used scheme for classification is pSNid (Sako et al., 2008, 2011).
It has been used by the Sloan Digital Sky Survey and DES (D’Andrea et al., 2018) to
classify pre-maximum and full light curves into 3 supernova types (SNIa, SNII, SNIbc).
For each class, it has a library of template light curves generated over a grid of parameters
(redshift, dust extinction, time of maximum, and light curve shape). To classify a transient,
it performs an exhaustive search over the templates of all classes. It identifies the class
of the template that best matches (with minimum χ2) the data and computes the Bayesian
evidence by marginalizing the likelihood over the parameter space. The latest version
employs computationally-expensive nested sampling to compute the evidence. Therefore, the
main computational burden (which increases with the number of templates used) is incurred

3Transient brokers are automated software systems that manage the real-time alert streams from transient
surveys such as ZTF and LSST. They sift through, characterize, annotate and prioritise events for follow-up.

4http://alerce.science
5https://lasair.roe.ac.uk
6https://antares.noao.edu/
7https://github.com/thespacedoctor/sherlock

http://alerce.science
https://lasair.roe.ac.uk
https://antares.noao.edu/
https://github.com/thespacedoctor/sherlock
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every time it used to predict the class of each new transient. As new data arrives, this cost is
multiplied as the procedure must be repeated each time the classifications are updated.

In contrast, RAPID covers a much broader variety of transient classes and learns a function
that directly maps the observed photometric time series onto these transient class probabilities.
The main computational cost is incurred only once, during the training of the DNN, while
predictions obtained by running new photometric time series through the trained network are
very fast. Because of this advantage, updating the class probabilities as new data arrives is
trivial. Furthermore, we specifically designed our RNN architecture for temporal processes.
In principle, it is able to save the information from previous nights so that the additional cost
to update the classifications as new data are observed is only incremental. These aspects
make RAPID particularly well-suited to the large volume of transients that new surveys such
as LSST will observe.

2.2.3 Deep Learning in Time-Domain Astronomy

Improving on previous feature-based classification schemes, and developing methods that
exhibit good performance even with sparse data, requires new machine learning architectures.
Advanced neural network architectures are non-feature-based approaches that have recently
been shown to have several benefits such as low computational cost, and being robust
against some of the biases that can afflict machine learning techniques that require “expert-
designed” features (Aguirre et al., 2018; Charnock & Moss, 2017; Moss, 2018; Naul et al.,
2018). The use of Artificial Neural Networks (ANN, McCulloch & Pitts, 1943) and deep
learning, in particular, has seen dramatic success in image classification, speech recognition,
and computer vision, outperforming previous approaches in many benchmark challenges
(Krizhevsky et al., 2012; Razavian et al., 2014; Szegedy et al., 2015).

In time-domain astronomy, deep learning has recently been used in a variety of classifica-
tion problems including variable stars (Hinners et al., 2018; Naul et al., 2018), supernova
spectra (Muthukrishna et al., 2019b), photometric supernovae (Charnock & Moss, 2017;
Möller & de Boissière, 2020; Moss, 2018; Pasquet et al., 2019), and sequences of transient
images (Carrasco-Davis et al., 2018). A particular class of ANNs known as Recurrent Neural
Networks (RNNs) are particularly suited to learning sequential information (e.g. time-series
data, speech recognition, and natural language problems). While ANNs are often feed-
forward (e.g. convolutional neural networks and multilayer perceptrons), where information
passes through the layers once, RNNs allow for cycling of information through the layers.
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They are able to encode an internal representation of previous epochs in time-series data,
which along with real-time data, can be used for classification.

A variant of RNNs known as Long Short Term Memory Networks (LSTMs, Hochreiter
& Schmidhuber, 1997) improve upon standard RNNs by being able to store long-term infor-
mation, and have achieved state-of-the-art performance in several time-series applications.
In particular, they revolutionized speech recognition, outperforming traditional models (Fer-
nández et al., 2007; Hannun et al., 2014; Li & Wu, 2015) and have very recently been used
in the trigger word detection algorithms popularized by Apple’s Siri, Microsoft’s Cortana,
Google’s voice assistant, and Amazon’s Echo. Naul et al. (2018) and Hinners et al. (2018)
have had excellent success in variable star classification. Charnock & Moss (2017) applied
the technique to supernova classification. They used supernova data from the SNPhotCC and
fed the multiband photometric full lightcurves into their LSTM architecture to achieve high
SNIa vs non-SNIa binary classification accuracies. Moss (2018) recently followed this up
on the same data with a novel approach applying a new phased-LSTM (Neil et al., 2016)
architecture. These approaches have the advantage over previous supernova photometric
classifiers of not requiring computationally-expensive and user-defined (and hence, possibly
biased) feature engineering processes.

While the manuscript that this chapter is based on was under review, Möller & de
Boissière (2020) released a similar algorithm for photometric classification of a range of
supernova types. It uses a recurrent neural network architecture based on BRNNs (Bayesian
Recurrent Neural Networks) and does not require any feature extraction. At a similar time,
Pasquet et al. (2019) released a package for full light curve photometric classification based
on Convolutional Neural Networks, again able to use photometric light curves without
requiring feature engineering processes. These approaches made use of datasets adapted
from the SNPhotCC, using light-curves based on the observing properties of the Dark Energy
Survey and with a smaller variety of transient classes than the PLAsTiCC-based training
set used in our work. Pasquet et al. (2019) use a framework that is very effective for full
light curve classification, but is not well suited to early or partial light curve classification.
Möller & de Boissière (2020), on the other hand, is one of the first approaches able to classify
partial supernova light curves using a single bi-directional RNN layer, and achieve accuracies
of up to 96.92±0.26% for a binary SNIa vs non-SNIa classifier. While their approach is
similar, the type of RNN, neural network architecture, dataset, and focus on supernovae
differs from the work presented in this chapter. RAPID is focused on early and real-time
light curve classification of a wide range of transient classes to identify interesting objects
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early, rather than on full light curve classification for creating pure photometric samples for
SNIa cosmology. We are currently applying our work to the real-time alert stream from
the ongoing ZTF survey through the ANTARES broker, and plan to develop the technique
further for use on the LSST alert stream.

2.2.4 Overview

In this chapter, we build upon the approach used in Charnock & Moss (2017). We develop
RAPID using a deep neural network (DNN) architecture that employs a very recently improved
RNN variation known as Gated Recurrent Units (GRUs, Cho et al., 2014). This novel
architecture allows us to provide real-time, rather than only full light curve, classifications.

Previous RNN approaches (including Charnock & Moss (2017); Hinners et al. (2018);
Möller & de Boissière (2020); Moss (2018); Naul et al. (2018)) all make use of bi-directional
RNNs that can access input data from both past and future frames relative to the time at
which the classification is desired. While this is effective for full light curve classification,
it does not suit the real-time, time-varying classification that we focus on in this work. In
real-time classification, we can only access input data previous to the classification time.
Therefore, to respect causality, we make use of uni-directional RNNs that only take inputs
from time-steps previous to at any given classification time. RAPID also enables multi-
class and multi-passband classifications of transients as well as a new and independent
measure of transient explosion dates. We further make use of a new light curve simulation
software developed by the recent Photometric LSST Astronomical Time-series Classification
Challenge (PLAsTiCC, The PLAsTiCC team et al., 2018).

In Section 2.3 we discuss how we use the PLAsTiCC models with the SNANA software
suite (Kessler et al., 2009) to simulate photometric light curves based on the observing
characteristics of the ZTF survey, and describe the resulting dataset along with our cuts,
processing, and modelling methods. In Section 2.4, we frame the problem we aim to solve
and detail the deep learning architecture used for RAPID. In Section 2.5, we evaluate our
classifier’s performance with a range of metrics, and in Section 2.6 we apply the classifier to
observed data from the live ZTF data stream. An illustration of the different sections of this
chapter and their connections is shown in Fig. 2.1. Finally, in Section 2.7, we compare RAPID
to a feature-based classification technique we implemented using an advanced Random
Forest classifier improved from Narayan et al. (2018) and based on Lochner et al. (2016).
We present conclusions in section 2.8.
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2.3 Data

2.3.1 Simulations

One of the key challenges with developing classifiers for upcoming transient surveys is the
lack of labelled samples that are appropriate for training. Moreover, even once a survey
commences, it can take a significant amount of time to accumulate a well-labelled sample
that is large enough to develop robust learning algorithms. To meet this difficulty for LSST,
the PLAsTiCC collaboration has developed the infrastructure to simulate light curves of
astrophysical sources with realistic sampling and noise properties. This effort was one
component of an open-access challenge to develop algorithms that classify astronomical
transients. By adapting supernova analysis tools such as SNANA (Kessler et al., 2009) to
process several models of astrophysical phenomena from leading experts, a range of new
transient behavior included in the PLAsTiCC dataset. The challenge has recently been
released to the public on Kaggle8 (The PLAsTiCC team et al., 2018) along with the metric
framework to evaluate submissions to the challenge (Malz et al., 2018). The PLAsTiCC
models are the most comprehensive enumeration of the transient and variable sky available
at present.

We use the PLAsTiCC transient class models and the simulation code developed in
Kessler et al. (2019) to create a simulated dataset that is representative of the cadence and
observing properties of the ongoing public “Mid Scale Innovations Program” (MSIP) survey
at the ZTF (Bellm, 2014). This allows us to compare the validity of the simulations with the
live ZTF data stream, and apply our classifier to it as illustrated in Section 2.6.

2.3.1.1 Zwicky Transient Facility

ZTF is the first of the new generation of optical synoptic survey telescopes and builds upon
the infrastructure of the Palomar Transient Factory (PTF, Rau et al., 2009). It employs a
47 square degree field-of-view camera to scan more than 3750 square degrees an hour to a
depth of 20.5 - 21 mag (Graham et al., 2019). It is a precursor to the LSST and will be the
first survey to produce one million alerts a night and to have a trillion row data archive. To
prepare for this unprecedented data volume, we build an automated classifier trained on a
large simulated ZTF-like dataset that contains a labelled sample of transients.

8https://www.kaggle.com

https://www.kaggle.com
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We obtained logs of ZTF observing conditions (E. Bellm, private communication) and
photometric properties (zeropoints, FWHM, sky brightness etc.), and a collaborator, Dr.
Rahul Biswas, converted these into a library suitable for use with SNANA. SNANA simulates
millions of light curves for each model, following a class-specific luminosity function
prescription within the ZTF footprint. The sampling and noise properties of each observation
on each light curve is set to reflect a random sequence from within the observing conditions
library. The simulated light curves thus mimic the ZTF observing properties with a median
cadence of 3 days in the g and r passbands. As ZTF had only been operating for four months
when we constructed the observing conditions library, it is likely that our simulations are
not fully representative of the survey. Nevertheless, this procedure is more realistic than
simulating the observing conditions entirely, as we would have been forced to do if we had
developed RAPID for LSST or WFIRST. We verified that the simulated light curves have
similar properties to observed transient sources detected by ZTF that have been announced
publicly. The dataset consists of a labelled set of 48029 simulated transients evenly distributed
across a range of different classes. An example of a simulated light curve from each class is
shown in Fig. 2.2.

The PLAsTiCC models are the largest collection of transient models assembled to date.
The specific models used in the simulations derived from Kessler et al. (2019) are SNIa-norm:
Guy et al. (2010); Kessler et al. (2013); Pierel et al. (2018), SNIbc: Guillochon et al. (2018a);
Kessler et al. (2010b); Pierel et al. (2018); Villar et al. (2017), SNII: Guillochon et al. (2018a);
Kessler et al. (2010b); Pierel et al. (2018); Villar et al. (2017), SNIa-91bg: (Galbany et al.
in prep.), SNIa-x: Jha (2017), pointIa: Shen et al. (2010), Kilonovae: Kasen et al. (2017),
SLSN: Guillochon et al. (2018a); Kasen & Bildsten (2010); Nicholl et al. (2017b), PISN:
Guillochon et al. (2018a); Kasen et al. (2011); Villar et al. (2017), ILOT: Guillochon et al.
(2018a); Villar et al. (2017), CART: Guillochon et al. (2018a); Kasliwal et al. (2012); Villar
et al. (2017), TDE: Guillochon et al. (2018a); Mockler et al. (2019); Rees (1988). In section
1.2, we describe these transient classes.

Each simulated transient dataset consists of a time series of flux and flux error mea-
surements in the g and r ZTF bands, along with sky position, Milky Way dust reddening,
a host-galaxy redshift, and a photometric redshift. The models used in PLAsTiCC were
extensively validated against real observations by several complementary techniques, as
described by Hložek et al. (2020). We split the total set of transients into two parts: 60% for
the training set and 40% for the testing set. The training set is used to train the classifier to
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Fig. 2.2 The light curves of one example transient from each of the 12 transient classes is
plotted with an offset. We have only plotted transients with a high signal-to-noise and with a
low simulated host redshift (z < 0.2) to facilitate comparison of light curve shape between
the classes. The dark-coloured square markers plots the r band light curves of each transient,
while the lighter-coloured circle markers are the g band light curves of each transient.
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identify the correct transient class, while the testing set is used to test the performance of the
classifier.

2.3.2 Trigger for Issuing Alerts

The primary method used for detecting transient events is to subtract real-time or archival
data from a new image to detect a change in observed flux. This is known as difference

imaging (see section 1.3.1, and has been shown to be effective, even in fields that are crowded
or associated with highly non-uniform unresolved surface brightness (Bond et al., 2001b;
Tomaney & Crotts, 1996). Most transient surveys, including ZTF, use this method, and
‘trigger’ a transient event when there is a detection in a difference image that exceeds a 5σ

signal-to-noise (S/N) threshold. Throughout this work, we use trigger to identify this time of
detection. We refer to early classification as classification made within 2 days of this trigger,
and full classification as classifications made after 40 days since trigger.

2.3.3 Selection Criteria

To create a good and clean training sample, we made a number of cuts before processing the
light curves. The selection criteria is described as follows.

z < 0.5 and z ̸= 0
Firstly, we cut objects with host-galaxy redshifts z = 0 or z > 0.5 such that all galactic
objects and any higher redshift objects were removed as these candidates are too faint
to be useful for the early-time progenitor studies that motivated the development of
this classifier in the first place. While our work relies on knowing the redshift of each
transient, in this low redshift range, we should be able to obtain a redshift from the
host galaxy from existing catalogs.

Sufficient data in the early light curve Next, we ensured that the selected light curves
each had at least three measurements before trigger, and at least two of these were in
different passbands. Even if these measurements were themselves insufficient to cause
a trigger, they help establish a baseline flux. This cut therefore removes objects that
triggered immediately after the beginning of the observing season, as these are likely
to be unacceptably windowed.
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b > 15◦ and b <−15◦

Any object in the galactic plane, with latitude −15◦ < b < 15◦, was also cut from the
dataset because our analysis only considers extragalactic transients.

Selected only transient objects
Finally, while the PLAsTiCC simulations included a range of variable objects, including
AGN, RR Lyrae, M-dwarf flares, and Eclipsing Binary events, we removed these from
the simulated dataset. The long-lived variable candidates are Galactic and will likely
be identified to a very high completeness. Similarly, the AGN will likely either be
easily be removed from known AGN catalogues or will be identified to a very high
completeness over the redshift range under consideration. Therefore, these classes are
unlikely to be misidentified as a class of astrophysical interest for early-time studies.

2.3.4 Preprocessing

Arguably, one of the most important aspects in an effective learning algorithm is the quality
of the training set. In this section we discuss efforts to ensure that the data is processed in a
uniform and systematic way before we train our DNN.

The light curves are measured in flux units, as is expected for the ZTF difference imaging
pipeline. The simulations have a significant fraction of the observations being 5-10 sigma
outliers. These outliers are intended to replicate the difference image analysis artifacts,
telescope CCD deficiencies, and cosmic rays seen in observational data. We perform
‘sigma clipping’ to reject these outliers. We do this by rejecting photometric points with
flux uncertainties that are more than 3σ from the mean uncertainty in each passband, and
iteratively repeat this clipping 5 times. Next, we correct the light curves for interstellar
extinction using the reddening function of Fitzpatrick (1999). We assume an extinction law,
RV = 3.1, and use the central wavelength of each ZTF filter to de-redden each light curve
listed as follows9:

g: 4767 Å, r: 6215 Å.

Following this, we account for cosmological time dilation using the host redshifts, z, and
convert the observer frame time since trigger to a rest-frame time interval,

t = (Tobs −Ttrigger)/(1+ z), (2.1)

9We use the extinction code: https://extinction.readthedocs.io

https://extinction.readthedocs.io
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where capital T refers to an observer frame time in MJD and lowercase t refers to a rest-frame
time interval relative to trigger. We define trigger as the epoch at which the ZTF difference
imaging detects a 5σ threshold change in flux.

We then calculate the luminosity distance, dL(z), to each transient using the known
host redshift and assuming a ΛCDM cosmology with ΩM = 0.3, ΩΛ = 0.7 and H0 = 70.
We correct the flux for this distance by multiplying each flux by d2

L and scaling by some
normalizing factor, norm = 1018, to keep the flux values in a good range for floating-point
machine precision. A measure for the distance-corrected flux, which is proportional to
luminosity, is

Ldata(t) = (F(t)−F(t)med) ·
d2

L(z)
norm

, (2.2)

where F(t) is the raw flux value and F(t)med is the median value of the raw flux points that
were observed before the trigger. This median value is representative of the background
flux. Even for objects observed by a single survey, with a common set of passbands on a
common photometric system, comparing the fluxes of different sources in the same rest-
frame wavelength range requires that the light curve photometry be transformed into a
common reference frame, accounting for the redshifting of the sources. However, this
k-correction (Hogg et al., 2002) requires knowledge of the underlying spectral energy
distribution (SED) of each source, and therefore its type — the goal of this work. Therefore,
we have not k-corrected these data into the rest-frame, and hence, Ldata cannot be considered
the true rest-frame luminosity in each passband.

2.3.4.1 Modeling the Early Light Curve

The ability to predict the class of an object as a function of time is one of the main advantages
of RAPID over previous work. Critical to achieving this is determining the epoch at which
transient behaviour begins (usually the date of explosion) so that we can teach our DNN
what a pre-explosion looks like. Basic geometry suggests that a single explosive event should
evolve in flux proportional to the square of time (Arnett, 1982). While future work might
try to fit a power law, we are limited by the sparse and noisy data in the early light curve.
Therefore, we model the pre-maximum part of each light curve in each passband, λ , with a
simple t2 fit as follows,

Lλ
mod(t; t0,a

λ ,cλ ) =
[
aλ (t − t0)2

]
·H(t − t0)+ cλ , (2.3)
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Fig. 2.3 An example preprocessed Type Ia Supernova light curve from the ZTF simulated
dataset (redshift= 0.174). The normalized fluxes of the r and g passbands are plotted with
errors and the solid line is the best fit model of the pre-maximum part of the light curve (up
to tpeak) using equations 2.3 and 2.4. The horizontal axis is plotted in the rest-frame (redshift
corrected), while the vertical axis is the relative de-reddened and distance-corrected flux (or
relative luminosity). The vertical black solid line is the date that difference imaging records
a trigger alert, and the vertical grey dashed line is the model’s prediction of the explosion
date with respect to trigger.
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where Lmod(t) is the modelled relative luminosity, t0 is the estimate for time of the initial
explosion or collision event, H(t − t0) is the Heaviside function, and a and c are constants
for the amplitude and intercept of the early light curve. The Heaviside function is used to
model the t2 relationship after the explosion, t0, and fit a constant flux, c, before t0. We define
the pre-maximum part of the light curve as observations occurring up to the simulated peak
luminosity of the light curve, tpeak. We emphasize that this early model is only required for
the training set, and therefore, we are able to use the simulated peak time, which will not be
available on observed data and is not used for the testing set.

We make the assumption that the light curves from each passband have the same explosion
date, t0, and fit the light curves from all passbands simultaneously. This is a 5 parameter
model: two free parameters, slope (aλ ) and intercept (cλ ), for each of the two passbands, and
a shared t0 parameter. We aim to optimize the model’s fit to the light curve by first defining
the chi-squared for each transient as:

χ
2(t0,a,c) = ∑

λ

tpeak

∑
t=−∞

[Lλ
data(t)−Lλ

mod(t; t0,a
λ ,cλ )]2

σλ (t)2 , (2.4)

where λ is the index over passbands, σ(t) are the photometric errors in Ldata, and the sum is
taken over all observations at the position of the transient until the time of the peak of the
light curve, tpeak.

We sampled the posterior probability ∝ exp(−1
2 χ2) using MCMC (Markov Chain Monte

Carlo) with the affine-invariant ensemble sampler as implemented in the Python package,
emcee (Foreman-Mackey et al., 2013). We set a flat uniform prior on t0 to be in a reasonable
range before trigger, −35 < t0 < 0, and have a flat improper prior on the other parameters.
We use 200 walkers and set the initial positions of each walker as a Gaussian random number
with the following mean values: the median of Lλ

data for cλ , the mean of the Lλ
data for aλ , and

−12 for t0. We ran each walker for 700 steps, which after analyzing the convergence of a
few MCMC chains, we deemed reasonable to not be too computationally expensive while
still finding approximate best fits for a,c and t0. The best fit early light curve for an example
Type Ia supernova in the training set is illustrated in Fig. 2.3.

We summarize the selection criteria and preprocessing stages applied to the testing and
training sets as detailed in Sections 2.3.3 - 2.3.4 in Table 2.1.
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Selection Criteria Applied To
0 < z ≤ 0.5 Train & Test

b < 15◦ or b > 15◦ Train & Test
At least 3 points pre-trigger Train & Test

Preprocessing Applied to
Sigma-clipping fluxes Train & Test

Undilate the light-curves by (1+ z) Train & Test
Correct light curves for distance. Train & Test

Correct Milky Way extinction Train & Test
Rescale light curves between 0 and 1 Train & Test
Model early light curve to obtain t0 Train only

Keep only −70 < t < 80 days from trigger Train & Test
Table 2.1 Summary of the cuts and preprocessing steps applied to the training and testing
sets. The selection criteria help match the simulations to what we expect from the observed
ZTF data-stream.

2.3.5 Training Set Preparation

Irregularly sampled time-series data is a common problem in machine learning, and is
particularly prevalent in astronomical surveys where the intranight cadence choices and
seasonal constraints lead to naturally arising temporal gaps. Therefore, once the light curves
have been processed and t0 has been computed for each transient, we linearly interpolate
between the unevenly sampled time series data. From this interpolation, we impute data
points such that each light curve is sampled at 3-day intervals between −70 < t < 80 days
since trigger (or as far as the observations exist), to give a vector of length n = 50, where
we set the values outside the data range to zero. We ensure that each light curve in a given
passband is sampled on the same 3-day grid. The final input image for each transient s is
IIIs, which is a matrix with each row composed of the imputed light curve fluxes for each
passband and two additional rows containing repeated values of the host-galaxy redshift in
one row and the MW dust reddening in the other row. Hence, the input image is an n×(p+2)
matrix, where p is the number of passbands. This input image, IIIs, is illustrated as the Input

Matrix in Fig. 2.1.

One of the key differences in this work compared to previous light curve classification
approaches is our ability to provide time-varying classifications. Key to computing this, is
labelling the data at each epoch rather than providing a single label to an entire light curve.
Using the value of t0 computed in Section 2.3.4.1, we define two phases of each transient
light curve: the pre-explosion phase (where t < t0), and the transient phase (where t ≥ t0).
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Therefore, the label for each light curve is a vector of length n identifying the transient class
at each time-step. This n-length vector is subsequently one-hot encoded, such that each class
is changed to a zero-filled vector with one element set to 1 to indicate the transient class (see
equation 2.7). This transforms the n-length label vector into an n× (m+1) vector, where m

is the number of transient classes. This is illustrated as the Class Matrix in Fig. 2.1.

2.4 Model

2.4.1 Framing the Problem

In this work, we train a deep neural network (DNN) to map the light curve data of an
individual transient s onto probabilities over classes {c = 1, . . . ,(m+1)}. The DNN models
a function that maps an input multi-passband light curve matrix, IIIst , for transient s up to a
discrete time t, onto an output probability vector,

yyyst = fff t(III
st ;θθθ), (2.5)

where θθθ are the parameters (e.g. weights and biases of the neurons) of our DNN architecture.
We define the input IIIst as an n× (p+2) matrix10 representing the light curve up to a time-
step, t. The output yyyst is a probability vector with length (m+1), where each element yst

c is
the model’s predicted probability of each class c (at each time step), such that yst

c ≥ 0 and

∑
m+1
c=1 yst

c = 1.

First, to quantify the discrepancy between the model probabilities and the class labels we
define a weighted categorical cross-entropy,

Hw(YYY st ,yyyst) =−
m+1

∑
c=1

wcY st
c log(yst

c ), (2.6)

10The reader can consider IIIst as an image that zeros out all future fluxes after a time t, hence preserving
the n× (p+ 2) matrix shape irrespective of the image phase coverage. The function fff t(· ;θθθ) only uses the
information in the input light curve up to time t.
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where wc is the weight of each class, YYY st is the label for the true transient class at each
time-step and is a one-hot encoded vector of length (m+1) such that,

Y st
c =

1 if c is the true class of transient s at time t

0 otherwise
(2.7)

where the label, YYY st , has two phases, the pre-explosion phase with class c = 1 when t < t0
and the transient phase with class c > 1 when t ≥ t0.

If weights were equal for all classes, Eq. 2.6 is proportional to the negative log-likelihood
of the probabilities of a categorical distribution (or a generalized Bernoulli distribution).
However, to counteract imbalances in the distribution of classes in the dataset which may
cause more abundant classes to dominate in the optimization, we define the weight for each
class c as

wc =
N ×n

Nc
, (2.8)

where Nc is the number of times a particular class appears in the N ×n training set.

We define the global objective function as

obj(θθθ) =
N

∑
s=1

n

∑
t=0

Hw(YYY st ,yyyst), (2.9)

where we sum the weighted categorical cross-entropy over all n time-steps and N transients
in the training set. To train the DNN and determine optimal values of its parameters θ̂θθ , we
minimize this objective function with the sophisticated and commonly used Adam gradient
descent optimiser (Kingma & Ba, 2015). The model fff t(III

st ; θ̂θθ) is represented by the complex
DNN architecture illustrated in Fig. 2.4 and is described in the following section.

2.4.2 Recurrent Neural Network Architecture

Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) networks have been shown to achieve state-of-the-art performance
in many benchmark time-series and sequential data applications (Bahdanau et al., 2014;
Che et al., 2018; Sutskever et al., 2014). Its success in these applications is due to its
ability to retain an internal memory of previous data, and hence capture long-term temporal
dependencies of variable-length observations in sequential data. We extend this architecture
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Fig. 2.4 Schematic of the deep recurrent neural network architecture used in RAPID. Each
column in the diagram is one of the n time steps of the processed light curve, while each row
represents a different neural network layer. The grey text in each block states the shape of
the output matrix of each layer in that block. The input image is composed of an n× (p+2)
matrix consisting of the light curve fluxes, host redshift, and Milky Way reddening. Two
uni-directional gated recurrent unit layers of size 100 are used for encoding and decoding
the input sequences, respectively. It is in these RNN layers that information about previous
time-steps is encoded. Batch normalization is applied between each layer to normalize the
network parameters and hence, speed the training process. To counter overfitting during
training, we employ the dropout optimization technique (Srivastava et al., 2014) to the
neurons in each of the GRU and Batch Normalization layers, and set the dropout rate to
20%. Finally, a fully-connected (dense) layer with a softmax regression activation function
is applied to compute the probability of each class at each time-step. We wrap the final layer
in Keras’ Time Distributed layer so that each time step is treated independently, and only
uses information from the current and previous time-steps.
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to our case with a time-varying multi-channel (multiple passbands) input and a time-varying
multi-class output.

Recently, Naul et al. (2018), Charnock & Moss (2017), Moss (2018), and Hinners et al.
(2018) have used two RNN layers for this framework on astronomical time-series data.
However, our work differs from these by making use of uni-directional GRUs instead of
bi-directional RNNs. Bi-directional RNNs are able to pass information both forwards and
backwards through the neural network representation of the light curve, and can hence
preserve information on both the past and future at any time-step. However, this is only
suitable for retrospective classification, because it requires that we wait for the entire light
curve to complete before obtaining a classification. The real-time classification used in our
work is a novel approach in time-domain astronomy, but necessitates the use of uni-directional
RNNs. Hence, our two RNN layers read the light curve chronologically.

The deep neural network (DNN) is illustrated in Fig. 2.4. We have developed the
network with the high level Python API, Keras (Chollet et al., 2015), built on the recent
highly efficient TensorFlow machine learning system (Abadi et al., 2016). We describe the
architecture in detail here.

Input As detailed in Section 2.3.5, the input is an n× (p+2) matrix. However, as we are
implementing a sequence classifier, we can consider the input at each time-step as
being vector of length (p+2).

First GRU Layer Gated Recurrent Units are an improved version of a standard RNN and
are a variation of the LSTM (see Chung et al. 2014 for a detailed comparison and
explanation). We have selected GRUs instead of LSTMs in this work, as they provide
appreciably shorter overall training time, without any significant difference in classifi-
cation performance. Both are able to capture long-term dependencies in time-varying
data with parameters that control the information that should be remembered at each
step along the light curve. We use the first GRU layer to read the input sequence one
time-step at a time and encode it into a higher-dimensional representation. We set-up
this GRU layer with 100 units such that the output is a vector of shape 1×100.

