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Abstract

Cost-effectiveness analysis (CEA) models, used to make health policy decisions, are usually
subject to uncertainty. This thesis aims to develop statistical methods to quantify uncertainty
and target where reducing uncertainty is most beneficial in a CEA. This enables policy deci-
sions, based on the models, to be better informed. There is a focus on two areas: adherence
to interventions and heterogeneity in treatment effects, which are often not modelled due
to a lack of good data. A case study of treatment for patients with sleep apnoea is used to
illustrate these methods and techniques.

Value of Information measures can help prioritise where to focus further research and esti-
mate the expected benefits from a study of particular design and size. Until recently, it has
been difficult to evaluate these quantities due to computational complexity. Various recently
developed methods to calculate the expected value of information are summarised. Through
an application to the case study, the importance of an adequate number of simulations to gain
reliable results is highlighted.

Adherence to interventions is often neglected in CEAs due to limited and sparse data. Data
on adherence to interventions for sleep apnoea is collected. Through Bayesian model-based
meta-analyses, implemented by Markov Chain Monte Carlo simulation, the impact of mod-
elling adherence to interventions on the CEA results is explored. Additionally, the value of
collecting further information on adherence to interventions is calculated, indicating value in
collecting data even at few time points, and in the early period of follow-up.

Another under explored area within CEAs is stratification of the optimal treatment decision.
Here, the focus is on stratification based on continuous measures of disease severity, which
may be associated with differential cost-effectiveness through variations in treatment effects.
Aggregate and individual participant data on the impact of baseline covariates and treatment
effects is summarised. Bayesian model-based meta-regression is used to explore stratification
on one or two measure of treatment severity. The value of collecting further data on factors
relating to stratification has been explored by using and extending recent non-parametric
regression methods.

By using evidence synthesis methods, to make use of all available data, this thesis has found
it is possible to incorporate uncertainty due to adherence to interventions and stratifications
of treatment decisions into CEA models, allowing future research priorities to be assessed
through value of information methods.
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Chapter 1

Introduction

Cost-effectiveness analysis is an integral part of how the National Institute for Health and
Care Excellence (NICE), Scottish Medical Consortium (SMC) and All Wales Medical Strat-
egy Group (AWMSG) in the United Kingdom (UK) produce their evidence based guidance
and advice. This advice helps to ensure all National Health Service (NHS) patients in the UK
have access to the most cost-effective treatments [147]. The ability to effectively allocate
healthcare resources to maximise the health of the population, while keeping to a fixed
budget, is essential to the success of the NHS. However, all decisions on resource allocation
are subject to uncertainty.

This chapter introduces the research questions relating to uncertainty around resource allo-
cation. It starts by outlining the key health economic and evidence synthesis concepts used
throughout the thesis. It then introduces the case study, the cost-effectiveness of interventions
for patients with sleep apnoea. Finally, it presents the objectives and structure of the rest of
the thesis.

1.1 Health economic theory

Health economics can be seen as a combination of medical research, epidemiology, statistics
and economics [12]. It applies economic theory of resource allocation, split into capital and
labour, to health1 and healthcare2 [12]. This thesis explores some of the issues surrounding
the optimisation of resource allocation to maximise population health in the presence of finite

1As in Baio (2012) defined by the World Health Organisation (WHO) as "A state of complete physical,
mental and social well-being, and not merely the absence of disease or infirmity" [12, 254]

2Which is any aspect of healthcare given to an individual by a healthcare professional
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resources to assist the payers in their decision making. This field of study is, specifically to
health economics, known as economic evaluation [12, 24, 63, 84].

1.1.1 Economic evaluation

Economic evaluation is the comparison of two or more mutually exclusive alternative options
in terms of their costs and consequences [63]. It aims to provide decision makers with the
necessary information to make resource allocation decisions [63, 141]. Economic evaluation
is used by the health systems of many countries including the UK, Australia and Canada
[11, 33, 147]. In the UK, the NICE collate evidence on the clinical benefit and costs of health
interventions3 [147].

As suggested by the definition above, the key components of an economic evaluation for a
choice of alternative options are the costs and outcomes (consequences) [63]. The alternative
options can be anything which use health resources - for example, diagnostic interventions,
pharmaceuticals, surgical interventions, screening programmes, and public health interven-
tions. In this thesis, the options are referred to as interventions, although theoretically this
could refer to any of the above. As economic evaluation is a comparative procedure, all
potential, new interventions need a comparator. Ideally this is every possible intervention
for the patient. However, for practical reasons, in the UK, this is generally taken to be the
current best practice in the NHS which, if there is no currently available intervention, could
be no treatment or placebo [150].

The costs associated with each intervention depend on the perspective and context of the eco-
nomic evaluation. These can include the cost of healthcare resources such as the interventions
themselves, the time of medical professionals, and costs to the hospital, such as inpatient stay.
Some economic evaluations also take into account the cost of the patients’ and their family’s
time. This thesis takes the perspective required by NICE, that of the NHS and Personal Social
Service (PSS) resources (i.e. excluding the cost of the time of patients and their families, out
of pocket costs, lost productivity, and other public sector costs) [150]. However, NICE state
that costs to government bodies, other than the NHS, or the cost of time provided by family
members, friends, or partners can be included in exceptional circumstances [150].

3The NICE is an independent organisation responsible for providing national guidance. It was formed in
1999 and was established in Primary Legislation in 2013, meaning that although they operate independently
from the government they are accountable to the Department of Health. The NICE uses evidence based guidance
to provide the NHS (and those who use its services) advice on healthcare considered effective and good value
[147].
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Table 1.1 Types of economic evaluation

Economic Evaluation Method Outcome Measured

Cost-consequence analysis (CCA) Multiple outcomes reported disaggregated
Cost-minimisation analysis (CMA) Equal effectiveness and safety of interventions
Cost-effectiveness analysis (CEA) Natural units (such as life years, cases detected)
Cost-utility analysis (CUA) Quality Adjusted Life Years (QALYs) (compos-

ite measure of mortality and morbidity)
Cost-benefit analysis (CBA) Monetary valuation of outcomes

There are many types of economic evaluations. These differ in terms of how they treat
outcomes. Outcomes measured in economic evaluations are typically the impact of the
intervention(s) on patients’ health. These can be measured in a number of ways. For example
- life years, Quality Adjusted Life Years (QALYs) (a composite measure of mortality and
morbidity allowing for consistent comparison between diseases), symptom free days, and
disease specific measures [150, 157, 250]. Table 1.1, presents the main different types of
economic evaluations and the outcome measure they use.

In a cost-consequence analysis the costs and outcomes (consequences) of the interventions
are calculated and reported in a disaggregated way. It is the decision makers who then
interpret the results in the way in which they wish. A cost-minimisation analysis, focuses
on the cost differences between the interventions having assumed the health outcomes are
identical for all interventions. A cost-minimisation analysis is not considered a full economic
evaluations as it does not consider the joint distribution of cost and effects and there is
rarely sufficient evidence to conclude that the treatments are equivalent in terms of outcomes
[63]. A Cost Benefit Analysis (CBA) places a monetary values on health outcomes by using
societies willingness to pay for a health benefit. Costs of new interventions are compared to
the monetary value of the benefits and treatments. A new treatment is adopted if the benefits
exceed the costs. In a Cost-Effectiveness Analysis (CEA) health outcomes are measured in
natural units such as the primary outcome of a trial, life years, and cases detected. The costs
of the interventions and the outcomes are used to calculate an Incremental Cost-Effectiveness
Ratio (ICER) such as the cost per life year or cost per case averted. Finally, in a Cost
Utility Analysis (CUA) bot mortality and morbidity outcomes are combined to create a single
composite measure (QALYs). The use of QALYs mean the ICER, cost per QALY gained
can be compared across different disease areas [12, 24, 84].
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The terms CEA and CUA are used interchangeably in the literature and both support the
adoption decisions made by NICE [24, 150]. The aim of a CEA is to find the intervention
which minimizes the cost of generating a given level of health, or alternatively maximises the
level of health for a specified budget, agreeing with the focus of NICE [24, 80]. Additionally,
as stated in the NICE Methods Guidance (2013) CEAs and CUAs are more widely used than
CBAs [150].

Decision Analytic Modelling

Data for making an optimal reimbursement decision can come from a variety of sources.
NICE Methods Guidance (2013) outlines the current best practice in the UK for an analytic
framework which is to use all ‘relevant’ available evidence [150]. These can include evi-
dence from Randomised Controlled Trials (RCTs), observational studies, and expert opinion.
However, different sources of data are seen to be preferential in terms of the risk of bias and
internal validity. This is known as the ‘hierarchy of evidence’, of which there are many forms
[68, 85, 144, 186]. However, they all take a similar format: weaker studies at the bottom
such as basic science and case reports, followed by case-control studies, and then RCTs with
systematic reviews and meta-analyses seen as the data sources with the least risk of bias in
best internal validity [144].

Mathematical methods are typically needed to synthesise the data [63]. This mathematical
framework is known as Decision Analytic Modelling (DAM) [24]. Section 1.2 introduces
meta-analysis methods which is one method that can be used to combine data of the same
kind from multiple sources for inclusion in an economic model and is used later in the thesis
(Chapters 3 and 4).

A DAM is a function that links data synthesised from many sources and its associated
uncertainty to the outcomes of interest, for example costs and QALYs linking parameter
uncertainty to decision uncertainty [239]. The results presented from DAMs are conditional
on the input data and the assumptions underpinning the model [239].

The decision problem in a Bayesian decision theoretic framework is outlined in Baio and
Dawid (2011) and Baio (2013) [12, 13]. Assume a set of interventions j ∈ J , where
the interventions are mutually exclusive. For each intervention j there are individual and
population-level responses, y j and Yj = E(y j) respectively. These can be uni- or multivariate.
Typically, in CEAs the response (y j) is a bivariate measure of a clinical outcome (e j) and a
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cost (c j).

In a Bayesian decision theoretic CEA the decision maker wants to decide which j to give a
population on the basis of the outcomes Yj.

Let θθθ = (θ0, . . . ,θS) be the set of S population parameter quantities that govern the outcomes,
i.e. included in the DAM. θθθ is given a distribution which represents the current uncertainty in
the model by reflecting all currently available data D . See Section 1.2 for further information
on how values of θθθ are derived and how Yj is defined in terms of θθθ . However, briefly it is
unlikely a single study can provide information on θθθ . Therefore, statistical methods that
take into account all available data, D are often used. The information for each element
of θθθ can then be combined to define Y j through the DAM. The joint distribution of θθθ is
p(θθθ |D) which can be thought of as a prior on θθθ or as the posterior distribution of θθθ given D .
The distributions of θθθ are indirectly relevant to the decision process through the probability
distribution p(y j|θθθ) which represents the variability in the individual-level response and the
implied population-level outcome Y j = E(y j).

Typically, the individual-level outcome y j for intervention j, is defined in terms of effects
(e) (QALYs) and costs (c), so for each j, y j = (e j,c j). The aim of the CEA is to compare
the interventions on the basis of their outcomes at a population-level. The incremental mean
effectiveness and cost of intervention 1 compared to intervention 0 over individuals, when
j = 0,1 (although this can be easily extended to the case with more than two interventions)
are:

∆E : = E [e1]−E [e0]

= ē1 − ē0

∆C : = E [c1]−E [c0]

= c̄1 − c̄0

This thesis does not cover CEAs based on models for individual-level cost-effectiveness
outcomes p(y j|θθθ). These are typically carried out using trial data whereas the focus of this
work is on cohort model based CEAs. In a cohort model, a DAM using all available data,
expressed by the population parameters θθθ , is used to generate the population level outcomes,
i.e. Y j = h j (θθθ) where h j (θθθ) is a DAM making use of θθθ .
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∆E and ∆C are functions of (unknown) θθθ so are random variables under a Bayesian framework.
Taking a further expectation with respect to θθθ gives the posterior mean incremental effects
and costs between interventions 1 and 0 for the population:

Eθθθ [∆E ] = Eθθθ [ē1 − ē0]

Eθθθ [∆C] = Eθθθ [c̄1 − c̄0]

The results from a CEA can be presented as an ICER, which under a Bayesian framework is:

ICER =
Eθθθ [∆C]

Eθθθ [∆E ]

An intervention is said to be cost-effective if ICER < λ , where λ is the cost-effectiveness
threshold (£ per QALY gained). This requires an explicit value for the maximum the decision
maker is willing to pay for an extra unit of outcome, λ . In England and Wales, NICE Methods
Guidance states that explicit reasons4 should be given if an intervention that is cost-effective
at a threshold of less than £20,000 per QALY gained is not accepted [150]. Interventions
that are cost-effective at thresholds between £20-30,000 per QALY gained need to be consid-
ered further and have an increasing degree of certainty around the cost-effectiveness. Any
intervention accepted for use on the NHS above a threshold of £30,000 per QALY gained
needs an increasingly strong argument that it is an effective use of resources using the factors
above. Hence in practice λ = £20,000−30,000 per QALY gained is used5 [150, 151].

Although the ICER has been widely used historically it has some major limitations [205].
For example, if an intervention is more effective and less costly (e.g. (Eθθθ [∆E ],Eθθθ [∆C]) =

(−1,+100)) or more effective and less costly (e.g. (Eθθθ [∆E ],Eθθθ [∆C]) = (+1,−100)), the
ICER has the same sign and value [12]. Obviously, one situation is more desirable and it is
not easy to identify the optimal treatment by observing the ICER. If both the incremental
costs and the incremental QALYs are negative (i.e. the new intervention is cheaper and
reduces QALYs) then it is possible for the resulting ICER to be under the threshold λ .
However, deeming such an intervention as cost-effective raises ethical questions around

4These include explanations on the presence of any reasons indicating change in Quality of Life inadequately
represents the health gain; whether the intervention is innovative; and whether the intervention gives additional
substantial benefits not featured in the health gain.

5A report by Claxton et al. (2015) estimate the ‘central’ empirical threshold was £12,936 per QALY gained
by looking at routinely collected data to estimate the relationship between NHS expenditure and changes in
quality of life [41]. They also found the probability the threshold was less than £20,000 per QALY gained was
0.89, indicating the threshold currently used in practice is too high
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whether people should lose health to save money [83]. Additionally, interval estimates are
difficult to interpret.

Instead, a Bayesian decision theoretic framework is preferred where the optimal intervention
is the j which maximises the expected utility over the population. Assuming J = (0,1) and
u(Yj) is the utility value of giving intervention j and getting response Y from the population,
then the expected utility under current information D for a population given intervention j is:

U j := Eθθθ

[
u(Yj)|D

]
The optimal utility is the maximum of the expected utilities, U j, across all j:

U ∗ = max
j

U j

The Expected Incremental Benefit (EIB), the additional expected utility gained or lost by
giving the population j = 1, compared to j = 0, can be defined as [12]:

EIB := U 1 −U 0

U ∗ = max{EIB,0}+U 0

When EIB > 0, intervention 1 is optimal in terms of maximising expected utility. In practice,
a specific form is required for the utility function. A commonly used utility function,
assuming the decision maker is risk neutral, for an individual is [12, 24, 209]:

u(y j) = λe j − c j

and for the population:

u
(
Yj
)
= E

[
u(y j)

]
= λ ē j − c̄ j (1.1)

As θθθ is a random variable under a Bayesian framework, expectations with respect to θθθ need
to be taken:

Eθθθ

[
u
(
Y j
)]

= λEθθθ

[
ē j
]
−Eθθθ

[
c̄ j
]

where λ is an explicit value for the threshold willingness to pay. This utility function
(Equation 1.1) is commonly called the Net Monetary Benefit (NMB) of intervention j on the
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population6 [12, 24, 209]. Going forward, u(Yj) shall be denoted NB( j,θθθ). The Incremental
Net Benefit (INB) for the population treated with j = 1 compared to j = 0 is:

INB(θθθ) = NB( j = 1,θθθ)−NB( j = 0,θθθ)

= [λ ē1 − c̄1]− [λ ē0 − c̄0]

= λ [ē1 − ē0]− [c̄1 − c̄0]

= λ∆E −∆C

The focus, in terms of the analysis, is the expected INB, the EIB which is defined as [12]:

EIB = Eθθθ [NB( j = 1,θθθ)]−Eθθθ [NB( j = 0,θθθ)]

= Eθθθ [λ∆e −∆c]

= λEθθθ [∆e]−Eθθθ [∆c]

= Eθθθ [INB(θθθ)]

If EIB > 0, j = 1 is cost-effective relative to j = 0. The ICER is the λ such that EIB = 0,
i.e. the λ where the decision maker is indifferent between interventions.

As with the NHS, if the aim of the healthcare system is to maximise the health of the
population subject to a finite budget, treatment decisions should be based on expectations
[145]. Claxton (1999) states if traditional ‘statistical significance’ rules were used for making
decisions on cost-effectiveness then opportunity costs would be created [37]. The paper goes
on to say patients have to be given one of the treatments so a decision has to be made, and it
is a ‘historical accident’ which treatment is considered current best practice. Therefore, to
maximise the population health on average, the intervention, j, with the greatest expected
maximum NMB, that is:

argmax
j

Eθθθ [NB( j,θθθ)]

should be the most cost-effective intervention. However, implementation on this basis has
risks. Therefore, Claxton (1999) recommend consideration of whether further data, E , could

6This is the case under an extra-welfarist approach, where medical care should be compared against other
types of healthcare. This can be compared to a welfarist approach whether medical care should be judged
against all other goods. There is a range of literature on the most appropriate approach to take not limited to
Brouwer (2008), Gyrd-Hansen (2005) and Buchanan (2015) [29, 30, 88]
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be collected to help reduce decision uncertainty [37]. This is discussed further in Section
1.1.3.

1.1.2 Probabilistic Sensitivity Analysis

As collecting further information can delay implementation and incur costs, a sensitivity
analysis should be carried out on the CEA to motivate the optimal decision as well as de-
scribing the uncertainty around it [12, 24]. There are two main types of sensitivity analysis:
deterministic and probabilistic [12, 84].

A deterministic sensitivity analysis involves changing one or more of the parameters in the
CEA to pre-defined values and recalculating the expected utility [24, 84]. This can be difficult
if θθθ is large and/or the model is complex. Deterministic sensitivity analysis does not take into
account any correlation between elements of θθθ and relies on the modeller to set the parameter
values to test the robustness of the results[24, 84]. Deterministic sensitivity analyses cannot
characterise the nature of the uncertainty. They can also be very time consuming should
multiple different scenarios of θθθ need to be considered.

A more appropriate technique, often called Probabilistic Sensitivity Analysis (PSA), is
equivalent to using the Bayesian Decision Theoretic framework (Section 1.1.1) [12, 24, 84].
The parameters θθθ are random quantities given distributions reflecting current evidence, D .
INB(θθθ) and NB( j,θθθ) are random quantities whose probability distributions are entirely
dependent on p(θθθ |D) [12].

A PSA is typically implemented in practice by using Monte Carlo simulation methods.
Firstly, θθθ

(k), k = 1, . . . ,K is sampled from p(θθθ |D). The CEA is run assuming θθθ
(k) from

p(θθθ |D) is the realised value of θθθ for that simulation. The outcomes, in this case the cost and
effect pairs, are recorded for each simulation. These can be used to calculate NB( j,θθθ) or
INB(θθθ) (Section 1.1.1) [12, 24, 84].

Note that, as INB(θθθ) does not typically take any particular distributional form due to the
structure of the DAM, the expectation over θθθ of INB(θθθ), the EIB, does not equal the INB of
the expectation of the values of θθθ [24, 179]:

Eθθθ (INB(θθθ)) ̸= INB(E (θθθ))
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The optimal treatment is chosen as the j with the maximum Eθθθ (NB( j,θθθ)). By taking into
account the distributions and uncertainty within θθθ rather than just using point estimates of θθθ

a PSA helps to improve decision making.

Presenting results from a PSA

Results from a PSA are often presented using a Cost-Effectiveness Acceptability Curve
(CEAC) [12, 71, 72, 232]. A CEAC presents the probability an intervention is the most
cost-effective for a range of thresholds (λ ), i.e. for each λ the probability each intervention
has the highest NMB. That is:

CEAC(λ ) = Pr(INB(θθθ)> 0)

= Pr(λ∆e −∆c > 0)

λ∆e−∆c > 0 indicates j = 1 is optimal, thus the CEAC presents the probability that knowing
θθθ with certainty would not change the optimal treatment decision. CEACs provide a clear
visual representation of the uncertainty around the most cost-effective intervention at various
thresholds and show the λ where the intervention with the highest probability of being
cost-effective changes. As λ → 0, CEAC(λ ) tends to the probability j = 1 is cheaper than
j = 0. Conversely, as λ → ∞ the CEAC tends to the probability j = 1 is more effective than
j = 0 [12, 24, 71, 72].

The CEAC described above is for j = {0,1}. However, there can be more than two interven-
tions. Presentation of multiple CEACs is the same conceptually as with two interventions.
However, the CEAC shows the probability each intervention, j, is the most cost-effective:

CEAC j(λ ) = P
(

NB( j,θθθ) = max
j

NB( j,θθθ)
)

A CEAC is illustrated in Figure 1.2 (Page 29) for three interventions. At values of λ ≈
£5,000−15,000 per QALY gained there is the most uncertainty around which intervention is
optimal. However, for very low values of λ this uncertainty is lower and further information
on θθθ is unlikely to alter the cost-effectiveness decision.

A major drawback to CEACs is they only address how likely it is that resolving uncertainty in
θθθ will change the optimal treatment decision [71]. The NMBs for each intervention are not
included, thus CEACs do not indicate which treatment is optimal for each λ . The Cost Effec-
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tiveness Acceptability Frontier (CEAF) presents the probability the optimal intervention j,
chosen under the rule of maximising the expected NMB for each λ , is the most cost-effective
[71, 72]. If the NMB has a skewed distribution the optimal intervention in terms of NMB
may not necessarily correspond to the intervention with the highest probability of being
cost-effective [24].

Figure 1.3 (Page 29) illustrates a CEAF for three interventions. The presence of disconti-
nuities at λ ≈ £7,500 per QALY gained indicates the optimal intervention in terms of the
NMBs is not necessarily the same as the intervention with the highest probability of being
cost-effective. This highlights the difference between a CEAC and a CEAF.

1.1.3 Value of information quantities

When considering the results of a CEA, two decisions need to be made - (i) should the
intervention be implemented given existing evidence? and (ii) is further information required
to support the implementation decision in the future? [24, 165]. Sections 1.1.1 and 1.1.2
answer the first question. Here, the second is considered.

If a suboptimal decision was made as to whether an intervention should be implemented in the
NHS costs would be incurred in terms of the resource cost and the health benefits foregone by
patients [24, 37]. The expected cost of uncertainty, and equivalently the expected opportunity
loss, are related to the probability of making a wrong decision and its consequences in both
health and money. This can be calculated and interpreted as the Expected Value of Perfect
Information (EVPI) - perfect information on all parameters would eliminate the probability
of making a wrong decision [12, 24, 37, 40].

Bayesian decision theory and value of information analysis can be used to create an analytic
framework to answer the questions of interest. While value of information has only been
implemented in a health economics context since the 1990s, it was mentioned in statistical
decision theory in the 1950s [37–39, 177]. This section gives details on various quantities
relating to the collection of further information - EVPI, Expected Value of Perfect Par-
tial Information (EVPPI) and Expected Value of Sample Information (EVSI), laying the
foundations for Chapter 2.
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Expected Value of Perfect Information (EVPI)

Under current information, treatment decisions need to be made before uncertainties are re-
solved so the decision made is the best one, on average, with uncertain parameters. However,
if perfect information was available on all parameters, a correct decision is guaranteed. The
EVPI is the difference between the expected NMB under perfect and current information
[2, 24, 70, 171, 194, 226].

Formally, as explained in Briggs et al. (2006), let j index the interventions, with S uncertain
parameters θθθ = (θ1,θ2, . . . ,θS) in the CEA [24]. Let NB( j,θθθ) be the NMB for a threshold
λ with intervention j and uncertain parameters θθθ . Under existing information, the optimal
intervention is the j generating the maximum expected NMB:

max
j

Eθθθ [NB( j,θθθ)]

Under perfect information, θθθ is known a priori, so the j maximising the ‘true’ NMB can be
selected:

max
j

NB( j,θθθ)

However, in practice, the true value of θθθ is unknown so the average of the maximum NMB
over the joint distribution of θθθ needs to be taken:

Eθθθ

[
max

j
NB( j,θθθ)

]
The EVPI for an individual patient’s treatment decision is the difference between the expected
value of the decision made with perfect information on θθθ and the treatment decision made
using existing information:

EV PI = Eθθθ

[
max

j
NB( j,θθθ)

]
−max

j
Eθθθ [NB( j,θθθ)] (1.2)

The EVPI is the expected cost of uncertainty. For a healthcare system that aims to maximise
the population health subject to a budget constraint, as with the NHS7, the EVPI is the
maximum the healthcare system should pay for perfect information on the treatment decision
in the future (per person) [24, 145].

7The NHS also aims to provide everyone who needs it free healthcare, i.e. it also cares about the distribution
of health
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Population-level Expected Value of Perfect Information

The EVPI (Equation 1.2) is the value each time a treatment decision needs to be made, i.e.
for each patient or each patient episode [24]. Any future research which creates additional
evidence to inform the treatment decision can be used to benefit all current (in the case of
chronic diseases) and future patients. Therefore, it is important to consider the EVPI for the
population who would benefit from further research [24].

Calculation of population-level EVPI requires additional information - the expected future
lifetime of the technology (T ); estimates of the incidence of the disease over T (It); the
current prevalence of the disease (I0); the population at risk of the disease (P); and a discount
rate (i) - typically 3.5% in England and Wales [150]. These values depend upon the nature of
the disease. Whether the incident and/or prevalent population are included in the population-
level EVPI depends on the nature of the disease (acute or chronic) and whether the patients in
the trial are able to benefit from the information collected at a later date. The population-level
EVPI (popEVPI), assuming It is available over discrete time units t, is:

popEV PI = EV PI ×P×

(
I0 + ∑

t=1,...T

It
(1+ i)t

)
(1.3)

The population-level EVPI can be directly compared to the cost of research. It is a necessary,
but not sufficient, condition for further research that the costs of research is less than the
population EVPI.

There can be difficulties in estimating the values required in the calculation of the population-
level EVPI. Estimating the appropriate time horizon for the population-level EVPI is chal-
lenging. Philips et al. (2008) found finite time horizons for decision problems are often used
as a proxy for the complex and uncertain future technology change [165]. These issues and
more background on population-level EVPI are presented in Chapter 2.

Expected Value of Perfect Partial Information (EVPPI)

It is infeasible to resolve all uncertainty on all elements of θθθ in the CEA model [12, 24, 39].
Therefore, the EVPI is regarded as a theoretical quantity, although it can still be useful as an
upper bound for the value of future research. It may be of more interest to look at the value
of reducing or eliminating uncertainty for a subset of uncertain parameters. The value of
resolving uncertainty on a subset of parameters is known as the EVPPI (the expected value of
perfect partial information or the expected value of perfect information for parameters). The
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EVPPI can help focus future research on the most important types of evidence by identifying
those (sets of) parameters where more precise estimates are most valuable. However, as for
EVPI, eliminating the uncertainty in the parameters requires an infinite sample size.

Similar to the EVPI, the EVPPI is the difference between the expected value of the decision
with perfect and current information on the parameter(s) of interest [2, 171, 226]. Formally,
we are interested in the value of perfect information for a parameter or a subset of all uncertain
parameters (φφφ) with θθθ the set of all uncertain parameters and φφφ ⊆ θθθ [24]. Under perfect
information, the true value of φφφ is known, so the expected NMB of the decision is the j
with the maximum expected NMB averaged over the remaining uncertain parameters in the
model, φφφ

(
φφφ ∪φφφ = θθθ

)
. Letting NB( j,φφφ ,φφφ) be the NMB of intervention j with uncertain

parameters φφφ and φφφ :

max
j

E
φφφ |φφφ
[
NB
(

j,φφφ ,φφφ
)]

Given perfect information on φφφ , we want the expected NMB over the remaining parameters
φ̄φφ , hence the expectation over φ̄φφ |φφφ . The true values of φφφ are not generally known in practice,
so the expected value of a decision under perfect information is found by averaging the
maximum expected NMB over φφφ :

Eφφφ

[
max

j
E

φφφ |φφφ
[
NB
(

j,φφφ ,φφφ
)]]

As φφφ ∪φφφ = θθθ , the expected value under current information is the same as for EVPI, the
optimal decision is the choice of j generating the maximum expected NMB:

max
j

Eθθθ [NB( j,θθθ)]

The EVPPI for the parameter(s) φφφ is the difference between the expected value of the
decision made with perfect information about φφφ and the decision made on the basis of
existing information:

EV PPIφφφ = Eφφφ

[
max

j
E

φφφ |φφφ
[
NB
(

j,φφφ ,φ
)]]

−max
j

Eθθθ [NB( j,θθθ)] (1.4)

Expected Value of Sample Information (EVSI)

The EVPPI is an upper bound for the value of future research on a set of parameters, φφφ .
Eliminating uncertainty in φφφ is unlikely unless an infinite sample size is available. However,
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it may be possible to reduce uncertainty in φφφ by carrying out a study with a particular
design and set size m [2, 24, 216]. The EVSI is the expected value of conducting a par-
ticular research study design to reduce uncertainty in φφφ using a sample size of m. The
expected benefits of the study can be compared to the expected costs of undertaking the
study. If the expected benefits exceed the expected costs of research there is value in carry-
ing out the study [24]. The EVSI and costs of research can be calculated for a number of
different study designs and sample sizes enabling estimation of the optimal study [2, 24, 216].

The EVSI is the expected difference between the value of the optimal decision based on
some sample of data informative for a subset of inputs φφφ , and the value of the decision made
with current information [2, 171]. Formally, as outlined in Strong et al. (2015), there are
j interventions and a set of uncertain parameters θθθ [216]. Let XXX be the uncollected data
generated from the proposed study as a vector of random variables assumed to arise from a
statistical model with parameter(s) of interest φφφ ⊆ θθθ . An observation of XXX can be used to
learn about φφφ .

Under current information, the optimal decision is the choice of j generating the maximum
expected NMB:

max
j

Eθθθ [NB( j,θθθ)]

If additional data XXX are collected the optimal treatment is the one with the greatest NMB
averaged over the joint posterior distribution of θθθ , conditional on the data θθθ |XXX :

max
j

Eθθθ |XXX [NB( j,θθθ)]

Before carrying out the proposed study XXX is uncollected, so unknown, therefore an average
over all possible datasets arising from the study needs to be taken:

EXXX

[
max

j
Eθθθ |XXX [NB( j,θθθ)]

]
The EVSI is the difference between the expected NMB having collected the additional data
and the expected NMB under current information:

EV SI = EXXX

[
max

j
Eθθθ |XXX [NB( j,θθθ)]

]
−max

j
Eθθθ [NB( j,θθθ)] (1.5)

The EVSI calculates can be used in an optimisation exercise to find the optimal sample size
by mazimising the Expected Net Benefit of Sampling (ENBS) over m [2]:



16 Introduction

ENBSX(m) = popEV SIX(m)−Cost(m)

where popEV SI is the population level EVSI for a study of size m and Cost(m) is the cost
(in money, health foregone and opportunity costs) of undertake the proposed study of size m.
The aim is to find the m that maximises ENBSX(m).

1.2 Introduction to evidence synthesis

It is unlikely a single piece of evidence (for example, a RCT or an observational study)
will be sufficient to estimate values (for example: treatment effect, disease incidence and
progression, mortality, Health Related Quality of Life (HRQoL), and costs) to be used in a
CEA [57]. Therefore, it is useful to have methods that can combine data to make inferences.
Evidence synthesis is the broad term used to describe any inference made on a quantity
which uses more than one data source simultaneously [126, 220].

The multiple data sources used in evidence synthesis are generally collected through a sys-
tematic literature review. The resulting data from the review can be summarised qualitatively
or quantitatively. Meta-analysis and meta-regression models are often used as a specific
statistical methodology to combine estimates of quantities of the same kind from multiple
studies [126]. This is in contrast to decision models (Section 1.1.1) that can combine different
types of data.

Throughout this thesis meta-analysis and meta-regression models will be used to synthesise
various quantities. The aim of this section is to outline the basic premise of meta-analysis
particularly applied to time-to-event outcomes and continuous treatment effects. Meta-
analysis models are applied to observational data on time to treatment non-adherence in
Chapter 3. Meta-regression models for continuous treatment differences where the available
data is a combination of Aggregate Data (AD) and Individual Participant Data (IPD) from
RCTs are used in Chapter 4.

1.2.1 Introduction to meta-analysis

Meta-analysis is a statistical approach to combining the results of multiple data sources.
It aims to obtain a summary estimate of the quantity of interest using all available data
[81, 98, 203, 205]. The term ‘effect’ is commonly used in meta-analysis literature to describe
the quantity being pooled. However, treatment effects are not always the quantity of interest,
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for example in Chapter 3 the pooled quantity is the time to non-adherence. This chapter uses
the term effect to represent the quantity being pooled.

It is possible to undertake meta-analysis under both Bayesian and classical approaches,
however work in this chapter and this thesis use the Bayesian approach.

In a classical approach the meta-analysis produces a point estimate with an associated 95%
confidence interval by weighting the estimates from studies using various approaches with
the weights related to the study size [81, 96, 98, 205]. The Bayesian approach combines prior
beliefs about the pooled effect with information from the studies being synthesised to obtain
the posterior distribution of the pooled effect where the precision of this estimate should de-
pend on the study size, often the standard error of the treatment effect[81, 98, 110, 203, 205].

The advantages of a Bayesian approach include being able to easily present inferences which
fully take into account uncertainty about all unknown quantities, such as the extent of between
study heterogeneity. Additionally, there is readily available software such as JAGS and BUGS
which can be used to carry out Markov Chain Monte Carlo (MCMC) [126, 169]. Software
is also available for a classical meta-analysis, such as the mvmeta package in STATA and
Review Manager [224, 244]. The posterior probabilities produced by a Bayesian analysis
have also been argued to be easier to interpret than the p-values from the classical approach
[205].

In setting a distribution representing prior beliefs researchers are required to consider what
they would expect the plausible outcomes from the meta-analysis to be which can be chal-
lenging [81, 205, 220]. For example, if the outcome is a treatment effect that is restricted
by a scale (e.g. can only take values between 0 and 10) the prior should reflect this. Elici-
tation of priors is non-trivial and different subjective priors can lead to different inferences
[81, 205, 220]. However, sufficient data can overcome the influence of the prior. See Section
1.2.3 for more information on choosing priors for use in a Bayesian meta-analysis.

In both Bayesian and classical meta-analysis there are two main approaches: fixed effects
and random effects [220]. Under a fixed effects model, each study is used to estimate an
effect that is assumed to be common between studies [98, 220]. The differences between
the data from each study are assumed to be due to sampling error. In the classical approach
this is often calculated using a inverse-variance-weighted method [43]. The pooled effect is
estimated as a weighted average of the study effects, with the weight inversely proportional
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to the variance of the study specific estimate [110].

When a random effects approach is taken, differences in the data between studies are assumed
to be due to both sampling error and heterogeneity between studies [98, 203]. Heterogeneity
is due to studies having differences, such as in their population, the interventions, and their
outcomes. This means it is not viable to assume a common parameter for all studies but
instead it is assumed these parameters come from the same distribution [98]. Quantities
representing this underlying heterogeneity are known as random effects [98, 203]. The
pooled effect is still a weighted average of the study effects, either implicitly in a Bayesian
approach or explicitly in a classical approach [98, 203, 205]. However, the weights take
into account both the uncertainty in the estimates from each study and the random effects
variance [98, 110, 203, 205].

1.2.2 The general approach to Bayesian meta-analysis

More formally, suppose the data from study i are generated from a model with parameters
θi. We want to obtain a pooled estimate of the quantity described by θi using data from all
studies. Exchangeability is a key assumption made in Bayesian random effects meta-analysis.
Let the set of unit specific parameters be θi where i = 1, . . . ,N indexes the set of studies.
Under exchangeability, it is assumed the θi’s arise from a common population distribution,
with unknown parameters and appropriate priors, i.e. the θi’s are similar but not identical
[81, 126, 205]. As an example, for a parameter θi assume:

θi ∼ N(µ,σ2)

where µ and σ2 are given prior distributions and the data from study i, yi, are generated
conditionally on θi. Under the assumption of exchangeability, information about θi can be
learned through the direct information, yi, and the indirect information consisting of y j where
j ̸= i which inform the population distribution parameters φφφ = (µ,σ2) [81, 126, 205]. The
θi’s are the random effects with σ2 expressing the extent of heterogeneity.

The joint prior for all unknown parameters, p(θ1, . . . ,θN ,φφφ), takes into account the prior
distribution for the population parameters and the exchangeability assumption for each unit
specific parameter [12, 81, 98, 205, 220]. That is:

p(θ1, . . . ,θN ,φφφ) = p(φφφ)
N

∏
i=1

p(θi|φφφ)
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The model is defined in layers, explaining why it is often referred to as an hierarchical model
[126]. The pooled estimates from a meta-analysis can be defined in a number of different
ways [81, 98, 203, 243]. Different types of pooled estimates are described in more detail in
Chapter 3.

If there are more than two treatments that need to be compared, a network meta-analysis
can be undertaken [56, 110, 227]. A network meta-analysis can find pooled effects for all
treatment comparisons including those there is no direct data on and can include studies with
more than two arms [56, 110, 227]. Further, the pooled effects for a particular treatment
comparison can borrow strength from other treatment comparisons in the network [56, 110,
227]. Further information on network meta-analysis and multi-arm studies is presented in
Chapter 4.

1.2.3 Choice of priors for use in a Bayesian meta-analysis

Choosing the prior distributions for the meta-analysis model is an important stage of the
process. The prior should reflect the range of plausible values for the parameters. O’Hagan
(2006) and Gelman et al. (2014) advocate the use of weakly informative priors [81, 158].
A weakly informative prior is one that can "provide approximations to a more meticulous
Bayesian analysis" [158]. If the data are relatively strong in comparison to prior information
then a weakly informative prior should give essentially the same posterior distribution as a
more informative prior. Gelman et al. (2014) define a weakly informative prior to be one
which provides information sufficient to ensure the posterior distribution makes sense but is
intentionally weaker than the available knowledge [81]. These could be intentionally weaker
than the data for ease of calculation. They could be feasible approximations to the results
of a more formal analysis for the priors. However, sensitivity to weakly informative priors
should be checked. It is often the case that prior knowledge is much weaker than the available
data and so as long as the prior distribution is plausible the data should override the prior
[81]. Conducting a formal elicitation to gain an informative prior is often considered not
cost-effective due to the time and effort required in its estimation [81]. However, this is an
active area of research.

It is well-known the results of meta-analyses can be sensitive to chosen priors [81]. Therefore,
ideally, a number of different weakly informative priors should be considered to identify the
impact the choice of priors has on the data. This was done in the preliminary analysis for the
work in Chapters 3 and 4.
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1.3 Case study

This thesis makes extensive use of a case study CEA on treatment for patients with sleep
apnoea. This section outlines the disease, its treatments, the base case CEA structure, and
results.

1.3.1 Background to Sleep Apnoea

Obstructive Sleep Apnoea-Hypopnoea (OSAH) is defined by the American Academy of
Sleep Medicine (AASM) as the repeated intermittent collapse of the upper (pharyngeal)
airway causing interruption of airflow during sleep [5]. These interruptions cause oxygen
desaturations and can lead to micro-arousals from sleep [5, 198]. OSAH can be largely
asymptomatic [5]. When OSAH presents with symptoms, often Excessive Daytime Sleepi-
ness (EDS), this is called Obstructive Sleep Apnoea Hypopnoea Syndrome (OSAHS) [5, 198].
Throughout this thesis I shall refer to OSAHS.

OSAHS can be classified using a number of different measures. This thesis focuses on two
of these. The first measure, the Apnoea-Hypopnoea Index (AHI), is a count of the number
of apnoeas (complete cessations of breathing due to complete blockage of the airway) or
hypopnoeas (periods of shallow breathing due to a partial collapse of the airway) lasting
at least ten seconds that occur each hour [5, 198]. The AHI is an objective physiological
measure of disease severity. Mild OSAHS is defined by the AASM as 5-15 events per hour8,
moderate OSAHS as 15-30 events per hour, and severe OSAHS >30 events per hour [5].

The second measure of OSAHS is the extent of daytime sleepiness. Daytime sleepiness is
generally quantified using the Epworth Sleepiness Scale (ESS) [113]. The ESS is a ques-
tionnaire completed by the patient rating the likelihood of falling asleep in eight different
day-to-day situations in recent times on a scale from zero (would never doze) to three (high
chance of dozing), giving a score between zero and 24 (Appendix A). An ESS score of less
than 11 is considered normal for the general population [113, 114]. An alternative to the ESS
is the Multiple Sleep Latency Test which measures physiologic sleep tendency by measuring
how long it takes for an individual to fall asleep from the start of ‘nap-time’ [180]. Other
measures of severity include Oxygen saturation nadir (the lowest value of oxygen saturation
recorded in a sleep study) and the percentage of time asleep with oxygen saturation lower
than 90% [122, 198]. These additional physiological values have not been considered, as

8An event is defined as an apnoea or hypopnoea
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while the case study trial used in this thesis collected data on them they are not used in the
CEA.

OSAHS is common in middle age, with risk factors including obesity, alcohol use and,
potentially smoking [255, 257]. Men have twice the risk of developing OSAHS compared
to women [198, 255]. OSAHS is causally linked with hypertension, leading to an increased
risk of Cardiovascular Events (CVEs) including heart attacks and strokes [210]. Despite this
link, due to alternative pathways which are not fully understood, the impact of treatment
for OSAHS on Cardiovascular Disease (CVD) risk is still being explored [198]. Patients
with OSAHS have an increased use of healthcare mainly due to their increased likelihood of
CVEs [222]. Due to impaired vigilance, EDS leads to a two-to-three fold increase in risk of
a Road Traffic Accident (RTA) [66]. Additionally, HRQoL is adversely affected by OSAHS
through both increased rates of CVEs and the impact of EDS [134, 142].

OSAHS is thought to currently affect 2-7% of the adult population [173, 255]. Lee et al.
(2008) summarised three population based studies, each finding the incidence of OSAHS
was around 10% over a five year period [122]. However, Young et al. (1997) found over
80% of those with moderate-severe OSAHS and over 90% of those with mild OSAHS were
undiagnosed [256]. The high non-diagnosis rate raises issues around the burden of OSAHS.

Current treatments for OSAHS

Two main treatments for OSAHS are currently available to patients in the UK [149]. Con-
tinuous Positive Airway Pressure (CPAP) involves the patient wearing a nasal or face mask
connected to an electric air pump which generates pressure while asleep to try to prevent the
upper airway collapsing [149, 198]. As an alternative to CPAP, particularly for those with
mild OSAHS, Mandibular Advancement Devices (MADs) are often recommended, although
not always available on the NHS [3, 149, 153, 198]. Many different types of MADs are
available, each with the same basic idea - to hold the lower jaw and tongue forward, to try to
maintain the upper airway during sleep [198]. Based on current evidence, MADs are less
effective than CPAP but more effective than placebo [134, 198].

Current NICE recommendations state CPAP should be used for patients with moderate-severe
OSAHS, with severity defined by the AHI [149]. For those with mild OSAHS, there is little
evidence supporting treatment with CPAP [198]. However, NICE recommend CPAP for
those with mild OSAHS who have exhausted all other treatment options [149]. MADs are an
alternative to CPAP on the NHS in Scotland and a Cochrane review concluded MADs are an
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appropriate alternative to CPAP for those who cannot tolerate or do not wish to use CPAP
[3, 123]. The treatment of patients with mild OSAHS is addressed by the case study.

Other treatments for OSAHS are available. These include: lifestyle interventions (such as
weight-loss, smoking cessation and reduction of alcohol intake); surgical options, which
aim to increase the dimensions of the upper airway; and pharmaceutical treatments [133,
201, 219]. Additionally, NICE guidance on the insertion of implants into the roof of the
mouth indicated while the procedure is safe there was no clinical evidence of its effectiveness
[148]. Due to the lack of conclusive evidence on the effectiveness of these interventions they
have not been considered in this thesis. However, lifestyle advice is the current best practice
comparator in the case study for patients with mild-moderate OSAHS [198].

1.3.2 The Trial of Oral Mandibular Advancement Devices for Obstruc-
tive sleep apnoea-hypopnoea

The Trial of Oral Mandibular Advancement Devices for Obstructive sleep apnoea-hypopnoea
(TOMADO) was a RCT forming part of a NICE Technology Appraisal aiming to assess
whether MADs are clinically beneficial and cost-effective, when compared to no treatment,
in patients classified to have mild to moderate OSAHS on the basis of their AHI [175, 198]
Data and the results from TOMADO have been used extensively throughout the thesis.

TOMADO was an open-label, four-treatment, four-period, randomised, crossover trial which
compared the clinical outcomes and cost-effectiveness of treatment with MADs and no treat-
ment [175, 198]. Each treatment period lasted four weeks with a one-week washout period
and a two-week acclimatisation period between treatments. The reduction of AHI was the
primary outcome of the trial. EDS, measured by ESS, was an important secondary outcome.
The trial considered three types of MADs differing in sophistication (bespoke, semi-bespoke
and over-the-counter). A total of 90 patients were recruited to the trial, with 83 included
in the final analysis. All patients had mild-moderate OSAHS (AHI: 5-30 events per hour,
mean 13.8 events per hour (s.e. 6.2 events per hour)) and excessive daytime sleepiness (ESS
≥ 9, mean 11.9 (s.e. 3.5)) [175, 198]. The population was 80% male, with an average age
of 50.9 years (s.e. 11.6 years), and an average BMI of 30.6kgm−2 (IQR: 27.9−35.2kgm−2)
[175, 198].

All three interventions were found to significantly decrease the AHI compared to no treatment
(by 26%; 95% CI: 11-38% for the over the counter device; by 33%; 95% CI: 24-41% for
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the semi-bespoke device; and by 36%; 95% CI: 24-45% for the bespoke device) [175, 198].
Similarly, all three interventions significantly reduced the ESS compared to no treatment
(by 1.52; 95% CI: (0.73, 2.29) for the over the counter device; by 2.15; 95% CI:(1.31, 2.99)
for the semi-bespoke device; and by 2.37; 95% CI:(1.53, 3.22) for the bespoke device)
[175, 198]. The bespoke device was the most preferred treatment by the trial participants.
The over the counter device had the greatest likelihood of discontinuation [175, 198].

The Health Technology Assessment (HTA) report concluded, for the TOMADO population,
that the over the counter MADs appeared to improve patients’ health and as the sophistication
of the devices increased there were decreasing marginal returns in health improvement [198].

TOMADO was the first trial of the usage of a MAD for patients with mild to moderate OS-
AHS containing clinical, patient centred, and cost-effectiveness outcomes [198]. It included
a detailed study of HRQoL by collection of EuroQol 5 Dimension 3 Level scale (EQ-5D-3L)
and Short Form 36 scale (SF-36) scores [27, 61, 237]. Disease specific Functional Outcomes
of Sleep Questionnaire (FOSQ) and Short Calgary Sleep Apnoea Quality of Life Index
(SAQLI) were also collected [75, 238]. These all found improvements in quality of life,
compared to no treatment, with little difference between the interventions.

The data from TOMADO was used in updated meta-analyses models of the key outcomes
(ESS, AHI and Systolic Blood Pressure (SBP)) as part of the HTA which helped to strengthen
knowledge about the relative effectiveness of MAD and CPAP in patients with OSAHS
[198–200].

