
1.  Introduction
Understanding the solubility and degassing of volatiles in silicate melts is a crucial component of modeling
volcanic systems. As dissolved components, volatiles (primarily 2HE  O and 2COE  ) affect magma viscosity, rhe-
ology, and crystal growth. In addition, due to the strong dependence of volatile solubility on pressure, meas-
ured volatile concentrations in preserved high-pressure melts (i.e., melt inclusions: liquid magma trapped
within crystals at high pressure, then brought to the surface during an eruption) can be used to determine
preeruptive magmatic storage pressures, and thus depths. Importantly, volatile exsolution-driven overpres-
sure of a magmatic system is likely the trigger of many explosive volcanic eruptions (Blake, 1984; Stock

Abstract  Thermodynamics has been fundamental to the interpretation of geologic data and modeling
of geologic systems for decades. However, more recent advancements in computational capabilities and
a marked increase in researchers' accessibility to computing tools has outpaced the functionality and
extensibility of currently available modeling tools. Here, we present VESIcal (Volatile Equilibria and
Saturation Identification calculator): the first comprehensive modeling tool for 2HE  O, 2COE  , and mixed
(  2HE  O-  2COE  ) solubility in silicate melts that: (a) allows users access to seven of the most popular models,
plus easy inter-comparison between models; (b) provides universal functionality for all models (e.g.,
functions for calculating saturation pressures, degassing paths, etc.); (c) can process large datasets (1,000s
of samples) automatically; (d) can output computed data into an Excel spreadsheet or CSV file for simple
post-modeling analysis; (e) integrates plotting capabilities directly within the tool; and (f) provides all of
these within the framework of a python library, making the tool extensible by the user and allowing any of
the model functions to be incorporated into any other code capable of calling python. The tool is presented
within this manuscript, which may be read as a static PDF but is better experienced via the Jupyter
Notebook version of this manuscript. Here, we present worked examples accessible to python users with
a range of skill levels. The basic functions of VESIcal can also be accessed via a web app (https://vesical.
anvil.app). The VESIcal python library is open-source and available for download at https://github.
com/kaylai/VESIcal, or it can be installed using pip. It is recommended to read and interact with this
manuscript as an executable Jupyter Notebook, available at https://mybinder.org/v2/gh/kaylai/vesical-
binder/HEAD?filepath=Manuscript.ipynb.

Plain Language Summary  Geologists use numerical models to understand and predict how
volcanoes behave during storage (preeruption), eruption, and the composition and amount of volcanic
gas released into the atmosphere of Earth and other planets. Most models are made by performing
experiments on a limited data set and creating a model that applies to that data set. Some models combine
lots of these individual models to make a generalized model that can apply to lots of different volcanoes.
Many of these different models exist, and they all have specific uses, limitations, and pitfalls. Here, we
present the first tool, VESIcal, which acts as a simple interface to seven of the most commonly used
models. VESIcal is written in python, so users can use VESIcal as an application or include it in their own
models. VESIcal is the first tool that allows geologists to model thousands of data points automatically and
provides a simple platform to compare results from different models in a way never before possible.

IACOVINO ET AL.

© 2021 The Authors. Earth and
Space Science published by Wiley
Periodicals LLC on behalf of American
Geophysical Union.
This is an open access article under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

VESIcal Part I: An Open-Source Thermodynamic Model
Engine for Mixed Volatile (H2O-CO2) Solubility in Silicate
Melts
K. Iacovino1 , S. Matthews2,3, P. E. Wieser4, G. M. Moore1 , and F. Bégué5

1Jacobs, NASA Johnson Space Center, Houston, TX, USA, 2Department of Earth and Planetary Sciences, Johns Hopkins
University, Baltimore, MD, USA, 3Institute of Earth Sciences, University of Iceland, Askja, Iceland, 4Department of
Earth Sciences, University of Cambridge, Cambridge, UK, 5Department of Earth Sciences, University of Geneva,
Geneva, Switzerland

Key Points:
•	 �The first comprehensive volatile

solubility tool capable of processing
large datasets automatically

•	 �Seven built-in solubility models,
with automatic calculation and
plotting functionality

•	 �Built in python and easily usable by
scientists with any level of coding
skill

Supporting Information:
Supporting Information may be found
in the online version of this article.

Correspondence to:
K. Iacovino,
kayla.iacovino@nasa.gov

Citation:
Iacovino, K., Matthews, S., Wieser, P.
E., Moore, G. M., & Bégué, F. (2021).
VESIcal part I: An open-source
thermodynamic model engine for
mixed volatile (H2O-CO2) solubility
in silicate melts. Earth and Space
Science, 8, e2020EA001584. https://doi.
org/10.1029/2020EA001584

Received 30 NOV 2020
Accepted 12 JUN 2021

10.1029/2020EA001584
RESEARCH ARTICLE

1 of 55

https://vesical.anvil.app
https://vesical.anvil.app
https://github.com/kaylai/VESIcal
https://github.com/kaylai/VESIcal
https://mybinder.org/v2/gh/kaylai/vesical-binder/HEAD?filepath=Manuscript.ipynb
https://mybinder.org/v2/gh/kaylai/vesical-binder/HEAD?filepath=Manuscript.ipynb
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2461-7748
https://orcid.org/0000-0002-1556-6432
https://doi.org/10.1029/2020EA001584
https://doi.org/10.1029/2020EA001584
https://doi.org/10.1029/2020EA001584
https://doi.org/10.1029/2020EA001584
https://doi.org/10.1029/2020EA001584

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

2 of 55

et al., 2016; Tait et al., 1989). Once triggered, further drops in magmatic pressure caused by ascent of magma
within a volcanic conduit result in the continuous exsolution of volatiles from the melt. Volatile elements
experience a large positive volume change when moving from a dissolved to exsolved free fluid state. This
expansion fuels a dramatic increase in the magma's buoyancy, which can often lead to a runaway effect in
which the ascent and degassing of volatile-bearing magma eventually erupts at the surface in an explosive
fashion. Working in concert with seismic and gas monitoring data, preeruptive magmatic volatile concen-
trations as well as solubility and degassing modeling can be used in forensic and sometimes in predictive
scenarios, helping us to understand and potentially mitigate the effects of explosive eruptions.

All of these processes depend directly on the solubility, or the capacity of a magma to hold in solution, of
volatile elements. Over the last several decades, a veritable explosion of new volatile solubility data has
opened the door to a plethora of models describing the solubility of 2HE  O, 2COE  , or mixed 2HE  O-  2COE fluid
in magmas covering a wide compositional, pressure, and temperature range. Volatile solubility is high-
ly dependent upon the composition of the host magma, making already challenging experiments more
onerous to perform to encapsulate the range of magmas seen in nature. The most fundamental models
(Dixon et al., 1995; Moore et al., 1998; Stolper, 1982) focus on a specific range of magma bulk composi-
tions (e.g., basalt or rhyolite only). Later studies filled in compositional gaps, some with an increased focus
on mixed-volatile (  2HE  O-  2COE  ) studies, increasing the natural applicability of our models to more systems
(Iacono-Marziano et al., 2012; Iacovino et al., 2013; Liu et al., 2005). To date, there have been only a few
significant efforts to create a holistic thermodynamic model calibrated by a wide range of data in the liter-
ature. The most popular are MagmaSat (the mixed-volatile solubility model built into the software package
MELTS v. 1.2.0; Ghiorso & Gualda, 2015) and the model of Papale et al. (2006). Both of these studies have
made their source code available; the Papale et al. (2006) FORTRAN source code (titled Solwcad), web app,
and a Linux program can be found at http://www.pi.ingv.it/progetti/eurovolc/, and very recently MagmaSat
has been made accessible via the ENKI thermodynamic python framework (http://enki-portal.org/).

Despite this communal wealth of solubility models, quantitative calculations of volatile solubility, and by
extension saturation pressures, equilibrium fluid compositions, and degassing paths, remains a time-con-
suming endeavor. Modeling tools that are available are typically unable to process more than one sample at
a time, requiring manual entry of the concentrations of 8–10 major oxides, temperature, as well as 2COE and

2HE  O concentrations to calculate saturation pressures, or 2XH OE to calculate dissolved volatile contents. This
is particularly problematic for melt inclusion studies, where saturation pressures are calculated for hun-
dreds of inclusions, each with different entrapment temperatures, 2COE  , 2HE  O, and major element concentra-
tions. For example, the saturation pressures from 105 Gakkel ridge melt inclusions calculated in MagmaSat
by Bennett et al. (2019) required the manual entry of 1,365 values! The potential for user error in this data
entry stage should not be overlooked.

In many cases, newly published solubility models do not include an accompanying tool, requiring users to
correctly combine and interpret the relevant equations (e.g., Dixon, 1997; Dixon et al., 1995; Liu et al., 2005;
Shishkina et al., 2014). This is problematic from a perspective of reproducibility of the multitude of studies
utilizing these models, especially given that some of the equations in the original manuscripts contain typos
or formatting errors. For some models, an excel spreadsheet was provided, or available at request from the
authors. For example, Newman and Lowenstern (2002) included a simplified version of the Dixon (1997)
model as part of “VolatileCalc,” which was written in Visual Basic for Excel. Due to its simplicity, allowing
users to calculate saturation pressures, degassing paths, isobars, and isopleths with a few button clicks and
pop-up boxes, this tool has proved extremely popular (with 836 citations at the time of writing). However,
to calculate saturation pressures using VolatileCalc, the user must individually enter the 2SiOE  , 2HE  O, 2COE
content and temperature of every single sample into pop-up boxes. Similarly, the excel spreadsheet for the
Moore et al. (1998) model calculates dissolved 2HE  O contents based on the concentration of nine oxides, tem-
perature, and the fraction of 2XH OE in the vapor, which must be pasted in for every sample. Finally, Allison
et al. (2019) provide an excel spreadsheet that allows users to calculate fugacities, partial pressures, isobars,
isopleths and saturation pressures. Again, parameters for each sample must be entered individually, with no
way to calculate large numbers of samples automatically.

Some of these published models and tools are at risk of being lost to time, since spreadsheet tools (par-
ticularly earlier studies published before journal-provided hosting of data and electronic supplements was

http://www.pi.ingv.it/progetti/eurovolc/
http://enki-portal.org/

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

3 of 55

commonplace) must be obtained by request to the author. Even if the files are readily available, programs
used to open and operate them may not support depreciated file formats. More recently, authors have
provided web-hosted interfaces to calculating saturation pressures and dissolved volatile contents (e.g.,
Iacono-Marziano et al., 2012; http://calcul-isto.cnrs-orleans.fr/, and Ghiorso & Gualda, 2015; http://melts.
ofm-research.org/CORBA_CTserver/GG-H2O-CO2.html). Ghiorso and Gualda (2015) also provide a Mac
application. While more accessible in the present time, this does not negate the issue of the longevity of
these models. The link provided in the Iacono-Marziano et al. (2012) manuscript returns an error “this site
cannot be reached,” although email contact with the author directed us toward the newer link given above.
Similarly, the link to the 2HE  O-  2COE equation of state web calculator that Duan and Zhang (2006) provided
in their manuscript returns a 404 error.

While we certainly advocate for the continued refinement of solubility models, including the completion of
new experiments in poorly studied yet critical compositional spaces such as andesites (Wieser et al., 2021),
a perhaps more crucial step at this juncture is in the development of a tool that can apply modern compu-
tational solutions to making our current knowledge base of volatile solubility in magmas accessible and
enduring.

Here, we present VESIcal (Volatile Equilibria and Saturation Identification calculator): a python-based
thermodynamic volatile solubility model engine that incorporates seven popular volatile solubility models
under one proverbial roof. The models included in VESIcal are (also see Table 1):

1.	 �MagmaSat: VESIcal's default model. The mixed-volatile solubility model within MELTS v. 1.2.0 (Ghiorso
& Gualda, 2015).

2.	 �Dixon: The simplification of the Dixon (1997) model as implemented in VolatileCalc (Newman &
Lowenstern, 2002)
�(a)	� DixonWater and DixonCarbon are available as pure-fluid models.

3.	 �MooreWater: (Moore et al., 1998; water only, but 2HE  O fluid concentration can be specified).
4.	 �Liu: (Liu et al., 2005)

�(a)	� LiuWater and LiuCarbon are available as pure-fluid models.
5.	 �IaconoMarziano: (Iacono-Marziano et al., 2012)

�(a)	� IaconoMarzianoWater and IaconoMarzianoCarbon are available as pure-fluid models
6.	 �ShishkinaIdealMixing: (Shishkina et al., 2014) using pure-  2HE  O and pure-  2COE models and assuming ide-

al mixing. In general, the pure-fluid versions of this model should be used
�(a)	� ShishkinaWater and ShishkinaCarbon are available as pure-fluid models

7.	 �AllisonCarbon: (Allison et al., 2019, carbon only)
�(a)	� AllisonCarbon_vesuvius (default; phonotephrite from Vesuvius, Italy)
�(b)	� AllisonCarbon_sunset (alkali basalt from Sunset Crater, AZ, USA)
�(c)	� AllisonCarbon_sfvf (basaltic andesite from San Francisco Volcanic Field, AZ, USA)
�(d)	� AllisonCarbon_erebus (phonotephrite from Erebus, Antarctica)
�(e)	� AllisonCarbon_etna (trachybasalt from Etna, Italy)
�(f)	� AllisonCarbon_stromboli (alkali basalt from Stromboli, Italy)

As any individual model is only valid within its calibrated range (see below), and each model is param-
eterized and expressed differently (e.g., empirical vs. thermodynamic models), it is impractical to simply
combine them into one large model. Instead, VESIcal is a single tool that can access and utilize all of these
models, with an extensive pressure-temperature-composition calibration range (Figure 1). VESIcal repre-
sents the first volatile solubility tool with the ability to perform calculations for multiple samples at once,
with built-in functionality for extracting data from an Excel or CSV file. In addition, the code is written
such that it is flexible (sample, calculation type, and model type can be chosen discreetly) and extensible
(VESIcal code can be imported for use in python scripts, and the code is formatted such that new volatile
models can be added).

Importantly, VESIcal has been designed for practicality and ease of use. It is designed to be used by any-
one, from someone who is completely unfamiliar with coding to an adept programmer. The noncoder user
can interact with VESIcal through a webapp (https://vesical.anvil.app) or directly within this manuscript,
which utilizes the user-friendly Jupyter Notebook format, allowing them to upload a file with data, execute

http://calcul-isto.cnrs-orleans.fr/
http://melts.ofm-research.org/CORBA_CTserver/GG-H2O-CO2.html
http://melts.ofm-research.org/CORBA_CTserver/GG-H2O-CO2.html
https://vesical.anvil.app

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

4 of 55

Model/Reference Species P (bar) T (°C) Compositional range Notes

MagmaSat (Ghiorso &
Gualda, 2015)

2HE  O 0–20,  1000E 550–  11420E Very broad
compositional range
of natural silicate
melts: subalklaine
picrobasalts to
rhyolites, including
a variety of mafic
and silicic alkaline
compositions

1Ranges extracted from Figure 2d of
Ghiorso & Guald (2015)

2COE 0–30,  1000E 1139–  11400E

2HE  O-  2COE 0–10,  1000E 800–  11400E

Dixon (simplification
of Dixon, 1997 used
in VolatileCalc,
Newman &
Lowenstern, 2002)

2HE  O-  2COE 0–5,  1000E 600–  11500E (1200)4 Alkali basalts: 40–49
wt% 2SiOE

1Warnings implemented in VolatileCalc
(Newman & Lowenstern, 2002).
2Calibration range suggested by
Lesne et al. (2011). 3Calibration
range suggested by Iacono-
Marziano et al. (2012). 4Calibration
temperature of Dixon (1997)

0–2,  2000E

0–1,  3000E

MooreWater (Moore
et al., 1998)

2HE  O 0–3,  1000E 700–  11200E Broad compositional
range: subalkaline
basalts to
rhyolites, alkaline
trachybasalts-
andesites, foidites,
phonolites

1Author-suggested calibration range.
The calibration data set spans
190–6,067 bar and 800–1200°C.

Liu (Liu et al., 2005) 2HE  O-  2COE 0–5,  1000E 700–  11200E Haplogranites and
rhyolites

1Author-suggested calibration range
for the mixed fluid model. The
calibration data set covers 750–
5,510 bar and 800–1150°C for the
carbon model and 1–5,000 bar and
700–1200°C for the water model.

Iacono-Marziano
(Iacono-Marziano
et al., 2012)

2HE  O-  2COE 95–10,500 (mostly
<5,000)1

1100–1400 (preferably
1200–1300)2

Predominantly mafic
compositions:
subalkaline
and alkaline
basalts-andesites

1Range of calibration data set, as
authors do not specifically state a
calibration range. We note that the
vast majority of experiments were
conducted at <5,000 bar. 2Authors
state that most experiments
were conducted between 1200°C
and 1300°C (whole range
1100°C–1400°C)

Table 1
Calibration Ranges of VESIcal Models

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

5 of 55

the various example calculations provided below, and save the results to an Excel or CSV file to work with
outside of VESIcal. This notebook also incorporates built-in plotting options for easy visualization of user
data and calculated results. More experienced programmers may wish to use the more advanced functional-
ity provided by VESIcal, including the ability to hybridize models (e.g., use one model for 2HE  O and another
for 2COE  ) or write their own routines and code calling VESIcal methods. VESIcal is an open source tool and
as such is far less prone to the preservation issues discussed above. Because the VESIcal code is hosted on
GitHub, every change to the code is tracked publicly (Perkel, 2016). VESIcal's current release (version 1.0.1)
is also archived on Zenodo, which provides a static citable DOI (10.5281/zenodo.5095382) for the current
version of the code, along with a snapshot of the GitHub repository at the time of release.

A detailed history of volatile solubility modeling and the implications of VESIcal are explored in detail in
the companion manuscript to this work, Wieser et al. (2021).

2.  Research Methodology
Navigating the array of models implemented in VESIcal can be challenging. How can a user determine
which model best suits their needs? MagmaSat (the default model in VESIcal) is the most widely calibrated
in P-T-X space, and so we recommend it for the majority of cases. Where a user wishes to use the other
implemented models, we provide some tools to help choose the most appropriate model (see Supplement).
These tools are described in more detail in Section 3.4 on comparing user data to model calibrations.

A list of model names recognized by VESIcal can be retrieved by executing the command v.get_model_
names(), assuming VESIcal has been imported as v as is demonstrated in worked examples below. Note that
the above model names are given in terms of how to call them within VESIcal (e.g., model = 'MooreWater').
Allison et al. (2019) provides unique model equations for each of the six alkali-rich mafic magmas investi-
gated in their study. The default model in VESIcal is that calibrated for Vesuvius magmas, whose calibration
has the widest pressure range of the study (Table 1). Setting a model name of “AllisonCarbon” within VES-
Ical will thus result in calculations using the AllisonCarbon_vesuvius model equations.

Table 1
Continued

Model/Reference Species P (bar) T (°C) Compositional range Notes

Shishkina (Shishkina
et al., 2014)

1
2H OE 0-5,  2000E 1050–1400 (preferably

1150–1250)2, 3
Mafic and intermediate

compositions:
subalkaline basalts-
basaltic andesites,
alkali basanites-
phonolites. 2SiOE <65
wt%

1Although the empirical expressions
are for pure fluids, they were
mostly calibrated on mixed

2HE  O-  2COE experiments. 2Author-
suggested range. 3Note, this model
contains no temperature term.

1CO2E 500–5,  2000E 1200-  2,31250E Predominantly mafic
compositions:
subalkaline basalts,
alkaline basanites,
trachybasalts

AllisonCarbon (Allison
et al., 2019)

2COE 0–7,0001 21200E (1000–1400) Alkali-rich mafic
magmas from 6
volcanic fields.
Separate model
coefficients for each
composition.