Second GRU Layer The second GRU layer is conditioned on the input sequence. It takes
the output of the previous GRU and generates an output sequence. Again, we use 100
units in the GRU to maintain the n×100 output shape. We use uni-directional GRUs
that enable only information from previous time-steps to be encoded and passed onto
future time-steps.
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Batch Normalization We then apply Batch Normalization (first introduced in Ioffe &
Szegedy 2015) to each GRU layer. This acts to improve and speed up the opti-
mization while adding stability to the neural network and reducing overfitting. While
training the DNN, the distribution of each layer’s inputs changes as the parameters of
the previous layers change. To allow the parameter changes during training to be more
stable, batch normalization scales the input. It does this by subtracting the mean of the
inputs and then dividing it by the standard deviation.

Dropout We also implement dropout regularization to each layer of the neural network to
reduce overfitting during training. This is an important step that effectively ignores
randomly selected neurons during training such that their contribution to the network
is temporarily removed. This process causes other neurons to more robustly handle
the representation required to make predictions for the missing neurons, making the
network less sensitive to the specific weights of any individual neuron. We set the
dropout rate to 20% of the neurons present in the previous layer each time the Dropout
block appears in the DNN in Fig. 2.4.

Dense Layer A dense (or fully-connected) layer is the simplest type of neural network layer.
It connects all 100 neurons at each time-step in the previous layer, to the (m+ 1)
neurons in the output layer simply using equation 2.10. As this is a classification task,
the output is a vector consisting of all m transient classes and the Pre-explosion class.
However, as we are interested in time-varying classifications, we wrap this Dense layer
with a Time-Distributed layer, such that the dense layer is applied independently at
each time-step, hence giving an output matrix of shape n× (m+1).

Neurons The output of each neuron in a neural network layer can be expressed as the
weighted sum of the connections to it from the previous layer:

ŷi = f

(
M

∑
j=1

Wi j x j +bi

)
, (2.10)

where x j are the different inputs to each neuron from the previous layer, Wi j are the
weights of the corresponding inputs, bi is a bias that is added to shift the threshold
of where inputs become significant, j is an integer running from 1 to the number of
connected neurons in the previous layer (M), and i is an integer running from 1 to the
number of neurons in the next layer. For the Dense layer, x is simply the (1×100)
matrix from the output of the GRU and Batch Normalisation, y is made up of the
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(m+1) output classes, j runs from 1 to (m+1) and i runs across the 100 input neurons
from the GRU. The matrix of weights and biases in the Dense layer and throughout the
GRU layers are some of the free parameters that are computed by TensorFlow during
the training process.

Activation function As with any neural network, each neuron applies an activation function
f (·) to bring non-linearity to the network and hence help it to adapt to a variety of
data. For feed-forward networks it is common to make use of Rectified Linear Units
(ReLU, Nair & Hinton, 2010) to activate neurons. However, the GRU architecture uses
sigmoid activation functions as it outputs a value between 0 and 1 and can either let no
flow or complete flow of information from previous time-steps.

Softmax regression The final layer applies the softmax regression activation function,
which generalises the sigmoid logistic regression to the case where it can handle
multiple classes. It applies this to the Dense layer output at each time-step, so that the
output vector is normalized to a value between 0 and 1 where the sum of the values
of all classes at each time-step sums to 1. This enables the output to be viewed as a
relative probability of an input transient being a particular class at each time-step. The
output probability vector,

yyy = softmax(ŷyy), (2.11)

is computed with a softmax activation function that is defined as

softmax(xxx)i =
exi

∑
j

ex j
. (2.12)

We use the output softmax probabilities to rank the best matching transient classes for
each transient light curve at each time-step.

We reiterate that the overall architecture is simply a function that maps an input n×(p+2)
light curve matrix onto an n× (m+1) softmax probability matrix indicating the probability
of each transient class at each time-step. In order to optimize the parameters of this mapping
function, we specify a weighted categorical cross-entropy loss-function that indicates how
accurately a model with given parameters matches the true class for each input light curve
(as defined in equation 2.6).

We minimize the objective function defined in equation 2.9 using the commonly used,
but sophisticated stochastic gradient descent optimizer called the Adam optimizer (Kingma
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& Ba, 2015). As the class distribution is inevitably uneven, and the pre-explosion class is
naturally over-represented as it appears in each light curve label, we prevent bias towards
over-represented classes by applying class-dependent weights while training as defined in
equation 2.8.

The several layers in the DNN create a model that has over one hundred thousand free
parameters. As we feed in our training set in batches of 64 light curves at a time, the neural
network updates and optimizes these parameters. While the size of the parameter space
seems insurmountable, the Adam optimizer is able to compute individual adaptive learning
rates for different parameters from estimates of the mean and variance of the gradients and
has been shown to be extraordinarily effective at optimizing high-dimensional deep learning
models.

With the often quoted ‘black box’ nature of machine learning, it is always a worry that
the machine learning algorithms are learning traits that are specific to the training set but
do not reflect the physical nature of the classes more generally. Ideally, we would like to
ensure that the model we build both accurately captures regularities in the training data
while simultaneously generalizing well to unseen data. Simplistic models may fail to capture
important patterns in the data, while models that are too complex may overfit random noise
and capture spurious patterns that do not generalize outside the training set. While we
implement regularization layers (dropout) to try to prevent overfitting, we also monitor the
performance of the classifier on the training and testing sets during training. In particular, we
ensure that we do not run the classifier over so many iterations that the difference between
the values of the objective function evaluated on the training set and the testing set become
significant.

2.5 Results

In this section we detail the performance of RAPID trained on simulated ZTF light curves.
The dataset consists of 48029 transients split between 12 different classes, where each class
has approximately 4000 transients. We trained our DNN on 60% of this set and tested
its performance on the remaining 40%. The data was preprocessed using the methods
outlined in Sections 2.3.3 - 2.3.5. Processing this set, and then training the DNN on it,
was computationally expensive, taking several hours to train on the Nvidia GPU machines
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available on Google Colaboratory11. Once the DNN is trained, however, it is able to
classify several thousands of transients within a few seconds.

2.5.1 Hyper-parameter Optimization

One of the key criticisms of deep neural networks is that they have many hyper-parameters
describing the architecture that need to be set before training. As training our DNN architec-
ture takes several hours, optimizing the hyper-parameter space by testing the performance of
a range of setup values is a very slow process that most similar work have not attempted. De-
spite this challenge, we performed a broad grid-search of three of our DNN hyper-parameters:
number of neurons in each GRU layer, and the dropout fraction. After testing 12 different
setup parameters, we found that there was only a 2% variation on the overall accuracy. The
hyper-parameters that are shown in Fig. 2.4 were the best performing set of parameters.

2.5.2 Accuracy

We go beyond previous attempts at photometric classification in two important ways. Firstly,
we aim to classify a much larger variety of sparse multi-passband transients, and secondly,
and most significantly, we provide classifications as a function of time. An example of this
is illustrated in Fig. 2.5. At each epoch along the light curve, the trained DNN outputs a
softmax probability of each transient class. As more photometric data is provided along the
light curve, the DNN updates the class probabilities of the transient based on the state of
the network at previous time-steps plus the new time-series data. Within just a few days of
the explosion, and well before the ZTF trigger, the DNN was able to correctly learn that the
transient evolved from Pre-explosion to a SNIa.

To assess the performance of RAPID, we make use of several metrics. The most obvious
metric is simply the accuracy, that is, the ratio of correctly classified transients in each class
to the total number of transients in each class. At each epoch along every light curve in the
testing set, we select the highest probability class and compare this to the true class. After
aligning each light curve by its trigger, we obtained the prediction accuracy of each class as a
function of time since trigger. This is plotted in Fig. 2.6.

The total classification accuracy of each class in the testing set increases quickly before
trigger, but then begins to flatten out with only small increases after approximately 20 days

11https://colab.research.google.com/
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Fig. 2.5 An example normal SNIa light curve from the testing set (redshift= 0.174) is shown
in the top panel, and the softmax classification probabilities from RAPID are plotted as a
function of time over the light curve in the bottom panel. The plot shows the rest frame time
since trigger. The vertical grey dashed line is the predicted explosion date from our t2 model
fit of the early light curve (see Section 2.3.4.1). Initially, the object is correctly predicted to
be Pre-explosion, before it is more confidently predicted as a SNIa-Normal at -20 days before
the trigger. Hence, the neural network predicts the explosion date only 4 days after early
light curve model fit’s prediction. The confidence in the predicted classification improves
over the lifetime of the transient.
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Fig. 2.6 The classification accuracy of each transient class as a function of time since trigger
in the rest frame. The values correspond to the diagonals of the confusion matrices at each
epoch.
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Fig. 2.7 The normalized confusion matrices of the 12 transient classes at 2 days past trigger
(top), and at 40 days past trigger (bottom). The confusion matrices show the classification
performance tested on 40% of the dataset after the classifier was trained on 60% of the
dataset. The colour bar and cell values indicate the fraction of each True Label that were
classified as the Predicted Label. Negative colour bar values are used only to indicate
misclassifications. Please see the online material (https://www.ast.cam.ac.uk/~djm241/rapid/
cf.gif) for an animation of the evolution of the confusion matrix as a function of time since
trigger (showing epochs from -25 to 70 days from trigger).

https://www.ast.cam.ac.uk/~djm241/rapid/cf.gif
https://www.ast.cam.ac.uk/~djm241/rapid/cf.gif
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post-trigger. For most classes, the transient behaviour of the light curve is generally nearing
completion at this stage, and hence we can expect that new photometric data adds little to
improving the classification as the brightness tends towards the background flux level. The
classification performance of the core-collapse supernovae, SNIbc and SNII, are particularly
poor. To better understand this, it is useful to see where misclassifications occurred.

2.5.3 The Confusion Matrix

The confusion matrix is often a good way to visualize this. Typically, each entry in the matrix
describes counts of the number of transients of the true class, c, that had the highest predicted
probability in class, ĉ. For ease of interpretability, we make use of a specially normalized
confusion matrix in this work. We normalize the confusion matrix such that the (c, ĉ) entry is
the fraction of transients of the true class c that are classified into the predicted class ĉ. With
this normalization, each row in the matrix must sum to 1. Therefore each row is an estimate
of the classifier’s conditional distribution of (maximum probability) predicted labels given
each true class label.

In Fig. 2.7, we plot the normalized confusion matrices at an early (2 days post-trigger)
and late (40 days post-trigger) stage of the light curve. In the online material, we provide
an animation of this confusion matrix evolving in time since trigger (instead of just the two
epochs shown here)12.

The overall classification performance is, as expected, slightly better at the late phase
of the light curve. However, the performance only 2 days after trigger is particularly
promising for our ability to identify transients at early times to gather a well-motivated
follow-up candidate list. SNe Ia have the highest classification accuracy at early times with
most misclassification occurring with other subtypes of Type Ia supernovae. At late times,
the Intermediate Luminosity Transients and TDEs are best identified. The core-collapse
supernovae (SNIbc, SNII) appear to be most often confused with calcium-rich transients and
other supernova types. CARTs are a newly discovered class of transients and their physical
mechanism is not yet well-understood. However, the reason for the confusion most likely
stems from their fast rise-times similar to many core-collapse SNe. This is illustrated in
Fig. 2.8.

12Animations of the plots shown in this chapter can be found here: https://www.ast.cam.ac.uk/
~djm241/rapid/

https://www.ast.cam.ac.uk/~djm241/rapid/
https://www.ast.cam.ac.uk/~djm241/rapid/
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Fig. 2.8 Three of the simulated light curves from our sample - a correctly classified CART
(top), a SN Ibc incorrectly classified as a CART (middle), and a correct classified SN Ibc
(bottom). The dark-coloured square markers are the r band fluxes and the lighter-coloured
circle markers are the g band fluxes. Our classifier is sensitive to light curve shape, and
the limited colour information available with ZTF leads to a significant fraction of SN Ibc
objects being misclassified as CARTs. We expect classification performance to improve with
LSST, which will provide ugrizy light curves.
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2.5.4 Receiver Operating Characteristic Curves

The confusion matrix is a good measure of the performance of a classifier, but it does not
make use of the full suite of probability vectors we obtain for every transient, and instead
only uses the highest scoring class. The Receiver Operating Characteristic (ROC) Curve,
on the other hand, makes use of the classification probabilities. Instead of selecting just the
highest probability class, we use a probability threshold pthresh. For each class c, transient
s at time t is considered to be classified as c if yst

c > pthresh. We sweep the values of pthresh

between 0 and 1. The ROC curve plots the true positive rate (TPR) against the false positive
rate (FPR) for these different probability thresholds. In a multi-class framework, the TPR is
a measure of recall or completeness; it is the ratio between the number of correctly classified
objects in a particular class (TP) to the total number of objects in that class (TP + FN).

TPR =
TP

TP+FN
(2.13)

Conversely, the FPR is a measure of the false alarm rate; it is the ratio between the number
of transients that have been misclassified as a particular class (FP) and the total number of
objects in all other classes (FP + TN).

FPR =
FP

FP+TN
(2.14)

A good classifier is one that maximizes the area under the ROC curve (AUC), with a perfect
classifier having an AUC = 1, and a randomly guessing classifier having an AUC = 0.5.
Typically, values above 0.9 are considered to be very good classifiers. In Fig. 2.9, we
plot the ROC curve at an early and late phase in the light curve. Here, the classification
performance looks very good with several classes having AUC values above 0.99 and the
overall micro-averaged13 values being 0.95 for the early stage and 0.98 in the late stage. The
macro-averaged ROC is simply the average of all of the ROC curves computed independently.
Differently, the micro-averaged ROC aggregates the TPR and FPR contributions of all classes,
and is equivalent to the weighted average of all the ROCs considering the number of transients
in each class. As the class distribution in the dataset is not too unbalanced, these values are
quite close.

In the online material we plot an animation of the ROC curve evolving in time since
trigger, rather than the two phases plotted here. As a still-image measure of this, we plot

13The micro-averaged ROC curve aggregates the results from all objects from all classes. It is effectively the
average of the ROC curves from all classes weighted by the number of objects in each class.
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Fig. 2.9 Receiver operating characteristic (ROC) curves for the 12 transient classes at an
early epoch at 2 days past trigger (left), and at a late epoch at 40 days past trigger (right).
Each curve represents a different transient class with the area under the ROC curve (AUC)
score in the brackets. The macro-average and micro-average curves which are an average
and weighted-average representation of all classes, respectively (see Section 2.5) are also
plotted. We compute the metric on the 40% of the dataset used for testing. Please see the
online material for an animation of the evolution of the ROC curve as a function of time
since trigger. (https://www.ast.cam.ac.uk/~djm241/rapid/roc.gif)

https://www.ast.cam.ac.uk/~djm241/rapid/roc.gif
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Fig. 2.10 The area under the ROC curve (AUC) of each class as a function of time since
trigger. Fig. 2.9 illustrates the ROC curves at two epochs with the AUC of each listed in
the legend; this plot shows hows the AUC evolves with time for each class, and is a still-
representation of the animation of the ROC curves shown in the online material. The overall
performance of the classifier is best judged with the shape of the ‘micro-average’ curve.
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Fig. 2.11 Precision-recall curves for the 12 transient classes at an early epoch at 2 days
past trigger (left), and at a late epoch at 40 days past trigger (right). We compute the
metric on the 40% of the dataset used for testing. Please see the online material for an
animation of the evolution of the Precision-Recall as a function of time since trigger. (https:
//www.ast.cam.ac.uk/~djm241/rapid/pr.gif)

https://www.ast.cam.ac.uk/~djm241/rapid/pr.gif
https://www.ast.cam.ac.uk/~djm241/rapid/pr.gif
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the AUC of each class as a function of time since trigger in Fig. 2.10. Within 5 to 20
days after trigger, the AUC flattens out for most classes. We see that the ILOTs, kilonovae,
SLSNe, and PISNs are predicted with high accuracy well before trigger. These transients
are fainter than most other classes, and hence, do not trigger an alert until their light curves
approach maximum brightness. This means, that by the time a trigger happens, the transient
behaviour of the light curve is mature, and the classifier has more information to be confident
in its prediction. On the other hand, the two core collapse supernovae, SNII and SNIbc,
have comparatively low AUCs. We expect that additional colour information will help to
separate these from other supernova types. The overall performance is best illustrated by the
micro-averaged AUC curve shown as the dotted blue curve. The AUC is initially low due to
the misclassifications with Pre-explosion, but within just a few days after trigger, plateaus to
a very respectable AUC of 0.98.

2.5.5 Precision-Recall

We compute the Precision-Recall metric. This metric has been shown to be particularly good
for classifiers trained on imbalanced datasets (Saito & Rehmsmeier, 2015). The precision
(also known as purity) is a measure of the number of correct predictions in each class
compared to the total number of predictions of that class, and is defined as,

precision =
TP

TP+FP
. (2.15)

The Recall (also known as completeness) is the same as the true positive rate. It is a measure
of the number of correct predictions in each class compared to the total number of that class
in the testing set, and is defined as,

recall =
TP

TP+FN
. (2.16)

A good classifier will have both high precision and high recall, and hence the area under the
precision-recall curve will be high. In making the precision-recall plot, instead of simply
selecting the class with the highest probability for each object, we apply a probability
threshold as plotted in Fig. 2.11. By using a very high probability threshold (instead of just
selecting the most probable class), we can obtain a much more pure subset of classifications.
The PISN, SNIa-norm, SNIa-91bg, kilonovae, pointIa, and ILOTs have very good precision
and recall at the late epoch, and quite respectable at the early phase. The core collapse SNe
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and CARTs are again shown to perform poorly. Overall, this plot highlights some flaws in the
classifier that the previous metrics did not capture. In particular, the CART class is shown to
perform much more poorly than in previous metrics, highlighting that it does not have a high
precision and that there are many false positives for it. As there are fewer CARTs in the test
set than other classes, this was not as obvious in the other metrics (see Saito & Rehmsmeier
(2015) for an analysis of precision-recall vs ROC curves as classification metrics).

2.5.6 Weighted Log Loss
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Fig. 2.12 The weighted log loss defined in equation 2.17 and used in PLAsTiCC (Malz et al.,
2018) is plotted as a function of time since trigger. The weighted log-loss of the early (2 days
after trigger) and late (40 days after trigger) epochs are 1.09 and 0.64, respectively.

In each of the previous metrics we have treated each class equally. However, it is often
useful to weight the classifications of particularly classes more favourably than others. Malz
et al. (2018) recently explored the sensitivity of a range of different metrics of classification
probabilities under various weighting schemes. They concluded that a weighted log-loss
provided the most meaningful interpretation, defined as follows

lnLosst =−
(

∑
(m+1)
c=1 wc ·∑Nc

s=1
Y st

c
Nc

· lnyst
c

∑
(m+1)
c=1 wc

)
(2.17)
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where c is an index over the (m+1) classes and j is an index over all N members of each
class, yst

c is the predicted probability that object s at time t is a member of class c, and YYY st is
the truth label. The weight of each class wc can be different, and Nc is the number of objects
in each class.

This metric is currently being used in the PLAsTiCC Kaggle challenge to assess the
classification performance of each entry. We apply a weight of 2 to the classes that PLAsTiCC
deemed to be rare or interesting and 1 to the remaining classes:

Weight 1 SNIa, SNIbc, SNII, Ia-91bg, Ia-x, Pre-explosion

Weight 2 Kilonova, SLSN, PISN, ILOT, CART, TDE

We plot the weighted log-loss as a function of time since trigger in Fig. 2.12. The metric
of the early (2 days after trigger) and late (40 days after trigger) epochs are 1.09 and 0.64,
respectively, where a perfect classifier receives a score of 0. While we have applied our
classifier to ZTF simulations, we find that the raw scores are competitive with top scores
in the PLAsTiCC Kaggle challenge. The sharp improvement in performance at trigger is
primarily due to the prior placed on the Pre-explosion phase of the light curve that forces it to
be before trigger. Within approximately 20 days after trigger, the classification performance
plateaus, as the transient phase of most light curves is ending.

2.6 Application to Observational Data

One of the primary challenges with developing classifiers for astronomical surveys is obtain-
ing a labelled sample of well-observed transients across a wide range of classes. While it
may be possible to obtain a labelled sample of common supernovae during the initial stages
of a survey, the observation rates of less common transients (such as kilonovae and CARTs,
for example) mean that a diverse and large training set of observed data is impossible to
obtain. Therefore, a classifier that is trained on simulated data but can classify observational
data streams is of significant importance to the astronomical community. To this end, a key
goal of RAPID is to be able to classify observed data using an architecture trained on only
simulated light curves. In this section, we provide a few examples of RAPID’s performance
on transients from the ongoing ZTF data stream. In Chapter 4, we extend this analysis to test
the classification performance on a much larger set of observed light curves.
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Fig. 2.13 Classification of three light curves from the observed ZTF data stream. In each of
the three example cases, RAPID correctly classifies the transient well before peak brightness,
and often within just a few epochs. The ZTF names are listed in the titles of each transient plot
and from left to right they are also known by the following names: AT2018hco, SN2019bly,
SN2018itl. These objects were spectroscopically classified as a TDE (z = 0.09), SNIa
(z = 0.08), and SNIa (z = 0.036), respectively (Fremling et al., 2018, 2019; van Velzen et al.,
2018).

.
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In Fig. 2.13 we have tested RAPID on three objects recently observed by ZTF to highlight
its direct use on observational data: ZTF18abxftqm, ZTF19aadnmgf, and ZTF18acmzpbf
(also known as AT2018hco14, SN2019bly15, SN2018itl16, respectively). These have already
been spectroscopically classified as a TDE (z = 0.09), SNIa (z = 0.08), and SNIa (z = 0.036),
respectively (Fremling et al., 2018, 2019; van Velzen et al., 2018). In the bottom panel of
Fig. 2.13, we see that RAPID was able to correctly confirm the class of each transient well
before maximum brightness, and within just a couple of epochs after trigger.

The two SNIa light curves were correctly identified after just one detection epoch, and
the confidence in these classifications improved over the lifetime of the transient. While the
SNIa-norm probability was lower for ZTF18acmzpbf, this is a good example of where the
confidence in this transient being any subtype of SNIa was actually much higher. Given that
the second most probable class was a SNIa-91bg, we can sum the two class probabilities to
obtain a much higher probability of the transient being a SNIa.

While we have shown RAPID’s effective performance on some observational data, future
revisions of the software can be used to identify differences between the simulated training
set and observations. This will help to improve the transient class models that were used to
generate the light curve simulations. Future iterations to improve the simulations will in turn
lead to a classifier that is even more effective at classifying observational data (see Chapter
4).

Moreover, as it stands, RAPID can classify 12 different transient classes. However, if
an unforeseen transient were passed into the classifier, the class probabilities would split
between the classes that were most similar to the input. RAPID is a supervised learning
algorithm, and is not designed for anomaly detection. However, cases where RAPID is not
confident on a classification may warrant closer attention for the possibility of an unusual
transient. In Chapter 3, we deal specifically with the issue of anomaly detection for such
cases where classification is not suitable.

2.6.1 Balanced or representative datasets

Machine learning based classifiers such as neural networks often fail to cope with imbalanced
training sets as they are sensitive to the proportions of the different classes (Kotsiantis

14https://wis-tns.weizmann.ac.il/object/2018hco
15https://wis-tns.weizmann.ac.il/object/2019bly
16https://wis-tns.weizmann.ac.il/object/2018itl

https://wis-tns.weizmann.ac.il/object/2018hco
https://wis-tns.weizmann.ac.il/object/2019bly
https://wis-tns.weizmann.ac.il/object/2018itl
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et al., 2006). As a consequence, these algorithms tend to favour the class with the largest
proportion of observations. This is particularly problematic when trying to classify rare
classes. The intrinsic rate of some majority classes, such as SNe Ia, is orders of magnitude
higher than some rare classes, such as kilonovae. A neural network classifier trained on
such a representative dataset, and that aims to minimise the overall unweighted objective
function (equation 2.9), will be incentivised to learn how to identify the most common classes
rather than the rare ones. An example of the poorer performance of classifiers trained on
representative transient datasets compared to balanced datasets is illustrated well by Figure 7
in Narayan et al. (2018). The shown t-SNE (t-distributed Stochastic Neighbour Embedding,
van der Maaten & Hinton 2008) plot is able to correctly cluster classes much more accurately
when the dataset is balanced.

Moreover, building a representative dataset is a very difficult task and there is a non-
representativeness between spectroscopic and photometric samples. The detection rates of
different transient classes in photometric surveys are often biased by brightness and the
ease at which some classes can be classified over others. Spectroscopic follow-up strategies
have been dominated by SNe Ia for cosmology, and have hence led to biased spectroscopic
sets. Recently, however, Ishida et al. (2019b) identified a framework for constructing a more
representative training set. They make use of real-time active learning to improve the way
labelled samples are obtained from spectroscopic surveys to ultimately optimise the scientific
performance of photometric classifiers. Employing such a framework will allow for the
construction of a training set that is more representative.

In our work, we simulate a balanced training set in an attempt to mitigate the effects of
the bias present in existing datasets and to improve our classifier’s accuracy on rare classes.
While machine learning classifiers tend to perform better on balanced datasets (Kotsiantis
et al., 2006; Narayan et al., 2018), future work should verify this for photometric identification
by comparing the performance of classifiers trained on balanced and representative training
sets. However, until the issue of the non-representativeness between spectroscopic and
photometric samples is mitigated with approaches like Ishida et al. (2019b), a representative
dataset remains difficult to build.

2.7 Feature-based Early Classification

To compare the performance of RAPID against traditional light curve classification approaches
which often use extracted light curve features for classification, we developed a Random
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Forest-based classifier that computed statistical features of each light curve to use as input,
rather than directly using the photometric information. This has been the most commonly
used approach in light curve classification tasks to date (e.g. Karpenka et al., 2013; Lochner
et al., 2016; Möller et al., 2016; Narayan et al., 2018; Newling et al., 2011; Revsbech et al.,
2018). We extend upon the approach developed in Narayan et al. (2018) and based on
Lochner et al. (2016) by using a wider variety of important features and by extending the
problem for early light curve classification. Specifically, we only compute features using
data up to 2 days after trigger so that the Random Forest classifier can be directly compared
with the DNN early classifications.

Extracting features from light curves provides us with a uniform method of comparing
between transients which are often unevenly sampled in time. We can train directly on
a synthesised feature vector instead of the photometric light curves. For time-series data,
extracting moments is the most obvious way to start obtaining features. We compute several
moments of the light curve, and a list of the distilled features used in classification are listed
in Table 2.2. While we focus on early classification in this chapter, we also list some full-light
curve features that we used in work not shown in this chapter that some readers may find
useful. As we have two different passbands, we compute the features for each passband and
obtain twice the number of moment-based features listed in the table. We also make use of
more context specific features, such as redshift and colour information.

We compute the early rise rate feature for each passband as the slope of the fitted early
light curve model defined in Section 2.3.4.1,

rateλ =
Lλ

mod(tpeak)−Lλ
mod(t0)

(tpeak − t0)
. (2.18)

We use the rise rate, and the early light curve model parameter fits âaa and ĉcc from equation 2.3
as features in the early classifier. We then define the colour as a function of time,

colour(t) =−2.5log10

(
Lg

mod(t)
Lr

mod(t)

)
, (2.19)

where Lλ
mod(t) is the modelled relative luminosity (defined in equation 2.3) at a particular

passband, λ .

We use the colour curves computed from each transient to define several features. Using
equation 2.19, we compute the colour of each object at a couple of well-spaced points on the
early light curve (5 days and 9 days after t0) and use them as features in our early classifier.
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Early light curve features only
Early rise rate Slope of early light curve (see equation 2.18).
a Amplitude of quadratic fit to the early light curve (see equation 2.3).
c Intercept of quadratic fit to the early light curve (see equation 2.3).
Colour at n days Logarithmic ratio of the flux in two passbands (see equation 2.19).
Early colour slope Slope of the colour curve.

Early and full light curve features
Redshift Photometric cosmological redshift.
Milky Way Dust Extinction Interstellar extinction.
Historic Colour Logarithmic ratio of the flux in two passbands before trigger. 2.19).
Variance Statistical variance of the flux distribution.

Amplitude
Ratio of the 99th minus 1st and 50th minus 1st percentile of the flux
distribution.

Standard Deviation / Mean A measure of the average inverse signal-to-noise ratio.
Median Absolute Deviation A robust estimator of the standard deviation of the distribution.
Autocorrelation Integral The integral of the correlation vs time difference (Mislis et al., 2016).
Von-Neumann Ratio A meausure of the autocorrelation of the flux distribution.

Entropy
The Shannon entropy assuming a Gaussian CDF following Mislis
et al. (2016).

Rise time Time from trigger to peak flux.
Full light curve features only

Kurtosis Characteristic “peakedness” of the magnitude distribution.
Shapiro-Wilk Statistic A measure of the flux distribution’s normality.
Skewness Characteristic asymmetry of the flux distribution.

Interquartile Range
The difference between the 75th and 25th percentile of the flux distri-
bution.

Stetson K
An uncertainty weighted estimate of the kurtosis following Stetson
(1996).

Stetson J
An uncertainty weighted estimate of the Welch-Stetson Variability
Index (Welch & Stetson, 1993).

Stetson L
Product of the Stetson J and Stetson K moments (Kinemuchi et al.,
2006; Stetson, 1996).

HL Ratio The ratio of the amplitudes of points higher and lower than the mean.
Fraction of observations
above trigger

Fraction of light curve observations above the trigger.

Period
Top ranked periods from the Lomb-scargle periodogram fit of the
light curves (Lomb, 1976; Scargle, 1982).

Period Score
Period weights from the Lomb-scargle periodogram fit of the light
curves (Lomb, 1976; Scargle, 1982).

Colour Amplitude Ratio of the amplitudes in two passbands.
Colour Mean Ratio of the mean fluxes in two passbands.