A within-trial economic analysis, based on IPD from the four-week follow-up period in
TOMADO, was carried out to assess the cost-effectiveness of the three interventions [175,
198]. The CEA compared each type of MAD in TOMADO and no treatment. All three
MADs were found to be cost-effective, compared to no treatment, at a cost-effectiveness
threshold, λ , of £20,000 per QALY gained [175, 198]. Very little difference in QALYs
was found between the interventions so the incremental cost-effectiveness was driven by
differing device costs. The semi-bespoke device compared to the over-the-counter device
had an ICER of £186,844 per QALY gained and the bespoke device compared to the over-
the-counter device had an ICER of £33,611 per QALY gained. The semi-bespoke device
was dominated by the bespoke device. The semi-bespoke MAD was the most cost-effective
intervention when λ < £39,800 per QALY gained, after which the bespoke MAD was the
most cost-effective [198].
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1.3.3 The lifetime CEA

OSAHS is a chronic condition associated with considerable long-term morbidities [134, 198].
Therefore, a lifetime CEA is required to gain a true insight into the cost-effectiveness of
interventions for patients with OSAHS. A full description of the model can be found in
Appendix B. This section provides an overview.

The McDaid et al. (2009) cost-effectiveness model

The lifetime CEA in Sharples et al. (2014), the case study, is based on work by McDaid et al.
(2009) who developed a model (the McDaid model) to investigate the cost-effectiveness of
CPAP, MADs, and Conservative Management (CM) (a one-off consultation with a GP, with
some lifestyle advice on reducing or coping with symptoms) as part of a NICE Technology
Appraisal [134, 149, 198]. Many different types of MADs and CPAP are available for use.
However, due to small sample sizes, the CEA model groups all MADs and CPAP into one
MAD or CPAP device group. [134]

The economic model is a state transition Markov model following the annual movement
of a hypothetical homogeneous cohort of 50.5 year old men who were overweight (Body
Mass Index (BMI) = 31.9kgm−2), had high blood pressure (SBP = 130mmHg), and an ESS
of 11.9 [134]. This cohort was followed until almost all were dead, assumed to be a further
65 years9. The outcomes of the model were summarised as the incremental cost per QALY
gained. The model included the possibility of a Coronary Heart Disease (CHD) event, stroke,
and involvement in RTAs [134].

Figure 1.1 presents a simplified version of the model structure. All members of the cohort
start in the Obstructive Sleep Apnoea (OSA) state and can remain there, unless an event
occurs, until death. After a first non-fatal CHD event, individuals move into the post-CHD
state (pCHD) reflecting increased morbidity and mortality due to a first non-fatal CHD
event. Individuals can remain in the pCHD state until death, a RTA (fatal or non-fatal), or a
stroke occurs. Second or subsequent CHD events are not modelled. After a non-fatal RTA,
individuals return to their previous health state. After a first non-fatal stroke (possible from
the OSA and pCHD states), individuals move to the post-stroke state (pStroke), where they
remain until death or experience a RTA. Post-stroke CHD events are not modelled. Similar
to the post-CHD state, the post-stroke state (pStroke) reflects the increased risk of mortality

9The time horizon is set so that the model is able to capture all potential differences in costs and outcomes
[63].
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and morbidity due to a prior non-fatal stroke. As with CHD events, second or subsequent
strokes are not modelled. A proportion of strokes are considered to be disabling, with these
patients assumed unable to drive and so cannot have a RTA.

The McDaid model was populated using information from various sources, including sys-
tematic reviews, existing cost-effectiveness literature, the opinion of clinical experts and
meta-analyses from the NICE Technology Appraisal [134, 149]. The transition probabilities
in the model were derived from a number of sources. The costs included the cost of de-
vices and on-going resource usage associated with maintenance and replacement of devices.
Utilities and costs were assigned to each health state, some depending on the intervention.
Uncertainty was explored using PSA (Section 1.1.2). The data in the model indicates a lack
of robust evidence for some parameters. For example, for the risk of a RTA when using a
MAD, RTAMAD, the relationship:

RTAMAD = RTACPAP ×
∆ESSMAD−CM

∆ESSCPAP−CM

is used as opposed to direct data, where RTACPAP is the risk of an RTA using CPAP and
∆ESSMAD−CM and ∆ESSCPAP−CM are the change in ESS due to treatment with MAD and
CPAP respectively.

The McDaid model found CPAP was the most cost-effective intervention with a probability
of 78% at a threshold of £20,000 per QALY gained [198]. MADs were more likely to be
cost-effective for subgroups with more mild OSAHS [198].

The Sharples et al. (2014) cost-effectiveness model

The McDaid model was updated by Sharples et al. (2014) to reflect the TOMADO population
and new evidence [134, 198]. The case study model had a similar population to the McDaid
model, except the TOMADO population was slightly more overweight (BMI of 31.9kgm−2

for TOMADO population compared to 30.0kgm−2 in the McDaid model) [134, 198].

As in the case of the McDaid model, Sharples et al. (2014) used a variety of sources to
populate the model [134, 198]. The parameters in the McDaid model were updated to reflect
newly published data and the population having mild-moderate OSAHS [134, 198]. Costs
were estimated in 2011/12 prices (£) [198]. Appendix B provides more information on the
parameterisation of the CEA.
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Changes to the cost-effectiveness model used in this thesis

This thesis has used the model developed by McDaid et al. (2009) and updated by Sharples
et al. (2014) [134, 198]. The previous models were developed in Microsoft Excel. I have
reproduced this model in R [9, 10, 45, 118, 139, 176, 245–248]. This allows for a more
efficient computation of the model, through the use of parallelisation of the PSA simulations
and ensures reproducibility [14]. In addition, value of information quantities (Section 1.1.3
and Chapter 2) apart from EVPI are essentially impossible to compute using Excel R [14].

There are a few changes to the CEA in this thesis compared to the Excel version used in
Sharples et al. (2014) [198]. This is due to some small errors in the spreadsheet. These are:

• the Excel spreadsheet was not including those in the pStroke state adherent to their
intervention in calculating life years

• for those treated with CM in the states corresponding to pStroke and pCHD and having
had an RTA the cost of a RTA was not included.

• the utility decrement due to age was being incorrectly applied to those who had an
RTA, CHD event or a Stroke event.

• a smaller number of PSA samples have been used in the Excel spreadsheet, meaning
results are presented to a lesser degree of accuracy.

1.3.4 Results from the lifetime cost-effectiveness analysis

The case study lifetime CEA, fully illustrated in Appendix B, estimated that MADs were
more expensive and more effective than CM (Table 1.2) [198]. Additionally, CPAP was
estimated to be more expensive and more effective than MADs. These results are presented
using 500,000 PSA simulations.

Both Figure 1.2 and Table 1.2 show at traditional thresholds (around £20,000 per QALY
gained) CPAP is most likely to be cost-effective. However, there is a significant amount of
uncertainty around this decision suggesting potential value of further research. The CEAF
(Figure 1.3) shows uncertainty around the optimal treatment decision at traditional thresholds.
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Table 1.2 Results from the case study cost-effectiveness analysis using 500,000 PSA
samples calculated in R

CM MAD CPAP

Total Expected LYs1 28.36 28.51 28.61
Total Expected QALYs 14.35 14.65 14.68
Total Expected cost (£) 6,112 8,331 8,501
NMB (£)2 280,888 284,669 285,099
ICER (£ per QALY gained) 7,3973 5,6674

Pr(Cost-effective at threshold values)

£10,000 per QALY gained 0.19 0.40 0.41
£20,000 per QALY gained <0.01 0.44 0.56
£30,000 per QALY gained <0.01 0.41 0.59

1: Uncertainty is presented as the probability of the intervention being cost-effective rather than an interval as
per Claxton (1999) [37]. In this paper it states confidence intervals are not appropriate in CEA as the objective
is to maximise health gains. Therefore, decisions should be based on expected cost-effectiveness given existing
information. One of the alternatives must be chosen. "The opportunity cost of failing to make the correct
decision based on expectation is symmetrical and the historical accident that dictates which of the alternatives
is regarded as ‘current practice’ is irrelevant" [24, 37].
2: NMB calculated using a cost-effectiveness threshold λ of £20,000 per QALY gained.
3Compared to CM
4Compared to MAD

Figure 1.2 The cost-effectiveness acceptability curve for patients with OSAHS treated with
CM, MAD and CPAP for a range of thresholds for the case study cost-effectiveness analysis

using 500,000 PSA samples1

1 The shaded area represents the usual cost-effectiveness thresholds region, as used by NICE
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Figure 1.3 The cost-effectiveness acceptability frontier for patients with OSAHS treated
with CM, MAD and CPAP for a range of thresholds for the case study cost-effectiveness

analysis using 500,000 PSA samples1

1 The shaded area represents the usual cost-effectiveness thresholds region, as used by NICE

1.3.5 Recommendations for future work

The case study report presents a list of future research priorities for OSAHS [198]. These
include: the collection of further information and data on long-term compliance; studies
on HRQoL over time; clinical and cost-effectiveness comparisons for the different types of
MADs over a range of severities; head-to-head comparisons of MAD and CPAP in mild
OSAHS; and further data on long-term risk of CVD and its risk factors.

1.4 Thesis aims and objectives

The overall aim of this thesis is to explore methods of quantifying uncertainty and targeting
where reducing uncertainty would be most beneficial in CEAs. This involves using modelling
techniques to help inform better treatment decisions. All theoretical work is applied to the
case study CEA (Chapter 1.3.3 and Appendix B). This thesis focuses on two under explored
aspects of CEAs: patients’ adherence to interventions and heterogeneity between patients.
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Objective 1: Exploring the impact of modelling adherence to interven-
tions on the results of the CEA and the value of collecting more informa-
tion on adherence to interventions

The first objective of the thesis is to develop methods for modelling patients’ adherence to an
intervention and the importance of this for decision models. It is important that adherence to
an intervention is reflected in cost-effectiveness models to replicate real-life use.

Within this objective there are two main research targets. The first is to develop innovative
methods to model adherence to interventions using all available information which can be
used as part of the health economic model. The results from these models can be used to
assess the impact of adherence on the optimal treatment decision and its uncertainty. These
methods are applied to the case study CEA. The second research target is to extend methods
to assess the value of collecting further information on adherence to interventions. Special
attention is paid to the choice of timepoints at which data on adherence should be collected.

Objective 2: Exploring the stratification of the optimal treatment deci-
sion based on non-binary measures of disease severity and the value of
collecting more information to guide stratification

If CEAs are used to make decisions based on whether an intervention is cost-effective for
the population on average there may be groups of the population who receive a suboptimal
intervention. This section of the thesis uses evidence synthesis methods to assess whether
treatment should be stratified based on single or multiple measures of disease severity. A
second research target is to develop and apply methods for identifying the populations where
the collection of further information on the treatment effect would be most beneficial to guide
decisions on stratification.

1.5 Structure of the thesis

The thesis is structured as follows:

Chapter 2 begins by revisiting the value of information quantities outlined in Section 1.1.3.
A range of current methodologies for the calculation of these quantities are presented with
their advantages and disadvantages. The importance of the PSA sample size for the accuracy
of the value of information estimates is illustrated using some of the current methodologies
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applied to the case study. Additionally, methods for the calculation of population-level value
of information quantities and the associated challenges are described and applied.

Chapter 3 explores adherence to interventions. It begins by summarising current guidance in
incorporating adherence to interventions in CEAs. Results from a literature review extracting
data on long-term adherence to treatment for patients with OSAHS are reported. It then
develops a Bayesian meta-analysis model for synthesising the adherence data found in the
literature review. The impact of the results of these methods on the case study CEA is
explored along with an analysis of the expected value of perfect partial information (EVPPI)
and the expected value of obtaining specific further data (EVSI) on adherence.

Chapter 4 explores current and new Bayesian meta-regression methodology for combining
aggregate and individual participant data to stratify the optimal treatment decision when
considering non-binary measures of disease severity. Studies which provided information in
the case study HTA on the treatment effect were reviewed and more detailed information on
baseline characteristics and any individual participant data were extracted. This data is used
in a Bayesian network meta-regression model exploring potential stratification on one or two
covariates of interest. The impact of the network meta-regressions on the CEA are explored
to identify any benefit of stratification on an individual patient-level.

Chapter 5 examines the population-level value of stratification to identify whether a stratified
treatment regime should be implemented using the results of Chapter 4. Focus is given to
the distribution of the stratifiers in the population, the adherence to the stratified regime, and
the costs involved with the implementation of a stratified regime. The value of information
methods introduced in Chapter 2 are used and extended to heterogeneous populations and to
prioritise further research to guide stratification.

Chapter 6 concludes the thesis, focussing on its contributions to quantifying uncertainty and
targeting future research. This chapter ends with a discussion of future research questions
that emerge from this work.





Chapter 2

Estimating value of information
quantities

Value of information quantities, introduced in Section 1.1.3, describe the expected value of
collecting further information to reduce uncertainty in a CEA. Historically, these quantities
have had a large calculation burden which has impacted on their application. In recent years
a number of more efficient methods for estimating the expected value of perfect partial and
sample information have been published. This chapter summarises some of these methods
for use later in the thesis. Even less focus is given in the literature to the errors associated
with the estimation of value of information quantities. Errors are present when estimating
value of information quantities using all estimation methods, due to a finite PSA sample
size. This Chapter presents a method for calculating these errors for EVPI and EVPPI when
estimated using non-parametric regression. Uncertainty around quantities such as disease
prevalence and incidence, intervention take-up rate, and an appropriate time horizon for
technologies needed to scale per person value of information quantities to a population-level
is also frequently neglected. The impact of changes to these values is investigated through an
application to the case study CEA.

2.1 Introduction

A CEA provides decision makers with information as to whether an intervention is cost-
effective on current evidence. However, it does not routinely include information on whether
collecting further information is likely to alter the treatment decision.

As outlined in Section 1.1.3 when deciding whether an intervention is cost-effective, two
main questions need to be answered [24, 165]:
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• Under current information, should the new intervention be recommended?

• Should further information be collected to reduce uncertainty around the optimal
treatment decision?

Under a Bayesian decision-theoretic framework, an intervention is accepted as cost-effective
based on its expectation but the potential value of collecting further information is still
important [37]. If a wrong decision is made, costs are incurred. These may be monetary
costs. For example, in terms of extra costs due to treatment or adverse events [24, 37].
However, they can also include the costs of the health foregone to the population by making
a suboptimal decision [24]. Analysis using current information contains uncertainty through
the parameters of the CEA, θθθ , which are often estimated from a variety of sources and rarely
known precisely. Additionally, there may be uncertainty around other aspects of the CEA
model, such as its structure. The focus of this chapter is on parametric uncertainty. Section
2.7 briefly discusses other forms of uncertainty in a CEA model.

Value of information quantities provide a way to estimate the expected health gains from col-
lecting further information. They use both the opportunity cost of making a wrong decision
and the likelihood of making a wrong decision [24]. In this way, decision makers can see
the ‘penalty’ of making a wrong decision [24]. A low penalty, because of a low opportunity
cost and/or a low probability of making a wrong decision indicates little benefit in further
analysis and so the optimal treatment decision could be made using current evidence. The
combination of the opportunity cost and the likelihood of a wrong decision is important
[12, 24]. Even if the probability of making a wrong treatment decision is high, there is only
value in collecting further information if there is a cost to this decision [12, 24].

The results from value of information analyses can be used to set future research priorities.
This can ensure further research is focussed on areas where uncertainty in the model is of
greatest consequence to the decision and hence the greatest value to the population. This is
particularly important when resources for future research are scarce.

Currently, few applied studies implement value of information analysis. Steuten et al. (2013)
carried out a systematic review of the methods and applications of value of information in
published literature [207]. They found that, although new methods of calculation were being
published, the number of applications remained low. Focus groups1 carried out by Bindels et
al. (2016) explored why value of information calculations were not carried out [20]. They

1Consisting of researchers, policy makers, and representatives of pharmaceutical companies.
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found reasons included the inability of value of information quantities to easily incorporate
all uncertainties within a model (for example, structural uncertainty) and the complex, often
time consuming, calculations required [20].

This chapter highlights the importance of calculating value of information quantities by
building on the concepts introduced in Section 1.1.3. The first aim of this chapter is to
provide information on three different value of information quantities - EVPI, EVPPI, and
EVSI and some of the recently published methods which enable more efficient calculations
of these quantities. Some of these methods are applied to the case study CEA to motivate
areas of interest for further research.

A second aim is to present and illustrate methods to calculate the error around the value of
information estimates and its relationship to the number of PSA simulations. It is important to
consider the accuracy of the estimates which can impact on calculation time, the CEA results,
and whether future research should be implemented. Methods for calculating the error around
the EVPPI and EVSI estimates obtained from a commonly used non-parametric regression
procedure are presented. An extension to include the error from a finite PSA sample size in
addition to error from the non-parametric regression is presented and illustrated.

A third aim is to present population-level values for the value of information quantities. The
population-level value of collecting further information is compared to the costs of further
research to assess whether research should be carried out in practice. A sensitivity analysis
to the case study CEA explores the impact of uncertainty around quantities such as the
incidence and prevalence of OSAHS used to estimate the population-level EVPI.

The chapter will proceed as follows. Firstly, Section 2.2 outlines the theory behind EVPI
and how it can be calculated at an individual and population-level. The theory behind the
calculation of standard error associated with estimating the EVPI from a limited number of
PSA samples is presented. Section 2.3 outlines the theoretical framework for the calculation
of EVPPI along with an overview of a number of new methods developed to assist its
calculation. Section 2.4 presents an overview of the theory behind EVSI and outlines recently
developed methods for its calculation. The method for calculating the standard error for the
EVPPI estimator based on non-parametric regression is extended in Section 2.5 in order to
quantify Monte Carlo error from a finite number of PSA samples in addition to error from the
regression coefficients. Section 2.6 applies methods introduced earlier in the chapter to the
case study CEA to find an optimal number of PSA samples to achieve value of information
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quantities to a sufficient level of accuracy. The EVPPI values and their standard errors are
presented for a number of parameters in the case study CEA. The population-level EVPI is
presented including a sensitivity analysis on the impact of (modest) changes to treatment
uptake, diagnosis rate, population size, and time horizon. Section 2.7 provides a discussion
of the calculation methods and why value of information is rarely calculated along with
future research priorities. Section 2.8 concludes the chapter with details on how this work is
used throughout the thesis.

2.2 The Expected Value of Perfect Information

The EVPI is the upper limit for the amount of money a decision maker should be willing to
pay for research that would eliminate uncertainty in all parameters, θθθ , in a CEA [24].

2.2.1 Background and theory

The basic premise behind EVPI was outlined in Section 1.1.3. To re-cap, if perfect informa-
tion existed for θθθ the correct decision on the optimal treatment j would always be made [24].
Three main components determine the magnitude of the EVPI [24, 37]:

1. how cost-effective the current optimal treatment is

2. the level of uncertainty around the cost-effectiveness decision

3. the consequences of a wrong decision, i.e. the penalty of making a wrong decision

Analytical calculation of EVPI

If the INB can be assumed to be normally distributed, the EVPI can be calculated analytically.
This method is used in earlier value of information analyses and presented in Wilson (2014)
[37, 38, 40, 251]. It is more frequently used in trial-based analyses as opposed to model-
based CEAs [251]. When data for the CEA model come from a number of sources the INB is
less likely to have a normal distribution, or may not fit any parametric distribution. Therefore,
simulation based approaches are preferable [24]. Figure 2.1 shows the distribution of the
INB between CPAP and MAD for the (model-based) case study CEA and the associated
QQ-plot. The QQ-plot in particular highlights the non-normality of the INB in this example.

Simulation approach to calculating the EVPI

While the EVPI can sometimes be calculated analytically, it is simple to estimate the EVPI
using the PSA output [24]. Recalling Section 1.1.3, the EVPI is the difference between the
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Figure 2.1 The Incremental Net Benefit for the MAD vs CPAP treatment comparison and
QQ-plot for normality 100,000 PSA samples and a cost-effectiveness threshold of £20,000

per QALY gained

expected NMB under perfect versus current information. Let NB( j,θθθ) represent the NMB
for intervention j with parameter values θθθ . The EVPI is:

EV PI = Eθθθ

[
max

j
NB( j,θθθ)

]
−max

j
Eθθθ [NB( j,θθθ)] (2.1)

This can be estimated from K PSA samples using the Monte Carlo mean for each expectation
with respect to θθθ as:

ÊV PI =
1
K

K

∑
k=1

[
max

j
NB
(

j,θθθ (k)
)]

−max
j

[
1
K

K

∑
k=1

NB
(

j,θθθ (k)
)]

(2.2)

The equivalence of the EVPI and the expected opportunity loss

The EVPI is equivalent to the expectation of the opportunity loss [24]. The opportunity loss,
L(θθθ), associated with making an incorrect decision is:

L(θθθ) = max
j

NB( j,θθθ)−max
j

Eθθθ [NB( j,θθθ)]

This is the difference between the NMB for the optimal intervention and the alternative under
current information. The expected opportunity loss, Eθθθ [L(θθθ)] can be expressed as:

Eθθθ [L(θθθ)] = Eθθθ

[
max

j
NB( j,θθθ)−max

j
Eθθθ [NB( j,θθθ)]

]
(2.3)
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which is equivalent to Equation 2.1.

2.2.2 Population-level Expected Value of Perfect Information

Equation 2.1 is the EVPI around making the decision for a particular individual or for
a particular patient episode [24]. Any future research producing additional evidence can
benefit all current and future patients2. Therefore, it is important to consider the EVPI for
the population who could benefit from the additional evidence both now and in the future [24].

As introduced in Section 1.1.3, calculation of population-level EVPI requires additional
pieces of information: the expected future lifetime of the technology (T), an estimate of the
rate of incidence of the disease over T (It), the current prevalence rate of the disease (I0), the
size of the decision population at risk (P) ,and a discount rate (i) - typically 3.5% per annum
in England and Wales (outlined in the NICE Methods Guidance [150]). Let t = 1, . . . ,T index
years assuming data is available on an annual basis. The population-level EVPI (popEVPI)
is:

popEV PI = EV PI ×P×

(
I0 +

T

∑
t=1

It
(1+ i)t

)
(2.4)

If the cost of research is less than the population EVPI, it is a necessary but not sufficient
condition for the implementation of further research.

There are difficulties in estimating the values required to calculate the population EVPI.
Estimating the appropriate time horizon for the population EVPI is challenging. Philips et al.
(2008) found finite time horizons for decision problems are a proxy for future technology
change [165]. The impact of changing these quantities on the population-level EVPI is
explored in Section 2.6.3.

The uptake of an intervention can impact on the population-level EVPI [86]. The uptake of
the most cost-effective intervention under current information is a measure of the proportion
of the eligible population who actually use the intervention [86]. If this is less than 100%,
the population-level EVPI can be over-estimated. This can lead to suboptimal spending of
resources and delays to patients receiving their optimal treatment. Grimm et al. (2015) found
many studies implicitly ignore uptake of interventions in calculating their population-level
EVPI. Additionally, very few studies highlighted that population-level EVPI was subject to

2For non-chronic diseases, those patients who were part of the additional research will not benefit from the
research in future.
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uncertainty in the population estimates (P, I0, It ,T )[86].

This idea is akin to the value of implementation which deals with the assumption that CEAs
assume the most cost-effective intervention is implemented [73, 249]. Less than perfect im-
plementation of cost-effectiveness guidance leads to suboptimal resource allocation incurring
costs and impacting on the health of the population [73, 103].

There may be evidence the uptake rate may change over time. Uptake rate can be incorporated
into the population-level EVPI. Let Ut be the uptake rate of the intervention at time t then:

popEV PI = EV PI ×P×

(
I0 ×U0 + ∑

t=1,...,T

ItUt

(1+ i)t

)
(2.5)

This assumes the uptake rate for all interventions is the same. Uptake rates that differ be-
tween interventions cannot be modelled in this way. Grimm et al. (2015) found no study that
highlighted the uptake rate may be dynamic in nature [86].

In a similar way, Equation 2.5 can model diagnosis rates by replacing Ut with Dt - the
proportion of the population with the disease who are diagnosed. Only those diagnosed can
benefit from further research and/or use the intervention. It is feasible the diagnosis rate
may change over time. For example, due to improved diagnostic tests or increased public
awareness.

In addition, Ades et al. (2004) state that the size of the population who enter the population-
level EVPI model each year can change over time [2]. This population size can be defined
for each t = 1, . . . ,T as Qt = Pt × It ×Ut ×Dt . Therefore, Qt can incorporate uptake rates,
diagnosis rates, changing population size, and disease incidence rates.

There is a similar term leakage which is discussed further in Chapter 5 [47]. Leakage is the
proportion of participants receiving the most cost-effective intervention as opposed to an
alternative intervention [47]. This is subtly different to the idea of uptake. Under imperfect
uptake those who do not use the intervention do not receive an alternative, whereas under
leakage, patients could receive a suboptimal intervention. Leakage impacts on the value of
stratification.
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2.2.3 Monte Carlo error

PSA involves repeated sampling of the distributions of the uncertain parameters, θθθ [12, 13,
24]. An insufficient number of PSA samples can lead to incorrect decisions being made
should the results not have converged to an adequate degree of accuracy. The error due to the
number of simulations is called the Monte Carlo error.

Suppose there are K posterior samples, θθθ
(1), . . . ,θθθ (K), for a generic function g(θθθ). The

Monte Carlo estimate of Eθθθ [g(θθθ)] using the K samples is:

ḡK =
1
K

K

∑
k=1

g
(

θθθ
(k)
)

(2.6)

If θθθ
(1), . . . ,θθθ (K) are independent, the Central Limit Theorem can be applied to give the

Monte Carlo Standard Error (MCSE) for ḡK :

MCSE =
√

Var(ḡK)

=

√
Var(g(θθθ))

K
(2.7)

where the posterior variance Var(g(θθθ)) can be estimated using the empirical variance of the
K samples thus the MCSE can be estimated by:

M̂CSE =
s√
K

(2.8)

with

s2 =
1

K −1

K

∑
k=1

[
g
(

θθθ
(k)
)
− ḡK

]2
(2.9)

While this error is important in the context of CEAs, current guidance recommends CEA
models should be run until convergence, with no definition of convergence provided [150].
Some work has been carried out to investigate the optimal number of simulations required for
a PSA looking at the convergence of costs, QALYs, ICERs, and NMBs [91]. This found the
current convention in HTAs of 1,000 PSA simulations was insufficient, and suggested a broad
estimate of 10,000 PSA simulations was required to estimate these values to a reasonable
degree of accuracy [91]. However, the optimal number of simulations will in practice be
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highly dependent on model in question.

In a CEA and in calculating the EVPI a draw from the distribution for each uncertain pa-
rameter is taken for each simulation, meaning Monte Carlo error is present in the EVPI
estimate. It is important to be aware of this error to ensure correct decisions are made on
further research. As EVPI is an upper bound to the potential value of further research, it
is rarely necessary to know the EVPI to the nearest £1. Learning the EVPI to a lesser de-
gree of accuracy can be useful, for example to compare the uncertainty across different CEAs.

To calculate the Monte Carlo error, the EVPI needs to be reformulated in terms of the
expected opportunity loss from making the wrong decision (Equation 2.3). The MCSE for
the EVPI estimate from K PSA samples can be calculated using Equations 2.6 - 2.9 setting:

g
(

θθθ
(k)
)
= L

(
θθθ
(k)
)

and the MCSE can be estimated as s√
K

where s is the empirical variance of L
(

θθθ
(k)
)

.

The approximate width of the 95% Monte Carlo interval is 2×1.96×MCSE. This width can
be used to guide what K should be by going backwards from the desired degree of accuracy.
Alternatively, it can indicate how many significant figures are appropriate to present estimates
using K PSA samples. This is particularly useful when K is limited due to computational
complexity, for example. Oakley et al. (2010) outline a similar approach for calculating the
width of the 95% confidence interval for a two-level Monte Carlo estimate for EVPPI [154].

2.3 The Expected Value of Perfect Partial Information

2.3.1 Background and theory

The EVPI (Sections 1.1.3 and 2.2) provides an upper bound for the value of research which
would eliminate uncertainty in all parameters, θθθ , in the CEA. It is unlikely uncertainty in all
parameters can be eliminated, so the EVPI is generally regarded a ‘theoretical quantity’. The
expected value of perfect partial information or the expected value of perfect information for
parameters (EVPPI) is the value of eliminating uncertainty for a subset of parameters, φφφ ⊆ θθθ .
The EVPPI can help focus future research priorities by identifying parameter(s) where more
precise estimates will be of most value. The EVPPI is also regarded as a ‘theoretical quantity’.
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An infinite sample size would be required to eliminate uncertainty in any set of parameters.

As outlined in Section 1.1.3, the EVPPI is the difference between the expected value with
perfect and current information on the parameter(s) of interest [12, 23, 24, 154]. Formally,
the expected value of perfect information for a subset of parameters (φφφ ), where θθθ is the set of
all uncertain parameters, (φφφ ⊆ θθθ , φφφ ∪ φ̄φφ = θθθ) for a set of j interventions is [12, 23, 24, 154]:

EV PPIφφφ = Eφφφ

[
max

j
E

φ̄φφ |φφφ
[
NB
(

j,φφφ , φ̄φφ
)]]

−max
j

Eθθθ [NB( j,θθθ)] (2.10)

2.3.2 Methods of calcualtion

Monte Carlo methods

The traditional method for calculating EVPPI uses two-level Monte Carlo samples with the
second term in Equation 2.10 estimated using a single-level Monte Carlo simulation [23,
154]: In this method θθθ

(1), . . . ,θθθ (K) are sampled from the distribution of θθθ and NB( j,θθθ (k))

calculated for all j and k = 1, . . . ,K, i.e. the output from a PSA is used to calculate:

NB∗ = max
j

Eθθθ [NB( j,θθθ)]

and by using a Monte Carlo estimator over θθθ is estimated as:

N̂B
∗ ≈ max

j

1
K

K

∑
k=1

NB
(

j,θθθ (k)
)

(2.11)

For a sufficiently large K, Equation 2.11 is equivalent to calculating the optimal intervention
in terms of NMB from a PSA (Section 1.1.2). The first term in Equation 2.10 causes
computational difficulties due to the nested expectations. Using notation from Oakley et al.
(2010) [154], let:

m(φφφ) = max
j

E
φ̄φφ |φφφ
[
NB
(

j,φφφ , φ̄φφ
)]

The first term in Equation 2.10 is Eφφφ [m(φφφ)]. In general, m(φφφ) cannot be calculated an-
alytically. Monte Carlo sampling methods can be used to estimate m(φφφ) [154]. First, a
value of φφφ is sampled from its joint distribution. Then, L values of φ̄φφ are sampled from φ̄φφ |φφφ ,{

φ̄φφ
(1)
, . . . φ̄φφ

(L)
}

. The CEA model is run for each of the L samples giving NB
(

j,φφφ , φ̄φφ (l)
)

for
all j and l = 1, . . . ,L. m(φφφ) can be estimated by:
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m̂(φφφ)≈ max
j

1
L

L

∑
l=1

NB
(

j,φφφ , φ̄φφ (l)
)

Eφφφ [m(φφφ)] can be approximated by Eφφφ [m̂(φφφ)]. This is repeated N times with φφφ =
{

φφφ
(1), . . . ,φφφ (N)

}
simulated from their distributions. For each n = 1, . . .N, m̂

(
φφφ
(n)
)

can be calculated and
using a Monte Carlo estimate:

Êφφφ [m̂(φφφ)] =
1
N

N

∑
n=1

m̂
(

φφφ
(n)
)

Therefore, the EVPPI can be estimated as:

̂EV PPIφφφ = Êφφφ [m̂(φφφ)]− N̂B
∗

=
1
N

N

∑
n=1

max
j

[
1
L

L

∑
l=1

NB
(

j,φφφ (n), φ̄φφ
(n,l)
)]

−max
j

[
1
K

K

∑
k=1

NB
(

j,θθθ (k)
)]

(2.12)

where N ×L = K and φ̄φφ
(n,l) is the lth sample drawn from φ̄φφ |φφφ = φφφ

(n). As in Section 2.2.3,
Monte Carlo estimates contain error due to random sampling, with more samples reducing
the uncertainty, so L and N need to be sufficiently large [154]. Êφφφ [m̂(φφφ)]− N̂B

∗
is a biased

estimator of EVPPI(φφφ ) [154]. This bias is independent of N, but depends on L, meaning both
L and N need to be sufficiently large to reduce uncertainty and bias to an appropriate level.
Oakley et al. (2010) found for their case studies L = N = 500 gave a sufficiently reasonable
estimate for EVPPI. However, these models were considerably simpler than the case study in
this thesis [154]. They also highlight decreasing marginal returns due to increasing L and
N [154]. As an example, increasing L and N from 500 to 1,000 increases the number of
simulations and computational time four fold, with the resulting increase in accuracy of the
estimate being much smaller [154]. Oakley et al. (2010) ignored Monte Carlo error due to
finite K(= L×N) in assessing the optimal K [154]. Section 2.5 addresses this error in the
context of other methods.

The computational burden of estimating EVPPI using two-level Monte Carlo estimation is
one of the reasons why EVPPI is not normally carried out in practice. Further, standard
health economics textbooks, such as Briggs et al. (2006), only present this method along with
simplifications if the NMB has a linear relationship between φφφ and the NB( j,θθθ) [24, 241].
A reduction in the computational burden for EVPPI is especially pertinent when researchers
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want to consider different sets of φφφ to prioritise future research.

A number of methods to estimate EVPPI have recently been developed focussing on accuracy
and reducing computational expense. The remainder of this section reviews and appraises
methods for calculating and estimating EVPPI. These include both general purpose methods
and methods only applicable in special cases. Some of these methods and a comparison in
terms of their estimation abilities and their standard errors are outlined in a paper by Heath
et al. (2017) [95, 187, 212, 215]. Heath et al. (2017) found little difference in the speed
and accuracy of the Sadastafavi (2012), Strong and Oakley (2013), and Strong et al. (2014)
calculation methods [95, 187, 214, 215]. Additionally, the Heath et al. (2016) EVPPI method
was found to be more efficient than the Strong et al. (2014) method, as presented in Heath
et al. (2016) [93, 215]. All of these methods showed marked improvements in calculation
times compared to the two-level Monte Carlo methods. Since the two-level Monte Carlo
method was feasible in the examples in the papers presenting the new methods, the EVPPI
could be determined accurately to arbitrary precision. Thus, all new methods compared their
results to these values in terms of accuracy and found comparable agreement.

In addition to the methods reviewed in Heath et al. (2017), two further methods are outlined
in the remainder of this section - Jalal et al. (2016) and Heath et al. (2016) [93, 95, 108].
A summary of the situations where each method can be used and their relative merits are
presented in Table 2.1.

Calculation of the Expected Value of Perfect Partial Information in special situations

There are some situations where the EVPPI can be calculated analytically, for example: if the
INB can be assumed to have a normal distribution, when the NMB can be re-parametrised
to be linear, and when a Taylor approximation can be used for the net benefit function
[24, 128, 251].

The incremental net benefit can be assumed to have a normal distribution

This method is generally applied to trial based economic evaluations, although can also be
applied to model based economic evaluations when the normality assumption holds [251].
Wilson (2014) outlined how to calculate EVPPI when the NMB is normally distributed, or it
is reasonable to assume normality, using the same approach as the analytic calculation of
EVPI (Section 2.2.1) [251].
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This analytic method is computationally quicker than two-level Monte Carlo methods and is
not subject to Monte Carlo error, a feature of simulation based methods. It can be calculated
in Microsoft Excel, with the author providing Excel workbooks [251]. However, it relies
on the assumption the INB is normally distributed. Normality is unlikely in situations
where (complex) CEA models are used, as illustrated by the OSAHS case study (Figure
2.1). However, if a trial based economic evaluation is used the Central Limit Theorem can
be applied to the means making the assumption the INB has a normal distribution more
reasonable.

Other special situations

Madan et al. (2014) showcase a range of methods for estimating the EVPPI in specific
situations [128]. They use the EVPPI re-expressed as:

EV PPI(φφφ) = Eφφφ

[
max

j

{
E

φ̄φφ |φφφ [NB( j,θθθ)−NB( j∗,θθθ)]
}]

(2.13)

where j∗ is the intervention maximising NMB. All methods in Madan et al. (2014) involve
expressing E

φ̄φφ |φφφ [NB( j,θθθ)−NB( j∗,θθθ)] in an analytic form meaning EV PPI(φφφ) can be esti-
mated using a single Monte Carlo simulation [128].

The first set of methods can be used when the expectations for φ̄φφ can be plugged into
EV PPI(φφφ) (Equation 2.13). If NB( j,θθθ) can be expressed as:

NB( j,θθθ) = ∑
i

fi, j (φφφ) φ̄φφ i

with φ̄φφ =
{

φ̄1, φ̄2 . . .
}

and φ̄φφ i is independent of all elements in φφφ in the coefficient of fi, j then
the means of φ̄φφ can be directly substituted. Thus :

E
φ̄φφ |φφφ [NB( j,θθθ)] = ∑

i
fi, j (φφφ)E

(
φ̄φφ i
)

and EV PPI (φφφ) can be estimated using a single-level Monte Carlo mean.

If NB( j,θθθ) can be expressed as:

NB( j,θθθ) = ∑
i

fi, j (φφφ)gi, j
(
φ̄φφ
)
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where each gi, j
(
φ̄φφ
)

is a product of mutually independent elements of φ̄φφ , the means of the
values in φ̄φφ can be substituted directly, where:

E
φ̄φφ |φφφ [NB( j,θθθ)] = ∑

i

[
fi, j (φφφ)gi, j

(
E
(
φ̄φφ 1
)
,E
(
φ̄φφ 2
)
, . . . ,E

(
φ̄φφ iii
))]

and, as in the case above, EV PPI(φφφ) can be estimated using a single Monte Carlo mean.

Thirdly, as used in Welton et al. (2008), if NB( j,θθθ) can be expressed as [241]:

NB( j,θθθ) = ∑
i

fi, j(φφφ)βi, j(φ̄φφ)

where βi, j(φ̄φφ) can be any function of φ̄φφ (i.e. φ̄φφ is not necessarily multi-linear), fi, j(φφφ) is the
linear coefficient of βi, j

(
φ̄φφ
)

and the elements of φ̄φφ in βi, j(φ̄φφ) are independent of the elements
of φφφ in fi, j(φφφ) then the NMB can be linearised and parametrised:

E
φ̄φφ |φφφ [NB( j,θθθ)] = ∑

i
fi, j (φφφ)E

φ̄φφ

(
βi, j
(
φ̄φφ
))

and EV PPI (φφφ) can be estimated using a single Monte Carlo mean.

The second set of methods presented involve approximating E
φ̄φφ |φφφ [NB( j,θθθ)] [128]. Two

approaches are presented. If the NMB can be expressed as:

NB( j,θθθ) = ∑
i

fi, j(φφφ)βi, j(φ̄φφ−i)hi, j(φ̄φφ i,φφφ)

where fi, j(φφφ) are arbitrary functions of φφφ , hi, j(φ̄φφ i,φφφ) are smooth non-linear functions of φφφ

and a single element of φ̄φφ , βi, j(φ̄φφ−i) are arbitrary functions of φ̄φφ−i then the Taylor expansion
of hi, j(φ̄φφ i,φφφ) can be used to approximate E(φ̄φφ i).

Spline approximation methods can be used if correlations exist between parameters, so the
NMB takes the form:

NB( j,θθθ) = ∑
i

fi, j(φφφ)hi, j(φ̄φφ ,φφφ)

where fi, j(φφφ) are functions of φφφ ; hi, j(φ̄φφ ,φφφ i) a smooth non-linear function of φ̄φφ and at least
one φφφ i is correlated with at least one element of φ̄φφ . A spline can be used to estimate
E

φ̄φφ |φφφ
(
hi, j(φ̄φφ ,φφφ)

)
. This approximation enables the EVPPI to be calculated using a single
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Monte Carlo simulation.

All methods presented in Madan et al. (2014) require strong assumptions or special forms
for the NB( j,θθθ) to give appropriate estimates for the EVPPI [128]. Other methods, which
do not require such strong assumptions and enable efficient estimation of the EVPPI are
presented below.

Estimation of the expected value of perfect partial information for a single parameter
of interest

This section outlines two methods developed for efficiently estimating EVPPI when φφφ is a
single parameter, both of which were reviewed in Heath et al. (2017) [95, 187, 212].

Strong and Oakley (2012)

This is a one-level Monte Carlo algorithm requiring a PSA sample of parameters and the
corresponding NMBs in its calculation [212]. The basic idea is that a PSA sample of size K
is ordered by values of φφφ and split into M subsets of dimension L (L ≪ K, M×L = K). The
φφφ
(k) in each subset is assumed to be close to its mean value. Therefore, the remainder of the

parameters, φ̄φφ , are an approximate sample from the distribution of φ̄φφ |φφφ (k).

Let θθθ
(k) =

{
θ
(k)
1 , . . . ,θ

(k)
S

}
be the Monte Carlo inputs for the set of S uncertain parameters

in the kth PSA sample of the CEA. Let j index the interventions, then NB
(

j,θθθ (k)
)

is the

NMB with intervention j evaluated at θθθ
(k) for a cost-effectiveness threshold λ .

The NB
(

j,θθθ (k)
)

’s are ordered by their value of φφφ
(k). This ordered list is partitioned into M

subsets each with L entries (L×M = K). The input parameters are relabelled θθθ
(l,m) - the lth

θθθ in the mth subset. For each subset and intervention:

µ̂
(m)
j =

1
L

L

∑
l=1

NB
(

j,θθθ (l,m)
)

And the EVPPI can be approximated as:

ÊV PPI =
1
M

M

∑
m=1

max
j

µ̂
(m)
j −max

j

[
1
K

K

∑
k=1

NB
(

j,θθθ (k)
)]

The main benefit of this method is its ease of calculation. It is more efficient than two-level
Monte Carlo estimation and does not require any special form or assumptions for the NMB.
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It can be estimated using standard output from a PSA. However, it only works when φφφ is a
single parameter. It can also be difficult to choose optimal values for L and M.

Sadatsafavi et al. (2013)

A similar method to Strong and Oakley (2012) was developed by Sadatsafavi et al. (2013)
[187, 212]. Like Strong and Oakley (2012), it uses the idea that if a treatment decision is
optimal for a value of φφφ it will also be optimal for values close to φφφ [95, 187, 212].

The expectation - maximisation - expectation term (Equation 2.10) is transformed into an
expectation - maximisation - maximisation calculation. The PSA output ordered by φφφ is
split into m = 1, . . . ,M subsets, Lm, whose sizes depend upon the values of φφφ where the
optimal decision changes (i.e. each subset m can have a different size). Lm contains all
φφφ such that φφφ

Lm ≤ φφφ ≤ φφφ
Lm+1 . In practice, M is normally small. The authors suggest the

points where the optimal treatment decision changes can be found by plotting the cumulative
NMB as φφφ increases. When the cumulative sum changes direction the optimal treatment
decision changes. However, Heath et al. (2017) found this could be challenging in practice
[95]. Taking the ordered subsets of NMBs for each m the EVPPI can be estimated (similar to
Strong and Oakley (2012)), as [212]:

N̂B
(m)

( j,θθθ) =
1
L ∑

k∈L m
NB
(

j,φφφ (k)
)

where L is the size of L m. This is maximised over all M subsets:

ÊV PPI = max
φL1 ,...,φLm

1
M

M

∑
i=1

max
j

N̂B
(m)

( j,θθθ)−max
j

[
1
K

K

∑
k=1

NB
(

j,θθθ k
)]

The main benefit of this calculation method is its improved calculation speed compared to
the two-level Monte Carlo simulation methods [212]. This method converges in probability
to the true value of EVPPI, so it is an asymptotically unbiased estimator. However, it can be
sensitive to the choice of M and can only be used to estimate EVPPI for a single parameter.
In addition, as with other methods, there is an upwards bias due to the finite PSA sample
size.
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Estimation of the Expected Value of Perfect Partial Information for multiple parame-
ters of interest

While the methods outlined above are useful and of interest they can only be used when φφφ is
a single parameter [187, 212]. The EVPPI for groups of parameters is often more informative
for research prioritisation, with any proposed study likely to collect information on multiple
parameters.

Three methods for estimating EVPPI for multiple parameters of interest are presented: Heath
et al. (2016), Jalal et al. (2015) and Strong et al. (2014) [93, 108, 215]. Two of these
methods (Strong et al. (2014) and Heath et al. (2016)) use non-parametric regression to avoid
two-level Monte Carlo estimation [93, 215]. As outlined in both papers and summarised
below, the purpose of the non-parametric regression is to estimate the first term in Equation
2.10, E

φ̄φφ |φφφ [NB( j,θθθ)] [93, 215].

For each simulation, k = 1, . . . ,K, the output from the PSA for the jth intervention can be
expressed as:

NB
(

j,φφφ (k), φ̄φφ
(k)
)
= E

φ̄φφ |φφφ=φφφ
(k) [NB( j,θθθ)]+ εεε

(k) (2.14)

with E
[
εεε(k)
]
= 0. For each φφφ

(k) the expectation takes a different value, so the NMB can be
thought of as a function of φφφ with unknown form, g( j,φφφ):

NB
(

j,θθθ (k)
)
= g

(
j,φφφ (k)

)
+ ε

(k) (2.15)

Thus, the K sample NMBs from the PSA can be regressed on the K sampled parameter
values

(
φφφ
(k)
)

, to estimate g( j,φφφ). Non-parametric methods are used to impose minimal
restrictions on the form of g. The two methods of estimating EVPPI use different types of
non-parametric regression [93, 215].

The fitted values from the non-parametric regression,
{

ĝ
(

j,φφφ (1)
)
, . . . , ĝ

(
j,φφφ (K)

)}
, cal-

culated from evaluating ĝ( j,φφφ) at
{

φφφ
(1),φφφ (2), . . . ,φφφ (K)

}
can be used in the estimation of

EVPPI:

ÊV PPIφφφ =
1
K

K

∑
k=1

max
j

ĝ
(

j,φφφ (k)
)
−max

j

1
K

K

∑
k=1

ĝ
(

j,φφφ (k)
)

(2.16)
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where Monte Carlo estimates over the number of PSA samples are used to estimate the
expectations over θθθ . The second term of Equation 2.16 can easily be calculated by using
Monte Carlo estimation. However, estimating as above exploits the positive correlation
between the two terms leading to a more precise EVPPI estimate, as explained in Strong et
al. (2014) [215].

Strong et al. (2014)

The method in this paper can be used to estimate EVPPI when φφφ has dimension P, P ≥ 1
[215]. Two alternative non-parametric methods are presented: using a Generalised Additive
Model (GAM) or a Gaussian Process (GP) [90, 127].

Generalised Additive Models

In a GAM, g( j,φφφ) is a sum of smooth functions for each of the P predictors, sp(φφφ p),
p = 1, . . . ,P:

NB( j,θθθ) = g( j,φφφ)+ εεε

g( j,φφφ) = s1(φφφ 1)+ . . .+ sP(φφφ P) (2.17)

where E [εεε] = 0. The sp

(
φφφ p

)
are commonly cubic splines, a smooth function represented as

a series of piecewise cubic polynomials. Each sp

(
φφφ p

)
can also be expressed as:

sp

(
φφφ p

)
=

L

∑
l=1

βlbl

(
φφφ p

)
(2.18)

for a basis of dimension L (equivalent to the number of knots) and basis functions bl(φφφ p).
The basis functions take values over the whole range of φφφ p. Splines can be made as flexible
as wished by altering the number and/or location of the knots/pieces in the spline. The work
by Strong et al. (2014) uses the R package mgcv which uses the above approach to estimate
g( j,φφφ) [253]. To estimate β̂l , this package by default uses a large number of knots and then
uses penalised maximum likelihood estimation with the penalty chosen by cross-validation,
to give optimal fit and complexity [253]. Strong et al. (2014) found any number of knots
greater than three was sufficient for the purpose of estimating EVPPI [215].