1Author-suggested range. The
calibration data set spans:
(SFVF: 4,133–6,141 bar, Sunset
Crater: 4,071–6,098 bar, Erebus:
4,078–6,175 bar, Vesuvius:
269–6,175 bar, Etna: 485–6,199 bar,
Stromboli: 524–6,080 bar). 2Note all
calculations performed at 1200°C
(the experimental temperature).
Authors suggest results generally
applicable between 1000°C and
1400°C.

http://10.5281/zenodo.5095382

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

6 of 55

All of the calculations implemented in VESIcal can be performed using any of the models included. The
code is structured by calculation rather than by model, which provides an intuitive way for users to interact
with the code and compare outputs from multiple models. Each calculation class is instantiated with the
model name and any applicable data as arguments. It then performs five key functions: (a) creates the re-
quested model object and performs any necessary pre-processing (e.g., ensuring relevant data are present;
normalizing data); (b) takes user input and performs the mathematical calculation; (c) does any necessary
processing of the output (e.g., normalizing totals); (d) checks that the model is being used within its cal-
ibrated range; and (e) stores calculated outputs in an intuitive and manipulatable format (e.g., a python
dictionary, a figure, or a pandas DataFrame). Results of calculations can be saved to one or more Excel or
CSV files. To demonstrate that VESIcal returns results which are comparable with pre-existing tools, we
have performed a number of tests, which are described in the Supporting Information S2. For single-sample
calculations, the calculation object has the following attributes that can be called by the user: model_name,
sample (both provided by the user), model (an instance of the Model class used to run the calculations of
interest), result (the result of the calculations), and calib_check (the results of the calibration check).

2.1.  Model Calibrations and Benchmarking

The pressure, temperature, and compositional calibration ranges of the seven models implemented in VES-
Ical are shown in Table 1 and Figure 1. VESIcal abides by statements of caution made by the authors of
these models regarding their extrapolation by informing the user if a calculation is being performed outside
of a model's calibrated range. In this case, the code returns a warning message, which is as specific as pos-
sible, along with the requested output. We provide these calibrations along with several Jupyter Notebooks
in the Supporting Information S1 (Text S3 and S4 and Jupyter Notebooks S1–S7), which allow users to plot
their data amongst the calibrations of the different models to assess their suitability for less objective meas-
ures (also see Section 3.4). Detailed descriptions of the seven solubility models implemented in VESIcal, in-
cluding information about their calibration range in terms of melt composition, pressure, and temperature,
are given in this manuscript's companion paper Wieser et al. (2021).

Testing was undertaken to ensure that VESIcal faithfully reproduces the results of all incorporated models.
When possible, all models were benchmarked by testing VESIcal outputs against those of a relevant pub-
lished calculator (e.g., web apps or Excel macros). The models of Shishkina et al. (2014) and Liu et al. (2005)
were published with no such tool and so testing instead compares VESIcal outputs to experimental

Figure 1.  Illustrations showing the calibrated ranges of VESIcal models in pressure-temperature space. Due to difficulty in differentiating between pure-  2COE
and mixed fluid experiments in the literature, plots are subdivided into: experiments performed with pure-  2COE or mixed (  2HE  O-  2COE  ) fluid; and pure-  2HE  O fluid.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

7 of 55

conditions or analyses and, where possible, plots VESIcal results against published figures. All models un-
derwent multiple tests, the results of which are shown in the Supporting Information S1 (Text S3 and S4
and Jupyter Notebooks S1–S7). For all models, VESIcal reproduced the results from previous tools (e.g., web
apps, Excel spreadsheets) to within 1% relative and often on the order of 0.1% relative.

MagmaSat, VESIcal's default model, underwent three tests, the results of which are shown in Figure 2: (a)
Comparison of saturation pressures from MORB melt inclusions in VESIcal to those published by Bennett
et al. (2019), who used the MagmaSat Mac App (  2RE   = 0.99998; Figure 2a); (b) Comparison of fluid composi-
tion (  2XH OE  ) calculated with VESIcal and the web app (  2RE   = 0.999, identical considering the web app returns
2dp; Figure 2b); (c) Comparison of isobars for the Early Bishop Tuff calculated with VESIcal (star symbols)
and isobars published in Figure 14 of Ghiorso and Gualda (2015) (Figure 2c). VESIcal outputs using the
model of Dixon (1997) were tested against outputs from the VolatileCalc Excel spreadsheet (Newman &
Lowenstern, 2002) and a widely used Excel macro (e.g., Tucker et al., 2019).

2.2.  Format of the Python Library

In this section, the basic organization and use cases of VESIcal are discussed. VESIcal relies heavily on
python pandas, a python package designed for working with tabulated data. Knowledge of pandas is not
required to use VESIcal, and we refer the user to the pandas documentation for an overview of the package
(https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html).

Specific details on how to perform model calculations are discussed in Section 3 and include worked exam-
ples. The VESIcal library is written so that users can interact first and foremost with the calculation they
want to perform. Five standard calculations can be performed with any model in the library:

1.	 �calculate_dissolved_volatiles()
2.	 �calculate_equilibrium_fluid_composition()
3.	 �calculate_saturation_pressure()
4.	 �calculate_isobars_and_isopleths() (plus functionality for plotting; only for mixed volatiles models)
5.	 �calculate_degassing_path() (plus functionality for plotting; only for mixed volatiles models).

Figure 3 illustrates the basic organization of the code. First, the user determines which calculation they wish
to perform by accessing one of the five core calculation classes (listed above). In this step, the user specifies
any input parameters needed for the calculation (e.g., sample composition in wt% oxides, pressure in bars,
temperature in °C, and fluid composition “X_fluid” in terms of 2XH O fluidE  ) as well as the model they wish to

Figure 2.  Benchmarking of VESIcal against MagmaSat. (a) Comparison of saturation pressures calculated with VESIcal against those by Bennett et al. (2019)
using the MagmaSat app for Mac. Samples are all MORB melt inclusions, and pressures were calculated at a temperature unique to each sample. (b)
Equilibrium fluid compositions calculated with VESIcal against those calculated with the MagmaSat web app. (c) Individual points along the 1,000, 2,000,
and 3,000 bar isobars for the Early Bishop Tuff rhyolite calculated with VESIcal (stars) and plotted atop isobars published in Figure 14 of Ghiorso and
Gualda (2015).

https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

8 of 55

use. The default model is MagmaSat, but the user may specify any model in the library. As an example, the
code to calculate the saturation pressure of some sample using the MagmaSat model would be written as:

Where mysample is a variable (VESIcal Sample object) containing the composition of the sample, and the
temperature is given in °C. Examples on how to create such a variable are given in Section 3. Here, this line
of code creates a Calculate object, which is something that can be given a variable name and stored so that
the user can call upon this object for viewing or manipulation later. In this example, we name the object
“saturation_pressure_calculation,” but this can be any variable name desired by the user. The Calculate
object stores important information about the calculation, including the result. The result of the calculation
or calibration check can be accessed as:

In python, the object creation and attribute access can be combined into a single line, with the understand-
ing that the Calculate object will not be accessible to the user. This usage is used in the remaining examples
throughout the manuscript and would be written as:

If a different model is desired, for example Dixon (1997), it can be passed as:

saturation_pressure_calculation = calculate_saturation_pressure(sample = mysample,
temperature = 850.0)

saturation_pressure_calculation.result
saturation_pressure_calculation.calib_check

saturation_pressure = calculate_saturation_pressure(sample=mysample, temperature = 850.0).
result

calculate_saturation_pressure(sample = mysample, temperature=850.0, model = 'Dixon').
result

Figure 3.  Flowchart illustrating the basic organization of the python library. First, a user chooses a calculation to
perform and calls one of the five core calculation classes. Here, any necessary parameters are passed such as sample
composition, pressure, and temperature. A check is run to ensure the calculation is being performed within model-
specified limits. The Calculate() class then calls on one of the Model() classes. The default model is MagmaSat, but
a user may specify a different model when defining the calculation parameters. Standard pre-processing is then
performed on the input data, and this pre-processing step is unique to each model. The processed data are then fed into
a model-specific method to perform the desired core calculation.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

9 of 55

The core calculation classes each perform two functions: (a) a check is performed to ensure that the user
input is within the model's recommended calibration range; (b) the calculate() method sends the user input
to the appropriate model.

Users can process individual samples (single-sample calculations) or entire datasets (batch calculations;
Figure 4). If processing more than one sample, the “simplest” way to interact with VESIcal is via batch
calculations. Here, the user provides input data in the form of a Microsoft Excel spreadsheet (.xlsx file) or
CSV file and instructs the model to perform whatever calculation is desired. The model is run on all sam-
ples and returns data formatted like a spreadsheet (using the python pandas package), which contains the
user's original input data plus whatever model outputs were calculated. The user can continue to work with
returned data by saving the result to a variable (as is shown in all examples in this manuscript). Data can
then be exported to an Excel or CSV file with a simple command (see Section 3.12).

The syntax for processing a single sample is very similar to that for batch calculations but provides the
user direct access to more advanced features that cannot be accessed via batch calculations (e.g., specifying
fugacity or activity model, hybridizing models; see Section 3.11). This also gives the user more flexibility in
integrating any VESIcal model function into some other python code.

2.3.  Running the Code

VESIcal can be used in a number of ways: via this Jupyter Notebook, via the VESIcal web app, or by directly
importing VESIcal into any python script.

VESIcal was born from functionality provided by ENKI and so all the files necessary to use VESIcal are
hosted on the ENKI server (http://enki-portal.org/). A unique personal coding environment can be initiated
by logging into the ENKI production server using a GitLab username and password (which is free to obtain;
see directions on the ENKI website for specifics). The simplest way to use VESIcal while retaining all of its
functionality is within this very manuscript, in the form of a Jupyter Notebook. Code in this notebook can
be manipulated and executed in the code cells below. Making changes won't affect the public version of this
manuscript. Likewise, any user can write their own python code using VESIcal by creating a Jupyter Note-
book on the ENKI server and importing VESIcal as is demonstrated in the code below.

Figure 4.  Flowchart illustrating the different operational paths. On top, batch calculation is shown, in which an Excel or CSV file with any amount of samples
is fed into the model, calculations are performed, and the original user data plus newly calculated values are returned and can be saved as an Excel or CSV
file. Below, single-sample calculation is shown. These methods can run calculations on one sample at a time, but multi-sample calculations can be performed
iteratively with code written by the user. Calculated values are returned as a variable. For single-sample calculations, more advanced modeling options can be
set, and hybridization of models can be performed.

http://enki-portal.org/

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

10 of 55

Computation time on the ENKI server is limited by the server itself. VESIcal may run faster if installed
locally. Advanced instructions on installing VESIcal on your own computer are provided in the Support-
ing Information S1. Note that VESIcal requires installation of the ENKI thermoengine library to function
properly. Thermoengine is written in python but is based on the original MELTS code (Ghiorso & Gual-
da, 2015; Ghiorso & Sack, 1995), which contains MacOS-specific header files. The result is that thermo-
engine is most easily installed on MacOS but can be installed on Windows and Linux operating systems
via Docker (see thermoengine documentation for installation instructions; https://gitlab.com/ENKI-portal/
ThermoEngine).

The most limited but simplest method to interacting with VESIcal is through the web app (https://vesical.
anvil.app). The web app can currently perform three of the five core calculations in batch process mode (via
upload of an Excel or CSV file). Some, but not all, optional parameters can be set.

To run the code in this notebook, nothing needs to be installed. Simply execute the code cells below, chang-
ing parameters as desired. Custom data may be processed by uploading an Excel or CSV file into the same
folder containing this notebook and then changing the filename in Section 3.3.

2.4.  Documentation

This manuscript serves as an introduction to the VESIcal library aimed at python users of all levels. How-
ever, the code itself is documented with explanations of each method, its input parameters, and its returned
values. This documentation can be accessed at our readthedocs website (https://vesical.readthedocs.io/).
The documentation for any function can be viewed in a Jupyter Notebook by typing the function followed
by a question mark and executing the cell (e.g., “v.calculate_saturation_pressure?”).

Video tutorials are also available on the VESIcal YouTube (https://www.youtube.com/channel/UCpvCCs5K-
MXzOxXWm0seF8Qw). The first tutorial covers the basics of VESIcal, and subsequent videos cover the
calculation of saturation pressures, dissolved volatile conents, and degassing paths. More videos for specific
features and uses are planned.

2.5.  Generic Methods for Calculating Mixed-Fluid Properties

VESIcal provides a set of methods for calculating the properties of mixed 2COE  -  2HE  O fluids, which can be
used with any combination of 2HE  O and 2COE solubility model. The use of generic methods allows additional
models to be added to VESIcal by defining only the (simpler) expressions describing pure fluid solubility.
Non-ideality of mixing in the fluid or magma phases can be incorporated by specifying activity and fugacity
models. A complete description of these methods, including all relevant equations, can be found in the
Supporting Information S1.

3.  Workable Example Uses
In this section, we detail how to use the various functions available in VESIcal through worked examples.
The python code presented below may be copied and pasted into a script or can be edited and executed di-
rectly within the Jupyter Notebook version of this manuscript. For all examples, code in Sections 3.2 and 3.4
must be executed to initialize the model and import data from the provided companion Excel file. The fol-
lowing sections then may be executed on their own and do not need to be executed in order.

In each example below, a generic “method structure” is given along with definitions of unique, required,
and optional user inputs. The method structure is simply for illustrative purposes and gives default values
for every argument (input). In some cases, executing the method structure as shown will not produce a
sensible result. For example, the default values for the plot() function (Section 3.10) contain no data, and so
no plot would be produced. Users should replace the default values shown with values corresponding to the
samples or conditions of interest.

All examples will use the following sample data by default (but this can be changed by the user):

https://gitlab.com/ENKI-portal/ThermoEngine
https://gitlab.com/ENKI-portal/ThermoEngine
https://vesical.anvil.app
https://vesical.anvil.app
https://vesical.readthedocs.io/
https://www.youtube.com/channel/UCpvCCs5KMXzOxXWm0seF8Qw
https://www.youtube.com/channel/UCpvCCs5KMXzOxXWm0seF8Qw

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

11 of 55

1.	 �Dataset from example_data.xlsx loaded in Section 3.3.1 (variable name myfile)
2.	 �Single composition defined in Section 3.3.2 (variable name mysample)
3.	 �Sample 10* extracted from example_data.xlsx data set in Section 3.3.3 (variable name sample_10)

Calculations performed on single samples or on a data set imported from an Excel or CSV file containing
many samples are executed in two distinct ways. Note that single sample calculations require that the
argument sample be defined. To return the numerical result of the calculation, the.result method must
be called, as shown below. Batch calculations are performed on the data set itself, after that data set is
imported into VESIcal. Thus, the sample argument does not need to be defined discretely, since sample
compositional information is stored within the data set object. The two basic formats for performing
calculations are:

Single sample calculations

Batch calculations

Where VESIcal has been imported as v, myvariable is some arbitrary variable name to which the user wishes
to save the calculated output, name_of_the_core_calculation is one of the five core calculations, mysample
is a variable containing compositional information in wt% oxides, myfile is a variable containing an Batch-
File object created by importing an Excel or CSV file, and argument1, argument2, value1, and argument2
are two required or optional arguments and their user-assigned values, respectively.

Workable examples detailed here are:

1.	 �Loading, viewing, and preparing user data
�(a)	� Loading a Batch file
�(b)	� Defining a single sample composition
�(c)	� Plotting user data
�(d)	� Extracting a single sample from a Batch file
�(e)	� Normalizing and transforming data

2.	 �Calculating dissolved volatile concentrations
3.	 �Calculating equilibrium fluid compositions
4.	 �Calculating saturation pressures
5.	 �Calculating and plotting isobars and isopleths
6.	 �Calculating and plotting degassing paths
7.	 �Plotting multiple calculations
8.	 �Comparing results from multiple models
9.	 �Model hybridization (Advanced)

10.	 �Exporting data

myvariable = v.name_of_the_core_calculation(sample=mysample, argument1=value1,
argument2=value2).result

myvariable = myfile.name_of_the_core_calculation(argument1=value1,argument2=value2)

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

12 of 55

3.1.  Calculation Class Arguments and Their Definitions

Each section below details what arguments are required or optional inputs and gives examples of how to
perform the calculations. Table 2 lists all arguments, both required and optional, used in the five core calcu-
lations. Many of the function arguments have identical form and use across all calculations, and so we list
these here. Any special cases are noted in the section describing that calculation.

The most commonly used arguments are:

1.	 �sample: Single sample calculations only. The composition of a sample. A VESIcal Sample object is created
to hold compositional information about sample. A Sample object can be created from a dictionary or
pandas Series containing values, with compositions of oxides in wt%, oxides in mol fraction, or cations in
mol fraction. This argument is not needed for batch calculations since they are performed on BatchFile
objects, which already contain sample information. See examples for details.

2.	 �temperature, pressure, and X_fluid: the temperature in °C, the pressure in bars, and the mole fraction of
2HE  O in the 2HE  O-  2COE fluid, 2XH O fluidE  . In all cases, X_fluid is optional, with a default value of 1 (pure 2HE  O

fluid). Note that the X_fluid argument is only used for calculation of dissolved volatile concentrations.

For single sample calculations:

1.	 �Temperature, pressure, and X_fluid should be specified as a numerical value.

�For batch calculations

1.	 �Temperature, pressure, and X_fluid can either be specified as a numerical value or as strings referring to
the names of columns within the file containing temperature, pressure, or X_fluid values for each sam-
ple. If a numerical value is passed for either temperature, pressure, or X_fluid, that will be the value used
for one or all samples. If, alternatively, the user wishes to use temperature, pressure, and/or X_fluid in-
formation in their BatchFile object, the title of the column containing temperature, pressure, or X_fluid
data should be passed in quotes (as a string) to temperature, pressure, and/or X_fluid, respectively. Note
for batch calculations that if temperature, pressure, or 2XH O fluidE information exists in the BatchFile but
a single numerical value is defined for one or both of these variables, both the original information plus
the values used for the calculations will be returned.

dissolved_volatiles equilibrium_fluid_comp saturation_pressure isobars_isopleths degassing_path

SS Batch SS Batch SS Batch SS SS

sample wt% oxides* wt% oxides* wt% oxides* wt% oxides* wt% oxides*

temperature °C* °C* °C* °C* °C* °C* °C* °C*

pressure bars* bars* bars* None ‘saturation’

pressure_list bars*

X_fluid 1 1

isopleth_list None

verbose False False False

model “MagmaSat” “MagmaSat” “MagmaSat” “MagmaSat” “MagmaSat” “MagmaSat” “MagmaSat” “MagmaSat”

print_status True False True True

smooth_isobars True

smooth_isopleths True

fractionate_vapor 0.0

init_vapor 0.0

Note. *indicates argument is required. SS = Single-sample. Batch = batch processing. Values in cells indicate the unit or type of data to input for required
arguments or the default value in the case of optional arguments.

Table 2
Matrix of all Arguments Used in the Five Core Calculations, the Nature of the Argument (Required or Optional) and the Input Type or Default Value

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

13 of 55

1.	 �verbose: Only for single sample calculations. Always an optional argument with a default value of
False. If set to True, additional values of interest, which were calculated during the main calcula-
tion, are returned in addition to the results of the calculation.

2.	 �print_status: Only for batch calculations. Always an optional argument, which sometimes defaults
to True and other times defaults to False (see specific calculation section for details). If set to True,
the progress of the calculation will be printed to the terminal. The user may desire to see the status
of the calculation, as some calculations using MagmaSat can be somewhat slow, particularly for
large datasets.

3.	 �model: Always an optional argument referring to the name of the desired solubility model to use.
The default is always “MagmaSat.”

3.2.  Initialize Packages

For any code using the VESIcal library, the library must be imported for use. Here we import VESIcal as
v. Any time we wish to initialize a VESIcal object, that class name must be preceded by “v.” (e.g., v.calcu-
late_saturation_pressure). Specific examples of this usage follow. Here, we also import some other python
libraries that we will be using in the worked examples below.

Input

3.3.  Loading, Viewing, and Preparing User Data

All of the following examples will use data loaded in the code cells in this section. Both batch processing
of data loaded from a file and single-sample processing are shown. An example file called “example_data.
xlsx” is included with this manuscript. You can load in your own data by first ensuring that your file is in
the same folder as this notebook and then by replacing the filename in the code cell below with the name
of your file. The code cell below must be executed for the examples in the rest of this section to function
properly.