Table 2.2 Description of the features extracted from each passband of each light curve in the
dataset. Some of these are redefined from Table 2 of Narayan et al. (2018).
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We also compute the slope of the colour curve and use that as an additional feature for the
early classifier. For the full light curve classifier, we compute the colour amplitude as the
difference in the light curve amplitudes in two different passbands, and also compute the
colour mean as the ratio of the mean flux value of two different passbands.

We feed the feature set into a Random Forest classifier. Random Forests (Breiman, 2001)
are one of the most flexible and popular machine learning architectures. They construct an
ensemble of several fully grown and uncorrelated decision trees (Morgan & Sonquist, 1963)
to create a more robust classifier that limits overfitting. Each decision tree is made up of
a series of hierarchical branches that check whether values in the feature vector are in a
particular range until it ascertains each of the class labels in the form of leaves. The trees
are trained recursively and independently, selecting which feature and boundary provide the
highest information gain for classifications. A single tree is subject to high variance and can
easily overfit the training set. By combining an ensemble of decision trees - providing each
tree with a subset of data that is randomly replaced during training - a Random Forest is able
to decrease the variance by averaging the results from each tree.

We have designed the Random Forest with 200 estimators (or trees) and have run it
through twice. On the first run we feed the classifier the entire feature-set. We then rank the
features by importance in classification and select the top 30 features. We feed only these top
30 features into the second run of the classifier. As many of the features are obviously highly
correlated with each other, this acts to reduce feature dilution, whereby we remove features
that do not provide high selective power.

We compute features using light curves up to only the first 2 days after trigger. As
the Random Forest is much quicker to classify than the DNN, we perform 10-fold cross-
validation to obtain a more robust estimate of the classifier’s performance. We then produce
the confusion matrix in Fig. 2.14 and the ROC curve in Fig. 2.15. We can compare these
metrics to the early epoch metrics at 2 days after trigger produced with the deep neural
network in Figures 2.7 and 2.9. We find that the performance in the early part of the light
curve is marginally worse than the DNN with a micro-averaged AUC of 0.92 compared to
0.95. Moreover, the ability of the DNN to provide time-varying classifications makes it much
more suited to early classification than the Random Forest.

In Fig. 2.16, we rank the importance of the top 30 features in the Random Forest classifier.
While redshift is clearly the most important feature in the dataset, we have also built classifiers
without using redshift as a feature and found that the performance was only marginally worse.
This provides an insight into the classifier’s robustness when applied to surveys where
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Fig. 2.14 Confusion matrix of the early light curve Random Forest classifier trained on 60%
and tested on 40% of the dataset described in Section 2.3. The classifier makes use of 200
estimators (trees) in the ensemble. The colour bar and values indicate the percentage of each
true label that were classified as the predicted label. Negative colour bar values are used only
to indicate misclassifications.
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Fig. 2.15 Receiver operating characteristic of the feature-based Random Forest approach.
The features are computed on photometric data up to 2 days past trigger, and are fed into
a Random Forest classifier. Each curve represents a different transient class with the area
under the curve (AUC) score in brackets. The macro and micro average curves which are
an average and weighted-average representation of all classes are also plotted. The metric
computed on 40% of the dataset.
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Fig. 2.16 Features used in the early classifier ranked by importance. The bar height is the
average relative importance of each feature in each tree of the random forest. The error bar
is the standard deviation of the importance of each feature in the 200 trees of the Random
Forest. Only the top 30 features have been plotted in the histogram.

redshift is not available. The next best feature is the historic colour, suggesting that the type
of host-galaxy is important contextual information to discern transients. The early slope of
the light curve also ranks highly, as it is able to distinguish between faster rising core-collapse
supernovae and other slower rising transients such as magnetars (SLSNe).

2.8 Conclusions

Existing and future wide-field optical surveys will probe new regimes in the time-domain,
and find new astrophysical classes, while enabling a deeper understanding of presently
rare classes. In addition, correlating these sources with alerts from gravitational wave, high-
energy particle, and neutrino observatories will enable new breakthroughs in multi-messenger
astrophysics. However, the alert-rate from these surveys far outstrips the follow-up capacity
of the entire astronomical community combined. Realising the promise of these wide-field
surveys requires that we characterize sources from sparse early-time data, in order to select
the most interesting objects for more detailed analysis.

We have detailed the development of a new real-time photometric classifier, RAPID, that is
well-suited for the millions of alerts per night that ongoing and upcoming wide-field surveys
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such as ZTF and LSST will produce. The key advantages that distinguish our approach from
others in the literature are:

1. Our deep recurrent neural network with uni-directional gated recurrent units, allows us
to classify transients using the available data as a function of time.

2. Our architecture combined with a diverse training set allows us to identify 12 different
transient classes within days of its explosion, despite low S/N data and limited colour

information.

3. We do not require user-defined feature extraction before classification, and instead use
the processed light curves as direct inputs.

4. Our algorithm is designed from the outset with speed as a consideration, and it can
classify the tens of thousands of events that will be discovered in each LSST image
within a few seconds.

This critical component of RAPID that enables early classification is our ability to use
measurements of the source before an alert is triggered — “precovery” photometry with
insufficient significance to trigger an alert, but that nevertheless encodes information about
the transient. While we designed RAPID primarily for early classification, the flexibility of
our architecture means that it is also useful for photometric classification with any available
phase coverage of the light curves. It is competitive with contemporary approaches such as
Charnock & Moss (2017); Lochner et al. (2016); Narayan et al. (2018) when classifying the
full light curve.

There is no satisfactory single metric that can completely summarise classifier perfor-
mance, and we have presented detailed confusion matrices, ROC curves and measures of
precision vs recall for all the classes represented in our training set. The micro-averaged AUC,
the most common single metric used to measure classifier performance, evaluated across the
12 transient classes is 0.95 and 0.98 at 2 days and 40 days after an alert trigger, respectively.
We further evaluated RAPID’s performance on a few transients from the real-time ZTF data
stream, and, as an example, have shown its ability to effectively identify a TDE and two SNe
Ia well before maximum brightness. The results at early-times are particularly significant as,
in many cases, they can exceed the performance of trained astronomers attempting visual
classification.

We also developed a second early classification approach that trained a Random Forest
classifier on features extracted from the light curve. This allowed us to directly compare
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the feature-based Random Forest approach to RAPID’s model-independent approach. We
found that the classification performances are comparable, but the RNN has the advantage of
obtaining time-varying classifications, making it ideal for transient alert brokers. To this end,
we have recently begun integrating the RAPID software with the ANTARES alert-broker, and
plan to apply our DNN to the real-time ZTF data stream in the near future.

Overall, RAPID provides a novel and effective method of classifying transients and
providing prioritised follow-up candidates for the new era of large scale transient surveys.





Chapter 3

Transient Anomaly Detection

3.1 Overview

New large-scale transient surveys, such as the Rubin Observatory Legacy Survey of Space
and Time (LSST), will observe millions of transient alerts each night, making standard
approaches of visually identifying new and interesting transients infeasible. In this chapter,
we present two novel methods of automatically detecting anomalous transient light curves in
real-time. The first approach is a probabilistic deep neural network built using state-of-the-art
Temporal Convolutional Networks (TCNs) aimed at predicting future observations in a light
curve. The second approach is based on an interpretable Bayesian parametric model of a
light curve, where we predict future observations by fitting past partial light curve data. We
provide anomaly scores as a function of time by using a metric that compares our predictions
with photometric observations. We build autoregressive models of six transient classes. We
have demonstrated the performance of our methods on light curve simulations matching the
observing properties of the Zwicky Transient Facility (ZTF) and on real ZTF light curves
from the public Mid Scale Innovation Program (MSIP) survey. In particular, we identify
anomalies with respect to common supernova classes with low false anomaly rates and high
true anomaly rates achieving Area Under the Receive Operating Characteristic (ROC) Curve
(AUC) scores well above 0.8 for most rare classes such as kilonovae, tidal disruption events,
intermediate luminosity transients, and pair-instability supernovae. Our ability to identify
anomalies improves over the lifetime of the light curves. Our frameworks used in conjunction
with transient classifiers will enable fast and prioritised follow-up of unusual transients from
ongoing and upcoming wide-field surveys.
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3.2 Introduction

Astronomy is reaching an unprecedented era of big data, where astronomers are observing
more transient events than they can possibly visually examine. Upcoming large-scale surveys
of the transient universe such as the Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST) will observe two orders of magnitude more transient events than any survey
to date, (Ivezić et al., 2019). LSST is expected to observe over 10 million transient alerts
each night, making it infeasible to visually examine or follow up any significant fraction of
transient candidates. However, for a long time, discovery in astronomy has been driven by
serendipity and by identifying anomalies in data sets. To this end, identifying anomalous
objects and prioritising which of the millions of alerts are most suitable for spectroscopic
followup is a challenge that needs to be automated. In this chapter, we develop a novel
framework for identifying anomalous transients in real-time.

There have been several efforts to automate the identification of astronomical transients in
large-scale surveys (e.g. Lochner et al. 2016; Narayan et al. 2018; Pasquet et al. 2019). These
efforts are useful for dealing with the big datasets in recent surveys, but they require the
full phase coverage of each light curve for classification. While retrospective classification
after the full light curve of an event has been observed is useful, it also limits the scientific
questions that can be answered about these events, many of which exhibit interesting physics
at early times. To prioritise followup, the type of transient and its phase of evolution are most
important.

Obtaining detailed followup observations shortly after a transient’s explosion provides
insights into the progenitor systems that power the event and hence improves our under-
standing of the object’s physical mechanism. While the mechanism of some transients are
reasonably well-understood, the central engine of various exotic classes such as calcium-rich
gap transients, super-luminous supernovae, and some newly discovered fast blue optical
transients (FBOTs) are poorly understood (e.g. Coppejans et al., 2020). Moreover, even
though Type Ia Supernovae (SNe Ia) have been well studied, their progenitor system remains
mysterious (e.g. Livio & Mazzali, 2018; Ruiter, 2020, for reviews of the current state of
SNIa progenitor origin). Furthermore, the discovery of the electromagnetic counterpart
from the binary neutron star merger gravitational wave event, GW170817 (Abbott et al.,
2017a), and the considerably human effort that went into the followup, has made it clear that
automated photometric classifiers are necessary. The need for rapid identification of these
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events means automatically sifting through the millions of transient alerts produced each
night and identifying candidates at early times.

To this end, recent methods such as SuperNNova (Möller & de Boissière, 2020) and
RAPID (Muthukrishna et al., 2019a) have developed early and real-time classifiers capable of
identifying the specific type of transient shortly after explosion. These approaches use state-
of-the-art deep recurrent neural networks (RNNs) to model a function that maps real-time
photometric information onto a range of different transient classes, and are able to update
their prediction as new photometric data along a transient’s light curve become available.
They enable astronomers to prioritise candidates for follow-up observations.

However, one major caveat of all existing approaches, is that classification is inherently a
supervised learning task, and hence, requires either comprehensive labelled data for training
an algorithm, or well-understood models that enable simulating a training set. They are
unable to classify events that they have not been specifically trained on. But, with the deluge
of data coming from upcoming wide-field surveys, that are probing deeper, wider, and faster
than ever before, we should be prepared for an influx of completely new classes of objects.
LSST will have a point source depth of r∼27.5 (LSST Science Collaboration et al., 2009),
and will be able to probe fainter than any other wide-scale survey to date, while the Transiting
Exoplanet Science Survey (TESS, Ricker et al. 2015) will use its wide field-of-view to
explore transient phenomena at the minutes to hours timescale which is a region of parameter
space that has been relatively unexplored. Consequently, astronomers are in need of methods
capable of discovering new and unknown transient phenomena within the context of the huge
datasets in modern time-domain astronomy.

Anomaly detection is a data-driven approach to finding such outliers. The goal is to
detect outliers that are scientifically interesting, rather than random statistical fluctuations.
Within astronomy, anomaly detection algorithms have been used in a range of applications,
and recently Lochner & Bassett (2020) has developed an active learning framework called
Astronomaly to make the identification of anomalies in a range of datasets systematic and
easily accessible.

However, applying anomaly detection to time-series such as astronomical light curves is
a more challenging problem than identifying anomalies in static datasets such as images or
spectra. Recently, there have been a few anomaly detection algorithms applied to astronomical
light curves (e.g. Giles & Walkowicz, 2019; Ishida et al., 2019a; Lochner & Bassett, 2020;
Malanchev et al., 2020; Martínez-Galarza et al., 2020; Nun et al., 2014; Pruzhinskaya et al.,
2019; Rebbapragada et al., 2009; Sadeh, 2019; Solarz et al., 2017; Soraisam et al., 2020; Villar
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et al., 2020b, 2021; Webb et al., 2020). These approaches predominantly use unsupervised
clustering algorithms such as Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) (e.g. Giles & Walkowicz, 2019; Webb et al., 2020), RNN-based autoencoders
that identify anomalies in a lower dimensional subspace (e.g. Sadeh, 2019; Villar et al., 2021),
or outlier detection algorithms such as Isolation Forests (e.g. Giles & Walkowicz, 2019;
Ishida et al., 2019a; Lochner & Bassett, 2020; Malanchev et al., 2020; Pruzhinskaya et al.,
2019) and one-class support vector machines (e.g. Solarz et al., 2017). These approaches are
effective at identifying anomalies once the full light curve has been observed, but many of
them prove problematic for real-time detection in large-scale transient surveys. However,
Soraisam et al. (2020) and Villar et al. (2021) have recently developed some of the first
methods that perform real-time anomaly detection. Villar et al. (2021) uses a variational
recurrent autoencoder to learn an encoded form of each light curve before obtaining anomaly
scores by passing the encoded form into an isolation forest. Soraisam et al. (2020) uses
the distribution of magnitude changes over time intervals in a population of light curves
and computes the likelihood of a new observation being consistent with the population to
identify outliers. In this chapter, we employ a unique method that performs regression over
light curves to predict future fluxes, and uses the deviation between the predictions and
observations to identify anomalies.

This chapter is organised as follows. In Section 3.3 we detail the ZTF light curve
simulations and preprocessing methods used in this analysis. In Section 3.4 we develop two
independent autoregressive models, the first being a probabilistic deep neural network that
predicts future fluxes in a light curve, and the second being a Bayesian parametric model
of a transient class built from the Bazin model of a light curve (Bazin et al., 2009). We
present and compare the results of these two models at fitting transients and identifying
anomalies in Section 3.5. We then also apply our models to real ZTF observational data
taken from the public MSIP data stream in Section 3.6, and finally, in Section 3.7, we present
our conclusions and discuss future applications of our work.

3.3 Data

3.3.1 Zwicky Transient Facility

The Zwicky Transient Facility (ZTF, Bellm et al., 2019) is the first of the new generation of
optical synoptic survey telescopes and is a precursor survey to the upcoming LSST. It builds
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upon the infrastructure of the Palomar Transient Factory (PTF, Rau et al., 2009) using the
48-inch Schmidt telescope yielding an order of magnitude improvement in survey speed. It
employs a 47 deg2 field-of-view camera to scan more than 3750 deg2 per hour to a depth of
20.5-21 mag (Graham et al., 2019). Using a prototype of the LSST alert distribution system,
it is streaming up to one million transient alerts per night in two passband filters (gr). Due
to this unprecedented data volume, it is necessary to build automated algorithms capable of
processing and sifting through this amount of data.

ZTF has been producing transient observations since 2017, and has successfully identified
several thousand supernovae. In Section 3.6, we detail our collection of over 2000 supernova
light curves from the public ZTF Mid Scale Innovations Program (MSIP) survey to illustrate
the performance of our method on real ZTF observations.

3.3.2 Simulations

The number of confirmed ZTF SNe is impressive, but the distribution is dominated by SNe
Ia (see Section 3.6). Neural network based algorithms notoriously require a large training set
before they are able to develop a model that generalises well to new data. Thus, while we
may be able to create a good training set for SNe Ia, there are very few observations of many
of the other classes, and we are not able to create a dataset of these classes that encompasses
the variety of objects we expect to observe, even with significant data augmentation.

To this end, we used simulations that match the observing properties of the ZTF as
described in Section 2.3 for the results shown in Section 3.5. These simulations were
created using the SNANA (Kessler et al., 2009) software developed for the Photometric LSST
Astronomical Time-series Classification Challenge (PLAsTiCC, Kessler et al., 2019; The
PLAsTiCC team et al., 2018). As described in Section 2.3, the simulations were made using
a year’s worth of observing logs from the public MSIP survey at the ZTF. The simulated light
curves mimic the ZTF observing properties with a median cadence of 3 days in the g and r

passbands. We simulated approximately 10,000 events for each of the following classes: SNe
Ia, SNe Ibc, SNe II, kilonovae, superluminous supernovae (SLSNe), tidal disruption events
(TDEs), pair-instability supernovae (PISNe), intermediate luminosity transients (ILOTs),
calcium-rich gap transients (CARTs), microlensing from binary star systems (uLens-BSR).
The latter four classes were used as the anomaly class in the aforementioned PLAsTiCC
challenge; and hence, we built models for each of the former 6 classes, and included the latter
four for testing purposes. Example light curves from each class are illustrated in Figures
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1-3 of Kessler et al. 2019. Each simulated transient consists of a time-series of flux and flux
uncertainty measurements in the g and r ZTF passbands, an indicator of whether the flux
was a detection or non-detection, sky position, Milky Way dust reddening, and a host galaxy
redshift.

We define the date of trigger throughout this chapter as the first detection in a light curve,
defined as the first observation that exceeds a 5σ signal-to-noise (S/N) measurement in a
difference image. Hence, in the rest of this chapter, time t refers to the number of Modified
Julian Date (MJD) days since trigger:

t = MJD−MJDtrigger (3.1)

The models and LSST simulations developed for PLAsTiCC, which these simulations are
based from, were validated using numerous techniques as described in Hložek et al. (2020).
We split the total set of transients for each class into two parts: 80% for the training set and
20% for the testing set, respectively. The training set is used to train the model that predicts
future fluxes, while the testing set is used to test the performance of the model.

3.3.3 Preprocessing

One of the most important aspects in an effective learning algorithm is the quality of the
training set. We ensured that the data were processed in a uniform and systematic way
before training the model. We perform ‘sigma clipping’ to reject photometric points with
flux uncertainties that are more than 3σ from the mean uncertainty in each passband, and
iteratively repeat this clipping 5 times. Next, we correct the light curves for Milky Way
extinction using the reddening function of Fitzpatrick (1999). We assume an extinction law,
RV = 3.1, use the central wavelength of each ZTF filter (g: 4767 Å, r: 6215 Å) and the sky
position to compute the line-of-sight reddening caused by the Milky Way and de-redden each
light curve1.

As we are only interested in parts of the light curve near trigger, we ignored any observa-
tions more than 70 days before trigger and removed any data more than 150 days from the
first observation after t =−70.

1We use the extinction code: https://extinction.readthedocs.io

https://extinction.readthedocs.io
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3.3.3.1 Training set preparation

The ZTF observations are irregularly sampled due to intranight cadence choices and seasonal
constraints that lead to naturally arising temporal gaps. However, our neural network frame-
work requires regular time-sampling of the input data. Thus, despite the ZTF observations
having a roughly 3-day cadence, we interpolate our observed data onto a grid with a cadence
of exactly 3 days. This interpolation is not necessary for our Bazin method, but for the sake
of comparing the results between the two methods, we use the interpolated data as the input
for both models described in Section 3.4.

Gaussian process (GP) regression (Rasmussen & Williams, 2006) has been shown to be
effective for astronomical light curve modelling and interpolation (Boone, 2019; Lochner
et al., 2016). However, typically when GPs are used for preprocessing light curves to
interpolate irregularly sampled data to a regular grid (e.g. Boone, 2019; Villar et al., 2021),
the GP is conditioned on the entire light curve and makes use of long-range covariance
kernels (e.g. squared-exponential). For the purposes of retrospective analyses using the
full light curve, this interpolation method is effective; however, for real-time usage this
approach unrealistically uses future observations that would not be available at a particular
prediction time. Instead we use linear interpolation which respects causality as follows.
The linearly interpolated value at a given grid time depends only on the two neighboring
observations. Hence, relative to a prediction time Tpred between two observation times
tobs,i < Tpred < tobs,i+1, the interpolated values at all grid points Tgrid, j before tobs,i < Tpred

depend only on past observations at times earlier or equal to tobs,i < Tpred. In contrast, the
GP conditioned on the full light curve produces interpolated values at earlier grid times
Tgrid, j < Tpred that depend, though the covariance kernel, on tobs,i+1 > Tpred and all future
data points and, therefore, does not respect causality in real-time applications. Linear
interpolations also have the added benefit over GPs of not over-smoothing and being less
computationally intensive. With few and noisy observations characteristic of early real-time
data, the GP may also be more prone to overfitting the light curve than linear interpolation.

Our method for obtaining linear interpolations with uncertainties is detailed as follows.
For each data point of transient s in passband p at time t since trigger in a light curve, we
used the observed flux F̂spt and uncertainty σ̂F,spt as the mean and standard deviation of a
normal distribution to draw 100 random fluxes indexed by i,

F̂spt,i ∼N (F̂spt , σ̂F,spt). (3.2)
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This gives 100 different replications of the observed light curve. We linearly interpolate each
of these 100 generated light curves at 3-day intervals. We obtain the interpolated flux and
flux uncertainty by computing the mean and standard deviation of these light curves draws,
respectively:

Dspt =
1

100

100

∑
i=1

F̂spt,i, (3.3)

σD,spt =

√√√√ 1
100

100

∑
i=1

(
F̂spt,i −Dspt

)2 (3.4)

We removed any data more than 150 days from the first observation after t =−70, and
hence with the 3-day interpolations make a matrix of length Nt = 50, with each point for
transient s, passband p, and interpolated time t having a flux and uncertainty as follows,

XXX spt = [Dspt ,σD,spt ] (3.5)

We similarly define the output flux predictions of our models described in Section 3.4 as a
vector of the predictive flux and uncertainty,

YYY spt = [yspt ,σy,spt ] (3.6)

While not strictly necessary in our architecture, the fixed length vectors are useful for passing
the data to the neural network framework. The final input matrix XXX s for each transient s is
a matrix of shape Nt ×2Np where the rows are composed of the interpolated flux and flux
uncertainty in each of the Np passbands across the Nt time-steps. If contextual information
such as the redshift or host galaxy properties were known, we could include this information
as a extra columns in the input matrix. However, as this information is not always available
without additional host spectra, we have not included it in this work, but note that our
framework allows for an easy incorporation of contextual data. Future work should aim to
use host galaxy information to improve transient identification. Studies by Foley & Mandel
2013 and Gagliano et al. 2021 have shown that using only host galaxy properties without any
photometric data can achieve ∼ 70% accuracy when classifying SNe Ia and CC SNe.
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3.4 Models

Our methods for anomaly detection involve first developing an autoregressive sequence
model of a transient class, and then using the model’s ability to predict future fluxes as
an anomaly score (or conversely, a goodness of fit score). We develop two methods for
regressing over a transient. The first is a probabilistic deep neural network (DNN) approach
using Temporal Convolutional Networks (TCNs) (described in Section 3.4.1), and the second
is a Bayesian parametric approach using the flexible Bazin function Bazin et al. (2009) of
transients (described in Section 3.4.2).

Each model aims to do real-time detection, and is hence causal, using only past values
to predict future values. Specifically, our model is a function that predicts future fluxes in a
time-series as well as the uncertainty of that prediction; it then compares the prediction with
the observed data to obtain an anomaly score.

In the following two subsections (§3.4.1, §3.4.2), we describe our two approaches of
developing a function that maps the interpolated fluxes up to time T onto flux predictions
ysp(T+3) and predictive uncertainties σy,sp(T+3) three days after a given set of observations:

Model
(DNN or Bazin)

DDDsp(t≤T )

σσσD,sp(t≤T )

ysp(T+3)

σy,sp(T+3)

In Section 3.4.3, we define an anomaly score metric that uses the discrepancy between
the fluxes D and predictions y to quantify anomalies.

The DNN approach builds a neural network that effectively performs regression over past
data in order to predict the flux 3 days in the future. On the other hand, the Bazin approach
performs regression over time to predict the flux at any time. We then feed in partial light
curves into the Bazin model and infer a prediction 3 days after given data to obtain anomaly
scores comparable with the DNN.

3.4.1 Probabilistic Neural Network

3.4.1.1 Model definition

The DNN is an autoregressive mapping function that aims to map an input multi-passband
light curve matrix, XXX s(t≤T ), for transient s up to an interpolated time T , onto an output
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Fig. 3.1 Temporal Convolutional Neural Network architecture used in this work. Each
column in the diagram is a subsequent time-step from left to right, and each time-step is
3-days after the previous one. The bottom row is the input light curve (from equation 3.5)
where each input is a vector of the interpolated flux and flux uncertainty in all passbands for
a transient s at a time t. The input fluxes and uncertainties of two adjacent time-steps are
passed into a residual block consisting of a 1D convolutional neural network layer (Conv1D)
with dropout. While not shown in the figure, the residual block also contains a second
Conv1D layer with dropout. The outputs of these are then convolved with the outputs from
some previous time-steps in the above hidden layers as shown in the diagram, until the final
Output Layer is the predicted light curve at the following time-step (from equation 3.6). The
solid arrows show how the prediction YYY w

s(T+3) is made, and the gray dashed arrows show
the neural network layers that lead to all other predictions. The network is causal, whereby
new predictions only use information from previous time-steps in the light curve. We set the
dropout rate to 20% for all layers in the network. We build this model using the Keras and
TensorFlow Probability libraries after adapting the TCN model from Bai et al. (2018)
and their code in https://github.com/philipperemy/keras-tcn.

https://github.com/philipperemy/keras-tcn
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multi-passband flux vector at the next time-step T +3 (where we recall that each time-step is
3 days after the previous interpolated time),

YYY w
s(T+3) = fff T (XXX s(t≤T );www) (3.7)

where www are the parameters (i.e. weights and biases) of the network. We define XXX s(t≤T )

as the matrix XXX s but up to a time T in each of its passbands. The model output prediction
YYY w

s(T+3) is a 1×2Np vector consisting of the predicted mean flux ỹsp(T+3)(www) and intrinsic
uncertainty σ̃int,sp(T+3)(www) in the g and r passbands at the next time-step for a particular set of
network weights (these outputs are explained in Section 3.4.1.3). The model fff T (XXX s(t≤T );www)

in equation 3.7 is represented by the complex DNN architecture illustrated in Fig. 3.1, and
the details of the architecture are described in the following subsection.

3.4.1.2 Model architecture

We developed a deep neural network architecture as our first approach for the autoregressive
sequence model that learns the function described in equation 3.7. The problem of time-series
prediction falls in the wider machine-learning area of sequence learning, whereby the input
size of our data is not required to be fixed. Recurrent Neural Networks (RNNs) such as
Long Short Term Memory (LSTM, Hochreiter & Schmidhuber 1997) Networks and Gated
Recurrent Units (GRU, Cho et al. 2014) are considered the default starting point for sequence
modelling tasks in the machine learning community after they were shown to achieve state-
of-the-art performance in many benchmark time-series and sequential data applications (e.g.
Bahdanau et al., 2014; Che et al., 2018; Chung et al., 2014; Jozefowicz et al., 2015; Pascanu
et al., 2013; Sutskever et al., 2014; Zhang et al., 2015). RNN’s ability to retain an internal
memory of long-term temporal dependencies of variable length observations made it well
suited for time-series applications, and it has been shown to be successful in light curve
classification (e.g. Charnock & Moss, 2017; Jamal & Bloom, 2020; Martínez-Palomera et al.,
2020; Möller & de Boissière, 2020; Moss, 2018; Muthukrishna et al., 2019a).

However, RNNs suffer from a few drawbacks not present in Convolutional Neural
Network (CNN) approaches that have been so successful in image analysis and a range of
other groundbreaking problems. Most notably, RNNs are notoriously slow and difficult to
train using standard stochastic gradient descent (SGD) algorithms (Bai et al., 2018; Pascanu
et al., 2013). In the past couple of years, Temporal Convolutional Networks (TCNs, first
proposed in Lea et al. 2016) have risen as a powerful alternative to RNNs. A thorough
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systematic empirical evaluation of RNNs and TCNs conducted by Bai et al. (2018) suggest
that TCNs are able to convincingly outperform LSTMs and GRUs across a broad range of
sequence modelling tasks. In particular, Bai et al. (2018) demonstrates that TCNs exhibit
a substantially longer memory of sequential data (being able to capture a longer history of
data in the model), have a more flexible receptive field size (being able to control how many
historic data points to remember), are much faster to train because of their parallelism (where
RNNs need to wait for preceding blocks to complete but convolutions can be done in parallel
since the same filter is used in each layer), are less memory intensive, and are able to capture
local information through convolutions along with temporal information (Bai et al., 2018;
Kalchbrenner et al., 2016; Lea et al., 2016). Furthermore, as TCNs are much simpler and
clearer than RNNs, we have used this architecture in favour of RNNs in this chapter. In
practice, we found that the TCNs were much faster to train, but we did not notice significant
differences in the performance of our TCN architecture when we compared it to a similar
LSTM/GRU architecture that was used in Muthukrishna et al. (2019a).

The TCN architecture used in this work is illustrated in Figure 3.1, and is based on
the model developed by Bai et al. (2018)2. We used the high level Python API, Keras
(Chollet et al., 2015), and the TensorFlow Probability library that are built on the efficient
TensorFlow machine learning system (Abadi et al., 2016) to develop our deep probabilistic
neural network model. We describe the architecture in detail here.

Input: The input at each time-step is the vector XXX st for transient s at time t. Each XXX st input
has shape 1×2Np containing the interpolated flux and flux uncertainty for each of the
Np passbands.