To allow for interactions between the parameters in φφφ which may be present in a health
economic model a ‘tensor product’ construction can be used which adds extra terms of the
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form s(φφφ i,φφφ j) (i, j = 1, . . . ,P, i ̸= j) to Equation 2.17. These interactions allow for a better
fit to the model but they have significant computational cost. Assuming m coefficients which
are expected to interact, each with a basis of dimension n, the GAM would need to estimate
nm coefficients. As nm tends to the PSA sample size, K, the model may not be identifiable.
Additionally, increasing K will increase the computational effort required, through both
calculating the PSA sample and for estimating the EVPPI. It is for this reason Strong et
al. (2014) outline a second non-parametric regression method that enables more efficient
calculations when there are multiple interacting parameters of interest [215].

Gaussian Process

As P increases and/or a large number of interactions between the parameters are included, the
GAM becomes increasingly impractical. In this case Gaussian Process (GP) regression may
be preferable. The basic idea behind a GP regression is the

{
g
(

j,φφφ (1)
)
, . . . ,g

(
j,φφφ (K)

)}
are

assumed to arise from a multivariate normal distribution with a special mean and covariance
structure [127]. Therefore, g( j,φφφ) can be expressed as an (arbitrarily) flexible smooth
function of its inputs: {

g( j,φφφ (1)), . . . ,g( j,φφφ (K))
}
∼ N(Hβββ ,σ2

Σ)

where H is a design matrix, βββ is a vector of the regressors giving the linear relationship
between φφφ and the conditional expectation the NMB, Σ is a correlation matrix, taking a
squared exponential form in Strong et al. (2014), and σ2 a constant [215]. Values of H, βββ

and Σ, giving an appropriate level of accuracy and flexibility for the fitted function can be
found using numerical optimisation or analytical approaches, as explained in more detail in
Strong et al. (2014) [215].

Implementation of Strong et al. (2014)

Both the GAM and GP have reasonable computational cost, akin to calculating the PSA
itself. This is still an improvement on the two-level Monte Carlo method. If P = 1, these
methods can be implemented using the BCEA package in R [15]. This package uses the EVPPI
calculation method from Heath et al. (2016) when P > 1 as its default (explained below) [93].
However, the BCEA package can be used to estimate the EVPPI using GAM as an option [15].
Alternatively, a web-tool has been developed by Strong et al. (2014), Sheffield Accelerated
Value of Information (SAVI), which can carry out these calculations for single and multiple
parameters [211]. To use SAVI, the user is required to provide the output from a PSA and the
variables to include in the EVPPI calculation (φφφ ). The tool calculates the number of ‘knots’,
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interactions between parameters, and the choice of GAM or GP for the user - if P < 5 GAM
is used else GP. However, as the GP method involves inverting a K ×K matrix it uses a
maximum of 7,500 PSA simulations. Additionally, R code for the calculations using these
methods, in the form of a package SAVI, can be downloaded from the SAVI web-page [211].

To summarise, while GAM is the most straightforward, non-parametric regression approach it
is impractical for large P and/or when there are lots of interactions between the parameters. In
this case a GP should be used, requiring user interaction to ensure convergence as explained
by Strong et al. (2014) [215].

Heath et al. (2016)

Heath et al. (2016) use a specific form of GP regression to estimate multi-parameter EVPPI
(P ≥ 2) [93]. Integrated Nested Laplace Approximation (INLA) is used to fit the high-
dimensional GP and is widely used in spatial statistics. It uses the idea that points close to
each other, in a geographical way, are thought to have common features and be influenced by
common factors more than points that are further away from each other. The EVPPI problem
is transformed into a spatial problem by considering the simulated NMBs to be observed at
different points in the parameter space [93]. Fast Bayesian computation methods for spatial
models can be used. However, spatial statistics are restricted to a two-dimensional space, so
the problem needs to be reduced using Principal Fitted Components (PFC).

Computationally, this method has been shown in some cases to be an improvement on the
model proposed by Strong et al. (2014) [93, 215]. However, the authors found a small loss
in accuracy compared to Strong et al. (2014) when φφφ was of high dimension [93, 215]. This
method can be implemented using the BCEA package in R [15]. The main disadvantage of
this approach is it cannot be used to estimate EVPPI when P = 1.

Jalal et al. (2015)

In addition to the methods by Heath et al. (2016) and Strong et al. (2014) using non-
parametric regression, another method has been proposed by Jalal et al. (2015) which can be
used for all dimensions of φφφ [93, 108, 215].

This method is similar to the non-parametric methods. However, it assumes g( j,θθθ) is linear
and that φφφ has a Normal distribution. The relationship between φφφ and the NMB also needs
to be approximately Normal. Thus, it would be preferable to use a non-parametric model
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approach for g( j,θθθ) over this method, such as the methods by Strong et al. (2014) and Heath
et al. (2016) [93, 108, 216].

2.4 The Expected Value of Sample Information

2.4.1 Background and theory

The EVPPI, introduced in Sections 1.1.3 and 2.3, provides an upper bound for the value
of future research for a set of parameters, φφφ , i.e. the value of eliminating all uncertainty
on the parameters in φφφ . However, a study collecting further information on φφφ will have a
finite sample size whereas an infinite sample size is needed to eliminate uncertainty. The
value of conducting a study with a particular design and sample size is presented via the EVSI.

As outlined in Section 1.1.3, let the proposed new study have a sample size of m. Additionally,
assume the CEA has j interventions and the parameters of interest for the proposed study
be φφφ with the set of all uncertain parameters in the CEA, θθθ

(
θθθ =

{
φφφ , φ̄φφ

})
. Let the as yet

unknown data generated from the proposed study be XXX , with observation x of XXX used to gain
information on φφφ . XXX arises from a statistical model with unknown priors, θθθ . Therefore, the
joint distribution of θθθ and XXX is:

p(θθθ ,XXX) = p(XXX |θθθ)p(θθθ)

with the marginal distribution of XXX , the posterior predictive distribution being:

p(XXX) =
∫

p(θθθ ,XXX)dθθθ

The form of the distribution of p(XXX |θθθ) depends on the proposed study design. The EVSI for
XXX is:

EV SIXXX(m) = EXXX

[
max

j
Eθθθ |XXX [NB( j,θθθ)]

]
−max

j
Eθθθ [NB( j,θθθ)] (2.19)

where EXXX is the expectation taken with respect to the posterior predictive distribution of the
future data p(XXX) (i.e. as XXX is unknown, the expectation over all potential values of XXX). Eθθθ |XXX
is the expectation with respect to the updated posterior distribution of θθθ given the ‘future
data’ has been collected.

The expected benefits from the population-level EVSI can be compared to the expected costs
of research. Equation 2.19 presents the EVSI on a per person basis. It can be scaled to a
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population-level value using the methods in Section 2.2.2. Should the EVSI be greater than
the expected costs there is potential value in carrying out the study.

The Expected Net Benefit of Sampling

EVSI calculations can be used as part of an optimisation exercise which aims to find the
optimal sample size for a study by optimising the ENBS over m [2]:

ENBSXXX(m) = popEV SIXXX(m)−Cost(m)

where popEV SIXXX(m) is the population-level EVSI for a proposed study of size m, reducing
uncertainty on parameters φφφ (calculated using the methods of Section 2.2.2 with EVSI used
in place of EVPI) and Cost(m) is the cost of a proposed study of size m. The aim of the
optimisation exercise is to find:

argmax
m

ENBSXXX(m)

The costs of a study include direct study costs and opportunity costs. In terms of direct costs,
there are fixed costs of running a study such as the cost of a study manager and the cost of
equipment. Additionally, marginal costs are associated with each participant in the study,
such as device costs, hospital costs, or consultation costs. The financial costs of a study can
vary due to their nature and design, such as the length of follow-up.

Opportunity costs of further research are more difficult to quantify. Ades et al. (2004)
outline the main types of opportunity costs associated with additional research [2]. Firstly,
dependent on the intervention and disease area those involved in the additional research may
be unable to benefit from the outcome of this research, meaning a trade-off needs to be made.
Increasing the proposed study size would provide more information by reducing uncertainty
around the optimal treatment. However, the population who could benefit from this research
may be reduced. Similarly, a longer study follow-up delays the presentation of the results
reducing the population who can benefit from the study.

While further research is being carried out, those patients not involved in the study often
receive the current standard treatment [37]. This may not be the optimal treatment under
the CEA due to concerns about irreversibility of treatment decisions. For example, if by
implementing a new intervention there is a large sunk cost it is unlikely hospitals would be
willing (or financially able) to revert back to the comparator should this be suggested after
further research. This means current patients not involved in the proposed study will forgo
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the expected additional benefit from the a priori optimal treatment. McKenna and Claxton
(2011) outline calculations for costs of delaying implementation for both those in and outside
the proposed study [137].

Since repeated EVSI and cost calculations are needed for optimisation, efficient calculation
methods for EVSI are useful. As with EVPPI, a number of methods for improving the
efficiency of EVSI calculations have been recently published. The focus of this work is on
the calculation of EVSI and not the costs and resulting ENBS calculations.

2.4.2 Methods of calculation

This section outlines some recent methods for estimating EVSI. This includes the ‘traditional’
Monte Carlo method and special cases where approximations can be made. A number of
developments to improve the efficiency of the calculations are also presented. This review is
not meant to be comprehensive, its purpose is to highlight the breadth of recently developed
methods. A summary of methods in terms of their populations and their relative merits are
presented in Table 2.2.

Monte Carlo methods

Similar to EVPPI, the traditional method for estimating EVSI is via a two-level Monte Carlo
simulation. Suppose there are N ‘outer’ and L ‘inner’ simulations, where N ×L = K. In the
nth simulation, x(n), the data which would be collected by the proposed study is generated by
generating a sample, say θθθ

(n), from p(θθθ) (the prior distribution of the parameters θθθ under
current information) and then sampling x(n) from p(X |θθθ = θθθ

(n)) where θθθ
(n) is the nth sample

from p(θθθ) (the sampling distribution of the data from the proposed new study). The sample
prior, p(θθθ (n)), is combined with the likelihood, p(x(n)|θθθ), to obtain the posterior, p(θθθ |x(n)).
Let θθθ

(n,l) be samples from the posterior distribution of θθθ |x(n). If the posterior distribution
does not take a closed form then the Monte Carlo EVSI estimator is [216]:

ÊV SIφφφ =
1
N

N

∑
n=1

max
j

1
L

L

∑
l=1

NB
(

j,θθθ (n,l)
)
−max

j

1
K

K

∑
k=1

NB
(

j,θθθ (k)
)

(2.20)

=
1
N

N

∑
n=1

[
max

j

1
L

L

∑
l=1

NB
(

j,θθθ (n,l)
)
− 1

L

L

∑
l=1

NB
(

j,θθθ (n,l)
)]

(2.21)

As with EVPPI, the two-level Monte Carlo method of calculation is computationally intensive.
This is one reason why EVSI calculations are rarely carried out, especially when they are
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required to be performed repeatedly to find optimal sample sizes and/or for different study
designs. A further limitation is in obtaining θθθ

(n,l) for the ‘inner loop’. If p(XXX |θθθ) and p(θθθ)
are not conjugate, methods such as MCMC need to be used which further increases the user
and computational burden.

Ades et al. (2004)

Ades et al. (2004) simplify the two-level Monte Carlo method for EVSI for special cases [2].
When prior independence exists between φφφ and φ̄φφ (where φφφ is the set of parameters in θθθ the
proposed study will collect information on) the calculations can be simplified to improve the
efficiency of estimating the conditional expectation, Eθθθ |XXX (Equation 2.19).

When NB( j,θθθ) is linear in φφφ and φ̄φφ and there is no correlation between any of the elements
in φφφ and φ̄φφ , the prior means for φ̄φφ and the posterior means for φφφ (i.e. the mean after the
proposed data has been collected) can be used in the inner-step of the Monte Carlo estimate:

E
θθθ |X (k) [NB( j,θθθ)] = NB

(
j,E(φφφ |X (k)),E(φ̄φφ)

)
This can also be used when NB( j,θθθ) contains products of independent elements of φφφ and
there is no correlation between elements of θθθ . These are the only situations that fully avoid
the inner Monte Carlo simulation.

When NB( j,θθθ) is linear in φφφ and non-linear in φ̄φφ , the inner Monte Carlo estimation can
be simplified using a nested Monte Carlo integration over φ̄φφ (i.e. drawing from the prior
distributions of φ̄φφ and using the posterior means for φφφ ):

E
θθθ |X (k) [NB( j,θθθ)] = E

φ̄φφ

[
NB
(

j,E(φφφ |XXX (k)), φ̄φφ
)]

The following simplifications require the mean and variance of the posterior distributions
(θθθ |X) to be available in closed form. When NB( j,θθθ) is non-linear in φφφ and linear in φ̄φφ , a
nested Monte Carlo integration over the posterior distribution φφφ |XXX can be used, with the prior
means of φ̄φφ used to obtain an approximate inner Monte Carlo expectation:

E
θθθ |XXX (k) [NB( j,θθθ)] = E

φφφ |X (k)

[
NB( j,φφφ ,E(φ̄φφ))

]
If NB( j,θθθ) is non-linear in φφφ and φ̄φφ , Monte Carlo integrations need to be carried out using
the posterior distribution of φφφ |X and the prior distribution of φ̄φφ and so no simplification of
the ‘traditional’ two-level Monte Carlo sampling method is possible.
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A major drawback to these methods is that they require no correlation between φφφ and φ̄φφ .
Additionally, the priors for θθθ need to have parametric distributions as conjugacy is required
to ensure a closed form.

Brennan and Kharroubi (2007)

Brennan and Kharroubi (2007) presented a form of Laplace approximation to replace the
Bayesian updating and the inner Monte Carlo integration step in the two-level Monte Carlo
sampling method [23]. This improves the efficiency of the calculation, compared to the
two-level Monte Carlo sampling method if the posterior distribution of φφφ can be expressed in
closed form. If this is not possible, numerical optimisation methods can be used but these
increase the calculation time. For this method to be used, the distributions of θθθ need to be
smooth, differentiable, and uni-modal, meaning the priors cannot have a discrete or empirical
distribution.

Menzies (2015)

Menzies (2015) aimed to improve the efficiency of calculating the inner expectation, EXXX |θθθ
[138]. Using the PSA samples from the prior distribution, p(θθθ) and Bayes Theorem, a
numerical approximation of p(θθθ |XXX) can be obtained by reweighting the parameter sets
according to p(XXX |θθθ). Assuming K PSA samples and values of p(θθθ) and NB( j,θθθ) for each
k:

Eθ |X [NB( j,θθθ)] = Eθθθ

[
NB( j,θθθ)p(X |θθθ)

p(XXX)

]
∼=

K

∑
k=1

NB
(

j,θθθ (k)
)

wk(X)

where wk(X) =
p(XXX |θθθ k)

∑
K
k=1 p(XXX |θθθ k)

Estimating Eθθθ |XXX NB( j,θθθ) by re-sampling from the K samples with wk(XXX) as the sampling
weights is equivalent to Rubin’s sample importance i.e. sampling approach for posterior
distributions [185]. Two algorithms are presented. The first is simple to implement, but as
evidence from the study increases the likelihood is more concentrated in a small region of
parameter space leading to many weights close to zero. This reduces the effective sample size
leading to over-fitting and upwards bias. This is equivalent to having an inadequate number
of ‘inner’ samples in the two-level Monte Carlo sampling method. The second algorithm is
more complex, using smoothing techniques to obtain a better estimate for Eθθθ |XXX [NB( j,θθθ)]. It
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is a generalisation of the EVPPI method by Strong et al. (2014) [215].

The advantage of the Menzies (2015) method is, as with the other approximation methods,
it uses PSA output. Additionally, no requirements (such as conjugacy) are required for the
prior and likelihood. However, while the first algorithm is simpler to implement it produces
biased estimates. The second algorithm, while having minimal bias and increased accuracy,
can be difficult to implement in practice due to requiring more user input.

Strong et al. (2015)

Strong et al. (2015) present a method for estimating EVSI similar to the EVPPI calculation
method in Strong et al. (2014) (Section 2.3.2) [215, 216]. This uses PSA output and non-
parametric regression [215, 216]. Briefly, to calculate the EVSI for collecting information XXX
using a PSA sample

(
θθθ
(1), . . . ,θθθ (K)

)
of size K:

1. A data sample, x(k), needs to be generated from p
(

XXX |θθθ (k)
)

for each k = 1, . . . ,K
producing a sample from the posterior predictive distribution.

2. The data from the study, x, can be a scalar or a vector and may provide information on
one or more parameter(s), φφφ . A low-dimensional sufficient statistic, T (x) (which can
be one-dimensional or multi-dimensional) is calculated and includes all the information
gained from the new study about the parameter(s) φφφ . A sufficient statistic contains all
information required to compute any estimate of the parameter [74]. Formally, t = T (x)
is defined to be a sufficient statistic for parameters φφφ if the probability distribution of
xxx, given t = T (x) does not depend on φφφ [74]. So:

P(x|t,φφφ) = P(x|t) (2.22)

For example, the sample mean, the sample odds ratio, or parameters of a probability
distribution estimated from the proposed study could all be sufficient statistics [216].

3. Using a GAM, the PSA samples NB( j,θθθ (k)) can be regressed on T (x(k)), for each
intervention (rather than φφφ

(k) in the EVPPI calculation) [215]. This calculation method
can be simplified by using INB as opposed to NMB in the regression, reducing the
number of regressions needed. The fitted values from this regression, ĝ( j,T (x)), can
be used in the EVSI calculation:

ÊV SI =
1
K

K

∑
k=1

max
j

ĝ
(

j,T (x(k))
)
−max

j

1
K

K

∑
k=1

ĝ
(

j,T (x(k))
)

(2.23)
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As with other methods the PSA output is required, which is readily available. This method
is complementary to the Strong et al. (2014) EVPPI estimation, with both using GAM
regression [215]. The main drawback is that it can be difficult to generate the sampled
datasets and to find the required summary statistic for complex study designs.

Jalal et al. (2015)

Jalal et al. (2015) extend their approach for calculating EVPPI to estimate EVSI [108]. As
when calculating EVPPI (Section 2.3.2) a linear regression of the INB on the φφφ from the
PSA output. From this, a value for the prior mean and variance of INB explained by φφφ can
be calculated.

Assuming the INB is normally distributed, the pre-posterior variance of INB can be estimated.
The pre-posterior distribution is the distribution of the posterior mean INB which has been
derived from the prior distribution of the INBs and the additional data from the proposed
study generated from the prior, i.e. it is the prior distribution of the posterior mean INB
before the data is collected. The authors present R code for calculation of the EVSI. This
method has the same advantages and disadvantages as the associated EVPPI calculation
presented in Section 2.3.2.

Heath et al. (2017)

Heath et al. (2017a, 2017b) outline a method to implement EVSI calculations using moment-
matching to estimate the pre-posterior mean, EXXX |θθθ in Equation 2.19 [92, 94]. It uses standard
quantities which can be easily estimated from a PSA: the mean, µθθθ , and variance, σ2

θθθ
, of

the INB(θθθ). Before the EVSI is estimated, the EVPPI should be estimated to ensure further
research on φφφ may be valuable [229]. The fitted values from a non-parametric regression of

INB(θθθ) on φφφ , ÎNB
(k)
φφφ should therefore be readily available. These can be calculated using

the methods of Strong et al. (2014) and Heath et al. (2016), for example [93, 215]. The final
quantity required is Q > 30 estimates of the variance of the posterior INB after learning XXX ,
computed using Q samples of XXX , σ2

q , q = 1, . . . ,Q. The average posterior variance across
the Q samples (σ2

XXX ) is estimated as the sample mean of σ2
q . This value depends on both the

variance of the posterior INB (after learning X estimated by the Q samples) and the prior
variance of the INB.

Using methods of moments, the fitted values of the INB can be rescaled:
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ÎNB
∗
φφφ =

 ÎNBφφφ −µθθθ√
σ2

φφφ

√σ2
θθθ
−σ2

XXX +µθθθ

producing K rescaled INBφ values which can be used to estimate the EVSI:

ÊV SI =
1
K

K

∑
k=1

max
{

0, INB∗
φφφ k

}
−max{0,µµµθθθ}

This method is computationally efficient. The only parameter that needs to be calculated
is the posterior variance for the INB, all other parameters should have been calculated in
previous analyses. R code for this method is available [92, 95]. However, the authors found
this method is less reliable for smaller proposed study sizes. Additionally, there is a trade-off
in the value of Q used, increasing Q provides a more accurate EVSI estimate, but marginally
increases computational time. The authors found method is not as reliable as when the EVSI
is small, but as EVSI should only be estimated for parameters where EVPPI was sufficiently
large, this should not be an issue in practice.

Jalal and Alarid-Escudero (2018)

As with other methods, Jalal and Alarid-Escudero (2018) simplify Eθθθ |XXX [NB( j,θθθ)] using the
output from a PSA [107]. A Gaussian approximation is used to compute the pre-posterior
distribution of φφφ |XXX . The EVSI is re-expressed as the expected opportunity loss from choos-
ing a suboptimal decision and a linear meta-model is used to compute the EVSI given the
pre-posterior distribution. However, if the relationship between the loss and φφφ is not linear
splines can be used.

The advantages of this method are the computational gains compared to two-level Monte
Carlo estimation. Further, no distributional form is directly required for the prior or likelihood;
φφφ can contain correlated or interacting parameters. However, it relies on computing a ‘prior
sample size’ (n0) to reflect the strength of the prior information which can be difficult [108].
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2.5 The standard error of Expected Value of Perfect Par-
tial Information estimates

2.5.1 The standard error for the Expected Value of Perfect Partial In-
formation when estimated using regression based methods (Strong
et al. (2014))

Uncertainty in the estimation of EVPPI when using non-parametric regression can arise from
both Monte Carlo error (due to the limited number of PSA samples) and uncertainty in the
estimation of the coefficients in the regression model. A method to calculate the error in
the EVPPI estimate associated with the estimation of the coefficients in the non-parametric
regression, and therefore the GAM, is given in the online Appendix of Strong et al. (2014),
and briefly summarised below [215].

The GAM, for an intervention j, can be expressed as a linear parametric model with coeffi-
cients βββ j and a design matrix XXX∗ which maps the estimates of the model coefficients β̂ββ j on

to the fitted values ĝ =
{

ĝ
(

j,φφφ (1)
)
, . . . , ĝ

(
j,φφφ (K)

)}
i.e.:

ĝ j = XXX∗
j β̂ββ j

The estimated covariance for the sampling distribution of ĝ under repeated sampling of a
PSA dataset of size K, g j|y j, where y j = NMB( j,θθθ) can be defined as:

V̂j = XXX∗
jVβββ j

XXX∗T

j

where Vβββ j
is the covariance matrix from β̂ββ j. The joint distribution for β̂ββ j is asymptotically

multivariate normal, so alternative plausible values for β̂ββ j, and thus ĝ j can be generated via:

g j|y j ∼ N(ĝ j,V̂j)

For each j, a large number of values (S) of g j|y j can be sampled g̃(s)j , s = 1, . . . ,S.

Denote the losses for PSA sample k, by:

Lks = L(θθθ k,βββ s) = max
j

[
g̃ j(θθθ k,βββ s)

]
−max

j

[
1
K ∑

k
g̃ j(θθθ k,βββ s)

]
For each s = 1, . . . ,S an alternative plausible value of the EVPPI is:
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EV PPIs =
1
K ∑

k
L(θθθ k,βββ s)

Thus, the standard error in the EVPPI estimate resulting from uncertainty about the GAM
coefficients, seβββ (EV PPIs), can be estimated as the empirical standard deviation of the S
values of EV PPIs.

2.5.2 Extension of the Strong et al. (2014) standard error calculation
to include Monte Carlo error

Let Ê, the EVPPI estimate with K PSA samples (Equation 2.12) where β̂ββ is the estimated
model coefficients of the GAM, be expressed as:

Ê =
1
K ∑

k
L
(

θθθ k, β̂ββ
)

(2.24)

Error in this estimate arises not only from uncertainty about β̂ββ , but also from Monte Carlo
error due to the limited number of PSA samples, K. Section 2.2.3 shows the MCSE of
the expectation of a random variable based on K Monte Carlo draws is s√

K
where s is the

standard deviation of the random variable. We want to find the MCSE from Ê, which can be
estimated using:

MCVar
(
Ê
)
=

1
K2 ×K × var

(
L
(

θθθ , β̂ββ
))

=
1
K

var
(

L
(

θθθ , β̂ββ
))

where L
(

θθθ , β̂ββ
)

is the loss. var
(

L
(

θθθ , β̂ββ
))

can be estimated by Monte Carlo simulation as:

v̂ar
(

L
(

θθθ , β̂ββ
))

=
1
K

K

∑
k=1

(
L
(

θθθ k, β̂ββ
)
− Ê

)2

Therefore, we estimate:

MCVar
(
Ê
)
=

1
K2

K

∑
k=1

(
L
(

θθθ k, β̂ββ
)
− Ê

)2

and thus, the MCSE can be expressed as:

seK(ÊV PPI) =
√

MCVar
(
Ê
)
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The two sources of error can be combined to give a total value for the standard error in the
EVPPI estimate due to uncertainty in the estimation of the model coefficients in the GAM
procedure and the limited number of PSA samples:

se
(

Ê
)
=

√
se2

K

(
Ê
)
+ se2

βββ

(
Ê
)

where seβββ

(
Ê
)

is the standard error of the estimate resulting from the uncertainty about the
GAM coefficients (Section 2.5.1). The extra error due to the inclusion of Monte Carlo error
can be expressed as:

se
(

Ê
)
− seβ

(
Ê
)

2.6 Exploring the population value of perfect information
and their errors using the case study cost-effectiveness
analysis

The Monte Carlo error for the EVPI has been calculated and used to determine the appropriate
optimal number of PSA samples required for the case study CEA (Section 1.3) for use in the
rest of the thesis [198]. Additionally, an estimate of the population-level EVPI for the case
study CEA is presented and the impact of uncertainty around the epidemiological quantities
required in this calculation have been investigated. The EVPPI for a number of parameters in
the case study CEA are presented with standard errors determined by the methods in Section
2.5.

2.6.1 Using Monte Carlo error to calculate the optimal number of sim-
ulations for estimating the Expected Value of Perfect Information

To ensure the number of PSA samples is sufficient to enable reasonable conclusions to be
drawn, the EVPI for a number of different PSA sample sizes, along with associated errors are
presented for the case study CEA (Table 2.3). The expected loss, E(L), with a 95% interval,
calculated as E(L)±1.96× s.e are shown in Figure 2.2.

As the number of PSA samples increases the MCSE and the width of the 95% interval for
the MCSE decreases. Typically, PSAs use 1,000 simulations [91]. On this basis, the NMB
and EVPI would be accurate to the nearest £200. The INB between MADs and CPAP in the
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Table 2.3 The Monte Carlo standard error and 95% interval for the expected loss1 for
different sample sizes for the case study cost-effectiveness analysis

Sample
Size

E(L) SD(L) MCSE 95%
Interval

Interval
Width2

(K) (£) (£) (£) (£) (£)

100 564 1,590 159.0 (252, 876) 623
1,000 528 1,593 50.4 (429, 627) 198
10,000 498 1,530 15.3 (468, 528) 60
100,000 502 1,547 4.9 (492, 512) 19
500,000 506 1,547 2.2 (502, 510) 9
1,000,000 505 1,546 1.5 (502, 508) 6

1The expected opportunity loss is equivalent to the EVPI (Section 2.2.1).
2 ≈ 4×MCSE

Figure 2.2 The expected loss and its 95% interval for different sample sizes in the case study
cost-effectiveness analysis
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case study CEA was £281 (Table 1.2) [198]. This result with K = 1,000 indicates a high
level of uncertainty as to the optimal treatment. Whereas, if K = 500,000 the result would
be accurate to the nearest £10, indicating a high degree of confidence that CPAP was the
optimal treatment.

To judge the EVPI to a suitable degree of accuracy for this analysis, and similar analyses
later in the thesis, 100,000 PSA samples appear to be sufficient and gives the EVPI ±£10.
This took approximately 90 minutes using four parallel processors. There is a trade-off
between the extra computation time and the increase in accuracy from more computation.
For example, increasing the number of simulations from 100,000 to 500,000 increases the
accuracy of EVPI, from the nearest ±£10 to the nearest ±£5 whilst taking five times longer
to compute.

2.6.2 The Expected Value of Perfect Partial Information for uncertain
parameters in the case study

As discussed in Section 2.5, the standard error associated with the EVPPI estimated using
non-parametric regression can be calculated. Section 2.6.1 found the number of PSA samples
impacts on the accuracy of the EVPI.

The extension of the standard error calculation method in Strong et al. (2014) (Section 2.5)
is applied to the case study CEA. Figure 2.3 shows the estimates of the EVPPI for a selection
of uncertain parameters in the CEA model whose EVPPI was estimated to be substantially
greater than zero. The parameter uncertainty appears to come from a small subset of the
parameters.

Figure 2.4 presents the impact the PSA sample size has on the estimates of the EVPPI for the
parameters relating to the treatment effect in the case study, the impact of the interventions
on the ESS and SBP. As the number of PSA samples increases the EVPPI estimates stabilise.

There appears to be significant value in collecting more information on the impact of both
MADs and CPAP on the value of the ESS (Figure 2.4). There is less value in collecting
information on the effect of the interventions on SBP. To assess whether these EVPPI val-
ues translate into real value of future research, these values need to be transformed into
population-level values. The EVSI would also need to be estimated and compared to the
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Figure 2.3 The results of the EVPPI estimates for a selection of uncertain parameters in the
case study cost-effectiveness analysis1 using 100,000 PSA samples

1: The EVPI is £502.

expected costs of future research.

The error associated with the EVPPI estimate for each parameter is presented in Figure
2.5 for a range of PSA sample sizes. The standard error is substantial for PSA samples of
less than 10,000. As expected, as the number of PSA samples increases the standard error
decreases. The proportion of the error due to Monte Carlo error, even for PSA samples
of size 1,000, is small compared to the error due to the GAM approximation alone. This
relationship is similar across all sets of parameters.

2.6.3 The population-level Expected Value of Perfect Information for
the case study

From Section 2.6.1, using K = 100,000 the EVPI estimate for the case study CEA was
£502±10. However, this is a per person value. To calculate the upper bound for the value of
further research the population-level EVPI needs to be calculated (Section 2.2.2).

OSAHS is often undiagnosed leading to difficulties in estimating its prevalence and incidence.
The TOMADO report states 2-7% of the population suffer from OSAHS [173, 198]. Lee
et al. (2008) summarised three papers on the population incidence of sleep apnoea, each
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Figure 2.4 The results of the EVPPI estimates for parameters in the case study
cost-effectiveness analysis relating to treatment effect for a range of PSA simulation sizes

Figure 2.5 The results of the standard error calculation for the EVPPI for various parameters
relating to treatment effect in the case study cost-effectiveness analysis incorporating error
due to the GAM and Monte Carlo error and presented for a range of PSA simulation sizes
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finding the incidence of OSAHS was approximately 2% per annum [122]. However, Young
et al. (1997) found over 80% of those with moderate to severe OSAHS and over 90% of
those with mild OSAHS were undiagnosed [256].

To calculate the population-level EVPI, the population of interest was assumed to be those
aged 50-59 in the UK, approximately 3.8 million in mid 2013 (Office for National Statis-
tics mid 2013 year estimates) corresponding to the age of the cohort entering the CEA
model [156]. The estimates of incidence (2% per annum) and prevalence (5%) were
taken from population based studies [122, 198]. However, only those with diagnosed
OSAHS can benefit from further research. An assumption of a diagnosis rate (Dt) of
10% remaining constant over time has been made. In lieu of any disease specific infor-
mation it has been assumed the take-up rate for the interventions is 100%. A time hori-
zon (T ) of 20 years was assumed for MADs and CPAP allowing for future technology
development, enhancement, and future improvements in diagnosis rates. The estimated
population-level EVPI (popEVPI) (in £ million) is calculated using Equation 2.5 with
I0 the prevalence of OSAHS = 3.8× 0.05, It the annual incidence of OSAHS = 0.02× 3.8
per annum, i interest rate for discounting= 3.5%, Dt diagnosis rate= 0.1; Ut take-up rate=
1, T time horizon= 20 years, and per person EVPI= 502 (Table 2.3 with 100,000 PSA sam-
ples):

popEV PI = EV PI ×3.8×

[
0.05+0.02×

20

∑
t=1

0.1
1.035t

]
= £63.76 million.

This assumes only 10% of OSAHS cases are diagnosed and those diagnosed take-up their
treatment. Figure 2.6 shows the impact of changing the values for time horizon, take-up rate,
diagnosis rate, population growth, and prevalence on population EVPI. It is clear that even a
modest change in any of the parameters can cause this value to change significantly.

As EVPPI and EVSI are both calculated on a per person basis they can be scaled up to
population values in the same way. The EVSI, in particular, would need to be compared to
the expected costs of research to make the decision on further research. It is important to
reflect uncertainty around the population who could benefit from the research. Failure to do
this could mean wrong decisions on further research would be made.
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Figure 2.6 Population-level EVPI values for a number of different parameters used
compared to the baseline population EVPI value1,2

1 Using the base case assuming a per person EVPI of £506, a prevalence rate of 5%, an incidence rate of 2%
per annum, a population of 3.6 million, a discount rate of 3.5%, and a 20 year time horizon
2 The horizontal line represents the base case scenario for the population-level EVPI

The impact of the population size on the standard error associated with the Expected
Value of Perfect Information

As EVPI values were calculated on a per person basis, the MCSEs associated with the EVPI
(Section 2.6.1) are also on a per person basis. It is the MCSE associated with population-level
EVPI that directly indicates uncertainty on undertaking further research. Therefore, using
the case study CEA and the base case assumptions for population-level EVPI, the impact the
number of PSA samples has on population-level EVPI has been explored.

Let PT be the population set to benefit from the future research, where:

PT =

[
I0 ×U0 +

T

∑
i=1

It ×Ut × (1+ i)−t

]
×P

i.e. Equation 2.4 assuming EVPI is £1 per person. Assuming all individuals are independent,
the population expected opportunity loss is PT ×Eθθθ [L(θθθ)]. Similarly, the MCSE of the
population expected loss, sp, is:

sp =
√

PT s
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Table 2.4 Monte Carlo standard error and 95% interval for the population expected loss1 for
different numbers of PSA samples for the case study cost-effectiveness analysis

PSA Size E(L) SD(L) MCSE 95%
Interval

Interval
Width2

(K) (£m) (£m) (£m) (£m) (£m)

100 72 566 56.6 (-39, 183) 222
1,000 67 569 18.0 (32, 103) 71
10,000 63 550 5.5 (52, 74) 22
100,000 64 538 1.7 (61, 67) 7
500,000 64 566 0.8 (62, 66) 3
1,000,000 64 543 0.5 (63, 65) 2

1The expected opportunity loss is equivalent to the population EVPI.
2 ≈ 4×MCSE

where s is the MCSE calculated in Table 2.3. Table 2.4 shows the results of the MCSE for
the population of interest. As expected, as the number of PSA samples increases, the width
of the 95% interval for the population-level EVPI decreases. However, even with 1,000,000
PSA samples, the value of the population-level EVPI is only known to the nearest £2 million.
This figure is large enough to sway the decision of whether further information should be
collected. Further, if this value is combined with uncertainty around the epidemiological
quantities required to convert from individual to population-level EVPI, where, for example
a increase in the diagnosis rate to 20% leads the per person EVPI to approximately double, it
is clear the amount of uncertainty on whether future research is viable is large.

2.7 Discussion

Value of information measures can be useful in prioritising further research. However, they
are not widely used in practice [207]. This chapter extends on the main value of informa-
tion quantities - EVPI, EVPPI and EVSI introduced in Section 1.1.3. A number of recent
developments in calculation methods have been described, all of which aim to increase the
speed of the calculation of EVPPI and EVSI. This chapter has also shown the importance
of an adequate number of PSA samples. An insufficient number of PSA samples can lead
to errors large enough to alter the decision about the optimal treatment and whether further
information should be collected.
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Estimating the size of the population who could benefit from additional research has high-
lighted the importance of presenting population-level estimates of value of information
quantities and of acknowledging uncertainty. For diseases with a large prevalence, such as
OSAHS, modest per person values can translate to substantial population-level values. When
scaling values up to a population-level, it is important to correctly estimate the time horizon,
diagnosis rate, and uptake of the interventions and acknowledge their uncertainty. Assuming
100% uptake and full diagnosis can lead to significant over-estimation of the population-level
EVPI.

2.7.1 Limitations of the current methods

Value of information quantities were not found to be widely used in practice due to various
challenges in computation and interpretation [20]. Bindels et al. (2016) carried out focus
groups in Holland to find out what researchers, policy makers, and pharmaceutical companies
thought about value of information and their perceived barriers to its use [20]. All participants
agreed value of information quantities were useful to guide further research. However, the
main barriers to implementation were that: EVSI may suggest infeasible research designs
are optimal, it is not easy to incorporate all types of structural uncertainties in the estimates,
the quantities can be complex to calculate, and policy makers can have a limited knowledge
on the interpretation of the results. Bindels et al. (2016) recommended guidelines should be
developed to assist researchers [20].

Despite the wealth of new literature on calculating EVPPI and EVSI quantities, not all
methods are simple to understand or calculate. A number of the methods outlined can be
implemented using ready-made R packages or Excel workbooks. The BCEA package can
calculate the EVPPI for a single parameter using Strong et al. (2014) and for multiple
parameters using Heath et al. (2016) [15, 93, 215]. Similarly, the Strong et al. (2014) method
can be calculated using an R package, SAVI, and a web-based app [211, 216]. Wilson (2014)
provided access to Excel workbooks to help with analytical calculations of EVPI, EVPPI and
EVSI [251]. At present, there is little by the way of readily available code for calculating
EVSI, however Heath et al. (2017) are in the process of developing this for their work [95].
It is hoped these interfaces and easily accessible functions will lead to an increase in the
application of value of information methods. However, it is important and advisable that
these methods are used by practitioners who understand their limitations. This is fundamental
for the transparency of calculations provided to policy makers [240].
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Many of the EVSI calculation methods presented are very recent, so little work compares
them. As with EVPPI, all new EVSI methodologies were published alongside comparisons
to the two-level Monte Carlo method and all found their methods performed comparably in
terms of the size of the estimates but with improvements in the speed of calculations. A study
comparing the EVSI estimation methods to one another, as for EVPPI in Heath et al. (2016),
would be useful to help guide practitioners on the best method to use [93]. It is understood
that this is in progress.

A full value of information analysis is not always required [229]. The EVPI, which is easy
to calculate non-parametrically, should be calculated routinely. If this and its associated
population-level EVPI are low we can be confident there is little value in further research. In
this case calculating EVPPI and EVSI would serve little purpose other than adding to the
computational burden.

Conversely, should the EVPI indicate a substantial upper bound for the value of future
research, researchers should calculate the EVPPI for the (groups of) parameter(s) of interest.
Knowledge of the disease area and potential study designs should be used to calculate EVPPI
for clinically relevant parameter(s) which are feasible to collect in a single study, as opposed
to data dredging for potential study designs. This will ensure the calculation burden of
EVPPI is restricted to information that could be collected in practice. The EVPPI provides
an upper bound for the elimination of uncertainty so can be used to guide if and for which
parameters the EVSI should be calculated. Only if the EVPPI was found to be substantial
should the EVSI be calculated. It is this form of incremental analysis Heath et al. (2017)
use to improve the efficiency of their EVSI calculation method [95]. Implementing value of
information analyses in this hierarchical manner ensures researchers’ time is appropriately
used and prevents calculations with no value from being carried out.

The value of information methods presented provide the value of resolving uncertainty in the
parameters, θθθ , from the CEA model. They do not, in their current form, quantify the value
of eliminating structural uncertainty. Should there be questions around the uncertainty in the
model structure this would not be reflected. As an example, in the case study CEA, a causal
relationship is assumed between the impact of treatment and the CVD risk. However, the
exact nature of this relationship is unknown and this relationship is modelled through the
impact of treatment on SBP. Should further causal mechanisms be identified, the structure of
the CEA model may need to be updated. Value of information measures would not be able to
quantify the value of collecting information on this causal relationship without updating the
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model structure.

Some theoretical literature is available on incorporating structural uncertainty in value
of information calculations. Jackson et al. (2011) showed structural uncertainty can be
parametrised using elicitation of weakly informed parameters or model averaging [106].
Strong and Oakley (2014a) presented a method which allows for structural uncertainty to
be parametrised in a CEA by adding extra parameters, known as discrepancy parameters,
on which value of information quantities can be estimated [213]. Price et al. (2011) found
through a model averaging approach that EVPI can be sensitive to structural assumptions of
the CEA [172]. Despite these methods being present they are not widely used, with structural
uncertainty often ignored.

The case study CEA (Section 1.3) does not allow for value of information quantities to be
calculated for quantities currently expressed as point estimates, such as adherence to inter-
ventions. Sharples et al. (2014) acknowledged that adherence to interventions is uncertain,
but due to a lack of data point estimates were used. This appears to be a contradiction, as
including a value as a point estimate is the same as stating the value is known with certainty.
Chapter 3 explores modelling adherence and calculating the value of collecting further infor-
mation on adherence to interventions. Similarly, the value of collecting further information
on heterogeneity in the CEA population cannot be quantified using the current case study
CEA and value of information methods. Chapters 4 and 5 expand the case study CEA model
and value of information methods to enable these calculations.

2.7.2 Future research priorities

In recent years, a wealth of literature has been published to improve the speed of calculating
value of information quantities. However, as outlined in Welton and Thom (2015) being able
to calculate these quantities efficiently is not sufficient to ensure the calculation methods
are applied [240]. As mentioned previously, the current methods do not take into account
structural uncertainty within the CEA. Further research on how the quantities could be
estimated for structural uncertainty would be useful. This would help give a rounded view
on the value of collecting further information for all areas of uncertainty.

As mentioned in Bindels et al. (2016) and Welton and Thom (2015), a barrier to value of
information being routinely presented is whether policy makers have sufficient knowledge
to interpret them [20, 240]. Therefore, education of policy makers and guidelines as to
when value of information quantities should be calculated would assist in this. For example,
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thresholds in terms of population-level EVPI and EVPPI to indicate further information
could be sought.

For EVSI to be used in practice a comparison to the costs of the research needs to be carried
out. Current methodological work has focussed on the estimation of EVSI. Methods to
estimate the costs of research and the impact of delaying treatment decisions have been
neglected. These form an important role in deciding future research priorities and should
receive further attention. Brennan and Kharroubhi (2007) note costs and health benefits
of a study may be broader than those included in the EVPPI and EVSI calculations so the
estimated quantities may be under-estimated [23]. For example, a study of a different popula-
tion to the target population could still be useful, perhaps through inclusion in a meta-analysis.

Calculating the standard errors for the Strong et al. (2014, 2015) EVPPI estimates in the
case study has shown the importance of the PSA sample size [215, 216]. PSA sample sizes
are often chosen arbitrarily with many HTA submissions using 1,000 PSA samples [91].
NICE guidelines state models should be run until convergence with no formal definition of
convergence defined [150]. Further work on what is an appropriate level of accuracy would
help researchers ensure their results are sufficiently accurate and prevent incorrect treatment
decisions being made. As a starting point, we recommend researchers present their results
rounded to their degree of accuracy. It has been shown (Sections 2.2.3 and 2.5) that the
MCSE for the EVPI and the EVPPI using non-parametric regression methods are simple to
calculate. Presenting either the error associated with the PSA sample size or rounding the
results to the appropriate degree of accuracy would be a simple way to present the uncertainty.
A large amount of uncertainty is less problematic if the CEA indicates an intervention is very
likely/unlikely to be cost-effective. For example, should an ICER be around £250,000 per
QALY gained to the nearest £10,000 the decision around cost-effectiveness is unlikely to
change with further PSA samples. However, should an ICER be £20,000 per QALY gained to
the same degree of accuracy, further PSA samples could alter the optimal treatment decision.

Section 2.6.3 showed the population-level EVPI is sensitive to quantities such as incidence,
prevalence, time horizon, uptake, and diagnosis rates used in scaling the per person EVPIs to
a population-level. This can lead to incorrect decisions being made on undertaking future
research. Grimm et al. (2015) found many studies did not present population-level EVPI and
those that did rarely presented uncertainty around this value [86]. A probabilistic approach
to calculating population-level EVPI would be a useful addition to the researchers’ toolkit. It
would enable distributions to be placed around those parameters where there is uncertainty,
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and enable a range of population-level EVPIs to be calculated. Additionally, the value of
collecting more information on these parameters could be estimated.

2.7.3 Value of information in the rest of the thesis

One of the aims of this thesis is to identify areas of uncertainty where their reduction would
be of particular use (Section 1.4). Therefore, applications of the value of information meth-
ods presented in this chapter are used throughout the thesis applied to the case study CEA
(Section 1.3 and Appendix B) [198].

Throughout this thesis, the Strong et al. (2014) EVPPI and the Strong et al. (2015) EVSI meth-
ods are used [215, 216]. These methods have been chosen for a number of reasons. For the
EVPPI, this method can be implemented for both single and multiple parameters of interest.
They are simple to implement with access to the R code underlying these methods available
enabling easier adaptation to the situations considered throughout the thesis. As outlined in
Section 2.5, the standard error due to the uncertainty in the coefficients of the non-parametric
regression model and the limited number of PSA samples can be calculated. As the methods
for EVPPI and EVSI published by Strong et al. (2014, 2015) are complementary, both using
GAM non-parametric regression, concise code could be used for the EVSI method [215, 216].

A PSA sample size of 100,000 is used in the application of the case study CEA in the rest
of this thesis. This gives EVPI to ±£10 per person. However, the population-level EVPI is
given to the nearest £7 million, which is still vague. This PSA sample size was chosen as a
trade-off between the accuracy and the computational time needed to run the CEA. However,
increasing the sample size will not help in the context of potentially greater uncertainties
about factors governing the population-level EVPI.

While the ENBS is an important concept this will not been considered in further in this thesis.
The focus is on how value of information quantities can be calculated to prioritise which
parameters should be investigated further and on the ranking different research designs.

2.8 Conclusion

This chapter presented the different value of information quantities available to estimate
parameter uncertainty and prioritise future research. A number of recent methods for efficient
calculation of value of information quantities have been summarised. Through application of
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EVPI and EVPPI methods to the case study CEA an appropriate sample size for the PSA
has been determined to provide results to a suitable degree of accuracy for this thesis. Addi-
tionally, through an application of EVPPI methods to the case study CEA those parameters
where the collection of future information would be valuable have been identified.

The methods presented are used in Chapter 3 to prioritise further data collection in the context
of modelling adherence to interventions in a CEA. The EVPPI and EVSI estimation methods
by Strong et al. (2014, 2015) are used in Chapter 5 to estimate the value of further research
on factors relating to stratification of the optimal treatment decision and the impact of study
design on the EVSI for the same set of parameters [215, 216].



Chapter 3

Modelling adherence to interventions in
a cost-effectiveness analysis

The proportion of individuals using their intervention as prescribed is the adherence rate.
Whether an individual adheres to their intervention impacts their treatment effect. Rates of
adherence can change over time. This is not frequently modelled in a CEA. This chapter
looks at modelling adherence to interventions applied to the case study CEA through a
Bayesian time-to-event meta-analysis of observed adherence data [198]. The impact on the
CEA of modelling adherence compared to using point estimates of the adherence rates is
examined. Additionally, drawing on the methods from Chapter 2 the value of collecting
further information on adherence and the type and size of the study most preferable to
conduct is estimated to help guide further work.

3.1 Introduction

All cost-effectiveness models are subject to uncertainty [84]. This chapter looks at one under
explored area of uncertainty in the inputs to a CEA: patients adherence12 to an intervention
using the case study. Sharples et al. (2014), the case study CEA, stated under implications
for research priorities, "Similarities of effects for CPAP and MADs on EDS may be due to
differential adherence to treatment. However, there is limited information on this beyond

1Adherence is how well an individual follows a recommendation having agreed to it, suggesting the
individual takes an active role in their treatment whereas compliance is seen as more passive, referring to usage
since prescription date [223, 235].