3.3.1.  Batch Processing

Batch calculations are always facilitated via the BatchFile() class, which the user uses to specify the file-
name corresponding to sample data. Loading in data is as simple as calling BatchFile(filename). Optionally,
units can be used to specify whether the data are in wt% oxides, mol fraction oxides, or mol fraction cations.
Calculations will always be performed and returned with melt composition in the default units (wt% oxides
unless changed by the user) and fluid composition in mol fraction.

Structure of the input file: A file containing compositions (and optional pressure, temperature, or
2XH O fluidE information) on one or multiple samples can be loaded into VESIcal. The loaded file must be

a Microsoft Excel file with the extension.xls or.xlsx or CSV file with the extension.csv. The file must be
laid out in the same manner as the example file “example_data.xlsx.” The basic structure is also shown
in Table 3.

Any extraneous columns that are not labeled as oxides or input parameters will be ignored during calcu-
lations. The first column titled “Label” contains sample names. Note that the default assumption on the
part of VESIcal is that this column will be titled “Label.” If no “Label” column is found, the first nonoxide

import VESIcal as v
import pandas as pd

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

14 of 55

column name will be set as the index column, meaning this is how samples can be accessed by name (see
Section 3.3.3). An index column can be specified by the user using the argument label (see documenta-
tion below). The following columns must contain compositional information as oxides. The only allowable
oxides are: 2SiOE  , 2TiOE  , 2 3Al OE  , 2 3Fe OE  , FeO, 2 3Cr OE  , MnO, MgO, CaO, NiO, CoO, 2NaE  O, 2KE  O, 2 5P OE  , 2HE  O, and

2COE  . Currently, VESIcal can only read these oxide names exactly as written (e.g., with no leading or trailing
spaces and with correct capitalization), but functionality to interpret variations in how these oxides are
entered is planned (e.g., such that “sio2.” would be understood as “SiO2”). All of these oxides need not be
included; if for example your samples contain no NiO concentration information, you can omit the NiO
column. Omitted oxide data will be set to 0 wt% concentration. If other oxide columns not listed here are
included in your file, they will be ignored during calculations. Notably, the order of the columns does not
matter, as they are indexed by name rather than by position. Compositions can be entered either in wt%
(the default), mol%, or mole fraction. If mol% or mole fraction data are loaded, this must be specified when
importing the tile.

Because VESIcal assumes a particular formatting of column names, we highly recommend that users exam-
ine their data after loading into VESIcal and before performing calculations. The user data, as it will be used
by VESIcal, can be viewed at any time with myfile.get_data() (see generation of Table 3 below).

Pressure, temperature, or 2XH O fluidE data may optionally be included, if they are known. Column names for
these data do not matter, as they can be specified by the user as will be shown in following examples.

The standard units used by VESIcal are always pressure in bars, temperature in °C, melt composition as ox-
ides in wt%, and fluid composition as mol fraction (typically specified as X_fluid, the mol fraction of 2HE  O in
an 2HE  O-  2COE fluid, ranging from 0 to 1). Sample compositions may be translated between wt%, mol fraction,
and mol cations if necessary.

Class structure: BatchFile(filename, sheet_name=0, file_type='excel', units='wtpt_oxides', label='Label',
default_normalization='none', default_units='wtpt_oxides', dataframe=None)

Required inputs:

1.	 �filename: A file name must be passed in quotes. This file must be in the same folder as the notebook or
script that is calling it. This imports the data from the file name given and saves it to a variable of your
choosing.

Optional inputs: By default, the BatchFile class assumes that loaded data is in units of wt%; alternatively,
data in mol% or mole fraction may be loaded. In that case, loaded data is converted into wt% values, since
compositions must be in wt% when performing model calculations.

1.	 �sheet_name: If importing data from an Excel file, this argument is used to specify which sheet to import.
Only one sheet can be imported to a single BatchFile object. The default is “0,” which imports the first
sheet in the file, regardless of its name.

2.	 �file_type: Specifies whether the file being imported is an Excel or CSV file. This argument is never strictly
necessary, as BatchFile() will automatically detect whether an imported file is Excel or CSV if the file
extension is one of .xls or .xslx (Excel) or .csv (CSV).

3.	 �units: The units in which data are input. The default value is “wtpt_oxides” for data as wt% oxides. The
user can pass “mol_oxides” for data in mol fraction oxides or “mol_cations” for data in mol fraction
cations.

4.	 �default_normalization: The type of normalization to apply to the data by default. One of: One of: None,
'standard', 'fixedvolatiles', or 'additionalvolatiles'. These normalization types are described in the section
on normalization below.

5.	 �default_units: The type of composition to return by default, one of: 'wtpt_oxides' (wt% oxides, default),
'mol_oxides' (mol fraction oxides), or 'mol_cations-' (mol fraction cations).

6.	 �label: This is optional but can be specified if the column title referring to sample names is anything other
than “Label.” The default value is “Label.” If no “Label” column is present and the label argument is not

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

15 of 55

specified, the first column whose first row is not one of VESIcal's recognized oxides will be set as the
index column. The index column will be used to select samples by name.

7.	 �dataframe: This argument is used for transforming a pandas DataFrame object into a VESIcal BatchFile
object. For convenience, this functionality is also defined as a separate function BatchFile_from_Data-
Frame(dataframe, units='wtpt_oxides', label='Label').

Outputs:

1.	 �A special type of python object defined in the VESIcal code known as an BatchFile object.

Input

Once the BatchFile object is created and assigned to a variable, the user can then access the data loaded
from their file as variable.get_data(). In this example, the variable corresponding to the BatchFile object is
named myfile and so the data in that file can be accessed with myfile.get_data(). Below, myfile.get_data() is
saved to a variable we name data. The variable data is a pandas DataFrame object, which makes displaying
the data itself quite simple and aesthetically pleasing, since pandas DataFrames mimic spreadsheets.

Usage of get_data() allows the user to retrieve the data as originally entered or in any units and with any
normalization supported by VESIcal.

Method structure: get_data(self, normalization=None, units=None, asBatchFile=False)

Optional inputs:

1.	 �normalization or units may be passed, with options as defined in the description of BatchFile above.
2.	 �asBatchFile Default is False. If True, will return a VESIcal BatchFile object.

Outputs:

1. A pandas dataframe or BatchFile object with all user data.

Input

Output

See Table 3.

For the rest of this manuscript, data will be pulled from the example_data.xlsx file (Data Set S1), which
contains compositional information for basalts (Roggensack, 2001; Tucker et al., 2019), andesites (Moore
et al., 1998), rhyolites (Mercer et al., 2015; Myers et al., 2019), and alkaline melts (phototephrite, basal-
tic-trachyandesite, and basanite from Iacovino et al., 2016). Several additional example datasets from the lit-
erature are available in the Data Set S1 (Table 4). These include experimentally produced alkaline magmas
from Iacovino et al. (2016, alkaline.xlsx), basaltic melt inclusions from Kilauea (Tucker et al., 2019) and Ga-
kkel Ridge (Bennett et al., 2019, basalts.xlsx), basaltic melt inclusions from Cerro Negro volcano, Nicaragua
(Roggensack, 2001, cerro_negro.xlsx), and rhyolite melt inclusions from the Taupo Volcanic Center, New

myfile=v.BatchFile('Supplement/Example_Datasets/example_data.xlsx')

data=myfile.get_data()
data

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

16 of 55

La
be

l
C

ita
tio

n
Ro

ck
 ty

pe
Si

O
2

Ti
O

2
A

l 2O
3

Fe
2O

3
C

r 2O
3

Fe
O

M
nO

M
gO

N
iO

C
oO

C
aO

N
a 2O

K
2O

P 2O
5

H
2O

C
O

2
Pr

es
s

Te
m

p

K
il3

-6
_1

a
Tu

ck
er

et

 a
l.

(2
01

9)
Ba

sa
lt

48
.2

5
2.

22
11

.6
9

0
0

0
0.

08
14

.1
8

0
0

9.
89

1.
81

0.
35

0.
21

0.
42

0.
00

29
63

12
99

K
il3

-6
_3

a
Tu

ck
er

et

 a
l.

(2
01

9)
Ba

sa
lt

48
.3

0
2.

17
11

.7
6

0
0

0
0.

08
13

.4
0

0
0

10
.0

5
2.

27
0.

37
0.

20
0.

43
0.

00
68

12
8

12
83

K
il3

-6
_4

a
Tu

ck
er

et

 a
l.

(2
01

9)
Ba

sa
lt

49
.1

2
2.

36
12

.1
7

0
0

0
0.

10
12

.0
0

0
0

10
.3

1
2.

00
0.

40
0.

24
0.

44
0.

00
50

10
0

12
55

10
*

Ro
gg

en
sa

ck

(2
00

1)
Ba

sa
lt

47
.9

6
0.

78
18

.7
7

0
0

10
.9

2
0.

15
6.

86
0

0
12

.2
3

1.
95

0.
21

0.
17

4.
50

0.
04

79
20

00
12

00

19
*

Ro
gg

en
sa

ck

(2
00

1)
Ba

sa
lt

49
.6

4
0.

71
18

.0
5

0
0

10
.5

4
0.

19
6.

43
0

0
12

.0
9

1.
99

0.
20

0.
17

5.
10

0.
11

13
20

00
12

00

25
Ro

gg
en

sa
ck

(2

00
1)

Ba
sa

lt
50

.3
2

0.
72

18
.0

3
0

0
10

.1
1

0.
14

5.
65

0
0

12
.7

8
1.

80
0.

24
0.

23
5.

20
0.

04
37

20
00

12
00

SA
T-

M
12

-1
M

oo
re

et

 a
l.

(1
99

8)
A

nd
es

ite
62

.6
0

0.
63

17
.3

2.
01

0
2.

01
0.

06
2.

65
0

0
5.

64
4.

05
1.

61
0.

24
2.

62
0

70
3

11
00

SA
T-

M
12

-2
M

oo
re

et

 a
l.

(1
99

8)
A

nd
es

ite
62

.6
0

0.
63

17
.3

2.
01

0
2.

01
0.

06
2.

65
0

0
5.

64
4.

05
1.

61
0.

24
5.

03
0

18
65

11
00

SA
T-

M
12

-4
M

oo
re

et

 a
l.

(1
99

8)
A

nd
es

ite
62

.6
0

0.
63

17
.3

2.
01

0
2.

01
0.

06
2.

65
0

0
5.

64
4.

05
1.

61
0.

24
6.

76
0

29
85

10
50

sa
m

p.

P1
96

8a
M

ye
rs

et

 a
l.

(2
01

9)
R

hy
ol

ite
76

.9
7

0.
09

3.
11

0
0

4.
79

0
12

.5
5

0
0

1.
21

0.
14

1.
13

0
4.

34
0.

00
70

30
0

90
0

sa
m

p.

P1
96

8b
M

ye
rs

et

 a
l.

(2
01

9)
R

hy
ol

ite
76

.9
4

0.
13

3.
16

0
0

4.
76

0
12

.4
5

0
0

1.
23

0.
14

1.
17

0
5.

85
0.

01
23

30
0

90
0

sa
m

p.

P1
96

8c
M

ye
rs

et

 a
l.

(2
01

9)
R

hy
ol

ite
77

.1
9

0.
12

3.
17

0
0

4.
81

0
12

.2
3

0
0

1.
18

0.
14

1.
16

0
5.

75
0.

01
07

30
0

90
0

sa
m

p.

H
PR

3-
1_

X
L-

3

M
er

ce
r

et
 a

l.
(2

01
5)

R
hy

ol
ite

75
.4

1
0.

10
14

.0
8

0
0

0.
65

0.
13

0.
01

0
0

0.
64

3.
70

5.
13

0
5.

94
0.

01
00

30
0

0

sa
m

p.

H
PR

3-
1_

X
L-

4_
IN

C
L-

1

M
er

ce
r

et
 a

l.
(2

01
5)

R
hy

ol
ite

76
.6

1
0.

10
13

.4
76

76
0

0
0.

62
0.

11
0.

03
0

0
0.

62
3.

68
4.

58
0

5.
34

0.
00

80
0

90
0

AW
-6

Ia
co

vi
no

et

 a
l.

(2
01

6)
Ph

on
ot

ep
hr

ite
48

.0
3

2.
84

18
.1

2
0

0
9.

6
0.

23
3.

08
0

0
7.

57
6.

04
3.

08
1.

41
1.

42
0.

12
98

15
00

10
50

AW
-4

6
Ia

co
vi

no

et
 a

l.
(2

01
6)

Ba
sa

lti
c-

Tr

ac
hy

an
de

si
te

52
.9

8
2.

18
20

.4
9

0
0

5.
54

0.
20

2.
00

0
0

7.
10

5.
68

3.
16

0.
66

4.
76

0.
34

39
4,

00
0

10
00

K
I-

07
Ia

co
vi

no

et
 a

l.
(2

01
6)

Ba
sa

ni
te

44
.6

1
4.

37
14

.4
1

0
0

10
.6

0.
17

7.
69

0
0

11
.5

5
3.

93
1.

74
0.

92
2.

90
0.

11
31

15
00

11
00

N
ot

e.
Va

lu
es

 h
er

e
ha

ve
 b

ee
n

ro
un

de
d

to
 tw

o
de

ci
m

al
 p

la
ce

s e
xc

ep
t f

or
 C

O
2, w

hi
ch

 is
 ro

un
de

d
to

 fo
ur

 d
ec

im
al

 p
la

ce
s a

nd
 p

re
ss

ur
e

an
d

te
m

pe
ra

tu
re

, w
hi

ch
 a

re
 ro

un
de

d
to

 th
e

ne
ar

es
t i

nt
eg

er
.

Ta
bl

e
3

U
se

r I
np

ut
 D

at
a:

 C
om

po
sit

io
ns

, P
re

ss
ur

es
, a

nd
 T

em
pe

ra
tu

re
s f

or
 S

ev
er

al
 S

ili
ca

te
 M

el
ts

 a
s S

up
pl

ie
d

in
 th

e F
ile

 “e
xa

m
pl

e_
da

ta
.x

lsx
”

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

17 of 55

Zealand (Myers et al., 2019) and a topaz rhyolite from the Rio Grande Rift (Mercer et al., 2015, rhyolites.
xlsx). Where available, the calibration datasets for VESIcal models are also provided (Data Set S6 and S7).

Input

Output

See Table 4.

3.3.2.  Defining a Single Sample

More advanced functionality of VESIcal is facilitated directly through the five core calculation classes. Each
calculation requires its own unique inputs, but all calculations require that a sample composition be passed.
We can pass in a sample either as a python dictionary or pandas Series. Below, we define a sample and
name it mysample. Oxides are given in wt%. Only the oxides shown here can be used, but not all oxides are
required. Any extra oxides (or other information not in the oxide list) the user defines will be ignored during
calculations.

Much like is done to create a BatchFile object, we can create a VESIcal Sample object to represent our sam-
ple composition.

Class structure: Sample(composition, units='wtpt_oxides', default_normalization='none',
default_units='wtpt_oxides')

Required inputs:

1. composition: The composition of the sample in the format specified by the units parameter. The default
is oxides in wt%.

Optional inputs:

1. units, default_normalization, and default_units have the same meaning here as in the BatchFile class
described above.

Outputs:

1. A special type of python object defined in the VESIcal code known as a Sample object.

To manually input a bulk composition, fill in the oxides in wt% below:

pd.read_excel("Table_Example_Data.xlsx", index_col="Filename")

Filename Explanation Compositions Citations

example_data.xlsx Example data used in this manuscript Wide comp. range Iacovino et al. (2016); Mercer
et al. (2015); Myers et al. (2019);

Roggensack (2001); Tucker
et al. (2019)

alkaline.xlsx Experimental glasses Basanite to Tephriphonolite Iacovino et al. (2016)

basalts.xlsx Melt inclusion glasses Basaltic Tucker et al. (2019); Bennett et al. (2019)

cerro_negro.xlsx Melt inclusion glasses Basaltic Roggensack (2001)

rhyolites.xlsx Melt inclusion glasses Rhyolitic Mercer et al. (2015); Myers et al. (2019)

Table 4
Example Datasets Included With VESIcal

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

18 of 55

Input

To see the composition of mysample, use the get_composition(species=None, normalization=None, units=None,
exclude_volatiles=False, asSampleClass=False) method. By default, the composition is returned exactly as input
above. species can be set as an element or oxide (e.g., ”Si” or ”  2SiOE  ”) to return the float value for only that species.
The composition can automatically be normalized using any of the standard normalization functions listed above
and can be returned in any of the units discussed above. As with the BatchFile.get_data() function, a sample com-
position can be returned as a dictionary (default) or as a VESIcal Sample object (if asSampleClass is set to True).

Input

Output

mysample=v.Sample({'SiO2': 77.3,
'TiO2': 0.08,
'Al2O3': 12.6,
'Fe2O3': 0.207,
'Cr2O3': 0.0,
'FeO': 0.473,
'MnO': 0.0,
'MgO': 0.03,
'NiO': 0.0,
'CoO': 0.0,
'CaO': 0.43,
'Na2O': 3.98,
'K2O': 4.88,
'P2O5': 0.0,
'H2O': 6.5,
'CO2': 0.05})

mysample.get_composition()

SiO2 77.300
TiO2 0.080
Al2O3 12.600
Fe2O3 0.207
Cr2O3 0.000
FeO 0.473
MnO 0.000
MgO 0.030
NiO 0.000
CoO 0.000
CaO 0.430
Na2O 3.980
K2O 4.880
P2O5 0.000
H2O 6.500
CO2 0.050
dtype: float64

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

19 of 55

The oxides considered by VESIcal are:

Input

Output

3.3.3.  Extracting a Single Sample From a Batch File

Defined within the BatchFile() class, the method get_sample_composition() allows for the extraction of a
melt composition from a loaded Excel or CSV file.

Method structure: myfile.get_sample_composition(samplename, species=None, normalization=None,
units=None, asSampleClass=False)

Required inputs:

1. samplename: The name of the sample, as a string, as defined in the ’Label’ column of the input file.

Optional inputs:

1.	 �species: This is used if only the concentration of a single species (either oxide or element) is desired.
2.	 �normalization: This is optional and determines the style of normalization performed on a sample. The

default value is None, which returns the value-for-value un-normalized composition. Other normaliza-
tion options are described in the BatchFile class description above.

3.	 �units: The default is wt% oxides. Other options are described in the BatchFile class description above.
4.	 �asSampleClass: Can be True or False (default). If set to False, this will return a dictionary with compo-

sitional values. If set to True, this will return a Sample object with compositional data stored within.

Outputs:

1. The bulk composition stored in a dictionary or Sample object.

Input

3.3.4.  Normalizing and Transforming Data

Before performing model calculations on your data, it may be desired to normalize the input composition
to a total of 100 wt%. For a user to decide whether normalization is prudent, is important to understand
the influence any normalization, or lack thereof, to a composition will have on modeling results. Electron
microprobe analyses of major elements in silicate glasses combined with volatile element analyses by SIMS
and FTIR often sum to less than 100 wt%. This deficiency is normally attributed to subsurface charging,

print(v.oxides)

['SiO2', 'TiO2', 'Al2O3', 'Fe2O3', 'Cr2O3', 'FeO', 'MnO', 'MgO', 'NiO', 'CoO', 'CaO', 'Na2O', 'K2O',
'P2O5', 'H2O', 'CO2']

"""To get composition from a specific sample in the input data:"""
sample_10 = myfile.get_sample_composition('10*', asSampleClass=True)
"""To see the extracted sample composition, uncomment the line below by removing the # and
execute this code cell"""
#sample_10.get_composition()

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

20 of 55

matrix corrections, and unknown redox states of Fe and S during analyses by electron microprobe (see
Hughes et al., 2019). As an example, when normalized, a volatile-free basalt with a measured 2SiOE content
of 46 wt% and an analytical total of 97 wt% actually contains 47.4 wt% 2SiOE (46/0.97; a 3% relative change in
silica content). Many studies report major element data normalized to 100% with volatiles listed separately.
The result is that, value for value, literature datasets can have totals several wt% less than 100 (if raw data
are reported) or several wt% higher than 100 (if major elements are normalized anhydrous).