Residual block: Each residual block performs a 1D convolution on two vector inputs using
a sigmoid activation function on the neurons, and then applies dropout to each layer.
While not shown in Figure 3.1, each residual block also contains a second 1D convolu-
tion and dropout layer. We ensure that the convolutions are dilated and causal, whereby
each output only uses information from preceding time-steps. We set the dilations to 1,
2, 4, and 8 such that the total receptive field includes 2×8 = 16 time-steps (equivalent
to 48 days as we’ve set each time-step to be 3 days apart). Such a receptive field was
considered a sufficient light curve history to make a prediction.

2The TCN code was adapted from https://github.com/philipperemy/keras-tcn

https://github.com/philipperemy/keras-tcn
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Conv1D: A 1D convolution is applied to the two vector inputs that each have a shape 1×2Np.
The convolutional kernel size is 2, applied to the two preceding time-steps in the input
layer, and dilated to other time-steps in the hidden layers as illustrated in the Figure.

Dropout: We also implement dropout regularization to each layer of the neural network to
reduce overfitting during training. This is an important step that effectively ignores
randomly selected neurons such that their contribution to the network is temporarily
removed. This process causes other neurons to more robustly handle the representation
required to make predictions for the missing neurons, making the network less sensitive
to the specific weights of any individual neuron. We set the dropout rate to 20% of
the neurons present in the previous layer. This effectively means that each neuron’s
weight has a 20% probability of being set to zero. While this approach is ubiquitously
used for regularisation during training, we also apply dropout during test time to obtain
model uncertainties (see Section 3.4.1.3).

Neurons: The output of each neuron in a neural network layer is expressed as a function of
the weighted sum of the connections to it from the previous layer.

Activation function: As with any neural network, each neuron applies an activation function
to bring non-linearity to the network and hence help it to learn complex patterns in
the data. We use a sigmoid activation function for the 1D convolutional layers as,
after some testing, it appeared to have more stability while training the network when
compared to a ReLU function. This bounded the outputs of the neurons to values
between 0 and 1 and ensured that the weights did not become too large.

Masking Layer: TCNs have the advantage over standard CNNs of allowing variable length
input sequences. However, the Python API requires a fixed length input for ease of
computation. To employ the TCN’s flexibility, we make an Nt = 50 length input matrix
for each light curve, but set the time-steps where data does not exist to an arbritrary
value. We then use Keras’s Masking Layer to mask this value and hence ensure that
time-steps where data are not available are not used in the model.

3.4.1.3 Capturing uncertainties in the model

Standard deep learning tools for regression and classification do not capture model uncertainty.
Nevertheless, the power and success of neural networks at a wide range of benchmark
problems has led to their widespread use in science. They are particularly useful when
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the underlying physical processes that generated the data is not well-understood. However,
gaining an intuitive understanding of the neural network’s high-dimensional model is difficult
and often impossible. In fact, a common and significant issue in deep learning is its over-
confident predictions on unseen data (e.g. Guo et al., 2017). Getting a neural network to say
that it “does not know” and to state its confidence in a prediction is imperative for its use
in science. The softmax probability output in many neural network classification problems
is often erroneously interpreted as model confidence in spite of it being infamously falsely
overconfident (e.g. Gal & Ghahramani, 2015a; Goodfellow et al., 2015; Szegedy et al., 2014).
Obtaining uncertainties on predictions is important to help overcome these issues and for the
continued use of deep learning in science.

To characterise the intrinsic uncertainty of our network’s ability to represent a light curve,
we build a probabilistic neural network using the Tensorflow Probability Python library.
While typical neural networks model the output as a point estimate, a probabilistic neural
network allows us to easily model the output of the DNN as a distribution. In this work,
we model the output as a Normal distribution parameterised by the predictive mean ỹspt(www)

and standard deviation σ̃int,spt(www) for a particular set of network weights w. The predictions
ỹspt(www) and σ̃int,spt(www) are components of the vector YYY w

spt from equation 3.7. We interpret
the learned uncertainty σ̃int,spt(www) as being intrinsic to problem. We include it because we
know that our DNN model is not a perfect representation of a light curve, and even if we had
no measurement error and had an infinite training set, there would still be some discrepancy
between our DNN predictions and the observed light curves.

A Bayesian neural network enables us to also quantify the uncertainty in our model’s
predictions of the outputs, ỹspt(www) and σ̃int,spt(www). The key advantage of a Bayesian neural
network over a standard neural network, is that we are able to sample over a posterior distribu-
tion of network parameters (i.e. the weights and biases). The ideal way to perform a Bayesian
inference over the neural network model would be to sample over the model parameters with
a method such as Markov Chain Monte Carlo (MCMC). However, the huge number of param-
eters in a deep neural network make this a computationally intractable problem. Instead, an
approach called Monte Carlo (MC) dropout sampling that places a Bernoulli distribution over
the network weights using the commonly used dropout regularisation technique has become
the popular approach for implementing approximate Bayesian neural networks (see Gal &
Ghahramani (2015a) for an explanation of how MC dropout approximates a Bayesian NN).
The method is significantly simpler to implement than standard neural network Variational
Inference (VI) approaches (such as Bayes by Backprop (Blundell et al., 2015), the Flipout
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estimator (Wen et al., 2018), and the Reparameterization estimator (Kingma & Welling,
2013)) - simply requiring dropout to be applied to all the network weights during validation
(instead of just training). It has the further advantage over standard approaches to VI in
neural networks of not increasing training time or reducing test accuracy. Throughout this
work, we use MC dropout with our probabilistic neural network to estimate the predictive
uncertainty. We do this by collecting the results of stochastic forward passes through the
network as approximate posterior draws of YYY w

spt , and use the mean and standard deviation of
these draws as our marginal predictive mean yspt and predictive uncertainty σy,spt .

3.4.1.4 Model loss function

Before defining the loss function, we first develop a generative model of the latent flux of a
transient s in passband p 3 days in the future at time T +3. We aim to model the underlying
latent flux with the neural network as follows,

Fsp(T+3)(www) = ỹsp(T+3)(www)+ εint,sp(T+3)(www), (3.8)

where the error εint,sp(T+3)(www) ∼ N
(

0, σ̃2
int,sp(T+3)(www)

)
is a zero-mean Gaussian random

variable with variance σ̃2
int,sp(T+3)(www). Thus, we write the predictive distribution of the latent

flux as follows,

P(FFFs(T+3)|XXX s(t≤T ),www) =
Np

∏
p=1

N
(

Fsp(T+3)(www) | ỹsp(T+3)(www), σ̃
2
int,sp(T+3)(www)

)
. (3.9)

Next, a generative model of the observed flux is derived by adding a measurement error to
the latent flux as follows,

Dsp(T+3) = Fsp(T+3)(www)+ εD,sp(T+3), (3.10)

where we assume that the measurement error εD,sp(T+3) ∼N (0,σ2
D,sp(T+3)) is a zero-mean

Gaussian random variable with variance σ2
D,sp(T+3).

Typically, researchers will not use the uncertainty in the data within the loss function
(e.g. Jamal & Bloom 2020; Villar et al. 2020b, however, work by Naul et al. 2018 included
data uncertainty without model uncertainty). In this work, we construct our loss function to
include both predictive uncertainties σ̃int,sp(T+3)(www) and flux uncertainties σD,sp(T+3). Given
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equations 3.8 and 3.10, we write the likelihood function of the probabilistic DNN as follows,

P(DDDs(T+3)|XXX s(t≤T ),www) =
Np

∏
p=1

N
(

Dsp(T+3) | ỹsp(T+3)(www), σ̃
2
int,sp(T+3)(www)+σ

2
D,sp(T+3)

)
=

Np

∏
p=1

(
2π(σ̃2

int,sp(T+3)(www)+σ
2
D,sp(T+3))

)−0.5

× exp

(
−0.5

(ỹsp(T+3)(www)−Dsp(T+3))
2

σ̃2
int,sp(T+3)(www)+σ2

D,sp(T+3)

)
.

(3.11)

Following Gal & Ghahramani (2015a), we define the prior over the weights as a zero-
mean Normal distribution,

P(www) =N (www | 0, III/l2), (3.12)

where III is the identity matrix and l is the prior length-scale that regularises how large the
weights can be. The posterior over the weights is given by the product of the prior distribution
and the likelihood distribution over all Ns transients at all Nt time-steps,

P(www|XXX) ∝ P(www)
Ns

∏
s=1

80

∏
T=−70

P(DDDs(T+3)|XXX s(t≤T ),www), (3.13)

where we ignore the Bayesian evidence as a scaling constant that is unnecessary for this work.
We would ideally like to sample the negative log posterior while training our DNN, and
so we derive the log prior from equation 3.12 as logP(www) = constant− l2||www||22/2. We can
ignore the additive constant not necessary for our optimisation and follow Gal & Ghahramani
(2015a) to implement the log prior by including an L2 regularisation term λ ||www||22 weighted
by some weight decay that averages over the number of transients Ns and time-steps Nt ,

λ =
l2(1−d)

2NsNt
, (3.14)

where d is the dropout rate (set to 0.2 in this work), and we set l = 0.2 consistent with work
by Gal & Ghahramani (2015a)3. Here, we have included the (1−d) term to account for the
dropout regularisation used in our work. With this term, the L2 regularisation term λ ||www||22
matches the log prior, logP(www), averaged over the number of transients and time-steps.

3See Section 4.2 of Gal & Ghahramani (2015b) for a detailed explanation of this prior and https://github.
com/yaringal/DropoutUncertaintyExps/blob/master/net/net.py for an example implementation of
this L2 regularisation by Yarin Gal.

https://github.com/yaringal/DropoutUncertaintyExps/blob/master/net/net.py
https://github.com/yaringal/DropoutUncertaintyExps/blob/master/net/net.py
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However, we point out that our λ slightly differs from equation 18 of Gal & Ghahramani
(2015b) because we use the negative log-likelihood instead of a squared loss as the cost
function of our DNN. Furthermore, we also add the caveat that because of this difference
of loss functions and our inclusion of a probabilistic neural network that models the output
as a Normal distribution instead of a point estimate, it is not clear that the demonstration
of MC dropout as an approximation to Bayesian neural networks in Gal & Ghahramani
(2015a) necessarily holds true in our work. Future machine learning research should check
the validity of MC dropout as a Bayesian approximation in a broader range of neural network
architectures.

Since we use dropout regularisation, we define a dropout objective function over all
time-steps and over all transients that we aim to minimise while training the neural network
model as follows,

obj(www) =
Ns

∑
s=1

80

∑
T=−70

[
− logP(DDDs(T+3)|XXX s(t≤T ),www)+λ ||www||22

]
(3.15)

where we sum the log-likelihood and L2 regularisation term over all Nt time-steps (between
-70 and 80 days) and Ns transients in the training set. To train the DNN and determine optimal
values of its parameters ŵww, we minimise the dropout objective function with the sophisticated
and commonly used Adam gradient descent optimiser (Kingma & Ba, 2015).

To make predictions, we evaluate the predictive distribution of the latent flux defined as
follows,

P(FFFs(T+3)|XXX s(t≤T )) =
∫

P(FFFs(T+3)|XXX s(t≤T ),www)P(www|XXX)dwww, (3.16)

where we are marginalising over the weights of the network by integrating the product of
the predictive distribution of the latent flux given the network weights (first term in the
integrand and defined in equation 3.9) and the posterior distribution over the network weights
(second term in the integrand and defined in equation 3.13). The integral is intractable, and
so we approximate it by using Monte Carlo dropout at inference time to sample the posterior
distribution, as described in Gal & Ghahramani (2015a). We draw 100 samples from the
posterior P(www|XXX) by running 100 forward passes of the neural network for a given input.
Since we are using a probabilistic neural network and have modelled the output as a Normal
distribution (as shown by our model of the latent flux in equation 3.8), each run of the neural
network outputs both a mean ỹsp(T+3)(wwwdraw) and standard deviation σ̃int,sp(T+3)(wwwdraw).
To include the variance of each draw in the marginal predictive uncertainty σy,sp(T+3),

we compute Fsp(T+3)(wwwdraw) ∼ N
(

ỹsp(T+3)(wwwdraw), σ̃
2
int,sp(T+3)(wwwdraw)

)
. We estimate the
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marginal predictive mean and uncertainty as the sample mean and standard deviation of
the 100 values of Fsp(T+3)(wwwdraw) taken from the 100 forward passes of the neural network,
respectively:

ysp(T+3) =
1

100

100

∑
draw=1

Fsp(T+3)(wwwdraw), (3.17)

σy,sp(T+3) =

√√√√ 1
100

100

∑
draw=1

(
Fsp(T+3)(wwwdraw)− ysp(T+3)

)2
. (3.18)

We use these to compute the anomaly scores discussed in Section 3.4.3.

3.4.2 Parametric Bayesian Bazin function

3.4.2.1 Model Definition

The fast inference speed of the DNN model makes it scaleable for the enormous data streams
expected from surveys such as LSST. However, the large number of parameters in the model
makes it difficult to ascertain how the model makes decisions. Thus, as a comparison,
we have built a Bayesian model of each transient light curve based on the widely used
phenomenological Bazin function from Bazin et al. (2009). This method has the advantage
of not requiring regularly sampled input data. However, to make it comparable to the DNN
method, we use the interpolated fluxes DDDspt and uncertainties σσσD,spt as the input data.

We begin by augmenting the standard Bazin function with an additional error term,
εint(t). We include this error because we know that the Bazin function is not a perfect
representation of a light curve, and even if we had no measurement error, there would still be
some discrepancy between the Bazin model and the observed light curve. Hence, we define a
generative model of a transient’s luminosity as follows,

L(t) = L0

(
e−(t−t0)/τfall

1+ e−(t−t0)/τrise
+ εint(t)

)
(3.19)

where L(t) is the luminosity as a function of time t in days since trigger, L0, t0, τfall, τrise

are free parameters of the model, and εint(t)∼N (0,σ2
int) is a zero-mean Gaussian random

variable with intrinsic variance σ2
int.

The Bazin model has the advantage of being much more interpretable than a DNN as the
parameters can be intuitively understood with respect to the shape of a light curve, whereby,
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Fig. 3.2 The histograms of the best fit Bazin parameters for the population of light curves in
each transient class and passband. We ignored any transient light curves that did not have 10
data points on each side of trigger. We modelled the population distribution as a multivariate
Gaussian, and show the one-dimensional slices as the solid lines. We used this multivariate
Gaussian as the priors for the Bazin parametric model defined in equation 3.24.
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L0 can be interpreted as the intrinsic luminosity of the transient, τfall, τrise relate to the sloping
rise and fall times of the light curve, and t0 relates to the time of peak brightness (see figure
3.3). We then model the latent flux of a transient s in passband p by first dividing equation
3.19 by 4πd2, where d is the distance to the transient object, and then adding a term for the
measured background flux B,

Fspt(θθθ) = A
e−(t−t0)/τfall

1+ e−(t−t0)/τrise
+B+Aεint(t), (3.20)

where A = L0/4πd2. Then, a generative model of the input flux is derived by adding a
measurement error εD,spt , as follows,

Dspt = A
e−(t−t0)/τfall

1+ e−(t−t0)/τrise
+B+Aεint(t)+ εD,spt , (3.21)

where we assume that the measurement error εDspt ∼N (0,σ2
D,spt) is a zero-mean Gaussian

random variable with variance σ2
D,spt . The mean of the model in equation 3.21 is the Bazin

function described in Bazin et al. (2009) with free parameters θθθ = [log10 (A),B, t0,τfall,τrise, log10 (σint)].

In Figure 3.3, we plot equation 3.20, and explore the effect of each of the free parameters
on the model light curve shape.

To model a partial light curve from -70 days before trigger or when observations begin
up to time T , and given equations 3.20 and 3.21, we write the likelihood function as follows,

P(DDDsp|ttt,θθθ) =
T

∏
t=−70

N
(
Dspt | Fspt(θθθ),A2

σ
2
int +σ

2
D,spt

)
=

T

∏
t=−70

(
2π(A2

σ
2
int +σ

2
D,spt)

)−0.5
exp

(
−0.5

(Fspt(θθθ)−Dspt)
2

A2σ2
int +σ2

D,spt

) (3.22)

3.4.2.2 Bayesian model and prior

We define a Bayesian model to fit each transient light curve in a particular passband as
follows,

P(θθθ |DDDsp, ttt) ∝ P(DDDsp|ttt,θθθ)P(θθθ) (3.23)

where P(θθθ |DDDsp, ttt) is the posterior distribution, P(DDDsp|ttt,θθθ) is the likelihood function from
equation 3.22, and P(θθθ) is the prior distribution of each transient class. We have ignored
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Fig. 3.3 The effect that changing different Bazin parameters has on the modelled light
curve shape. We plot equation 3.20 using the baseline parameters, A = 1000, B = 0, t0 = 0,
τfall = 10, τrise = 3, and σint = 0. Each plot then varies one of these parameters to illustrate
its effect on the light curve shape. A affects the light curve amplitude, B dictates the vertical
shift, t0 affects the horizontal shift, τfall affects the duration of the light curve decline, τrise
affects the duration of the light curve rising to maximum, and σint affects the modelled noise
on the light curve.
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the evidence P(DDDsp) as a scaling factor that is unnecessary for our optimisation and is not
computed in this work.

We have chosen to base our prior on the distribution of fits of the transient population in
each passband and class. We first compute the population distribution by fitting each light
curve in the training set with the Bazin function in equation 3.20 and maximising the negative
log likelihood function in equation 3.22. We selectively fit every light curve that had at least
ten data points on either side of trigger so that the τfall and τrise parameters were not biased
by light curves that did not cover the full transient phase. The one-dimensional histograms of
the best fit parameters are shown in Figure 3.2. We computed the mean µµµpop and covariance
ΣΣΣpop of the set of best fit parameters and hence modelled the population distributions as
multivariate Gaussians for each passband and each transient class. We decided to use this
multivariate Gaussian as the prior distribution,

P(θθθ) =N
(

θθθ |µµµpop,ΣΣΣpop

)
. (3.24)

The distribution of the parameters A and σint have distributions that appear right-skewed.
To make these distributions more Gaussian, we instead optimised over log10 (A) and log10 (σint)

and use these reparameterisations in the multivariate Gaussian prior.

3.4.2.3 Optimisation and fitting routine

To fit each light curve, we ideally want to first sample the posterior P(θθθ |DDDsp, ttt). Initially, we
fit and sampled the posterior of the 6-parameter model with an MCMC routine. However,
this proved far too computationally slow to run over the thousands of light curves in our
training set. Instead, we used the Laplace approximation to approximate the posterior as a
multivariate Gaussian centred on the mode. To apply this, we first optimised the objective
function with the Nelder-Mead optimisation routine (available in the scipy optimisation
library) after setting the starting parameter values to the median of the histograms shown in
Figure 3.2. We then computed the Hessian matrix of the negative log posterior, using the
autodifferentiation package autograd, and evaluated it at the optimal parameter values,

Hqr =−∂ 2 logP(θθθ |DDDsp, ttt)
∂θq∂θr

∣∣∣∣
θθθ=θ̂θθ

(3.25)
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where θ̂θθ is the optimal parameter values, and q and r run across the six parameters in the
model. The inverse of this Hessian is the covariance matrix,

ΣΣΣoptimal = H−1 (3.26)

To ensure that the Laplace approximation was a good approximation of the posterior, we
compare it with a fit using MCMC. We show the covariance contours from the Hessian matrix
and the MCMC samples of an example SNIa g-band light curve fit in Appendix Figure 3.18.
While the Hessian approximates most parameter covariances well, it is a poor approximation
of log10 (σint). The MCMC samples show that the model is non-Gaussian over log10 (σint)

and prefers negative values. Since the Hessian matrix is inherently symmetrical, it does not
approximate this behaviour well. The large values of log10 (σint) can lead to unphysically
large estimations of the predicted flux. To account for this poor approximation, we define
θθθ
′′′ = [log10 (A),B, t0,τfall,τrise] and ΣΣΣ

′′′
optimal to not include log10 (σint).

Then, to obtain posterior fits, we drew 100 samples from a multivariate Gaussian with
mean θ̂θθ

′′′
and covariance ΣΣΣ

′′′
optimal and set log10 (σint) to the optimal fit for all draws. We

evaluated equation 3.20 with these sets of parameters to obtain posterior fits. We noticed
that some posterior samples in the Bazin parameter space produced unrealistic light curves
that had wildly large flux values that did not fit past data well. These unrealistic parameter
values are an artefact of the Laplace Approximation not being a good enough approximation
to the true posterior (we discuss this in detail Appendix 3.8). To account for this behaviour,
we ignored posterior fits that deviated from data previous to the present time T by χ2 > 10,
leaving K posterior samples. We note that usually, less than 5% of the samples resulted in
spurious fits, and so K was not much less than 100.

Unlike the DNN that performs regression over past data to give a flux predictions at a
single time-step, our Bazin method performs regression over time to give flux predictions at
all times. Therefore, to compare the predictive power of this method with the DNN, we use
the interpolated fluxes as input, use data up to time T , and record the prediction 3 days later
(T +3). We do this for each time-step, to obtain a sequence of predictions one time-step in
the future from given data.

In practice, for anomaly detection, we need to make predictions of D at new times T

(where this T corresponds to the interpolated times used in the DNN for easy comparison).
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This requires that we evaluate the predictive distribution defined by

P(Fsp(T+3)|DDDsp(t≤T )) =
∫

P(Fsp(T+3)|θθθ)P(θθθ |DDDsp(t≤T ))dθθθ . (3.27)

This distribution can be compared to the predictive distribution for the DNN described
in equation 3.16. The integral on the RHS cannot be computed analytically, and so we
approximate it by sampling. We draw K sample parameters θθθ draw of the posterior (second
term in the integrand) and compute the flux predictions Fsp(T+3)(θθθ draw) for each set of
parameters (first term in the integrand) with equation 3.20. The LHS of equation 3.27 is
approximated by the sampled probability distribution function, and we estimate the marginal
predictive mean and uncertainty as the sample mean and standard deviation of the fluxes
computed from the posterior draws, respectively:

ysp(T+3) =
1
K

K

∑
draw=1

Fsp(T+3)(θθθ draw) (3.28)

σy,sp(T+3) =

√√√√ 1
K

K

∑
draw=1

(
Fsp(T+3)(θθθ draw)− ysp(T+3)

)2
. (3.29)

We use these to compute the anomaly scores discussed in Section 3.4.3. We also plot the
K ≈ 100 posterior fits (excluding the unrealistic spurious fits) and the median of these in the
respective plots throughout this chapter.

3.4.3 Anomaly score definition

To quantify a potential anomaly, we first define the instantaneous anomaly score as a χ2

metric to compute the discrepancy between the observed flux at time t and the predictions
of a model based on previous data. This χ2 is weighted by the total variance including the
predictive uncertainty and measurement error.

χ
2
st =

1
Np

Np

∑
p=1

(yspt −Dspt)
2

c2σ2
y,spt +σ2

D,spt
. (3.30)
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Fig. 3.4 The Bazin parametric method being used as a generative model of a SNIa given a
partial light curve. The grey shaded region is the region of data that the model was fit with,
while the observations in the white region was not used to fit the model. The trace lines show
the normally distributed posterior sample fits from the Laplace approximation. The bold solid
line is the median of the posterior fits. The first panel does not use any data from the light
curve and thus illustrates the fits from the prior distribution. The following panels use data
up to times -58, -46, -34, -22, -10, 2, 14, 26, 38, 50, and 62 days from trigger, respectively.
The plots show a fit to an example simulated SNIa.
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DNN

Fig. 3.5 The DNN being used as a generative model of a SNIa given a partial light curve.
The grey shaded region is the region of data that was used to make a prediction, while
the observations in the white region was not used to make predictions. As the DNN was
specifically designed to only predict one time-step in the future and was not designed to
generate an entire light curve, it cannot be expected to perform well, but acts as a good
comparison to Figure 3.4. To obtain a sequence of predictions, we feed in the predicted
values back into the DNN as if they were part of the observations. The trace lines illustrate
the posterior sample predictions and the bold solid line is the median of the posterior
predictions. The panels sequentially show the predicted light curve given increasing amounts
of observational data, and each panel uses observations up to times -58, -46, -34, -22, -10, 2,
14, 26, 38, 50, and 62 days from trigger. The plots show prediction on an example simulated
SNIa.
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Fig. 3.6 The DNN being used as a predictive sequence model. Each plot uses a different one
of the six trained models and applies it to an example transient from the same class. The
trace lines show the posterior predictions and the bold solid line is the median of the posterior
predictions. The SNIa plot (first plot) is made up of each of the predictions 3 days after the
grey shaded regions in Figure 3.5. The bottom panels in each plot show the anomaly scores
(computed using equation 3.31) as a function of time. We expect the anomaly scores to be
low since these plots show example objects from the same class the models were trained on.
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Fig. 3.7 A sequence of predictions only 3 days in the future of a given partial light curve
made using the Bazin function. Each plot uses a different one of the six trained models and
applies it to an example transient from the same class. The trace lines show the posterior
predictions and the bold solid line is the median of the posterior predictions. The SNIa plot
(first plot) is made up of each of the predictions 3 days after the grey shaded regions in Figure
3.4. The bottom panels in each plot show the anomaly scores (computed using equation
3.31) as a function of time. We expect the anomaly scores to be low since these plots show
example objects from the same class the models were trained on.
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Fig. 3.8 Predictions of an example kilonova modelled with the DNN (left) and Bazin (right)
SNIa models.The plots show a sequence of predictions only 3 days in the future of the partial
light curves. The trace lines show the posterior predictions and the bold solid line is the
median of the posterior predictions. The bottom panels in each plot show the anomaly scores
(computed using equation 3.31) as a function of time.

Next, we define the Anomaly score, χ̃ , used throughout this chapter, as the square root of the
time-averaged χ2 up to the present time T ,

χ̃sT =

√
1

Navg
∑

{t≤T :(S/N)t>5}
χ2

st , Navg = |{(S/N)sT > 5}| (3.31)

where Navg is the number of time-steps with signal-to-noise greater than 5 up to the time
T , and k runs across that index. This metric is effectively the time-averaged reduced χ2 up
to time T . After some analysis (see the detailed discussion in Appendix 3.9), we identified
that the DNN overestimated the predictive uncertainty. To account for this, we scale the
predictive uncertainty with a factor c = 0.2 for the DNN. We found that the Bazin model’s
predictive uncertainties were already well-calibrated to actual predictive performance and so
use use c = 1 for the Bazin model.

This metric is used as our real-time anomaly score. Higher values indicate that the
regressive model was less able to predict future data given past data, while lower scores
indicate that the model was able to effectively predict future data.
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Fig. 3.9 The matrix illustrates the similarity of different transient classes, with lower numbers
being more similar (less anomalous), and higher numbers being less similar (more anoma-
lous). The vertical axis shows six trained models, and the horizontal axis are transients from
a range of classes. Each transient in our dataset is fit with the six models, and the anomaly
score over the full light curve is recorded. The median of the distribution of anomaly scores
for each class are the numbers shown.
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Fig. 3.10 Anomaly score distribution recorded over the full light curve for the SNIa model
tested on the transient population of ten different classes. For clarity, we have smoothed the
histograms with a Kernel Density Estimate (KDE) fit. Classes that are dissimilar to SNIa have
higher anomaly scores, while similar classes have lower anomaly score distributions. The
Bazin plot (right) shows a larger separation of the distributions of the SNIa and anomalous
classes than the DNN (right). Similar plots can be made of the other five trained models, but
are not shown for brevity.
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Fig. 3.11 Receiver Operating Characteristic (ROC) curve for each trained DNN model against
nine other transient classes. In each subfigure, we use the Model class as the reference class
and the anomalous classes as the ones denoted in the legend. The Area under the curves
(AUCs) are shown in the brackets in the legends. The plots are made by plotting the True
Anomaly Rate against the False Anomaly Rate for a range of different threshold anomaly
scores. We use the anomaly scores over the full light curves to make these plots.
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Fig. 3.12 Receiver Operating Characteristic (ROC) curve for each Bazin model against nine
other transient classes. In each subfigure, we use the Model class as the reference class and
the anomalous classes as the ones denoted in the legend. The Area under the curves (AUCs)
are shown in the brackets in the legends. The plots are made by plotting the True Anomaly
Rate against the False Anomaly Rate for a range of different threshold anomaly scores. We
use the anomaly scores over the full light curves to make these plots.
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Fig. 3.13 Area Under the Curve (AUC) vs time since trigger assuming the SNIa model as
the reference class and the anomalous classes denoted in the legend. These are made by
reproducing the SNIa-norm ROC curves in Figures 3.11 and 3.12 at all time steps since
trigger (instead of only over the full light curve) and recording the AUCs.

3.5 Results

In this section, we explore the performance of the DNN and the Bazin parametric approach at
predicting light curves and identifying anomalies on a simulated ZTF dataset. For the DNN,
we trained six autoregressive models one for each transient class: SNIa, SNII, SNIbc, Kilo-
nova, SLSN, TDE. And similarly, for the Bazin function, we defined a prior distribution for
each class. Each training set consisted of ∼8000 light curves and we tested the performance
of the models on ∼2000 light curves from each transient class.

3.5.1 Generating light curves

The DNN was designed to predict one time-step in the future given a light curve up to a
specified time. On the other hand, the Bazin model fits an entire past light curve and can
make predictions for any set of future times. However, the primary purpose of this chapter is
to predict just one time-step in the future to compare that prediction to observed fluxes (and
hence evaluate an anomaly score). Before delving into the anomaly detection results, we first
show the power of these two methods at building a generative model of a transient class.

In Figure 3.4, we illustrate the use of our Bazin parametric approach as a generative
model of an example SNIa. Each panel fits only a partial light curve (shown in the grey
region) and generates the rest of the light curve from this information. In the first panel,
where no observations are being used, we are effectively plotting the prior distribution. As
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more observations are included in the fit, predictions improve, and once the peak of the light
curve has been observed the predictions are much more accurate.