2This work does not take into account the difference between intentional and non-intentional non-adherence.
Non-intentional non-adherence occurs when a patient does not adhere due to factors beyond their control (such
as difficulties in understanding instructions or inability to pay. Intentional non-adherence occurs when the
patient makes an explicit decision to not use prescribed treatment
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short term trials. Medium to long-term compliance with MAD and CPAP should be monitored
and reported." indicating adherence to these interventions is important to consider [198].

In Sharples et al. (2014) literature on adherence to MADs and CPAP was searched to find
values for adherence to the interventions to populate the CEA [198]. Data from a single study,
Kohler et al. (2010), provided information on adherence to CPAP [119]. No comparable data
was found for adherence to MADs. Therefore, the same point estimates of adherence were
used for both interventions [198]. This is a strong assumption which is investigated in detail
throughout this chapter.

As a sensitivity analysis, a one-way conservative adjustment on adherence to CPAP was
made to take into account that adherence may differ by severity [198]. When adherence to
CPAP was reduced by 5%, the ICER between treatment with MAD and CPAP was £40,668
per QALY gained compared to £15,467 per QALY gained in the base-case [198]. This
suggests that, at thresholds used by NICE, CPAP is no longer cost-effective [150]. When
adherence to CPAP was reduced by 10% treatment with CPAP was dominated by MADs
(MADs were more effective and less costly than CPAP) [198]. This simple, deterministic,
scenario analysis does not formally quantify uncertainty around adherence to MAD and
CPAP. Additionally, no justification appears to be presented as to why adherence to CPAP
was reduced as opposed to adherence to MADs.

Perpetual adherence is often assumed in CEAs and rarely questioned except implicitly
through sensitivity analysis on the treatment effect [104]. Many CEA models use data
from RCTs or observational studies to estimate quantities related to the effectiveness of
the treatment. However, these studies are often short term in nature whereas model-based
CEAs often take a lifetime perspective, especially for chronic diseases. Participants in RCTs
or similar studies may not be representative of real practice - individuals in clinical trials
are often self-selecting and subject to more scrutiny than the general population [76]. For
usage to be replicated when the drug is licensed for use in health services, it is important
that real practice is reflected. If a CEA model does not adequately reflect true adherence to
interventions a suboptimal treatment may be recommended for implementation, leading to
costs to the population both monetary and in terms of health foregone.

Hughes et al. (2007) identified a number of studies that incorporated measures of adherence
in their pharmacoeconomic evaluations [104]. Of the ten included studies only one measured
the probability of adherence through the use of a Bernoulli random variable [104]. This
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random variable was generated to indicate adherence by an individual independent of effec-
tiveness in each cycle. The probability of adherence at the end of the cycle was pre-defined
[42, 104]. Additionally, Brilleman et al. (2016) reviewed trial based economic evaluations to
identify how adherence has been reported in trials and its impact on economic evaluations
[26]. They found no study adjusted for non-adherence directly in their economic evaluation
[26].

This chapter explores adherence to interventions. There are two main aims. Firstly, a
method of modelling the change in adherence over time to interventions, using Bayesian
meta-analysis of all available data, is introduced as an alternative to using point estimates
[198]. Bayesian methods allow uncertainty about adherence rates to be more fully quantified
and propagated to the CEA results. This method is applied to the case study CEA (Section
1.3 and Appendix B) to examine the impact on cost-effectiveness of modelling adherence in
this way [198]. The second aim of this chapter is to explore the value of collecting further
information on adherence to interventions in particular, at what time horizons adherence data
should be collected for most benefit, again, applied to the case study CEA.

The chapter is set out as follows: Firstly the methodology and results for the literature review
used as the basis of the meta-analysis are reported (Section 3.2). Section 3.3 explains the
methodology of the meta-analysis; the incorporation of the meta-analysis results into the CEA
and the methods used to assess the value of future research on adherence. Section 3.4 presents
the results of the meta-analysis; the CEA and the value of future information calculations.
Section 3.5 discusses the findings including limitations of the data, methodological issues
and future research priorities before Section 3.6 summarises the conclusions of the chapter.

3.1.1 Current guidance on including adherence to interventions in cost-
effectiveness analyses

NICE Methods Guidance issued in 2013, used in England and Wales, defines adherence as
"the extent to which a person follows the heath advice agreed with healthcare professionals"
[150]. It mentions "if characteristics of healthcare technologies have a value to people
independent of any different effect on health, the nature of these characteristics should be
clearly explained and if possible the value of the additional benefit should be quantified"
[150].
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The Canadian Agency for Drugs and Technologies in Health (CADTH) 3rd edition of guid-
ance (2006) defines adherence in three parts: the acceptance of the treatment by the patient;
persistence - the long-term continuation of the treatment; and the consistency and accuracy
of following the recommended treatment regimen [33]. The guidance states the reference
case should incorporate real world factors which may modify the effect of the intervention
and adverse events which may impact adherence. It notes adherence may differ in a ‘real
world’ setting, leading to lower treatment effects, higher costs, decreased productivity, and a
greater burden on care givers and increased drug resistance [33].

In Australia, the Pharmaceutical Benefits Advisory Committee (PBAC) guidelines expect
compliance to be modelled in terms of its impact on improving health outcomes or reduced
provision of other healthcare resources [162].

The aforementioned guidance for CEAs indicate that modelling adherence (or compliance)
to interventions is important. However, there appears to be no specific guidelines on how
adherence should be modelled in practice.

In addition, Hughes et al. (2007) in their work as part of the ISPOR Medication Compliance
and Persistence Special Interest group conclude that compliance should be an integral part of
pharmacoeconomic evaluations [104]. However, they note available methodology is sparse
and limited.

3.2 Literature review

Sharples et al. (2014) performed a literature review of studies of patients with OSAHS
treated with MADs or CPAP reporting information on adherence to the intervention [198].
The results of this review were used to provide information to populate the CEA.

Following their review, data from Kohler et al. (2010) was used as the measure of adherence
to the intervention in the case study CEA [119, 198]. This was chosen as it was a large
hospital record based study of 600 patients’ adherence to CPAP. It provided ten years of data
and in terms of AHI the population was similar to that in the CEA. However, the population
in Kohler et al. (2010) had a slightly higher mean ESS: the case study CEA population had a
baseline ESS of 11.9 compared to a baseline ESS of 15.0 in Kohler et al. (2010) [119, 198].
As little data was available on adherence to MAD and there was no evidence that adherence
to MAD and CPAP would differ, Sharples et al. (2014) used the same data for adherence to
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MAD [198]. The data from this review is a useful starting point to assess the availability of
data on adherence to MADs and CPAP as treatment for patients with OSAHS.

For this thesis, the literature review was updated to extract all available data (up to January
2015) on adherence to MADs and CPAP including any new studies published since Sharples
et al. (2014) [198].

3.2.1 Search criteria and methodoogy

Medline was searched in January 2015 using the search terms in Appendix C. Figure 3.1
presents the results of the search and the classification process.

244 abstracts were found and screened by title and abstract. Studies were considered relevant
if they included MAD or CPAP as treatments for OSAHS, had at least one year mean follow-
up, and reported a measure of adherence over time. Studies were limited to those with more
than fifty patients and were written in English. Those studies reporting average usage (in
minutes) per night were excluded as it was difficult to transform this into a binary adherence
measure (n=3) [36, 168, 217].

Fifty papers were reviewed in more detail. The reasons for inclusion or exclusion are given
in Appendix D. Of these 50 papers, 17 were included in the final review. The main reasons
for exclusions were: the abstracts were conference abstracts with no related full paper (14
papers), inability to access the data (11 papers), or the data was not in the correct format, for
example presented the work as hours usage a night (11 papers). Other reasons for exclusion
were: the paper was unclear; the paper was a replicate of another paper, the paper was a
review of other studies, or the population was too small for inclusion (one paper each). An
additional paper was included which was not found in the literature review. This was the
study was used by McDaid et al. (2009) for their adherence parameters (McArdle et al.
(1999)) [134, 135]. One included paper was a conference abstract, Quinell 2014 [174]. This
was included as it gave information on adherence to MADs in the TOMADO population, the
RCT from Sharples et al. (2014) [198].

3.2.2 Results

Eighteen papers were included in the final review - five looking at adherence to MADs
[82, 112, 132, 159, 174] and 13 for adherence to CPAP [4, 28, 31, 34, 77, 79, 115, 119,
121, 135, 228, 233, 236]. Final follow-up times for the papers ranged from one to ten years.
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Figure 3.1 Flow diagram of the selection process of the literature search for papers on
adherence to MAD and CPAP as interventions for patients with OSAHS
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Adherence was measured at timepoints ranging from one month to ten years with each study
reporting the proportion of individuals adherent at between one and ten timepoints (Table
3.2). The data is limited for adherence to MADs. For adherence to CPAP there is more
information on shorter term adherence (at less than a years usage), but over a longer term the
data become sparse with only two studies providing information on CPAP past five years
(Tokunaga et al. (2013) and Kohler et al. (2010)) [119, 228].

A number of different definitions of adherence were used in the studies (Table 3.1). In this
work, for those studies which presented adherence using multiple definitions the results
for the definition closest to more than four hours a night on 70% of the nights has been
used. This definition is used in four studies and defined in Shapiro and Shapiro (2010)
[4, 77, 121, 195, 233].

The RCTs in the meta-analysis of treatment effects carried out as part of Sharples et al. (2014,
2015) were all short term in nature with follow-up times of less than one year. Therefore,
their results and information on adherence could not be used in this review [198, 199].

The average age of the populations across the studies reporting adherence to MADs ranged
from 50 years (Pancer et al. (1999)) to 58.5 years (Ghazal et al. (2009)) (a mean age of 50.5
years was used in the case study CEA) [82, 159]. Similarly, the BMI (range: 25.9kgm−2

(Ghazal et al. (2009)) to 30kgm−2 (Jauhar et al. (2008) and Pancer et al. (1999))) and
proportion of males (range: 77.8% (Jauhar et al. (2008)) to 86% (Pancer et al. (1999)))
appear consistent between the studies reporting adherence to MADs [82, 112, 159]. The AHI
varied between the studies from a low of 5.4 events per hour (Ghazal (2009)) to a high of
37 events per hour (Pancer (1999)) meaning, based on the sleep apnoea severity definition
(Department of Sleep Studies, Harvard) the range of patient severities encompassed patients
with mild and severe OSAHS [5, 60, 82, 159]. For reference, the TOMADO population had
an average AHI of 13.8 events per hour at baseline (classified as mild OSAHS)3 [5, 60, 198].

There is evidence of heterogeneity across the studies exploring adherence to CPAP. Not all
papers looking at adherence to CPAP reported all the summary statistics, so the values quoted
are based on available data. The proportion of males varies from 0% (Campos-Rodriguez et
al. (2013)) to 100% (Van Zeller et al. (2013)) [32, 233]. Excluding Campos-Rodriguez et al.
(2013), all studies had over 78% males (the case study CEA model has a cohort of males)
[32]. The average age across studies ranges from an average of 48.7 years (Waldhorn et al.

3This was the TOMADO population, the CEA does not make use of AHI
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Table 3.1 Definitions of adherence to interventions for patients with OSAHS in the studies
identified by the literature review1

Intervention Paper Definition of adherence

MAD Ghazal (2009) [82] More than five nights a week
Jauhar (2008) [112] Daily;

Usage up to six nights a week
Marklund (2006) [132] Daily;

> 50% of the time
Pancer (1999) [159] Daily

CPAP Alves (2012) [4] Any usage;
> 4hrs for > 70% days

Bromstom (2007) [28] > 50% self reported sleep time;
> 4hrs a night

Campos-Rodriguez (2013) [32] Any
Chai-Coetzer (2013) [35] > 4hrs a night
Furukawa (2014) [77] > 4hrs for > 70% of days;

< 4hrs for > 70% of days
Johnson (2004) [115] Any;

> 2hrs a night
La Piana (2011) [121] > 4hrs for > 70% days
van Zeller (2013) [233] Any ;

> 4hrs a night for > 70% of days

1: For studies that reported a definition of adherence



3.2 Literature review 89

(1990)) to 60 years (Campos-Rodriguez et al. (2013) )(the mean age in the case study CEA
model was 50.5 years) [32, 236]. The AHI varied from 36.02 events per hour at baseline in
Tokunaga et al. (2013) to 57.20 events per hour at baseline in Waldhorn et al. (1990), meaning
all studies had a population with severe OSAHS [228, 236]. For reference, the TOMADO
population had a mean AHI of 13.8 events per hour at baseline4 representing mild OSAHS
[198]. The BMI varied from 26.4kgm−2 (Tokunaga et al. (2013) and Furukawa et al (2014))
to 36kgm−2 (La Piana et al. (2011)) (31.9kgm−2 in the case study CEA) [77, 121, 228].

A number of papers explored factors that may affect adherence rates [4, 28, 32, 34, 79, 82,
115, 119, 121, 132, 135, 228, 233, 236]. These can be split into two categories - baseline
characteristics of the population and initial usage characteristics. For baseline characteristics
(age, AHI or Obstructive Hypopnoea Index (OHI), BMI, and ESS) only some studies found
them to be significant in predicting adherence [28, 32, 34, 79, 119, 132, 135, 228, 233, 236].
Those looking at initial usage characteristics found high side effects and low initial adherence
led to a decrease in future adherence [115, 135, 233]. Due to a lack of data for each specific
factor and uncertainty on which factors impacted adherence, it was decided to note these
predictors of adherence but not include them in the modelling framework. All types of MADs
and CPAP are grouped together due to a lack of data on individual device types. This could
be another cause of heterogeneity between studies. Although there is insufficient data to test
this it is worth considering. Borel et al. (2013) found the type of mask used with the CPAP
machine may impact adherence [21].

Figure 3.2 shows the adherence rates to MAD and CPAP as interventions for OSAHS found
through the literature review. Each shade of grey represents a different study with the size of
each point proportional to the number of patients adherent at that timepoint in the study. The
lines connecting points from the same study are for ease of interpretation only. There may not
be a linear decrease in adherence in practice between two timepoints. Heterogeneity between
studies is clear and there is evidence of a high initial hazard of non-adherence, especially to
CPAP. The evidence from the literature review indicates adherence to CPAP appears to be
different to adherence to MADs. There is some evidence that increased adherence to CPAP
may be a result of the study population having more severe OSAHS. To assess the impact of
disease severity on adherence more information would be needed on adherence to CPAP in
less severely affected populations. No study presented information on adherence beyond ten
years usage. Information on longer-term adherence would be useful to explore adherence

4As before, the CEA does not use the AHI severity measure
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Figure 3.2 Observed adherence data1 on long-term adherence to MADs and CPAP as
treatments for OSAHS taken from the studies analysed as part of the literature review2

1 The adherence data is taken from the proportion of participants eligible at each timepoint (i.e. excludes those
lost to follow-up)
2 Each shade of grey represents a different study. The size of the point is proportional to the number still
adherent at each timepoint. The lines connecting points from the same study are for ease of interpretation only.
The proportion adherent between timepoints may not be linear in practice.

over a patient’s lifetime.

3.3 Methods for modelling adherence

The original case study CEA highlighted evidence that the optimal treatment decision may be
sensitive to assumptions on adherence to the intervention (Section 1.3) [198]. Additionally,
the literature search found little information on adherence to MADs and for the population of
interest using CPAP (Section 3.2.2). This section presents a method for using all available
data to model the uncertainty around adherence to MADs and CPAP. A fully Bayesian
time-to-event meta-analysis model on the adherence data is used to capture the uncertainty in
adherence rates and provide estimates for use in a CEA to assess the impact of this uncertainty
on the optimal treatment decision.
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3.3.1 A general time-to-event meta-analysis

In a Bayesian meta-analysis model for a time-to-event outcome, the quantity of interest is
assumed to be a survival probability, i.e. the proportion of the population that have not had
the ‘failure’ event [56]. Let rim be the number of individuals in a study i = 1, . . . ,N that have
not had the failure event at the end of time m = 1, . . . ,T . Let nim be the number of individuals
in study i at risk at time t −1. Then for each study:

rim ∼ Bin(nim, pim)

pim = f (ΦΦΦ)

ΦΦΦ ∼ [., .]

where pim is the probability of those in study i not having a failure event by time m given they
are at risk at time m−1. This probability of failure is represented by a function f (ΦΦΦ) defined
by the chosen parametric survival model. The parameters in ΦΦΦ are given prior distributions
(Section 1.2.3).

3.3.2 Meta-analysis for modelling adherence to interventions

Bayesian time-to-event meta-analysis models, as defined in Section 3.3.1, were fitted to
data consisting of the number and denominator of patients remaining adherent at one or
more times for multiple studies. Adherence was assumed to be binary - individuals are
either adherent or non-adherent to their intervention. Ceasing use of the intervention was
considered to be the time-to-event outcome using the adherence definition provided in the
papers closest to that in Shapiro and Shapiro (2010) - at least four hours usage for more than
70% of nights [195]. Those who stop using their intervention are assumed not to restart at a
later point or switch to an alternative intervention.

Since there is some evidence from the literature review (Section 3.2) of a high initial level
of non-adherence, Weibull models were used. Weibull models can be used to represent a
change through time in the hazard of the event [117]. The probability density function of a
Weibull survival model for a time-to-event, T is [117]:

f (t) = λαtα−1 exp(−λ tα)

with α > 0 and λ > 0. The Weibull hazard function and survival function are, for t ≥ 0:
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h(t) = λαtα−1

S(t) = exp(−λ tα)

If the shape parameter α is greater than one, the hazard increases with respect to time; if α

equals 1, the hazard is constant with respect to time (and the model reduces to an exponential
survival model); and if α is less than one the hazard decreases with respect to time [117].

For interpretation, the shape parameter can be represented as a function of the hazard ratio
between two timepoints t1 and t0 (t1 > t0):

HR(t0, t1) =
(

t1
t0

)α−1

Assuming t1 = 2t0, α can be expressed as a function of the hazard ratio for a doubling of
time:

α = 1+ log2 (HR(t1, t0))

The scale parameter, λ is indicative of the mean survival time:

E(T ) =
(

1
λ

) 1
α

Γ

(
1+

1
α

)
≈ 1

λ

when α is close to one. These interpretations of λ and α are useful when setting priors for
the meta-analysis.

Recalling the notation presented in Section 3.3.1, with N = 18 and T = 10 then:

rim ∼ Bin(nim, pim)

where pim is the probability of an individual in study i remaining adherent at the end of time
period m. pim is related to the shape and scale parameters of the Weibull distribution for the
time to non-adherence as follows:

pim = exp
(
−λit

α ji
im

)
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The scale parameter is assumed to be a random effect differing between studies i with:

log(λi)∼ N(µ ji,σ
2)

with a mean µ ji dependent on the treatment ji ∈ {MAD, CPAP} and a variance (σ2 ) assumed
common between treatments, given the limited data on MADs. The prior distributions on µ ji

were dependent on the intervention:

µMAD ∼ N(−5,104)

µCPAP ∼ N(−5,104)

σ ∼U(0,104)

implying a prior mean survival of ≈ e5 months ≈ 12 years, though with substantial prior
uncertainty on the mean and the extent of heterogeneity in the scale parameters.

Four alternative assumptions for the shape parameter of the Weibull model
(
α ji
)

are consid-
ered here:

Model I: Shape parameter is the same for all studies and both interventions

α ji = αMAD = αCPAP ∼U(0,2)

implying a 95% prior credible interval for the hazard ratio due to a doubling of time of
between 0.5 and 2.0.

Model II: Shape parameter is the same for all studies, but dependent on the interven-
tion

αMAD ∼U(0,2)

αCPAP ∼U(0,2)

indicating a 95% credible interval for the hazard ratio, due to a doubling of time, of between
0.5 and 2.0 for both interventions.
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Model III: Shape parameter is a study specific random effect and dependent on inter-
vention

log(αi)∼ N(ν ji,ω
2)

νMAD,νCPAP ∼U(−7,7)

ω ∼U(0,10)

indicating the hazard ratio due to a doubling of time has a prior expected value of one with
substantial prior uncertainty for both interventions.

Model IV: Shape parameter is a study specific random effects, dependent on interven-
tion and conditional on the value of the scale parameter

This is equivalent to (log(λi), log(αi)) having a multivariate normal distribution.

(
log(λi)

log(αi)

)
∼ MV N2

((
µ ji

ν ji

)
,

(
σ2 ρσω

ρσω ω2

))

This is a bivariate normal distribution, so it can be easily represented in terms of conditional
distributions:

log(λi)∼ N
(
µ ji,σ

2)
log(αi)|log(λi)∼ N

(
ν ji +

ω

σ
ρ
(
log(λi)−µ ji

)
,(1−ρ

2)ω2
)

where:

µMAD,µCPAP ∼ N(−5,104)

νMAD,νCPAP ∼U(−7,7)

σ ∼U(0,104)

ω ∼U(0,10)

ρ ∼U(−1,1)

This has a similar interpretation to model III with the expected hazard ratio for a doubling
of time being 1. The expected time until non-adherence is approximately 12 years, as weak
prior information is assumed on the correlation (ρ) between α and λ . The prior distributions
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Figure 3.3 The prior distributions for the mean time to non-adherence and the doubling of
the hazard rate for Model IV1.

1Model IV assumes the shape parameter depends on the intervention and the study and is also correlated with
the scale parameter.

of the mean time to non-adherence and for a doubling of the hazard rate, by simulating from
the random effects distribution conditional on the simulated values for the hyperparameters,
are shown in Figure 3.3

Bayesian inference was performed by MCMC, using Just Another Gibbs Sampler (JAGS)
software in R [126, 169, 176]. Two chains were used with a burn-in period of 10,000
simulations with 100,000 simulations used in the analysis. Convergence was checked by
inspection of the trace plots.

Pooling the estimates from the meta-analysis

Two alternative pooling methods for obtaining this estimated probability of adherence p̂ j(t)
pooled over studies were calculated [81, 98, 203, 243]. The first method calculates the
adherence probability from the model with Weibull shape and scale given by the means from
the random effects distributions:

p̂ j(t) = exp
(
−λ̄ jtᾱ j

)
where λ̄ j = exp(µ j) and ᾱ j = exp(ν j) (or α j dependent on the meta-analysis model specifi-
cation). This assumes the target population for the decision is the same as the average study
setting in the meta-analysis. This method may not be appropriate for this model, especially
for adherence to CPAP where the population in the meta-analysis appears to have more
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severe OSAHS than the CEA model population.

The second method uses the predictive distribution which is equivalent to estimating the
probability of non-adherence for a new ‘hypothetical’ study. This ‘hypothetical’ study which
represents the population of interest is assumed to be ‘sufficiently similar’ to the studies
included in the meta-analysis with a probability of adherence over time of:

p̂ j(t) = exp(−λNEW tαNEW )

where λNEW ,αNEW are generated from the random effects distributions. In practice, the
pooled estimate from a hypothetical study will be similar to using the random effects mean
but will be less precise. This reflects uncertainty about where the hypothetical study may
lie with respect to the random effects distribution and the uncertainty in the random effects
variance.

Other options exist for summary estimates, some of which are outlined below [98, 203, 242].
An independent study specific estimate involves using only the data and estimate for a specific
study with the decision population (idec) assuming the target population is the same as in idec

[242]. This does not use the meta-analysis and is similar to the Sharples et al. (2014) CEA
[198, 242]. This pooling method requires that an appropriate study is available.

Alternatively, a shrunken study-specific estimate assumes the population of interest is similar
to all studies in the data (as in the predictive distribution) but one particular study has the
population of interest. In this case, the study specific estimate for this study from the meta
analysis can be used [243]:

p̂ j(t) = exp
(
−λ̂idectα̂idec

)
where λ̂idec and α̂idec are the estimates for the shape and scale parameter for study idec. This
method will be more precise than using study specific data as it ‘borrows strength’ from the
other studies in the meta-analysis. Additionally, in the context of network meta-analysis
(Section 4.3.1) consistency equations from the meta-analysis can be used to estimate the
effects for comparisons not included in idec [242].
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3.3.3 Goodness of fit measures

To assess which meta-analysis model fits the data the best, the deviance information criterion
has been used [126, 204]. The deviance is defined for the modelling of data y, probability
model p(y|θθθ), θθθ ∈ Θ, and prior distribution p(θθθ) as:

D(θθθ) =−2log p(y|θθθ) (3.1)

which in a Bayesian model has a posterior distribution as it is an explicit function of θθθ .
An obvious candidate for a Bayesian measure of fit is to compare models in terms of the
posterior mean deviance, D̄ = Eθθθ (D). However, more complex models will fit the data better
giving a smaller D̄ while their predictive ability may not improve. Therefore, it is preferable
to have a measure of ‘model complexity’ to counteract D̄ [126, 204].

The effective number of parameters in a model, pD, was derived by Spiegelhalter et al. (2002)
as [204]:

pD = Eθθθ |y [−2log p(y|θθθ)]+2log p
(
y|θ̃θθ(y)

)
= D̄−D(θ̃θθ)

where θ̃θθ is a ‘good’ plug in estimate of θθθ . Letting θ̃θθ = E [θθθ |y] which is defined to be θ̄θθ , then:

pD = ‘posterior mean deviance’− ‘deviance of posterior means’

where pD is not invariant to reparameterisation [126, 204].

The measure of fit, D̄, can be combined with the measure of model complexity to obtain the
Deviance Information Criterion (DIC) which estimates the predictive ability of the model as
[204]:

DIC = D̄+ pD

= D(θ̄)+2pD

Plummer (2008) showed the DIC is an approximation of a penalised loss function using
a cross-validation procedure [170]. The differences between models in terms of DIC are
compared, not the absolute values of the DICs. There is no formal rule as to what is an
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important difference in DIC [126, 204]. Lunn et al. (2013) show that when considering two
models: model 1 and model 2, exp

[
DIC1−DIC2

2

]
is similar to a likelihood ratio. A difference of

ten gives a likelihood ratio of 148 and a difference of five a likelihood ratio of 12 [126, 170].
Therefore, a difference in terms of DIC> 10 could be said to definitely rule out the model with
the higher DIC. Differences of DIC of between five and ten are substantial [204]. However, if
the difference of DIC< 3−5, and the models make different inferences about the parameters,
a model choice should not be made using DIC alone [126, 204]. Choosing a model purely on
the basis of its DIC should be avoided. As stated by Spiegelhalter et al (2002), many other
features of models should be considered when choosing a model other than the DIC alone
[204]. These include the scientific plausibility of the model specifications and the robustness
of the results.

3.3.4 Methods for the inclusion of the results from a meta-analysis on
adherence to a cost-effectiveness analysis

The treatment effects in the case study CEA are based on RCTs which predominantly reported
results on an Intention To Treat (ITT) basis [198]. In an ITT analysis patients are analysed
according to their allocated treatment regardless of whether they received or completed the
treatment. Since ITT effects from trials with up to one year of follow-up are used in the
case study CEA, the treated cohort simulated by the CEA model is implicitly assumed to
contain those who stop adhering in their first year of treatment. This assumes non-adherence
in the RCTs used to estimate the treatment effect is typical of the studies included in the
meta-analysis.

The probability that an adherent individual becomes non-adherent in the 12 months (one year)
following t estimated from the meta-analysis, is used to estimate the additional proportion of
people in the cohort who become non-adherent from year one onwards:

q j(t) =
p̂ j(t +12)

p̂ j(t)

The values for the adherence rates, p̂ j(t) are taken from the posterior distributions from the
meta-analysis models using pooled study estimates. For each PSA sample and intervention
a different MCMC sample from the joint posterior distribution for the shape and scale pa-
rameters are taken, i.e. using the best fitting model (Model IV) from Section 3.3.2. The
corresponding values for p̂(t) are used in the CEA in place of the adherence point estimates
previously used in the case study (Appendix B.3.5).
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The impact of the adherence model being used for three alternative time horizons (five years,
ten years and the lifetime of the model (65 years)) was explored due to the limited follow-up
of the adherence data (Section 3.2). At the end of this period, those patients still adherent to
the intervention were assumed to remain adherent for the remaining lifetime of the model
(Appendix B.3.5).

3.3.5 The value of collecting further information on adherence to inter-
ventions

Value of information methods are used to assess whether it would be useful to collect further
information on adherence to MAD and CPAP. There are number of different value of infor-
mation measures which can be calculated (Section 1.1.3 and Chapter 2).

The EVPI is the expected cost of uncertainty in the CEA model and defined as the difference
between the expected NMB under perfect and current information (Sections 1.1.3 and 2.3)
[24].

The Expected Value of Perfect Partial Information for adherence to interventions

The EVPPI is the expected value of resolving uncertainty on a set of parameters and is useful
to help prioritise future research on those parameters where more precise estimates will lead
to greater health benefits [24]. The method and notation outlined by Strong et al. (2014) are
used to calculate the EVPPI for further information on adherence (Section 2.3.2) [215].

Using the case study CEA, incorporating the results of the random-effects adherence meta-
analysis for model IV (Section 3.3.2) the EVPPI for the following sets of parameters, relating
to adherence which is of principal interest, have been considered :

• information on adherence to MAD (i.e. eliminating uncertainty in the means of the
random effects for the shape and scale parameters of the Weibull model for adherence
to MAD): φφφ = {µMAD,νMAD}

• information on adherence to CPAP (i.e. eliminating uncertainty in the means of the
random effects for the shape and scale parameters for adherence to CPAP): φφφ =

{µCPAP,νCPAP}

• information on adherence to both MAD and CPAP (i.e. eliminating uncertainty in the
means of the random effect estimates for the shape and scale parameters for adherence
to MAD and CPAP): φφφ = {µMAD,νMAD,µCPAP,νCPAP}
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In addition, the EVPPI for other parameters in the CEA, found to have a non-zero EVPPI in
Section 2.6.2, have been calculated to explore the impact of the inclusion of the adherence
model in the CEA. These parameters are:

• change in ESS due to treatment with MAD : φφφ = {∆ESSMAD}

• change in ESS due to treatment with CPAP : φφφ = {∆ESSCPAP}

• change in SBP due to treatment with MAD : φφφ = {∆SBPMAD}

• change in SBP due to treatment with CPAP: φφφ = {∆SBPCPAP}

• annual cost of CPAP: φφφ = {CostCPAP}

• annual cost of MAD: φφφ = {CostMAD}

The Expected Value of Sample Information for collecting information on adherence to
interventions

The EVPPI provides an upper bound on the value of future research for a set of parameters,
φφφ . However, a study collecting further information on φφφ will have a set sample size, say
m (Sections 1.1.3 and 2.4). The EVSI provides information on the value of conducting a
particular research design with a sample size of m (Sections 1.1.3 and 2.4) [24]. The expected
benefits of research can be compared to the expected costs of undertaking the study. If the
expected benefits exceed the expected costs of research, there is value in carrying out the
study (Section 2.4.1). This work deals with the calculation of EVSI and does not consider
costing the research designs.

This work uses the methodology of Strong et al. (2015) using PSA output and non-parametric
regression [215, 216]. This method is outlined fully in Section 2.4.2, but briefly recall that it
requires the information from study data, X , about the parameters of interest to be expressed
as a low-dimensional sufficient statistic, T (X). Two study designs have been considered
using the results of the CEA incorporating the results of the adherence meta-analysis, for a
range of study population sizes m=10, 100, 500, 1,000, 5,000:

Study design 1: A population of size m collecting information on adherence to an
intervention at one timepoint

Information on adherence to an intervention may only be available at one timepoint (t0). For
example when information is collected retrospectively. In this case the data collected would
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consist of the proportion of participants still adherent to the intervention at time t0 defined to
be X = X(t0).

The parameters in the PSA relating to adherence are the shape (µ j) and scale (ν j) parameters
for a Weibull distribution with intervention j = {MAD,CPAP} using the meta-analysis model
IV specification.

A new study would aim to reduce the uncertainty in these parameters by being added to the
meta-analysis. The shape and scale parameters are not separately identifiable from a single
observation of the proportion of the population adherent and so it is not possible to find a
sufficient statistic for µ j and ν j separately. Given m, the (as yet unknown) information from
the study can be fully expressed by the number adherent at t0 (X j(t0)), which arises from the
posterior predictive distribution under the meta-analysis given by the binomial distribution
integrated over the posterior distribution of p j(t0):

X j(t0)∼ Bin
(
size = m, prob = p j(t0)

)
To estimate EVSI, a sample is drawn from this posterior predictive distribution, as follows:
Firstly, the proportion of individuals adherent at time t0 needs to be calculated. So, for each
MCMC iteration, k:

p̂(k)j (t0) = exp
(
−λ

(k)
j t

α
(k)
j

0

)
is calculated as the probability of adherence to intervention j at time t0, where λ

(k)
j =

exp
(

µ̂
(k)
j

)
and α

(k)
j = exp

(
ν̂
(k)
j

)
are draws from the posterior distributions of the predictive

pooled estimates (under Model IV). Therefore, a simulation of the number of participants
adherent at time t0 can be taken from:

X (k)
j (t0)∼ Bin

(
size = m, prob = p̂(k)j (t0)

)
Following Strong et al. (2015) (Section 2.4.2) with T (X) = X j(t0), a sample from the
probability distribution of INB( j,θθθ) is regressed on the sample of T (X) to estimate EVSI.
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Study design 2: A repeated measures study for a population of size m collecting infor-
mation on adherence to an intervention at T timepoints

Let the T timepoints at which we propose to collect information on adherence to intervention
j be (t1, . . . , tT ) where ts < ts+1, s = 1, . . .T −1. Let X j(ts) be the number of people in the
population adherent to intervention j at time ts. We assume:

X j(ts)∼ Bin
(
size = m, prob = p j (ts)

)
with

p j(ts) = exp
(
−λ jt

α j
s

)
where λ j = exp

(
µ j
)

and α j =
(
ν j
)

are the ‘predictive new study’ pooled estimates under
meta-analysis Model IV. The proposed new study will reduce uncertainty on the shape (α j)
and scale (λ j) parameters of the Weibull distribution which is used to model adherence to
intervention j. Let {x0,x1, . . .xT} be the, as yet unknown, numbers of individuals adherent at
times s = 0, . . . ,T , x0 = m derived from the study.

To express the information provided by the study data about λ j and α j as a sufficient statistic,
Maximum Likelihood Estimation (MLE) methods are used.

Recall that it is assumed the population level of adherence decreases monotonically over
time and so xs ≤ x(s−1), then for s = 1, . . .T :

x js ∼ Binomial
(

size = x(s−1), prob =
p̂ j(ts)

p̂ j(ts−1)

)
Again, for each PSA sample k, p̂(k)j (ts) for each s = 1, . . .T can be calculated as:

p̂(k)j (ts) = exp
(
−λ

(k)
j t

α
(k)
j

s

)
The proposed study wants to find the number of the original m patients still adherent at
ts, given they were adherent at ts−1. This will provide a dataset of the proportion of the
original study population at risk at each timepoint. In addition, due to the monotonicity of
adherence assumption, information on the adherence at ts implicitly provides a lower bound
for adherence at all ts−1 where 0 ≤ (s−1)≤ s.
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For each PSA sample, k = 1, . . . ,K we can simulate data xxx(k) =
{

x(k)0 , . . . ,x(k)T

}
, the estimated

number of individuals adherent to intervention j at each timepoint. From this data, we wish
to find estimates λ̂

(k)
j and α̂

(k)
j for each k using MLE methods.

The intervention j subscript is dropped for the remainder of this section for ease of readability.
Using x(k)s for s = 1, . . .T , k = 1 . . . ,K and letting qs =

p̂(ts)
p̂(ts−1)

, the probability of remaining
adherent at time ts given adherent at time ts−1, for a single timepoint. We want to express
the data collected from the study as a sufficient statistic T (X). This statistic can be defined
as
{

α̂, λ̂
}

given the data X . Although the estimator is not available in a closed-form, we
can numerically maximise the likelihood for any simulated dataset X . Hence, we can draw
a sample from the posterior predictive distribution of T (X) to employ in the Strong et al.
(2015) method for estimating EVSI [216]. The likelihood is constructed as follows:

L(α,λ |xs−1,xs) =

(
xs−1

xs

)
qxs

s (1−qs)
xs−1−xs

∝ qxs
s (1−qs)

xs−1−xs

So, for a set of timepoints t0, . . . tT , the likelihood is:

L(α,λ |x0,x1, . . .xT ) ∝ qx1
1 (1−q1)

x0−x1 . . .qxT
T (1−qT )

xT−1−xT

=
T

∏
s=1

qxs
i (1−qs)

xs−1−xs

and the log-likelihood is:

l (α,λ |x0,x1, . . .xT ) =
T

∑
s=1

[xi log(qs)+(xs−1 − xs) log(1−qs)]

Numerical methods are used to find λ̂ j and α̂ j. In this case, the BFGS update to Newton’s
method is used to numerically maximise the likelihood5. This MLE step is carried out for

5This is an extension of the Newton-Raphson method for finding a maximum by finding the values when
the derivative equals zero (i.e. the roots of the equation). Briefly, one starts with an initial guess. The tangent of
the function is found at that point. The x intercept of this tangent is found and taken to be the next guess (as it
is a better approximation to the root). The process is iterated until reaching an appropriate degree of accuracy.
The BFGS method is an approximation of this method which can be used when the second derivative of the
function in question is too computationally expensive to compute at each iteration. This update provides an
approximation to the second derivative (Hessian) which is an initial matrix which is updated at each iteration
dependent on the starting value for each iteration.
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each simulation giving two vectors α̂ and λ̂ , each of length K. T (X) =
{

α̂, λ̂
}

can be used
in the non-parametric regression step in the calculation of EVSI.

3.4 Results

3.4.1 The time-to-event meta-analysis for adherence to MAD and CPAP
as interventions for OSAHS

Summaries of the posterior distribution for the five-year probability of adherence for each
model, each study, and fitted pooled values are presented in Figure 3.4. The pooled shape
and scale estimates of the models obtained from the random effects mean are presented in
Table 3.3 along with the deviance statistics.

Table 3.3 highlights the difference between the four model specifications. Model IV found a
very strong negative correlation between the shape and scale parameter.6. In terms of the
deviance statistics, Model IV appears to fit the data best. However, the difference in DIC
compared to Model III is not substantial. Therefore, the decision to proceed on the basis of
Model IV has taken into account the strong level of correlation found between the shape and
scale which indicates it may be wise to include this correlation in the model.

As expected, the pooled estimates of the probability of adherence at five years from the
predictive distribution are similar to the estimates using the random effects mean but more
uncertain (Figure 3.4). This additional uncertainty is most evident in Models III and IV due
to the between study heterogeneity assumed for the shape parameter.

Figure 3.5 shows the estimated adherence over time from the meta-analysis. The posterior
medians in Panel (a) show little difference between models I, II and IV in estimating
adherence to CPAP. However, there are some differences in the posterior medians between
the model specifications when estimating adherence to MADs. Panel (b) shows the posterior
distributions from Model IV, which fits the data best on the basis of DIC, using the predictive
distribution. The difference between the MAD and CPAP models is small and in terms of
uncertainty at the 75% level there is little difference. Although, the 95% credible intervals
(not presented) are more uncertain around adherence to MAD due to the lack of data. Panel

6The random effects distribution characterises studies as either having a faster non-adherence rate through
time indicating a shorter mean time to non-adherence or a slower rate of non-adherence implying a longer time
to non-adherence.
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(c) shows the difference between MAD and CPAP adherence. The adherence rates between
the two interventions are similar. As time increases the median difference in adherence tends
to zero, although the uncertainty around the difference in adherence increases. Finally, Panel
(d) shows the posterior median and 95% credible intervals compared between the random
effects mean and predictive distribution for Model IV. This indicates the median estimates are
similar for both pooling methods. However, as expected and supported by the theory (Section
3.3.2) and Figure 3.4, there is more uncertainty around the estimates using the predictive
distribution.

3.4.2 The cost-effectiveness analysis

The meta-analysis model with separate shape and scale parameters for each study, assuming
correlation between the shape and scale (Model IV) was implemented into the case study
CEA model (Section 1.3.3 and Appendix B). It was the model which fitted the data best,
on the basis of DICs and the estimated correlation was strong, indicating this correlation
should be modelled (Table 3.3). The adherence model was assumed to apply for five years or
ten years after which time patients still adherent to the intervention are assumed to remain
adherent for the remained of the lifetime of the CEA model. A further analysis assumed the
adherence model was assumed to apply for the lifetime of the model (65 years). - which may
not be true as it requires the model to be extrapolated 55 years beyond the end of the data
available. The base case CEA used point estimates for adherence to MAD and CPAP taken
from Kohler et al. (2010) (Appendix B.3.5) [119].

There appears to be little difference in the results between the CEAs when the random effects
mean study or a new predicted study was used to obtain the pooled estimates (Table 3.4).
There is little difference in how cost-effective CPAP is comparing the time periods for the
adherence model of five or ten years. This can be, in part, attributed to the small value for the
shape parameter in the adherence model suggesting that as time increases, the rate of change
in adherence rate decreases. This means the proportion of patients becoming non-adherent in
each cycle reduces, leading to little change in the results of the CEA.

Compared to the base case, there is a very slight decrease in absolute terms in the NMB of
MAD and CPAP when using the adherence model for ten years (the length of time data is
available). This is due to the adherence model predicting lower adherence rates for both
interventions than in Kohler et al. (2010) [119, 198]. There is more uncertainty around
the optimal treatment decision when introducing the adherence model as illustrated by the
CEAC and EVPI values (Table 3.4). This can, in part, be explained by the addition of further
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Figure 3.4 Estimated five year posterior median and 95% credible interval adherence
probabilities from four meta-analysis models1 modelling adherence to MAD and CPAP as

treatments for OSAHS along with the pooled estimates

1all models assume that adherence to the interventions can be modelled with a Weibull distribution with a
random effects scale parameters. Model I assumes the shape parameter is the same for all studies and both
interventions. Model II assumes the shape parameter is dependent on the intervention but not the study. Model
III assumes the shape parameter depends on both the intervention and the study. Model IV assumes the shape
parameter depends on the intervention and the study and is also correlated with the scale parameter.
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Figure 3.5 Observed adherence data1 and pooled results with the 75% credible intervals
where relevant from four Bayesian time-to-event meta-analyses of adherence to MADs and
CPAP as treatments for OSAHS using 100,000 Monte Carlo simulations, using a predictive

study pooled estimate unless specified

1the points represent the actual data from the literature review. The size of the point is proportional to the size
of the study. The lines between points from the same study are for ease of interpretation only; the proportion
adherent between timepoints may not be linear in practice.
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uncertain parameters in the the CEA model. Additionally, under the adherence meta-analysis
model, adherence to MAD is more uncertain relative to CPAP (Figure 3.5 Panel (c)). The
treatment effect for MADs is smaller than CPAP (Appendix B). However, the impact of the
increased uncertainty on adherence has the effect of the INB between the interventions to
tend towards zero and the ICER to tend to the cost-effectiveness thresholds, increasing the
uncertainty around the optimal treatment.

3.4.3 The value of information

The adherence model with separate shape and scale for each study was used, assuming
correlation between the shape and the scale (Model IV) for ten years. The population-level
EVPI estimates for all cost-effectiveness models and the base case are shown in Table 3.4.
Using the adherence model increases the EVPI and hence the uncertainty in the optimal
treatment comparison (as illustrated by the probabilities of being the most cost-effective
intervention at a threshold of £20,000 per QALY gained in Table 3.4). All EVPPI and EVSI
values have been calculated using the results of the CEA with uncertainty about adherence
parameters expressed as the pooled estimates obtained from a new predicted study.

The EVPPI at a population-level for the adherence parameters and other parameters in the
case study CEA are presented in Figure 3.6 These values have been calculated using the same
population characteristics outlined in Section 2.2.2. This compares to a population-level
EVPI of £95.8 million. All three population-level EVPPI estimates for parameters relating to
adherence indicate potential value in conducting further research on adherence. The results
indicate there is value in conducting further research around the other parameters in the
model, though less value than for the adherence related parameters.

The EVSI at the population-level has been calculated for collecting information on adherence
to MADs or CPAP at one or two timepoints (Figure 3.7). As the proposed follow-up time
for patients’ adherence increases so does the value of collecting the information. There
appears to be value in collecting information for sample sizes as small as ten. As the sample
size increases the EVSI increases, as expected, tending towards the population-level EVPPI
values.

There is additional benefit in collecting information at points further into the future combined
with information on adherence at one year. Collecting data for five and ten years usage of
MADs for small sample sizes appears to be less valuable than collecting data at one and ten
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Table 3.4 Results of the implementation of adherence Model IV1 applied to the case study
cost-effectiveness analysis using 100,000 PSA samples

Random Effects Mean Predictive Distribution
Base2 Adherence Duration (years) Adherence Duration (years)

5 10 65 5 10 65

LY
CM 28.36 28.36 28.36 28.36 28.36 28.36 28.36
MAD 28.51 28.53 28.51 28.50 28.53 28.51 28.50
CPAP 28.61 28.59 28.56 28.54 28.59 28.56 28.54

QALY
CM 14.35 14.35 14.35 14.35 14.35 14.35 14.35
MAD 14.65 14.62 14.59 14.58 14.62 14.60 14.58
CPAP 14.66 14.65 14.61 14.59 14.65 14.61 14.59

Cost (£)
CM 6,112 6,121 6,120 6,108 6,121 6,116 6,112
MAD 8,331 7,243 7,187 7,411 7,250 7,204 7,450
CPAP 8,501 7,557 7,385 7,264 7,560 7,395 7,276

ICER
MAD-CM 7,397 4,116 4,446 5,665 4,181 4,330 5,575
CPAP-MAD 7,239 10,467 9,900 -14,700 10,333 15,942 -17,400

NMB
CM 280,888 280,879 280,880 280,892 280,884 280,879 280,888
MAD 284,669 285,157 284,613 284,159 285,150 284,796 284,150
CPAP 285,099 285,443 284,815 284,536 285,440 284,805 284,524

INMB
MAD-CM 3,781 4,279 3,733 3,267 4,266 3,917 3,262
CPAP-MAD 430 286 202 377 290 9 374

CEA 3

CM 0.0040 0.0002 0.0002 0.0004 0.0002 0.0001 0.0004
MAD 0.4366 0.4671 0.4691 0.4149 0.4814 0.4885 0.4326
CPAP 0.5594 0.5327 0.5307 0.5847 0.5184 0.5114 0.5670

EVPI 4(£million) 63.8 84.5 92.1 76.7 86.5 95.8 80.0

1The adherence model uses a different shape and scale parameter for each study, assuming correlation between
the shape and scale parameters.
2Model in the HTA replicated in R.
3Cost Effectiveness Acceptability: the probability the intervention is the most cost-effective at a threshold of
£20,000 per QALY gained.
4Expected Value of Perfect Information: giving an upper bound for the potential value of future research,
calculated at population-level using the methods in Section 2.2.2
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Figure 3.6 Population-level1 EVPPI quantities for the collection of data on adherence to
MAD and CPAP as interventions for patients with OSAHS and other parameters using the
case study cost-effectiveness analysis with adherence Model IV2 for ten years and the new

predicted study pooled values from the results of the Bayesian meta-analysis

1Population-level values calculated using the parameters of the population-level EVPI presented in Section
2.2.2
2Model IV has a different shape and scale dependent on study and intervention with correlation between the
shape and scale.
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years usage. At larger sample sizes the values are comparable.

Comparing the EVSI for the interventions, the value of collecting information on adherence
to MAD is greater than the corresponding value on adherence to CPAP apart from when
collecting information on adherence at one year. The reduced EVSI for MADs relative to
CPAP at one year may be due to a majority of the data on adherence to MADs having been
collected at datapoints close to one years usage. In contrast, there is more information on
longer usage with CPAP.

3.5 Discussion

Limited data is available on long-term adherence to MADs and CPAP as treatments for
OSAHS with published studies using multiple definitions of adherence. The data suggests
heterogeneity between studies in the populations explored is mainly due to the disease sever-
ity. The populations in studies examining adherence to CPAP were more severely affected
by OSAHS than in those examining adherence to MADs, consistent with current NICE
guidelines [149].