To deal with this variation, VESIcal provides users with four options for normalization. Normalization types
are:

1.	 �None (no normalization)
2.	 �“standard”: Normalizes an input composition to 100%.
3.	 �“fixedvolatiles”: Normalizes major element oxides to 100 wt%, including volatiles. The volatile wt% will

remain fixed, while the other major element oxides are reduced proportionally so that the total is 100
wt%.

4.	 �“additionalvolatiles”: Normalizes major element oxide wt% to 100%, assuming it is volatile-free. If 2HE  O
or 2COE are passed to the function, their un-normalized values will be retained in addition to the normal-
ized nonvolatile oxides, summing to E  100%.

Normalization can be performed on a Sample object or on all samples within a BatchFile object using the
get_composition() or get_data() methods (e.g., myfile.get_composition(normalization='standard') or mys-
ample.get_composition(normalization='additionalvolatiles')). Note that, since a BatchFile object may have
other data in addition to sample compositions (e.g., information on pressure, temperature, other user notes),
BatchFile.get_composition() returns only compositional data, whereas BatchFile.get_data() returns all data
stored in the BatchFile object. The normalization argument can be passed to either. In the example below,
we obtain the standard normalization of mysample and myfile and save these to new Sample and BatchFile
objects called mysample_normalized and myfile_normalized. Note that asSampleClass or asBatchFile must
be set to True in order to return a Sample or BatchFile object. Without this argument, a dictionary or pandas
DataFrame will be returned and new Sample or BatchFile objects will need to be constructed from those in
order to perform calculations on the normalized datasets.

Input

The Liu and all six AllisonCarbon models are not sensitive to normalization because they contain no com-
positional terms. Similarly, the expressions for Shishkina and MooreWater contain compositional terms
expressed solely in terms of anhydrous cation fractions; the additionalvolatiles and fixedvolatiles normal-
ization routines do not affect the relative abundances of major elements (and therefor anhydrous cation
fractions). Thus, Shishkina and MooreWater are only affected by the standard normalization routine. In
contrast, the Dixon model is highly sensitive to the choice of normalization because its compositional term
for both 2HE  O and 2COE is expressed solely in terms of the absolute melt 2SiOE content.

The expressions of Iacono-Marziano are parameterized in terms of hydrous cation fractions and NBO/O,
and so this model is sensitive to additionalvolatiles or fixedvolatiles normalization routines, which will
change the relative proportions of volatiles to major elements. Even so, the effect of normalization on vol-
atile solubility calculations is relatively small and of similar magnitude to the discrepancy between the
hydrous total and 100 for the hydrous model. Thus, the choice of normalization is only important when
data has hydrous totals that differ significantly from 100%. The Iacono-Marziano web app normalizes input

"""Retrieve the standard normalization for one sample"""
mysample_normalized = mysample.get_composition(normalization="standard",
asSampleClass=True)
"""Retrieve the standard normalization for all samples in a BatchFile"""
myfile_normalized = myfile.get_data(normalization="standard", asBatchFile=True)

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

21 of 55

data a la VESIcal's additionalvolatiles normalization routine. For consistency with the web app, VESIcal
automatically uses the additionalvolatiles normalization during calculations with this model.

The implementation of MagmaSat in VESIcal is sensitive to the relative proportion of major and volatile
element components rather than the absolute concentrations entered (as with the whole MELTS family of
models). Thus, calculations using raw, fixed- and additional volatile routines yield different results. If the
hydrous total of an input composition is less than 100%, the fixed volatile routine effectively reduces the
relative proportion of volatiles to major elements, so calculated saturation pressures go down. Conversely,
if inputs have high hydrous totals, the fixed volatile routine increases the relative proportion of volatiles in
the system, so the saturation pressure goes up. As with Iacono-Marziano, the percent discrepancy between
calculations for different normalization routines is similar to the difference between the total and 100%.
For saturation pressure calculations, the MagmaSat app automatically normalizes input data in a manner
identical to VESIcal's fixedvolatiles routine, and so this normalization is forced on all samples for such
calculations with MagmaSat in VESIcal. Further discussion on the effect of normalization in MagmaSat is
provided in Supporting Information S5 (and Figures S22–S26).

For example, consider a basalt with a measured SiO2 content of 47.4 wt%, 1000 ppm dissolved 2COE  , and an
anhydrous (volatile-free) total of 96.77 wt%:

Input

We can apply each normalization routine to this sample and examine how this will affect the saturation
pressure predicted by each model:

Input

mybasalt = v.Sample({'SiO2': 47,
'TiO2': 1.01,
'Al2O3': 17.46,
'Fe2O3': 0.89,
'FeO': 7.18,
'MgO': 7.63,
'CaO': 12.44,
'Na2O': 2.65,
'K2O': 0.03,
'P2O5': 0.08,
'CO2': 0.1})

"""Normalize three ways"""
mybasalt_std = mybasalt.get_composition(normalization="standard", asSampleClass=True)
mybasalt_add = mybasalt.get_composition(normalization="additionalvolatiles",
asSampleClass=True)
mybasalt_fix=mybasalt.get_composition(normalization="fixedvolatiles", asSampleClass="True)
"""Choose a model to test"""
mymodel = "IaconoMarziano"
for basalt, normtype in zip([mybasalt, mybasalt_std, mybasalt_add, mybasalt_fix],
	 ["Raw", "standard", "additionalvolatiles", "fixedvolatiles"]):
	 print(str(normtype) + "Saturation Pressure = " +
	 str(v.calculate_saturation_pressure(sample=basalt, temperature=1200,
	 model=mymodel).result) + "bars")

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

22 of 55

Output

Because the compositional effect on 2HE  O solubility is smaller, so are the changes in calculated saturation
pressures for a pure-  2HE  O system, but they can still be significant for 2HE  O-rich liquids (where high 2HE  O
contents can change totals, and therefore 2SiOE contents more dramatically).

3.4.  Comparing User Data to Model Calibrations: Which Model Should I Use?

MagmaSat is the most thermodynamically robust model implemented in VESIcal, and thus it is the most
generally appropriate model to use (n.b. that it is also the most computationally expensive). However, one
of the strengths of VESIcal is its ability to utilize up to seven different solubility models. Each of these
models is based on its own calibration data set, meaning the pressure-temperature-composition space over
which models are calibrated is quite variable from model to model. The individual model calibrations are
discussed in detail in this manuscript's companion paper (VESIcal Part II; Wieser et al., 2021).

For the remainder of this section, all example calculations are carried out with MagmaSat, the default
model of VESIcal. To use any other VESIcal model, simply add ‘model=’ and the name of the desired model
in quotes to any calculation (e.g., v.calculate_dissolved_volatiles(temperature=900, pressure=1000, mod-
el=”Dixon”)). The model names recognized by VESIcal are: MagmaSat, ShishkinaIdealMixing, Dixon,
IaconoMarziano, Liu, AllisonCarbon, and MooreWater. For more advanced use cases such as hybridizing
models (see Section 3.11), pure-  2HE  O and pure-  2COE models from within a mixed-fluid model can be used
by adding “Water” or “Carbon” to the model name (e.g., DixonCarbon; note that MagmaSat does not have
this functionality).

Determination of the appropriate model to use with any sample is crucial to the correct application of these
models, and so we stress the importance of understanding how a model's calibration space relates to the
sample at hand. VESIcal includes some built-in functionality for comparing melt compositions from user
loaded data to those in the datasets upon which each of the VESIcal models is calibrated using the method
calib_plot. This can be visualized as a total alkalis versus silica (TAS) diagram (with fields and labels via the
python tasplot library by J. Stevenson; https://bitbucket.org/jsteven5/tasplot/src/master/; Figure 5a) or as
any x-y plot in which x and y are oxides (Figure 5b).

Method structure: calib_plot(user_data = None, model = 'all', plot_type = 'TAS', zoom = None,
save_fig = False)

Optional inputs:

1.	 �user_data: The default value is None, in which case only the model calibration set is plotted. User pro-
vided sample data describing the oxide composition of one or more samples. Multiple samples can be
passed as an BatchFile object or pandas DataFrame. A single sample can be passed as a pandas Series.

2.	 �model: The default value is “all,” in which case all model calibration datasets will be plotted. Otherwise,
any model can be plotted by passing the name of the model desired (e.g., “Liu”). Multiple models can be
plotted by passing them as strings within a list (e.g., [“Liu,” “Dixon”])

3.	 �plot_type: The default value is “TAS,” which returns a total alkalis versus silica (TAS) diagram. Any two
oxides can be plotted as an x-y plot by setting plot_type=‘xy’ and specifying x- and y-axis oxides, e.g.,
x=“SiO2,” y=“Al2O3.”

4.	 �zoom: The default is None in which case axes will be set to the default of 35  E   x  E   100 wt% and 0  E   y  
E   25 wt% for TAS type plots and the best values to show the data for xy type plots. The user can pass

Raw Saturation Pressure = 1848.031831425599 bars
standard Saturation Pressure = 1906.5453789627868 bars
additionalvolatiles Saturation Pressure = 1848.2673972122493 bars
fixedvolatiles Saturation Pressure = 1848.2611364359402 bars

https://bitbucket.org/jsteven5/tasplot/src/master/

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

23 of 55

“user_data” to plot the figure where the x and y axes are scaled down to zoom in and only show the
region surrounding the user_data. A list of tuples may be passed to manually specify x and y limits. Pass
in data as [(x_min, x_max), (y_min, y_max)]. For example, the default limits here would be passed in as
[(35,100), (0,25)].

5.	 �save_fig: The default value is False, in which case the plot will be generated and displayed but not saved.
If the user wishes to save the figure, the desired filename (including the file extension, e.g.,.png) can
be passed here. Note that all plots in this Jupyter Notebook can be saved by right clicking the plot and
choosing “Save Image As….”

Outputs:

1. The function returns fig and axes matplotlib objects defining a TAS or x-y plot of user data and model
calibration data.

Input

Output

See Figure 5.

Using the functionality built into python and the matplotlib library, user data can be plotted on its own at
any time, including before any calculations are performed. Almost any plot type imaginable can be pro-
duced, and users should refer to the maptlotlib documentation (https://matplotlib.org/3.2.1/index.html) if
more complex plotting is desired.

3.5.  Calculating Dissolved Volatile Concentrations

The calculate_dissolved_volatiles() function calculates the concentration of dissolved 2HE  O and 2COE in the
melt at a given pressure-temperature condition and with a given 2HE  O-  2COE fluid composition, defined as the
mole fraction of 2HE  O in an 2HE  O-  2COE fluid (  2XH O fluidE  ). The default MagmaSat model relies on the under-
lying functionality of MELTS, whose basic function is to calculate the equilibrium phase assemblage given
the bulk composition of the system and pressure-temperature conditions. To calculate dissolved volatile
concentrations thus requires computing the equilibrium state of a system at fixed pressure and temperature
over a range of bulk volatile concentrations until a solution is found that satisfies the user defined fluid
composition.

First, the function makes an initial guess at the appropriate bulk volatile concentrations by finding the min-
imum dissolved volatile concentrations in the melt at saturation, while asserting that the weight fraction of

2HE  O/(  2HE  O+  2COE  ) in the system is equal to the user input mole fraction of 2HE  O/(  2HE  O +   2COE  ) in the fluid.
This is done by increasing the 2HE  O and 2COE concentrations appropriately until a fluid phase is stable. Once
fluid saturation is determined, the code then performs directional, iterative, and progressively more refined
searches, increasing the proportion of 2HE  O or 2COE in the system if the mole fraction of 2HE  O calculated in the
fluid is greater than or less than that defined by the user, respectively. Four iterative searches are performed;
the precision of the match between the calculated and defined 2XH O fluidE increases from 0.1 in the first iter-
ation to 0.01, 0.001, and finally to 0.0001. Thus, the calculated dissolved volatile concentrations correspond
to a system with 2XH O fluidE within 0.0001 of the user defined value.

For non-MagmaSat models, dissolved volatile concentrations are calculated directly from model equations.

v.calib_plot(user_data=myfile)
v.show()
v.calib_plot(user_data=myfile, model='IaconoMarziano', plot_type='xy', x='SiO2', y='K2O',
save_fig=False)
v.show()

https://matplotlib.org/3.2.1/index.html

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

24 of 55

Method structure:

1.	 �Single sample: calculate_dissolved_volatiles(sample, temperature, pressure, X_fluid=1, verbose=False,
model='MagmaSat').result

2.	 �BatchFile batch process: myfile.calculate_dissolved_volatiles(temperature, pressure, X_fluid=1, print_
status=True, model='MagmaSat')

Standard inputs:

1. sample, temperature, pressure, X_fluid, model (see Section 3.1).

Figure 5.  Example calibration plots. (a) The default plot with user_data defined as myfile and no other options set. This produces a total alkalis versus silica
(TAS) digram with the user data plotted atop data from calibration datasets for all models. (b) A plot with all options specified. This example produces an x-y
plot for user_data (myfile) and the Iacono-Marziano calibration data set where x and y are 2SiOE and 2KE  O concentration in wt%. Symbol shapes correspond to
the volatile composition of experiments used to calibrate the model.

a)

b)

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

25 of 55

Unique optional inputs:

1.	 �verbose: Only for single sample calculations. Default value is False in which case 2HE  O and 2COE concen-
trations are returned. If set to True, additional parameters are returned in a dictionary: 2HE  O and 2COE
concentrations in the fluid in mole fraction, temperature, pressure, and proportion of the fluid in the
system in wt%.

2.	 �print_status: Only for batch calculations. The default value is True, in which case the progress of the cal-
culation will be printed to the terminal. The user may desire to see the status of the calculation, as this
particular function can be quite slow, averaging between 3-5 s per sample.

Calculated outputs:

1. If the single-sample method is used, a dictionary with keys ‘H2O’ and ‘CO2’ corresponding to the calcu-
lated dissolved 2HE  O and 2COE concentrations in the melt is returned (plus additional variables “temperature”
in °C, “pressure” in bars, “XH2O_fl,” “XCO2_fl,” and “FluidProportion_wtper” (the proportion of the fluid
in the system in wt%) if verbose is set to True).

2. If the BatchFile method is used, a pandas DataFrame is returned with sample information plus calcu-
lated dissolved 2HE  O and 2COE concentrations in the melt, the fluid composition in mole fraction, and the
proportion of the fluid in the system in wt%. Pressure (in bars) and Temperature (in °C) columns are always
returned.

Input

Output

Input

Output

See Table 5.

"""Calculate dissolved volatiles for sample 10*"""
v.calculate_dissolved_volatiles(sample=sample_10, temperature=900.0, pressure=2000.0,

X_fluid=0.5, verbose=True).result

{'H2O_liq': 2.69352739399806,
'CO2_liq': 0.0638439414375309,
'XH2O_fl': 0.500092686493868,
'XCO2_fl': 0.499907313506132,
'FluidProportion_wt': 0.18407321260435108}

"""Calculate dissolved for all samples in an BatchFile object"""
dissolved = myfile.calculate_dissolved_volatiles(temperature=900.0, pressure=2000.0,

X_fluid=1, print_status=True)
dissolved

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

26 of 55

3.6.  Calculating Equilibrium Fluid Compositions

The calculate_equilibrium_fluid_comp() function calculates the composition of a fluid phase in equilibri-
um with a given silicate melt with known pressure, temperature, and dissolved 2HE  O and 2COE concentra-
tions. The calculation is performed simply by calculating the equilibrium state of the given sample at the
given conditions and determining if that melt is fluid saturated. If the melt is saturated, fluid composition
and mass are reported back. If the calculation finds that the melt is not saturated at the given pressure and
temperature, values of 0.0 will be returned for the 2HE  O and 2COE concentrations in the fluid.

Method structure:

1.	 �Single sample: calculate_equilibrium_fluid_comp(sample, temperature, pressure, verbose=False, mod-
el='MagmaSat').result

2.	 �BatchFile batch process: myfile.calculate_equilibrium_fluid_comp(temperature, pressure=None, print_
status=False, model='MagmaSat')

Standard inputs:

sample, temperature, pressure, model (see Section 3.1).

Unique optional inputs:

1.	 �verbose: Only for single sample calculations. Default value is False, in which case 2HE  O and 2COE concen-
trations in the fluid in mol fraction are returned. If set to True, additional parameters are returned in a
dictionary: 2HE  O and 2COE concentrations in the fluid, mass of the fluid in grams, and proportion of the
fluid in the system in wt%.

2.	 �print_status: Only for batch calculations. The default value is False. If True is passed, the progress of the
calculation will be printed to the terminal.

User Input
Data

H2O_liq_
VESIcal

CO2_liq_
VESIcal

Temperature_C_
VESIcal

Pressure_bars_
VESIcal

X_fluid_input_
VESIcal Model Warnings

Kil3-6_1a – 5.256561 0 900 2000 1 MagmaSat

Kil3-6_3a – 5.41772 0 900 2000 1 MagmaSat

Kil3-6_4a – 5.353421 0 900 2000 1 MagmaSat

10* – 4.984021 0 900 2000 1 MagmaSat

19* – 5.134419 0 900 2000 1 MagmaSat

25 – 5.189068 0 900 2000 1 MagmaSat

SAT-M12-1 – 5.810439 0 900 2000 1 MagmaSat

SAT-M12-2 – 5.810439 0 900 2000 1 MagmaSat

SAT-M12-4 – 5.810439 0 900 2000 1 MagmaSat

samp. P1968a – 6.484749 0 900 2000 1 MagmaSat

samp. P1968b – 6.473813 0 900 2000 1 MagmaSat

samp. P1968c – 6.482109 0 900 2000 1 MagmaSat

samp. HPR3-1_XL-3 – 6.09763 0 900 2000 1 MagmaSat

samp. HPR3-1_XL-4_INCL-1 – 6.138658 0 900 2000 1 MagmaSat

AW-6 – 5.856636 0 900 2000 1 MagmaSat

AW-46 – 5.879457 0 900 2000 1 MagmaSat

KI-07 – 4.91843 0 900 2000 1 MagmaSat

Note. This table has been truncated to display only the results of the calculation. The actual returned table would include all originally input user data in the
leftmost columns followed by the calculation results. The complete table can be seen in the Jupyter Notebook version of this manuscript.

Table 5
Modeled Dissolved Volatile Concentrations

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

27 of 55

Calculated outputs:

1. If the single-sample method is used, a dictionary with keys “H2O” and “CO2” is returned (plus additional
variables “FluidMass_grams” and “FluidProportion_wtper” if verbose is set to True).

2. If the BatchFile method is used, a pandas DataFrame is returned with sample information plus calculated
equilibrium fluid compositions, mass of the fluid in grams, and proportion of the fluid in the system in wt%.
Pressure (in bars) and Temperature (in °C) columns are always returned.

Input

Output

Below we calculate equilibrium fluid compositions for all samples at a single temperature of 900°C and a
single pressure of 1,000 bars. Note that some samples in this data set have quite low volatile concentrations
(e.g., the Tucker et al. (2019) basalts from Kilauea), and so are below saturation at this P-T condition. The
fluid composition for undersaturated samples is returned as values of 0 for both 2HE  O and 2COE (Table 6).

Input

Output

See Table 6.

Below, we calculate equilibrium fluid compositions for the same data set using temperatures and pres-
sures as defined in the input data (Table 3). Note that Samples “samp. HPR3-1_XL-3” and “samp. HPR3-
1_XL-4_INCL-1” have a user-defined value of 0.0 for temperature and pressure, respectively. VESIcal au-
tomatically skips the calculation of equilibrium fluids for these samples and returns a warning to the user,
which are both printed to the terminal below and appended to the “Warnings” column in the returned
data (Table 7).