In Figure 3.5, we show the power of our DNN as a generative model of a full light
curve to compare it against the parametric approach. Of course, we note that an autoencoder
(specifically designed to fit an entire light curve) would perform much better at this task,
it is interesting to see how the network’s predictions evolve over time. As the DNN was
specifically designed to only predict one time-step (3 days) in the future and was not designed
to generate an entire light curve, we can only obtain a sequence of predictions by feeding
in the predicted values back into the DNN and iteratively predicting each consecutive time-
step in the light curve. While the predictions in the first few time-steps are accurate, the
small inaccuracies quickly compound before the predictions reduce down to the zero-flux
background prediction.

These two plots (Figures 3.4 and 3.5) illustrate how the two models differ in their approach
to the problem - one being a fitting function regressing fluxes over time and the other being a
predicting algorithm regressing future fluxes over past data. The Bazin model which was
designed as a generative model of a light curve, obviously produces much more realistic light
curves than the DNN. Forcing the DNN to generate a full light curve by iteratively inputting
predicted values back into the model produces poor predictions.

In the rest of the plots in this chapter, we only use the predictions one time-step (3 days)
in the future of a partial light curve. We emphasise that a key difference between Figures
3.4 and 3.5 and Figures 3.7 and 3.6, is that the former two figures generate an entire light
curve given some partial light curve, while the latter figures iteratively predict only the next
time-step given a partial light curve. Hence, to make the first panels of Figures 3.7 and 3.6,
we use all the subplots of Figures 3.4 and 3.5, respectively, by recording the predictions one
time-step after each panel’s grey shaded region.

3.5.2 Fit many models

Following the methods outlined in Section 3.4, we trained a separate DNN and defined a
separate Bazin prior for each of the six transient classes. In Figures 3.6 and 3.7, we illustrate
the performance of these six models on example light curves in the testing sets of each
class. The top panel of each subfigure shows the example light curve with uncertainties and
posterior draws of the predictions, with the bold line showing the median of these draws.
Each prediction is causal and hence only uses data from the previous time-steps. The bottom
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panel of each subfigure plots the anomaly score defined in equation 3.31. In most figures the
final anomaly score is close to χ = 1 indicating that the models are effective at predicting
future transients fluxes from their own class.

The Kilonova models (for both the DNN and Bazin), however, show large anomaly
scores, hinting that these are not good autoregressive models. Given the cadence of ZTF and
the time-scale of kilonova events, most light curves only have one or two significant flux
detections with a S/N > 5. Thus, at this cadence, it is not surprising that our Bazin model
and DNN, which are both causal models (that only use data prior to a given time), struggle to
learn the shape of kilonova light curves.

The DNN and Bazin model’s different approach to the regression problem causes slight
differences in the anomaly score plots. The Bazin model regresses fluxes over time to learn
the shape of each light curve as a function of time since trigger; while the DNN, on the
other hand, regresses future fluxes over past data in a light curve and does not learn anything
about time since trigger. This causes the DNN plots to have larger anomaly scores near the
explosion time of each transient because the DNN’s expectation of observing background
flux is abruptly disrupted by the transient phase of an event. Furthermore, the Bazin model
tends to have prediction light curves that are less smooth than the DNN, with some posterior
samples having large deviations from the mean. This behaviour is because the Bazin model
plots are produced from several independent fits to partial light curves.

3.5.3 Identifying anomalies

In Figure 3.8, we illustrate an example simulated kilonova with observations predicted using
the SNIa models. The poor predictions and high anomaly scores indicate that this transient
is flagged as anomalous with respect to the SNIa model - showing a first-order success in
our method. We note that most kilonovae in the dataset were similarly flagged as highly
anomalous at a similar epoch. As illustrated in Figure 3.2, the distribution of the τfall and τrise

Bazin parameters of kilonovae is much lower than the mean of the SNIa prior distribution.
Thus, the SNIa Bazin model struggles to model kilonova light curves, and in Figure 3.8 it s
dominated by this prior whereby the predicted light curves have a much larger τfall than the
data suggests, which causes a very high anomaly score. The DNN model appears to be more
flexible, and is better at predicting the example kilonova light curve, but still has a very high
anomaly score.
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To compare the anomaly scores of all transients in our data set against our trained models,
we have modelled every transient in the testing sets with each of the regressive models. Since
we obtain anomaly scores as a function of time, we record the anomaly score of each transient
over a full light curve, and report the median of all scores in Figure 3.9.

The plot highlights the similarity of each trained class to every other class, and acts as a
similarity matrix for the shown transient classes. Higher numbers indicate classes that are
more dissimilar, and lower number indicate classes that are more similar. For each trained
model, the lowest number generally corresponds to the same class, which confirms effective
training of our models, showing that each model can predict the future fluxes of transient
light curves from its own class well. The model trained on SNe Ia also has low scores for
Core-collapse SNe (SNIbc, SNII) and CARTs which highlights their similarity to SNe Ia.
Kilonovae stand out as very anomalous for every trained model, indicating that the short
lifetime and low luminosity of these classes cannot be well-predicted with the trained models.
The Bazin matrix shows starker differences between the model class and the other testing
classes, hinting that it may be better at identifying anomalies than the DNN. Overall, Figure
3.9 highlights some interesting similarities between transient classes, and confirms what may
already be known about their general behaviour. It highlights the overall performance of our
method on the testing sets, and shows that we are able to identify anomalous classes with
this method.

However, Figure 3.9 only represents the median of the anomaly scores across the testing
sets. In Figure 3.10, we plot the histograms of the full light curve anomaly scores of the
SNIa model predicting the light curves from ten different testing classes. The plot shows
that the DNN SNIa model cannot easily differentiate classes, other than the Kilonova and
uLens-BSR classes. The Bazin plot, on the other hand, shows that the anomalous classes
(Kilonova, SLSN, TDE, ILOT, PISN and uLens-BSR) all have histograms that separate well
from the SNIa class, while the classes that are known to look similar to SNIa, (SNII, SNIbc,
and CARTs) do not separate as well, consistent with expectations.

We refer to anomalies as all classes that are not from the reference class. To identify
anomalies, a threshold anomaly score would need to be chosen such that the reference class
was not flagged as anomalous but all other transient classes were flagged as anomalous. This
threshold score would need to be chosen to have the highest possible True Anomaly Rate
(TAR) while having the lowest possible False Anomaly Rate (FAR). That is, we would choose
a threshold anomaly score that correctly identified most of the transients from non-reference
classes as anomalous, while not identifying many of the transients from the reference class
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Actual Anomaly Actual Not Anomaly
Predict Anomaly TA FA

Predict Not Anomaly FNA TNA
Table 3.1 Definitions of True Anomalies (TA), False Anomalies (FA), False Not Anomalies
(FNA), and True Not Anomalies (TNA).

as anomalous. A Receiver Operating Characteristic (ROC) Curve that plots the TAR against
the FAR for a range of thresholds is a good way to visualise this trade-off.

For the purposes of explanation in this paragraph, we use a SNIa as an example of a
reference class transient and a kilonova as an example of a non-reference class transient. We
define a True Anomaly (TA) as a transient from a non-reference class that was predicted as
being an anomaly (e.g. correctly identifying a kilonova as anomalous), a False Anomaly
(FA) as a transient from the reference class that was predicted as being an anomaly (e.g.
incorrectly identifying a SNIa as anomalous), a True Not Anomaly (TNA) as a transient from
the reference class that was predicted as being non-anomalous (e.g. correctly identifying
a SNIa as non-anomalous), and a False Not Anomaly (FNA) as a transient from the non-
reference class that was predicted as being non-anomalous (e.g. incorrectly identifying a
kilonova as non-anomalous). These definitions are summarised in Table 3.1.

We then define the TAR as the ratio of the number of True Anomalies to all anomalies,
and the FAR as the ratio of the number of False Anomalies to all non-anomalous transients,
as follows,

TAR =
TA

TA+FNA
, (3.32)

FAR =
FA

FA+TNA
. (3.33)

We plot the ROC curves for each of the six trained models compared to each other class
in Figures 3.11 and 3.12. The first subfigure of Figure 3.12 illustrates that the Bazin model of
a SNIa is very effective at identifying all anomalous classes assuming SNIa as the reference
class (except for core-collapse SNe and CARTs which are known to look broadly similar
to SNe Ia) while having low FARs. The Area Under the Curves of these anomalous classes
are above 0.8. Choosing a threshold score along these curves near the inflection on the top
left point such that the FAR is low and the TAR is high will be a good choice to identifying
anomalies with respect to SNe Ia. The performance of the Bazin SNIbc model is similar and
the Bazin SNII model is only slightly worse, but similarly predicts most classes except for
common SN types as anomalous. The other Bazin models are much poorer at identifying
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anomalies (assuming the model as the reference class), with the Kilonova model being nearly
as bad as random guessing. Given that SNIa, SNII, and SNIbc are the most common types,
developing an algorithm that identifies all classes that are not these common types would
be an effective anomaly detection algorithm for most astronomers. The DNN models of the
TDE and Kilonova classes are better than the Bazin models, but are worse than the Bazin
models for the common SN classes.

The plots so far show that our method is able to identify anomalies relative to common

SN classes when using full light curves. However, what is often more important for large
scale surveys is identifying anomalies in real-time so that we can prioritise which transients
should receive follow-up observations. We have made similar ROC curves to figures 3.11
and 3.12 for every time-step since trigger instead of over the full light curve. We summarise
these for the SNIa models as a plot of the Area Under the Curve of each class as a function of
time since trigger in Figure 3.13. We can see that the AUC increases with time since trigger
and plateaus around 25 days since trigger, which is often close to the end of the transient
phase of most SNe Ia. The Bazin model clearly performs much better than the DNN model
of SNIa at identifying anomalies (except for kilonovae) at all times, where we assume SNe
Ia as the reference class.

We have decisively shown that the Bazin models of the common SN classes are sig-
nificantly better at identifying anomalies than the DNN models. In Appendix 3.10.2, we
highlight that the poor performance of the DNN compared to the Bazin model is because it
is too flexible at predicting light curves; and after being trained on one class, it is still able
to accurately predict fluxes in a different class of transients. The DNN model is actually
better at predicting the future fluxes of transients within a trained class, but is also able to
predict the future fluxes of transients from different classes well. While this flexibility allows
for good flux predictions, it is not good for anomaly detection. Future work should look at
developing a better DNN model that penalises flux predictions from anomalous transients
while rewarding flux predictions from the trained class. The remaining plots in this Section
and Section 3.16 use the Bazin framework instead of the DNN.

3.5.4 Identifying anomalies against common classes

With this many models of each transient, the question of which transient model should ideally
be used to identify anomalies remains. We have developed a framework for identifying
anomalies with respect to particular model classes. However, often astronomers are interested
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Fig. 3.14 ROC curves assuming the combination of the Bazin SNIa, SNII and SNIbc models
are the reference classes and the anomalous classes are denoted in the legend. The area under
the curves (AUCs) are shown in brackets in the legend. We use the anomaly scores over the
full light curves to make these ROC curves.

in identifying anomalies with respect to common classes. For this case, we suggest a simple
addition of the anomaly scores from the models that would be considered “common”. For
example, a good choice, might be to define the total anomaly score as the mean of the
common SNIa, SNII, and SNIbc classes, as follows,

χtotal =
1
3
(χSNIa +χSNII +χSNIbc) . (3.34)

This enables us to identify anomalies with respect to all three of these common classes.

We combine the results of the Bazin models of the SNIa, SNII, and SNIbc classes and plot
the resultant ROC curve in Figure 3.14 and the AUC vs time in Figure 3.15. The combined
model performs very well at distinguishing all classes except for CARTs with high AUCs.
As noted in Muthukrishna et al. (2019a), CARTs are difficult to distinguish from common
SNe based only on the light curves.
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Fig. 3.15 The area under the curve (AUC) vs time since trigger assuming the combination of
the Bazin SNIa, SNII and SNIbc models are the reference classes and the anomalous classes
are denoted in the legend. These are made by reproducing the ROC curve in Figure 3.14 at
all time steps since trigger and recording the AUCs.

3.6 Application to ZTF Observational data

In this section we illustrate our method being applied to real observations from the public
ZTF MSIP survey instead of simulations.

The vast majority of observed transient phenomena are Type Ia Supernovae (SNe Ia), and
it is therefore difficult to build a training set for other classes. Nonetheless, to obtain a labelled
dataset of ZTF transients, we searched the Open Supernova Catalog4 (Guillochon et al., 2017)
for objects with ZTF aliases. We collected 11278 SNe with ZTF aliases, but after removing
all unclassified events (i.e. objects classified as "Candidate", "Other", "removed", or "NT",
comprising 8413 objects), and objects with invalid or multiple conflicting classification labels
(comprising 26 objects), we were left with 2839 labeled SNe. The number of events under
each classification label were as follows: Ia: 1993, Ia-91T: 78, Ia-91bg: 14, Ia-pec: 21,
Ia-csm: 3, Ia-x: 10, II: 351, IIP: 56, IIL: 1, II-pec: 2, IIn: 87, IIb: 37, Ib: 40, Ibn: 6, Ic: 55,
Ic-BL: 31, Ibc: 9, CC: 6, SLSN: 1, SLSN-I: 23, SLSN-II: 16.

4We searched the catalog, https://sne.space/, on 22 Oct 2020

https://sne.space/
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Fig. 3.16 Comparison of the distributions of the best fit Bazin parameters for the population
of simulated ZTF light curves and the collection of real observations taken from the ZTF data
stream. We only show the parameter fits of light curves that have at least nine observations
and at least one observation before peak.
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Unlike the simulations, the real data from the ZTF MSIP data stream are distributed in
alert packets that contain magnitudes instead of flux units. We convert these magnitudes and
magnitude uncertainties to flux counts and uncertainties as follows,

F = 10−0.4(mag−26.2) (3.35)

σF = |Fσmag ×0.4log10| (3.36)

where F is the flux, mag is the magnitude in the ZTF alert packet, σF is the uncertainty in
the flux, and σmag is the magnitude uncertainty. We have selected a zeropoint of 26.2 to scale
the observations such that the flux and flux uncertainty distributions match the simulations.

We performed the same processing methods detailed in Sections 3.3 and 3.4. To compare
our simulations to the real observations, we plot the Bazin parameter distributions when fit
to the SNIa light curves from our simulations and our collected ZTF transient populations
in Figure 3.16. The SNIa simulation distributions are the same as that shown in Figure 3.2,
and the real data distributions were made by optimising the likelihood for all real SNIa light
curves that had at least nine data points and at least one point before peak. The τfall and
τrise distributions match the simulations reasonably well. However, there are a large fraction
of real light curves that have sparse data that are not well observed well before peak (to
constrain τrise) and well after peak (to constrain τfall), and hence cause τfall to be slightly
overestimated for the real data. As in Section 3.4, we choose to use the population parameter
distributions as the prior for the Bazin model. However, we have used the τfall and τrise prior
from the simulations because the parameter histograms look similar and because the missing
observations in the real light curves could lead to slight overestimations of these parameters.
The real data also has much brighter peak fluxes as indicated by the larger values of log10 (A).
This is most probably due to selection effects where brighter SNIa are more likely to have
been found and classified. The distribution on t0 is also slightly offset, mainly because the
real data do not have any pre-trigger observations as there is no available forced photometry
to get reliable non-detection fluxes.

In Figure 3.17, we illustrate the ROC curve of our method trained on real SNIa data and
tested on the other classes we have collected, where we assume SNe Ia as the reference class.
The SNII class includes all transients labelled on the OSC as II, IIP, or IIn; the SNIbc class
includes all transients labelled as IIb, Ib, Ibn, Ic, or IcBL; and the SLSN class includes all
transients labelled as SLSN-I or SLSN-II. The AUC for the SNII and SLSN classes assuming
SNIa as the reference class are 0.84 and 0.87, respectively, indicating that our approach
was very effective at identifying SNe II and SLSNe as anomalous. However, it was not
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Fig. 3.17 Receiver Operating Characteristic (ROC) curve based on a Bazin model for real
ZTF SNIa observations where we assume the SNIa class as the reference class and the
anomalous classes are the ones denoted in the legend. We test the performance of this model
on real observations of SNII, SNIbc, and SLSN classes. We use the anomaly scores over the
full light curves to make the ROC curves.
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as proficient at identifying SNe Ibc. This section has highlighted that our framework for
identifying anomalies might be reasonably effectively when applied to a collection of real
data without the use of simulations.

3.7 Conclusions

Upcoming wide-field surveys of the transient universe will probe deeper, wider, and faster
than ever before, providing an opportunity for the discovery of entirely new classes of
transient phenomena. However, discovery in astronomy has often been driven by serendipity,
whereby identifying new phenomena has fortuitously occurred after human eyes sifted
through data. With the huge amounts of data from surveys such as the LSST (expected to
observe over 10 million transient alerts each night), a methodology aimed at automating the
discovery of new transients through dedicated anomaly detection algorithms has become
necessary.

Standard supervised classification approaches are unable to deal with the scope for new
discovery offered by the wealth of data from upcoming surveys because they can only identify
transients that they have been specifically trained on. Anomaly detection algorithms enable
an opportunity to automatically flag unusual and interesting transients for further follow-up.
In this chapter, we have detailed the development of a real-time anomaly detection framework
for identifying unusual transients in large-scale transient surveys. We have built two separate
frameworks. The first is a probabilistic deep neural network (DNN) built using Temporal
Convolutional Networks aimed at predicting the next data point in a light curve. And the
second is based on a parametric fit to a partial light curve using the Bazin function (Bazin
et al., 2009), where we extrapolate a prediction 3 days after each partial light curve fit to
compare it to the DNN approach. Each of the approaches can be well optimised to deal with
the millions of alerts that ongoing and upcoming wide-field surveys such as ZTF and LSST
will produce.

Our two methods allow us to identify anomalies as a function of time, and we have
demonstrated its performances on both ZTF-like simulations and real ZTF light curves from
the public MSIP survey. In particular, we have demonstrated that we are able to identify
anomalies with respect to common supernova classes (SNIa, SNII, SNIbc) with low False
Anomaly Rates and high True Anomaly rates culminating in Area Under the ROC Curve
(AUC) scores well above 0.8 for most rare classes with the Bazin approach. Our ability to
identify anomalies improves over the lifetime of the light curves. Based on the anomaly
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scores and the epoch of discovery, our framework enables a prioritised follow-up of unusual
transients.

Both the DNN and Bazin approaches are very fast and will be easily scaleable to surveys
as large as LSST, but the DNN is considerably faster at inference time. However, while we
have shown that our DNN approach is very good at the prediction of fluxes, we have also
noted that it is too flexible to act as a good anomaly detector when compared with our Bazin
approach. The DNN method trained on a particular supernova class is able to accurately
predict supernova within that class, but is so flexible, that it makes reasonable predictions of
transients in other classes too. This flexibility means that it is not good at detecting anomalies.
On the other hand, the Bazin approach is very effective at identifying transients outside the
modeled supernova class, making it an effective anomaly detector.

In future work, we hope to apply our method on a ZTF transient broker to gauge
our success at identifying real anomalous transients. We think that applying an anomaly
detection framework in conjunction with a transient classifier will provide more valuable
information on whether a newly discovered transient is interesting enough for further follow-
up observations. An issue with this work, is that there has been no distinction between
anomalies and interesting anomalies. It is possible that without good real-bogus cuts on a
data stream, our approach may flag unusual transient phenomena that don’t align with our
trained supernova classes but are uninteresting to most astronomers. To deal with this, future
work should apply Active Learning frameworks that use methods such as Human-in-the-loop

learning that focus on specifically targeting what users define as interesting phenomena
(recent work by Ishida et al. 2019a; Lochner & Bassett 2020 have begun working on Active
Learning for anomaly detection).

Overall, this chapter presents a novel and effective method at identifying anomalous tran-
sients in real-time surveys. Anomaly detection coupled with other classification approaches
enables astronomers to prioritise follow-up candidates. Building from this work and other
recent approaches to anomaly detection is going to be hugely important for discovery in the
new era of large-scale transient surveys.

3.8 Appendix: Laplace approximation

In Section 3.4.2, we detail how the light curves are fit using a Bayesian parametric function.
We would ideally obtain distributions over the parameters for each light curve fit using
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MCMC. However, because of the how computationally intensive this would be for the many
light curves in our training set (and in large scale surveys), we resort to optimising the fit,
and approximating the posterior with the Laplace approximation.

In Figure 3.18, we compare our fits to an example SNIa light curve using MCMC and
our Laplace approximation. The parameter distributions appear well-approximated by the
Laplace approximation for all parameters except for log10 (σint). The MCMC samples
disfavour high values of log10 (σint), and have a sharp cut-off near zero. However, because
the Hessian matrix is inherently symmetrical, it does not approximate this distribution well.
The very large values of log10 (σint) lead to unrealistically large estimates of the predicted
flux. Thus, we use the mode of this parameter instead of sampling over it for all Bazin models
in this chapter.

3.9 Appendix: Analysis of predictive uncertainty

We performed the following analysis to assess the computed predictive uncertainties. We
first defined the Total-Uncertainty-Scaled Prediction Error as follows,

TUSPEspt =
(yspt −Dspt)√
c2σ2

y,spt +σ2
D,spt

. (3.37)

We note that the instantaneous anomaly score in equation 3.31 is just the average over
passbands of the squared scaled error. We plotted the distribution of the scaled error for
the SNIa model and recorded the mean and root mean square (rms) at each time-step. For
an unbiased model, the mean of the scaled error should be close to 0, and for a model that
correctly estimates the predictive uncertainty, the rms should be close to 1. We have plotted
the scaled error as a function of time since trigger for the SNIa DNN and Bazin model in
Figure 3.19. Around the early phase of the transient (before trigger) the rms and bias is large
because the models are not effective until more of the light curve has been observed. In this
work, we are mainly interested in observations after trigger, and so, we recognise that a good
model would have a rms near 1 after trigger. While the rms is good for the Bazin model, it
is too small for the DNN, indicating that the predictive uncertainty is overestimated. Our
DNN poorly estimates the predictive uncertainty, and to calibrate it, we scale it by a factor
of c = 0.2 to obtain the green plot in Figure 3.19. We made similar plots for the other five
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Fig. 3.18 Example Bazin fit parameter distributions of example SNIa light curve using
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transient models (not shown for brevity), and determined that the optimal factor to correct all
the DNN models was close to c = 0.2.

3.10 Appendix: Comparison of DNN and Bazin predictive
power

We performed the following analysis to evaluate why the DNN model was less effective at
identifying anomalies than the Bazin model. To compare the models on an even scale, we
defined the Measurement-Uncertainty-Scaled Prediction Error as follows,

MUSPEspt =
(yspt −Dspt)

σD,spt
. (3.38)

We note that this differs from equation 3.37 because we are normalising the flux prediction
error by the square-root of the measurement variance instead of the square-root of the total
variance. The scaled error in equation 3.37 would not let us easily compare between the
methods because the predictive variance differs for the DNN and Bazin model, and thus the
denominators would be different for each model. Equation 3.38, on the other hand, is just
the flux prediction error in units of the measurement error, and thus allows us to compare the
DNN and Bazin models on an even scale.

3.10.1 DNN overfitting evaluation

In Figure 3.20, we plot the distribution of prediction errors on all light curves in the DNN
SNIa training set (orange lines) and testing set (green lines). The prediction error distributions
are very similar, and add further confirmation that our DNN SNIa model has not overfit the
training set. We made similar plots and conclusions for the SNIbc, SNII, Kilonova, SLSN
and TDE models, but have not shown them here for brevity.

The blue line in Figure 3.20 shows the prediction error distributions for the Bazin model,
and it appears that they perform slightly worse than the DNN, with a slghtly wider prediction
error distribution. Hence, we conclude that the DNN is slightly better at modelling SNIa
than the Bazin model. However, this does not explain why the DNN is worse at identifying
anomalies.
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3.10.2 DNN vs Bazin

To analyse why the SNIa Bazin model is better than than the DNN at identifying anomalies,
we plot the prediction errors for the SNIa models applied to each of the other transient classes
for Bazin and DNN in Figures 3.21 and 3.22, respectively. We expect that the SNIa models
should predict the SNIa light curves best, and indeed, we see that these blue lines for the
SNIa have nearly the best prediction error distributions. In Figure 3.21, the prediction errors
are significantly worse for the more anomalous classes (SLSNe, TDEs, PISNe, ILOTs) with
deviations ranging up to 5 sigma. However, the prediction errors for these classes in the
DNN are much smaller, not much more than 1 sigma deviations. This indicates, that the
Bazin model is much worse at predicting these anomalous classes than the DNN, and hence
is better at identifying them as anomalies, despite Figure 3.20 highlighting that the SNIa
DNN model is better able to predict SNIa.
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Chapter 4

Classifying photometric light curves on
real data

4.1 Overview

In Chapter 2, I developed a novel method of performing real-time classification of photometric
light curves for upcoming and ongoing transient surveys. The results predominantly showed
its application to simulations of the Zwicky Transient Facility (ZTF). In this chapter, I present
the first real-time transient classifier that is designed for real data applications. I apply it
to observations from the Pan-STARRS1 (PS1) photometric survey, the public ZTF MSIP
survey, improved ZTF simulations (taking care of some issues with the original PLAsTiCC
simulations), and a cosmological sample from the Foundation survey. I improve upon the
previous RAPID methodology with the lessons learned in Chapters 2 and 3. In particular,
I use a neural network architecture based on Temporal Convolutional Networks and use
new data augmentation methods, developed by Boone 2019, that use Gaussian Processes to
simulate new light curves. This new method helps to train classifiers on real datasets that are
smaller than the previously used simulations.

I trained three classifiers on each of the following datasets:

1. PS1 spectroscopically-confirmed supernovae from Villar et al. (2020a),
2. Our collection of real transients from the ZTF MSIP public survey, and
3. PLAsTiCC-like ZTF simulations (improved from those used in Chapter 2).
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We obtained excellent success on our PS1 classifier, obtaining average AUC scores of 0.98
only a few days after transient detection, which is a significant improvement over previous
research. Applying our PS1 classifier to the 180 SNe Ia used in the Foundation Supernova
Survey’s cosmological sample (Foley et al., 2018b), we found that we could obtain a 100%
pure sample of SNe Ia with a completeness of 91% by setting RAPID’s SNIa acceptance
threshold probability to 0.57. Our results use only the photometry and impressively shows
that future cosmological surveys may be able to rely on photometry for a high-precision
sample of SNe Ia.

Our ZTF classifier trained on real observations from the public survey achieved good per-
formance, obtaining average AUC scores of 0.86 and 0.95 at detection and over the full light
curve, respectively. Our last classifier trained on ZTF simulations improved upon the perfor-
mance shown in Chapter 2. In particular, our use of the new, more realistic core-collapse
supernova (CCSN) models from Vincenzi et al. (2019) resulted in better classifications of
CCSNe. On the simulated testing set, we achieved excellent early classification performance
with an average AUC score above 0.97 shortly after trigger. However, despite the improve-
ments in our simulations, we found that the performance of the simulated ZTF classifier on
our collection of real ZTF observations was poor, achieving an overall accuracy of 64% over
the full light curves. We conclude that until simulations improve further, classifiers should be
trained on real data if they are to have success on real observations.

We end the chapter by analysing the effect of observing strategy and in particular colour
information on classification performance. We demonstrate that the inclusion of i-band in
addition to the gr passbands in Pan-STARRS significantly improves classification perfor-
mance, especially for SNe Ia. We also show that a classifier trained on griz passbands is only
marginally better than a classifier trained on only gri passbands, indicating that the additional
z-band information is not very important for classification. This last section should prove
informative for future surveys’ decisions on which passbands should be included and for
ongoing debates within the LSST community on optimal observing strategies.

4.2 Introduction

Current and next generation astronomical surveys focused on time-domain observations will
produce unprecedented amounts of data. Pan-STARRS has already released the first ever
Petabyte-sized data release (Flewelling et al., 2020), the ZTF is currently generating up to
400,000 transient alerts per night (Graham et al., 2019), and the upcoming LSST is expected



4.2 Introduction 133

to produce up to 100 times more (Ivezić et al., 2019). To process these data and distribute
them in real-time to the astronomical community, several transient brokers have emerged to
assist the community in identifying interesting transients and to selectively trigger follow-up
observations (see Section 1.5 on transient brokers). The UK-based Lasair (Smith et al., 2019),
USA-based ANTARES (Saha et al., 2016), and Chile-based ALerCE (Förster et al., 2020)
are three of the largest and well-funded brokers dedicating efforts to preparing for the huge
data volume of LSST. They are each currently processing alerts from ongoing surveys such
as ZTF and Pan-STARRS.

Pivotal to these transient brokers is an effective real-time classifier capable of identifying
potentially interesting transient alerts and distributing these to the community to enable a
prioritised follow-up of transients. RAPID (detailed in Chapter 2 and Muthukrishna et al.
2019a) was one of the first such attempts at developing a real-time classifier capable of
dealing with these huge data volumes. However, RAPID and other transient classifiers have
only demonstrated their performance on simulations, rather than real data streams. Recent
work such as Hosseinzadeh et al. (2020) and Villar et al. (2019) have pointed to this as a
major issue in the literature of transient classifiers.

In fact, nearly all transient classifiers built to date (e.g Boone, 2019; Charnock & Moss,
2017; Ishida et al., 2019a; Möller & de Boissière, 2020; Muthukrishna et al., 2019a; Richards
et al., 2012) have relied on simulated data for their training sets. However, the use of
simulations implies that we understand the underlying population of each transient class or
understand the generative model producing explosive transient light curves. But, with the
absence of large datasets, it may not be a reasonable assumption that our simulations are a
good representation of the diversity of transient light curves that new surveys will observe, or
that our simulations are able to account for the diversity caused by actual survey conditions.
Throughout this chapter, we highlight how we have tried to make our simulations as realistic
as possible, and also some issues where our simulated light curves fall short of being good
representations of real transient light curves.