The chosen meta-analysis model for adherence (combining data on adherence to MAD
and CPAP using a random effects Weibull model with different correlated shape and scale
parameters for each study dependent on the intervention (Model IV)) fits the data best on
the basis of deviance statistics (Table 3.3) although the difference in terms of DIC between
the models with correlated and non-correlated shape and scale parameters (Models III and
IV) was not substantial. The results from all the meta-analyses suggest adherence to CPAP
is slightly higher, on average, than adherence to MADs (Figure 3.5 panel (c)), although
there is additional uncertainty about adherence to MADs. Additionally, as the length of time
using the interventions increases, the difference in the estimates of adherence between the
interventions decreases.

Implementation of the meta-analysis using a random effects Weibull model with different
correlated shape and scale parameters for each study (Model IV) into the case study CEA
increased the uncertainty in the optimal treatment decision compared to the base case (Table
3.4), where adherence rates were taken as point estimates over a ten year period using Kohler
et al. (2010) (Appendix B.3.5) [119]. Including modelled adherence to the case study CEA
increases the EVPI, due to a difference in adherence rates between interventions, bringing
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the effects of the interventions closer.

The EVPPI estimates indicated potential value in future studies looking at adherence to both
interventions. However, as EVPPI assumes an infinite sample size the EVSI was calculated
for the collection of further data of a specific sample size. Using the methodology in Strong
et al. (2015), substantial value was found in collecting data on the number of people adherent
to MADs and CPAP for sample sizes as small as 10. These gave population-level values in
excess of £5 million [216]. There is additional value in collecting data on the proportion
of the population adherent at two timepoints over collecting data at one timepoint for small
samples sizes.

3.5.1 Data limitations

No formal assessment of the quality of the studies included in the literature review was
made. Four studies were long-term follow-ups of RCTs [34, 82, 159, 174]. The remaining
studies were prospective or retrospective long-term case studies analysing patients given the
intervention at an earlier timepoint. The majority of studies used populations which were not
(pre-)selected, indicating the data may be representative of usual practice. However, in many
studies patients had to return questionnaires or attend an appointment to provide details on
adherence which may suggest self-selection or social desirability bias among the population
studied.

Of the 18 studies in the meta-analysis, seven examined adherence at one timepoint, and four
considered adherence after over five years usage. No study reported information on adherence
after ten years for either intervention. Therefore, an assumption had to be made about the
time period the Weibull adherence model was valid over. In Table 3.4, the ICERs and the
probabilities of being cost-effective at a threshold of £20,000 per QALY gained were similar
when the adherence model was used for ten and 65 years (the lifetime of the case study CEA
model). This is due to the shape parameter being small, reflecting a decreasing risk of be-
coming non-adherent leading to smaller year on year changes in adherence at later timepoints.

Three studies were excluded from the meta-analysis as they presented adherence as an aver-
age usage per night [36, 168, 217]. Converting the adherence values into binary measures is
methodologically plausible by assuming usage has a normal distribution, N

(
µ,σ2), using

the mean and standard deviation of usage provided in the papers to calculate P(Usage < X).
X can be defined as the average number of hours usage a night, for studies where usage is
defined as at least four hours a night for more than 70% of nights (assuming eight hours sleep
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a night) [195]. This gives results which could be included in the meta-analysis models for the
work by Chin et al. (2006) and Pieters et al. (1996) [36, 168]. However, Sucena et al. (2006)
found the average usage per night increased over time, and this was not due to low users
dropping out over time [217]. Therefore, using this transformation would give adherence
increasing over time, violating the assumption made that patients can not become adherent
having become non-adherent. On the other hand, if adherence is considered in terms of hours
usage per night, this may increase over time as patients become more acclimatised to their
intervention. However, an increase in usage per night is unlikely to change the definition of
whether the patient is adherent under a specified binary measure of adherence.

The treatment effects in the case study CEA were taken from ITT estimates presented in
RCTs with durations of less than a year. This means they were assumed to reflect the impact
of non-adherence in the first year of usage. This may not be realistic. Many trials lasted sig-
nificantly less than a year and the RCT populations may not reflect real life usage. However,
the CEA used annual cycles, so assuming the treatment effect allows for non-adherence in
the first year of use seems reasonable.

The meta-analyses assume adherence is binary. In reality, a treatment effect does not abruptly
terminate once adherence falls below a certain level. In usual practice the treatment effect
would diminish from full adherence to no usage. This is difficult to model and requires data
not available in this case (information on the proportion of time people were asleep using/not
using the intervention and the impact of different levels of adherence on the treatment effect).
The case study CEA assumes non-adherent individuals are treated with CM which has no
associated treatment effect (Appendix B.3.8). This may not be the case in practice. For
example - if an individual is not adherent to MADs their clinician may start them on treatment
with CPAP, as suggested by the NICE guidelines for patients with mild OSAHS [149]. A
formal definition for adherence to interventions to patients with OSAHS was searched for
and not found, therefore adherence is assumed to be more than four hours usage a night for
70% of nights - a common definition among a number of papers included in the meta-analysis
[4, 77, 121, 195, 233]. A formal definition of adherence would be useful to guide further
research.

The differences between studies in the literature review on adherence to interventions and the
results of the meta-analysis may be driven by disease severity or patient preferences between
interventions rather than the effect of the intervention. There is insufficient data to investigate
this and those studies which looked at factors affecting adherence gave differing conclusions.
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The differences in populations and the grouping of different types of MAD and CPAP used
indicate results may not be well generalised [21]. In particular, information on how disease
severity drives adherence and any difference in adherence to the different types of MADs
and CPAP would be useful to explain the extent of heterogeneity.

3.5.2 Methodological issues

When implementing different definitions of the pooled estimates for the meta-analysis
models, in the case study CEA little difference between the results was found. Different
definitions of the pooled estimate represent different target populations for the treatment
decision [97, 203, 243]. The decision population for the pooled estimates is that used in the
case study - the TOMADO population (overweight, non-smoking, non-diabetic males with
mild-moderate OSAHS who are moderately sleepy). The studies in the meta-analysis were
similar to the target population in terms of age and BMI. However, the AHI was greater in the
meta-analysis studies, especially in papers reporting on adherence to CPAP. However, AHI is
not used in the case study CEA. We believe the study population is similar to the studies used
in the meta-analysis, so the estimate from a predicted new study appears to be an appropriate
pooled summary. Welton et al. (2015) outlined a number of other methods for pooling
estimates which have not been explored, many dealing with heterogeneity between studies -
assuming either independent study specific estimates, shrunken study estimates, or allowing
for heterogeneity in the meta-analysis to be seen in the decision setting (Section 3.3.2) [243].
The application of these estimates to the work may be beneficial if more information was
available to explain the causes of heterogeneity in the model.

The work in this chapter depends on the Weibull model being correctly specified. A three
parameter model such as the Gompertz-Makeham model or a generalised gamma model
could have been used [130, 206]. However, fitting such models requires sufficient data to
identify more complex hazard variations. The Weibull model assumes the rate of becoming
non-adherent is a monotonic function of time. A three parameter survival model would allow
for non-monotonic functions. Since evidence from the literature and intuition suggest a
high initial hazard reducing over time, therefore the exponential does not appear appropriate.
Therefore, it was felt the Weibull model would be the most appropriate survival model for
this data.
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3.5.3 Future research priorities

In addition to collecting the information suggested of value by the EVPPI and EVSI calcu-
lations (Section 3.4.3) other data may help to improve the meta-analysis model. Data on
adherence to CPAP for populations with mild-moderate OSAHS would help assess whether
severity drives the difference in adherence between the two interventions. However, due to
the current NICE guidance on treating OSAHS this data would be limited [149]. Data on
adherence rates beyond ten years usage of MADs and CPAP would help determine the time
period the Weibull model is applicable over and whether the Weibull model is appropriate.
Due to the nature of the interventions patients may have strong preferences for a particular
treatment. This may influence adherence, meaning information on patient preference between
interventions and its relationship with adherence would be useful.

All data in the meta-analysis was published aggregated data. No IPD on adherence was
available. IPD could assist in identifying factors such as AHI, ESS and BMI that may impact
adherence rates. Additionally, IPD could help reduce uncertainty around meta-analysis
estimates (Chapter 4).

The EVSI calculations do not take into account the costs associated with undertaking the
proposed studies. To fully assess whether the proposed studies should be carried out the
EVSI needs to be compared to the cost of undertaking the research (Section 2.4.1). Only if
the value of the future work is less than its cost is it worth carrying out. Whilst we have not
costed any of our proposed studies, we expect due to the population-levels estimated (Section
3.4.3) many of these studies would be worthwhile. The population-level EVSI estimates
presented in Figure 3.7, are between £5-50 million depending on study size, the intervention
considered, and the timepoints the data is collected at. These population-levels EVSIs appear
to suggest these studies should be carried out. However, these values are dependent on the
prevalence, incidence, and diagnosis rates of OSAHS over the time period of interest. As
shown in Chapter 2, these are subject to uncertainty. Any change in the population can have
a large impact on the value of information estimates.

The impact of the length of the proposed studies or the ease/difficulty of recruiting/collecting
the data and participants have not been considered. A retrospective study, taking patients
prescribed the interventions a number of years ago and seeing if they are still adherent is less
informative than a prospective study which could collect data at multiple timepoints in the
future. However, a retrospective study would provide the information quicker. It may be
preferential to have data sooner rather than later as opposed to more valuable information.
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This is not reflected in the EVSI calculations, and is a decision the researcher designing and
implementing the new study needs to make.

The case study CEA uses a cohort who are all non-diabetic, non-smoking, overweight males
with high blood pressure aged 50 with a baseline ESS value of 11.9 (Section 1.3). Running
the model for different populations may yield different results in terms of the value of collect-
ing information on adherence but would assume adherence was homogeneous. Additionally,
the population in the case study CEA may impact the cost-effectiveness of the interventions
regardless of whether adherence is modelled. Therefore, collecting data on treatment efficacy;
adherence and other patient characteristics from a heterogeneous population would be useful,
as discussed in Chapter 4.

The disease area and treatment options for the case study CEA could be considered a special
situation. Both interventions for OSAHS are very different. For example, a CEA where both
interventions are drugs may not have differential long-term adherence rates. Often many
side effects due to pharmaceuticals leading to non-adherence occur soon after initiation of
treatment and thus will be reflected in a treatment effect estimated from short term RCTs.
Both treatments for OSAHS are currently available on the NHS although the current guidance
on usage differs for the interventions [149]. This means there is a wealth of information
over a number of years on both MAD and CPAP usage. This may not be the case for a
treatment that is ‘new to the market’. In this case, available data would be more sparse than
the data on MADs. This would make modelling adherence more difficult and the resulting
estimated would have increased uncertainty. However, it would motivate estimating value of
information quantities on adherence.

The methodology developed in this Chapter potentially has a wider scope than the application
to adherence suggests. Further work exploring the applications of these methods to other
binary time-to-event outcomes such as appropriate length of follow-up in a trial or for
modelling the time-to-events in a CEA would be useful. These outcomes are potentially of
more importance that adherence, and would expand the usage of the methodology.

3.6 Conclusion

There is limited data for long-term adherence to interventions for individuals with OSAHS.
However, Bayesian time-to-event meta-analysis techniques can be used to model the impact
of adherence over time and can provide inputs in a CEA which reflect all available data. This
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meta-analysis represented the extent of uncertainty about variation in adherence over time
and between people. Value of information methods found significant value, in excess of £5
million at the population-level for collecting more information on adherence. This value was
particularly high for MADs and when the proposed study sample size was greater than ten
with participants using the intervention for two years.



Chapter 4

Methods for stratifying the optimal
treatment decision using non-binary
measures of disease severity

Cost-effectiveness can differ between groups of the population for many reasons including
the baseline characteristics of the patients. These differences in cost-effectiveness can be
driven by the treatment effect and can lead to different optimal interventions for subgroups
of patients. Exploration of the impact of continuous baseline characteristics on the treatment
effect can help guide the decision of which intervention is best for which groups of the
population. This chapter provides such an analysis using Bayesian meta-regression methods
combining individual participant (IPD) and aggregate data (AD) from RCTs to determine the
impact of non-binary baseline characteristics on the results of the case study CEA.

4.1 Introduction

Results from a CEA typically show whether an intervention is cost-effective ‘on average’ for
the population studied [25, 84, 193]. This can lead to a suboptimal treatment recommenda-
tion for some patient groups [193]. Patients can be divided into many different subgroups
using factors including individual baseline characteristics, such as the presence of prior
disease or clinical measures, for example SBP [193]. Exploration of cost-effectiveness within
subgroups can lead to a more efficient allocation of resources [193].

Sculpher (2008) outlined a taxonomy of possible sources of heterogeneity between study
participants. He also addressed issues in estimating heterogeneity on model parameters and
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how the associated uncertainty can be quantified [193]. The term ‘value of heterogeneity’
was introduced in Espinoza et al. (2014) as a measure to quantify the population-level health
economic benefit of stratifying decisions by subgroups [67]. This concept is explored further
in Chapter 5.

The NICE methods guidance (2013) provides some information on how to analyse data
for stratifying decisions by patient subgroups in practice [150]. They believe exploring the
cost-effectiveness of subgroup specific policies is important, ideally using pre-defined sub-
groups. The guidance indicates a preference for analysis using IPD and states the precision
of the subgroup estimates should be reflected when exploring parameter uncertainty [150].
However, there appears to be no formal guidance on the methodology to be used to explore
patient heterogeneity in CEAs. On the other hand, there are a number of NICE Technical
support documents which deal with heterogeneity in treatment effects using meta-regression
methods [55, 166]. These were designed to assist practitioners in methods for NICE Tech-
nology Assessments [55, 166].

Despite the obvious potential benefits of stratifying the treatment decision, and NICE’s
recommendations, stratification is not regularly considered and/or implemented. Due to a
likely lack of data, subdividing a population can lead to concerns with the quality of the data
used to inform subgroup specific effects [44, 49, 87]. Often trials used in evidence synthesis
have weak data on treatment-subgroup interactions. There are potentially additional costs
to stratification which may be prohibitive and could eliminate the benefits of stratification.
For example, stratification on a genomic marker would be costly to implement, so a large
difference in the health benefits between interventions in the subgroups is required for this to
be implemented. These additional costs are important, and methods to assess their impact
are discussed further in Chapter 5.

A lack of sufficient data is one reason why stratification is not regularly implemented, al-
though not considering stratification is the same as stating there is no value in stratification
with complete certainty. However, there is often some potentially sparse AD available from
published studies. The primary aim of this chapter is to apply Bayesian meta-regression meth-
ods using both AD and IPD to estimate the association of continuous (i.e. non-categorical)
baseline measures with the treatment effect, and illustrate how a stratified CEA based on this
analysis can be implemented. The results from the network meta-regression and the CEA
can help decide whether the available data is sufficient to make decisions on stratification of
optimal treatment at an individual patient-level. Chapter 5 expands upon this and looks at the
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decision of stratification at a population-level. This complements the work by Espinoza et al.
(2014), who explored the value of stratification on covariates [67].

IPD is the preferred data source for inclusion in a meta-regression, as recommended in the
NICE guidance [150]. However, access to IPD is notoriously difficult [181]. A secondary
aim of this chapter is to illustrate the benefit of even a small amount of IPD in improving
the precision and accuracy of a Bayesian meta-regression for a treatment effect. This was
also illustrated by Saramango et al. (2012) [190]. They developed a series of Bayesian
network meta-analyses which allowed for both AD and IPD to explore the effectiveness of an
intervention with binary covariates [190]. They found including even a small amount of IPD
into the network meta-regression increased the accuracy of the treatment covariate interaction
estimates, compared to using AD alone. Additionally, the inclusion of IPD reduced the
inconsistency in the meta-regression.

This work is not the first to consider statistical methods to stratify the optimal treatment
decision from a health economic perspective. Hoch et al. (2002) discuss how econometric
techniques can be used to identify important subgroups [101]. They use a similar idea to
Section 4.4, using patient covariates to adjust the NMBs to explore which factors impact the
cost-effectiveness of an intervention. However, they used a CEA that used individual patient
simulation, as opposed to the case study CEA, which was a cohort simulation. Phillippo et al.
(2018) explored methods for adjusting results of network meta-analysis for treatment effects
that vary between populations [167]. They explore two recent methods and acknowledge
network meta-regression models that use both AD and IPD are attractive alternatives to their
work.

This chapter proceeds as follows: Section 4.2 outlines the data available for exploring
stratification on patients with OSAHS using continuous measures of disease severity [198].
Section 4.3 describes the methodology of evidence synthesis by meta-regression of AD
and IPD to potentially guide stratification. It also describes the models fitted to the data
collected in Section 4.2. Section 4.4 presents the methods used in incorporating the meta-
regression results into the case study CEA. Additionally, an analytic representation of the
expected relationship between the baseline characteristics and the CEA results is presented
[198]. Section 4.5 reports the results of the meta-regression models introduced in Section
4.2 and applies these models to the case study CEA to assess whether cost-effectiveness
differs for individuals in different strata [198]. Section 4.6 discusses the limitations of the
models and data, along with future research priorities. Section 4.7 concludes the chapter and
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links the findings of this work to Chapter 5, which assesses whether stratification should be
recommended for a population accounting for the costs of stratification and the population
distribution of the stratifiers.

4.2 A literature review to guide modelling the impact of
a baseline disease severity measure on the treatment
effects with an intervention for patients with OSAHS

The case study report and its associated meta-analysis paper (Sharples et al. (2014, 2015))
reported results from a number of classical meta-analyses of RCTs to, among other reasons,
provide information for the input parameters in the case study CEA [198, 199]. Their work
builds on previous literature reviews focussing on the effects of treatment with MADs on the
AHI and ESS (Lim et al. (2009)); and of CPAP and its impact on AHI and/or ESS (McDaid
et al. (2009)) [123, 134].

In this thesis, the review is updated to collect additional data from the RCTs on the association
of baseline values of ESS with the difference in ESS between treatment arms (treatment
effect). Sharples et al. (2014, 2015) classified each study as having a population with mild
(ESS < 9); moderate (9 ≤ ESS < 15) or severe (ESS ≥ 15) daytime sleepiness at baseline
[198, 199]. Subgroup meta-analyses were carried out for each categorisation of baseline
ESS. No analysis looked at the explicit relationship between the continuous study-level
baseline ESS and the study-level treatment effect. These studies reported their baseline ESS
as an average for their population with a standard error. Having numerical, as opposed to
categorical, values for the baseline ESS enables a clearer relationship of the association
between the baseline ESS and the treatment effect to be estimated using meta-regression
(Section 4.3.2). Thus, the papers were re-reviewed for information on the mean and standard
error for baseline ESS and the treatment effect. Information on the baseline BMI for the
study population, which will also be considered as a stratifier, was also extracted. The papers
were also searched to see if they provided easily accessible IPD.

4.2.1 Search criteria and methodology

The updated data comes from studies included in the meta-analysis presented in Sharples et
al. (2014) using the search terms in the Appendix of Sharples et al. (2014) [198]. Briefly,
the search strategy was as follows: eligible studies included RCTs of adult OSAHS pa-
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tients with at least one arm randomised to MADs or CPAP and a treatment duration of at
least one week. Studies comparing two MADs, different types of CPAP, animal studies,
non-randomised studies and those not published in English were excluded. The inclusion
criteria included RCTs of adult patients with newly diagnosed or existing OSAHS of any
severity. Studies where OSAHS was not the primary diagnosis, or where the sleep disordered
breathing was predominantly associated with heart disease, stroke or dementia were excluded.
The primary outcomes of the review were AHI and ESS. In this thesis the focus is on the ESS.

Since the publication of Sharples et al. (2014, 2015) one paper was retracted (Sharma et
al. (2011)), so removed from the analysis [196, 198–200]. Additionally, updated values for
Craig et al. (2012) and Gagnadoux et al. (2011) have been used [48, 78, 199]. There were
some studies where the data was unable to be extracted in the form desired or inaccessible
(18 papers); did not present the standard error for at least one of the baseline ESS or change
in ESS (three papers) or the population was inappropriate (three papers) [17, 69, 183]. The
papers included are detailed in Sharples et al. (2014, 2015), with exclusions as discussed
above [198, 199].

4.2.2 Results

Complete data were found for 41 two armed and two three-armed RCTs, giving a total
of 47 treatment comparisons. 31 studies compared treatment with CPAP to CM; eight
studies compared treatment with a MAD to CM; and eight studies compared treatment
with MAD and CPAP. This indicates, as with data on adherence to interventions (Chap-
ter 3), the available data for treatment with MADs is sparse compared to treatment with CPAP.

Of those studies comparing CPAP with CM, five had a mildly sleepy population (measured
by ESS), 25 had a moderately sleepy population, and one had a severely sleepy population
at baseline. Those comparing treatment with MAD to CM all had a moderately sleepy
population at baseline. One study comparing treatment with MAD and CPAP had a mildly
sleepy population with the remaining seven studies having a moderately sleepy population at
baseline.

The populations were aged between 44 and 59 for studies comparing CPAP and CM; between
45 and 59 for those comparing MAD and CM; and between 44 and 51 for those comparing
MAD and CPAP. For reference, the case study CEA cohort was aged 50 years [198].
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In terms of BMI, considered as a second stratifier later in the chapter, the average BMI
in the populations studied comparing CPAP and CM is 27-37kgm−2; for those comparing
MAD and CM is 27-43kgm−2; and for those comparing MAD and CPAP 26-33kgm−2. For
reference the case study CEA cohort had a BMI of 31kgm−2 [198].

For a study providing IPD, indexed by i, assuming each participant p provided information on
ESS at baseline (t0) and at follow-up time (t1) with intervention j, the effect of intervention j
over time on the ESS, yi jp, can be expressed as:

yi jp = ESSi jp (t1)−ESSi jp (t0) (4.1)

where ESSi jp(t) is the ESS of participant p in study i with intervention j at time t. In a study
that provides AD the yi jp are latent, and the information provided is:

yi j =
1

Pi j

Pi j

∑
p=1

yi jp (4.2)

where Pi j is the number of individuals in study i treated with intervention j. The reported
mean effect of treatment j2 compared to j1 in study i is:

β̂i( j1, j2) = yi j2 − yi j1 (4.3)

Figure 4.1 shows the result of the literature review in terms of the mean study baseline ESS,
averaged over all participants in all arms (ESSi(t0)) and the difference in mean ESS between
treatment arms

(
β̂i( j1, j2)

)
. This highlights the sparsity of the data relating to treatment with

MADs. There appears to be some indication that as the baseline value of ESS increases,
so does β̂i(MAD,CM) and β̂i(CPAP,CM). A conference abstract by Patel et al. (2017) found
the minimum clinically important difference for the ESS was two, indicating more studies
comparing CPAP and CM found a clinically important difference than studies comparing
MAD and CM [160]. From Figure 4.1 there is little clear evidence on the impact of the
relationship between the baseline ESS and the mean treatment effect over the study for
studies comparing treatment with MAD and CPAP.

Figure 4.2 shows the relationship between the average BMI in the study (BMIi(t0)), at
baseline, and the difference in ESS between treatment arms

(
β̂i( j1, j2)

)
. This indicates some

weak evidence that underlying BMI is associated with a stronger CPAP effect compared to
CM. There is little evidence to support a relationship between underlying BMI and the effect
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Figure 4.1 Observed data on baseline ESS values and the difference in mean ESS between
treatment arms extracted from the studies in the literature review1 [198, 199]

1:A negative value indicates that intervention j1 has a greater reduction in ESS than intervention j2.
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Figure 4.2 Observed data on BMI values and the difference in mean ESS between treatment
arms extracted from the studies in the literature review1 [198, 199]

1: A negative value indicates that intervention j1 has a greater reduction in ESS than intervention j2.

of MADs compared to CM and the effect of CPAP compared to MAD.

Included above were AD from two studies where IPD was easily accessible. The TOMADO
was the RCT the case study CEA is based upon [198]. The authors provided IPD for this
study [198]. This compared treatment with a variety of MADs to no treatment. For this work,
the values for the mid-range, semi-bespoke MAD have been used. In general, it is difficult
to gain IPD from study authors. However, one study, Hans et al. (1997), a trial comparing
treatments with MAD and CM with 21 participants, published their IPD [89]. This gave
sufficient detail to be included.

Both Sharples et al. (2014) and Hans et al. (1999) were cross-over trials where participants
receive multiple treatment. In both Hans et al. (1999) and Sharples et al. (2014) all patients
receive treatment with MAD and CM, however, the order patients receive the interventions is
randomised. This means for each patient there are two yi jp, one for each j ∈ {MAD,CM}.
Both studies implemented a washout period, a period of time between the periods of treatment
where no treatment was given to allow for the effect of the first period of treatment to be
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Figure 4.3 Observed data on the individual patient baseline ESS values and the individual
patient difference in ESS with treatment over time extracted from the studies where IPD was

easily accessible1 [89, 198, 199]

1: A negative value indicates that intervention j1 has a greater reduction in ESS than intervention j2.

eliminated. It has been assumed this washout period is sufficient to allow for the data to be
treated as though it were from a parallel trial, with each patient providing two independent
pieces of data.

The data from the studies providing IPD are presented in Figures 4.3 and 4.4. There is some
evidence of a relationship between the baseline ESS and the change in ESS over time for
each participant. This indicates an increase in baseline ESS may lead to a greater change
in ESS over time when treated with MAD. The evidence of any corresponding relationship
for BMI is weak. These relationships may also be due to those with a higher baseline ESS
having a greater capacity to benefit.

It was decided to concentrate on absolute change in ESS over time as opposed to proportionate
change to remain in line with the model and work in the case-study CEA [198].
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Figure 4.4 Observed data on the individual patient baseline BMI values and the individual
patient difference in ESS with treatment over time extracted from the studies where IPD was

easily accessible1 [89, 198, 199]

1: A negative value indicates that intervention j1 has a greater reduction in ESS than intervention j2.
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4.3 Methods for estimating the impact of baseline measures
on the treatment effect

4.3.1 Meta-regression theory

Meta-analysis methods, introduced in Section 1.2, combine multiple sources of data to
estimate a single quantity, typically a treatment effect, for the population of interest [227].
Meta-regression is similar, but aims to link the effect size to one or more covariates [227].
Meta-regression recognises heterogeneity exists between studies and that the included covari-
ates can help to explain some, but not all, of the heterogeneity [227]. This section introduces
the meta-regression methods used in Section 4.3.2 by introducing methods for extending to
network meta-regression, for allowing for trials with more than two arms ,and for combining
IPD and AD.

Motivating theoretical example

Assume n covariates of interest and I studies indexed by i = 1, . . . , I. Let ZZZ be a I × (n+1)
matrix of study-level covariates (including an intercept), and γγγ be a (n+ 1)× 1 vector of
coefficients, with β̂i the published treatment effect for study i, assumed to have been generated
by the true study specific effects, µi, and a sampling error, σi, often taken as the reported
standard error:

β̂i ∼ N
(
µi,σ

2
i
)

A meta-regression model describes how the true study specific effects, µi, are distributed
depending on ZZZ:

µi ∼ N
(

ZZZiγγγ,σ
2
µ

)
γγγ ∼ [−,−]

σ
2
µ ∼ [−,−]

σ2
i reflects the heterogeneity of the true study specific estimate. γγγ and σ2

µ the between study
variance need to be estimated. [−,−] represents the prior distribution for the pooled treatment
effect, covariate effects and heterogeneity (Section 1.2.3).
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Covariate values are not randomised between trials unlike treatments within trials, therefore
meta-regression can suffer from confounding bias [227]. The aim of the work in this thesis is
to choose the best treatment for a subgroup, not to explain the underlying cause of subgroup
differences. Therefore, confounding bias, while important to acknowledge, is not thought to
be a serious problem. In a similar way, the relationship of the individual patient outcome
with trial-level or arm-level average covariates (the across trial relationship) may be an inac-
curate estimate of the relationship of the individual patient-level outcome with patient-level
covariates (within trial relationship). This is known as the ecological fallacy [59, 140]. The
relationship of the outcome with covariates across and within trials is explored below.

Regression to the mean occurs in any analysis of the effect of baseline values on the same
outcome that defines the treatment effect. In this case, the measurement error in the co-
variate also appears in the dependent variable which can potentially lead to bias in the
meta-regression results [227]. In this thesis the ESS is measured by a questionnaire which
has measurement error. This questionnaire is used in both the dependent variable and the
covariate. This issue is not specific to the ESS and occurs in all patient reported outcome
measures. It would be preferable for the patients’ treatment effect to be related to some
objective, low error, baseline value, such as the AHI - an objective measure of OSAHS
severity [197]. Schilling et al. (2017) found using pre-post quality of life measures signifi-
cantly impacted the results of the CEA compared to using matched controls and attributed
this to regression to the mean [191]. As alternative data is not available it is important to
acknowledge potential regression to the mean. However, we believe the effect of regres-
sion to the mean will be less than the minimally clinically important difference for the
ESS [160]. In addition, shrinkage to the mean occurs in all hierarchical models. However,
as we have a reasonable amount of data, this is unlikely to be considerable in this thesis [126].

Other issues with meta-regression, highlighted by Thompson and Higgins (2002), include the
need for a sufficiently large amount of data [227]. Analysis can only use data from studies
where complete information on the dependent variable and the covariate(s) of interest are
available1 [227]. This may lead to studies which could be synthesised in a meta-analysis not
being included in a meta-regression. This means the resulting pooled estimates from a meta-
regression may be subject to reporting bias [227]. Covariates of interest, to be included in
the meta-regression, should be pre-specified with a plausible relationship with the dependent
variable. Additionally, the number of covariates should remain manageable [227].

1Theoretically, if some information was available on each study, missing data methods such as multiple
imputation could be used. However, in practice this is unlikely to be helpful.
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Mixed treatment comparisons and network meta-regression

The motivating example, introduced above, assumes two interventions are being compared.
Now assume three interventions, j ∈ {0,1,2}, with j = 0 the comparator. Information on
the pooled effect for each pair of treatment comparisons can be found using a network
meta-regression. This can be used to find information for treatment comparisons where there
is no available data [227].

The term ‘mixed treatment comparison’ is a subset of the term ‘network meta-analysis’ where
there are closed loops in the network, created either by direct or indirect evidence [111]. In a
network meta-regression, a transitivity assumption is required - the effect of the covariates,
γγγ(1,2), on the pooled treatment effect comparing interventions 2 and 1 need to be related in
the following way [110]:

γγγ(1,2) = γγγ(0,2)− γγγ(0,1)

Taking a study i with an observed comparison between interventions j = 1 and j = 2, β̂i,(1,2)

the random effects model can be expanded to:

β̂i,(1,2) ∼ N
(
µi,(1,2),σ

2
i
)

µi,(1,2) ∼ N
(

ZZZiγγγ(1,2),σ
2
(1,2)

)
∼ N

(
ZZZi(γγγ(0,2)− γγγ(0,1)),σ

2
(1,2)

)
where, using the formula for the variance of the sum of two independent random variables:

σ
2
(1,2) = σ

2
(0,1)+σ

2
(0,2)−2ρ(1,2)σ(0,1)σ(0,2) (4.4)

with priors:

γγγ(0,2),γγγ(0,1) ∼ [−,−]

σ
2
(0,1),σ

2
(0,2) ∼ [−,−]

where ρ(1,2) is the correlation between µ(0,2) and µ(0,1). Assuming homogeneous variances
between treatment comparisons, as the interventions are of a similar type then σ2

(1,2) =

σ2
(0,2) = σ2

(0,1) = σ2. By substitution of the homogeneous variances into Equation 4.4 the



134
Methods for stratifying the optimal treatment decision using non-binary measures of disease

severity

correlation between the relative effect of j = 1 and j = 2 compared to j = 0 is ρ(1,2) = 0.5
[56]. Lu and Ades (2004) present methods for heterogeneous variances [125].

Multi-arm trials

The literature review (Section 4.2) found two studies that compared three interventions.
Methods to incorporate these while accounting for between arm dependencies within studies,
are needed. Assuming exchangeability between studies (Section 1.2), a multi-arm trial,
with a > 2 arms, produces a vector of a− 1 random effects µµµ i. In this thesis there are
three interventions, but this method can be extended to any dimension of a. Let the three
interventions in study i be j = 0,1 and 2 with study specific effects µi,(0,1) and µi,(0,2).
Assuming the comparisons have a constant variance, σ2, the marginal distributions of the
treatment effects are [97]:

µi,(0,1) ∼ N(ZZZiγγγ(0,1),σ
2)

µi,(0,2) ∼ N(ZZZiγγγ(0,2),σ
2)

As the two study specific effects are relative to the same comparator, j = 0, correlation
between them exists, so our interest is in the joint distribution of µµµ i =

(
µi,(0,1),µi,(0,2)

)
[56, 97, 125, 188]. Assuming transitivity, the marginal variance of µi,(1,2) is the same as
the marginal variance of µi,(0,1) and µi,(0,2). Therefore, the covariance between µi,(0,1) and
µi,(0,2) can be estimated using the marginal distributions above, the transitivity assumption,
and the equation:

var
(
µi,(1,2)

)
= var

(
µi,(0,1)

)
+ var

(
µi,(0,2)

)
−2cov

(
µi,(0,1),µi,(0,2)

)
σ

2 = σ
2 +σ

2 −2cov
(
µi,(0,1),µi,(0,2)

)
cov
(
µi,(0,1),µi,(0,2)

)
=

1
2

σ
2

The joint distribution of µµµ i, for use in the network meta-regression when a study has three-
arms is expressed as [56, 97, 125, 188]:

µµµ i =

(
µi,(0,1)

µi,(0,2)

)
= MV N

((
ZZZiγi,(0,1)

ZZZiγi,(0,2)

)
,

(
σ2 σ2

2
σ2

2 σ2

))
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Incorporation of IPD into meta-regressions

In this thesis two studies which compared MAD and CM have easily accessible IPD [89, 198].
The aim of the meta-regression is to use all available data to assess whether the covariates
impact on the change in ESS with treatment. Therefore, as IPD provides more information
than AD, this data should be incorporated into the analysis.

A meta-regression using only IPD is seen as the ‘gold-standard’ and the ideal scenario for
researchers. It enables information not available to AD only studies to be used [109, 182].
Within study relationships can be disentangled from between study effects [109, 182]. Fur-
ther, IPD on patient-level covariates mean a network meta-regression can model the within
study variation of effect modifiers. Additionally, confounding bias due to patient-level
characteristics can be minimised and better subgroup estimates can be found through an IPD
meta-regression [109].

However, it is unusual for a researcher to have access to IPD on all studies. If IPD were only
available for a proportion of the studies, an IPD only meta-regression may be biased if the
availability of IPD is related to the study results (reporting bias) [208]. Therefore, a meta-
regression that uses all available data by combining both AD and IPD is seen as an effective
and realistic compromise between a meta-regression of AD alone and one with full IPD. AD
can estimate treatment effects on study-level factors for heterogeneous treatment effects, but
IPD is needed to estimate the treatment effect on patient-level factors with homogeneous
treatment effects [192]. Debray et al. (2016) explored in which situations IPD would be most
beneficial. They concluded IPD would be most useful when included trials have substantial
drop-out rate or the treatment effect appears to be dependent on patient-level covariates [52].

Riley et al. (2007) carried out a systematic review looking at meta-analyses that combined
AD and IPD [181]. They found 33 articles which combined AD and IPD and 166 that did
not, but described the results from IPD. The proportion of studies providing IPD ranged from
10% to 92% with a mean and median value of 64% and 71% across the set of 33 studies with
no clear explanation for why some studies were able to collect more data than others. This
represented 11% - 98% (mean and median of 67% and 68%) of total participants included in
the meta-analyses.

Both Riley et al. (2007) and Debray et al. (2015) reviewed methods for combining AD and
IPD in meta-analyses [51, 181]. Three distinct methods were found for continuous outcome
measures, summarised below: a two-stage meta-regression model, partial reconstruction of
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IPD, and multi-level modelling. Additionally, these papers identified some methods that can
only be used for binary outcomes which have not been explored in this thesis as the focus is
on non-binary outcomes.

Two-stage meta-regression method

Riley et al. (2007) found the two-stage meta-regression method, named by Simmonds et al.
(2005), was the most commonly used method [181, 202]. In a two-stage method, for each
study the IPD is reduced to AD. It is then combined with the existing AD using standard
meta-analysis or meta-regression techniques. This method ignores patient-level information
provided by IPD and so is best used when the predictors of interest for the pooled effect are at
study-level [181]. Two-stage methods cannot be used if correlation exists between the pooled
effect and the covariates of interest [55]. In addition, if the purpose of the meta-analysis
is to look at effect modification by individual-level covariates then ecological bias may be
introduced [51].

Dias et al. (2011) suggest the two-stage method could be used if the analyst does not have
access to the IPD for some studies [55]. Data owners could calculate the summary values
for their study, and provide these to the researcher who is carrying out the meta-regression.
Further, Riley et al. (2007) state AD provided by the data-owners is likely to be of better
quality than published AD [181]. However, as Dias et al. (2011) note, coordinating an
analysis of this form could be cumbersome [55].

Reconstruction of IPD

This method can be used when the outcome is binary, ordinal, or survival based and so
its use can be limited [51]. In this method summary information can be used to generate
patient-level information [230]. This data can then be used in a IPD only meta-analysis.
However, as patient-level covariate information cannot be extracted in this way, this method
can only be used to combine IPD and AD in a meta-analysis without covariates.

Multi-level or hierarchical modelling

In this method, a joint likelihood with parameters shared between the AD and IPD can
be built so all studies are used to estimate the overall treatment effect and the study-level
covariates [51]. However, only the IPD gives strong information on the effects of patient-level
covariates [51]. This method is also referred to as multi-level modelling, shared parameter
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modelling or hierarchical related regression [51, 62, 181, 182]. This can be implemented in
a number of ways. Riley et al. (2007) and Donegan et al (2013) estimate a single multi-level
regression model using a dummy variable to indicate whether a study provides IPD or AD
[62, 181]. Alternatively Jansen (2012), Thom et al. (2015) and Sutton et al. (2008) jointly
estimated two related regression models for IPD and AD by Bayesian inference using MCMC
methods [109, 221, 225].

Riley et al. (2008) use classical methods including restricted maximum likelihood (Section
1.2), whereas the work in this thesis takes a Bayesian approach. A number of studies outline a
Bayesian approach for combining AD and IPD for binary outcomes and present applications
of their methods [62, 109, 221]. Saramango et al. (2012) use this method to carry out a
network meta-regression for a binary outcome, where the inclusion of even a small amount
of IPD led to more accurate estimates for the treatment-covariate interactions [190].

Most work published to date has concentrated on binary outcomes which is not the focus of
this thesis. However, as noted in Thom et al. (2015), these methods are easily extendible
to continuous outcomes [225]. In their work, Thom et al. (2015) carried out a Bayesian
network meta-analysis which combined AD and IPD using a mixture of study designs [225].
They found the inclusion of IPD had little effect on the results of their work. Ravva et al.
(2014) used a Bayesian hierarchical model for a continuous outcome response using work by
Jackson et al. (2006) as a basis by presenting a linear approximation for defining the AD
model in terms of the IPD model [105, 178].

4.3.2 Network meta-regression models to estimate the impact of base-
line measure of disease severity on the change in ESS with treat-
ment for OSAHS

Using the data collected in Section 4.2 and methods introduced in Section 4.3.1 network
meta-regression models for the association of two covariates with the absolute treatment
effect, β̂i(1,2), have been explored. The first model explores the impact of baseline ESS on
β̂i(1,2) with the second exploring the impact of baseline ESS and BMI on β̂i(1,2).

In the current CEA model BMI is not an input. However, it is thought a higher BMI leads to
an increased risk of developing OSAHS and an increased risk of CVEs [198]. Additionally,
from a methodological point of view, exploring two continuous stratifiers is interesting:
Firstly, stratification on two parameters is more challenging on the data, as more data are
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required to produce estimates with an appropriate degree of accuracy; Secondly, due to the
increased number of strata, two parameter stratification is more computationally demanding
with many more PSA samples needed to make stratified optimal treatment decisions with
sufficient confidence.

Throughout this work, it is assumed the relationship between the covariate(s) and the treat-
ment effect is linear. This is a strong assumption discussed further in Section 4.6.

A method for a network meta-regression to guide stratification on one covariate

A meta-regression model combining IPD and AD for a single covariate is outlined below.
Two studies have easily accessible IPD [89, 198]. These are both cross-over trials comparing
MAD and CM. However, the method presented could easily be extended to trials using CPAP
or with multiple arms. Each patient is assumed to provide two independent observations
comparing ESS under the two interventions with the baseline ESS. This should be reasonable
as both studies used a washout period of no intervention between treatment arms to allow
for the effect from the first treatment period to wear off. A number of studies make a
similar assumption. Elbourne et al. (2002) undertook a review of 184 meta-analyses which
incorporated cross-over trials [65]. Of these 6% excluded cross-over trials completely2,
11% considered cross-over trials separately, 52% considered data from the first period only,
30% considered the data as though it came from a parallel trial, and 1% considered the data
from the cross-over trial as paired data [65]. Therefore, the assumption in this work appears
reasonable and in line with other practitioners, especially considering the washout period
which is a common mechanism in OSAHS studies.

Formally, for the trials providing IPD, recall from Equation 4.1 that yi jp is the observed
change in ESS over time for an individual p in study i treated with intervention j, i.e.:

yi jp = ESSi jp(t1)−ESSi jp(t0) (4.5)

where t0 and t1 are the baseline and follow-up time respectively and ESSi jp(t) is the ESS
for patient p in study i treated with intervention j at time t. The available data is presented
in Figure 4.3. Let µi jp be the underlying treatment effect for patient p in study i with
intervention j then:

yi jp ∼ N
(
µi jp,Φ

2) (4.6)
2These papers states this in their review methods. Only one study specified a reason for this exclusion - that

for this particular treatment a cross-over design was inappropriate
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where Φ2 represents the variance of the individual participant observations. Each patient, p,
in study i contributes two observations under different treatments j. Let i = 1, . . . ,n index the
studies with IPD in the meta-regression. Additionally, let j ∈ {CM,MAD,CPAP}= {0,1,2}.
Further, let zip be the baseline value of the covariate of interest for patient p in study i (i.e.
ESSi jp(t0)); zi be the baseline value of the covariate of interest for study i (i.e. the mean of
zip over participants); ri be the mean change in ESS over time with j = 0 in trial i; φi j be the
mean treatment effect comparing treatment j = 1,2 and j = 0 when zip = 0; and αi be the
mean change in response under j = 0 for a one unit increase in zip. All values of baseline
covariates are assumed, going forward, to be centred around their mean values to reduce the
posterior correlation between the intercept and gradient terms.

Let γ
j

A denote the across trials association between a one unit change in study-level covariate
values zi and the outcome µi jp. Let γW denote the within trial association between a one unit
change in individual patient covariate values, zip, and the outcome µi jp. The cases γ

j
A = γ

j
W

and γ
j

A ̸= γ
j

W are considered separately to assess whether ecological bias is a potential issue.
When assuming γ

j
A = γ

j
W , the within and across trial relationships are thought to be identical:

confounding does not affect the across trial treatment covariate interaction and there is no
ecological bias in the across trial interaction (Section 4.3.1). If γ

j
A ̸= γ

j
W , it is not possible to

make inferences about individual patients using the study-level data and ecological bias is
present. Under the two cases µi jp is defined by:

Case 1: γ
j

A ̸= γ
j

W

µi jp = ri +φi j +αizip + γ
j

W zip + γ
j

Azi (4.7)

Case 2: γ
j

A = γ
j

W

µi jp = ri +φi j +αizip + γ
j

Azip (4.8)

The model specified above can be aggregated over patients within a study to produce a
meta-regression model for studies providing AD. Recall that:

yi j =
1

Pi j

Pi j

∑
p=1

yi jp (4.9)
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is the average treatment effect over time for the Pi j patients treated in study i = 1, . . .n2 with
intervention j. The yi jp are latent and unobserved in studies providing AD. Additionally, let:

zi =
1
Pi

Pi

∑
p=1

zip (4.10)

be the mean baseline value of the covariate in study i over all Pi patients in study i. The
meta-regression model for studies with two and three arms are presented separately. For two
armed trials, the published effect of treatment j compared to the comparator j0 is:

β̂i j = yi j − yi0 (4.11)

whose distribution is implied by Equations 4.6 - 4.8:

β̂i j ∼ N
(
µi j, σ̂

2
i j
)

(4.12)

except that the variances σ̂2
i j are taken as the observed standard error from the published

studies - the validity of this assumption is discussed further in Section 4.6; µi j is the
underlying true treatment effect for study i with intervention j, where:

µi j = φi j + γ
j

Azi (4.13)

where zi is centred. For studies not providing IPD the additional terms in Equations 4.7 and
4.8 cancel out when the equations are aggregated over the participants. In particular, γ

j
W is

not present (if γA ̸= γW ) as trials providing AD cannot provide information on within study
effect modifiers.

For trials with three arms the bivariate normal distribution for
(

β̂i1, β̂i2

)
(Section 4.3.1) is:(

β̂i1

β̂i2

)
= MV N

((
µi1

µi2

)
,

(
σ2 σ2

2
σ2

2 σ2

))
where µi j and βi j are defined as for two armed trials and σ2 is the observed standard error
from the studies, assuming homogeneous variances.



4.3 Methods for estimating the impact of baseline measures on the treatment effect 141

Random Effects distributions

The random effects distributions for the model are, for j = {1,2}:

ri ∼ N(ν ,λ )

φi j ∼ N(ρ j,τ)

αi ∼ N(θ ,η)

with φi0 being 0.

For three-armed studies, there is correlation between φi1 and φi j2 which needs to be ac-
counted for (Section 4.3.1). φφφ i = (φi1,φi2) is modelled as a bivariate normal distribution with
conditional distributions assuming a correlation of 0.53(Section 4.3.1) [97, 125]:

φi0 = 0

φi1 ∼ N(ρ1,τ
2)

φi2|φi2 ∼ N
(

ρ2 +
1
2
(φi2 −ρ1) ,

3
4

τ
2
)

Priors

To fully specify the network meta-regression model priors need to be defined for the hyper-
parameters and covariate effects (Section 1.2.3). Vague priors have been used with their
structure dependent on prior knowledge.

γ
j

A measures how much the absolute treatment effect, µi j, changes with a one unit change
of study-level baseline value of ESS, zi. Therefore, the prior for γ

j
A should be informed by

plausible values for µi j. The mean for the prior was set to be zero, reflecting uncertainty
on whether the impact of the stratification variable (zi) on the difference in ESS between
treatment arms (µi j) is positive or negative. In addition, as there is a lack of data on the MAD
and CM ( j = 1 and j = 0) treatment comparison and for γ

j
W the same priors are set for both

3As explained in Section 4.3.1, we assumed homogenous variances, τ , due to the interventions being of a
similar type. This is combined with the assumption of transitivity - that the marginal variance of φi1 is the same
as for φi2. The covariance between φi1 and φi2 can be shown to be 1

2 σ2 and so giving the correlation of 0.5



142
Methods for stratifying the optimal treatment decision using non-binary measures of disease

severity

treatment with MAD and CPAP and for γ
j

A and γ
j

W .

The ESS takes integer values from zero (not sleepy) to 24 (extremely sleepy). We wish to
find a credible interval for the effect of the baseline ESS on µi j. The maximum plausible
range for yi j is (−24,24). Therefore the effect on µi j of a change from high to low covariate
values could range from −48 to 48.