"""Calculate fluid composition for the extracted sample"""
v.calculate_equilibrium_fluid_comp(sample=sample_10, temperature=900.0, pressure=100.0).
result

{'CO2': 0.00528661429366132, 'H2O': 0.994713385706339}

"""Calculate fluid composition for all samples in an BatchFile object"""
eqfluid = myfile.calculate_equilibrium_fluid_comp(temperature=900.0, pressure=1000.0)
eqfluid

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

28 of 55

Input

Output

See Table 7.

"""Calculate fluid composition for all samples with unique pressure and temperature values for
each sample. Pressure and temperature values are taken from columns named "Press" and
"Temp" in the example BatchFile"""

eqfluid_wtemps = myfile.calculate_equilibrium_fluid_comp(temperature='Temp',
pressure='Press')

eqfluid_wtemps

User Input
Data

XH2O_fl_
VESIcal

XCO2_fl_
VESIcal

Temperature_C_
VESIcal

Pressure_bars_
VESIcal Model Warnings

Kil3-6_1a – 0 0 900 1000 MagmaSat Sample not
saturated
at these

conditions

Kil3-6_3a – 0 0 900 1000 MagmaSat Sample not
saturated
at these

conditions

Kil3-6_4a – 0 0 900 1000 MagmaSat Sample not
saturated
at these

conditions

10* – 0.984531 0.015469 900 1000 MagmaSat

19* – 0.974997 0.025003 900 1000 MagmaSat

25 – 0.990107 0.009893 900 1000 MagmaSat

SAT-M12-1 – 1 0 900 1000 MagmaSat

SAT-M12-2 – 1 0 900 1000 MagmaSat

SAT-M12-4 – 1 0 900 1000 MagmaSat

samp. P1968a – 0.977773 0.022227 900 1000 MagmaSat

samp. P1968b – 0.996799 0.003201 900 1000 MagmaSat

samp. P1968c – 0.997028 0.002972 900 1000 MagmaSat

samp. HPR3-1_XL-3 – 0.99777 0.00223 900 1000 MagmaSat

samp. HPR3-1_XL-4_INCL-1 – 0.997273 0.002727 900 1000 MagmaSat

AW-6 – 0.261572 0.738428 900 1000 MagmaSat

AW-46 – 0.897441 0.102559 900 1000 MagmaSat

KI-07 – 0.826014 0.173986 900 1000 MagmaSat

Note. This table has been truncated to display only the results of the calculation. The actual returned table would include all originally input user data in the
leftmost columns followed by the calculation results. The complete table can be seen in the Jupyter Notebook version of this manuscript.

Table 6
Isothermally Modeled Equilibrium Fluid Compositions

UserWarning: Temperature for sample samp. HPR3-1_XL-3 is <=0. Skipping sample.
UserWarning: Pressure for sample samp. HPR3-1_XL-4_INCL-1 is <=0. Skipping sample.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

29 of 55

3.6.1.  Converting Fluid Composition Units

The fluid composition is always returned in units of mol fraction. Two functions exist to transform only
the 2HE  O-  2COE fluid composition between mol fraction and wt% and can be applied to returned data sets
from calculations. Both functions require that the user provide the dataframe containing fluid composition
information plus the names of the columns corresponding to the 2HE  O and 2COE concentrations in the fluid.
The default values for column names are set to those that may be returned by VESIcal core calculations,
such that they need not be specified unless the user has changed them or is supplying their own data (e.g.,
imported data not processed through a core calculation).

Method structure:

1.	 �Mol fraction to wt%: fluid_molfrac_to_wt(data, H2O_colname='XH2O_fl_VESIcal', CO2_colname='
XCO2_fl_VESIcal')

2.	 �Wt% to mol fraction: fluid_wt_to_molfrac (data, H2O_colname='H2O_fl_wt', CO2_colname='CO2_fl_wt')

Required inputs:

data: A pandas DataFrame containing columns for 2HE  O and 2COE concentrations in the fluid.

Optional inputs:

H2O_colname and CO2_colname: The default values are ’XH2O_fl’ and ’XCO2_fl’ if input data are in mol
fraction or ’H2O_fl_wt’ and ’CO2_fl_wt’ if the data are in wt%. Strings containing the name of the columns
corresponding to the 2HE  O and 2COE concentrations in the fluid.

Calculated outputs:

The original data passed plus newly calculated values are returned in a DataFrame.

User input data XH2O_fl_VESIcal XCO2_fl_VESIcal Model Warnings

Kil3-6_1a – 0.586164 0.413836 MagmaSat

Kil3-6_3a – 0.28616 0.71384 MagmaSat

Kil3-6_4a – 0.377439 0.622561 MagmaSat

10* – 0.892371 0.107629 MagmaSat

19* – 0.918888 0.081112 MagmaSat

25 – 0.955803 0.044197 MagmaSat

SAT-M12-1 – 1 0 MagmaSat

SAT-M12-2 – 1 0 MagmaSat

SAT-M12-4 – 1 0 MagmaSat

samp. P1968a – 0.998764 0.001236 MagmaSat

samp. P1968b – 0.998686 0.001314 MagmaSat

samp. P1968c – 0.998831 0.001169 MagmaSat

samp. HPR3-1_XL-3 – MagmaSat Calculation skipped. Bad temperature.

samp. HPR3-1_XL-4_INCL-1 – MagmaSat Calculation skipped. Bad pressure.

AW-6 – 0 0 MagmaSat Sample not saturated at these conditions

AW-46 – 0.492213 0.507787 MagmaSat

KI-07 – 0.681758 0.318242 MagmaSat

Note. This table has been truncated to display only the results of the calculation. The actual returned table would include all originally input user data in the
leftmost columns followed by the calculation results. The complete table can be seen in the Jupyter Notebook version of this manuscript. Warnings “Bad
temperature” and “Bad pressure” indicate that no data (or 0.0 value data) was given for the temperature or pressure of that sample, in which case the calculation
of that sample is skipped.

Table 7
Modeled Equilibrium Fluid Compositions With Unique Temperatures

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

30 of 55

Input

Output

See Table 8.

Input

Output

See Table 9.

"""Converting from mol fraction to wt%"""
eqfluid_wt = v.fluid_molfrac_to_wt(eqfluid)
eqfluid_wt

"""Converting from wt% to mol fraction"""
eqfluid_mol = v.fluid_wt_to_molfrac(eqfluid_wt)
eqfluid_mol

User
Input
Data

XH2O_
fl_

VESIcal

XCO2_
fl_

VESIcal
Temperature_C_

VESIcal

Pressure_
bars_

VESIcal Model Warnings
H2O_fl_

wt
CO2_fl_

wt

Kil3-6_1a – 0 0 900 1000 MagmaSat Sample not saturated at these
conditions

Kil3-6_3a – 0 0 900 1000 MagmaSat Sample not saturated at these
conditions

Kil3-6_4a – 0 0 900 1000 MagmaSat Sample not saturated at these
conditions

10* – 0.984531 0.015469 900 1000 MagmaSat 96.30444 3.695555

19* – 0.974997 0.025003 900 1000 MagmaSat 94.10617 5.893832

25 – 0.990107 0.009893 900 1000 MagmaSat 97.61791 2.382092

SAT-M12-1 – 1 0 900 1000 MagmaSat 100 0

SAT-M12-2 – 1 0 900 1000 MagmaSat 100 0

SAT-M12-4 – 1 0 900 1000 MagmaSat 100 0

samp. P1968a – 0.977773 0.022227 900 1000 MagmaSat 94.74021 5.259791

samp. P1968b – 0.996799 0.003201 900 1000 MagmaSat 99.22174 0.778256

samp. P1968c – 0.997028 0.002972 900 1000 MagmaSat 99.27729 0.722709

samp. HPR3-1_XL-3 – 0.99777 0.00223 900 1000 MagmaSat 99.45703 0.542973

samp. HPR3-1_
XL-4_INCL-1

– 0.997273 0.002727 900 1000 MagmaSat 99.3367 0.6633

AW-6 – 0.261572 0.738428 900 1000 MagmaSat 12.66675 87.33325

AW-46 – 0.897441 0.102559 900 1000 MagmaSat 78.17979 21.82021

KI-07 – 0.826014 0.173986 900 1000 MagmaSat 66.03154 33.96846

Note. This table has been truncated to display only the results of the calculation. The actual returned table would include all originally input user data in the
leftmost columns followed by the calculation results. The complete table can be seen in the Jupyter Notebook version of this manuscript.

Table 8
Equilibrium Fluid Compositions Converted From Mol Fraction to wt%

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

31 of 55

3.7.  Calculating Saturation Pressures

The calculate_saturation_pressure() function calculates the minimum pressure at which a given silicate
melt with known temperature and 2HE  O and 2COE concentrations would be saturated with fluid. For Magma-
Sat, this is calculated by finding the pressure at which the smallest amount of vapor is present. This function
also calculates the composition of the vapor in equilibrium with the melt at those conditions.

The function works by calculating the equilibrium state of the given melt at very high pressure (20,000 bars).
If no fluid is present at this pressure, the melt is undersaturated, and pressure is decreased in steps of
1,000 bars until the mass of vapor is E  0 grams. If fluid is present, the saturation limit is found by increasing
the pressure iteratively until the point at which no fluid is present. At this point, the pressure space is nar-
rowed and searched in steps of 100 bars and then in steps of 10 bars until the saturation pressure is found.
Thus, these calculations are accurate to 10 bars.

User
Input
Data

XH2O_
fl_

VESIcal
XCO2_fl_
VESIcal

Temperature_C_
VESIcal

Pressure_
bars_

VESIcal Model Warnings
H2O_fl_

wt
CO2_fl_

wt XH2O_fl XCO2_fl

Kil3-6_1a – 0 0 900 1000 MagmaSat Sample not
saturated
at these

conditions

Kil3-6_3a – 0 0 900 1000 MagmaSat Sample not
saturated
at these

conditions

Kil3-6_4a – 0 0 900 1000 MagmaSat Sample not
saturated
at these

conditions

10* – 0.984531 0.015469 900 1000 MagmaSat 96.30444 3.695555 0.984531 0.015469

19* – 0.974997 0.025003 900 1000 MagmaSat 94.10617 5.893832 0.974997 0.025003

25 – 0.990107 0.009893 900 1000 MagmaSat 97.61791 2.382092 0.990107 0.009893

SAT-M12-1 – 1 0 900 1000 MagmaSat 100 0 1 0

SAT-M12-2 – 1 0 900 1000 MagmaSat 100 0 1 0

SAT-M12-4 – 1 0 900 1000 MagmaSat 100 0 1 0

samp.
P1968a

– 0.977773 0.022227 900 1000 MagmaSat 94.74021 5.259791 0.977773 0.022227

samp.
P1968b

– 0.996799 0.003201 900 1000 MagmaSat 99.22174 0.778256 0.996799 0.003201

samp.
P1968c

– 0.997028 0.002972 900 1000 MagmaSat 99.27729 0.722709 0.997028 0.002972

samp. HPR3-
1_XL-3

– 0.99777 0.00223 900 1000 MagmaSat 99.45703 0.542973 0.99777 0.00223

samp. HPR3-
1_XL-4_
INCL-1

– 0.997273 0.002727 900 1000 MagmaSat 99.3367 0.6633 0.997273 0.002727

AW-6 – 0.261572 0.738428 900 1000 MagmaSat 12.66675 87.33325 0.261572 0.738428

AW-46 – 0.897441 0.102559 900 1000 MagmaSat 78.17979 21.82021 0.897441 0.102559

KI-07 – 0.826014 0.173986 900 1000 MagmaSat 66.03154 33.96846 0.826014 0.173986

Note. This table has been truncated to display only the results of the calculation. The actual returned table would include all originally input user data in the
leftmost columns followed by the calculation results. The complete table can be seen in the Jupyter Notebook version of this manuscript.

Table 9
Equilibrium Fluid Compositions Converted From wt% to Mol Fraction

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

32 of 55

For non-MagmaSat models, we use Brent's minimization method (via scipy's root_scalar optimization func-
tion) to find the pressure that satisfies the computational constraints. This is achieved by iterative calcula-
tion of the dissolved volatile concentration over a range of pressures and minimizing the difference between
computed and given concentrations. This is only practical for non-MagmaSat models, where the dissolved
volatiles calculation is extremely fast.

Method structure:

1.	 �Single sample: calculate_saturation_pressure(sample, temperature, verbose=False, model='Magma-
Sat').result

2.	 �BatchFile batch process: myfile.calculate_saturation_pressure(temperature, print_status=True,
model='MagmaSat')

Standard inputs:

1. sample, temperature, model (see Section 3.1).

Unique optional inputs:

1.	 �verbose: Only for single sample calculations. Default value is False in which case the saturation pressure
in bars is returned. If set to True, additional parameters are returned in a dictionary: saturation pressure
in bars, 2HE  O and 2COE concentrations in the fluid, mass of the fluid in grams, and proportion of the fluid
in the system in wt%.

2.	 �print_status: Only for batch calculations. The default value is True, in which case the progress of the
calculation will be printed to the terminal.

Calculated outputs:

1. If the single-sample method is used, the saturation pressure in bars is returned as a numerical value
(float) (plus additional variables “XH2O_fl,” “XCO2_fl,” “FluidMass_grams,” and “FluidProportion_wtper”
if verbose is set to True).

2. If the BatchFile method is used, a pandas DataFrame is returned with sample information plus calculated
saturation pressures, equilibrium fluid compositions, mass of the fluid in grams, and proportion of the fluid
in the system in wt%. Temperature (in °C) is always returned.

Input

Output

Input

"""Calculate the saturation pressure of the single sample we defined in Section 3.3.1 at 925 degrees
C"""
v.calculate_saturation_pressure(sample=mysample, temperature=925.0, verbose=True).result

{'SaturationP_bars': 2960,
'FluidMass_grams': 0.0018160337487088,
'FluidProportion_wt': 0.0018160337487087978,
'XH2O_fl': 0.838064480487942,
'XCO2_fl': 0.161935519512058}

"""Calculate the saturation pressure for all samples in an BatchFile object at 925 degrees C"""
satPs=myfile.calculate_saturation_pressure(temperature=925.0)
satPs

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

33 of 55

Output

See Table 10.

Input

Output

See Table 11.

"""Calculate the saturation pressure for all samples in an BatchFile object, taking temperature val-
ues from a column named "Temp" in the BatchFile"""
satPs_wtemps = myfile.calculate_saturation_pressure(temperature="Temp")
satPs_wtemps

User
Input
Data

SaturationP_
bars_VESIcal

Temperature_C_
VESIcal

XH2O_fl_
VESIcal

XCO2_fl_
VESIcal

FluidMass_
grams_
VESIcal

FluidSystem_
wt_VESIcal Model Warnings

Kil3-6_1a – 60 925 0.469913 0.530087 0.000836 0.000836 MagmaSat

Kil3-6_3a – 130 925 0.215529 0.784471 3.76 × 10−05 3.76 × 10−05 MagmaSat

Kil3-6_4a – 100 925 0.292354 0.707646 0.000635 0.000635 MagmaSat

10* – 2500 925 0.796514 0.203486 0.001232 0.001232 MagmaSat

19* – 3600 925 0.702654 0.297346 0.000797 0.000797 MagmaSat

25 – 2750 925 0.836895 0.163105 0.000226 0.000226 MagmaSat

SAT-M12-1 – 550 925 1 0 0.012903 0.012903 MagmaSat

SAT-M12-2 – 1590 925 1 0 0.001052 0.001052 MagmaSat

SAT-M12-4 – 2540 925 1 0 0.016093 0.016093 MagmaSat

samp. P1968a – 1100 925 0.972472 0.027528 0.007924 0.007924 MagmaSat

samp. P1968b – 1790 925 0.972875 0.027125 0.006671 0.006671 MagmaSat

samp. P1968c – 1730 925 0.975614 0.024386 0.008637 0.008637 MagmaSat

samp. HPR3-1_XL-3 – 2090 925 0.951891 0.048109 0.002941 0.002941 MagmaSat

samp. HPR3-1_XL-4_INCL-1 – 1730 925 0.950741 0.049259 0.002864 0.002864 MagmaSat

AW-6 – 1220 925 0.231708 0.768292 9.31E−05 9.31E−05 MagmaSat

AW-46 – 4,800 925 0.45675 0.54325 0.000938 0.000938 MagmaSat

KI-07 – 1510 925 0.684729 0.315271 0.000431 0.000431 MagmaSat

Note. This table has been truncated to display only the results of the calculation. The actual returned table would include all originally input user data in the
leftmost columns followed by the calculation results. The complete table can be seen in the Jupyter Notebook version of this manuscript.

Table 10
Isothermally Modeled Saturation Pressures

User
Input
Data Press Temp

SaturationP_
bars_

VESIcal

XH2O_
fl_

VESIcal

XCO2_
fl_

VESIcal

FluidMass_
grams_
VESIcal

FluidSystem_
wt_VESIcal Model Warnings

Kil3-6_1a – 62.5 1299.095 60 0.493184 0.506816 0.00061 0.00061 MagmaSat

Kil3-6_3a – 128 1283.42 110 0.266595 0.733405 0.0007 0.0007 MagmaSat

Kil3-6_4a – 100 1255.154 90 0.337738 0.662262 0.000807 0.000807 MagmaSat

10* – 2000 1200 2540 0.817548 0.182452 0.001532 0.001532 MagmaSat

19* – 2000 1200 3650 0.725724 0.274276 0.000669 0.000669 MagmaSat

Table 11
Modeled Saturation Pressures With Unique Temperatures

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

34 of 55

3.8.  Calculating Isobars and Isopleths

In this example, we demonstrate how isobars (lines of constant pressure) and isopleths (lines of constant
fluid composition) can be calculated for any one composition. A single melt composition can be extracted
from a loaded batch file, or a composition can be entered by hand and stored within a dictionary. Due to
computational intensity, isobars and isopleths can only be computed for one sample composition at a time.

Once a single composition is defined, conditions over which to calculate isobars and isopleths must be spec-
ified. The generated plot is isothermal, so only one temperature can be chosen. Isobars and isopleths can be
calculated for any number of pressures or 2XH O fluidE values, respectively, passed as lists.

The calculation is performed by iterating through possible concentrations of 2HE  O and 2COE and calculating
the equilibrium state for the system. The iteration begins at a fixed 2HE  O concentration, increasing the 2COE
concentration in steps of 0.1 wt% until a fluid phase is stable. The 2HE  O concentration is then increased by 0.5
wt% and 2COE is again increased from 0 until a fluid phase is stable. This process is repeated for 2HE  O values
ranging from 0 to 15 wt%. The 2HE  O and 2COE concentrations from each system for which a fluid phase was
found to be stable are saved and written to a pandas DataFrame, which is returned upon completion of the
calculation.

Isobars and isopleths are computed at fixed 2HE  O-  2COE points for any given pressure. To generate curves
using the MagmaSat model, polynomials are fit to computed points using numpy's polyfit method. This can
be optionally disabled by setting smooth_isobars or smooth_isopleths to False. The curvature of the isobars
depends strongly on the number of points used to fit a polynomial, deemed “control points,” with curve fits
becoming more accurate to the model as the number of control points increases. We found that above five
control points, changes to the shape of the curve fits becomes negligible. Thus, as a compromise between
accuracy and computation time, and to maintain consistency, MagmaSat isobars are always computed with
5 control points at 2XH O fluidE values of 0, 0.25, 0.5, 0.75, and 1. Because non-MagmaSat models compute
extremely quickly, all non-MagmaSat models use 51 control points per isobar and do not utilize polynomial
fits to the data by default.