There are several reasons for why most classifiers have relied on simulations for their
training sets. One of the biggest is that we have not observed enough transients to get a large
enough training set. The only class of transients where we might have a large enough sample
of light curves that might resemble the true underlying diversity of the population is Type Ia
Supernovae (SNe Ia). While SNe Ia are not as intrinsically common throughout the universe
as Core-collapse Supernovae (CCSNe), they are observed in much higher quantities because
of how bright they are in the optical wavelengths, and because of the many cosmological
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surveys that have dedicated efforts to finding large samples of SNe Ia (e.g. The Dark Energy
Survey (DES, Dark Energy Survey Collaboration et al., 2016), The Foundation Supernova
Survey (Foley et al., 2018b), The Supernova Legacy Survey (SNLS, Davis et al., 2007), and
ESSENCE (Astier et al., 2006)).

However, even our observations of SNe Ia lack data at early times in a light curve, and
simulations struggle to accurately model the early explosion time of supernova light curves.
As discussed in Chapter 1, the progenitor and explosion mechanism of SNe Ia remains
poorly understood, despite the wealth of research into modelling these events and their
use in cosmology. Recently, the Young Supernova Experiment (YSE, Jones et al., 2021b),
has begun searching for early-phase transients using the Pan-STARRS telescopes to better
understand SNe progenitors (see Section 1.4 for a summary of YSE). For this reason among
others, it is ever more important that we have real-time classifiers that can find transients at
early times.

The use of simulated datasets for classification has remained because it acts as a reliable
way to assess the performance of new classifiers. Supernova classification challenges such as
the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC, The
PLAsTiCC team et al., 2018, see Section 1.6), and the Supernova Photometric Classification
Challenge (SNPhotCC, Kessler et al., 2010b) have developed simulations of a range of
transient classes. These well-built simulations and classification challenges have enabled
their widespread use for classification so that the performance of new classifiers can be easily
evaluated and assessed against the simulations and previous work. While these photometric
classification challenges have enabled fruitful new research and the development of novel and
advanced techniques, they have also had the unwanted consequence that very little research
has been put toward building classifiers trained on real data. Instead, most research has
(perhaps unwisely) assumed that the algorithms trained on simulations can easily be adapted
for use on real data. However, very little work has gone on to adapt these classifiers for
applications to real data, and these photometric challenges based on simulations have been a
distraction from the more difficult challenge of classifying real data.

Consequently, few classifiers have demonstrated their performance on real surveys for this
reason among others. Recently, Hosseinzadeh et al. (2020) and Villar et al. (2020c) (hereafter
called H20 and V20, respectively) have built classifiers trained on real Pan-STARRS data.
Both H20 and V20 use a Random Forest classifier similar to the one we developed in section
2.7. However, they differ in how they extract features from the light curves to use in the
Random Forest. H20 first fits each light curve with the parametric function from Villar
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et al. (2019) (which is an improved version of the Bazin function used in Chapter 2), and
extracts the parameters from the model in each passband as features. They apply Principal
Component Analysis (PCA) to their collection of model parameters, and use the first six
principal components as features for their Random Forest classifier. On the other hand,
V20 interpolates each light curve with a Gaussian Process (GP), before training a Recurrent
Variational Autoencoder Neural Network (RAENN) on the GP light curves (similar to the
classification work on variable stars by Naul et al. (2018)). The advantage of the RAENN
is that it is unsupervised, and so they use both an unlabelled set of photometric supernovae
as well as a labelled set of spectroscopically-confirmed supernovae to train the RAENN.
V20 then extracts features from the encoded layer of the RAENN for the set of labelled
supernovae, and trains the Random Forest classifier on these sets of features. These classifiers
are the first to train on real supernovae from the Pan-STARRS survey. However, they are
limited because they are retrospective classifiers, in that they require the full light curve to be
observed before providing reliable classifications of transients.

In this Chapter, we improve RAPID and develop real-time classifiers that, for the first
time, are aimed at performing well on real data streams. We build classifiers for Pan-STARRS
and ZTF, and compare their performance when trained on simulations and real observations.
In Section 4.3, we describe the data our classifiers are built from. In Section 4.4, we improve
the RAPID architecture from the lessons learned in the first two chapters, and outline our new
architecture and data augmentation method for classifying real data. In Section 4.5, we detail
the results of our classifier on real data, compare our PS1 classifier to other author’s research,
and illustrate how RAPID can be used to obtain high-precision samples of supernovae
for cosmology without requiring spectra. In Section 4.6, we analyse the effect of survey
observing strategy and the impact of different Pan-STARRS passbands on classification
performance. We conclude and highlight future directions of this research in Section 4.7.

4.3 Data

4.3.1 Pan-STARRS data

The Panoramic Survey Telescope and Rapid Response System Telescope 1 (Pan-STARRS1
or PS1, Chambers et al., 2016) is a 1.8m diameter wide-field survey telescope located near
the summit of Haleakala in Hawaii. It uses a 1.4 gigapixel camera with a 7.1 deg2 field of
view to survey the northern sky in five passband filters, grizy. The PS1 Medium Deep Survey
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(MDS), one of several surveys running on Pan-STARRS, revisited 10 single-pointing fields
covering a total sky-area of approximately 70 deg2 in four passband filters griz from 2010
to 2014. The MDS fields consisted of about 25% of the overall survey observing time, and
were observed with an approximately 3-day cadence in each passband with a 5σ limiting
magnitude of ∼ 23.3 per visit. Due to weather and other conditions, Scolnic et al. (2018)
found that the average cadence was closer to 6-7 days in each passband. The survey typically
observed the g and r passbands on the same night, followed by the i and z passbands on
subsequent nights.

In this chapter, we use the supernova light curves collected and processed by V20 taken
from the dataset available on Zenodo (Villar et al., 2020a). The dataset consists of 5243
SN-like objects from the PS1-MDS where only events with at least three observations with a
S/N > 4 were used. V20 processed the PS1 data using photpipe (Rest et al., 2005, 2014;
Scolnic et al., 2018), and performed image subtraction using HOTPANTS (Becker, 2015) before
performing forced point-spread function (PSF) photometry on the centroid of the images.
They determined the redshifts from spectra of the host galaxies of each transient. V20 then
cut objects with poor redshift estimates, and ones that were variable over multiple seasons and
were hence unlikely to be supernovae. The full processing method is detailed in Section 2 of
their paper. After processing and selection cuts, the final sample includes 2885 transients with
redshift estimates. Within this collection, 557 supernovae were spectroscopically-confirmed
and observed in real-time throughout the survey.

H20 uses the 557 spectroscopically-confirmed supernovae as the training set for their
supervised Random Forest classifier before testing their classifier’s performance on 2315
transients. Similarly, V20 uses the 557 spectroscopically-confirmed supernovae as the
initial labelled training set for their semi-supervised classification approach before using the
unlabelled supernovae to help train the classifier. Both of these classifiers require the full
phase coverage of transients before providing classifications, which is unlike RAPID that
provides real-time classifications. Nevertheless, to compare our classifier to these works, we
similarly only use the 557 spectroscopically-confirmed supernovae to train our algorithm
before testing our classifier’s performance on the remaining unlabelled transient light curves.

The class distribution of these 557 spectroscopically-confirmed supernovae is illustrated
in Figure 4.1.
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Fig. 4.1 The distribution of transients across the five labelled classes in our collection of PS1
spectroscopically-confirmed supernovae.

4.3.2 ZTF simulations data

The Zwicky Transient Facility (ZTF, Bellm et al., 2019) is a new optical synoptic survey on
the 48-inch Schmidt telescope situated on the Palomar Mountain Range in California, USA.
It has a very wide field of view camera (57 deg2) that allows it to regularly scan the entire
northern sky at a depth of 20.5-21 mag per visit (Graham et al., 2019). The ZTF Mid Scale
Innovations Program (MSIP) is the public survey that streams up to one million transient
alerts each night in two passband filters (gr) with an intended cadence of 3 days per filter.

In this chapter, we use improved versions of the PLAsTiCC-like ZTF simulations built
for Chapters 2 and 3. Several changes have been made from the previous simulations to fix a
range of issues, these changes are detailed in the following subsections.

4.3.2.1 Updated Core-collapse Supernova models

As described in Kessler et al. (2019), the core-collapse supernova models developed for the
PLAsTiCC simulations were created using augmentations to observed supernova light curves
and empirical models. A time-series of spectral energy distributions (SEDs) were developed
using observed CCSN light curves from the Sloan Digital Sky Survey (SDSS) and the
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Carnegie Supernova Project (CSP). Light curves were simulated from this SED to generate
some of the CCSNe used in PLAsTiCC. Further light curves were developed by empirically
simulating a time-series of SEDs using the MOSFiT software package (Guillochon et al.,
2018b). MOSFiT takes in a number of physical parameters such as the supernova ejecta mass,
ejecta velocity, and information about the circumstellar material surrounding the supernova.
The parameters used to generate the SED simulations were taken from the theoretical models
developed in Villar et al. (2017).

Problems with these CCSN simulations were noted after these simulations were published
and used in PLAsTiCC and RAPID. In private communications with Dr Maryam Modjaz1,
she highlighted an inconsistency between the PLAsTiCC light curves and real observations
of CCSNe. In particular, she noted that our simulations often have SNIbc light curves that
are wider than SNII light curves. This issue is visible in the example light curve simulations
plotted in Figure 2 of my RAPID paper (Muthukrishna et al., 2019a) (also reproduced in
Figure 2.2 in Chapter 2). However, Dr Modjaz notes that all observations of CCSNe point
to the opposite conclusion, and she has produced Figure 4.2 to exemplify this (published in
Figure 2 of Modjaz et al. 2019). Figure 4.2 plots example SNII and SNIbc light curves in the
V -band, illustrating the photometric diversity of CCSNe. In particular, the figure highlights
the general trend that stripped-envelope supernovae (SNe Ibc) have narrower light curves
than SNe II, contrary to light curves from the original PLAsTiCC models.

This issue might explain RAPID’s poor performance on classifying CCSNe as illustrated
by the RAPID performance metrics illustrated in Figures 2.6-2.11 from Chapter 2. In this
chapter, we have replaced the CCSN models described above with new models from Vincenzi
et al. (2019). These new models use a completely data-driven approach with no assumptions
of any parametric form for light curves. They use photometric and spectroscopic data from
67 CCSNe to generate time-series spectral templates. These templates were integrated into
SNANA and we have recently included them in the PLAsTiCC modelling code-base. Using
these models, we have simulated a range of Type II, IIn, IIb, Ib, Ic, and Ic-BL supernovae to
include in our training set.

4.3.2.2 Updated Observing logs

The PLAsTiCC code-base incorporates survey conditions, including the weather, cadence
properties, seeing, clouds, sky brightness, and telescope maintenance downtime, to simulate

1Professor of Astrophysics at NYU, https://as.nyu.edu/faculty/maryam-modjaz.html

https://as.nyu.edu/faculty/maryam-modjaz.html


4.3 Data 139

0 100 200 300
Days from explosion

−20

−18

−16

−14

−12

−10

A
b

so
lu

te
V

m
ag

n
it

u
d

e

Type II supernova diversity

SNe II (Anderson+14)

SN 1987A (II-Peculiar)

OGLE-2014-SN-073 (I-band)

iPTF14hls (r-band)

0 50 100 150
Days from explosion

−21

−20

−19

−18

−17

−16

−15

−14

−13

SN 2005bfSN 2005bf

Stripped envelope supernova diversity
SNe IIb (Stritzinger+18, Taddia+18)

SNe Ib (Stritzinger+18, Taddia+18)

SNe Ibn – Template (Hosseinzadeh+17)

SNe Ic (Stritzinger+18, Taddia+18)

SNe Ic-BL (Stritzinger+18, Taddia+18)

SN1993JSN1993J

Fig. 4.2 Photometric diversity of SNII (left figure) and SNIbc (right figure) light curves in
the V -band. The plots illustrate the general trend that stripped-envelope supernovae (SNe
Ibc) have much narrower light curves than SNe II. This highlights an issue with the original
PLAsTiCC models as highlighted by the opposite trend shown in Figure 2.2. Image is taken
from private communications with Dr Maryam Modjaz and was published as Figure 2 of
Modjaz et al. (2019).
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light curves that more realistically match observations. When we first developed the ZTF
simulations for RAPID in 2018, ZTF had only been running for just under 1-year, and so,
we included the ZTF observing conditions from 1-year’s worth of observations into the
PLAsTiCC model. Our new simulations incorporate the observing conditions from nearly
3-years of ZTF and use an updated observational efficiency file, which should provide more
realistic simulations that match the ZTF survey conditions. We obtained these files from
Eric Bellm2, and my collaborators, Patrick Aleo and Gautham Narayan3, created these new
simulations from the PLAsTiCC code-base.

4.3.2.3 Updated SNIa-91bg models

In Section 4.2.2 of Kessler et al. (2019), they note that after publishing the PLAsTiCC
models, a mistake in the code meant that the SNe Ia-91bg were not modelled with enough
variation. Specifically, only a single stretch value was used instead of a continuous range
when simulating SNIa-91bg light curves. This meant that the simulated SNIa-91bg light
curves only accounted for a small subset of the underlying population of SNe Ia-91bg
expected in real data; thus meaning that if compared against real data, many observed SNe
Ia-91bg would not match the simulated dataset.

In January 2021, this software bug was fixed (PLASTICC Team & PLASTICC Modelers,
2021), and we have incorporated these new PLAsTiCC models into our ZTF simulations
used in this Chapter.

4.3.2.4 Updated SNIa-x models

A recent analysis of new supernova observations from the Dark Energy Survey, by Vincenzi
et al. (2020), has compared supernova modelling parameters from simulations such as
PLAsTiCC with observed data. Among many other trends, the analysis found that the B−V

colour distribution at B-band peak for SNe Iax has a much wider distribution than the original
PLAsTiCC models (this is illustrated clearly in Figure 4 of Vincenzi et al. 2020). To fix
this, the latest PLAsTiCC models (PLASTICC Team & PLASTICC Modelers, 2021) use
dust extinction to introduce variation in the colour of the models. They use a reddening

2Survey scientist for ZTF and Professor of Astronomy at the University of Washington https://faculty.
washington.edu/ecbellm/

3Graduate student and Professor of Astronomy at the University of Illinois Urbana-Champaign, respectively
https://astro.illinois.edu/directory/profile/paleo2

https://faculty.washington.edu/ecbellm/
https://faculty.washington.edu/ecbellm/
https://astro.illinois.edu/directory/profile/paleo2
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E(B−V ) = 0.09 with RV = 3.1 and use the extinction law from Cardelli et al. (1989) to
correct the simulated SNe Iax for dust extinction and thus reproduce simulations that more
closely match the colour diversity of observed SNe Iax.

4.3.2.5 Updated Kilonova models

The original PLAsTiCC models (presented in Kessler et al. (2019) and used to simulate the
ZTF transients in the previous chapters) simulated kilonovae using a set of SED time-series
models of Binary Neutron Star mergers from Kasen et al. (2017). Since there has only been
one kilonova event observed (GW170817, Abbott et al. 2017c), the diversity of kilonovae
expected to be observed from new surveys is unknown. The models from Kasen et al. (2017)
provide a theoretical model based on three parameters: the ejecta mass, ejecta velocity and
lanthanide fraction of kilonovae. The original PLAsTiCC models used a uniform distribution
of parameters close to the parameters of the observed GW170817 event, to simulate a diverse
range of kilonovae.

In this chapter, we use the latest PLAsTiCC models (PLASTICC Team & PLASTICC
Modelers, 2021) that use newer kilonova models from Bulla (2019) as well as the previous
models from Kasen et al. (2017). The models from Bulla (2019) use a different modelling
approach that uses four parameters: the ejecta mass, the temperature one day after the
neutron star merger, the observer viewing angle, and the opening angle of the lanthanide-rich
component. These two sets of models will ideally provide a more diverse range of kilonovae
that encompass the expected diversity of observed light curves from upcoming surveys.

4.3.2.6 Simulated dataset

After including the new PLAsTiCC models in our ZTF-like simulation code-base, we
simulated approximately ∼ 10,000 ZTF transients in each of the following classes: SNIa,
SNII, SNIbc, SNIa-91bg, SNIa-x, Kilonova, and SLSN-I. These simulations once again
mimicked the observing properties of the ZTF MSIP survey with a target cadence of 3-days
in the g and r passbands. As described in the previous chapters, each simulated transient
includes the host-galaxy redshift, sky position, Milky Way dust reddening, and a time-series
in the g and r ZTF passbands of the observed fluxes, flux uncertainties, and a flag indicating
whether the flux was a detection or non-detection. We do not include a few of the rarer
classes (point-Ia, PISN, ILOT, and CART) included in the first version of RAPID, because
we have observed too few of these transients to trust their light curve models, they are likely
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to be very rare in ZTF, and we think that anomaly detection frameworks such as the ones
detailed in Chapter 3 are better suited to identifying such objects.

4.3.3 ZTF real data

The Zwicky Transient Facility has been observing transients since 2017, and has successfully
identified several thousand supernovae. When RAPID was developed, ZTF had not yet
identified many supernovae, and thus it was not feasible to use real observations to train a
classification algorithm. To obtain a labelled set of ZTF transients, we opted to use the wealth
of transients labelled by the astronomical community. We searched the Open Supernova
Catalog (OSC)4 (Guillochon et al., 2017) for objects with ZTF aliases, and after removing
all events without listed supernova classifications, we obtained 2839 labelled supernovae.
The vast majority of the observed transients were labelled as a SNIa or a SNIa subtype and
consisted of 75% of the labelled transients. The distribution of the transients in four broad
classes is illustrated in Figure 4.3, and the distribution of transients for each labelled transient
class (except for those labelled ‘Ia’ which comprise 1993 objects) is illustrated in Figure 4.4.

We downloaded the light curves and transient data from the LASAIR alert broker (Smith
et al., 2019). Unlike the ZTF simulations, the real data from the ZTF MSIP data stream are
distributed in alert packets that contain magnitudes instead of flux units. We convert these
magnitudes and magnitude uncertainties to flux counts and uncertainties as follows,

F = 10−0.4(mag−zpt)

σF = |F(100.4σmag −1)|
(4.1)

where F is the flux, mag is the calibrated PSF-magnitude in the ZTF alert packet, σF is the
uncertainty in the flux, σmag is the magnitude uncertainty, and zpt is the zeropoint that we
use to scale all fluxes.

In the previous applications of RAPID to real ZTF observations, we misunderstood the
calibration method in the ZTF alert packet and mistakenly used the associated zeropoint
magnitude for zpt in equation 4.1. Since the mag in the alert packet is already calibrated,
using the zeropoint from the alert packet effectively uncalibrates the flux measurement. Thus,
our previous approach on applying RAPID to real data will produce erroneous results. This
issue was pointed out to us in private communications with Prof Stephen Smartt and Michael

4We searched the catalog, https://sne.space/, on 22 Oct 2020

https://sne.space/
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Ibc (178)

SLSN (39)

Fig. 4.3 Distribution of real ZTF transients with the light curves downloaded from the
LASAIR alert broker (Smith et al., 2019) and the labels sourced from the Open Supernova
Catalog (Guillochon et al., 2017). The transient labels are grouped into four broad types in
the pie chart: Ia (including transients labelled as Ia, Ia91T, Ia91bg, Iacsm, Iapec, and Iax),
II (including transients labelled as II, IIL, IIP, IIn, IIpec, and IIb), Ibc (including transients
labelled as Ib, Ibn, IIb, Ic, IcBL, Ibc), and SLSN (including transients labelled as SLSNI and
SLSNII).
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Fig. 4.4 Distribution of real ZTF transients with the light curves downloaded from the
LASAIR alert broker (Smith et al., 2019) and the labels sourced from the Open Supernova
Catalog (Guillochon et al., 2017). The SNe Ia are not shown in the pie chart because they
comprise 1993 objects, account for 70% of the dataset, and would make it difficult to see the
other classes. Mostly consistent with the colours from Figure 4.3, the Ia, II, Ib, Ic, and SLSN
subclasses are shown in shades of blue, orange, purple, green, and grey respectively.
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Fulton5, researchers who have worked on implementing RAPID into the LASAIR transient
broker. They ran an analysis on RAPID applied to real ZTF data, and highlighted some
problems with RAPID’s ability to classify real ZTF transients.

In this chapter, we retrain RAPID on improved simulations and retrain on real data to
fix the issues pointed out in Prof Smartt and Michael Fulton’s analysis. We improve upon
the mistake in Chapter 2 when applying RAPID to real data, and note that the zeropoint
selected for equation 4.1 is arbitrary and will just have a scaling effect that should not affect a
classifier trained on real observations. However, if we wish to apply our classifier trained on
ZTF simulations to this real dataset, then we should adjust the zeropoint to match the scaling
of the simulated light curves. The following subsection details our method for selecting a
zeropoint.

4.3.4 Comparison of ZTF SNIa simulations and real data

To match the scaling of the real data to the simulations, we analyse the SNIa flux distributions
for the PLAsTiCC simulations detailed in Section 4.3.2 and the collection of real ZTF data.
Since we do not have a large enough collection of real observations from the other transient
classes, we only compare the SNIa distributions, and assume that the zeropoint scaling that
is most effective for this class will be the same for the other classes.

In Figure 4.5, we plot the flux uncertainties against the fluxes for all the SNIa observations
in our simulated dataset (blue lines) and our collected real data (orange lines). We varied
the zeropoint of the real data observations in equation 4.1 until the distributions visually
overlapped as much as possible. After a range of zeropoint selections, we determined that
setting the zeropoint of the real SNIa observations to zpt = 26.2 led to the closest matching
distributions in the flux uncertainty vs flux space in both the g and r passbands. We fit each
distribution with a Kernel Density Estimation (KDE) so that the distributions were smoother
and could be more easily compared.

While the population distributions overlap quite well, we notice that the median of the
distributions in the real data are slightly brighter than the simulations in both the g and r

bands. This bias is to be expected because brighter supernovae are more likely to be classified
than fainter events in the collection of real observations. This trend is particularly obvious if
instead of plotting the fluxes and flux uncertainties, we plot the peak flux and corresponding

5Professor of Astrophysics and PhD Student at Queen’s University Belfast https://pure.qub.ac.uk/en/
persons/stephen-smartt

https://pure.qub.ac.uk/en/persons/stephen-smartt
https://pure.qub.ac.uk/en/persons/stephen-smartt
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Fig. 4.5 Comparison of the flux and flux uncertainty distributions for the ZTF SNIa simula-
tions and real data in the g-band (left) and r-band (right). We set the zeropoint of the real
ZTF MSIP observations to zpt = 26.2. We have used a Kernel Density Estimation (KDE) to
help visualise the distributions. The 1D marginal distributions of the flux and uncertainty are
plotted above and to the right of the plot, respectively.

uncertainty for each SNIa light curve in our datasets as in Figure 4.6. Here, we see that most
real SNe Ia have a peak flux that is brighter than the median of the simulated SNIa peak
fluxes in both the g and r passbands. However, the real data contours are entirely within the
simulated KDE contours, indicating that the brighter SNIa simulations are able to model
light curve peak fluxes seen in real observations.

In Figure 4.7, we plot the distribution of peak fluxes against redshifts for the simulated
and real SNe Ia. These plots make it clear that our collection of real ZTF SNe Ia have a
much lower redshift distribution than what we expected from simulations. This might be
explained by the previous point that our collection of real labelled transients are biased to be
brighter objects with a higher signal-to-noise, since these are more easily classified. Lower
redshift supernova typically have a higher signal-to-noise, and are more easily classified.
However, if the simulations accurately represented the distribution expected from real data,
we would expect that the real data contours would lie within the simulated contours. Instead,
it appears that there are a sizeable collection of real SNe Ia at low redshift that have a lower
peak flux than we expected from our simulations. This mismatch in distribution shape may
explain some of the issues in classifying real supernova from our classifier trained on these
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Fig. 4.6 Comparison of the peak flux and peak flux uncertainty distributions for the ZTF SNe
Ia simulations and real data in the g-band (left) and r-band (right). We set the zeropoint of
the real ZTF MSIP observations to zpt = 26.2. We have used a Kernel Density Estimation
(KDE) to help visualise the distributions. The 1D marginal distributions of the peak flux and
uncertainty are plotted above and to the right of the plot, respectively.
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Fig. 4.7 Comparison of the peak flux and redshift distributions for the ZTF SNe Ia simulations
and real data in the g-band (left) and r-band (right). We set the zeropoint of the real ZTF
MSIP observations to zpt = 26.2. We have used a Kernel Density Estimation (KDE) to help
visualise the distributions. The 1D marginal distributions of the peak flux and redshift are
plotted above and to the right of the plot, respectively.
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simulations later in this chapter. I have shared these results with the PLAsTiCC team, and in
the upcoming PLAsTiCC v2.0, these issues will aim to be resolved.

4.4 Method

4.4.1 Data Augmentation

In Figures 4.1, 4.3, and 4.4, it is obvious that not only do we have a small collection of
observed transients to train a classifier, but also, there are very few examples of some transient
classes. The collection of transients in our real datasets are biased towards bright and low-
redshift objects (this is evident in Figure 4.7). The reason for this bias is because brighter
and lower redshift objects are typically easier to obtain spectra and classify.

Previous research has concluded that training photometric classifiers on a biased spec-
troscopically confirmed dataset performs very poorly when compared to training on data
that is more representative of the variety of observations expected in photometric surveys
(e.g. Lochner et al., 2016). Many authors (e.g. Karpenka et al., 2013; Lochner et al., 2016;
Richards et al., 2012) have advocated that future spectroscopic surveys should prioritize
faint objects for spectroscopic targeting in an attempt to make spectroscopically-confirmed
datasets more representative of objects observed in photometric surveys. Recently, Ishida
et al. (2019b) has proposed a framework that selects the most informative objects that should
be followed up spectroscopically in order to optimise supernova photometric classification.
They demonstrate that by spectroscopically targeting objects that a classifier is most un-
certain about, and retraining photometric classifiers with these newly labelled objects, the
performance of photometric classifiers can improve greatly. Thus, prioritised follow-up using
active learning frameworks, such as that proposed by Ishida et al. (2019b), will improve the
performance of classifiers in the future.

However, given the bias of current observed datasets and the small numbers of objects
available, it is challenging to train a classifier that learns the underlying diversity of data
in each transient class. While we may have enough SNe Ia to inform a good SNIa training
set, there are likely not enough transients from the rarer classes to represent the variety of
light curves expected in new observations. Previously, we have dealt with this by resorting to
simulations of transients. However, in this chapter we aim to build and compare the perfor-
mance of a classifier trained on only real data. We thus instead resort to data augmentation
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techniques that will help increase the size of our training set, and ideally make a training set
that is more representative of the diversity of transients we expect from future observations.

The recent transient classification challenge, PLAsTiCC, had over 1000 classification
entrants with a wide range of different algorithms (Hložek et al., 2020, see Section 1.6).
The PLAsTiCC dataset had a class imbalance to represent the expected distribution of
transient classes observed from LSST in the first 3-years of observations. Thus, central to
the approaches that performed well at the challenge was good data augmentation techniques
that helped train an algorithm to perform well on unseen test data. The winning algorithm
was proposed by Kyle Boone and is described in Boone (2019). One of the key parts of
his algorithm that enabled him to outperform the other teams was his unique light curve
augmentation method. His algorithm’s performance on unseen data demonstrated an ability
to learn the diversity of data in the testing set despite a limited training set.

4.4.1.1 Gaussian Process Augmentation Method

In this chapter, we apply a similar data augmentation method described in Boone (2019) to
our imbalanced real PS1 and ZTF training sets. We adapt the data augmentation methods
in the open-source code, Avocado6, released in Boone (2019) for our work. Pivotal to the
augmentation method is to first fit a Gaussian Process (GP) to each light curve. Previously,
Lochner et al. (2016) and Revsbech et al. (2018) introduced using GPs for astronomical
transient classification. These methods evaluated separate GPs for each band of the light
curve. Boone (2019) instead uses a GP in both time and wavelength to fit the light curve in
all passbands simultaneously, and thus take cross-band information into account.

We use the george package (Ambikasaran et al., 2015) to construct a GP that is a smooth,
continuous function that interpolates the discrete, irregularly sampled, and noisy data points
of each light curve. We use a 2-dimensional Matern kernel and use maximum likelihood
estimation to fit both the amplitude and time length scale parameters for each transient. As
in Boone (2019), we fix the length scale in wavelength to 6000Å because with only a few
passbands it is not possible to reliably fit the wavelength length scale. In Figure 4.8, we plot
an example of our GP’s interpolation of a SLSN light curve from our PS1 training set. We
use the same kernel to fit a GP to all transients in our PS1 and real ZTF training sets.

We use the GP fits to generate several augmented versions of each light curve until we
reach a balanced dataset with 5000 light curves in each class. We simulate each transient at

6https://github.com/kboone/avocado

https://github.com/kboone/avocado
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Fig. 4.8 Example Gaussian Process interpolations of a SLSN from the PS1 spectroscopically-
confirmed dataset. The data is shown with uncertainties, the solid line is the mean of the GP
flux predictions for each passband, and the shaded region shows the 1σ variations of the GP
predictions.

different redshifts, by resampling its light curves at different times, and by adding noise to
the measurements. Our complete augmentation method adapted from Avocado is detailed as
follows.