From this, we can determine a plausible variance, assuming this is a 99.95% credible interval
for a 24 unit change in zi as:

σ =
(48− (−48))

Φ−1(0.9995)−Φ−1(0.0005)

γ
j

A and γ
j

W represent the effect of a one unit change in zi so, the estimate for σ2 needs to be
divided by 24, giving σ2 = 0.78. The full list of priors is:

γ
j

W ,γ
j

A ∼ N(0,0.78) j = {1,2}
ρ j,θ ,ν ∼ N(0,103) j = {1,2}

τ,Φ,λ ,η ∼U(0,2500)

Models explored

The aim of the network meta-regression is to make best use of all available data. Therefore,
separate analyses have been carried out to demonstrate the impact of the inclusion of IPD.
In addition, as there is no prior knowledge of whether it can be assumed that within and
across trial interactions are the same (i.e. if γ

j
A = γ

j
W ) this has also been explored. The models

presented are:

1. all trials with AD

2. trials with AD and IPD and assuming γ
j

A ̸= γ
j

W

3. trials with AD and IPD and assuming γ
j

A = γ
j

W

The difference between models 1 and 2 and models 1 and 3 show the impact of including IPD.
The difference due to assuming γ

j
A = γ

j
W is shown by comparing models 2 and 3. Goodness

of fit measures (Section 3.3.3) can only be compared between models 2 and 3 as model 1
uses a different dataset.
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Bayesian inference was performed by MCMC using the JAGS software [126, 169]. Two
chains were used with a burn-in period of 10,000 simulations. 100,000 simulations were
carried out. Convergence was checked by inspection of the trace plots.

A method for a network meta-regression to guide stratification on two covariates

The methodology for the network meta-regression on two covariates of interest is similar to
when considering one covariate. Let all parameters defined in the one covariate case maintain
their definition. In addition define:

zi =

 z(1)i

z(2)i

z(1)i z(2)i


T

γ
j

A =

γ
j

A1

γ
j

A2

Γ
j
A

 γ
j

W =

γ
j

W1

γ
j

W2

Γ
j
W


where the superscripts in zi identify the (centred) first and second covariates of interest. Γ

represents an interaction term quantifying how the treatment effect changes for a one unit
change in the product of the two covariates. The model structure is then identical to the
one for one covariate but with zi, γ

j
A and γ

j
W replaced by their vectorised form. The random

effects distributions are as in the case of stratification by one covariate.

Priors

In setting priors for γ
j

A, γ
j

W , Γ
j
A and Γ

j
W the same theory was used as with one covariate as no

further information was available to guide in the choice of priors:

γ
j

A1,γ
j

A2,γ
j

W1,γ
j

W2,Γ
j
A,Γ

j
W ∼ N(0,0.78) j = {1,2}

As we have little information, the interactions have been given the same prior as the other
parameters. However, it may be that there is increased uncertainty around the interaction
terms. All other priors retain their definitions.

Models explored

The same models, software, and number of simulations have been explored as in the network
meta-regression to guide stratification on one covariate. This is due to the similar model
structure and the same data sources being used.
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Pooling the estimates over the studies

The resulting change in ESS with treatment j for an individual in study i with the covariate
values z under the model is:

µi j = φi j + γ
j

A (z− z̄) (4.14)

where z̄ are the centring values for z. A corresponding pooled estimate representing an
average over all studies has been obtained by plugging in the means for the random effects
distributions from the meta-regression model into Equation 4.14:

µ̄ j = ρ j + γ
j

A (z− z̄)

This method assumes the target population for the decision is the same as the average setting
from the studies in the network meta-regression. Section 3.3.2 presents alternative methods
for pooling the estimates in further detail along with their advantages and disadvantages.

4.4 Application of the results of the meta-regression to the
cost-effectiveness analysis

The aim of the network meta-regressions (Sections 4.3.2) was to investigate whether different
patients should be prescribed different interventions on the basis of their baseline ESS or
BMI in terms of cost-effectiveness under current information. Therefore, the results of the
network meta-regression need to be incorporated into the case study CEA.

The posterior samples of ρ j and γ
j

A have been extracted from the network meta-regression
considering stratification on one covariate and used in the case study CEA through the
resulting posterior mean samples of the effect of intervention j compared to comparator
j = 0 have been estimated by:

µ̄ j = ρ j + γ
j

A(z1 −12) (4.15)

where z1 is the baseline ESS and z̄ = 12. Similarly, for the two parameter stratification the
posterior samples of φ j, γ

j
A1, γ

j
A2, and Γ

j
A have been extracted and the resulting posterior

samples of the effect of intervention j compared to comparator j = 0 have been estimated
by:

µ̄ j = ρ j + γ
j

A1(z1 −12)+ γ
j

A2(z2 −32)+Γ
j
A(z1 −12)(z2 −32) (4.16)
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where z2 is the BMI and z̄2 = 32. The µ̄ j estimates are used in the PSA in place of the
estimates used in the case study CEA (Appendix B). These are presented in Equations 4.17
and 4.18 and were derived using the results of the classical meta-analysis in Sharples et al.
(2014) [198]:

µMAD ∼ N(−1.61,0.342) (4.17)

µCPAP ∼ N(−1.62,0.342) (4.18)

Stratified sampling is implemented with the CEA run a number of times for each of the strata
under consideration - i.e for each baseline ESS (integer values from zero to 24) for potential
stratification on one covariate and each combination of baseline ESS and BMI (integer value
from 24-38 kgm−2) for potential stratification on two covariates. These are used in Equations
4.15 and 4.16 as covariates, baseline ESS (z1) and BMI (z2), to estimate the impact of the
treatment on the ESS, µ j.

This is applied to the case study CEA model that uses the optimal adherence model from
Chapter 3. That is, the adherence model with a bivariate distribution between the shape
and scale parameters for a Weibull survival model for ten years using the predictive pooled
adherence parameters.

4.4.1 Exploring the relationship between the baseline ESS and the change
in ESS between treatment arms analytically

This section looks at the analytic relationship between the baseline ESS through the change
in ESS with treatment and the CEA results to explain how cost-effectiveness is expected to
vary between strata in this example. The terminology used here is defined in Appendix B.
Note the results of the CEA do not directly depend on BMI so it is not possible to analytically
derive the impact of a unit change in BMI on the CEA. The baseline ESS and change in ESS
with treatment impacts on the case study CEA in two ways:

1. through the estimation of the baseline utility (Ubase), for each intervention which
impacts on the expected QALYs

2. through the risk of a RTA, which influences the expected survival, QALYs and costs
for each intervention
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The impact of baseline ESS on QALYs

In the case study CEA, the baseline utility, Ubase, for a cycle spent with intervention j is
estimated as:

Ubase = α +β × (z+µ j) (4.19)

where α and β are the coefficients of a regression model mapping ESS to utility (see Ap-
pendix B.3.4), z is the baseline ESS of the participant, and µ j is the change in ESS with
intervention j compared to CM ( j = 0). Further adjustments are made to Ubase for CHD and
stroke events which are not impacted by the ESS. The utility after a RTA is not affected by
ESS and does not use Ubase. The model assumes there is no effect on survival or costs due to
ESS.

Under the meta-regression model (Section 4.3.2) we assume, for potential stratification on
one covariate, the effect of intervention j in terms of change in ESS is:

µ j = ρ j + γ
j

A(z−12) (4.20)

The INB (Section 1.1.1) is expressed as:

INB(θθθ) = λ∆E −∆C

It can be shown the relationship between the INB and the baseline ESS (z) is linear. Substi-
tuting 4.20 into 4.19 gives:

Ubase = α +β (z+φ j + γ
j

A(z−12))

= α +β (φ j −12γ
j

A)+β z(1+ γ
j

A)

This implies a one unit increase in the baseline ESS (z) leads to a β (1+γ
j

A) increase in Ubase.

Expected QALYs for each j are calculated using the equations outlined in Appendix B.3.4.
A one unit increase in ESS adjusts the NMB by an additive factor of:

λβ (1+ γ
j

A)
65

∑
t=0

(1+ i)−t (4.21)

where i is the discount rate applied to the outcomes of the CEA, which NICE take to be
3.5%p.a. [150]. Thus, the NMB is linear in terms of baseline ESS. As INB is defined as the
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difference in NMB between two interventions, the INB is also linear in the baseline ESS
and change in ESS. Therefore, there exists a relationship between the baseline ESS and the
incremental quality adjusted survival. The form of this relationship depends entirely on the
form of the network meta-regression relating the treatment effect on ESS (µ j) to baseline
ESS (z), i.e. linear in this case.

The impact of baseline ESS on the risk of a RTA

The ESS is also used to estimate the probability of transition to the RTA event state. There
is a lack of empirical evidence on the impact of MADs on RTAs, so this impact is assumed
to be based on the impact of MADs on ESS [198]. The odds ratio for a RTA using MADs
( j = 1) compared to treatment with CM ( j = 0) is assumed to be:

ORMAD = ORCPAP ×
µ1

µ2

Substituting Equation 4.20 into the above gives the ratio of the change in ESS due to treatment
with CPAP ( j = 2) compared to MADs ( j = 1) as:

µ2

µ1
=

ρ2 + γ2
A(z−12)

ρ1 + γ1
A(z−12)

A one-unit change in baseline ESS (z) has a very small impact on this value. Therefore, it
appears a change in z has a negligible impact on the risk of RTA.

Considering both areas where the ESS impacts on the case study CEA the relationship due to
baseline utility dominates. Therefore, the relationship between the NMB and baseline ESS is
expected to strongly depend on the form of the network meta-regression, which in this work
has been assumed to be linear. The validity of this assumption is discussed in Section 4.6.
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4.5 Results of the network meta-regression and potential
stratification of the optimal treatment decision

4.5.1 Potential stratification of the optimal intervention on one covari-
ate: Baseline ESS

Bayesian model-based network meta-regression results

Summaries of the posterior distributions for the meta-regression parameters for each of the
three network meta-regression models are shown along with the deviance statistics in Table
4.1.

When only AD is used in the network meta-regression there is no clear relationship between
baseline ESS and the treatment effect with MADs. There is much uncertainty, due to a
lack of data, when comparing treatment with MAD and CPAP. There is evidence of a much
stronger negative relationship between baseline ESS and the effect of treatment with CPAP:
each unit increase of baseline ESS is associated with a 0.31 fall in the ESS. The inclusion
of IPD has little impact on the posterior distributions when the treatment is CPAP. This
is as expected, all available IPD came from studies comparing treatment with MAD and
CPAP. However, the estimates of γMAD

A (and γMAD
W when γ

j
A ̸= γ

j
W ) indicate a strong negative

relationship between the baseline ESS and treatment effect. This highlights the impact and
benefit gained from including even a limited amount of IPD.

The case study CEA assumed the cohort had a baseline ESS of 11.9 and the change in ESS
with treatment had a normal distribution with mean -1.61 and standard deviation 0.34 for
treatment with MAD and a mean -1.62 and standard deviation 0.34 for treatment with CPAP
(Appendix B.3.8) [198]. Substituting a baseline ESS of 11.9 into the results (Table 4.1) gives
an estimate for the change in ESS when treated with MAD of -1.85 and when treated with
CPAP of -2.39. This suggests the effect of treatment on ESS, as estimated by the meta-
regression, is greater than in the case study CEA. While both the network meta-regression
presented in this thesis and the Sharples et al. (2014) paper use the same data, on the whole,
the inclusion of IPD, the correlation between arms in three armed studies, and including the
trials which compared treatment with MAD and CPAP have all contributed to the increase in
treatment effect [198].
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To explore the impact of treating three-armed trials as a single trial with correlated effects
between arms, as opposed to two independent two-armed trials, a brief additional analysis
was run (not presented). This found adjusting for the correlation between arms helped reduce
uncertainty by strengthening information on comparisons we do not know as much about.
Most importantly, adjusting for between arm correlation ensured the data was represented
appropriately.

To decide which of the network meta-regression models to apply to the case study CEA, a
model using both AD and IPD is preferable as all available data should be used. This limits
the choice to models 2 and 3. Considering the DIC (Section 3.3.3), model 3 has a marginally
but not substantially lower DIC value (Table 4.1). The lack of a substantial difference in
DIC between models indicates the decision of the best model should not be based on DIC
alone [126, 204]. When γ

j
A ̸= γ

j
W the credible interval for γ

j
W lies inside that for γ

j
A and the

proportion of available IPD is limited. Assuming γ
j

A = γ
j

W makes more structural assumptions
on the meta-regression model which we believe are plausible and so leads to fewer parameters
needing to be estimated with greater precision. Therefore, the impact of the change in ESS
with treatment on the result of the case study CEA and hence whether a stratified treatment
regime could be implemented can be explored with greater accuracy. Additionally, we are
unable to think of any confounding factors or possible ecological bias that may cause the
between and within study effects to differ. Therefore, the posterior estimates from the model
where γ

j
A = γ

j
W (Model 3) are used for implementation into the CEA.

The impact of including the results of the network meta-regression on the case study
cost-effectiveness analysis

The posterior estimates from model 3, using all available AD and IPD and assuming γ
j

A = γ
j

W

(Table 4.1) have been used in the CEA from Chapter 3 - the case study CEA updated with
the results of the meta-analysis on adherence to interventions [198].

Figure 4.5 presents the posterior distributions of INB (NMB(j=CPAP, θθθ ) - NMB(j=MAD,
θθθ)) for each possible baseline ESS (integer values between zero and 24). It is expected the
relationship between the baseline ESS and the INB is approximately linear (Section 4.4).

The optimal treatment changes when Eθθθ [INB(θθθ)] = 0. This occurs when the baseline ESS is
seven (the ESS can only take integer values). This indicates that on the basis of NMB those
patients with a baseline ESS of less than seven should be recommended treatment with MAD
and those with a baseline ESS greater than seven should be recommended treatment with
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Table 4.1 The posterior median, 95% credible intervals and deviance statistics for the
coefficients of the network meta-regression models on the impact of baseline ESS on the
change in ESS using aggregate(a) and individual participant(b) data with 100,000 Monte

Carlo simulations and pooled effects as the means from the posterior distributions

Model 1 Model 2 Model 3
AD AD + IPD AD + IPD

γA ̸= γW γA = γW

MAD(c,d)

ρMAD -1.67 -1.77 -1.87
(-2.46, -0.02) (-2.55, -1.05) (-2.59, -1.18)

γMAD
A 0.03 -0.01 -0.17

(-0.49, 0.54) (-0.54, 0.49) (-0.43, 0.10)
γMAD
W -0.23

(-0.54, 0.09)
CPAP(c,d)

ρCPAP -2.40 -2.42 -2.42
(-2.94, -1.92) (-2.97, -1.93) (-2.98,-1.18)

γCPAP
A -0.31 -0.31 -0.32

(-0.52, -0.13) (-0.53, -0.14) (-0.54, -0.15)
Deviance Statistics(e)

D̄ 141.6 1,061.0 1,060.0
pD 17.2 23.4 22.9
DIC 158.8 1,084.0 1,083.0

(a)AD; (b)IPD; (c)φ j = The pooled treatment effect for the mean baseline ESS; (d)γ j = The effect of a one
unit increase in individual (W) or average (A) baseline ESS on the treatment effect with intervention j; (e)see
Chapter 3 for further information on these quantities.



4.5 Results of the network meta-regression and potential stratification of the optimal
treatment decision 151

Figure 4.5 Results of the case study cost-effectiveness analysis incorporating the results of
the network meta-regression on the impact of baseline ESS on the change in ESS with
treatment(a) presented in terms of the INB between MAD and CPAP for all values of
baseline ESS and a cost-effectiveness threshold value of £20,000 per QALY gained

(a)Model 3: This model uses all AD and IPD and assumed γA = γW

CPAP.

Figure 4.6 presents the results of the case study CEA for each possible value of the ESS
as the probability each intervention is the most cost-effective at a threshold of £20,000 per
QALY gained. This presents further evidence in terms of both NMB and the probability the
intervention is the most cost-effective that those with baseline ESS of less than seven should
receive treatment with MADs and the rest CPAP.
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Figure 4.6 Results of the case study cost-effectiveness analysis incorporating the results of
the network meta-regression(a) presented as the probability each intervention is most

cost-effective, for each plausible baseline ESS value (shown in bold) and the intervention
with the highest net monetary benefit at a cost-effectiveness threshold of £20,000 per QALY

gained

(a)Model 3 - This model uses all AD and IPD and assumed γA = γW
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4.5.2 Potential stratification of the optimal treatment decision on two
covariates: Baseline ESS and BMI

Bayesian model-based network meta-regression results

Summaries of the posterior distributions for the network meta-regression parameters for each
of the three models are shown along with their deviance statistics in Table 4.2.

When only AD is used (Model 1) and when γ
j

W ̸= γ
j

A (Model 2), the point estimates of γMAD
A

indicate an increase of one unit of trial-level BMI or ESS is associated with increased ESS
after treatment with MAD, although with wide credible intervals. This appears clinically
incorrect and inconsistent with Table 4.1. There is some weak evidence that γ

j
A ̸= γ

j
W with the

median values for γMAD
A1 and γMAD

W1 having opposite signs (also for γMAD
A2 and γMAD

W2 ). However,
the credible intervals for γMAD

A1 and γMAD
W1 overlap, and for γA2 and γW2 too. The results of the

network meta-regressions which considered stratification on one covariate (Section 4.5.1)
indicate a one unit increase in ESS reduces the ESS after treatment with MAD. When treated
with CPAP, all models produced similar results, as expected. The network meta-regressions
show similar results to the results of the network meta-regressions considering stratification
on one covariate (Table 4.1) with BMI and the interaction of BMI and ESS having little
impact on the results.

As with the network meta-regressions considering stratification on one covariate, the DIC
can be compared between models 2 and 3, where a non-substantial difference was found.
Similar to Section 4.5.1, the posterior estimates from Model 3 are used in the case study CEA,
despite the weak evidence against this discussed above, as it provides more precise estimates
by using between trial estimates of γMAD

A under the assumption of γ
j

A = γ
j

W to estimate γMAD
W .

The impact of including the results from the network meta-regression on the case study
cost-effectiveness analysis

As in Section 4.5.1, the posterior estimates from Model 3 have been used in the case study
CEA from Chapter 3. In this case, our interest is in stratifying the optimal treatment decision
on the basis of two covariates - the ESS and the BMI. Figure 4.7 presents the intervention
with the greatest INB at a threshold of £20,000 per QALY gained, for a range of ESS and
BMI values.
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Table 4.2 The posterior median, 95% credible intervals and deviance statistics for the
coefficients of the network meta-regression models on the impact of baseline ESS and BMI

on the change in ESS using aggregate(a) and individual participant(b) data with 100,000
Monte Carlo simulations and pooled effects as the means from the posterior distributions

Model 1 Model 2 Model 3
AD AD + IPD AD + IPD

γA ̸= γW γA = γW

MAD(c,d)

ρMAD -1.42 -1.54 -1.84
(-2.63, -0.25) (-2.68, -0.45) (-2.65, -1.07)

γMAD
A1 0.28 0.35 -0.15

(-0.54,1.10) (-0.42, 1.11) (-0.46, 0.15)
γMAD

A2 0.20 0.21 -0.00
(-0.35, 0.74) (-0.34, 0.75) (-0.18, 0.18)

ΓMAD
A 0.18 0.25 0.01

(-0.20, 0.56) (-0.09, 0.59) (-0.05, 0.08)
γMAD
W1 -0.38

(-1.07, 0.32)
γMAD
W2 -0.25

(-0.82, 0.34)
ΓMAD

W -0.24
(-0.59, -0.11)

CPAP(c,d)

ρCPAP -2.39 -2.42 -2.44
(-3.03,-1.82) (-3.06, -1.86) (-3.06, -1.89)

γCPAP
A1 -0.31 -0.32 -0.33

(-0.55, -0.12) (-0.55, -0.12) (-0.55, -0.14)
γCPAP

A2 -0.01 -0.02 -0.02
(-0.29, 0.26) (-0.30, 0.25) (-0.27, 0.24)

ΓCPAP
A -0.00 0.00 0.00

(-0.12, 0.12) (-0.11, 0.12) (-0.11, 0.11)
Deviance Statistics(e)

D̄ 141.9 1,031 1,032
pD 21.1 33.1 30.1
DIC 163.0 1,064 1,062

(a)AD; (b)IPD; (c)φ j = The pooled treatment effect for the mean baseline ESS; (d)γ j = The effect of a one
unit increase in individual (W) or average (A) baseline ESS on the treatment effect with intervention j; (e)see
Chapter 3 for further information on these quantities.
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Figure 4.7 Results of the case study cost-effectiveness analysis using the results of the
network meta-regression(a) presented in terms of the intervention with the highest net

monetary benefit for all baseline ESS and plausible BMI combinations at a cost-effectiveness
threshold of £20,000 per QALY gained

(a)Model 3 - This model uses all AD and IPD and assumed γA = γW

Compared to Figure 4.5, the impact of BMI on the optimal treatment decision is small for a
given baseline ESS value. For those with lower BMI the baseline ESS required to change the
optimal treatment decision from MAD to CPAP is lower, suggesting the lower the BMI the
more likely it is that MAD would be the optimal intervention. This is supported by Table
4.2 which shows small values for γ

j
A2 (the impact of a unit change in BMI) and in Γ

j
A (the

impact of a one unit change in the study-level interaction between study-level baseline ESS
and BMI). However, this is all based on a small amount of data (Figures 4.1 - 4.3).

4.6 Discussion

Limited data were found to help guide stratification on the basis of non-binary measures of
disease severity (ESS and BMI) on the difference in ESS with interventions. The literature
review (Section 4.2) found sparse data relating to treatment with MADs for patients with
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OSAHS.

The chosen network meta-regression models for exploring the impact of baseline ESS and
BMI on the difference in ESS between treatments assumed consistent within and between
trial treatment covariate interactions, i.e. γ

j
A = γ

j
W for all interventions j. Using all available

evidence indicated an increased treatment effect for patients with greater levels of sleepiness.
That is, both interventions reduce the ESS more for patients with higher initial ESS.

The network meta-regression models all showed greater uncertainty around the parameters
pertaining to MAD, which was expected due to the lack of data. However, the addition of
the IPD, which was all from studies comparing treatment with MAD and CM, reduces the
uncertainty around the comparison of MAD and CM.

Incorporating the network-meta regression results into the case study CEA model, when
considering stratification of the optimal treatment on one covariate, provided evidence that it
may be beneficial to stratify the optimal treatment decision. On the basis of the case study
CEA, those with an ESS of seven or less at baseline would be recommended treatment with
MAD and the rest of the population recommended treatment with CPAP. Chapter 5 assesses,
in detail, the population-level value of this stratification by considering the distribution of
the stratifers in the population, the level of adherence to the stratified regime and the costs
of implementing a stratified regime. For potential stratification of the treatment decision by
BMI and ESS, there appears to be little additional effect of stratifying on BMI. The extra
value to the population created by stratifying on these two covariates is also explored in
Chapter 5.

4.6.1 Data limitations

The studies in the literature review were the same as those used in Sharples et al. (2014,
2015) which were accessible and provided sufficient information [198, 199]. The one paper
retracted since the publication of Sharples et al. (2014, 2015) has been removed from the
analysis [196, 198, 199]. All studies were RCTs, being a mix of cross-over and parallel
trials. Sharples et al. (2014) carried out an assessment of the quality of the studies but no
further checks have been made [198]. This review is not comprehensive, but is believed to be
representative of the available studies.

Data from two trials provided easily accessible IPD that could be used in the meta-regression.
The authors of Sharples et al. (2014) kindly gave access to the underlying IPD from
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TOMADO [198]. Hans et al. (1997) reported sufficient IPD in their paper for inclusion in
the meta-regression [89]. While an IPD meta-regression is considered the ‘gold-standard’ it
was decided not to approach authors of other studies to request IPD. Requesting and waiting
for additional IPD is a time consuming and lengthy process which can yield little or no
extra information. The aim of this work was to identify what decisions could be made with
currently available data. Access to IPD from one study and finding further IPD from the
publication of a smaller trial is a feasible situation. NICE recommend stratification of the
optimal decision should be considered, meaning methodology for this should be able to be
implemented within the, already tight, timescale for HTA reports and submissions - 12 weeks
for a single technology appraisal and six months for a multiple technology appraisal [146]. It
would be useful to formally assess the expected incremental gain from additional IPD by
contacting researchers who publish AD. The value of collecting more IPD for a variety of
different study designs, interventions and population sizes is explored in Chapter 5.

The RCTs in the network meta-regression are a mix of parallel and crossover trials. No
formal adjustments have been made for this. Both trials providing IPD were cross-over trials.
Here, the data has been treated as though from parallel trials, with each individual providing
two independent pieces of information - the difference from the baseline ESS after treatment
with CM and with MAD. This is a common assumption [65]. Both trials implemented
a washout period between the periods of data collection. This involved participants not
receiving any treatment to eliminate the treatment effect from the previous period. Due to
the nature of the interventions, there is not thought to be a long lasting treatment effect.
Therefore, treating the IPD as though from a parallel trial appears reasonable. The impact
of the difference between cross-over and parallel trials in the AD trials has not been con-
sidered for the same reasons as for IPD: most cross-over trials implemented a washout period.

Issues around the recording of the ESS should be considered. The ESS is a self-reported
questionnaire based on how likely you are to have fallen asleep in various everyday situations
over the last few days. This indicates there may be reporting bias (Appendix A). However,
the ESS is a widely used and validated questionnaire. Issues regarding regression to the
mean and the short term nature of the trials used in the meta-regression may also occur with
repeated measures of the ESS. These will occur with any patient reported outcome. Ideally,
there would be more information on the differences between treatments over a longer time
period. However, the value of collecting this data would be difficult to quantify. Patel et al.
(2017) found the minimal clinically important difference for treatment with CPAP was a two
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unit change in ESS [160]. Our models found this for the median pooled estimates when the
baseline ESS was greater than 13 for MAD or greater than ten for treatment with CPAP.

4.6.2 Methodological issues

The impact of baseline ESS and BMI on the difference in ESS between treatment arms has
been explored. The change in ESS with treatment is one of the two treatment effects consid-
ered in the case study CEA [198]. BMI is not a parameter in the CEA, however it is linked
to patients’ risk of OSAHS and CVEs. These may not be the most appropriate stratifiers
to consider. A second treatment effect was used in the CEA. The impact of treatment on
SBP was used to reflect the relationship between the interventions and the risk of CVEs
presented through the use of the Framingham equations (Appendix B) [7]. Some preliminary
work explored stratifying the optimal treatment decision on SBP. However, the data from
the literature review on the relationship between baseline SBP and SBP after treatment with
MAD and CPAP was scarce and not easily tractable. A number of different measures of
SBP can be recorded - the average SBP over the day, over the night and over 24 hours. The
relationship between these SBP values is not clear and there was insufficient data to consider
stratification using data for just one of these definitions. Value of information methods could
be used to find the value of collecting additional evidence on stratifying decisions on SBP. It
is important that exploration of stratification is only carried out on parameters where there is
a plausible reason on why the treatment may differ between participants and where there is
sufficient data. Chapter 5 looks at the value of collecting information to guide stratification.

In the network meta-regressions the relationship between the covariate(s) and the difference(s)
between treatments in terms of ESS has been assumed linear. In reality, other relationship
structures may be preferable, for example a quadratic relationship. By inspection of the raw
data from the studies in the literature review (Section 4.2) the relationship appears approxi-
mately linear. Adding additional terms to the regression or an alternative meta-regression
structure, such as assuming a non-parametric relationship adds extra complexity which due
to a lack of good data is likely to lead to issues with over-fitting and excessive uncertainty.
Therefore, a linear model has been used as it is the simplest model that seems reasonable.
These issues of excessive uncertainty were seen when considering stratification on two
covariates, where the addition of the second covariate led to increased uncertainty around the
treatment effect (Table 4.2).

In this work Φ2, the variance of the underlying individual participant observations of the
change in ESS with the intervention over time, is estimated from the IPD alone. The study-
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level variance of the change of ESS between treatment arms using AD (σ̂2
i j) was estimated

using the reported individual study-level standard errors. This uses all available information
and is used in Riley et al. (2008) and Thom et al. (2015) [182, 225]. However, it can lead
to inconsistencies between the AD and IPD models. The alternative model structure which
estimates Φ2 from IPD and sets the standard error for the AD to be function of Φ2 and the
study size is consistent but does not use the published standard errors from the AD. A third
option is to estimate Φ2 from a combination of IPD and AD. This would use all available
data and provide consistent models between the IPD and AD. However, estimating Φ2 from
the published standard errors from the AD may be complex, with potential little gain in
accuracy over the approach used in this thesis.

Many of the studies used in the network meta-regression have similar baseline ESS, between
10 and 15. No study has a mean baseline ESS outside of the range 6 to 17. As the ESS can
take values from zero to 24, extrapolation would be needed to assess the treatment effect for
extreme values of the baseline ESS. The results of the network meta-regression reflect the
lack of data at these extremes, due to the increased width of the credible intervals. However,
it may be a strong assumption that the relationship is linear at these extremes, since this could
lead to ‘impossible’ ESS values after treatment: i.e. that the treatment effect takes the ESS
outside the range zero to 24, (discussed further below).

The ESS is bounded between zero and 24, therefore allowing a linear relationship for the
network meta-regression may produce ‘impossible’ values at the extremes of the data range.
The results indicate this is not of great consequence. At a baseline ESS of zero, 4.9% of
the posterior samples give an ESS after treatment with CPAP outside the zero to 24 range.
This compares to 43.3% of the posterior samples looking at treatment with MAD. It is worth
noting that, at very low values of baseline ESS it is not infeasible that treatment with MAD or
CPAP would increase a participants’ ESS score. While this seems counter-intuitive, from a
practical point of view if a patient is not suffering in terms of sleepiness using an intervention
may increase their daytime sleepiness.

In the network meta-regression the treatment effect has been assumed additive between
intervention comparisons. That is:

µMAD−CPAP = µMAD −µCPAP
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Due to the lack of data on the MAD-CM and the MAD-CPAP treatment comparison this was
difficult to test. However, it appears to be a reasonable assumption to make.

The main decision when choosing the network meta-regression model for use in the CEA
concerns whether it is appropriate to assume the within and between study effects are the
same (i.e. γ

j
A = γ

j
W ). The credible interval for γ

j
W lies within that for γ

j
A and we can think of

no obvious confounding factors that would lead to ecological bias. Therefore, the within and
between study effects have been assumed equal, allowing the AD to be used to estimate the
within study effects.

4.6.3 Future research priorities

This chapter indicates that individual patients should be recommended different optimal
treatments on the basis of their ESS at diagnosis. There was little additional information
to support the idea that stratification should be performed on BMI alongside baseline ESS.
However, the results from this chapter are not sufficient to answer the question: should
stratification on the ESS and BMI be carried out in practice? To answer this, the population
distribution of ESS scores, the value of stratification, and any costs associated with implement-
ing a stratified treatment decision need to be considered. This is explored further in Chapter 5.

Additional data on populations lying at the extremes of the ESS and BMI distributions, where
there is a lack of data, could help to assess the assumption of a linear relationship between
covariates and treatment effect. The expected value of collecting this data could be estimated
by extending the meta-regression model to include the extra terms of potential interest, such
as a quadratic term, with weakly informative priors. The results from this meta-regression
could be used in the CEA and value of information measures estimated for these additional
covariate parameters. This follows the principle of the ‘discrepancy’ approach by Strong et
al. (2014a) [213].

4.7 Conclusion

There is limited data available on the impact of the baseline ESS and BMI on the change
in ESS with treatment with MAD or CPAP for patients with OSAHS. By using Bayesian
network meta-regression methods making use of all available data including AD and IPD, the
impact of baseline ESS, and BMI on the change in ESS under treatment has been modelled,
and the associated uncertainty quantified. By applying the results of this Bayesian network
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meta-regression to the case study CEA it has been possible to identify those individuals in
the population who would benefit from alternative interventions.

Chapter 5 extends upon the results from this chapter to explore the population-level strati-
fication decision and assesses what further information would be useful to collect to guide
stratification.





Chapter 5

The value of stratification and collecting
further information to guide
stratification

Chapter 4 presented methods for evidence synthesis to inform stratified treatment decisions
for non-binary covariates at an individual patient-level. It found for the case study CEA the
treatment with the highest NMB depended on the patients’ baseline ESS and to a lesser extent
BMI. This chapter extends upon this work to assess whether a stratified regime should be
implemented at a population-level by calculating the health economic value of stratification.
It considers the population distribution of the strata, the level of adherence by physicians
and patients to the stratified regime, and the costs associated with implementing a stratified
treatment regime. Once a decision on stratification has been made there may be value in
collecting further information to guide stratification. Methods for prioritising further research
and for efficiently computing value of information quantities for stratified treatment decisions
are presented. All of this work is applied to the case study CEA.

5.1 Introduction

Under current information the optimal intervention, in terms of cost-effectiveness, may differ
between groups of the population. However, the presence of different optimal interventions
for subgroups is not a sufficient condition for implementing a stratified regime. For imple-
mentation to be considered worthwhile in an economic context, factors such as the costs
of stratification, the distribution of the strata in the population, and the extent it is expected
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physicians and patients might adhere to the stratified regime need to be considered.

The work in Chapter 4 indicates, on an individual patient basis, value in stratification for the
case study CEA. However, a population-level perspective is needed to assess whether the
regime should be implemented. Health economic decisions, such as those made by NICE,
consider the value of a strategy to the population. Therefore, factors such as those mentioned
above need to be considered. In particular, while individual patients with specific values of
stratifiers may be recommended different interventions, if the proportion of the population
who would be given an intervention considered suboptimal under a non-stratified regime is
small then the related population-level value of stratification could be small.

In such a scenario the monetary costs of stratification become even more important. The
process of allocating people to their correct stratum has a cost. If this is greater than the
population-level value of stratification there is no health economic value of stratification. The
extreme of this is the idea that everyone should be treated compared to the scenario where
people are then tested and allocated treatment on the basis of the test results in an outbreak
scenario.

The idea that a stratified regime may not be adhered to completely by physicians (or pa-
tients) is a key concept as it can significantly impact whether a stratified treatment decision
should be implemented [47]. The presence of a set of pre-defined values at which patients’
prescribed intervention may change could lead to patients close to these boundary values
being prescribed a suboptimal intervention. This ‘blurring’ of the strata allocated to each
intervention can reduce or eliminate the value of the stratified regime.

This chapter extends upon the work in Chapter 4. There, evidence was found for the case
study CEA that stratification of the optimal intervention may be useful. There are two
main aims to this chapter. The first is to present a generalised version of currently available
methods to assess whether, given the strata, the stratification regime should be implemented.
The key components are the costs of stratification and the distribution of the strata in the
population. Methodology is presented to allow for calculating the value of stratification
for discrete and continuous covariates. Additionally, the impact of different population
distributions for the stratifying variables and the impact of suboptimal treatments being given
is investigated in the case study. This theory is outlined in Section 5.2 and applied to the
results of the case study CEA (Chapter 4) in Section 5.2.2.
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After deciding whether to implement a stratified treatment regime under current information,
the next logical step is to assess whether further information should be collected to reduce
uncertainty relating to stratification. The concepts of EVPPI and EVSI from Section 1.1.3 and
Chapter 2 are revisited in the context of stratified decision making (Section 5.3). Extensions
of current methods are developed to allow for efficient calculation of EVPPI and EVSI for
stratified decision making using a single non-parametric regression. Applications to the case
study CEA illustrate these methods. Section 5.4 extends and answers some of the discussion
points from Chapter 4 and additionally details limitations of this work and further research
priorities.

5.2 The health economic value of stratification

5.2.1 Background and theory

Chapter 4 found the optimal treatment for the case study CEA differed for patients according
to their baseline ESS and BMI values. However, it did not quantify whether population-level
treatment allocation should depend on these stratifiers. Both clinical and cost-effectiveness
criteria need to be considered. Chapter 4 presents the clinical value of stratification: through
the Bayesian network meta-regression combining IPD and AD it found the treatment effect
differs between interventions and patient characteristics. The case study CEA used the
results from the network meta-regression and found those with a baseline ESS of less than
seven should be prescribed MADs and the remainder of the population prescribed CPAP.
Additionally, for potential stratification of the treatment decision by BMI and ESS there
appears to be little additional effect of stratifying on BMI. However, under a NHS type
healthcare system this is not sufficient for implementation. Stratification needs to provide
additional value to the population as a whole.

The remainder of this section presents a number of concepts relating to the value of stratifica-
tion under current information. Even if there are individual patient benefits to stratification,
stratification should only be implemented if the population-level costs of stratification are
less than its population benefit. There are also issues around non-adherence to stratification
regimes due to a concept named leakage.

The value of stratifying the optimal treatment decision under current information

Espinoza et al. (2014) presented work on the value of heterogeneity for categorical subgroups
(normally binary) of the population [67]. Here this work is used to present a more general
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framework for stratification on discrete and continuous covariates [67]. Taking a UK per-
spective, the aim of the NHS is to maximise the health of the population subject to a financial
budget [145]. This work explores the value of taking into account stratification variable(s),
XXX , in treatment allocation. Let j ∈ {0,1} index the set of interventions to which each strata
could be allocated. As previously, let θθθ be the set of uncertain parameters in the CEA.
Assume the allowed values of XXX can be partitioned into mutually exclusive categories (for
example, taking integer values only). XXX could be a single stratifier or a vector of stratifiers.
Assume, for now, that XXX is a single stratifier.

The cost-effectiveness problem in terms of the EIB between interventions 0 and 1 for a given
threshold, λ is:

EIB0−1 (XXX) = Eθθθ [NB( j = 0,θθθ ,XXX)]−Eθθθ [NB( j = 1,θθθ ,XXX)]

= ENB( j = 0,XXX)−ENB( j = 1,XXX)

where NB( j,θθθ ,XXX) is the NMB for the population with stratification variable XXX and interven-
tion j:

NB( j,θθθ ,XXX) = λ ē j,x − c̄ j,x (5.1)

where ē j,x = EX=x
(
e j
)

and c̄ j,x = EX=x
(
c j
)
.

If EIB0−1 (XXX)> 0, for a stratum with stratifier XXX , then intervention 0 is more cost-effective.
Similarly, if EIB0−1 (XXX)< 0 then intervention 1 is more cost-effective.

EIB0−1 (XXX) can be calculated for each value of XXX . The change in optimal treatment occurs
at the x where EIB0−1 (XXX) changes sign. Let x∗ be the largest x where EIB0−1 (XXX)> 0, so if
EIB0−1 (XXX) is monotonic in XXX :

x ≤ x∗ j=0 is optimal

x > x∗ j=1 is optimal

The Expected Net Benefit (ENB) for the population is maximised when each stratum receives
their optimal intervention. The maximal ENB under stratification by XXX is:
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ENB(XXX) = ∑
x≤x∗

ENB( j = 0,x)wx + ∑
x>x∗

ENB( j = 1,x)wx (5.2)

where wx is the proportion of the population where XXX = x; ∑x wx = 1 and x∗ is the value of
x ∈ XXX where the optimal treatment changes.

If the ENB is not monotonic in XXX then j may be optimal for disjoint subgroups. For example,
suppose XXX can take values {x1,x2,x3,x4} where x1 < x2 < x3 < x4, and j = 0 is optimal
for {x1,x3,x4} and j = 1 optimal for {x2}. In this example, there are two points where the
optimal treatment changes: x2 and x3.

Let
{

XXX j
}

be the subset of the values of XXX where intervention j is optimal, j = 0,1. Equation
5.2 can be re-expressed as:

ENB(XXX) = ∑
x∈{XXX0}

ENB( j = 0,x)wx + ∑
x∈{XXX1}

ENB( j = 1,x)wx (5.3)

Similarly, if there are more than two interventions, each optimal for a different subset of
strata

{
XXX j
}

, j = 0, . . . ,J, then Equation 5.3 can be extended:

ENB(XXX) = ∑
j

∑
x∈{XXX j}

ENB( j,x)wx (5.4)

If XXX is a vector corresponding to stratification on n covariates, then Equation 5.4 can be used
with each

{
XXX j
}

corresponds to the n-tuples where j is optimal.

The structure above assumes XXX can take one of a finite set of mutually exclusive values. If XXX
is truly continuous (for example, weight), then:

ENB(XXX) = ∑
j

∫
x∈{XXX j}

ENB( j,x) f (x)dx (5.5)

where f (x) is the probability density function of XXX . In Equation 5.5, there is a sum over
j as the set of interventions remains discrete and mutually exclusive. While stratifiers can
be continuous, they are often measured or recorded on a discrete scale, in which case XXX
can be considered as discrete (for example - weight may be recorded to the nearest kilo-
gramme). Additionally, policy-makers may prefer to define specific values which consider the
accuracy the stratifier could be recorded or measured, in which case Equation 5.4 can be used.
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Equation 5.4 presents the ENB for the population when a stratified treatment regime is
implemented. A number of papers have explored the population-level value of stratification
[19, 47, 67]. This is an important concept and is used to decide whether to implement a
stratified treatment regime.

The static value of heterogeneity is defined by Espinoza et al. (2014) (Coyle et al. (2003)
present a similar argument), as the value of stratifying the optimal treatment decision under
current information equivalent to the difference between the population-level ENBs with and
without stratification [47, 67]:

∑
j

∑
x∈{X j}

[ENB( j,x)wx]−Eθθθ

[
max

j
NB( j,θθθ)

]
As the set of potential values that XXX can take increases, either in terms of granularity of a
single stratifier or by the number of stratifiers, the number of strata increases. Taking this to
its limit gives the case where individualised care is offered [18].

Non-adherence to optimal treatment allocation

Coyle et al. (2003) present the idea that if the treatment decision is stratified, physicians may
not strictly adhere to the stratification regime [47]. This is a similar, but different, concept to
the uptake rate for an intervention (Chapter 2) where uptake is defined as the proportion of
the eligible population who use their intervention [86]. Non-adherence to a stratified regime
is perhaps a more pertinent issue in the case of continuous or discrete stratifiers as opposed
to a binary stratifier. Those individuals whose covariate values are close to x∗ may be more
likely to be prescribed a suboptimal treatment, as opposed to a binary stratifier where it
should be clear to which stratum each patient belongs to.

Coyle et al. (2003) define ‘leakage’ as the proportion of patients prescribed a suboptimal
treatment [47]. Let Lx be the proportion of patients with stratifier value(s) x ∈ XXX who receive
a suboptimal treatment. If j = {0,1}, then the ENB taking into account leakage, ENB(XXX)|L
is:

ENB(XXX)|L = ∑
j

∑
x∈{XXX j}

[ENB( j,x)(1−Lx)+ENB( j̄,x)Lx]

where j̄ is the suboptimal treatment for the population in strata x.
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If there are more than two interventions then the situation is more complex. Leakage could,
theoretically, occur into any other intervention. Let L̃ j,x be the proportion of people with set
of stratifiers x receiving treatment j, then:

ENB(XXX)|L = ∑
j

∑
x∈{X j}

ENB( j,x) L̃ j,x

ENB(XXX)|L can be less than the ENB under no stratification when those receiving the subopti-
mal treatment lose more NMB than they would gain from stratification negating any extra
value found by stratification. Coyle et al. (2003) also noted leakage is an endogenous product
of the presence of leakage [47]. That is, should physicians know an element of leakage
has been incorporated in the stratification decision they may be more likely to prescribe a
suboptimal intervention, causing the true rate of leakage to rise.

Leakage may not be due to the physicians’ actions alone. It could also occur when patient
preferences are considered. Patients with an x close to x∗ may be offered a choice of inter-
ventions. A patient given an opportunity to express a treatment preference may choose a
treatment that, in terms of effectiveness, is suboptimal. However, a patient who has chosen
their intervention may have an increased adherence to their intervention. The adherence rate
combined with the effectiveness of the intervention of choice may lead to a higher NMB in
practice. Chapter 3 showed how adherence to interventions can impact the optimal treatment
decision.

It is also worth noting that in addition to leakage the implementation of a stratified inter-
vention regime may not be perfect. This could be due to physician preference for a specific
intervention. There may also be barriers to implementation due to extra time being needed to
implement the stratification decision or hospitals not having access to an intervention or the
equipment/tests needed to allocate patients to subgroups. There are a number of papers that
explore this issue further [8, 73].

Costs associated with stratifying the optimal treatment decision

There are two types of costs relating to stratification: the additional costs required for research
on how costs and effects vary between potential strata and costs associated with measuring
stratifiers. This thesis explores the first in Section 5.3 and this section discusses the second.

In stratifying a treatment decision there may be costs associated with measuring XXX for in-
dividuals. Phelps (2014) believes these costs could be more important than the choice of
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stratification policies in terms of cost-effectiveness [164].

Patients can be allocated to strata using a number of methods and/or tests, for example by
conducting a blood test, a questionnaire, or a genomic test. Let C be the cost of allocating
one patient to an intervention1. There is value in stratifying the optimal treatment if:

ENB(XXX)|L−C > 0

For example, if the stratifier is the result of a genomic test, C can be large. Therefore, the extra
value due to stratification, in terms of ENB, needs to be greater than the cost of assigning
patients to subgroups. Conversely, if the stratifier was a lower cost test, such as a patient
completed questionnaire (such as the ESS), the resulting increase in ENB would need to be
less for stratification of the treatment decision to be valuable.

Additional costs may arise if further information on subgroups is collected to determine
how strata should be defined. Phelps (1997) outline four main reasons as to why the cost-
effectiveness of interventions may change across a population [163]. Firstly, stratification
will require more research into the proportion of the population in each stratum, producing
additional costs. Section 5.2.2 provides an example of this. Further, treatment efficacy
may depend on the subgroup. This relationship can sometimes be identified using existing
data without the additional costs of obtaining new data by using meta-regression (Chapter
4). Phelps (2014) points out costs can differ between subgroups due to differing risks of
co-morbidities which may not be reflected in the existing CEA model [164]. For example, in
the case study CEA, an increased baseline ESS may impact the risk of a RTA. This would not
be reflected by the subgroups specification introduced in Chapter 4. The final point made by
Phelps (1997) is that utility estimates may differ between subgroups and should be estimated
separately for each subgroup which generates additional research costs [163]. Methods for
estimating the expected value of collecting information to guide stratification are discussed
further in Section 5.3.

The expected value of stratifying the optimal treatment decision under further infor-
mation

As in the case of no-stratification, once the maximum ENB for the population of interest has
been calculated, the uncertainty around the stratified treatment decision can be expressed
in terms of the value of collecting further information to guide stratification and for other

1This is done on a per person basis as the NMB is on a per person basis
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parameters.

In a stratified decision, for each x under current information the intervention j with maximum
expected NMB is chosen:

max
j

Eθθθ [NB( j,θθθ ,x)]

Under perfect information, the maximum NMB is expected to be:

max
j

NB( j,θθθ ,x)

However, as θθθ is not known with certainty, the expectation with respect to θθθ needs to be
taken. Therefore the EVPI for stratum x is [67]:

EV PIx = Eθθθ

[
max

j
NB( j,θθθ ,x)

]
−max

j
Eθθθ [NB( j,θθθ ,x)]

where EV PIx is the per person EVPI for an individual with covariates x, similar to the EVPI
(Sections 1.1.3 and 2.2). This is the upper bound for further research on the population in
stratum x, assuming stratification of the treatment decision.

The average per person EVPI for a mixed population is [67]:

EV PIXXX = ∑
x

EV PIxwx (5.6)

that is, the average EVPI over all strata (EV PIXXX ) is a weighted sum of the EVPI for each
strata (EV PIx) on the prevalence of the strata in the population, wx. This assumes XXX is
discrete. If XXX is continuous then this can be generalised by integrating over the pdf of XXX .