User
Input
Data Press Temp

SaturationP_
bars_

VESIcal

XH2O_
fl_

VESIcal

XCO2_
fl_

VESIcal

FluidMass_
grams_
VESIcal

FluidSystem_
wt_VESIcal Model Warnings

25 – 2000 1200 2850 0.855214 0.144786 0.000849 0.000849 MagmaSat

SAT-M12-1 – 703 1100 580 1 0 0.003442 0.003442 MagmaSat

SAT-M12-2 – 1865 1100 1650 1 0 0.01528 0.01528 MagmaSat

SAT-M12-4 – 2985 1050 2610 1 0 0.008153 0.008153 MagmaSat

samp. P1968a – 300 900 1090 0.972916 0.027084 0.008855 0.008855 MagmaSat

samp. P1968b – 300 900 1780 0.973133 0.026867 0.005916 0.005916 MagmaSat

samp. P1968c – 300 900 1720 0.97586 0.02414 0.008088 0.008088 MagmaSat

samp. HPR3-1_XL-3 – 300 0 MagmaSat Calculation skipped.
Bad temperature.

samp. HPR3-1_
XL-4_INCL-1

– 0 900 1730 0.951017 0.048983 0.00335 0.00335 MagmaSat

AW-6 – 1500 1050 1280 0.228644 0.771356 0.001475 0.001475 MagmaSat

AW-46 – 4,000 1000 4,910 0.458904 0.541096 0.001767 0.001767 MagmaSat

KI-07 – 1500 1100 1590 0.679643 0.320357 0.001914 0.001914 MagmaSat

Note. This table has been truncated to display only the results of the calculation. The actual returned table would include all originally input user data in the
leftmost columns followed by the calculation results. The complete table can be seen in the Jupyter Notebook version of this manuscript. The warning “Bad
temperature” indicates that no data (or 0.0 value data) was given for the temperature of that sample, in which case the calculation of that sample is skipped.

Table 11
continued

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

35 of 55

Method structure:

Only single sample calculations. calculate_isobars_and_isopleths(sample, temperature, pressure_list, isop-
leth_list=None, smooth_isobars=True, smooth_isopleths=True, print_status=True, model="MagmaSat").
result

Standard inputs:

1. sample, temperature, model (see Section 3.1).

Unique required inputs:

1. pressure_list: A list of all pressures in bars at which to calculate isobars. If only one value is passed it can
be as float instead of list.

Unique optional inputs:

1. isopleth_list: The default value is None in which case only isobars will be calculated. A list of all fluid
composition values, in mole fraction 2HE  O (  2XH O fluidE  ), at which to calculate isopleths. Values can range
from 0–1. If only one value is passed it can be as float instead of list. N.b. that, due to the method of isobar
smoothing using control points as outlined above, each isopleth value passed here not equal to one of the
five standard control point values (0, 0.25, 0.5, 0.75, or 1) will result in an an additional control point being
used to smooth the isobars. Thus, entering additional isopleth values results not only in more isopleth out-
puts but also in “smoother” (i.e., more well constrained) isobars.

2. smooth_isobars and smooth_isopleths: The default value for both of these arguments is True, in which
case polynomials will be fit to the computed data points.

3. print_status: The default value is True. If True, the progress of the calculations will be printed to the
terminal.

Calculated outputs:

1. The function returns two pandas DataFrames: the first has isobar data, and the second has isopleth data.
Columns in the isobar dataframe are “Pressure,” “H2Omelt,” and “CO2melt,” corresponding to pressure
in bars and dissolved 2HE  O and 2COE in the melt in wt%. Columns in the isopleth dataframe are “XH2O_fl,”
“H2O_liq,” and “CO2_liq,” corresponding to 2XH O fluidE and dissolved 2HE  O and 2COE in the melt in wt%.

Input

Next, the 2HE  O and 2COE dissolved in the melt at saturation is calculated at the specified temperature and
over the range of specified pressures. Note that, because this function calculates two things (isobars and iso-
pleths), two variable names must be given (below, “isobars, isopleths”). This calculation can be quite slow,
and so it is recommended to set print_status to True.

Input

isobars, isopleths = v.calculate_isobars_and_isopleths(sample=sample_10, temperature=temper-
ature, pressure_list=pressures, isopleth_list=[0.25,0.5,0.75]).result

Define all variables to be passed to the function for calculating isobars and isopleths
Define the temperature in degrees C
temperature=1200.0
Define a list of pressures in bars:
pressures=[1000.0, 2000.0, 3000.0]

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

36 of 55

Output

3.9.  Calculating Degassing Paths

A degassing path is a series of volatile concentrations both in the melt and fluid that a magma will fol-
low during decompression. In the calculation, the saturation pressure is computed, and then the system is
equilibrated along a trajectory of decreasing pressure values at discrete steps. The default number of steps
to calculate is 50, but this can be defined by the user by setting the argument steps to any integer value. A
detailed explanation of how non-MagmaSat models handle the calculation of mixed-fluid composition can
be found in the supplement (Supplementary Text S2). If so desired, this calculation can be performed for
any initial pressure, but the default is the saturation pressure. If a pressure is specified that is above the sat-
uration pressure, the calculation will simply proceed from the saturation pressure, since the magma cannot
degas until it reaches saturation.

Completely open-system, completely closed-system or partially open-system degassing paths can be calcu-
lated by specifying what proportion of the fluid to fractionate. The fluid fractionation value can range be-
tween 0 (closed-system: no fluid is removed, all is retained at each pressure step) and 1 (open-system: all flu-
id is removed, none is retained at each pressure step). Closed and partially open-system runs allow the user
to specify the initial presence of exsolved fluid that is in equilibrium with the melt at the starting pressure.

Method structure:

Only single-sample calculations. calculate_degassing_path(sample, temperature, pressure='saturation', frac-
tionate_vapor=0.0, init_vapor=0.0, steps=50, model='MagmaSat').result

Standard inputs:

1. sample, temperature, model (see Section 3.1).

Unique optional inputs:

1. pressure: The pressure at which to begin the degassing calculations, in bars. Default value is ’saturation’,
which runs the calculation with the initial pressure at the saturation pressure. If a pressure greater than the
saturation pressure is input, the calculation will start at saturation, since this is the first pressure at which
any degassing will occur.

2. fractionate_vapor: Proportion of vapor removed at each pressure step. Default value is 0.0 (completely
closed-system degassing). Specifies the type of calculation performed, either closed system (0.0) or open
system (1.0) degassing. If any value between E  1.0 is chosen, user can also specify the “init_vapor” argument
(see below). A value in between 0 and 1 will remove that proportion of vapor at each step. For example, for a
value of 0.2, the calculation will remove 20% of the vapor and retain 80% of the vapor at each pressure step.

3. init_vapor: Default value is 0.0. Specifies the amount of vapor (in wt%) coexisting with the melt before
degassing.

4. steps: Default value is 50. Specifies the number of steps in pressure space at which to calculate dissolved
volatile concentrations.

Calculated outputs:

Calculating isobar at 1000.0 bars
	 done.
Calculating isobar at 2000.0 bars
	 done.
Calculating isobar at 3000.0 bars
	 done.
Done!

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

37 of 55

1. The function returns a pandas DataFrame with columns as: “Pressure_bars,” “H2O_liq,” and “CO2_liq”
(the concentration of 2HE  O and 2COE in the melt, in wt%), “XH2O_fl” and “XCO2_fl” (the composition of the

2HE  O-  2COE fluid, in mol fraction), and “FluidProportion_wt” (the proportion of fluid in the fluid-melt system,
in wt%).

Input

3.10.  Plotting

After calculating isobars, isopleths, and degassing paths, any or all of these may be plotted in an 2HE  O versus
2COE plot with one simple function call. The plot will be printed directly in the notebook or, if the code is

run as script in a command line, the plot will appear it its own window, at which point it can be saved as an
image file. VESIcal's plot function takes in lists of pandas DataFrames with calculated isobar, isopleth, and
degassing path information (e.g., output from calculate_isobars_and_isopleths() or calculate_degassing_
path()) and plots data as isobars (lines of constant pressure), isopleths (lines of constant fluid composition),
and degassing paths (lines indicating the concentrations of 2HE  O and CO

2 in a melt equilibrated along a path
of decreasing pressure).

Labels can be assigned to isobars, isopleths, and/or degassing paths separately. Any or all of these data can
be passed to the plot function. Multiple sets of plottable data can be passed. For example, isobars calculated
with two different models can be passed to the isobars argument as a list.

VESIcal's plotting function is entirely based on python's matplotlib library, which comes standard with
many installations of python. With matplotlib, users can create a large variety of plots (note that direct
matplotlib functionality is used to create custom plots in several of this manuscript's supplementary Jupy-
ter notebooks), and users should refer to the maptlotlib documentation (https://matplotlib.org/3.2.1/index.
html) if more complex plotting is desired. If preferred, VESIcal outputs can be saved to an Excel or CSV file
(see Section 3.12), and plotting can be done in any plotting program desired (e.g., MS Excel).

The function returns both fig and axes matplotlib objects, which can be further edited by the user or plotted
directly. Following matplotlib convention, the results of plot() should be saved to objects such as fig, ax as:

Where [options] represents any optional inputs as defined here. Variables fig and ax can then be edited
further using matplotlib tools. For example, the user might wish to set the minimum x-axis value to 0.5 as:

temp = 1200 # temperature in degrees C
"""Calculate open, closed, and closed + 2 wt% initial vapor"""
closed_df = v.calculate_degassing_path(sample=sample_10, temperature=temp).result
open_df = v.calculate_degassing_path(sample=sample_10, temperature=temp,

	 fractionate_vapor=1.0).result
half_df = v.calculate_degassing_path(sample=sample_10, temperature=temp,

	 fractionate_vapor=0.5).result
exsolved_df = v.calculate_degassing_path(sample=sample_10, temperature=temp,

	 init_vapor=2.0).result
"""Calculate closed-system degassing starting from a pressure of 2000 bars"""
start2000_df = v.calculate_degassing_path(sample=sample_10, temperature=temp,

	 pressure=2000.0).result

fig, ax = v.plot([options])

ax.set_xlim(left=0.5)

https://matplotlib.org/3.2.1/index.html
https://matplotlib.org/3.2.1/index.html

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

38 of 55

In Jupyter Notebook, a plot is automatically shown, but in the command line, the plot will only display after
executing v.show().

Method structure:

Optional Inputs:

1.	 �isobars: DataFrame object containing isobar information as calculated by calculate_isobars_and_isop-
leths(). Or a list of DataFrame objects.

2.	 �isopleths: DataFrame object containing isopleth information as calculated by calculate_isobars_and_
isopleths(). Or a list of DataFrame objects.

3.	 �degassing_paths: List of DataFrames with degassing information as generated by
calculate_degassing_path().

4.	 �custom_H2O: List of floats or array-like shapes of 2HE  O concentration values to plot as points. For
example myfile.get_data()['H2O'] is one array-like shape (here, pandas.Series) of 2HE  O values. Must be
passed with custom_CO2 and must be same length as custom_CO2.

5.	 �custom_CO2: List of floats or array-like shapes of 2COE values to plot as points.For example myfile.
get_data()['CO2'] is one array-like shape of 2COE values. Must be passed with custom_H2O and must be
same length as custom_H2O.

6.	 �isobar_labels: Labels for the plot legend. Default is None, in which case each plotted line will be given
the generic legend name of “Isobars n,” with n referring to the nth isobars passed. Isobar pressure is
given in parentheses. The user can pass their own labels as a list of strings. If more than one set of
isobars is passed, the labels should refer to each set of isobars, not each pressure.

7.	 �isopleth_labels: Labels for the plot legend. Default is None, in which case each plotted isopleth will be
given the generic legend name of “Isopleth n,” with n referring to the nth isopleths passed. Isopleth

2XHE  O values are given in parentheses. The user can pass their own labels as a list of strings. If more
than one set of isopleths is passed, the labels should refer to each set of isopleths, not each 2XHE  O value.

8.	 �degassing_path_labels: Labels for the plot legend. Default is None, in which case each plotted line will
be given the generic legend name of “Pathn,” with n referring to the nth degassing path passed. The
user can pass their own labels as a list of strings.

9.	 �custom_labels: Labels for the plot legend. Default is None, in which case each group of custom points
will be given the generic legend name of “Customn,” with n referring to the nth degassing path passed.
The user can pass their own labels as a list of strings.

10.	 �custom_colors and custom_symbols: Custom colors and symbol shapes can be specified for (custom_
H2O, custom_CO2) points. A list of color values or symbol types readable by Matplotlib (see Matplotlib
documentation) can be entered. The length of this list must be equal to the lengths of custom_H2O and
custom_CO2. If nothing is specified for custom_colors, VESIcal's default colors will be used. If nothing
is specified for custom_symbols, all points will be plotted as filled circles.

11.	 �markersize: The size of the symbols can be specified here. If not specified, the default value is marker
size 10.

12.	 �save_fig: Default value is False, in which case the figure will not be saved. If a string is passed, the figure
will be saved with the string as the filename. The string must include the file extension.

Advanced inputs: Most users will not need to use these inputs.

1.	 �extend_isobars_to_zero: If set to True (the default), isobars will be extended to the plot axes, which are
at x=0 and y=0, even if there is a finite solubility at zero partial pressure.

plot(isobars=None, isopleths=None, degassing_paths=None, custom_H2O=None, custom_
CO2=None, isobar_labels=None, isopleth_labels=None, degassing_path_labels=None, custom_
labels=None, custom_colors="VESIcal", custom_symbols=None, markersize=10, save_fig=False,
extend_isobars_to_zero=True, smooth_isobars=False, smooth_isopleths=False)

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

39 of 55

2.	 �smooth_isobars and smooth_isopleths: If set to True, isobar or isopleth data will be fit to a polynomial
and plotted. If set to False (the default), the raw input data will be plotted. Note that MagmaSat calcu-
late_isobars_and_isopleths() calculations return already “smoothed” data (that is, the raw data are fit
to polynomials before being returned). Raw “unsmoothed” data can be returned by MagmaSat calcu-
late_isobars_and_isopleths() (see documentation on this method).

Calculated outputs:

1. The function returns fig and axes matploblib objects defining a plot with x-axis as 2HE  O wt% in the melt
and y-axis as 2COE wt% in the melt. Isobars, or lines of constant pressure at which the sample magma com-
position is saturated, and isopleths, or lines of constant fluid composition at which the sample magma
composition is saturated, are plotted if passed. Degassing paths, or the concentration of dissolved 2HE  O and

2COE in a melt equilibrated along a path of decreasing pressure, is plotted if passed.

3.10.1.  A Simple Example: Isobars and Isopleths

Here we plot the isobars at 1,000, 2,000, and 3,000 bars and isopleths at 0.25, 0.5, and 0.75 2XH O fluidE calcu-
lated for sample ‘10*’ at 1,200°C in Section 3.8 onto one plot (Figure 6).

Input

Output

See Figure 6.

fig, ax=v.plot(isobars=isobars, isopleths=isopleths)
v.show()

Figure 6.  Isobars and isopleths calculated for the sample, temperature, pressures, 2XH O fluidE values, and with the
model as defined in Section 3.8. Manuscript default values are sample ‘10*’ at a 1,200°C with isobars at 1,000, 2,000, and
3,000 bars, isopleths at 2XH O fluidE   = 0, 0.25, 0.5, 0.75, and 1 calculated with MagmaSat.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

40 of 55

When plotting isobars and isopleths via MagmaSat, the values calculated by calculate_isobars_and_iso-
pleths() are used to calculate polynomial fits using numpy's ‘polyfit’. These polynomial fits, not the raw
calculated data, are what have been plotted above. This method of fitting polynomial curves to these data
is common in the literature (e.g., Newman & Lowenstern, 2002; Iacono-Marziano et al., 2012; Iacovino
et al., 2013) and is likely a very close approximation of the true saturation surface. Non-MagmaSat models
do not calculate polynomial fits by default, but this can be done by passing smooth_isobars=True and
smooth_isopleths=True to plot().

A user may wish to apply custom formatting to the plot, in which case the polynomial fits can be calculat-
ed and returned as a pandas DataFrame, which the user can then plot up manually using Matplotlib, MS
Excel, or some other preferred method. To calculate polynomial fits to isobar and isopleth data, isobars and
isopleths can be passed to smooth_isobars_and_isopleths(). For this advanced case, we refer the reader to
the documentation.

3.10.2.  A Simple Example: Degassing Paths

Here we plot all four degassing paths calculated for sample “10*” at 1,200°C in Section 3.9 onto one plot. We
designate labels of “Open,” “Half,” “Closed,” and “Exsolved” for the legend (Figure 7).

Input

Output

See Figure 7a

Input

Output

See Figure 7b

3.10.3.  Plotting Multiple Calculations

One of the major advantages to VESIcal over any other modeling tool is the ability to quickly calculate and
plot multiple calculations. VESIcal's plot() function is built on top of the popular Matplotlib python library
and is designed to work with any VESIcal generated data. It can automatically plot and label one or multiple
calculations. In addition, it can plot, as a scatter plot, any x-y points. The plot() function always generates
plots with 2HE  O on the x-axis and 2COE on the y-axis. scatterplot() will take in and plot any x-y data with cus-
tom x- and y-axis labels. Generating other commonly used petrologic plots (e.g. Harker style diagrams) is

fig, ax = v.plot(degassing_paths=[open_df, half_df, closed_df, exsolved_df], degassing_path_la-
bels=["Open", "Half", "Closed", "Exsolved"])
v.show()

fig, ax = v.plot(degassing_paths=[exsolved_df, start2000_df], degassing_path_labels=
["Exsolved", "2000 bars"])
v.show()

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

41 of 55

already possible with Matplotlib, and so VESIcal does not duplicate this functionality, however this may be
added in future updates.

It may be tempting to plot multiple calculations on multiple samples and compare them, however we
strongly caution against plotting data that do not correspond. For example, isobars and isopleths are calcu-

Figure 7.  Degassing paths calculated for the sample, temperature, degassing style, initial exsolved fluid wt%, starting pressure, and model as designated in
Section 3.9. Default manuscript values are sample “10*” at 1,200°C.“Open,” “Half,” and “Closed” curves in (a) represent open-system, partially open-system (50%
fractionated fluid), and closed-system degassing paths, respectively, starting at the saturation pressure. The “Exsolved” curve in (b) represents closed-system
degassing with an initial exsolved fluid wt% = 2.0. The “2000” curve in (b) represents closed-system degassing calculated starting at a pressure of 2,000 bars.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

42 of 55

lated isothermally. If degassing paths are also plotted, the user should ensure that the degassing paths were
calculated at the same temperature as the isobars and isopleths.

3.10.3.1.  Isobars, Isopleths, and Degassing Paths

In this example we will use data imported in Section 3.4 and calculations performed in Sections 3.7 and 3.8.
Of course, all of the data calculated with VESIcal can be exported to an Excel or CSV file for manipulation
and plotting as desired. However, some examples of plotting that can be done within this notebook or in a
python script are shown below. In Figure 8 we plot:

1.	 �Isobars calculated at 1,200°C and pressures of 1,000, 2,000, and 3,000 bars for sample 10*
2.	 �Isopleths calculated at 1200 °C and 2XH O fluidE values of 0, 0.25, 0.5, 0.75, and 1 for sample 10*
3.	 �An open-system degassing path for sample 10*
4.	 �A closed-system degassing path for sample 10*

Input

Output

See Figure 8.

fig, ax=v.plot(isobars=isobars, isopleths=isopleths, degassing_paths=[open_df, closed_df],
degassing_path_labels=["Open System", "Closed System"])
v.show()

Figure 8.  Example of plotting multiple calculations on one plot. Isobars and isopleths as defined in Section 3.8 and shown in Section 3.10.1 and degassing
curves as defined in Section 3.9 and shown in Section 3.10.2. Default manuscript values are for sample “10*” *at 1,200 C with isobars at 1,000, 2,000, and
3,000 bars, isopleths at 2XH O fluidE values of 0, 0.25, 0.5, 0.75, and 1 with an open-system and a closed-system degassing path.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

43 of 55

3.10.3.2.  Isobars, Isopleths, and Degassing Paths for Multiple Samples

First, we will calculate some new data for two different samples: a basanite (sample KI-07 from Iacovino
et al., 2016) and a rhyolite (sample samp. P1968a from Myers et al., 2019). For both samples, we will calcu-
late and then plot (Figure 9):

1.	 �Isobars and isopleths at 1100°C, pressures of 1,000 and 2,000 bars and fluid compositions of 2XH O fluidE
of 0.25, 0.5, and 0.75

2.	 �Closed-system degassing paths at 1100 °C

Input:

Output:

Input:

basanite_sample=myfile.get_sample_composition('KI-07', asSampleClass=True)
rhyolite_sample=myfile.get_sample_composition('samp.P1968a', asSampleClass=True)
basanite_isobars, basanite_isopleths = v.calculate_isobars_and_isopleths(

	 sample=basanite_sample,
	 temperature=1100,
	 pressure_list=[1000, 2000],
	 isopleth_list=[0.25, 0.75]).result
rhyolite_isobars, rhyolite_isopleths = v.calculate_isobars_and_isopleths(
	 sample=rhyolite_sample,
	 temperature=1100,
	 pressure_list=[1000, 2000],
	 isopleth_list=[0.25, 0.75]).result
basanite_degassing_path = v.calculate_degassing_path(
	 sample=basanite_sample,
	 temperature=1100).result
rhyolite_degassing_path = v.calculate_degassing_path(
	 sample=rhyolite_sample,
	 temperature=1100).result

Calculating isobar at 1000 bars
	 done.
Calculating isobar at 2000 bars
	 done.
Done!
Calculating isobar at 1000 bars
	 done.
Calculating isobar at 2000 bars
	 done.
Done!
[====================] 100% Calculating degassing path…
[====================] 100% Calculating degassing path…

fig, ax=v.plot(isobars=[basanite_isobars, rhyolite_isobars], isopleths=[basanite_isopleths, rhyolite_iso-
pleths], degassing_paths=[basanite_degassing_path, rhyolite_degassing_path], isobar_labels=["Basan-
ite", "Rhyolite"], isopleth_labels=["Basanite", "Rhyolite"], degassing_path_labels=["Basanite", "Rhyolite"])
v.show()

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

44 of 55

Output:

See Figure 9.