We first choose a new random redshift znew based on the observed redshift zoriginal from
a log-uniform distribution in the range 0.95zoriginal < znew < 5zoriginal. Following Boone
(2019), we also restrict the possible shift in wavelength to 50% so that the GP doesn’t have
to extrapolate too far from where data is available. We impose this as an additional upper
bound on the redshift of (1+ znew)< 1.5(1+ zoriginal). The lower bound on the redshift helps
avoid making faint objects too bright and thus prevents the newly simulated observations
from being dominated by large uncertainties. The upper bound on the redshift helps to avoid
generating objects that would be too faint to be detected by a telescope.

Next, we select new observation times for the generated light curve. We scale the
observed times to account for time dilation due to the newly selected redshift. Shifting to a
higher redshift causes the light curve to have a lower density of observations. To account for
this, we add observations to one passband of the light curve at the same times as existing
observations in a different passband. We do not interpolate observations at new times because
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the GP flux predictions too far from the observed data have much large uncertainties that
lead to unrealistic light curves. We then randomly drop 10% of the observations in this new
light curve to introduce more variation in the generated light curves.

We use our GP fit of the original light curve to make flux predictions at these new set
of observation times and wavelengths corresponding to the passbands shifted by the new
redshift. We only use the mean GP flux predictions rather than drawing flux predictions from
the GP so that we get more reliable interpolations. However, we include the 1σ uncertainty
of the GP flux predictions when we simulate the observation noise in the new light curves.

To simulate observation noise, we first fit log-normal distributions to the collection of
all flux uncertainties in the un-augmented training set for each passband. We then draw an
uncertainty from the distribution and add it in quadrature to the uncertainty of the GP flux
predictions. We use this as the simulated uncertainties of the observations in the generated
light curves of the augmented training set.

Next, we correct the fluxes and flux uncertainties of the new light curve to account for
the luminosity distance of the new redshift. We compute the luminosity distance assuming a
fiducial flat ΛCDM cosmology with ΩM = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

Finally, we label all new observations with a S/N> 5 as detections and other observations
as non-detections; we use the first detection as the date of trigger. If the newly generated
object has less than three detections in its light curves, then we re-simulate it using a newly
drawn redshift. We repeat this process for every transient in our un-augmented training set
until we have 5000 transients in each class.

4.4.2 Deep Neural Network

We use a very similar architecture to that used in the original RAPID described in Section
2.4. However, we replace the Gated Recurrent Units (GRUs) with a Temporal Convolutional
Network (TCN). We described some of the benefits of TCNs over RNNs in Chapter 3 where
we used a TCN architecture to predict future fluxes in a light curve (see section 3.4.1.2).
Jamal & Bloom (2020) extensively compared the use of TCNs, GRUs, and LSTMs for the
classification of variable stars and detailed the benefits of each. We have briefly compared
the performance of all three of these architectures for our classification work, and note that
there is very little difference in performance. However, similar to what we outlined in Section
3.1, the TCN architecture appears to be much faster to train (due to the parallelisable nature
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of Convolutional Neural Networks vs Recurrent Neural Networks), and seem to be much
more stable during training time (as was also shown in Jamal & Bloom (2020)). We noticed
that the RNN architectures had losses and accuracies that changed wildly during training,
whereas the TCN was more stable when converging to the final loss and accuracy, further
justifying our change in architecture.

In Figure 4.9, we illustrate our new TCN architecture for RAPID, where the input images
IIIst consisting of light curve fluxes in all passbands, the host galaxy redshift, and the Milky
Way reddening, are passed into a TCN before classification probabilities yyyst are extracted
with a fully connected layer with a softmax regression activation function. Other than this
change in architecture, the model is otherwise the same as described in the original RAPID
work discussed in Chapter 2.4.

4.5 Results

In this section, we build three separate RAPID classifiers. One trained on a collection of
PS1 data, another trained on a collection of real ZTF data, and a third trained on improved
PLAsTiCC-like ZTF simulations. We first validate the performance of each classifier by
evaluating its performance against a validation set (20% of the dataset that is not used for
training). We then test the performance of our PS1 classifier on data from the Foundation
Supernova Survey and compare the classifier’s performance to results from other classification
works. Finally, we compare the performance of our ZTF classifier built on simulations with
the one built on real data.

4.5.1 Pan-STARRS classifier

As detailed in Section 4.3.1, we build a classifier using the collection of 557 spectroscopically-
confirmed supernovae collected and processed by V20. We split the dataset by using 80% of
the transients to train the classifier and 20% as the validation set to evaluate the classifier’s
performance. We augmented the training set using the method outlined in Section 4.4.1 to
obtain approximately 5000 transients from each of the transient classes (SNII, SNIIn, SNIa,
SNIbc, and SLSN). We prepared the training set using the same methods detailed in Sections
2.3.4-2.3.5. After first evaluating the performance of our classifier on the validation set, we
then ran our classifier (trained on only the small spectroscopically-confirmed set) on the
unlabelled photometric sample of 2315 transients. We then compare our performance on the
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Fig. 4.9 Temporal Convolutional Neural Network architecture used for the new transient
classifier and representing the model described in Section 2.4 and equation 2.5. Each column
in the diagram is one of the n time-steps of the processed light curve with subsequent time-
step from left to right. The bottom row is the input light curve matrix III for transient s up to
a time-step t and consists of the light curve fluxes in all passbands, the host redshift, and
the Milky Way reddening. The input light curve information of two adjacent time-steps
are passed into a residual block consisting of a 1D Convolutional Neural Network Layer
(Conv1D) with dropout. While not shown in the figure, the residual block also contains a
second Conv1D layer with dropout. The outputs of these are then convolved with the outputs
from some previous time-steps in the above hidden layers as shown in the diagram, until
the Dense and Softmax layers. The fully-connected (dense) layer with a softmax regression
activation function is applied at the final layer to compute the probability of each class at each
time-step. The output layer is the predicted class probabilities yyy for transient s at time-step
t. The solid arrows show how the predicted class probabilities yyysn are computed, and the
gray dashed arrows show the neural network layers that lead to all other predictions. The
network is causal, whereby new predictions only use information from previous time-steps
in the light curve. We set the dropout rate to 20% for all layers in the network. We build this
model using the Keras and TensorFlow libraries after adapting the TCN model from Bai
et al. (2018) and their code in https://github.com/philipperemy/keras-tcn.

https://github.com/philipperemy/keras-tcn
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spectroscopic sample and the photometric sample with the performance of classifiers by V20
and H20.

4.5.1.1 Performance on PS1 spectroscopically-confirmed validation set

We tested the performance of our classifier on the small validation set consisting of 20% of
the spectroscopically-confirmed PS1 dataset (which consisted of 111 transients across the
five classes). In Figure 4.10 we plot the confusion matrices showing the accuracy of our
classifications at early times just after trigger (1 day since trigger) and after the full light
curve was observed (65 days since trigger). The classification performance is excellent, and
correctly predicts the class of most supernovae in the validation set. Near trigger, most of
the misclassifications of the II and IIn classes are to the other core-collapse classes. Thus,
aggregating the core-collapse classes (II, IIn and Ibc), as if often done in other classification
works, would provide nearly perfect classifications. At such early times, the SNIbc transients
are often misclassified as Pre-explosion, but after a few more days of observations in the
light curve, this quickly improves.

As discussed in chapter 2.5.4, the Receiver Operating Characteristic Curve (ROC) that
plots the True Positive Rate against the False Positive Rate for a range of different threshold
classification probabilities can often provide a more detailed understanding of the classifier’s
performance. In particular the area under the ROC curve (AUC) provides a good summary
comparison statistic where AUC values close to 1 represent better classification performances.
In Figure 4.12, we summarise the ROC curves at all times by plotting the AUC against
time since trigger for each class. The Figure illustrates that the classifier has very good
performance, with AUC values surpassing 0.95 for most classes, even at very early times.
The SNIIn class has a slightly poorer classification performance because it is often mistaken
for the SNII class as these classes look very similar. There are only very few SLSN transients
in the testing set, and they are perfectly classified at all times after trigger. We think that
the fact that the redshift distribution of the observed spectroscopically-confirmed SLSNe is
higher than the other transients, means that using redshift information makes it very easy to
distinguish SLSNe.

4.5.1.2 Comparison with other PS1 classifiers

Recent works by V20 and H20 have built classifiers trained on this same spectroscopic
sample of PS1 transients and thus provide a very good benchmark to assess the performance
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Fig. 4.10 Confusion matrix illustrating the performance of the PS1 classifier applied to the
validation set consisting of 20% of the spectroscopically-confirmed dataset (111 transients).
The left figure shows the results of the classifier on all transients in the validation set at 1 day
since trigger, and the right figure shows the results of the classifier across the full light curve
at 65 days after trigger.
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Fig. 4.11 Confusion matrices from Figure 6 of V20 (left) and Figure 6 of H20 (right) illus-
trating their classifier’s performance on the 557 spectroscopically-confirmed PS1 transients.
These plots can be compared with our performance on full light curves as shown on the right
plot of Figure 4.10.
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Fig. 4.12 The area under the ROC curve (AUC) vs time since trigger for the PS1 classifier
applied to the testing set consisting of 20% of the spectroscopically-confirmed dataset. The
ROC curves are not shown but the AUC for each class at every time-step are summarised by
this figure. The micro-average curve is the average of the ROC curves in all classes weighted
by the number of objects in each class.
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Fig. 4.13 Confusion matrices illustrating the classifications of the 2315 unlabelled photo-
metric sample of transients from the PS1 dataset and the classification correlations between
different classifiers. The left plot illustrates the classifications of H20 against V20 (as taken
from Figure 10 of H20) and the right plot illustrates the classifications from this work against
the classifications provided by V20. Since H20 against V20 use the full light curve for
providing a classification, we use the RAPID classifications over the full light curve (at 65
days after trigger) in the plot.

of our new RAPID classifier. In Figure 4.11, we show the confusion matrices on the 557
spectroscopically-confirmed PS1 transients from Figure 6 of V20 and Figure 6 of H20 as a
direct comparison to our late-time confusion matrix on the right of Figure 4.10. Unlike our
confusion matrix that only tests the performance on 111 transients in our validation set, both
authors use leave-one-out cross-validation to test the performance against all 557 transients.
This requires that they build 557 classifiers each trained on 556 transients and classify the
performance of the remaining transient. While this method can provide an accurate estimate
of the model performance, it is far too computationally intensive for us to train this many
classifiers. Therefore, while not an exactly fair comparison, our RAPID classifier appears to
perform much better than both V20 and H20. Furthermore, unlike RAPID, neither V20 nor
H20 are real-time classifiers, and thus they can only provide classifications once the full light
curve has been observed.

V20 and H20 go on to apply their classifier trained on spectroscopically-confirmed
supernovae onto their photometric sample of unlabelled supernovae. Since the true label is
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unknown for these transients, we can only compare our classifications with theirs and examine
how the classifications between each of the three classifiers are correlated. On the left plot of
Figure 4.13 we reproduce the plot from Figure 10 of H20 that compares their classifications
to the photometric sample of 2315 unlabelled supernovae with the classifications from
V20. Similarly, on the right plot of Figure 4.13, we plot the confusion matrix showing the
correlations of classifications between RAPID and V20 on the photometric sample. While
all three classifiers agree on the majority of transients, there is a lot of disagreement. For
example, RAPID agrees with 88% of the SNe Ia classifications, but tends to classify many
more transients as SNe Ia compared to V20. The difference in performance between the
classifiers hints that they are using different information in the light curves to make their
classifications.

From Figures 4.10 and 4.11, we know that RAPID is a more accurate classifier on all
classes. However, in Hložek et al. (2020), they showed that combining the results of the top
classifiers submitted to PLAsTiCC resulted in a much better performance than any single
classifier. Therefore in future work, it might be beneficial to build an ensemble of the three
classifiers that may outperform any individual classifier.

4.5.1.3 Applications to the Foundation cosmological sample using PS1 classifier

The Foundation Supernova Survey (Foley et al., 2018b) is a survey on the Pan-STARRS
telescope that aims to provide a large sample of SNe Ia for cosmology. The growing tension
between the early-time and late-time universe measurements of H0 (see Section 1.1.1.1) has
led to a deeper analysis of the systematic uncertainties in SNIa cosmology. Currently, the
largest systematic uncertainty of SNIa cosmology is the calibration of the low-redshift SNIa
sample (e.g. Betoule et al., 2014a; Jones et al., 2019; Rest et al., 2014; Scolnic et al., 2014;
Sullivan et al., 2011). To this end, the Foundation Supernova Survey has tried to provide a
large sample of precisely calibrated low-redshift SNe Ia. The Foundation Supernova Survey
First Data Release (Foley et al., 2018b) has obtained a set of 180 SNe Ia that are useful for
cosmology. These have each been observed using the Pan-STARRS telescope and are well
sampled over the full duration of the light curves. We note that Foundation is a follow-up
survey and that all of the supernovae have been spectroscopically confirmed. In this section,
we run our classifier, that uses only photometry, to see what fraction of the cosmological
sample we are able to recover without using any spectroscopy.
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RAPID classification Count
SNIa 171 (95%)

SNIbc 3 (1.7%)
SNIIn 1 (0.6%)
SNII 0

SLSN 5 (2.8%)
Table 4.1 The 180 SNe Ia from the Foundation cosmological sample were classified by
RAPID and the highest probability classification using the full light curve resulted in the
shown class predictions.
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Fig. 4.14 The precision and recall of the SNe Ia in the Foundation cosmological sample
plotted at different RAPID threshold probabilities. The Precision-Recall curve is plotted
at different SNIa threshold probabilities in the left subfigure. The recall and precision are
plotted against threshold in the right subfigures. An arrow and vertical dashed line is shown
to indicate a threshold probability of 0.57 which is the highest recall (91% of SNe Ia) that
gives perfect precision of SNe Ia.

We have classified the Foundation cosmological sample of SNe Ia as a function of time,
but have recorded the RAPID classifications using the full light curve in this analysis. As
illustrated in Table 4.1, 171 out of the 180 supernova were correctly classified as a SNIa.
Three transients were misclassified as SNe Ibc, five were misclassified as SLSNe, and one
was misclassified as a SNIIn. Thus, using only photometry without obtaining spectra, RAPID
correctly identified 95% of the cosmological sample.

To instead obtain a high precision (pure) sample, we analysed the Precision-Recall curves
at various thresholds. See Section 2.5.5 for a description of the Precision-Recall metric. The
precision is a measure of the purity of the sample at a given threshold probability, while the
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recall is a measure of the completeness of the sample at a given threshold probability. We
plot the precision and recall at various threshold probabilities in Figure 4.14.

For supernova cosmology, we need a pure sample of SNe Ia. Thus, if we examine the
highest recall that still gives a precision of 1, we can identify a threshold probability at which
to accept a RAPID SNIa classification. Using a threshold probability of 0.57, we obtain a
perfect precision sample of SNe Ia, while still recalling 164 out of 180 SNe Ia (91%). We
indicate this probability with an arrow and dashed vertical lines in Figure 4.14.

Therefore, we have shown that by using RAPID and setting a higher threshold probability
at which to accept SNIa classifications, we can obtain a high-precision sample of SNe Ia
useful for cosmology.

4.5.2 ZTF real data classifier

In the original version of RAPID detailed in Chapter 2, we only trained our classifier on
ZTF light curve simulations. However, the performance of our classifier has had mixed
performance when run on real data from the ZTF MSIP data stream. In this section, we train
a classifier using just a collection of real data to compare against our classifier built from ZTF
simulations. Due to the limited data available, we can only classify into a smaller number of
classes, however.

We train a classifier using the collection of 2839 supernovae that we collected and detailed
in Section 4.3.3. We split the dataset into a training set consisting of 80% of the dataset (2271
transients) and 20% for the testing set (568 transients). As illustrated in Figures 4.3 and 4.4,
our collected dataset has a wide range of labels with some classes having very few objects.
We group the transients into four classes: SNIa (consisting of all SNe Ia and subtypes: Ia,
Ia91T, Ia91bg, Iacsm, Iapec, Iax), SNII (consisting of all SNe II and subtypes: II, IIL, IIP,
IIn, IIpec), SNIbc (consisting of all SNe Ibc and subtypes: IIb, Ib, Ibn, Ic, IcBL, Ibc), and
SLSN (consisting of the SLSNI and SLSNII objects). We augmented the training set using
the method outlined in Section 4.4.1 to obtain approximately 5000 transients in each of
these four transient classes. We prepared the training set using the same methods detailed in
Sections 2.3.4-2.3.5. We trained the classifier on this augmented dataset and evaluated its
performance on the 568 transients in the testing set.

In Figure 4.16, we plot the confusion matrices showing the accuracy of our real data ZTF
classifier at early times just after trigger (1 day since trigger) and after the full light curve was
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Fig. 4.15 Example Pan-STARRS light curves illustrating the multi-passband pre-trigger
forced photometry. The examples all illustrate that before trigger, the light curves show the
early rise in luminosity despite each data point being below the detection limit. The early
light curve is very useful for classification and is only available with forced photometry, and
is thus not currently available in the ZTF MSIP light curves. Each plot is titled with the
supernova’s Pan-STARRS identifier and the type in parentheses.
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Fig. 4.16 Confusion matrices illustrating the performance of the RAPID classifier trained on
the real ZTF dataset and applied to testing set consisting of 568 supernovae. The left figure
shows the results of the classifier on all transients in the testing set at 1 day since trigger, and
the right figure shows the results of the classifier across the full light curve at 65 days after
trigger.

observed (65 days since trigger). The classification performance is very impressive at late
times, correctly classifying over 80% of transients. However, at early times the performance
is not as good as the PS1 classifier, most likely because there is no pre-trigger photometry
available in the light curves. Unlike the PS1 dataset (see figure 4.15), the ZTF MSIP alert
packets do not provide forced photometry and only provide upper limit magnitudes for the
observations that were not significant enough to trigger an alert. It is for this reason that the
classifier does not learn anything about a pre-explosion class.

The SNII and SNIbc classes are mostly misclassified with each other, which is not
surprising given that these two classes look similar and are often aggregated into a single
class by previous works. In Figure 4.16, it is clear that if we combine the SNII and SNIbc
classes, we achieve much better classification accuracies, particularly at early times (left
plot) when it is more difficult to distinguish between these classes. We achieve perfect
classification of SLSNe because the few SLSNe in our sample occur at higher redshifts than
the rest of the sample.

In Figure 4.17, we summarise the ROC curves at all times by plotting the AUC as a
function of time for each class. Even at the time of trigger, all classes have an AUC of at
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Fig. 4.17 The area under the ROC curve (AUC) vs time since trigger for the ZTF real data
classifier applied to the testing set consisting of 568 supernovae (20% of the dataset). The
ROC curves are not shown but the AUC for each class at every time-step are summarised by
this figure. The micro-average curve is the average of the ROC curves in all classes weighted
by the number of objects in each class.
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least 0.75 with the micro-averaged7 AUC across all classes starting at 0.82. At this time,
the classifier is able to reasonably distinguish the classes using only the available redshift
information and one set of photometric observations. The SLSNe achieve a near perfect
AUC across all times mainly because their high redshift easily distinguishes them from the
other classes. The AUC of the other supernova classes increases quickly until about 25-30
days. At this time, most light curves are well past peak luminosity and are dimming closer to
background brightnesses.

4.5.3 ZTF simulations classifier

In this section, we improve upon the classifier built for the original version of RAPID
discussed in Chapter 2. Making several improvements to the simulations (as described in
Section 4.3.2), and improving the upon the architecture (as detailed in Section 4.4), we train a
new classifier that should ideally perform better on real data. After simulating ∼ 10,000 ZTF
transients in each of the following classes: SNIa, SNII, SNIbc, SNIa-91bg, SNIa-x, Kilonova,
and SLSN-I, we trained a new classification model. We split the dataset into a training set,
consisting of 80% of the dataset, and a validation set, consisting of 20% of the dataset. We
evaluate its performance using the same performance metrics used previously. To evaluate
the performance of this classifier on real data, we also test the classifier on the collection
of 2839 real ZTF transients collected and described in Section 4.3.3. We can compare the
performance of our classifier against the one we trained on real data shown in the previous
subsection 4.5.2.

4.5.3.1 Performance on simulated ZTF testing set

We first validated the performance of our classifier on 20% of our simulated dataset, consisting
of ∼ 2000 transients from each of the seven classes. In Figure 4.18 we plot the confusion
matrices showing the accuracy of our classifications at early times just after trigger (1
day since trigger) and after the full light curve was observed (65 days since trigger). The
classification performance has significantly improved for most classes when compared to
the original RAPID in Muthukrishna et al. (2019a) and shown in Figure 2.7 of chapter 2.
Most notable, is the significant improvement on the core-collapse supernovae (SNII and
SNIbc). While this can partly be explained by the absence of the CART class that is known

7The micro-averaged ROC curve aggregates the results from all objects from all classes. It is effectively the
average of the ROC curves from all classes weighted by the number of objects in each class.
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Fig. 4.18 Confusion matrices illustrating the performance of our classifier trained on our new
ZTF simulations and tested on the validation set consisting of 20% of the simulated dataset.
The left figure show the results of the classifier near detection (1 day after trigger) and the
right figure shows the results at late times (65 days after trigger).

to look quite similar to CCSNe (see Figure 2.8), it is most probably due to the improved
simulations that use more realistic models from Vincenzi et al. (2019). The fewer classes
to classify between may also contribute to the improved performance. At late times, the
SNIa and SNIa-x classes are mostly misclassified with each other, as is to be expected as
their light curves look very similar. SLSNe have excellent classification performance, even
at early times. With redshift information, it is often easy to distinguish SLSNe as they are
much brighter than the other classes. The ease of classifying kilonovae might be explained
by their very unique light curve shape when compared to other supernovae; and perhaps the
Bulla models (Bulla, 2019) are more obviously different from other transients than the Kasen
models (Kasen et al., 2017) used in the previous version of RAPID.

Similarly to the other sections, in Figure 4.19, we plot the AUC as a function of time
since trigger to assess the performance of classifying each class at different times. After
trigger, the AUC is above 0.9 for all classes, indicating that our classifier is very effective.
The performance improves rapidly for all classes until around 10 days past trigger. At this
point, most transients have just passed peak brightness, and the time and luminosity of peak
is key information that allows RAPID to quickly discriminate between different classes.

At around 15 days past trigger, the SNII and SNIbc classes have a sudden drop in
performance before they gradually rise again. The fact that it’s only these two classes that
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Fig. 4.19 The area under the ROC curve (AUC) vs time since trigger for the classifier trained
on ZTF simulations and applied to the testing set consisting of 20% of the dataset. The ROC
curves are not shown but the AUC for each class at every time-step are summarised by this
figure. The micro-average curve is the average of the ROC curves in all classes weighted by
the number of objects in each class.
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Fig. 4.20 Example classifications of simulated ZTF Type II and Ibc supernovae. These light
curves and classifications were selected because they are examples of cases where there is a
slight drop in the true class’ classification probability at around 15 days after trigger.
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drop indicates that most misclassifications are occurring between these two classes. Given
that they are both CCSNe, and many authors choose to aggregate them into one class, this is
not often a big problem for most astronomers. However, it is interesting, because it points
to the light curves of these classes having some key difference at this time. Initially, I
suspected that this drop might be explained by Type IIb supernovae. It is well known that
SNe IIb initially appear similar to SNe II, but a few weeks after their explosion, they lose
their Hydrogen envelope and they begin to appear more like SNe Ib (Yoon et al., 2017). As
described in Yoon et al. (2017), the very small amount of hydrogen in SNe IIb causes this
shift.

However, after looking at examples of classified transient light curves, we noticed that the
classification probabilities of many SNe II and SNe Ibc dropped slightly around 15 days after
trigger which is usually shortly after peak luminosity. We sifted through over a thousand SNe
II and Ibc to identify causes of the drop in class probability and have plotted a few examples
of this drop in four light curves in Figure 4.20. The drop occurred for many different subtypes
of type II and Ibc supernovae, and the cause of the drop was not obvious. However, in many
examples, the drop in probability coincided with a slight increasing or decreasing bump in
flux at around 15 to 25 days past trigger. In the SNIIb example in Figure 4.20, the bump in
the r band aligns with the drop in classification probability, and in the two SNII examples, a
drop in the g band causes the decrease in classification probabilities. In the SNIb event, there
is no obvious cause. We could not come up with a conclusive reason for what information
the classifier is using that causes this drop. However, in most cases, we suspect that a second
rise or drop in magnitude in flux causes the classifier to be confused between classes.

In future work, we will analyse the misclassifications more deeply to discover what
features in the SNII and SNIbc classes are causing this issue. However, given a high enough
threshold classification probability, this bump should not be cause for much concern.

4.5.3.2 Performance on real data from ZTF

After publishing RAPID in Muthukrishna et al. (2019a), we noticed that there were many
issues with our classifier when running on real data compared to running on simulations. We
attribute these problems to a range of issues that were discussed in Sections 4.3.2 - 4.3.4, but
have hopefully been improved by our new data. In this subsection, we run our classifier (that
was trained on simulations) on our collection of 2839 real transients observed by ZTF and
detailed in Section 4.3.3 with the distribution of transients among the labelled classes shown



4.5 Results 169

Pr
e-

ex
pl

os
io

n

SN
Ia

-n
or

m

SN
Ia

-x

SN
Ia

-9
1b

g

SN
Ib

c

SN
II

SL
SN

-I

TD
E

Ki
lo

no
va

Predicted label

SNIa

SNIbc

SNII

SLSN

Tr
ue

 la
be

l

0.00 0.47 0.26 0.00 0.09 0.12 0.00 0.06 0.00

0.00 0.05 0.04 0.03 0.42 0.18 0.00 0.29 0.00

0.00 0.08 0.03 0.01 0.10 0.53 0.03 0.23 0.00

0.00 0.32 0.00 0.00 0.06 0.21 0.41 0.00 0.00

Fig. 4.21 Confusion matrix for the classifier trained on ZTF simulations and applied to the
collection of real ZTF transients. The confusion matrix shows classifications at 65 days past
trigger. We show the broad supernova class label taken from the Open Supernova Catalog
as labelled by a range of different astronomers/collaborations on the vertical axis, and show
RAPID’s predicted label on the horizontal axis. Misclassifications are shown in red while
“good” classifications are shown in blue. We group all predictions that are of the same broad
supernova type as a ‘good’ classification in the plot. The number of transients from each
class that are being classified are shown in Figure 4.4.

in Figure 4.4. We only record the classification of the full light curve (at 65 days after trigger).
In Figure 4.21, we show the confusion matrix indicating the broad supernova class taken from
the Open Supernova Catalog (as labelled by a range of different astronomers/collaborations)
on the vertical axis, and RAPID’s predicted classification on the horizontal axis. We show
misclassifications in shades of red and classifications that are of the same broad type of
supernova in shades of blue.

Overall, 64% of the transients in the dataset were correctly classified as its broad su-
pernova type. The majority of transients in the real dataset are labelled as ‘Ia’ on the OSC
(consisting of 70% of the dataset). The classifier based on simulations correctly classified
73% of these as a type of SNIa (SNIa-norm or SNIa-x). The other SNIa subtypes are more
commonly misclassified as CCSNe. The second most populous class were the transients
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labelled as a ‘SNII’ subtype on the OSC consisting of 351 transients (12% of the dataset).
Only 53% of these were correctly classified as SNe II. While there were no TDEs in the
dataset, a large fraction of the real transients were incorrectly classified as TDEs. The overall
classification performance is much poorer than the classifier that was trained on real data
(shown in section 4.5.2).

The poorer performance here highlights issues with using classifiers trained on simula-
tions and applying them to real data. There are remaining issues in simulating transients that
match the properties of transients observed in real datasets and we discussed some of these
within section 4.3.4. The fact that the PLAsTiCC ZTF-like simulations include photometry
before maximum whereas the real data only include upper limits may be a large factor for
why we obtain good classification performance on simulations but not on real data. We will
pass on the analysis in this chapter to the PLAsTiCC version 2 team to help identify methods
of improving simulations to better match reality. However, despite the advantages of using
simulated training sets, until simulations improve, classifiers trained on real data will provide
more reliable performance and may be required for ongoing transient brokers.

4.6 Effect of survey observing strategy on classification per-
formance

4.6.1 Effect of colour on classification performance

So far in this chapter, we have trained RAPID on different datasets to evaluate its performance
on real data. The slightly different observing strategies between PS1 and ZTF makes an
impact on our classification performance. For example, the extra iz passbands in PS1
compared to ZTF with a similar cadence likely leads to better classification performance.

In this section, we examine the effect of additional passbands on classification perfor-
mance. The PS1 real dataset is very small and thus has slightly inconsistent performance
each time we train the classifier because it is highly dependent on which transients are used
in the training and testing sets. Instead, we choose to use PS1 simulations to test the effect of
colour on RAPID’s performance.

Recently, the Young Supernova Experiment (YSE) collaboration has begun training a
new version of RAPID for use on their survey using the Pan-STARRS telescopes. To do
this, they have used the PLAsTiCC modelling software to simulate transients that match
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micro-average SNIa-norm SNII SNIIn SNIbc SLSN-I

gr (0.84, 0.91) (0.73, 0.83) (0.77, 0.86) (0.75, 0.82) (0.78, 0.84) (0.84, 0.92)

gri (0.86, 0.92) (0.80, 0.87) (0.80, 0.88) (0.78, 0.82) (0.83, 0.88) (0.87, 0.93)

griz (0.86, 0.93) (0.80, 0.88) (0.81, 0.90) (0.78, 0.84) (0.83, 0.88) (0.87, 0.93)

Table 4.2 A summary of the AUC scores from Figure 4.22 showing how the AUC scores
change for classifiers trained on different passbands. In the brackets of each cell we state the
AUC score at trigger and at late times (65 days past trigger) in the first and second element
of the brackets, respectively.

the observing properties of Pan-STARRS. Patrick Aleo, a PhD student at the University of
Illinois Urbana-Champaign working in Professor Gautham Narayan’s group, is working
to improve these simulations to match real Pan-STARRS observations. He has simulated
transients from five different classes: SNIa-norm, SNII, SNIIn, SNIbc, and SLSN-I.