As in a non-stratified analysis, population-level EVPI is more useful for prioritising future
research than per person EVPI. Let w′

x(t) be the prevalence of each x in the population at
time t, then the average per person EVPI at time t is:

EV PIXXX(t) = ∑
x

EV PIxw′
x(t)

If the population at all t have the same distribution of XXX as the current population, i.e. we do
not expect the population distribution of XXX to change with time, then wx ≡ w′

x(t) ∀ t.
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For a time horizon T , with time indexed by t = 1, . . .T , disease prevalence of I0, disease
incidence rate at time t of It , population at risk of disease P, and discount rate d then the
population-level EVPI for a stratified decision can be defined as in Section 2.2.2:

popEV PIXXX = P×

[
EV PIXXX(0)I0 +

T

∑
t=1

It
dt EV PIXXX(t)

]
Espinoza et al. (2014), as part of their value of heterogeneity specification, define the
Dynamic Value of Heterogeneity [67]. This is the expected value from collecting new data to
reduce uncertainty on parameters explicitly related to how cost-effectiveness depends on the
subgroups. This is defined to be the difference in the expected perfect information between a
stratified decision and an non-stratified decision:

∑
x

Eθθθ

[
max

j
NB( j,θθθ ,x)

]
−Eθθθ

[
max

j
NB( j,θθθ)

]
The dynamic value of heterogeneity is the additional health, in monetary terms, the popula-
tion would have if decision uncertainty was eliminated under stratification, compared to the
non-stratified case. This is the value of resolving uncertainty on the parameters the stratified
decision is dependent on, i.e. XXX . If the dynamic value of heterogeneity equals the static value
of heterogeneity further research would be preferable on those parameters that do not affect
the stratification.

Basu and Meltzer (2007) developed the concept of Expected Value of Individualised Care
(EVIC) motivated by the US healthcare system which defined as how much society should be
willing to pay to make treatment decisions on an individualised basis [19]. It quantifies the
benefit foregone by implementing a population-level decision as opposed to an individual-
level decision [19, 231]. Individualised care is an extreme case of stratification where the set
of stratifiers means each patient receives their optimal treatment.

The EVPI and the EVIC are complementary [231]. However, the EVPI presents the value of
resolving uncertainty on the treatment decision at a population-level whereas EVIC does the
same thing at an individual patient-level[231].

5.2.2 An illustration of the impact of the population distribution and
leakage on the case study

This section explores the value of stratification for the case study CEA. A number of different
distributions of baseline ESS and BMI over the population have been considered to calculate
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Figure 5.1 Three alternative population distributions of ESS used to calculate the value of
stratification for the case study cost-effectiveness analysis [114, 198]

the value of stratification assuming no leakage. The impact of leakage on the optimal
treatment allocation under stratification is then applied to the case study.

The impact of the population distribution on stratification

Three distributions for baseline ESS in the population have been used to highlight the
impact the population composition has on the value of stratification. These distributions are
illustrated in Figure 5.1. As earlier, let wx be the proportion of the population with a baseline
ESS value of x. The first distribution, arbitrarily, assumes the proportion of people with each
baseline ESS is constant over the whole range of ESS:

wx =
1

25
, x = {0,1, . . . ,24}

The second distribution is taken from a study by Johns and Hocking (1997) looking at
the daytime sleepiness, measured by the ESS, of Australian workers [114]. They used a
population of 259 workers with a sleep disorder2. The values for all participants with a sleep
disorder have been taken as a proxy for the distribution of ESS in a population with OSAHS.

2A sleep disorder was defined using a broad criteria including poor quality of sleep; taking > 30 minutes to
fall asleep; difficulty in falling asleep; waking up more than three times a night; moderate difficulty in going
back to sleep; consulted doctor about sleep; takes sleep medication; snores; and stops breathing or makes
choking noise. The final definition includes OSAHS where 30% of male and 14% of female responders were
found to have this.
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This study found a skew in the population towards a low ESS.

The third ESS population distribution is the baseline ESS distribution of the TOMADO
population, the case study for this thesis (Section 1.3 and Appendix B) [198]. TOMADO
selected patients with an inclusion criteria of baseline ESS≥ 9. Data was available for 78
participants (5 ≤ ESS ≤ 19)3. This population had a greater proportion with higher ESS
values compared to the other populations under consideration.

Population weights from these three scenarios have been applied to the case study CEA from
Section 4.4 to give the population average NMB for each intervention, j = {CM,MAD,CPAP},
under no stratification. In the unstratified analysis the baseline ESS is an input and the value
of this is allocated on the basis of these weights in each PSA sample. However, when
assessing the optimal intervention everyone receives the same intervention. The optimal
ENB for a stratified decision was that patients with ESS ≤ 7 should be treated with MADs
and the remainder treated with CPAP (Figure 4.6). The NMB under stratification and the per
person EVPI values for policies with and without stratification were calculated and used to
calculate the static and dynamic values of heterogeneity (Table 5.1 [67]).

Changing the distribution of ESS in the population changes the optimal treatment under no
stratification (Table 5.1). The value of heterogeneity, both in terms of static and dynamic
value is sensitive to the distribution of the ESS in the population. In all cases, assuming no
costs of stratification there appears to be value in stratification.

The stratifier in this work is the ESS which could be completed in one appointment with
a consultant. In the case study CEA the mean cost of a consultant appointment was £106
(Table B.8). Using this as a proxy for the cost of stratification, if the population distribution
was the same as the TOMADO population the costs of stratifying the optimal treatment
decision would be £54 per person greater than the value of stratification. Therefore, stratifi-
cation should not be implemented. However, there would still be value in stratification if the
population had a constant distribution over the range of ESS or a distribution resembling that
in Johns and Hocking (1997) [114].

For the constant weights and Johns weights of ESS in the population, the population-level
value of static heterogeneity is £45 million and £100 million respectively, assuming the cost
of the stratification is a single appointment with a consultant at £106 per patient. This shows

3A small number of participants were included despite their baseline ESS <9 as at screening their ESS ≥ 9.
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Figure 5.2 Two alternative population distributions for BMI used to calculate the value of
stratification under a two variable stratification policy for the case study cost-effectiveness

analysis [198]

a considerable value to society through stratifying the optimal treatment decision. This is due
to there being a larger proportion of the population having a baseline ESS less than seven
compared to when using the population weights derived from the TOMADO. As it is this
group of patients whose optimal treatment will change with stratification, this leads to a
greater value of stratification.

For two variable stratification, a population distribution is required for both the ESS and
the BMI, XXX = {x1,x2}= {ESS,BMI}. Two alternative population distributions have been
explored for BMI (Figure 5.2). The first, arbitrarily, assumes the proportion of people with
each BMI is constant over the range 28-36kgm−2:

wx2 =
1
9

x = {28,29, . . . ,36}

The second distribution considered is the empirical distribution of the 78 participants in the
TOMADO, cut off at a BMI of 36kgm−2. This population had a greater proportion of people
with lower BMI.
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Table 5.1 Results of the exploration of the value of heterogeneity for three different
population distributions for stratification on ESS using the results of the cost-effectiveness

analysis presented in Chapter 4

ESS Weight Distribution
Value (£) TOMADO Constant Johns

NMB of unstratified policy1

CM 280,706 280,626 292,839
MAD 284,757 284,741 296,126
CPAP 285,866 285,801 295,505

NMB under stratification2 A 285,918 286,272 296,425

EVPI (£pp)

No Stratification C-bold 547 1,212 1,319
Stratification B - A 559 1,217 1,993

NMB under Perfect Information

No Stratification C 286,413 287,013 297,445
Stratification B 286,477 287,489 298,418

Individual Value of Heterogeneity4 / Value of Stratification

Static (£pp3) D = A -bold 52 471 920
Dynamic (£pp3) E = B - C 64 476 973

Cost of Stratification5 (£pp) F 106 106 106

Population-level Value of Heterogeneity4,6,7/ Value of Stratification

Static (£ million) P×[D-F] -7 45 100
Dynamic (£ million) P×[E-F] -8 46 107

1maximum NMB highlighted in Bold; 2for the optimal intervention; 3per person 4see Section 5.2.1 and
Espinoza et al. (2014) for explanation of these quantities [67]. 5assuming costs of stratification is the cost
of one appointment with a consultant. 6assuming costs of stratification is the cost of one appointment with a
consultant of £106pp and the population-level values estimated using the parameters from Section 2.2.2 7P is
the population-level scaling factor to transform the value from a per person to a population-level value (Section
2.2.2) taking into account the time horizon of the technology and the disease incidence and prevalence rates.



5.2 The health economic value of stratification 177

Figure 5.3 The weights defining the six population distributions of combined ESS and BMI
values (assuming independence) used to calculate the value of stratification under a two
covariate stratification policy for the case study cost-effectiveness analysis [114, 198]

Based on the results in Chapter 4, the relationship between ESS and BMI is assumed to be
independent which gives the joint ESS and BMI distributions presented in Figure 5.3:

wx1x2 =wx1wx2

x1 = {0,1 . . . ,24} x2 = {28,29, . . . ,36}

These weights are applied to the case study CEA in Section 4.4 to give the population-level
values of stratification for each combination of weights for BMI and ESS (Table 5.2). The
population distributions have less of an effect in this case. As in Table 5.1, if the ESS
population distribution was as in Johns and Hocking (1997) then MAD would be the optimal
intervention under no stratification, regardless of the population BMI distribution [114].
Similarly, assuming the population ESS distribution was constant or as in the TOMADO
then CPAP would be the optimal treatment under no stratification [198]. There is value in
stratification for all population distributions assuming no costs of stratification. However,
if the costs of allocating a patient to a stratifier remained at £106 per person (assuming
measuring the BMI does not require additional time or incur further costs) there would be no
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Figure 5.4 The proportion of patients receiving their optimal treatment, as suggested by the
case study cost-effectiveness analysis under two alternative leakage distributions compared

to the base case

value in stratification when the ESS population distribution was similar to that in TOMADO
regardless of the population distribution of BMI.

The impact of leakage on the value of stratification for the case study

For ease of calculation, this section assumes the distribution of the population is defined by
the following fixed values for the ESS, XXX = x1:

wx1 =
1
25

, x1 ∈ {0,1, . . . ,24}

However, this method and application can easily be extended to different population distri-
butions and multiple stratifiers. When considering stratification by ESS Figure 4.6 showed
value in prescribing MADs to those with ESS ≤ 7 and CPAP to those with ESS > 7. This
implicitly assumes full implementation and no leakage.

Two hypothetical leakage distributions have been considered (Figure 5.4). The first, L1,
assumes the rate of leakage is greatest at values of ESS with the most uncertainty around the
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optimal treatment decision, i.e. ESS is close to 6. A second distribution, L2, assumes 20% of
patients receive a suboptimal treatment regardless of their ESS.

Without stratification the maximum ENB was £285,801 with the whole population receiving
treatment with CPAP. When stratification is implemented fully (i.e. no leakage and everyone
receives their optimal treatment) the ENB was £286,272 (Table 5.1). Under L1 dependent
on ESS the ENB(XXX)|L1 is £286,152. The static value of heterogeneity reduces by £120 per
person from £471 per person to £351 per person.

Under a constant leakage distribution, L2, the ENB(XXX)|L2 is £285,872. The static value of
heterogeneity reduces to £71 per person indicating no value of stratification should the cost
of implementing the stratified policy be the £106 per person cost of an appointment with
a consultant. This brief exploration has shown that the extent of leakage may change the
decision on the implementation of a stratified policy.

5.3 The value of collecting further information to guide
stratified decision making

When stratifying the optimal treatment decision it is important to assess whether further in-
formation on how cost-effectiveness varies between subgroups may be valuable. In particular,
if there is value in collecting information if would be useful to identify the populations for
whom the value is greatest.

In Chapter 2 a number of methods for the calculation of the EVPPI and the EVSI were
presented. The methods by Strong et al. (2014, 2015) [215, 216] are extended in this section
to estimate the value of information for a stratified decision.

5.3.1 The Expected Value of Perfect Partial Information for parame-
ters related to stratification

When considering stratification on XXX the EVPPI can be calculated for each stratum and
aggregated to gain the average per person EVPPI for the stratified population, using the
methods of Section 2.3.2. Alternatively, it is likely to be more efficient to calculate the EVPPI
for all strata simultaneously (dependent on how many strata there are).
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A multiple calculation method for estimating the Expected Value of Perfect Partial
Information relating to stratified treatment decisions

Formally, let ÊV PPIx (φφφ) be the estimate of EVPPI calculated for a set of parameters φφφ ⊆ θθθ ,
using the methods of Strong et al. (2014) for a stratum value x [215]. Let wx be the
proportion of the population in stratum x. The estimated average per person EVPPI for a

mixed population, ÊV PPI
(XXX)

(φ) is:

ÊV PPI
(XXX)

(φφφ) = ∑
x

ÊV PPIx (φφφ)wx

as in Equation 5.6, with EVPI replaced by EVPPI. These estimates of EV PPIx (φφφ) and wx can
be used to calculated the population-level EVPPI for a stratified decision using the methods
in Section 2.3.2.

Let sx be the standard error associated with ÊV PPIx(φφφ). The standard error for ÊV PPI
(XXX)

(φφφ),
s, can be calculated by:

s =
√

∑
x

w2
xs2

x

Thus ÊV PPI
(XXX)

(φφφ) and its standard error can be estimated by calculating ÊV PPIx and s2
x

for each x separately, using the methods in Strong et al. (2014) (Section 2.3.2). This requires
many more PSA samples for the same level of precision as a non-stratified EVPPI estimate
which results in either an increase in computational time for the CEA and EVPPI or a
decrease in precision.

A single calculation method for estimating the Expected Value of Perfect Partial Infor-
mation relating to stratified treatment decisions

More efficiently, the Strong et al. (2014) method for calculating EVPPI (Section 2.3.2) can be
extended to calculate stratum-specific and average per person EVPPI for a stratified decision
[215].

Assume the value of x can be measured with certainty for every patient (i.e. the ‘test’
assigning an individual to XXX = x is accurate) and the results of the PSA for a range of values
of XXX are assumed available. Let θθθ be the set of all unknown parameters in the CEA model,
φφφ the set of parameters of interest, and φ̄φφ the remaining parameters in θθθ . The EVPPI for φφφ

and XXX = x can be expressed as:



182 The value of stratification and collecting further information to guide stratification

EV PPIx (φφφ) = Eφφφ

[
max

j
E

φ̄φφ |φφφ
[
NB( j,φφφ , φ̄φφ ,x)

]]
−max

j
Eθθθ [NB( j,θθθ ,x)]

Assume EVPPI is estimated using K PSA samples. Across the K samples x can take different
values. The PSA samples, indexed by k, can be expressed as the sum of the conditional
expectation and a mean-zero error:

NB
(

j,θθθ (k),x(k)
)
= E

φ̄φφ |φφφ (k)

[
NB
(

j,φφφ (k),x(k)
)]

+ ε
(k) (5.7)

This is the same as the method in Section 2.3.2, but x is considered as an additional regressor.
Therefore, the first term in Equation 5.7 can be thought of as a function of

(
φφφ
(k),x(k)

)
, say

f
(

j,φφφ (k),x(k)
)

:

NB
(

j,θθθ (k),x(k)
)
= f

(
j,φφφ (k),x(k)

)
+ ε

(k) (5.8)

with no form imposed on f (.). As in Strong et al. (2014), the NMB outputs from the CEA
can be seen as ‘noisy’ data to learn about f ( j,φφφ (k),x(k)). For k = 1, . . . ,K, NB

(
j,θθθ (k),x(k)

)
and the values for φφφ

(k) and x(k) form a sample of outcome and predictor variables. Therefore,
the problem can be expressed as a non-parametric regression, estimating f (.). Using a GAM,
as outlined in Strong et al. (2014) (Section 2.3.2), a set of K fitted values f̂ (.) can be extracted
to give an estimate of Eθθθ

[
NMB

(
j,θθθ (k),x(k)

)]
for all k.

The fitted values can be partitioned into subsets for each potential x. Let Kx be the number of
simulations in stratum x, then using these subsets, and the methodology presented in Section
5.3.1:

ÊV PPI(φφφ ,x) =
1

Kx

Kx

∑
k=1

max
j

f̂
(

j,φφφ (k),x(k)
)
−max

j

1
Kx

Kx

∑
k=1

f̂
(

j,θθθ (k),x(k)
)

Using wx, the overall EVPPI, averaged over the heterogeneous population is:

ÊV PPI
(XXX)

(φφφ) = ∑
x

wxÊV PPI(φφφ ,x)

To calculate the standard error for this EVPPI estimate the method in Section 2.5 can be used,
which involves re-sampling the coefficients of the GAM model in Equation 5.8.
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Application to data

To compare the two calculation methods presented, the EVPPI has been calculated using the
case study CEA from Chapter 4 under the assumption that the distribution of the ESS (and
BMI) are constant over their range.

The EVPPIs have been calculated for a stratified decision where the optimal treatment
decision is decided for each strata separately. Two alternative methods are used:

• the multiple calculation method

• the single calculation method

The following sets of parameters have been explored, in each case describing the expected
change in ESS due to treatment and the effect of baseline ESS on this:

• treatment with MAD; φ =
{

ρMAD,γ
MAD
A

}
• treatment with CPAP; φ =

{
ρCPAP,γ

CPAP
A

}
• treatment with MAD and with CPAP; φ =

{
ρMAD,γ

MAD
A ,ρCPAP,γ

CPAP
A

}
• treatment with CPAP compared directly with treatment with MAD:

φ =
{

ρMAD −ρCPAP,γ
MAD
A − γCPAP

A

}
.

The CEA uses the model from Chapter 4: the network meta-regression model using AD and
IPD, assuming γA = γW , and the adherence model presented in Chapter 3.

The results are shown in Figure 5.5 and are presented as per person EVPPIs averaged over
the population distributions for ESS (and BMI). The results for the single and multiple
calculation methods are similar. However, the standard error corresponding to the estimate
of the EVPPI calculated using the single calculation method for the same number of PSA
samples is smaller as the GAM has been estimated using a larger number of PSA samples
so the uncertainty around its coefficients is smaller. Figure 5.5 indicates the most value in
collecting information on the change in the treatment effect due to CM, MAD and CPAP.
There is little extra value in this over the value of collecting information on the comparison
between MAD and CPAP directly. The value associated with collecting more information on
the impact of treatment with MAD is greater than that of CPAP, reflecting the available data.

For stratification by ESS and BMI, the results for the single and multiple parameter methods
are similar, indicating most value in collecting information on the change in the treatment
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effect due to MAD, compared to CPAP (Figure 5.5). Additionally, the value associated
with finding more information about the impact of treatment with CPAP is greater than that
of MAD reflecting the value of the existing IPD on MAD when increasing the number of
stratifiers.

5.3.2 The Expected Value of Sample Information for parameters re-
lated to stratification

Having calculated the EVPPI and finding value in collecting further information on the
treatment effect for both MAD and CPAP, the next logical step is to consider the EVSI for
the proposed treatment comparisons. A number of different trials can be considered. Key
considerations when planning a proposed study in this situation are:

• What is the population of interest? i.e. What baseline ESS (and BMI) should the study
population have?

• What treatments are being compared?

• Is the study a parallel or a cross-over trial?

• Are we planning to conduct a new study, in which case we would expect IPD to become
available? Or are we proposing to search literature for additional data, which may only
be available as AD?

The ESS can take values between zero and 24 [113]. From Chapter 4 the optimal treatment
under current information changes at a baseline ESS of 7. There appears to be little uncer-
tainty around the optimal treatment (CPAP) for patients with high initial ESS. Further, the
literature review in Section 4.2 found many studies used populations with similar baseline
ESS. It may be that further information is more valuable for specific subgroups.

Secondly, EVPPI calculations found value in collecting information comparing CM and
MAD, CM and CPAP, CPAP and MAD, and a three-armed study comparing CM, MAD
and CPAP. A three-armed study was optimal in terms of EVPPI, although the EVPPI for
comparing CPAP and MAD directly is similar. When considering realistic study sizes,
there may not be value in any treatment comparisons. EVSI calculations for all treatment
comparisons with significant EVPPI should be carried out.

Both parallel and cross-over trials are regularly carried out to compare interventions for
OSAHS. This has implications for study size and the results. A cross-over trial, where each
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of the M participants receive all interventions where the order of allocation of interventions
assumed to be randomised provides M data points for the impact of each treatment. A
parallel trial with the same number of participants will, assuming equal allocation between
arms, provide M

a data points for each treatment (where a is the number of arms in the study).
Additionally, while not considered here, the type of trial can impact the cost - both in terms
of the monetary costs and the opportunity cost caused by delaying the new treatment regime
while information is collected.

IPD is considered the ‘gold standard’ for inclusion in meta-regressions. Any future study
would hopefully provide IPD to update the meta-regression. However, there may be situations
where only AD would be generated, for example if a more comprehensive/systematic review
of the literature was undertaken.

EVSI calculations have been carried out assuming the inclusion criteria of the proposed study
defined as five ESS populations each with a ESS between:

• 0 and 10 (mild daytime sleepiness)

• 10 and 16 (moderate daytime sleepiness)

• 16 and 24 (severe daytime sleepiness)

• 0 and 24 (the whole range of ESS)

• 4 and 8 (the range of ESS where there is the most uncertainty around the optimal
decision)

and that the distribution of the ESS in the resulting study population is uniform over each
range.

When considering stratification by baseline ESS and BMI, three different inclusion criteria
for BMI have been considered taking into account the range of BMI in the population under
consideration (Chapter 4) and those at the lower and higher end of this distribution:

• BMI between 28-36kgm−2

• BMI between 28-32kgm−2

• BMI between 32-26kgm−2
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The inclusion criteria for BMI and ESS have been combined, giving a total of fifteen
different trial populations with the same set of studies considered for both single and multiple
parameter stratification. For each trial population and treatment comparison four trial designs
are considered:

1. parallel study generating IPD

2. cross-over study generating IPD

3. parallel study generating AD

4. cross-over study generating AD

Methodology by Strong et al. (2015) (Section 2.4.2) has been extended to allow for these
calculations, in a similar way to EVPPI (Section 5.3.1) [216].

A multiple calculation method for the Expected Value of Sample Information relating
to stratified treatment decisions

As when calculating EVPPI, the EVSI can be calculated for each stratum and aggregated to
gain the average EVSI over the population of interest.

Let ÊV SIx(YYY ) be the estimate of EVSI calculated for the collection of data YYY , using the
methods of Strong et al. (2015) (Section 2.4.2) for a stratifier x, and wx defined as earlier [216].
The estimated average per person EVSI over the population, ÊV SI(YYY ), can be calculated by:

ÊV SI(YYY ) = ∑
x

ÊV SIx(YYY )wx

The standard error, s, for the estimate of EV SI(YYY ) can be calculated by:√
∑
x

s2
xw2

x

As with the EVPPI method (Section 5.3.1) EV SI(YYY ) and its standard error can be estimated
by calculating ÊV SIx(YYY ) and s2

x for each x separately, using the methods by Strong et al.
(2015) (Section 2.4.2) and aggregating [216].
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Single calculation method for the Expected Value of Sample Information under a strat-
ified treatment decision

More efficiently, the calculation method of Strong et al. (2015) can be extended to calculate
the EVSI for a stratified population using a single non-parametric regression [216].

As in the extension for EVPPI (Section 5.3.1) we want to find the EVSI for a fixed x (i.e. the
‘test’ assigning an individual to a strata is accurate). Let YYY be the (uncollected) data with a
realisation of y. Then EVSI can be expressed as:

EV SI (YYY ) = EYYY

[
max

j
Eθθθ |YYY [NB( j,θθθ ,x)]

]
−max

j
Eθθθ [NB( j,θθθ ,x)] (5.9)

Assume K PSA samples, where x takes different values. Using Strong et al. (2015) (Section
2.4.2) the PSA samples can be expressed as the sum of the conditional expectation and a
mean-zero error [216]:

NB
(

j,θθθ (k),x(k)
)
= Eθθθ |YYY

[
NB
(

j,θθθ (k),x(k)
)]

+ ε
(k) (5.10)

The first term on the right hand side of Equation 5.10 takes a different value of θθθ
(k) and x(k)

and so can be thought of as a function of T (YYY ), say g
(

j,T
(

YYY (k)
)
,x(k)

)
, where no form is

imposed on g(.) and T (YYY ) is the sufficient statistic which contains all information gained
from the proposed study on the parameters of interest (Section 2.4.2) [216]. Then:

NB
(

j,θθθ (k),x(k)
)
= g

(
j,T (YYY )(k),x(k)

)
+ ε

(k)

The NMB outputs from the CEA can be seen as ‘noisy’ data to help learn about g(.). For
all k = 1, . . .K, the values of NB( j,θθθ (k),x(k)) are known and so can be presented as a non-
parametric regression problem of the NMB outputs from the PSA on the sufficient statistic
T (YYY ) and x. Undertaking a regression using a GAM (Section 2.4.2) the set of K fitted values
ĝ(.) can be extracted [216].

These fitted values can be split into subsets based on x. Letting Kx be the number of PSA
samples with stratifier x:

ÊV SI(YYY ,x) =
1

Kx

Kx

∑
k=1

max
j

ĝ
(

j,T (YYY )(k),x(k)
)
−max

j

1
Kx

∑
k

ĝ
(

j,T (YYY )(k),x(k)
)

For a stratifier distribution defined by wx, the average EVSI over a stratified or heterogeneous
population, can be estimated by:
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ÊV SI(YYY ) = ∑
x∈XXX

wxÊV SI(YYY ,x) (5.11)

Calculation of the specific study designs

All of the proposed studies can use the methods outlined above. However, they all generate
different sets of data, YYY , and thus have different sufficient statistics, T (YYY ), describing the in-
formation they provide on the parameters of interest. This section outlines how the sufficient
statistic can be defined for each of the proposed studies.

Let the proposed study have M participants, with each individual p = 1, . . . ,M treated with
intervention j being in stratum x jp. Note that in a cross-over trial x jp is the same for all j
within a person p, whereas in a parallel trial each individual is indexed by treatment j and
participant p within each j. Recall that each x jp is assumed to arise from a discrete uniform
distribution defined by the inclusion criteria for each study. For example, if the study was of
patients with a baseline ESS of between 10 and 16, x jp ∼U(10,16).

Given M and the set of x jp, the information from the study can be expressed as the baseline
ESS and change in ESS for the population, aggregated over the treatment arms or for each
participant depending on the study design. Each participant, p, provides data on their
observed change in ESS, y jp during a period on intervention j, assumed to be generated as:

y jp = ESS jp (t1)−ESS jp (t0) (5.12)

where t0 and t1 are the baseline and follow-up time respectively and ESS jp is the ESS for
patient p treated with intervention j, so ESS jp (t0) = x jp. As in Section 4.3 but dropping
the study i subscript for clarity, the underlying treatment effect for patient p treated with
intervention j is µ jp:

y jp ∼ N
(
µ jp,Φ

2) (5.13)

µ jp = ν +ρ j +θz jp + γ
j

Az jp (5.14)

where the study provides z jp = x jp − x̄ and ν , ρ j, θ and γk
A are the random effects means and

coefficients from the meta-regression presented in Section 4.3.2. The random effects means
have been used to represent the mean outcome in the new study rather than predictions from
the random effects distributions. The new study is designed to have a population with similar
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characteristics (for a given baseline ESS) to the case study CEA, which was broadly typical
of the studies included in the meta-regression.

How this underlying data is observed depends on the study design as different study designs
(such as parallel, crossover or cluster-randomised studies) can collect different data which
can lead to different sufficient statistics and so different values of EVSI for the same n. The
four proposed designs are presented below:

Study design 1: A parallel study generating IPD

Assume patients are equally allocated between treatment arms (a), so each treatment has M
a

participants (rounded to the nearest integer). A trial with this study design will provide data,
for each patient, of the form:

1. a vector of the M baseline ESS (and BMI values if two-parameter stratification),
{

z jp
}

for p = 1, . . . ,M.

2. y jp for each patient, with M
a patients for each j.

Data for each p is generated as above for each intervention j separately. The data produced
from the study on the impact of the baseline ESS on the change in ESS can be expressed in a
more concise form through fitting a simple linear regression of the form in Equation 5.14
to the study data. The change in ESS due to treatment j = {1,2} relative to j = 0 and the
impact of baseline ESS on this can be written as:

E
[
y jp
]
−E

[
y0p
]
= ρ j + γ

j
Az jp

The estimated values of the coefficients ρ j and γ
j

A, from fitting the regression to the study
data contain all the information from the proposed new study comparing two interventions in
its most concise form. Therefore, T (YYY ) =

(
ρ̂ j, γ̂

j
A

)
.

Study design 2: A cross-over study generating IPD

This study would provide data of the following form:

1. a vector of the M baseline ESS (and BMI values if two parameter stratification),
{

x jp
}

for p = 1, . . .M

2. y jp for each participant and each treatment comparison generated using Equation 5.12
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If we assume, as with cross-over trials in the meta-regression (Chapter 4) that data from
cross-over trials is equivalent to data from a parallel trial with 2×M participants in a two-
armed trial and 3×M participants in a three-armed trial due to the presence of a washout
period between interventions, then the method is as in Case 1.

Study design 3: A parallel study generating AD

Study design 1 provided data for each participant p. However, here the data is aggregated
over all participants. So the information provided is:

1. the average baseline ESS (and BMI if we are stratifying on two variables) across the
population of M individuals in the studies of which there are M j participants each of
the A treatment arms:

z̄ =
1
A ∑

j

1
M j

M

∑
p=1

y jp (5.15)

2. as in the meta-regression (Chapter 4), when AD is produced the y jp are latent and
unobserved with:

y j =
1

M j

M j

∑
p=1

y jp

Therefore, the information from the study about the expected change in ESS due to
treatment j = {1,2} relative to j = 0 is simply:

T (YYY ) = y j − y0 = β̂ j (5.16)

This study alone cannot provide information on γ
j

A or ρ j separately.

Study design 4: A cross-over study generating AD

In study design 2, IPD was provided for a cross-over trial. However, here the values need to
be aggregated across participants in a similar way to in study design 3. The resulting data
from the study is:

1. the average baseline ESS (and BMI if considering two-parameter stratification) across
the population, z̄, Equation 5.15

2. the average relative change in ESS across the population with treatment j relative to
treatment j = 0, β̂ j, Equation 5.16.
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Assume, as in study design 2, that due to a washout period between interventions, we can
treat the data from the cross-over trial the same as if it came from a parallel trial with 2×M
arms or 3×M arms for a three-armed trial. Under this assumption the same procedure as in
the case of study design 3 can then be followed.

Results of the Expected Value of Sample Information calculations

The results of the EVSI calculations for single-variable stratification are presented in Fig-
ure 5.6. There appears to be greater value for the same number of study participants for
collecting data from a cross-over trial assuming it is feasible for the 2 (or 3) time periods
to be considered as independent designs. Additionally, there appears to be more value in
collecting information for studies where the participants have a baseline ESS of between
4 and 6; or between 0 and 10 - representing the areas where there is the most decision
uncertainty. At realistic study sizes, information on trials comparing MAD and CPAP and
the three armed trials appears to be most valuable with little difference between the two and
three armed studies. This indicates that once study costs have been taken into consideration
a two arm trial comparing MAD and CPAP would likely be optimal. It is likely costs for
a cross-over trial will be greater than for a parallel trial, so while the information from a
cross-over trial may be more valuable, the associated ENBS may be greater for a parallel trial.

The results for the EVSI calculations for two variable stratification are presented in Figures
5.7 and 5.8 all assuming cross-over trials are carried out. (study designs two and four only).
The results for parallel trials are expected to be similar. The values for the EVSI considering
a three armed trial collecting IPD are not presented. This model requires a GAM with eight
parameters along with the interactions, and is therefore not is not well defined and difficult
to calculate (Section 2.3.2). The computational burden of calculating the EVSI for two
variable stratification was much greater than for one variable stratification. For this reason
the multiple calculation method has been implemented in this situation, as the GAM requires
four parameters and their interactions as opposed to the single calculation approach which
requires six parameters and their interactions in the GAM.

As with single parameter stratification EVSI, there appears to be more value in collect-
ing information for the ESS distributions between four and six for the same number of
participants. Additionally, there appears to be more value for carrying out a study with a
population with higher BMI values. Based on the original individual participant data (Figure
4.4) there is a lack of data for these higher BMI values and so we would expect the EVSI to
be greater for this population. In comparison to the single parameter stratification results,
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there is more value in carrying out further study on the treatment comparison of CPAP
and CM compared to MAD and CM. With two stratifiers IPD becomes more important in
the estimation of the effect of stratification and no IPD was available for treatment with CPAP.

As explained in Chapter 4, the EVSI alone is not sufficient to make a decision on which
study to undertake in practice. The study costs would also need to be considered. In terms of
whether a study should stratify by one or two parameters, it is important to consider whether
we believe BMI has an impact on the treatment effect. As mentioned earlier, BMI is not
directly related to the treatment effect but it can influence the rate of CVEs and disease
progression. Costs of the trials for one and two covariates are unlikely to be very different -
there would be little extra cost in collecting someone’s BMI in addition to collecting their
ESS.

5.4 Discussion

This chapter builds upon Chapter 4. That found for the case study CEA some groups of the
population would benefit from treatment with an intervention different to the intervention
which is optimal for the population on average. This chapter explored the health economic
value of implementing a stratified regime. This was presented by a more formal analysis
of the costs and benefits to the population of the stratified regime. In addition, methods for
calculating the value of collecting further information to guide a stratified regime have been
presented and illustrated. This work could be further developed to crease an optimal portfo-
lio of interventions for patients with OSAHS subject to budget constraints and patient profiles.

Espinoza et al. (2014) developed methods to asses the ‘value of heterogeneity’ for subgroups
[67]. These have been applied to non-categorical stratification variables - which can be
continuous (such as weight) or discrete (such as ESS). The value of stratification has been
calculated for the case study which shows some benefit in stratification (static value of
heterogeneity) and in the value of resolving uncertainty in the parameters that explain the
differences between strata (dynamic value of heterogeneity).

The value of stratification can be highly dependent on the distribution of the strata in the
population: if the proportion of the population whose optimal intervention is changed due to
stratification is low the value of stratification is lower. The extent to which physicians obey
the stratification regime (leakage) is also an important consideration in whether to stratify
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treatment.

Value of information quantities under stratification have been calculated through extensions
to the Strong et al. (2014, 2015) methods [215, 216]. The single non-parametric regression
methods enabled an increase in precision in the EVPPI and EVSI results for the same
quantities relative to a multiple calculation method. The single non-parametric regression
method for estimating EVSI was applied to the value of cross-over and parallel trial designs
and the collection of IPD and AD. For all treatment comparisons the EVSI calculations
showed cross-over trials were more valuable with the same number of participants than
parallel trials. Additionally, collecting IPD produced a higher EVSI for the same study size
compared to collecting AD.

5.4.1 Data limitations

Estimates of the value of stratification are dependent on the evidence informing the re-
lationship of the treatment effect and the stratifiers. This also depends on the network
meta-regression methods used to summarise it. The limitations of this data and its methods
were discussed in Section 4.6.

The focus of this chapter has been on calculating the theoretical value of stratification. Some
consideration has been made to the costs of stratification. In the case study CEA the costs of
implementing the stratification regimes proposed would be low. The ESS is a short, simple,
patient completed questionnaire. Similarly, little or no costs are associated with calculating
BMI. However, we had no data to support this supposition other than the cost of an consultant
appointment (Appendix B.8). If the stratifiers were more complex to measure then additional
data would be needed to assess the costs of stratification. This may be subject to uncertainty
and could potentially require modelling.

There is little information on the prevalence of each strata in the population. This is a major
data limitation. The potential value of improving this information is not captured by the
EVPPI or EVSI. The population distribution is a pre-specified assumption when calculating
value of information quantities. Conceptually, the value of information for learning about the
population distribution is different to the value of information for a parameter. In this case the
aim is to learn an unknown distribution. If the population distribution could be parametrised,
for example as a transformed Beta with unknown shape and scale, then standard value of
information methods could be used. However, it may be difficult to express the current infor-
mation on the population as a prior on the parameters of such a distribution. An alternative
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method to collect further information on the population distribution could be to carry out an
observational study or an expert elicitation exercise with physicians. Further, data, such as
those by Health Survery for England, could be used to explore the distribution of BMI in the
population. This could be potentially be available by OSAHS severity through data linkage
with Hospital Episode Statistics (HES) data or CPRD data. Additionally, it is simple but
time consuming to calculate the value of stratification and the value of information quantities
for different population distributions to present these results as a deterministic sensitivity
analysis.

In the case study CEA model no relationship is assumed between the stratifiers and the risk
of adverse events due to co-morbidities. While the structure of the model was devised in
collaboration with physicians, the potential for such a relationship should be explored further
before stratification is implemented [134]. Phelps (1997) identified that utility may differ due
to strata [163]. In this work the ESS was shown to impact the baseline utility of an individual
in the CEA (Chapter 4). However, the BMI was assumed not to impact on an individual
patients’ utility.

Another area where data is limited is on leakage and take-up rate of the interventions. Leak-
age, the extent to which physicians do not adhere to the guidance, can impact the decision on
whether stratification should be implemented. Coyle et al. (2003) highlighted the difficulties
regarding this [47]. Explicitly including leakage in the calculations may encourage physicians
to give patients close to a treatment switching threshold a choice of intervention. This is not
necessarily a bad outcome. The treatment switching threshold may vary between people due
to unmodelled characteristics. Taking patient preferences into consideration when they are in
a stratum close to a treatment switching threshold may improve adherence to an intervention.
If a patient chooses the intervention they believe they will prefer and adhere to then this may
be their optimal treatment. In this case study, both treatments are currently available in the
UK and so leakage is a real concern.

Additionally, Sculpher (2008) raises the concern that some stratification measures could be
inappropriately influenced to gain entry into a preferred subgroup and so receive a preferred
treatment [193]. As the ESS is a patient reported questionnaire it would be relatively simple
for a patient to ‘adjust’ their answers to get a preferred treatment. Stratification on a variable
such as a BMI or a blood test result would be more difficult for a patient to influence.
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Similarly, the take-up rate, the rate at which hospitals and physicians implement the new
treatment regime, can impact on the value of stratification. Further information on the extent
to which the physicians would actually implement a stratified treatment regime would be
useful. This could be collected qualitatively or quantitatively through an expert elicitation
exercise with physicians. Finally, ethical constraints need to be considered when choosing
stratifiers. The NICE do not permit stratification on socio-demographic characteristics such
as age, sex, gender, and race as this may be considered to be inequitable [151].

5.4.2 Methodological issues

The value of stratification and the value of further research to guide stratification are all
dependent on the models used to relate the stratifiers to the treatment effect. Therefore, all the
methodological issues highlighted in Chapter 4 are also of concern in this chapter. In particu-
lar, the EVSI values assume the relationship between the treatment effect, µ , and the stratifiers
XXX is linear. The EVPPI and EVSI represent parameter uncertainty. Uncertainty around the
linear relationship would not be identified from the value of information calculations. The
value of information for structural uncertainty due to the linear relationship between the treat-
ment effect and stratifiers could be calculated. To do this, the meta-regression model would
need to be extended to include potential non-linear terms, then the value of information for
these additional parameters calculated. However, due to a lack of information on the form of
these non-linear terms the results may be sensitive to the priors given to these additional terms.

Population-level values of collecting further information are presented. These are a clearer
representation of whether the proposed study should be implemented (Section 2.2.2) com-
pared to individual-level values. However, scaling the EVPPI and EVSI to the population-
level values comes with its own issues (Chapter 2). Additionally, population-level values
require assumptions on the future trends of the distribution of the stratifiers in the population.
If an increase in the incidence and/or diagnosis rate is predicted, this may increase the
proportion of the population with less severe disease which could potentially change the
decision regarding stratification. However, quantifying this uncertainty formally is difficult
without the benefit of foresight!

In the case study CEA the expected value of collecting information on different strata were
compared. Additionally, as with the EVSI for adherence to interventions (Chapter 3) the
costs of carrying out the study have not been calculated. These costs can be monetary or
in terms of health foregone. They may depend on the choice of the intervention, the study
design, the length of study, or the number of trial participants. No allowance has been made
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for how easy it would be to find patients with the required characteristics. This is another
area where knowing the true population distribution of XXX would be valuable. The lower the
probability of XXX = x, the more difficult or time consuming it would be to recruit patients to a
study where this strata is an inclusion criteria.

The opportunity costs of delaying implementation of a treatment strategy to carry out further
research have been ignored. A number of papers discuss the irreversibility of treatment
decisions [13, 64, 71]. While NICE can change their treatment recommendations in light of
new evidence, this may be costly to the hospital or treatment provider. This is especially true
if there are large sunk costs in implementing a strategy. These costs would not be reimbursed
should a treatment decision be reversed. In this application, it is unlikely to be an issue - both
treatments are currently widely available either on the NHS or from dentists. Additionally,
no large investments would be required to change the treatment strategy or to implement
a stratified strategy. Therefore, it may be reasonable in this case to implement a stratified
treatment regime on the basis of current information while collecting further evidence.

The approach of Strong et al. (2014, 2015) has been used in the EVPPI and EVSI calculations
[215, 216]. Both use GAM non-parametric regression. For a large number of parameters
and/or a number of interaction terms the GAM is impractical (Section 2.3.2). Strong et
al. (2014) state for the calculation of EVPPI that a GP should be used [215]. The GP
requires significant user input and so it is not as easy to implement (Section 2.3.2). Alterna-
tively, a number of other methods could be used to calculate the EVPPI and EVSI (Chapter 2).

Further, it has been assumed the proposed study in the EVSI calculations will have a
population like the average study used in the meta-regression through the use of the random
effects means. However, if we do not believe this assumption then it may be preferable to use
a ‘new’ study generated by the predictive distributions of the meta-regression which is able
to reflect uncertainty about the study population (for a given baseline ESS). As in Chapter
3, the point estimates are expected to be similar under the two assumptions but the values
estimated by the ‘new’ study would be more uncertain.

5.4.3 Future research priorities

As mentioned throughout this discussion there are obvious areas for future research. Infor-
mation on population distributions and their evolution over time would help immensely. As
mentioned earlier in this discussion, it may be possible to calculate the value of learning
the distribution of the strata in the population. However, as noted by Phelps (1997), this
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information would be costly to collect [163]. The cost of this research should be deducted
from the value of stratification.

Knowing how much a study would cost would help assess the value of further research, as
with modelling adherence to interventions (Chapter 3). Developing cost functions for trials
is a research area in itself and is not a trivial exercise. The ENBS decides whether a study
should be implemented, not the EVSI alone. The cost of the proposed study in terms of
monetary and opportunity loss need to be considered. This would involve getting specific
costs for proposed study designs. The opportunity loss due to further research would be more
challenging to calculate [137].

5.5 Conclusion

Chapter 4 found evidence for the case study CEA that the optimal treatment differed for
groups of the population depending on baseline disease severity measures. This chapter
presented how the population-level health economic value of stratification for covariates can
be calculated. The importance of reflecting the population distribution and leakage due to
stratification has been illustrated. Finally, an extension to the Strong et al. (2014, 2015)
EVPPI and EVSI methods for stratified, heterogeneous populations has been presented. From
this, populations have been identified where further information would be most useful to
guide stratification.





Chapter 6

Discussion and Conclusions

This final chapter provides an overview of the research findings in this thesis, its contributions
to the literature, and its limitations. The chapter concludes by identifying areas of future
research which could further develop the work presented in this thesis.

6.1 Overview of thesis findings

The overarching aim of the thesis was to explore methods for quantifying and targeting areas
in CEAs where reducing uncertainty would be most beneficial. All methodological work has
been illustrated using a case study CEA of interventions for patients with OSAHS introduced
in Section 1.3 [198]. The primary focus was on two under-explored aspects of uncertainty in
CEAs:

• Patients’ adherence to interventions: Full adherence to interventions is often im-
plicitly assumed. Alternatively, point estimates for adherence are used as in the case
study CEA [198]. The aim of this section of work was to devise methods to combine
all readily available data to present adherence rates which reflect current uncertainty
around adherence. The impact of modelling adherence on the results of the case study
CEA was presented. Methods for estimating the value of collecting further information
on adherence were developed and demonstrated.

• Heterogeneity between patients: A population-level CEA can result in some popula-
tion groups being treated with a suboptimal intervention. The first aim of this section
was to present how evidence synthesis methods could be used to explore whether a
treatment effect changes with respect to individual-patient baseline characteristics.
The second aim was to estimate the population-level value of stratification using the
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results of the evidence synthesis. Value of information methods illustrated the value of
collecting further information on the potential stratifiers.

Chapter 1 introduced the key health economic concepts, value of information quantities, and
evidence synthesis methods forming the basis of the methodology in this thesis. The case
study of interventions for patients with OSAHS was presented.

Chapter 2 expanded on the theory of the value of information methods (Section 1.1.3) to
present a number of recently developed methods designed to improve the efficiency in esti-
mating the EVPPI and EVSI. These new methodological advances appear to improve the
computational speed without compromising on the accuracy of the estimates. However, the
number of applications of value of information methods remains low [20, 207]. A PSA uses
Monte Carlo simulation to indicate the uncertainty around the optimal treatment decision.
Increasing the number of PSA samples increases the accuracy of the CEA results. Chapter 2
suggested commonly used numbers of simulations are insufficient to present the EVPI to a
suitable degree of accuracy.

A method to calculate the uncertainty due to the PSA sample size in EVPPI estimated using
non-parametric regression was presented. In the case study CEA this had a small impact
on the standard error, with most error in the estimate coming from the uncertainty in the
coefficients of the non-parametric regression model. However, it is important to acknowledge
the potential impact in general of Monte Carlo error due to the PSA sample size.

Population-level value of information is more useful compared to an individual patient value
for guiding decisions on collecting further information. A population-level value can be
compared directly to the costs of the research. Even modest uncertainty in quantities in
the population-level calculation such as prevalence, incidence, and the time horizon can
impact the population-level value considerably (Section 2.2.2). This can potentially alter
the recommendation for future research. Additionally, uncertainty on quantities such as the
uptake of interventions and diagnosis rates which are often implicitly assumed to be 100%
can impact the collection of further information.

Modelling long-term adherence to interventions is a neglected area, with point estimates
or implicit full adherence often assumed. Chapter 3 explored methods for combining all
available data on adherence using Bayesian meta-analysis approaches for time-to-event
data. This provided predictive estimates and their associated uncertainty for adherence
to interventions over time through the parameters of a Weibull model. Using the results
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from the meta-analysis in the case study CEA showed that adherence modelling induced
greater uncertainty around the optimal intervention when compared to using point estimates
for adherence. Applications of value of information methods (Chapter 2) showed value in
collecting further information on adherence to both interventions, even for small sample
sizes at a single timepoint.

Chapters 4 and 5 explored the second major topic of the thesis: baseline heterogeneity
between patients in CEAs and its impact on the optimal treatment allocation. Baseline
heterogeneity can lead to different treatments being optimal for groups of the population.
Population-level decisions can lead to some groups receiving suboptimal interventions. Chap-
ter 4 presented Bayesian meta-regression methods using all available data by combining AD
and IPD to explore the impact of baseline characteristics on treatment effects. These methods
found a relationship between baseline ESS and change in ESS with intervention. The addition
of a second stratifier, BMI, had little impact. The inclusion of IPD improved the precision
of the meta-regression results. Incorporating the results of the network meta-regression
into the case study CEA showed on an individual patient-level the optimal treatment for pa-
tients with a baseline ESS of seven or less was a MAD and for the rest of the population CPAP.

Chapter 4 found benefit for an individual-patient in stratifying the optimal treatment decision
on the basis of at least ESS. Chapter 5 took a health economic perspective, calculating the
population-level value of stratification. The importance of the distribution of the stratifiers in
the population was highlighted. When a small proportion of the population have their treat-
ment decision changed under stratification it is more likely that the cost of stratification will
outweigh its benefits. Leakage, the practice of prescribing patients suboptimal interventions
under a stratified treatment regime, was found to impact the value of stratification, altering
the decision of implementing a stratified regime in some circumstances.

Methods for calculating EVPPI and EVSI introduced in Chapter 2 were extended to estimate
EVPPI and EVSI for a heterogeneous population. The ‘new’ method produces similar
estimates with increased precision for similar computational cost. The value of proposed
trials with different treatment comparisons was considered along with different study designs
(cross-over or parallel trials) collecting AD or IPD. Population-level value was found in all
cases and for small population sizes. No comparisons with the costs of running the trials
were made. Due to the large population values, driven by the high incidence and prevalence
rates for OSAHS, it is believed these trials would provide a positive ENBS.
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6.2 Challenges and limitations

A lack of data was an issue throughout the thesis. However, quantifying uncertainty in
the presence of sparse data was a key aim. Evidence synthesis methods have been used to
estimate posterior distributions for model parameters of interest and to target future research.
Data on MADs as treatment for OSAHS was sparse relative to information on CPAP for
both adherence to the interventions (Chapter 3) and the relationship between the effect of
the intervention and a measure of the baseline disease severity (Chapters 4-5). This is not
an unusual situation. Data is more likely to be available on the intervention considered the
‘comparator’ in a CEA, as this is generally current best practice [150]. For a proposed ‘new’
intervention, data on efficacy and adherence would be expected to be limited. The availability
of methods for use in ‘realistic’ situations is valuable and allows the potential value of further
data collection to be assessed.