3.11.  Model Hybridization (Advanced)

One of the advantages of implementing the solubility models in a generic python module is the flexibility
this affords the user in changing the way solubility models are defined and used. In particular, the structure
allows any combination of pure fluid models to be used together in modeling mixed fluids, and fugacity
or activity models can be quickly changed without modifying code. This allows advanced users to see how
changing a fugacity or activity model implemented in any particular solubility model would affect model
results. Instructions for hybridizing models can be found in Supplemental Jupyter Notebook S10.

3.12.  Exporting Data

Once batch calculations have been performed, they can be exported to an Excel or CSV file with the save_ex-
cel() and save_csv() commands. These operations require that the user define a filename (what to name
your new file) and a list of the calculation results to save to this file or files.

Note that this requires that calculations have been assigned to variable names, which has been done in
all of the given examples. For example, to calculate saturation pressures of an imported file saved to the
variable ’myfile’ and simply print the output, the user can type myfile.calculate_saturation_pressures([op-
tions]), where [options] are the required and optional inputs. However, to save this result to a variable (e.g.,
called ’my_satPs') so that it can be accessed later, the correct python syntax would be my_satPs = myfile.
calculate_saturation_pressures([options]).

Multiple calculations can be saved at once. If saving to an Excel file, each calculation is saved as its own
sheet within a single file. If desired, the user can define the names of each of these sheets. If not specified,

Figure 9.  Example of plotting multiple calculations from multiple samples on the same plot. Note that the colors are
automatically set to correspond to each sample for all plotted items (here, isobars, isopleths, and degassing paths).
Samples, pressures, temperatures, 2XH O fluidE values, and degassing path styles are defined above in this section.
Manuscript default values are for a basanite (sample KI-07) and a rhyolite (sample samp. P1968a) at 1,100 C, 1,000 and
2,000 bars, and 2XH O fluidE   = 0.25 and 0.75 and closed-system degassing.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

45 of 55

the sheets will be named ’Original_User_Data’, which contains the original input data, and then ’CalcN’
where N is the nth calculation in a list of calculations. If saving multiple calculations to a CSV file, each
calculation will be saved to its own CSV file, and a file name for each of these is required.

Advanced users note that the calculations argument takes in any pandas DataFrame object, meaning this
functionality is not limited to VESIcal's prescribed outputs. The save_excel() and save_csv() methods use
the pandas to_excel and to_csv methods, however not all options are implemented here. If saving to a CSV
file, any arguments that can be passed to pandas to_csv method may be passed to VESIcal's save_csv().

Method structure:

1.	 �save_excel(filename, calculations, sheet_name=None)
2.	 �save_csv(filenames, calculations)

save_excel() Required inputs:

1.	 �filename (Excel): Name of the file to create. The extension (.xlsx) should be included along with the
name itself, all in quotes (e.g., filename='myfile.xlsx').

2.	 �calculations: A list of variables containing calculated outputs from any of the core BatchFile functions:
calculate_dissolved_volatiles(), calculate_equilibrium_fluid_comp(), and calculate_saturation_pres-
sure(). This must be passed as a list type variable, even if only one calculation is given. This is done by
enclosing the variable in square brackets (e.g., calculations=[my_calculation]).

save_excel() Optional inputs:

1.	 �sheet_name: The default value is None, in which case sheets will be saved as “Original_User_data” (the
data input by the user) followed by “CalcN,” where N is the nth calculation in calculations. Otherwise, a
list of names for the sheets can be passed, with the names in quotes (e.g., sheet_name=['SaturationPres-
sures']). “Original_User_data” will always be saved as the first sheet.

save_csv() Required inputs:

1.	 �filenames (CSV): Name of the file or files to create. The extension (.csv) should be included. If more than
one filename is passed, it should be passed as a list. This is done by enclosing the filenames in square
brackets (e.g., filenames=[“file1.csv”, “file2.csv”]).

2.	 �calculations: same as for save_excel(). Must be same length as filenames.

Calculated outputs:

1. An Excel or CSV file or files will be saved to the active directory (i.e., the same folder as this manuscript
notebook or wherever the code is being used).

Here we save five of the calculations performed on an imported data file earlier in this manuscript. The
original user-input data are stored in the BatchFile object “myfile.” In the following line, we use the method
save_excel() to save the original data and a list of calculations given by the calculations argument to an
Excel file.

Input

Output

myfile.save_excel(filename='testsave.xlsx',
	 calculations=[dissolved, eqfluid, eqfluid_wtemps, satPs, satPs_wtemps],
	� sheet_name=['dissolved, 'eqfluid', 'eqfluid_wtemps, 'SaturationPs', 'SatPs_

	 wtemps'])

Saved testsave.xlsx

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

46 of 55

3.12.1.  Saving Data for ReImport into VESIcal

In many cases, it may be preferable to compute large amounts of data using VESIcal and then reimport
them, either to perform more analysis or to plot the data. Likewise, a user may wish to compute data in
VESIcal and then send the results to a colleague, who can then re-import that data into VESIcal directly.
For this case, we suggest using python's pickle package (https://wiki.python.org/moin/UsingPickle). Any
python object, such as the results of a VESIcal calculation, can be “pickled” or saved as a python-readable
file. To use pickle, users must first import the pickle module, then “dump” the desired contents to a pickle
file. The pickled data can be accessed by “loading” the pickled file.

Below we pickle our computed dissolved volatile concentrations by dumping our variable dissolved to a
pickle file that we name “dissolved.p.”

In another python file or terminal session, dissolved can be loaded back in via:

4.  Discussion and Applications
4.1.  Compositional Variation Within Datasets and Best Practices

While not all solubility models incorporate significant bulk compositional parameters, it has been clearly
shown that the composition of a melt plays a strong role in determining the solubility of 2HE  O and 2COE in
magmas (Moore, 2008; Papale et al., 2006; Ghiorso & Gualda, 2015; Wieser et al., 2021). Thus, compositional
variance must be accounted for in any study examining solubility in multiple samples. A key use case where
VESIcal can facilitate the adoption of this practice is in melt inclusion (MI) studies; specifically, where a
single suite of MI with multiple melt compositions is examined using solubility models to interrogate mag-
matic degassing processes. Prior to the availability of VESIcal, the difficulty associated with performing
multiple model calculations on multiple samples resulted in very few studies accounting for any composi-
tional variance within their datasets. Indeed, until now, it has been difficult to even assess whether the po-
tentially minimal compositional variance within a suite of melt inclusions from a single volcanic eruption
would have any measurable effect on solubilities calculated for different MI.

Using VESIcal, we can address the question: what is the quantitative effect of compositional variation with-
in a single suite of melt inclusions upon calculated melt inclusion saturation pressures? And, how does this
affect conclusions that might be drawn regarding volcanic degassing and eruptive processes? To investigate
this, we use a data set of basaltic melt inclusions from Cerro Negro volcano, Nicaragua (Roggensack, 2001).
The compositional variation of these MI (Figure 10), while relatively restricted, results in quite variable
mixed-fluid solubilities from sample to sample. To determine the end-member compositions within the data
set corresponding to the samples with the maximum and minimum combined 2HE  O-  2COE solubilities, isobars
were computed at 1200°C and 3,000 bars for all samples using the MagmaSat model in VESIcal. Maximum
and minimum samples were taken as the isobar curves with the smallest and largest integral (area under
the curve). We refer to this value as the “integrated mixed-volatile solubility” value, IMS, in units of con-
centration squared. The samples that produced maximum and minimum integrated solubilities are shown
in Figures 10 and 11 in blue and green, respectively (sample 41b*, IMS=0.81 and 36a*, IMS=0.66 wt%2 at
3,000 bars). A composition representing the average of all MI in the data set is shown in orange (“Average

import pickle
pickle.dump(dissolved, open("dissolved.p", "wb"))

import pickle
dissolved = pickle.load(open("dissolved.p", "rb"))

https://wiki.python.org/moin/UsingPickle

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

47 of 55

Sample,” IMS=0.70 wt%2 at 3,000 bars). A Jupyter Notebook to reproduce these calculations is provided in
the supplement (Supplementary Jupyter Notebook S8).

At all pressures, the integrated mixed-volatile solubility across the Cerro Negro data set varies as much as
10% relative (Figure 11). For these MI, this results in as much as 11.5% relative error in the calculation of
saturation pressures (average error for the entire data set of 6.8% relative). It is noteworthy that this error is
not systematic either in terms of absolute value or sign. For example, when calculated using their own com-
positions, saturation pressures for maximum and minimum samples 41b* and 36a* are 3,050 and 3,090 bars,
respectively. But, saturation pressures calculated for both of these MI using the data set's average composi-
tion are 3,020 and 3,250 bars, respectively. That is an error of −30 and +160 bars or −1% and +5% respec-
tively. Errors in these calculations, thus, may be quite small. But, in any case, removing this error completely

Figure 10.  Harker style diagrams illustrating the compositional range of MIs from Cerro Negro volcano from Roggensack (2001). The “Average Sample”
plotted as an orange dot represents a fictitious sample, calculated as the average of all MIs in the data set. Sample 41b* and 36a* are the names of samples that
produced isobars with maximum and minimum area under the curve, respectively (see text). Gray diamonds are all other data in the data set.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

48 of 55

is a simple task using VESIcal, and so we recommend that studies adopt the practice of calculating volatile
solubilities (and associated values) in melts using the composition unique to each melt investigated.

Even in cases where solubility values (e.g., saturation pressures) are not calculated, the error highlighted
above plagues any isobar diagram over which multiple melt compositions are plotted (e.g., Figure 11). Al-
ternative plots to the commonly used 2HE  O-  2COE diagram are shown in Figure 12, in which the same data set
is plotted in terms of computed saturation pressure (at 1200°C calculated with VESIcal using MagmaSat)
versus dissolved 2HE  O, dissolved 2COE  , and fluid composition (as 2XH O fluidE calculated with VESIcal using
MagmaSat). These plots avoid the issues discussed above as they are compositionally independent, since the
saturation pressure is calculated individually for each sample composition. Degassing trends are more accu-
rately represented; 2HE  O and 2COE concentrations lie along expected degassing trends with much less scatter
than the 2HE  O-  2COE plot. We can also see from this figure that the fluid composition during this eruption at
Cerro Negro remained relatively constant at 2XH O fluidE  0.8 from reservoir to surface, suggesting a scenario
approaching closed-system degassing (i.e., melt volatile concentrations are buffered by the co-existing fluid
composition). This is discussed in more detail in the companion paper (Wieser et al., 2021).

4.2.  Model Comparisons

One of the possible workflows enabled through VESIcal is the ability to compute and compare (numerically
and graphically) results from several models at once. To illustrate this point, we will take two single samples
within the calibrated compositional range of several models, calculate isobars at multiple pressures, and
plot the results. This is a common way to compare the solubility surface computed by different models for a
single melt composition, and it is particularly useful since it quickly highlights the significant variation that
exists between published models. The results of this exercise are shown here, and a Jupyter Notebook to
reproduce the code and calibration checks is available in the Supporting Information S1(Jupyter Notebook
S9).

Figure 11.  2HE  O-  2COE diagram with isobars for MI from Cerro Negro volcano (Roggensack, 2001) computed by VESIcal
using MagmaSat at 1200°C, pressures of 500, 1000, 2000, 3000, and 4,000 bars. Curves shown are polynomials fitted to
data computed by VESIcal. Blue and green curves correspond to samples 41b* and 36a*, which produced isobars with
maximum and minimum area under the curve, respectively. Orange isobars were those computed for a fictitious sample
representing the average composition of the MI data set. Gray diamonds are all other data in the data set.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

49 of 55

We use a fictitious alkali basalt that we name “alkbasalt” and a fictitious rhyolite whose compositions are
given in Table 12. The use of VESIcal's calib_plot() function (see supplement) illustrates that the composi-
tion of the alkali basalt is within the compositional calibration ranges of four mixed-fluid solubility models:
MagmaSat, Iacono-Marziano, Dixon, and ShishkinaIdealMixing. The rhyolite is within the ranges of Mag-
maSat and Liu. Isobars were calculated with these models at 1200°C for alkbasalt and 800°C for rhyolite and
pressures of 500, 1,000, and 2,000 bars, using the below code:

Figure 12.  Saturation pressure at 1200°C calculated using VESIcal with MagmaSat versus measured dissolved 2HE  O
and 2COE concentrations and calculated fluid composition in Cerro Negro melt inclusions. These plots meaningfully
illustrate degassing processes while avoiding issues associated with commonly used 2HE  O-  2COE diagrams, which occur
with even minor compositional variation within a given data set.

Label 2SiOE 2TiOE 2 3Al OE 2 3Fe OE FeO MnO MgO CaO 2NaE  O 2KE  O 2 5P OE 2HE  O 2COE

Alkali Basalt 49 1.27 19.7 3.74 5.33 0.17 4.82 8.85 4.23 1 0.37 4.51 0.25

Rhyolite 77.19 0.06 12.8 0 0.94 0 0.03 0.53 3.98 4.65 0 0.26 0.05

Table 12
Melt Compositions Used for Modeling

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

50 of 55

Input

Output

See Table 12.

Input

model_comps=v.BatchFile("Table_Model_Comps.xlsx")
model_comps.get_data()

alkbasalt = model_comps.get_sample_composition("Alkali Basalt", asSampleClass=True)
rhyolite = model_comps.get_sample_composition("Rhyolite", asSampleClass=True)
alkbasalt_isobars, alkbasalt_isopleths = v.calculate_isobars_and_isopleths(

sample=alkbasalt, temperature=1200,
pressure_list=[500, 1000, 2000],
isopleth_list=[0.5],
print_status=True).result

rhyolite_isobars, rhyolite_isopleths = v.calculate_isobars_and_isopleths(
sample=rhyolite, temperature=800,
pressure_list=[500, 1000, 2000],
isopleth_list=[0.5]).result

Iac_alkbasalt_isobars, Iac_alkbasalt_isopleths = v.calculate_isobars_and_isopleths(
sample=alkbasalt, temperature=1200,
pressure_list=[500, 1000, 2000],
isopleth_list=[0.5],
model="IaconoMarziano").result

Dixon_alkbasalt_isobars, Dison_alkbasalt_isopleths = v.calculate_isobars_and_isopleths(
sample=alkbasalt, temperature=1200,
pressure_list=[500, 1000, 2000],
isopleth_list=[0.5],
model="Dixon").result

Shish_alkbasalt_isobars, Shish_alkbasalt_isopleths = v.calculate_isobars_and_isopleths(
sample=alkbasalt, temperature=1200,
pressure_list=[500, 1000, 2000],
isopleth_list=[0.5],
model="ShishkkinaIdealMixing").result

Liu_rhyolite_isobars, Liu_rhyolite_isopleths = v.calculate_isobars_and_isopleths(
sample=rhyolite, temperature=800,
pressure_list=[500, 1000, 2000],
isopleth_list = [0.5],
model="Liu").result

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

51 of 55

Output

Input

Output

See Figure 13a.

Input

Output

See Figure 13b.

It is immediately clear from Figure 13 that major disagreement exists between these models. For the al-
kali basalt, MagmaSat and Dixon show the best agreement, particularly at pressures E  2,000 bars. Howev-
er, the mismatch between these models (and, indeed, between all models) increases with pressure. The
Iacono-Marziano model is calibrated for highly depolymerized alkali basalts resulting in an increased ca-
pacity of the melt to dissolve 2

3COE  . That may explain why this model predicts significantly higher 2COE
solubilities at 2XH O fluidE values approaching 0.

Calculating isobar at 500 bars
done.

Calculating isobar at 1000 bars
done.

Calculating isobar at 2000 bars
done.

Done!
Calculating isobar at 500 bars

done.
Calculating isobar at 1000 bars

done.
Calculating isobar at 2000 bars

done.
Done!
RuntimeWarning: pressure exceeds 1000 bar, which Iacono-Marziano et al. (2012) suggest as an
upper calibration limit of the Dixon (1997, Pi-SiO2 simpl.) Model

fig, ax = v.plot(isobars=[alkbasalt_isobars, Iac_alkbasalt_isobars, Dixon_alkbasalt_isobars, Shish_
alkbasalt_isobars], isobar_labels=["MagmaSat", "Iacono-Marziano", "Dixon", "Shishkina"])
v.show()

fig, ax = v.plot(isobars=[rhyolite_isobars, Liu_rhyolite_isobars], isobar_labels=["MagmaSat",
"Liu"])
v.show()

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

52 of 55

The ShishkinaIdealMixing model displays nearly linear isobars, with finite solubility below E  1 wt% dis-
solved 2HE  O. This is a consequence of the model calibration; the pure-  2HE  O solubility expression of Shish-
kinaIdealMixing is not calibrated with any experiments at low 2PHE  O. This results in a finite solubility at low
dissolved 2HE  O concentrations, such that the zero-pressure solubility is not zero. This produces significant

Figure 13.  Isobars plotted for an alkali basalt (a) and rhyolite (b) with VESIcal for five mixed-fluid solubility models.
For alkali basalt, MagmaSat, Iacono-Marziano, Dixon, and ShishkinaIdealMixing were used to create isobars at
1,200°C. For rhyolite, MagmaSat and Liu were used to create isobars at 800°C.

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

53 of 55

model error at low but non-zero values of 2XH O fluidE  . Thus, we caution the user against using the Shishkina
model at low but nonzero 2XH O fluidE or when fluids deviate far from pure 2HE  O or pure 2COE  . In general, the
Shishkina model should only be used for modeling pure-  2HE  O or pure-  2COE fluids. This is discussed in more
detail in Wieser et al. (2021).

The models of MagmaSat and Liu show a similar level of disagreement for 2HE  O-  2COE solubility in the rhy-
olite, with Liu predicting much higher dissolved 2COE concentrations at low 2XH O fluidE ( E  20 relative% or
E  220 ppm at 2XH O fluidE  =0.1).