In this section, I am using the PLAsTiCC-like Pan-STARRS simulations developed by
Patrick and the YSE collaboration to train three versions of RAPID: one trained on PS1
simulations using all griz passbands, a second using only gri passbands, and the third using
only gr passbands. To only examine the effect of the passbands, I do not provide any redshift
information to the classifiers. I have plotted the AUC as a function of time for each of these
classifiers in Figure 4.22. In Table 4.2 I summarise the results of these figures as a table
showing the AUC scores at trigger and at late times (65 days after trigger).

The classifications improves significantly after the addition of i band compared to the
classifier trained on only the gr passbands. The classifier trained on the gr bands has a
micro-averaged AUC of 0.84 and 0.91 at trigger and at late times, respectively. Whereas, the
classifier trained using gri bands has a micro-averaged AUC of 0.86 and 0.92 at trigger and
late times, respectively. While most classes improve due to the additional i-band information,
the SNIa-norm class has the most significant improvement, increasing from 0.73 to 0.80 at
trigger and increasing from 0.83 to 0.87 at late times. The increase is also much more rapid
shortly after trigger when the i and z bands are included before increasing at a slower rate after
around 6 days past trigger. Around this time is usually where maximum brightness occurs
for SNe Ia and indicates that the near-infrared (NIR) bands add significant information in the
early phase of SNe Ia. A similar trend can be seen for the SNIbc classes. The addition of z

band only makes a small improvement on the classification ability of most classes compared
to when i band was added. At early times, the addition of z band makes a negligible impact
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Fig. 4.22 The effect of passbands on classification performance. The area under the ROC
curve (AUC) vs time since trigger (in the observer frame, since redshift is not used) for three
classifiers trained on Pan-STARRS simulations. In each plot we show the performance of
the three classifiers that use only gr passbands (blue), only gri passbands (orange), and all
four passbands griz (green) for each class. Unlike the previous classifiers shown in this
chapter, none of the classifiers use redshift information. The classification performances
improve (obtain higher AUCs) with more passband information. The first plot compares the
micro-averaged AUCs (that is the weighted-average AUC across all classes).
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on classification performance, and it is only at late times that the SNII and SNIIn classes
have a more significant improvement in performance (while the other classes have very little
improvement).

To better understand how the presence of i and z bands improves the classification
performance, we plot the median colours as a function of time since trigger for each class
in Figure 4.23 with the median absolute deviations (MAD) as the shaded regions. We use
the median and MAD instead of the mean and standard deviation as these statistics are more
robust to outliers in the dataset. We compute the colours by first converting the fluxes to
magnitudes and taking the difference between the magnitudes in different passbands.

We note that we have corrected all light curves for Milky Way extinction before making
these colour curves (see section 2.3.4). Thus, the plots represent the evolution of colour
for each transient class as caused by the intrinsic colour variation of each transient and the
simulated host galaxy dust.

The population of transients in each class display a wide distribution of colours as
illustrated by the large shaded regions in Figure 4.23 and show significant overlap among the
classes on all colours. This highlights that classifying light curves based on colours alone is
not possible and thus reinforces the need for complex architectures such as deep learning for
classification. Nevertheless, while it is not possible to ascertain which light curve features
our neural network is using to classify between transient classes, some patterns in the colour
curves can be seen that may hint at what our algorithm might be using to classify between
transients.

The distribution of the SNIbc colour curves are the reddest (most positive) of all the
classes and indicate that their host galaxies may have the most extinction. Previous work
such as van Dyk et al. (1996), Kelly et al. (2008), and Drout et al. (2011) have shown that
SNe Ibc typically reside in dusty star forming regions. This may explain why the SNe Ibc
light curves are the reddest, particularly because they have the reddest colours even before
the transient phase of the light curve (well before trigger). We also notice that the SLSNe
have the bluest (least positive) colours. This can be explained by the fact that SLSNe reside
in very faint host galaxies and are known to have very blue spectral energy distributions
(SEDs) relative to other supernova classes (e.g. Lunnan et al., 2020; Quimby, 2012; Quimby
et al., 2018). As illustrated in Figure 4.23, these differences in colour between CCSNe and
the other classes, are more obvious in the colours that include i and z bands than the g− r

colours. Thus, these NIR bands may help our neural network classifier distinguish these
classes better.
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Fig. 4.23 Colour vs time since trigger (in the observing frame) for the Pan-STARRS simula-
tions. We plot the median of colours for the populations of transients in the Pan-STARRS
simulated dataset as the solid lines, and the median absolute deviations as the shaded regions.
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Furthermore, the medians of the g− r, g− i, and r − i colours all shows significant
differences between the classes after trigger. The SLSNe and SNIIn look very similar in the
g− r and g− i bands, but show marked differences in the r− i bands, indicating that the i

band is important to better distinguish these classes. The median of the SNIa-norm curves
in the g− i and r− i passbands are very different to the other curves just after trigger and
explain how important the i band is to separating SNe Ia from the other classes.

However, the i− z colour curves look nearly the same for all classes and highlight that the
z band offers very little new information compared to the i band. Looking back at Table 4.2, it
is clear that the classifier that includes griz bands only offers marginal improvement compared
to the classifier trained on gri bands. In fact, at trigger, the difference is barely noticeable.
At late times, the performance is only slightly improved. Thus, we can conclude that the
inclusion of the z-band does not offer much additional information useful for classification.

This analysis is useful for surveys that are focused on early classification, such as YSE,
as it may highlight that observation time on z-band might be better spent elsewhere (for
example, on improving the cadence, exposure time, or sky-coverage) if early classification is
the main objective.

4.6.2 LSST observing strategy

In the above section, we analysed the impact of colour on classification performance. In future
work, we will analyse the effect of a range of survey observing strategies on classification
performance. The upcoming LSST is currently at a critical stage of deciding the optimal
observing strategy for the survey. Considerations such as the cadence, the number of visits
to a field per night, the exposure time, dithering, and the footprint and area coverage of
the survey are all under debate within the LSST community (LSST Science Collaborations
et al., 2017). The LSST Dark Energy Science Collaboration have recently analysed the
impact of the observing strategy on various cosmological constraints (Lochner et al., 2018,
2021), and many other groups have published several metrics on the observing strategy for
several different science interests as white papers (e.g. Almoubayyed et al., 2020; Foley
et al., 2018a; Gezari et al., 2018; Verma et al., 2019). However, an important metric that
hasn’t been evaluated is the impact of the LSST observing strategy on transient classification
performance. The methods shown in this chapter provide a unique opportunity to create a
metric of survey strategy against the performance of real-time transient classification.
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Several LSST observing strategies have been simulated to meet some of the needs
presented in the aforementioned white papers and are discussed in Jones et al. (2021a). The
PLAsTiCC modelling software suite enables us to input these different observing strategy
simulations to simulate LSST-like light curves. In future work, we should train RAPID
on several different LSST survey simulations and evaluate how classification performance
changes with different observing strategies. We can analyse several metrics such as how
early we can classify common and rare transient classes based on different cadences, number
of passband visits per night, and exposure time, for example.

The sheer scale and size of LSST means that we have a unique opportunity to revolu-
tionise our understanding of the transient universe. Photometric transient classifiers play a
pivotal role in helping to identify which transients are most useful for follow-up observations.
Evaluating survey strategies with respect to classification performance is important to ensur-
ing that the LSST observing strategy is optimised for effective photometric classifications.
Future research should use works such as RAPID as a new metric for survey strategies.

4.7 Conclusions

The new generation of astronomical surveys is observing huge volumes of data that are being
processed by transient brokers. These brokers require effective real-time classifications of
transients to enable the astronomical community to prioritise their follow-up of incoming
transient alerts based on the best prediction of the transient type. In Chapter 2, we detailed
our novel real-time classifier, RAPID, that was one of the first attempts at developing a
real-time classifier capable of dealing with the anticipated data volumes. However, RAPID
and most other transient classifiers have only demonstrated their performance on simulations.
Very few classifiers have shown much success on real surveys. In this chapter, we have
improved RAPID and built three different RAPID classifiers for real transients observed by
ZTF and Pan-STARRS. Our work is the first to show success at classifying real transients as
a function of time.

We have made a few notable changes from the original RAPID methodology. The first
being that we updated the neural network to use Temporal Convolutional Networks instead
of Gated Recurrent Units because they were faster to train and provided more stability while
training. The second major change was that we applied an adapted version of the data
augmentation method used in Boone (2019) to help train our classifier on the smaller real
datasets.
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We used this new method to first build a classifier for Pan-STARRS using a collection of
spectroscopically-confirmed PS1 supernovae. We compared our performance with recent
classifiers built on the same dataset by V20 and H20, and have shown that we achieve
better performance on all classes. Our PS1 classifier had excellent performance, achieving
micro-averaged AUC scores of 0.98 on the validation set. We then applied our classifier to
the cosmological SNIa sample from the Foundation Supernova Survey to assess whether we
could recover transients useful for cosmology. We found that by setting an SNIa acceptance
classification probability of 0.57, we could obtain 100% purity (precision) while still having
a completeness (recall) of 91% (164 out of 180) of the SNIa sample. Currently, the Young
Supernova Experiment based on the Pan-STARRS telescope are training our RAPID classifier
to run on the survey. In the near future, we will share the results of our classifier trained on
PS1 data to assist YSE in finding young supernovae.

Next, we built classifiers for the ZTF. We collected 2839 ZTF transients labelled by
the astronomical community on the Open Supernova Catalog, and used our new RAPID
methodology to build a classifier for ZTF. We achieved micro-averaged AUC scores of
0.86 and 0.95 at one day and at 65 days after trigger, respectively. These corresponded
to accuracies over 80% for the SNIa, SLSN and combined core-collapse classes over the
full light curve. The performance was not as good as the PS1 classifier’s performance. We
think that part of this can be explained by the better data quality from the spectroscopically-
confirmed PS1 sample that was well-cleaned by V20 and the fact that PS1 has two extra
passbands (griz instead of just gr). However, we think that the main reason for the poorer
performance, particularly at early times, is because we do not have pre-trigger photometry.
One of the critical components of the RAPID architecture is that it learns a “Pre-explosion”
class that teaches the classifier about what the background looks like. Moreover, the rise in
amplitude of the light curve from explosion time until it is bright enough to trigger an alert is
very important information that RAPID uses in its classification. This early rise is exemplified
in Figure 4.15, where the access to forced photometry provides important information about
the early light curve. The importance of the early rise for RAPID is evident by the fact that
the AUC scores increase quickly before trigger. The lack of pre-trigger photometry also
limits the capability for early classification. Unlike PS1, the ZTF alert packets only contain
upper limit magnitudes before trigger. LSST is expected to have real-time forced photometry
on the light curves. We conclude that that lack of photometry before trigger severely limits
our classification performance.
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This is again exemplified when we built a new classifier trained on ZTF simulations and
applied it to real data. Even after building a classifier that fixed many of the issues from
Chapter 2, we still achieved poor performance on the collection of real ZTF light curves
when using our classifier trained on ZTF simulations, achieving an overall full light curve
accuracy of 64%. There remains a slight mismatch in the distributions of simulations and
real data for the flux and redshift of SNe Ia that might also be contributing to the poor
performance. We could not easily evaluate whether the simulations of the other classes
matched real observations because of the very few transients in our dataset from non-SNIa
classes.

Despite the poor performance of the classifier trained on ZTF simulations on real data,
it had excellent performance on the simulated validation set, achieving a micro-averaged
AUC score around 0.97 very shortly after trigger. The performance on real data highlighted
that until simulations improve, classifiers should be trained on real data if they are to have
success on real observations.

We ended the chapter by analysing the impact of observing strategy and, in particular,
passband information on classification performance. We showed that using gri bands from
Pan-STARRS provides significantly better classification performance than only using gr

bands, particularly for SNe Ia. However, the improvement of using griz instead of only gri

bands was only marginal. Future work should further analyse these trends and examine how
classification performance changes with observing strategy. In particular, the PLAsTiCC-like
simulations of different observing strategies provides a unique opportunity to analyse how
transient light curves change with observing strategy, and in particular, how classification
performance changes. LSST is at a critical point of deciding its observing strategy, and
evaluating the impact of survey properties on classification performance is very important
for optimising our ability to classify transients observed by LSST.



Chapter 5

Conclusions

5.1 Challenges in the new era of time-domain astronomy

Time-domain astronomy has reached an incredible new era where unprecedented amounts of
data are becoming available. Upcoming surveys such as the Legacy Survey of Space and Time
(LSST) are going to revolutionise transient astronomy. LSST is expected to observe over 10
million transient alerts every night, at least two orders of magnitude more than any preceding
survey. Astronomers will be able to probe new regimes in the time-domain, as they survey
the sky deeper, wider and faster than ever before. New surveys will provide opportunities
to discover entirely new classes of transients while also enabling a deeper understanding of
known classes. Correlating these sources with alerts from gravitational wave, high-energy
particle, and neutrino observatories will enable new breakthroughs in multi-messenger
astrophysics. However, with these new opportunities come new challenges. The massive
alert rate from these surveys far outstrips the follow-up capacity of the entire astronomical
community combined. Thus, it has never been more important that astronomers develop fast
and automated methods of identifying transient candidates for follow-up observations.

This thesis has tackled two major challenges facing the new era of transient astronomy.
These are as follows.

1. Early-time classification of the transient data stream.
2. Early-time detection of rare and previously unknown transients.

It is necessary that we meet these new challenges using methods that are scalable to the
enormous volumes of data expected from next generation surveys. By doing so, astronomers
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will have much better tools to prioritise the follow-up of transients to better understand the
physical mechanisms behind known objects and discover entirely new classes of transients.

The first challenge is being able to automate the classification of the incoming data stream
where only sparse early-time data is available. It is important so that astronomers can identify
the most interesting objects for more detailed analysis. Moreover, classifying objects as early
as possible, will allow for early follow-up observations that provide a deeper insight into the
progenitors and physical mechanism of transient classes.

However, classification eludes the problem of discovering new unknown classes of
transients. This is the second challenge. Discovery in astronomy has been driven by
serendipity and by identifying anomalies in data sets. For example, Jocelyn Bell first noticed
an unusual "scruff" in her data that turned out to be the first ever discovery of a pulsar
(Hewish et al., 1968). Similarly, Duncan Lorimer noticed an anomalous and incredibly bright
pulse that turned out to be the first ever discovery of a Fast Radio Burst (Lorimer et al., 2007).
What these discoveries have in common, is that they were serendipitous, and took the right
person looking at the right time. However, if either Bell or Lorimer had been inundated
with the data volumes expected from upcoming surveys, it is uncertain whether they would
have stumbled upon these serendipitous discoveries. With the huge volumes of data in the
next generation of surveys, astronomers are in need of a way to automate serendipity. That
is, we need automatic anomaly detection tools that flag unusual and interesting transient
phenomena that might warrant further follow-up observations. Furthermore, being able to
identify anomalies as they happen in real-time is necessary to allow for early follow-up.

Spectroscopic surveys such as 4MOST and DESI are planning to use their multi-fibre
spectroscopes to automatically follow many LSST targets. In addition, astronomers will use
their own telescope time and resources to follow up the most interesting candidates. Transient
brokers such as LASAIR, ANTARES, and ALerCE are aiming to ingest the observational
data from LSST and trigger follow-up telescopes. These transient brokers require tools that
perform classification and anomaly detection in real-time. In this thesis, I presented novel
methods that meet these challenges.



5.2 Summary 181

5.2 Summary

This thesis has detailed the development of new photometric classification and anomaly
detection frameworks, with the goal of meeting the needs of the new era of large-scale
time-domain astronomy.

5.2.1 Classification

In Chapter 2, I presented a new real-time photometric classifier, RAPID. It is the first
method specifically designed to provide early classification of astronomical time-series
data and can automatically identify transients from within a day of the initial alert, to the
full lifetime of a light curve. Using state-of-the-art recurrent neural networks with uni-
directional gated recurrent units, we use only photometry to classify transients as a function
of time. Using the modelling software developed for the Photometric LSST Astronomical
Time-series Classification Challenge (PLAsTiCC, Kessler et al., 2019), we developed light
curve simulations of 12 different transient classes that matched the observing properties
of the Zwicky Transient Facility (ZTF). We applied our neural-network-based classifier to
this simulated dataset and achieved excellent results competitive with other contemporary
approaches. However, unlike most previous work, RAPID does not require the full phase
coverage of the light curve, but is flexible enough to provide photometric classifications
given any phase coverage of the light curves. A critical component of RAPID that enables
its early classification is that it uses measurements of the source before an alert is triggered.
The photometry with insufficient significance to trigger an alert still encodes information
about the transient that RAPID is able to use to obtain good classification probabilities as
soon as the alert is triggered. Moreover, our architecture defines a pre-explosion phase of the
transient that enables RAPID to learn what the background and the pre-transient phase looks
like so that it learns to distinguish transients from the background.

We used a range of metrics to evaluate our classifier’s performance and presented detailed
confusion matrices, Receiver Operating Characteristic (ROC) curves, and measures of
precision and recall for each transient class. Our success on the simulated dataset is best
summarised by the micro-averaged area under the ROC curve (AUC). We obtained AUC
scores averaged across the 12 transient classes of 0.95 and 0.98 2 days and 40 days after
an alert trigger, respectively. Thus, even at early times, our classification capabilities are
impressive and exceed the success of other similar attempts at classification.
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Many previous attempts at classification use feature-based learning algorithms that often
are too computationally expensive to be feasible to run on the real-time data streams coming
from next generation surveys such as LSST. To compare our approach against feature-based
learning methods, we also developed a Random Forest classifier trained on features extracted
from the light curve. We found that the classification performance was comparable, but
RAPID had the advantage of obtaining time-varying classifications and being incredibly fast,
being able to easily classify the millions of alerts expected from new surveys.

However, since publishing our work in Muthukrishna et al. (2019a), we have tried to
apply our classifier to real data from the ZTF MSIP public survey. We have found that
we achieve unreliable results on real data when using our classifier that was trained on
simulations. In Chapter 4, we detail many reasons for the mediocre performance on real
data. Firstly, unlike our PLAsTiCC-based ZTF simulations, the real alert packets from the
public ZTF survey do not provide forced photometry on pre-trigger data. Instead, only upper
limit magnitudes are provided, and we cannot easily use this information to train RAPID.
We noticed that pre-alert photometry is essential to providing good early-time classifications.
Other issues that limited our classification performance were that the CCSNe models in our
ZTF simulations were flawed and were not a good representation of real data. Similarly,
there were small bugs in the SNIa-91bg and SNIa-x PLAsTiCC models.

In Chapter 4, we created new ZTF simulations that used better core-collapse supernova
models from Vincenzi et al. (2019), we used updated SNIa-91bg and SNIa-x PLAsTiCC
models, made use of the latest kilonova models from Bulla (2019), and we updated the
observing logs used in the simulations to use 3-years of data to better represent the observing
conditions in ZTF. The results of these improvements were presented, and we showed that
we significantly improved upon the classification performance shown in Chapter 2, especially
when concerned with the SNII and SNIbc classes. However, when applying our classifier
to a collection of real ZTF data, we still had a poor performance when compared to our
performance on the simulations. We discussed reasons for this performance including the
issue of no pre-trigger photometry in the real data, and mismatches between our simulated
and real light curve distributions.

To build a classifier that had good performance on real observations, we instead trained
classifiers on real data instead of simulations. We collected a range of ZTF transients that
had been spectroscopically classified by the astronomical community, and also obtained a
dataset of Pan-STARRS1 (PS1) light curves from Villar et al. (2020c). These datasets were
obviously much smaller than our simulations, and so we used data augmentation techniques
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to build a bigger training set. We used the data augmentation methods from Boone (2019),
which were used to win the PLAsTiCC challenge on full light curve classification. Using this
method, and using Temporal Convolutional Neural Networks instead of Recurrent Neural
Networks (because of their slightly improved training performance), we built classifiers
trained on ZTF data and PS1 data.

Our classifier trained on spectroscopically-confirmed PS1 light curves had excellent
performance, achieving micro-averaged AUC scores around 0.98. These results were better
than full light curve classifiers from Hosseinzadeh et al. (2020) and Villar et al. (2020c) who
built classifiers on the same dataset. We then used this newly built classifier to classify the
Foundation cosmological sample of SNe Ia. We presented the precision and recall of our
classifier at a range of threshold probabilities, and demonstrated that we could obtain 100%
precision (purity) in our SNIa classification while still having a completeness (recall) of 91%
of the SNe Ia if we set an SNIa acceptance classification probability from RAPID of 0.57.
This result is impressive because the cosmological sample was spectroscopically confirmed,
but we can achieve this precision and recall using only photometry.

Our classifier trained on our collection of ZTF real data had reasonable performance,
achieving AUCs of 0.85 and 0.94 within a day and 65 days after trigger, respectively. The
poorer performance on ZTF light curves compared to PS1 light curves is caused by the extra
2 passbands of colour information in PS1, and the fact that we have pre-trigger photometry
in the PS1 light curves. We analysed the impact of passband information on classification
performance for Pan-STARRS, illustrating that only either i or z band is needed in addition
to gr bands to provide significantly better classifications. We conclude by highlighting that
we can create classifiers trained on real data, but that having pre-trigger photometry and
extra NIR colour information is important to having good early-time classifiers. Pre-trigger
photometry and six passbands are expected from LSST.

5.2.2 Anomaly detection

The classifiers we built in Chapters 2 and 4 will be important for categorising the millions of
transient alerts in upcoming surveys. However, if a new class of transient is presented to these
classifiers, they will likely provide unexpected results. Standard supervised classifiers are
not able to classify objects they have not been specifically trained on. To flag new previously
unseen transient types, anomaly detection algorithms are required. In Chapter 3, I present
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two novel anomaly detection frameworks that can be applied in real-time and are fast enough
to run on the upcoming LSST.

The key idea of our approaches is to build transient models that can predict future fluxes,
and then define anomaly scores based on the deviation of a prediction and an observation.
The first approach is a probabilistic deep neural network (DNN) built using Temporal
Convolutional Networks, where we train separate models for each transient class. It regresses
future fluxes against past data to predict a future set of fluxes. The second approach is based
on a parametric fit to a partial light curve using the Bazin function (Bazin et al., 2009), where
we extrapolate a prediction 3-days after a given set of past data. We build a Bayesian model,
defining a prior distribution of Bazin parameters based on fits to the population of transients
from a transient class. The priors for a specific class enable us to make predictions of a new
light curve assuming a particular class. In both the DNN and Bazin approaches, we compare
our prediction (assuming a particular transient class) with an observation to obtain anomaly
scores relative to a specific transient class.

Our two methods allow us to identify anomalies as a function of time, and we have
demonstrated their performances on both ZTF simulations and real data from the ZTF MSIP
public survey. We show that the DNN model is too flexible, in that in can predict fluxes
very effectively for any class despite being trained on one class. This means, that it is not
able to distinguish between different classes, and its flexibility makes it a poor anomaly
detector. However, the Bazin model is very effective at identifying anomalies. In particular
we combine the models from three common supernova classes, SNIa, SNII, and SNIbc, to
identify anomalies relative to these classes. We plot the False Anomaly Rates (FAR) against
the True Anomaly Rates (TAR) for a range of different threshold anomaly scores as a ROC
curve, and show that we are able to obtain low FARs with high TARs. We show that the AUC
rises over the course of the light curve, and after about 20 days after trigger, we are able to
effectively find most anomalous classes with an average AUC around 0.8.

We also built an anomaly detector using the Bazin approach on real data from the ZTF
MSIP public survey. We obtained anomaly score relative to the SNIa class and obtained AUC
scores over the full light curve of 0.84, 0.65, and 0.87 for the SNII, SNIbc, and SLSN classes,
respectively relative to the SNIa class. Thus, our Bayesian parametric approach is effective
at identifying transients outside the modelled class, making it an effective anomaly detector.
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5.3 Future directions

Since RAPID’s publication in Muthukrishna et al. (2019a), it has been used widely throughout
the transient astronomical community. At the time of writing, the paper has 48 citations.
I have released the work as a publicly available software with documentation available at
https://astrorapid.readthedocs.io/. The trained classifiers shown throughout this thesis and
our novel classification architecture with easy-to-use code that enables astronomers to train
RAPID on their own datasets is available on GitHub1 and the Python Packaging Index2.
Recently, groups such as the AMPEL (Alert Management, Photometry and Evaluation of
Light curves) collaboration (Nordin et al., 2019) have trained RAPID on their private ZTF
alerts to identify SNe Ia and CCSNe. Similarly, the recent Young Supernova Experiment
(YSE, Jones et al., 2021b) are currently training RAPID on Pan-STARRS simulations to
allow them to identify young transients. I am working closely with these teams to help train
a RAPID classifier that is effective for real-time classification for YSE and AMPEL.

Furthermore, the LASAIR and ANTARES transient brokers are working to implement
RAPID in their pipelines to classify transients from the ZTF MSIP data stream. Working
with these groups has highlighted issues with applying RAPID to real data. I have tried to
solve many of these issues in Chapter 4, but with current PLAsTiCC simulations, we have
concluded that we need to train RAPID on real observations before it can be successful on
real data. In future work, I will share the improved real data classifiers developed in this
thesis with LASAIR and ANTARES.

We have shown that classifiers trained on real data are more reliable than classifiers
trained on simulations. However, the problem with real datasets is that they are dominated by
SNe Ia, and there are too few non-SNIa to represent the diversity expected from new surveys.
The PLAsTiCC simulations were designed to match the expected diversity and distribution
of transients in the LSST. However, upon creating ZTF simulations from the PLAsTiCC
modelling software, it is clear that the simulated transients (at least in the SNIa class) look
different from the types of light curves being observed by ZTF. This was evidenced by a
slight mismatch in the SNIa distributions of fluxes and redshifts, and by the poor performance
of our classifier trained on simulations applied to real data. PLAsTiCC version 2 is currently
in preparation to fix many of the problems highlighted in the first version of PLAsTiCC, and
to focus on an early-time photometric challenge. In future work, we will use the analysis
presented in this thesis to help improve the simulations in PLAsTiCC v2.

1https://github.com/daniel-muthukrishna/astrorapid
2https://pypi.org/project/astrorapid/

https://astrorapid.readthedocs.io/
https://github.com/daniel-muthukrishna/astrorapid
https://pypi.org/project/astrorapid/
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Recent work by Gagliano et al. (2021) has shown that using only host galaxy information
without any photometry of spectroscopy of the transient event can achieve 70% accuracy
at distinguishing supernova classes. The current version of RAPID only uses photometry,
sky position, and redshift information. Throughout Chapter 4, we saw that using pre-trigger
photometry and redshift provided a lot of information that gave good classifications as early
as the time of trigger. Using the set of host galaxy properties and features selected by
Gagliano et al. (2021) as additional contextual information in RAPID should enable even
better classification particularly at early-times.

At the time of writing, the LSST is at a critical point of deciding on the optimal observing
strategy. Many different strategies have been proposed because different science objectives
benefit from different cadences and survey properties. The cadence, colour, and other survey
properties has a significant impact on our ability to classify different transient classes. We
have begun simulating PLAsTiCC light curves using a few different proposed observing
strategies for the LSST. In future work, we will apply RAPID to the LSST simulations to
evaluate how different observing strategies affect the classification performance of different
classes of transients at early and late phases.

Furthermore, we have shown the success of our anomaly detection framework at identify-
ing rare transient classes with respect to common supernovae. In future, we should evaluate
the performance of our method on other anomalous transients, such as the recently discovered
Fast Blue Optical Transients (FBOTs, see Section 1.2.9) and other one-off events. However,
what is an important limitation of our work is that we have not made the distinction between
anomalies and interesting anomalies. While we think that a lot of the transient events that
are uninteresting will be removed by real-bogus cuts by transient brokers, there may still
be many uninteresting transient phenomena that get flagged by our algorithm. Recent work
by Lochner & Bassett (2020) and Ishida et al. (2019a) have developed Active Learning
frameworks that include Human-in-the-loop learning. These frameworks involve getting
astronomers to select which of the flagged anomalies were interesting and then getting the
algorithm to find more anomalies that are similar to that event. For static data sets (not in
real-time) an algorithm called isolation forests have been used significantly and have been
shown to have good success at incorporating Human-in-the-loop learning. However, for
time-series anomaly detection, this is a more difficult challenge. But, future work should use
the methods learned in works such as Lochner & Bassett (2020) and Ishida et al. (2019a)
to ensure that only the subset of interesting anomalies are flagged by automated anomaly
detectors.
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5.4 Final remarks

Overall, this thesis has provided unique methods of identifying follow-up candidates in
real-time transient surveys. Using anomaly detection alongside transient classifiers will
enable astronomers to prioritise which transients are most suitable for followup observations
based on the best classification of the transient type and a transient’s likelihood of being an
anomalous new transient.

I envisage running RAPID and our anomaly detector simultaneously on upcoming
surveys such as LSST. Using both the class probability scores from RAPID and the anomaly
scores will provide astronomers with two useful metrics to prioritise follow up candidates.
For example, an astronomer hoping to follow-up common supernovae should follow up
candidates that have both a high classification probability score for a common supernova
type and a low anomaly score.

Real-time anomaly detection and classification are going to be hugely important for
discovery in the new era of large-scale transient surveys. This thesis has provided important
research into solving these problems for the future of time-domain astronomy.
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