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Abstract 21 

Learning and experience are known to improve our ability to make perceptual decisions. Yet, 22 

our understanding of the brain mechanisms that support improved perceptual decisions 23 

through training remains limited. Here, we test the neurochemical and functional interactions 24 

that support learning for perceptual decisions in the context of an orientation identification 25 

task. Using magnetic resonance spectroscopy (MRS), we measure neurotransmitters that are 26 

known to be involved in visual processing and learning (i.e. glutamate, GABA) in sensory 27 

(early visual cortex: EV) and decision-related (dorsolateral prefrontal cortex: DLPFC) brain 28 

regions. Using resting-state functional magnetic resonance imaging (rs-fMRI), we test for 29 

functional interactions between these regions that relate to decision processes. We 30 

demonstrate that training improves perceptual judgments (i.e. orientation identification) as 31 

indicated by faster rates of evidence accumulation after training. These learning-dependent 32 

changes in decision processes relate to lower EV glutamate levels and EV-DLPFC 33 

connectivity, suggesting that glutamatergic excitation and functional interactions between 34 

visual and dorsolateral prefrontal cortex facilitate perceptual decisions. Further, anodal 35 

transcranial direct current stimulation (tDCS) in early visual cortex impairs learning, 36 

suggesting a direct link between visual cortex excitation and perceptual decisions. Our 37 

findings advance our understanding of the role of learning in perceptual decision making, 38 

suggesting that glutamatergic excitation for efficient sensory processing and functional 39 

interactions between sensory and decision-related regions support improved perceptual 40 

decisions. 41 

 42 

News and Noteworthy: Combining multimodal brain imaging (MRS-GABA, functional 43 

connectivity) with interventions (tDCs) we demonstrate that glutamatergic excitation and 44 

functional interactions between sensory (visual) and decision-related areas (dorsolateral 45 

prefrontal cortex) support our ability to optimize perceptual decisions through training. 46 
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 47 

Introduction 48 

Making successful perceptual judgments entails integrating multiple sources of sensory 49 

information over time (Gold and Shadlen, 2007; Heekeren et al., 2008). For example, when 50 

deciding whether we have spotted a friend in the crowd, we accumulate information over 51 

time (e.g., as they approach, their appearance, clothing, and gait become clearer) and take 52 

into account not only the immediate sensory input but also our previous experience and 53 

knowledge (e.g. the likelihood of them appearing there and then). 54 

Computational investigations have advanced our understanding of perceptual decision 55 

making by using sequential sampling models to decompose behavioral responses into 56 

decision processes (Bogacz et al. 2006; Ratcliff and McKoon 2008). In these sequential 57 

sampling models, participants accumulate evidence for two alternative choices and make 58 

their response when a critical amount of information (i.e. decision threshold) has been 59 

obtained in favor of one choice over the other. Previous work has implicated a network of 60 

regions in evidence accumulation for perceptual decision making, including parietal (Shadlen 61 

and Newsome 2001), frontal (Ding and Gold 2012), prefrontal (Heekeren et al. 2006; 62 

Philiastides et al. 2011) and ventral premotor cortex (Romo et al. 2004).  63 

Further, previous behavioral (Dosher et al. 2013; Liu and Watanabe 2012; Petrov et 64 

al. 2011) and neuroimaging (Diaz et al. 2017; Jia et al. 2018; Kahnt et al. 2011) studies have 65 

proposed a role of learning in perceptual decision making, showing that training enhances 66 

evidence accumulation for perceptual judgments (e.g. discrimination of visual features) 67 

(Dutilh et al. 2009; Jia et al. 2018; Liu and Watanabe 2012; Petrov and Van Horn 2012; 68 

Zhang and Rowe 2014). Yet, our understanding of the brain mechanisms that alter decision 69 

processes through training remains limited. 70 

Here, we interrogate the neurochemical and functional brain mechanisms that support 71 

our ability to improve our perceptual decisions due to training. We focus on perceptual 72 
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learning, that is our ability to improve our perceptual judgements with training. We used an 73 

orientation identification task that involves identifying the orientation of a Gabor grating 74 

from Gaussian noise (Lu and Dosher 2009). We modelled behavioral performance using the 75 

drift diffusion model (i.e., a widely used sequential sampling model) (Bogacz et al. 2006; 76 

Ratcliff and McKoon 2008) to identify the decision processes involved in orientation 77 

identification and test the effect of training on these processes, rather than overall task 78 

performance. 79 

Visual perceptual learning has been shown to engage a network of visual regions 80 

involved in sensory processing and frontoparietal regions involved in decision making (for 81 

reviews see Maniglia & Seitz, 2018; Vogels, 2010). In particular, training has been shown to 82 

alter processing in both visual cortex (Gilbert and Sigman 2007; Ito et al. 1998; Schoups et al. 83 

2001; Sigman et al. 2005), and higher frontoparietal areas (Jia et al. 2018; Kahnt et al. 2011; 84 