In a meta-regression, studies are required to have complete data on all covariates and treat-
ment effects. This can lead to reporting bias if those not reporting all information are
systematically different. Higgins et al. (2008) present methods for dealing with missing
outcome data in meta-analyses [99]. Kunkel and Kaizar (2017) present a comparison of
methods for multiple imputation of IPD meta-analyses and found that the priors used in the
multiple imputation can impact on the meta-analysis results. [120].

The Bayesian network meta-regression (Chapter 4) found that including a small amount of
IPD improved the precision of the results. However, it is notoriously difficult to access IPD.
In this thesis authors were not approached for additional IPD because of the additional time
required and the low likelihood of response. Additionally, it was felt presenting the benefit
of a small amount of IPD would be valuable as it is a ‘realistic’ situation for researchers. The
lack of IPD is an issue that many researchers face and led to the development of meta-analysis
methods combining AD and IPD [181]. The value of including IPD in the meta-regression
shows data owners the potential gains to the wider community that could occur if they make
their data available.

A number of studies explored factors that may affect adherence to MAD and CPAP as
interventions for OSAHS [4, 28, 32, 34, 79, 82, 115, 119, 121, 132, 135, 228, 233, 236].
These found a range of patient or initial usage characteristics which may affect adherence,
of which disease severity were one. There was a lack of data on how adherence differed
between patient groups. This information would have enabled adherence rates, dependent
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on the baseline characteristics of the cohort, to be used in the case study CEA exploring
stratified treatment decisions. For example, patients with a higher baseline ESS may be more
likely to adhere to their intervention which would impact the treatment effect and thus the
value of stratification.

A key challenge in modelling adherence to interventions (Chapter 3) was how to define what
classified as ‘being adherent’ to an intervention. Many different definitions of adherence
to MAD and CPAP were found in the literature with no formal, universal definition. This
made it challenging to compare adherence rates between studies. It was decided to use the
definition in Shapiro and Shapiro (2010): usage of the intervention for more than four hours
a night for over 70% of nights [195]. This was used by a number of studies and appeared a
sensible quantity of usage.

In modelling adherence (Chapter 3), adherence was assumed to be binary due to the nature
of most of the data on adherence and difficulties in interpreting data presented in terms of
average usage a night. A treatment effect does not drop to zero once usage of an intervention
falls below a pre-defined, often arbitrary, level. It was assumed that once a patient is non-
adherent to an intervention they were treated with CM (which had no treatment effect) and
did not restart treatment. This may not reflect real practice. As an example, it may be that
if a patient was non-adherent to a MAD their physician may start them on treatment with
CPAP as suggested by the NICE guidance for OSAHS [149].

Current guidance recommends CPAP should be given to those with moderate/severe OS-
AHS. Those with mild OSAHS should only be prescribed CPAP once they have failed
to tolerate MADs. This agrees with the findings from Chapter 4. However the work in
this thesis does not take into account whether patients’ adherence to interventions is likely
to be based on their disease severity. Further research, as outlined in section 3.5, would
be required to answer this. This data could then be used to identify a series of treatment
pathways based on patients disease severity and their likelihood of adherence to interventions.

In both the adherence meta-analysis (Chapter 3) and the stratification network meta-regression
(Chapter 4) strong assumptions have been made about the form of the relationship we are
trying to estimate. Both the assumption that time to non-adherence has a Weibull distribution
and that there is a linear relationship between baseline ESS (and BMI) and the treatment
effect were made using the available data. However, if these relationships were inappropriate
the results from the evidence synthesis modelling may also be incorrect. Additional data on
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adherence after more than ten years of treatment or on the change in ESS with treatment
for populations with low or high baseline ESS values would help to test these assumptions.
Further, more data would also enable more complex models, if required, to be well defined.

Although the ESS is a well-used measure in OSAHS research, there are biases and issues
around its use. It asks patients to recall information on their sleepiness for the last ‘few days’.
This is an ambiguous statement and could potentially be driven by the previous night. An
objective measure would be preferable. The AHI, measured by polysomonography, is an
objective measure of OSAHS severity. However, it has been found to be uncorrelated with
the ESS. The case study CEA did not include AHI as a parameter. The primary outcome of
interest for the CEA from a clinical perspective is how the intervention impacts on the pa-
tients’ daytime sleepiness. It is through reducing sleepiness that patients experience benefits
from the interventions.

The computational demand of estimating value of information quantities is a key concern.
The recently developed methods (Chapter 2) have improved the speed of calculations with
little apparent loss in accuracy compared to the two-level Monte Carlo estimates. However,
their accuracy and computational burden depends on the number of PSA simulations used.
Calculating the EVSI for a number of different study designs, populations, study sizes, and
treatment comparisons was still a time consuming task. While not considered in this thesis
the costs of carrying out these studies would need to be estimated in practice. This would
add further to the calculation burden.

The methods presented for calculating value of information quantities (Chapter 2) can only
be used in their current form to assess the value of information on quantities which are
expressed as parameters in the model. There may be other currently un-modelled quantities
where additional information would be useful. For example, quantities describing model
structure such as the inclusion of BMI (for example through alternative estimation of the
risk of CVEs which use BMI as a covariate) in the CEA. Strong et al. (2014a) devised
a ‘discrepancy approach’ method to measuring the value of structural uncertainty where
uncertain parameters are added to the model, which represent departures from structural
assumptions whose EVPPI can be calculated [213].

The decision to stratify is sensitive to the distribution of the strata in the population (Chapter
5). There is little data on the distribution of the ESS in the population and no guidance on
how this could be estimated. This could be a disease-specific issue when considering the



6.3 Contributions to the literature 209

high non-diagnosis rate for OSAHS. There are similar issues when collecting information
on leakage and take-up rate for interventions. Section 6.4 presents some ideas for future
research on this.

6.3 Contributions to the literature

Current NICE methods guidance advises that CEA models should be run until convergence
with no formal definition of convergence provided [150]. This thesis has shown the impact
of the number of PSA samples on the standard error of the EVPPI when estimated using
non-parametric regression methods. In this case study this had little impact. However, it is
hoped this work can contribute to the argument that more PSA samples are preferred. This
would increase the accuracy of the CEA and the resulting value of information quantities and
help to ensure optimal allocation of funding resources.

This thesis has presented extensions to the Strong et al. (2014, 2015) methods for estimating
EVPPI and EVSI [215, 216]. These enable researchers to efficiently estimate the value of
information for a heterogeneous population in a stratified CEA to an increased degree of
accuracy, using the same set of PSA samples for each subgroup of the population.

Adherence to interventions is commonly overlooked. This thesis has presented Bayesian
evidence synthesis methods using all data providing the number or proportion of patients
adherent to MAD or CPAP. This analysis has provided estimates of the non-adherence rates
through time and their associated uncertainty. Quantifying uncertainty on adherence proba-
bilistically through the posterior distributions of the adherence model parameters can enable
estimation of the value of collecting information on adherence. For the case study, modelling
adherence increases the uncertainty around the optimal treatment decision compared to
assuming adherence to the two interventions can be represented through point estimates from
Kohler et al. (2010) [119, 198].

This thesis suggests patients with OSAHS and an ESS of less than or equal to seven should
be treated with MAD and the remainder with CPAP (Chapter 4). This policy is roughly in
line with the current NICE guidance on treatment for OSAHS (where those with moderate to
severe OSAHS, defined as having an AHI>15 apnoea-hypopnoea events per hour should be
treated with CPAP) [149].
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The population-level value of a policy of stratification depends on the prevalence of the
strata in the population and the costs of stratification. Chapter 5 found different plausible
distributions of the stratifiers in the population could alter the decision around stratification.
Similarly, even modest change in quantities such as population size, disease incidence rate,
or the disease diagnosis rate can have a large impact on the population-level value of infor-
mation. It is hoped these examples along with further work (Section 6.4) can encourage
researchers to acknowledge this uncertainty.

Both MAD and CPAP are well-established interventions for OSAHS. A number of studies
have explored their effectiveness and CPAP has been available on the NHS for a number
of years. MADs are available from dentists in England and on the NHS in Scotland. This
may mean the dataset in this case is larger than for other disease areas. This would limit the
generalisability of the adherence modelling work but, conversely, would motivate estimating
the value of further information on adherence.

6.4 Future research priorities

There are several areas where further research could build on the work of this thesis and
many are presented in the individual chapter discussions. Firstly, work from this thesis could
be used alongside the findings from Bindels et al. (2016) and Steuten et al. (2013) to educate
policy makers on the calculations, applications, and importance of estimating the value
of information [20, 207]. Applications of value of information can guide the appropriate
allocation of future research resources ensuring the limited funds are focussed on areas
producing the most health economic gain to society.

No literature was found which compared the recently published EVSI methods (Chapter
2) to each another. Most of these studies were published very recently. All compared
their work to the two-level Monte Carlo method using different example CEAs. All gained
favourable results for their methodology in terms of accuracy and computational demand
[2, 23, 95, 107, 108, 138, 216]. A study comparing the EVSI methods would be useful to
ensure the ‘best’ method to estimate EVSI is used.

More research on including structural uncertainty in value of information calculations would
be useful. For example, to assess the assumption of a linear relationship between a stratifier
and the treatment effect. There is some literature on this, but further work would be benefi-
cial especially if related to one of the value of information estimation methods (Chapter 2)
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[106, 213]. The uncertainty in the model structure could be parameterised, for example using
a ‘discrepancy approach’ (Strong et al. (2014a)) and then value of information methods used
[213].

More specifically, the assumption of the linear relationship between the covariates and
treatment effect could be tested by extending the meta-regression model to include extra
terms (for example, a quadratic term) with a weakly informative prior. The results from a
meta-regression including the extra terms can be used in the CEA and value of information
measures for these covariates estimated.

If it is believed that BMI should be reflected in the case study CEA, whereas currently it is
not, the CEA could be extended. The main impact of BMI is likely to be through the risk
of CVEs. In the case study CEA the Framingham risk equations are used to estimate the
risk of CVEs [7]. There are other risk equations, such as QRISK3, which estimate the same
probabilities and include BMI as a covariate [100]. The case study CEA model could be
updated to reflect the new risk equation and any difference in results between the two models
assessed. Stratification on two covariates (BMI and ESS) could be implemented using this
new model.

One area of future research relevant to a large amount of work in this thesis is in quantifying
the typical costs of future research. These can be broader than monetary costs [164]. De-
veloping some rules of thumb for costing further research would be beneficial, while also
acknowledging study costs can differ in many ways. These include the choice of interven-
tions, the length of the study, the size of the study, and the type of information collected. For
example, if carrying out an incremental value of information analysis (Tuffaha et al. (2016)),
stating a lower limit for feasible costs of future research in various contexts would enable
a quick approach to assess whether the next quantity should be estimated [229]. However,
before a study commences a full costing would be needed.

Population-level value of information measures were shown through a deterministic sensi-
tivity analysis to be sensitive to the values of incidence, prevalence, time horizon, uptake,
and non-diagnosis rates used in scaling per person values to population-level (Chapter
2). Sensitivity to these values is rarely acknowledged [86]. A probabilistic approach for
estimating population-level values would be useful. This could be achieved by defining
distributions (informed by data where possible) for the uncertain parameters enabling a range
of population-level values to be calculated. A degree of accuracy for the population-level
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value could be reported taking into account any correlations between parameters. This would
also enable the researcher to estimate the value of collecting further information to resolve
uncertainty on these parameters.

Limited information is available on leakage, the proportion of people receiving a suboptimal
treatment (Chapter 5). Incorporating leakage into calculations may encourage physicians to
give patients a suboptimal treatment leading to complications in its estimation [47]. Further
research on patient preferences for interventions would be useful. This data could help to
assess adherence to interventions: patients may be more likely to adhere to an intervention
they ‘prefer’. The same data could also be used to explore which factors impact adherence
and the prevalence of leakage. For example, if physicians were found to prescribe patients in
strata close to a ‘switch point’ in interventions a choice, this could be used to help assess the
prevalence of leakage.

Probabilistic methods could be implemented to quantify uncertainty around the distribution
of strata in the population. This is different to uncertainty about parameters. In this case,
we want to learn about an unknown distribution. To use value of information methods the
distribution could be parametrised, for example by a transformed Beta with unknown shape
and scale parameters. Setting priors for these distributions may be difficult.

6.5 Conclusion

This thesis has explored methods for quantifying and targeting areas of CEAs where reducing
uncertainty was most beneficial. Modelling adherence to interventions was found to impact
the optimal treatment decision compared to when point estimates are used for adherence.
Value was found for collecting more information on adherence to interventions for patients
with OSAHS. Methods have been developed to explore the value of stratifying the opti-
mal treatment decision across a heterogeneous population on the basis of disease severity
measures. At an individual patient-level these found different groups of patients should be
offered different treatments. However, the population-level value of stratification was found
to be dependent on the distribution of the strata in the population. Value of information
methods have been extended to allow for efficient calculation for heterogeneous populations;
finding that the value of collecting further information can differ for different proposed study
populations of interest and study designs.
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Appendix A

The Epworth Sleepiness Scale

The Epworth Sleepiness Scale (ESS) is a patient reported outcome measure published by
Johns in 1991 [113]. It aims to provide a measure of the patient’s level of daytime sleepiness.
It consists of eight questions where patients are asked how likely they would have been to
have fallen asleep in a range of everyday situations over the last few days. These situations
are:

• Sitting and reading

• Watching TV

• Sitting inactive in a public place (for example, in a theatre or a meeting)

• As a passenger in a car for an hour without a break

• Lying down in the afternoon when the circumstances permit

• Sitting and talking to someone

• Sitting quietly after a lunch without alcohol

• In a car when stopped for a few minutes in traffic

Patients are asked to score each of these situations from zero (would never doze) to three
(high chance of dozing). The ESS is the sum of the responses to the questions - the ESS
ranges from 0 to 24.

Typically patients are recorded as having [113]:

• Mild Daytime Sleepiness if ESS ≤ 11
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• Moderate Daytime Sleepiness if 11 < ESS ≤ 16

• Severe Daytime Sleepiness if ESS > 16



Appendix B

A cost-effectiveness model of treatments
for patients with mild-moderate OSAHS

B.1 Background

As OSAHS is a chronic disease it has morbidities which can only be adequately reflected by
a lifetime cost-effectiveness model [134, 198]. There is evidence OSAHS is related to hyper-
tension meaning patients are likely to have a greater risk of CVEs [124, 256]. Additionally,
EDS can lead to an increased risk of an RTA due to impaired vigilance [143]. As all of these
events are relatively rare they are unlikely to be adequately represented in a short-term CEA,
for example the TOMADO within trial CEA had a four week follow-up [198].

Although TOMADO only considered MADs as a potential intervention for patients with
OSAHS, the NICE Technology Appraisal Number 139 defined CM1, MADs, and CPAP as
appropriate treatment options for the decision population [149, 198]. Therefore, the CEA
considers all three treatment options to best assist policy makers.

McDaid et al. (2009) developed a model, hereafter ‘the McDaid model’, to investigate the
lifetime cost-effectiveness of CM, MAD, and CPAP as treatments for patients with OSAHS
[134]. The structure of this model, simplified in Figure B.1, was developed using a systematic
review for clinical effectiveness, consultation of existing CEA literature, and clinical expert
opinion. This model followed NICE methods guidance and the NICE reference case [152]2.

1CM is a one-off GP consultation offering lifestyle advice
2Since the McDaid model was developed NICE have updated their methods guidance [150, 152].
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One of the aims of McDaid et al. (2009) was "to determine the ... cost-effectiveness of CPAP
devices for the treatment of OSAHS compared with best supportive care, placebo and dental
devices" [134]. This agrees with the aims of Sharples et al. (2014) and so the McDaid model
was used as the basis for the CEA [134, 198]. The Sharples et al. (2014) model updates the
parameters for new evidence and focuses on the population with mild-moderate OSAHS (in
terms of AHI) [198].

B.2 Model structure

The model structure in the case study is the same as in the McDaid model [134]. McDaid et al.
(2009) developed a state transition cohort Markov model comparing CM, MAD, and CPAP
as long-term interventions for individuals with OSAHS as part of a NICE HTA [134, 149].

Figure B.1 shows a simplified, diagrammatic representation of the CEA model. All patients
start in the OSA state and can remain there until death unless an adverse event occurs. The
pCHD state reflects the increased mortality and morbidity from a prior, acute, non-fatal CHD
event. Only the first non-fatal CHD event is modelled. Patients can remain in the pCHD
state until death or until they have either a non-fatal stroke or a (non-)fatal RTA. If an RTA
was non-fatal then patients return to their previous state. RTAs are considered instantaneous
events, as opposed to states which last a full cycle. After a non-fatal stroke patients move to a
post-stroke state, pStroke, where they can remain until death or have a non-fatal RTA. Similar
to the pCHD state, the pStroke state reflects the increased mortality and morbidity from an
acute non-fatal stroke. Transitions to the CHD state after a stroke are not possible. As with
CHD events, second and subsequent strokes are not modelled. Additionally, a proportion of
strokes are considered disabling meaning these patients are assumed to be unable to drive
and so cannot have a RTA.

B.3 Inputs to the cost-effectiveness model

B.3.1 Baseline characteristics

The case study model takes a hypothetical cohort of individuals though the model which has
annual cycles with baseline patient and model characteristics in Tables B.1 and B.2 [198].
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Table B.1 Baseline characteristics for the cohort used in the case study cost-effectiveness
analysis

Characteristic Value Source

Age (years) 51 TOMADO mean [198]
SBP (mmHg) 130 TOMADO mean [198]
Smoker (0=no, 1=yes) 0 Assumption based on TOMADO [198]
Total Cholesterol (mg/dl) 224 Coughlin et al. (2007) [46]
HDL Cholesterol (mg/dl) 43 Coughlin et al. (2007) [46]
Diabetic (0=no, 1=yes) 0 Assumption based on TOMADO [198]
ECG-LVH1 (0=no, 1=yes) 0 TOMADO assumption [198]
Baseline ESS2 11.9 TOMADO mean [198]

1Left Ventricular Hypertrophy confirmed by an ECG (LVH-ECG): A condition where the wall of the left
ventricle becomes thickened developed in response to high blood pressure or a heart condition [116].
2Epworth Sleepiness Scale: A measure of how sleepy an individual is during the day calculated from a
questionnaire asking about the likelihood of falling asleep during a number of everyday situations giving a
score from 0-24 [113] (Section 1.3.2 and Appendix A).

Table B.2 Baseline model parameters for the case study cost-effectiveness analysis

Parameter Value Source
Number of Cycles 65 -
Discount rate

Costs 3.5% NICE (2008) [152]
Utilities 3.5% NICE (2008) [152]
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B.3.2 Cardiovascular risk and sleep apnoea

CHD events and strokes, referred to as CVEs, were identified as major sources of mortality
and morbidity in patients with OSAHS in McDaid et al. (2009) [134]. However, due to a
lack of primary data on long-term outcomes for treatment the relationship between CVEs
and OSAHS is provided by the Framingham risk score [7].

Framingham risk score equations

The Framingham risk score equations measure the risk of developing cardiovascular disease
through a series of equations assuming patients are initially free of cardiovascular disease [7].
There are a number of equations each associated with a different cardiovascular endpoint.
Of interest in this model are the equations using SBP3 for CHD,4 CHD death,5 Stroke,6 and
CVD7.

These equations use a number of risk factors for cardiovascular events - age, gender, SBP,
total cholesterol, High Density Lipoprotein (HDL) cholesterol, smoking status, diabetic
status, and presence of ECG-LVH to generate hazard rates. Anderson (1991) recommend
these equations are used to predict the event probabilities over a 4-12 year period [7]. The
hazard ratios and probabilities were generated using a parametric statistical model based on
risk factor levels and (censored) time-to-event data from the Framingham Heart Study and
Framingham Offspring study cohorts (5,573 participants) [129].

Letting T be the time until the event of interest, XXX = {x1, . . . ,xk} be the risk factor measure-
ments for an individual, βββ = {β0,β1, . . . ,βk}, and θθθ = {θ0,θ1} be the estimated parameters8

for a specific endpoint [6, 7]. An accelerated failure time generalised Weibull survival model
is used with the dispersion parameter depending on the location parameter [6]. That is,
assume T is the time until the event of interest and the logarithm of T has location and

3There are also prediction equations using Diastolic Blood Pressure (DBP) in place of SBP
4including Myocardial Infarction (MI), CHD death, angina pectoris (chest pain of discomfort due to CHD

and coronary insufficiency) and coronary insufficiency (a range of conditions associated with sudden reduced
blood flow to the heart including MI)

5sudden or non-sudden
6including Transient Ischemic Attack (TIA) (a temporary disruption in the blood flow to the brain often

called a mini-stroke)
7including CHD, stroke, TIA, congestive heart failure, and Peripheral Vascular Disease (PVD) (a blood

circulation disorder causing the blood vessels outside of the heart and brain to narrow, block or spasm.)
8Within Anderson (1991) no estimates of uncertainty around the estimates of the parameters βββ and θθθ , were

presented, just point estimates were given [7].
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dispersion parameters µ and σ respectively. The probability of not having an event by time t,
S(t) is:

S(t) = P(T > t) = exp(−exp(u(t)))

with:

u(t) :=
log(t)−µ

σ

µ = β
′XXX

log(σ) = θ0 +θ1µ

When θ1 = 0 the model is a proportional hazards model with an underlying Weibull dis-
tribution [6]. S(t) is calculated for each endpoint for patients aged from 50 to 74 with the
hazard rate assumed constant over the cycle. The data in the Framingham study was only
available for participants up to age 74 [7]. For ages above 74, the CEA model assumed the
participants were aged 74 [134, 198]. All other covariates in the Framingham equations are
set to their baseline values. Let s = stroke, c = CHD, v = CVE, and the subscripts f = fatal,
n f = non-fatal. For a set of covariates XXX and parameters βββ with θθθ corresponding to the time
TY until the endpoint of interest Y ∈

{
sn f ,cn f ,vn f ,s f ,c f ,v f

}9the probability of having the
event Y in the next year is:

p(Y ) = P(TY < 1|y,x,βββ ,θθθ)
= 1− exp(−exp(u(1)))

For each cycle x is constant (apart from age) for all endpoints. βββ and θθθ depend only on
the endpoint. The probabilities (Table B.3) are fed into the cost-effectiveness model. The
Framingham equations are important in the CEA as they govern how the treatment affects
the risk of CVEs (Section B.3.8).

Other parameters relating to Cardiovascular risk

After a CVE an individual has an increased risk of mortality. The relative risk for death
following CVEs are taken from Rosengren et al. (1998) and Dennis et al. (1993) [53, 184].
These were long term observational studies providing estimates of the increased risk of

9For clarification sn f = non-fatal stroke; cn f = non-fatal CHD; vn f = non-fatal CVE; s f = fatal stroke; c f =
fatal CHD; and v f = fatal CVD
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Table B.3 Quantities calculated using the Framingham equations1 for use in the case study
cost-effectiveness analysis

Quantity Value1 CEA Notation2

p(s f or c f ) p
(
c f
)
+ p

(
v f
)

e f
p(s or c) p(c)+ p(s)
p(e f |(s or c)) e f × p(s or c)
p(sn f or cn f ) 1− p(e f |(s or c))× e f en f

p(e f |c)
p(c f )

p(c)
p(cn f ) (1− p(c f ))× p(c)
p(v f ) p(v f ) s f
p(sn f ) (1− p(s f ))× p(s) sn f

qcn f
p(c)

p(c)+p(s) qcn f

qsn f
p(s)

p(c)+p(s) qsn f

1These are expressed in terms of the quantities calculated from the Framingham equations. The βββ and θθθ values
depend on the endpoint. XXX is constant across endpoints, within the same cycle. Further, the hazard is assumed
to remain constant over the cycle.
2 sn f = non-fatal stroke; cn f = non-fatal CHD; vn f = non-fatal CVE; s f = fatal stroke; c f = fatal CHD; and v f =
fatal CVD

Table B.4 CHD and stroke parameters and their distributions used in the case study
cost-effectiveness analysis

Parameter Mean SE Distribution Source

Relative risk of c f |cn f 3.2 0.30 Log-normal Rosengren et al. (1998) [184]
Relative risk of e f |sn f 2.3 0.19 Log-normal Dennis et al. (1993) [53]
Proportion of disabling sn f 0.309 - - Diener et al. (1996) [58]

mortality following CVEs [53, 184]. The proportion of disabling strokes, meaning the patient
was no longer able to drive and unable to have an RTA, was taken from a large RCT of over
6,000 patients which compared interventions for secondary prevention of vascular events
(Diener et al. (1996)) [58, 134]. These values and their associated distributions are presented
in Table B.4.

B.3.3 Risk of a road traffic accident

The values for the risk of an RTA in the general population are taken from the 2010 data
from the Department of Transport [1]. This follows the methodology in McDaid et al. (2009)
(Table B.5) using the numbers of UK driving licenses, fatal RTAs, and non-fatal RTAs
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Table B.5 Underlying annual risk of road traffic accidents used in the case study
cost-effectiveness analysis

Parameter Value Source

Rate of non-fatal RTAs
Males 0.0062 Department of Transport (2014) [1]
Females 0.0053 Department of Transport (2014) [1]

Rate of fatal RTAs
Males 7.11×10−5 Department of Transport (2014) [1]
Females 2.91×10−5 Department of Transport (2014) [1]

causing minor or serious injuries [134]. The reduction in the risk of RTAs for patients with
OSAHS treated with MADs or CPAP are presented in Section B.3.8.

B.3.4 Utilities

Using methodology to similar McDaid et al. (2009) the IPD from the TOMADO was used
to estimate a relationship between ESS and utility (based on the EQ-5D-3L) using a linear
mixed effects regression model [27, 134]. The resulting algorithm maps the change in ESS
with treatment to a change in utility (Table B.6) [198]. A one unit increase in ESS was found
to reduce utility by 0.0061. The estimated covariance matrix for this regression was used for
sampling in the PSA.

The baseline utility (at age 50) used the mean baseline ESS of 11.9 for the TOMADO
population [198]. The decrements for age, stroke, and CHD events were taken from Sullivan
and Gushchyan (2006) [218]. The utility after a RTA was based on EQ-5D-3L data from
a repository recording information on patients’ utility six weeks after an inpatient episode
resulting from a RTA [50]. These values are presented in Table B.6 [134].

B.3.5 Adherence to interventions

Compliance, or adherence, to the intervention was taken from a study by Kohler et al. (2010)
reporting long-term usage of CPAP (Figure B.2) with information available for adherence
to ten years usage [119]. The case study found little clear evidence presenting adherence
with MADs [198]. Therefore, adherence was assumed to be the same for both treatment with
MAD and CPAP. This assumption was challenged in a sensitivity analysis. Due to a lack
of data after ten years no change in adherence was assumed - i.e. if a patient was adherent
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Table B.6 Utility estimates used in the case study cost-effectiveness analysis

Utility Mean SE Distribution Source

Baseline
Constant 0.9094 0.0220 - TOMADO regression [198]
ESS (per unit) -0.0061 0.0020 - TOMADO regression [198]

Decrements
MAD1 ∆ESS×−0.006 - - TOMADO regression [198]
CPAP1 ∆ESS×−0.006 - - TOMADO regression [198]
Stroke -0.0524 0.0002 Normal Sullivan et al. (2006) [218]
CHD -0.0635 0.0001 Normal Sullivan et al. (2006) [218]
Age2 -0.0007 - - Sullivan et al. (2006) [218]

RTA 0.62 0.27 Gamma Currie et al. (2005) [50]

1These quantities are defined in Appendix B.3.8, where ∆ESS is the difference in ESS with intervention and
CM.
2Per year from age 50

after ten years they would remain so. Additionally, adherence is assumed to be binary with
an individual not being able to restart treatment after becoming non-adherent. Chapter 3
explains an alternative method, developed for this thesis, to model adherence to interventions.

B.3.6 Non-cardiovascular mortality rates

Data on the population mortality rates was taken from interim life tables (2009-2011) and
mortality statistics from the Office of National Statistics [155]. The interim tables give age
and gender specific all-cause mortality rates. These all-cause hazard rates were reduced
according to the proportion of people who died from CHD or ischaemic heart disease. The
resulting annual probabilities of death are shown in Figure B.3. The underlying mortality
rates for patients suffering a CVE are calculated using the Framingham equations (Section
B.3.2). As only first CVE is modelled, the increased mortality from prior events is increased
by the respective relative risk (Table B.4).

B.3.7 Costs

Resource use costs

As in McDaid et al. (2009) a variety of sources were used for costs associated with the
interventions (Tables B.7 - B.9) [134]. In addition, the lifespan of a CPAP machine was
assumed to be seven years and a MAD was assumed to last one year. As CM was a one-off
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Figure B.2 The probability individuals are adherent to their intervention1 in the case study
cost-effectiveness analysis based on data from Kohler et al. (2010) [119]

1The lines are for reference only, it may be that adherence is not linear between the data points. However, the
model uses annual cycles and so only uses the adherence rates at each point.

consultation with a GP this was assumed to be the initial cost of CM with no further costs in
subsequent years. Costs were in 2011/12 prices using the Personal Social Services Research
Unit (PSSRU) price indices where necessary to update the costs used in the McDaid model
[134, 161].

Costs of cardiovascular events and road traffic accidents

Costs due to CVEs were taken from Briggs et al. (2007) as in McDaid et al. (2009) [25, 134].
This study used data from a large trial extrapolated using a Markov Model (n=12,218) to
estimate ongoing and event costs for fatal CVEs and non-fatal CHD. The cost of stroke was
taken from Bravo-Vergel et al. (2007) [22]. They used long-term data from the Nottingham
Heart Attack Registry to give information on the frequency, timings, and resource use of
events. Costs associated with RTAs were taken from the Department of Transport estimates
of NHS costs for fatal and non-fatal RTAs in 2004 updated to 2011/12 prices [1, 161]. These
are all shown in Table B.10.
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Figure B.3 The annual probability of a non-cardiovascular death1 used in the case study
cost-effectiveness analysis for a male alive at age 502 using 2009-2011 interim life tables

from the Office of National Statistics [155]

1Non-cardiovascular death is defined as all cause mortality with deaths due to CHD and ischaemic heart disease
removed.
2The CEA runs until the cohort is aged 115. The lifetables give data up to age 100, past this the annual
probability of a non-cardiovascular death is assumed to be the same as if aged 100.

Table B.7 Costs associated with treatment by CM or MAD in 2011/2012 prices

Cost Mean (£) SE (£) Distribution Source

CM
Initial cost 36 PSSRU (2012) [161]

MAD
Initial cost 128 TOMADO1 [198]
On-going cost 105.89 47.08 Gamma NHS Reference Costs [54]

1Semi-bespoke device
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Table B.8 Costs associated with initial use of CPAP in 2011/2012 prices

Cost Mean (£) SE (£) Distribution Source

Cost of follow-up outpatient visit 73.06
Unit cost of visit 105.89 47.08 Gamma NHS Reference costs [54]
P(follow-up appointment) 0.69 0.3 Beta McDaid et al. (2009) [134]

Cost of APAP for dose titration 3.06
p(APAP) 0.81 0.19 Beta McDaid et al. (2009) [134]
p(home titration) 0.99 0.01 Beta McDaid et al. (2009) [134]
Cost of APAP Machine 499 TOMADO [198]
Number of times machine used 163 McDaid et al. (2009) [134]

Cost of CPAP for dose titration 1.41
p(CPAP) 0.19 McDaid et al. (2009) [134]
Cost of CPAP machine 230 TOMADO [198]

Cost of in-home titration 2.72
Cost of inpatient titration 7.23
P(inpatient titration) 0.01 McDaid et al. (2009) [134]
Cost of sleep study follow-up 722.8 263.5 Gamma NHS Reference costs [54]

Cost of nurse appointment 44.5
P(specialist nurse) 1 McDaid et al. (2009) [134]
Cost of appointment 44.5 PSSRU (2012) [161]

Cost of titration by consultant 42.37
P(consultant for titration) 0.4 0.4 Beta McDaid et al. (2009) [134]
Cost of consultant appointment 105.89 47.08 Gamma NHS Reference Costs [54]
Cost of technician appointment 11.23 McDaid et al. (2009) [134]

Total initial cost 174.94

Table B.9 Costs associated with ongoing use of CPAP in 2011/2012 prices

Cost Mean (£) SE (£) Distribution Source

Annual Cost of machine 36.34 Cost of CPAP
Annuity Factor

Interest Rate 3.5% NICE [150]
Life of CPAP machine 7 McDaid et al. (2009) [134]

Annual Cost of mask 92.43
Cost of mask 36.34 McDaid et al. (2009) [134]
Estimated life of mask 1 McDaid et al. (2009) [134]

Annual sundries 17.33 McDaid et al. (2009) [134]
Annual follow-up 105.89 47.08 Gamma NHS Reference Cost [54]
Total ongoing annual cost 251.99
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Table B.10 Costs associated with coronary heart disease, stroke, and road traffic accidents in
2011/2012 prices

Event Mean (£) SE (£) Distribution Source

Fatal CVE 3,561 434 Normal Briggs et al. (2007) [25]
CHD

Year 1 11,786 505 Normal Briggs et al. (2007) [25]
Year 2+ 886 138 Normal Briggs et al. (2007) [25]

Stroke
Year 1 10,476 347 Normal Bravo-Vergel et al. (2007) [22]
Year 2 2,764 334 Gamma Bravo-Vergel et al. (2007) [22]

RTA
Non-fatal 3,120 1,942 Gamma Department of Transport (2004)[1]
Fatal 6,297 1,942 Gamma Department of Transport (2004) [1]

B.3.8 Treatment effects

One treatment effect used in the cost-effectiveness model is the difference in the mean ESS
over patients when treated with MAD or CPAP compared to treatment with CM:

∆ESST−CM = ESST −ESSCM

where T ∈ {MAD, CPAP} and ESST is the mean ESS score with intervention T . ESSCM

is the ESS for a population treated with CM. These are ‘differences in differences in ESS
where:

ESST = ESS(t1)T −ESS(t0)T

where ESS(t)T is the mean ESS for the population at time t with t0 being the baseline and
t1 the follow-up time (i.e. the start and end of the period spent on treatment with T ). Due
to randomisation in the RCTs these baseline values are expected to cancel. ∆ESST−CM

is entered into the model as an uncertain parameter whose distribution is taken from the
meta-analysis of RCTs in Sharples et al. (2014) for patients with mild - moderate OSAHS
[198]. Chapter 4 explains how the model is extended to allow for stratified treatment effects.

A second treatment effect is the difference in mean SBP at follow-up due to treatment with
MAD or CPAP compared to treatment with CM:

∆SBPT−CM = SBPT −SBPCM
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Table B.11 Modelled treatment effects and their distributions used in the case study
cost-effectiveness analysis

Parameter Mean SE Distribution Source

Change in ESS
MAD vs CM -1.62 0.38 Normal TOMADO HTA [198]
CPAP vs CM -1.61 0.34 Normal TOMADO HTA [198]

Change in SBP
MAD vs CM -1.13 0.53 Normal TOMADO HTA [198]
CPAP vs CM -2.36 0.66 Normal TOMADO HTA [198]

Risk of RTA
MAD vs CM1 0.167 McDaid et al. (2009) [134]
CPAP vs CM1 0.168 0.033 Log-normal McDaid et al. (2009) [134]

1Base-case risk, in PSA this value varies with the ratio of ESS due to treatment with MAD or CPAP

where T ∈ {MAD, CPAP} and SBPT is the mean SBP with intervention T . Similarly, SBPCM

is the mean SBP at follow-up for a population treated with CM. As with ∆ESST−CM these
are ‘difference in difference’ values. The distribution for the treatment effect was taken
from the meta-analysis of RCTs in Sharples et al. (2014) [198]. The values for the whole
population with OSAHS have been used due to insufficient evidence on the population with
mild-moderate OSAHS.

The risk of a RTA while using CPAP has been taken from McDaid et al. (2009) [134]. The
risk of a RTA while using a MAD is estimated as the risk of an RTA when using a CPAP
multiplied by the ratio of the change in ESS when treated with MAD and CPAP (Table B.11):

RTAMAD−CM = RTACPAP−CM
∆ESSMAD−CM

∆ESSCPAP−CM

B.4 Transition probabilities

Patients move though the model (Figure B.1) for 65 annual cycles (Table B.1). The al-
lowed transitions are presented in Table B.12 where the subscript A represents a state where
members are adherent to their intervention and Ā represents a state where members are not
adherent to their intervention.

Patients can have a non-fatal RTA in each cycle. These are instantaneous events associated
with a fixed cost and utility decrement as opposed to states. Patients return to their previous
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Table B.12 Schematic table showing allowed transitions1 in the case study
cost-effectiveness analysis

State at the end of the cycle2
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Ā

pC
H

D
Ā
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e2 OSAHSA ✓ ✓ ✓ ✓ ✓ ✓ ✓

CHDA ✓ ✓ ✓ ✓ ✓
pCHDA ✓ ✓ ✓ ✓ ✓
StrokeA ✓ ✓ ✓
pStrokeA ✓ ✓ ✓
OSAHSĀ ✓ ✓ ✓ ✓
CHDĀ ✓ ✓ ✓
StrokeĀ ✓ ✓
pStrokeĀ ✓ ✓
Dead ✓

1Movement between adherent and non-adherent states (A, Ā) are only allowed in the first ten years; patients
treated with CM cannot move between A and Ā states.
2OSAHS = OSA state; CHD = CHD state; pCHD = post-CHD event state; Stroke = Stroke state; pStroke =
post-Stroke state; Dead = Dead state

state post RTA. Patients can have multiple RTAs throughout the model. Additionally, a
proportion of deaths are due to fatal RTAs.

Transitions between the adherent and non-adherent states are only allowed for the first ten
cycles and when the intervention is MAD or CPAP. If the intervention is CM then there are
no transitions from A to Ā states as under this model it is not possible to be non-adherent to
CM (Section B.3.5). When a patient is non-adherent to their intervention they are assumed
to be treated with CM. Transitions between Ā states are the same as the transitions between
the A states when the treatment is CM. No transitions are allowed from the Ā states to the A
states. Once an individual is non-adherent they can not become adherent again.

B.4.1 Formulation of the transition probabilities

In all cases P(X |Y,a,T ) represents the probability of being in state X at time i for a person
in state Y at time i− 1 where i = 1, . . . ,65. The covariate T represents the intervention
where T ∈ {CM,MAD,CPAP}. The covariate a ∈

{
A, Ā

}
represents whether the individual

is adherent to their intervention or not respectively. For each probability, T must be the same
in cycle i and i− 1, but a may change from A to Ā or remain the same at the next cycle
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Table B.13 Notation used to derive the transition probabilities for the case study
cost-effectiveness analysis

Parameter Definition Reference

mr Non-CVD mortality rate Figure B.3
e f Probability of a fatal CVE event Table B.3
en f Probability of a non-fatal CVE event Table B.3
RRc Relative risk of non-stroke death following a CHD event Table B.4
RRs Relative risk of all-cause death following a stroke Table B.4
sn f Probability of a non-fatal stroke event Table B.3
s f Probability of a fatal Stroke Table B.3
sdis Probability a stroke is disabling Table B.4
v f Probability of a fatal CVD event Table B.3
r f Probability of a fatal RTA Table B.5
rn f Probability of a non-fatal RTA Table B.5
qc Proportion of CVE events due to CHD Table B.3
qs Proportion of CVE events due to Stroke Table B.3
A Probability adherent with intervention Figure B.2
Ā Probability non-adherent to the intervention (1−A) Figure B.2

(a ∈ {a0,a1} indicates the adherence state at the start and end of the cycle). All transition
probabilities are cycle/age dependent, but for ease of notation the cycle notation has been
omitted. The age of the cohort is used in the Framingham equations, the mortality, and the
utility rates.

Transitions between A and Ā states are only allowed for the first ten cycles, and when
T ∈ {MAD CPAP} (Section B.3.5). In transitioning between A and Ā states all patients are
assumed to become non-adherent at the end of the cycle and so subject to the risks and
probabilities in that cycle as though they were adherent.

Notation

The set of states, X , has elements:

{OSAHS,CHD, pCHD,Stroke, pStroke,Dead}= {O,C, pC,S, pS,D}

D̄ is defined to include all ‘alive’ states. Being in state X not adherent to intervention T
is equivalent to being in state X and treated with CM. The notation used in the transition
probabilities is shown in Table B.13.
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In addition, the probabilities of non-cardiovascular death can be defined as:

v̄ f = p(v̄ f ) = 1− e−mr

v̄ f |cn f = p(v̄ f |cn f ) = 1− e−mr×RRc

v̄ f |sn f = p(v̄ f |sn f ) = 1− e−mr×RRs

where p
(
v̄ f |x f

)
is the probability of non-cardiovascular death given a prior non-fatal stroke

or CHD event. These probabilities are independent of the intervention, T .

Let the probability of not dying due to non-cardiovascular causes independent of treatment,
over the cycle be:

d̄ = p(d̄) = 1− p(v̄ f )

d̄|cn f = p(d̄|cn f ) = 1− p(v̄ f |cn f )

d̄|sn f = p(d̄|sn f ) = 1− p(v̄ f |sn f )

The model depends on the probability of becoming non-adherent in the next cycle for the
first ten cycles (Section B.3.5). If an individual becomes non-adherent in the current cycle
then T =CM going forward.

Probability of death

p(D|O,a,T ) = v̄ f + v(T )f a + r(T )f a

p(D|C,a,T )
p(D|pC,a,T )

}
= v̄ f |cn f + v(T )f a + r(T )f a

p(D|S,a,T )
p(D|pS,a,T )

}
= v̄ f |sn f +(1− sdis)× r(T )f a

p(D|D,a,T ) = 1

Probability of remaining in OSA state, i.e. no adverse event occurs

p(O|O,a,T ) = d̄ ×
(

1− e(T )n f a0

)
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Probability of a non-fatal CHD Event

The CEA model only allows a CHD event from the OSA state. Second and subsequent CHD
events are not modelled.

P(C|O,a,T ) = d̄ × en f ×qc

Probability of being in the post-CHD state

P(pC|C,a,T )
P(pC|pC,a,T )

}
= d̄|cn f ×

[
1− e(T )n f ×qs

]

Probability of a non-fatal stroke

The CEA model only allows a stroke from the OSA or CHD state. Second and subsequent
strokes are not modelled.

p(S|O,a,T ) = d̄(T )× e(T )n f ×qs

p(S|C,a,T )
p(S|pC,a,T )

}
= d̄|c(T )n f × e(T )n f ×qs

Probability of being in the post-Stroke state

p(pS|S,a,T )
p(pS|pS,a,T )

}
= d̄|sn f

Probability of a road traffic accident

RTAs are not a state in the transition matrix, they are an instantaneous event associated with
a certain cost and utility decrement, i.e. each individual is in a state and could also have a
RTA event in each cycle. The probability of a non-fatal RTA in cycle i depends on the state
at the end of cycle i−1. Letting Y ∈ {f, nf} then:
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p(RTAY |O,a,T )
p(RTAY |C,a,T )
p(RTAY |pC,a,T )

= r(T )Y

p(RTAY |S,a,T )
p(RTAY |pS,a,T )

}
= [1− sdis]× r(T )Y

Calculating the proportion of the population in each state at the end of a cycle

Once the transition matrix has been defined for cycle i, the proportion of the population in
each state at the end of cycle i− 1 can be multiplied by the transition matrix to give the
proportion of the population in each state at the end of cycle i. Let P be the transition matrix
with elements pxy = p(y|x). Let qi be the vector of the expected proportion of the population
in each state at time i. Then:

qi+1 = qT
i P

B.4.2 Utilities

Each state is assigned a utility. In addition, a utility is attached to a non-fatal RTA. The
derivation of the utility for each state is given in Table B.6. Let qi

(
X (T,a)

)
be the proportion

of the population in state X with treatment T and adherence state a at the end of cycle i.

For each state, there is a common contribution to the utility of:

U (T )
i = bU +dU (T,a)+dUage(i−1)

where bU is the baseline utility, dU (T,a) is the utility decrement due to treatment and dUage

is a utility decrement due to age (Table B.6). Then for each state:

U(O|a,T ) =U (T )

U(C|a,T )
U(pC|a,T )

}
=U (T )+UC

U(S|a,T )
U(pS|a,T )

}
=U (T )+US

where UC is the utility decrement due to a CHD and UC is the utility decrements due to a
stroke. In addition, the utility after a non-fatal RTA, rn f , is:
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U(rn f ) =UR

Then for each cycle (i) the expected utility of the population treated with T is:

U (T )
i = ∑

X

(
qi

(
X (T )

j

)
U
(

X (T )
))

+
[
p(rn f )×q(rn f )×U(rn f )

]
where q(rn f ) is the expected proportion of the cohort who could have a RTA, i.e. those in the
cohort who are alive who have not had a disabling stroke:

q(rn f ) = 1−q
(
d̄
)
− sdis [q(S)+q(pS)]

B.4.3 Costs

Similar to estimating utilities, each state is assigned a cost, c
(

X (T )
)

. There is also a cost for
fatal and a non-fatal RTA. The derivation of each of the costs is defined in Tables B.7 - B.10.
Using the same notation as for calculating utilities the expected cost over the population for
each cycle is calculated as:

C(T )
i = ∑

X
qi(X (T ))C(X (T ))

where:
C(O|a,T ) =C(T )

C(C|a,T )
C(pC|a,T )

}
=C(T )+CC

C(S|a,T )
C(pS|a,T )

}
=C(T )+CS

C(RTA|a,T ) =CR

C(D|a,T ) = 0

where C(T ) is the cost of intervention T , CC is the cost of a CHD events, CS is the cost of a
stroke, and CR is the cost of a RTA.
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B.5 Calculating the cost-effectiveness

The main outcomes of the CEA are the expected costs and QALYs over the lifetime of the
cohort for each intervention. To obtain these the values from Sections B.4.2 and B.4.3 need
to be aggregated over cycles for each intervention, T:

c̄T =
65

∑
i=0

C(T )
i (1+discc)

−i

ēT =
65

∑
i=0

U (T )
i (1+discu)

−i

where discc and discu are the discount rates for costs and utilities respectively (Table B.2).
The model follows individuals aged 50 at cycle i = 0 for a total of 65 years.

Using the principles set out in Section 1.1 this model is run K times each time taking a draw
from the distributions of the uncertain parameters in Tables B.3 - B.11. Cost-effectiveness is
calculated from the average costs and utilities over the K simulations (Section 1.1.1).





Appendix C

Search strategy for reviewing literature
on adherence to MAD or CPAP as
treatments for patients with OSAHS

This search strategy was presented in Sharples et al. (2014) [198]. This thesis has updated
the search to all papers published before January 2015. The search strategy was:

Compliance search terms in Medline (January 2015)

1. exp Sleep Apnea Syndromes/

2. compliance.ti,ab.

3. adherence.ti,ab.

4. Continuous Positive Airway Pressure/

5. ("oral device" or "mad" or "mandibular advancement").mp

6. 2 or 3

7. 4 or 5

8. 1 and 6 and 7

9. limit 8 to (abstracts and english language and "review articles" and humans)

10. (long-term or long$ term or (long adj3 term)).ti,ab.

11. 9 and 10
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Reasons for inclusion and exclusion for papers reviewed for information on adherence to

MAD or CPAP
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Reasons for inclusion and exclusion for papers reviewed for information on adherence to
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