4.3.  Sensitivity and Error Analysis

To date, very few studies have compared the sensitivity of their pressure estimates to the choice of solubility
model, or propagated errors inherent to measurements of volatile concentrations in melts using SIMS, FTIR
and Raman Spectroscopy into an error bar in terms of saturation pressure. In contrast, VESIcal allows users
to import an Excel or CSV spreadsheet with each row containing the major element and volatile contents
of each inclusion, as well as a temperature at which to evaluate solubility. Using the batch calculation
functions, VESIcal will automatically calculate the saturation pressure for each row, using a user-specified
model. Thus, users can more easily compare results from different solubility models, to robustly assess
their applicability for the system of interest. Additionally, users could load a different spreadsheet, where
the 2COE and 2HE  O concentrations are adjusted to reflect the analytical uncertainty on the instrument used,
allowing error bars on the saturation pressure to be calculated for every single inclusion. The modular and
open-source nature of VESIcal also allows the user to combine the code with other Python3 modules. For
example, users could utilize Markov chain Monte Carlo (MCMC; e.g., the python library emcee) methods
to robustly calculate error distributions for each sample. In future releases, automatic sensitivity and error
analysis on datasets and calculated results may be implemented directly within VESIcal, building on exist-
ing tools within the python community.

4.4.  Future Development

VESIcal represents the first comprehensive volatile solubility modeling tool of its kind, including the fea-
ture that VESIcal is extensible. VESIcal is written so that implementing new or yet-to-be-implemented sol-
ubility models is as simple as possible. To implement a new model, python code describing the model
equations needs to be written, and this model name needs to be added to a list of model names within the
code. To make this as simple as possible such that the original authors of VESIcal are not the only people
who can develop the code, planned future work includes the creation of detailed instructions (including
instructional videos) illustrating this process.

Likewise, new features can be added at any time, and enthusiastic members of the community who wish to
help bring such features to VESIcal are very welcome. Users can contribute to VESIcal's code, implementing
new models and new features, via github (https://github.com/kaylai/VESIcal). The repository is public, but
we encourage users who wish to contribute to the code to fork the repository into their private workspace
on github. Once edits to the code are complete, the new code can be added to VESIcal by creating a “Pull
Request” inside of github. Changes and enhancements to VESIcal will correspond to a change in the code's
version number. The published version of the code documented in this manuscript and archived on Zenodo
is version 1.0.1 (DOI:10.5281/zenodo.5095382). Planned features not implemented in this release include:
(a) Models to calculate sample oxygen fugacity from 2FeE  / E  Fe and vice versa; (b) Additional volatiles such
as sulfur; (c) More thermodynamic solubility models such as that of Papale et al. (2006); (d) Sensitivity and
error analysis functions.

4.5.  How to Cite VESIcal and Its Models

To cite computations done using VESIcal, please cite this manuscript, the VESIcal version number, as well
as the model(s) used. Note that if a model was not specified during calculations, the default model of Mag-
maSat was used and should be cited as “MagmaSat Ghiorso and Gualda (2015).” For example: “Calculations

https://github.com/kaylai/VESIcal
http://10.5281/zenodo.5095382

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

54 of 55

were performed using VESIcal (v. 1.0.1; Iacovino et al., 2021) with the models of Shishkina et al. (2014)
and Dixon (1997, “VolatileCalc”).” The web-app always runs on the most up-to-date version of the VESIcal
code, but it is best practice to note if the web-app was used (“Calculations were performed using the VESIcal
web-app [v. 1.0.1; Iacovino et al., 2021]…”). We also encourage users to be as explicit as possible as to the
conditions used for modeling. This includes stating the pressure, temperature, volatile concentration, and
bulk magma composition used in modeling. In the best case, VESIcal users will provide their code (e.g., as a
Jupyter Notebook or.py file) along with their publication such that it can be easily replicated.

5.  Conclusions
VESIcal is a thermodynamic mixed-volatile solubility engine designed to meet the growing computational
needs of the igneous petrology community. Seven commonly used volatile solubility models are built into
VESIcal, which employs the most diversely calibrated (chemically and in P-T space) of the group, Magma-
Sat (Ghiorso & Gualda, 2015), as the default model. VESIcal can perform five core calculations with any
mixed-fluid model and three core calculations with any model (mixed-fluid, 2COE  -only, 2HE  O-only). VESIcal
allows for automatic calculation of large datasets and robust built-in plotting capability.

Alongside model frameworks such as ENKI, VESIcal represents an early step forward toward creating
a generalized thermodynamic framework to model whole scale magmatic processes. Such a framework
builds upon the key tenets of VESIcal, namely: fundamental thermodynamic underpinning; inclusion of
existing modeling strategies; python powered, open-source, and extensible code base; high usability at all
levels; benchmarking and testing; and power as a responsive and predictive tool.

Data Availability Statement
The Jupyter Notebook version of this manuscript (Iacovino et al., 2021) can be found at https://mybind-
er.org/v2/gh/kaylai/vesical-binder/HEAD?filepath=Manuscript.ipynb and is preserved at https://zenodo.
org/record/5095409. The VESIcal software is open source and is hosted on github (https://github.com/kay-
lai/VESIcal). The version of VESIcal used in this manuscript is version 1.0.1 and is archived on zenodo
(DOI: 10.5281/zenodo.5095382). VESIcal runs on top of thermoengine, a python package that is a part of
the ENKI framework (http://enki-portal.org/). The thermoengine library is open source and is available
on GitLab (https://gitlab.com/ENKI-portal/ThermoEngine). VESIcal was written in Python3 and should
be stable up to at least Python version 3.7.6. In addition to thermoengine, VESIcal requires the following
standard libraries (with versions used for testing indicated in brackets): pandas (1.0.1), numpy (1.18.1), mat-
plotlib (3.1.2), cycler (0.10.0), scipy (1.4.1), and sympy (1.5.1). The VESIcal webapp interface runs through
Anvil (anvil.works), which executes VESIcal code on a cloud server. The code that facilitates the link be-
tween the anvil interface and the VESIcal code is available on the VESIcal github. VESIcal can also be used
within a Jupyter Notebook and is hosted on the ENKI Jupyter Hub (https://server.enki-portal.org/hub/
login) such that the code can be accessed without installation on the user's local machine. All data sets
used in this manuscript are available on the VESIcal github as well as in the Supporting Information S1 of
this manuscript. The example data set used for worked examples in Section 3 (example_data.xlsx file; Data
Set S1) contains compositional information for basalts (Roggensack, 2001; Tucker et al., 2019), andesites
(Moore et al., 1998), rhyolites (Mercer et al., 2015; Myers et al., 2019), and alkaline melts (phototephrite,
basaltic-trachyandesite, and basanite from Iacovino et al., 2016). Several additional example datasets from
the literature are available in the Data Set S2–S5 (Table 4). These include experimentally produced alkaline
magmas from Iacovino et al. (2016, alkaline.xlsx), basaltic melt inclusions from Kilauea (Tucker et al., 2019)
and Gakkel Ridge (Bennett et al., 2019, basalts.xlsx), basaltic melt inclusions from Cerro Negro volcano,
Nicaragua (Roggensack, 2001, cerro_negro.xlsx), and rhyolite melt inclusions from the Taupo Volcanic
Center, New Zealand (Myers et al., 2019) and a topaz rhyolite from the Rio Grande Rift (Mercer et al., 2015,
rhyolites.xlsx). Where available, the calibration datasets for VESIcal models are also provided (Data Set S6
and S7).

https://mybinder.org/v2/gh/kaylai/vesical-binder/HEAD?filepath=Manuscript.ipynb
https://mybinder.org/v2/gh/kaylai/vesical-binder/HEAD?filepath=Manuscript.ipynb
https://zenodo.org/record/5095409
https://zenodo.org/record/5095409
https://github.com/kaylai/VESIcal
https://github.com/kaylai/VESIcal
http://10.5281/zenodo.5095382
http://enki-portal.org/
https://gitlab.com/ENKI-portal/ThermoEngine
https://server.enki-portal.org/hub/login
https://server.enki-portal.org/hub/login

Earth and Space Science

IACOVINO ET AL.

10.1029/2020EA001584

55 of 55

References
Allison, C., Roggensack, K., & Clarke, A. (2019). H2O-CO2 solubility in alkali-rich mafic magmas: New experiments at mid-crustal pres-

sures. Contributions to Mineralogy and Petrology, 174. https://doi.org/10.1007/s00410-019-1592-4
Bennett, E., Jenner, F., Millet, M.-A., Cashman, K., & Lissenberg, J. (2019). Deep roots for mid-ocean-ridge volcanoes revealed by plagi-

oclase-hosted melt inclusions. Nature, 572(235). https://doi.org/10.1038/s41586-019-1448-0
Blake, S. (1984). Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. Journal of Geophysical

Research, 89, 8237–8244. https://doi.org/10.1029/jb089ib10p08237
Dixon, J. (1997). Degassing of alkalic basalts. American Mineralogist, 82, 368–378. https://doi.org/10.2138/am-1997-3-415
Dixon, J., Stolper, E., & Holloway, J. (1995). An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic

liquids. Part I: Calibration and solubility models. Journal of Petrology, 36, 1633–1646. https://doi.org/10.1093/oxfordjournals.petrology.
a037267

Duan, Z., & Zhang, Z. (2006). Equation of state of the H2O, CO2, and H2O-CO2 systems up to 10 GPa and 2573.15 K: Molecular dynamics
simulations with ab initio potential surface. Geochimica et Cosmochimica Acta, 70, 2311–2324. https://doi.org/10.1016/j.gca.2006.02.009

Ghiorso, M., & Gualda, G. (2015). An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contributions to Mineral-
ogy and Petrology, 169, 1–30. https://doi.org/10.1007/s00410-015-1141-8

Ghiorso, M., & Sack, R. (1995). Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic
model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures.
Contributions to Mineralogy and Petrology, 119, 197–212. https://doi.org/10.1007/bf00307281

Hughes, E., Buse, B., Kearns, S., Blundy, J., Kilgour, G., & Mader, H. (2019). Low analytical totals in EPMA of hydrous silicate glass
due to subsurface charging: Obtaining accurate volatiles by difference. Chemical Geology, 505, 48–56. https://doi.org/10.1016/j.
chemgeo.2018.11.015

Iacono-Marziano, G., Morizet, Y., Trong, E., & Gaillard, F. (2012). New experimental data and semi-empirical parameterization of H2O-
CO2 solubility in mafic melts. Geochimica et Cosmochimica Acta, 97, 1–23. https://doi.org/10.1016/j.gca.2012.08.035

Iacovino, K., Matthews, S., Wieser, P., Moore, G., & Bégué, F. (2021). Jupyter Notebook VESIcal: An open-source thermodynamic model
engine for mixed volatile (H2O-CO2) solubility in silicate melts. Zenodo. https://doi.org/10.5281/zenodo.5095409

Iacovino, K., Moore, G., Roggensack, K., Oppenheimer, C., & Kyle, P. (2013). H2O-CO2 solubility in mafic alkaline magma: Applications to
volatile sources and degassing behavior at Erebus volcano, Antarctica. Contributions to Mineralogy and Petrology, 166, 845–860. https://
doi.org/10.1007/s00410-013-0877-2

Iacovino, K., Oppenheimer, C., Scaillet, B., & Kyle, P. (2016). Storage and evolution of mafic and intermediate alkaline magmas beneath
Ross Island, Antarctica. Journal of Petrology, 57, 93–118. https://doi.org/10.1093/petrology/egv083

Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G., & Jean-Michel, B. (2011). The H2O solubility of alkali basaltic melts: An experi-
mental study. Contributions to Mineralogy and Petrology, 162, 133–151. https://doi.org/10.1007/s00410-010-0588-x

Liu, Y., Zhang, Y., & Behrens, H. (2005). Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed
H2O-CO2 solubility in rhyolitic melts. Journal of Volcanology and Geothermal Research, 143, 219–235. https://doi.org/10.1016/j.
jvolgeores.2004.09.019

Mercer, C., Hofstra, A., Todorov, T., Roberge, J., Burgisser, A., Adams, D., & Cosca, M. (2015). Pre-eruptive conditions of the Hideaway Park
topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson Porphyry Molybdenum Deposit, Colorado.
Journal of Petrology, 56, 645–679. https://doi.org/10.1093/petrology/egv010

Moore, G. (2008). Interpreting H2O and CO2 Contents in Melt Inclusions: Constraints from Solubility Experiments and Modeling. Reviews
in Mineralogy and Geochemistry, 69(1), 333–362. https://doi.org/10.2138/rmg.2008.69.9

Moore, G., Vennemann, T., & Carmichael, I. (1998). An empirical model for the solubility of H2O in magmas to 3 kilobars. American Min-
eralogist, 83, 36–42. https://doi.org/10.2138/am-1998-1-203

Myers, M., Wallace, P., & Wilson, C. (2019). Inferring magma ascent timescales and reconstructing conduit processes in explosive rhyolitic
eruptions using diffusive losses of hydrogen from melt inclusions. Journal of Volcanology and Geothermal Research, 369, 95–112. https://
doi.org/10.1016/j.jvolgeores.2018.11.009

Newman, S., & Lowenstern, J. (2002). VolatileCalc: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Computers &
Geosciences, 28, 597–604. https://doi.org/10.1016/s0098-3004(01)00081-4

Papale, P., Morretti, R., & Barbato, D. (2006). The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts.
Chemical Geology, 229, 78–95. https://doi.org/10.1016/j.chemgeo.2006.01.013

Perkel, J. (2016). Democratic databases: Science on GitHub. Nature, 538. https://doi.org/10.1038/538127a
Roggensack, K. (2001). Unraveling the 1974 eruption of Fuego volcano (Guatemala) with small crystals and their young melt inclusions.

Geology, 29, 911–914. https://doi.org/10.1130/0091-7613(2001)029<0911:uteofv>2.0.co;2
Shishkina, T., Botcharnikov, R., Holtz, F., Almeev, R., Jazwa, A., & Jakubiak, A. (2014). Compositional and pressure effects on the solubility

of H2O and CO2 in mafic melts. Chemical Geology, 388, 112–129. https://doi.org/10.1016/j.chemgeo.2014.09.001
Stock, M., Humphreys, M., Smith, V., Isaia, R., & Pyle, D. (2016). Late-stage volatile saturation as a potential trigger for explosive volcanic

eruptions. Nature Geoscience, 9(3), 249–254. https://doi.org/10.1038/ngeo2639
Stolper, E. (1982). The speciation of water in silicate melts. Geochimica et Cosmochimica Acta, 46(12), 2609–2620. https://doi.

org/10.1016/0016-7037(82)90381-7
Tait, S., Jaupart, C., & Vergniolle, S. (1989). Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth

and Planetary Science Letters, 92(1), 107–123. https://doi.org/10.1016/0012-821x(89)90025-3
Tucker, J., Hauri, E., Pietruszka, A., Garcia, M., Marske, J., & Trusdell, F. (2019). A high carbon content of the Hawaiian mantle from oli-

vine-hosted melt inclusions. Geochimica et Cosmochimica Acta, 254, 156–172. https://doi.org/10.1016/j.gca.2019.04.001
Wieser, P. E., Iacovino, K., Matthews, S., Moore, G., & Allison, C. M. (2021). VESIcal Part II: A critical approach to volatile solubility mod-

elling using an open-source Python3 engine. Earth ArXiV. https://doi.org/10.31223/X5K03T

Acknowledgments
This manuscript is dedicated to the
memory of Dr. Peter Fox without whom
none of this work would have been
possible. The authors thank Peter for
his encouragement of this work, his
editorial handling of the manuscript,
and for blazing a path for bringing ex-
ecutable manuscripts to AGU journals.
K. Iacovino and G. M. Moore were
supported by the NASA Jacobs JETS
Contract #NNJ13HA01C. P. E. Wieser
acknowledges support from a NERC
DTP studentship (NE/L002507/1).
The authors thank Jackie Dixon and
Bob Myhill for reviews, which greatly
helped strengthen this manuscript and
the VESIcal code. The authors would
also like to thank Mark Ghiorso, Aaron
Wolf, and the ENKI team for pushing
thermodynamic modeling into the
future and for making this publication
possible by supporting VESIcal as part
of ENKI; Chelsea Allison and Giada
Iacono-Marziano for discussions on
their published models and how to
properly implement them in VESIcal;
Christy B. Till for support of KI during
early coding work with MagmaSat;
and presentationgo for style elements
used in flowchart figures. Permission
for the use of the VESIcal fox logo was
graciously provided by DeviantArt user
Twai.

https://doi.org/10.1007/s00410-019-1592-4
https://doi.org/10.1038/s41586-019-1448-0
https://doi.org/10.1029/jb089ib10p08237
https://doi.org/10.2138/am-1997-3-415
https://doi.org/10.1093/oxfordjournals.petrology.a037267
https://doi.org/10.1093/oxfordjournals.petrology.a037267
https://doi.org/10.1016/j.gca.2006.02.009
https://doi.org/10.1007/s00410-015-1141-8
https://doi.org/10.1007/bf00307281
https://doi.org/10.1016/j.chemgeo.2018.11.015
https://doi.org/10.1016/j.chemgeo.2018.11.015
https://doi.org/10.1016/j.gca.2012.08.035
https://doi.org/10.5281/zenodo.5095409
https://doi.org/10.1007/s00410-013-0877-2
https://doi.org/10.1007/s00410-013-0877-2
https://doi.org/10.1093/petrology/egv083
https://doi.org/10.1007/s00410-010-0588-x
https://doi.org/10.1016/j.jvolgeores.2004.09.019
https://doi.org/10.1016/j.jvolgeores.2004.09.019
https://doi.org/10.1093/petrology/egv010
https://doi.org/10.2138/rmg.2008.69.9
https://doi.org/10.2138/am-1998-1-203
https://doi.org/10.1016/j.jvolgeores.2018.11.009
https://doi.org/10.1016/j.jvolgeores.2018.11.009
https://doi.org/10.1016/s0098-3004(01)00081-4
https://doi.org/10.1016/j.chemgeo.2006.01.013
https://doi.org/10.1038/538127a
https://doi.org/10.1130/0091-7613(2001)029%3C0911:uteofv%3E2.0.co;2
https://doi.org/10.1016/j.chemgeo.2014.09.001
https://doi.org/10.1038/ngeo2639
https://doi.org/10.1016/0016-7037(82)90381-7
https://doi.org/10.1016/0016-7037(82)90381-7
https://doi.org/10.1016/0012-821x(89)90025-3
https://doi.org/10.1016/j.gca.2019.04.001
https://doi.org/10.31223/X5K03T

	VESIcal Part I: An Open-Source Thermodynamic Model Engine for Mixed Volatile (H2O-CO2) Solubility in Silicate Melts
	Abstract
	Plain Language Summary
	1. Introduction
	2. Research Methodology
	2.1. Model Calibrations and Benchmarking
	2.2. Format of the Python Library
	2.3. Running the Code
	2.4. Documentation
	2.5. Generic Methods for Calculating Mixed-Fluid Properties

	3. Workable Example Uses
	3.1. Calculation Class Arguments and Their Definitions
	3.2. Initialize Packages
	3.3. Loading, Viewing, and Preparing User Data
	3.3.1. Batch Processing
	3.3.2. Defining a Single Sample
	3.3.3. Extracting a Single Sample From a Batch File
	3.3.4. Normalizing and Transforming Data

	3.4. Comparing User Data to Model Calibrations: Which Model Should I Use?
	3.5. Calculating Dissolved Volatile Concentrations
	3.6. Calculating Equilibrium Fluid Compositions
	3.6.1. Converting Fluid Composition Units

	3.7. Calculating Saturation Pressures
	3.8. Calculating Isobars and Isopleths
	3.9. Calculating Degassing Paths
	3.10. Plotting
	3.10.1. A Simple Example: Isobars and Isopleths
	3.10.2. A Simple Example: Degassing Paths
	3.10.3. Plotting Multiple Calculations
	3.10.3.1. Isobars, Isopleths, and Degassing Paths
	3.10.3.2. Isobars, Isopleths, and Degassing Paths for Multiple Samples

	3.11. Model Hybridization (Advanced)
	3.12. Exporting Data
	3.12.1. Saving Data for ReImport into VESIcal

	4. Discussion and Applications
	4.1. Compositional Variation Within Datasets and Best Practices
	4.2. Model Comparisons
	4.3. Sensitivity and Error Analysis
	4.4. Future Development
	4.5. How to Cite VESIcal and Its Models

	5. Conclusions
	Data Availability Statement
	References