Law and Gold 2010). Here we focus on early visual cortex and the dorsolateral prefrontal 85 

cortex that is known to be  functionally connected to early visual cortex (Baker et al. 2018) 86 

and involved in perceptual decision making (Heekeren et al. 2006; Philiastides et al. 2011).  87 

Further, previous studies have investigated the role of excitatory (glutamate: Glu) and 88 

inhibitory (γ-aminobutyric acid: GABA) neurotransmitters in visual processing and learning. 89 

Thanks to recent advances in MRS, it is now possible to reliably measure these 90 

neurotransmitters non-invasively in the human brain. MRS studies have shown that 91 

glutamatergic excitation, that is known to play a key role in long-term potentiation induction 92 

and plasticity (for a review see Valtcheva and Venance, 2019), relates to visual cortex 93 

activation (Ip et al. 2017; Lin et al. 2012), contrast sensitivity (Ip et al., 2019), motion 94 

discrimination (Schallmo et al. 2019) and object recognition (Lally et al. 2014). GABAergic 95 

inhibition in the visual cortex, as measured by MRS, has been implicated in orientation 96 

discrimination tasks (Edden et al. 2009; Rokem et al. 2011; Song et al. 2017) and visual 97 

perceptual learning (Frangou et al. 2018, 2019; Shibata et al. 2017). Further, the 98 
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neurochemical balance between excitation and inhibition has been suggested to play a key 99 

role in brain-wide network interactions (Mann and Paulsen 2007). Human MRS studies have 100 

linked Glu and GABA concentrations at rest with functional connectivity as measured by rs-101 

fMRI (Bachtiar et al. 2015; Duncan et al. 2013; Kapogiannis et al. 2013; Wang et al. 2020), 102 

consistent with the role of glutamatergic excitation and GABAergic inhibition in neural 103 

dynamics. 104 

Here, we ask whether neurochemical processing within visual and decision-related 105 

areas and functional interactions between these regions relate to improved perceptual 106 

decisions due to training. Using MRS to measure neurotransmitter levels at rest, we test 107 

whether Glu and GABA+ levels in EV and DLPFC relate to learning-dependent changes in 108 

decision processes. Using rs-fMRI, we test whether functional connectivity between these 109 

regions relates to glutamatergic excitation or GABAergic inhibition and learning-dependent 110 

changes in decision processes. Our results demonstrate that training on an orientation 111 

identification task enhances information accumulation (i.e., improved drift rate). This 112 

behavioral improvement relates to lower EV glutamatergic excitation and functional 113 

connectivity between EV and DLPFC, suggesting that local excitatory processing in visual 114 

cortex and interactions between visual and decision-related areas contribute to optimizing 115 

perceptual decisions through training. Moving beyond correlational evidence, we use tDCS to 116 

perturb cortical excitability during training on the orientation identification task. Our results 117 

show that increasing excitation with anodal stimulation of the early visual cortex impairs 118 

learning in the orientation identification task, suggesting that low levels of excitation in the 119 

visual cortex are directly linked to efficient sensory processing for improved perceptual 120 

decisions.  121 
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Materials and Methods 122 

Participants 123 

Twenty-five participants (12 female; mean age 24 ± 3.7 years) took part in the main study 124 

and forty participants (13 female, age 21 ± 2.3 years) took part in the tDCS experiment (20 in 125 

the Anodal and 20 in the Sham group). All participants were right-handed, had normal or 126 

corrected-to-normal vision, did not receive any prescription medication, and gave written 127 

informed consent. The study was approved by the University of Cambridge Research Ethics 128 

committee [PRE.2017.57]. 129 

 130 

Experimental Design 131 

Participants in the main study took part in one behavioral session in the lab and two brain 132 

imaging scans (before behavioral training) comprising rs-fMRI and MRS. Participants in the 133 

tDCS study took part in one behavioral session with stimulation in the lab. 134 

 135 

Stimuli and Task 136 

Experiments were controlled using MATLAB and Psychophysics toolbox 3.0 (Brainard 137 

1997; Pelli 1997). For the behavioral session, stimuli were presented on a 21-inch CRT 138 

monitor (1600 × 1200 pixel resolution, 60 Hz frame rate) with Gamma correction at a 139 

distance of 50 cm. Stimuli comprised oriented Gabor patches that were presented against a 140 

uniform gray background. Gabor patches of random phase had a fixed diameter of 12°, SD of 141 

the Gaussian envelope of 2°, contrast of 0.03, and spatial frequency of 1 cycle/degree. 142 

Gaussian-distributed noise patterns had a contrast of 0.2. This contrast value was defined 143 

based on a pilot study that showed 60% accuracy in orientation identification before training. 144 

An independent assessor to the researchers who ran the experiments monitored the pre-145 

training performance during data collection. The first set of 8 participants of the Anodal 146 

group were tested on the same contrast level as participants in the main experiment (i.e. 147 



7 
 

0.03). However, they showed lower pre-training accuracy than the expected 60% (mean 148 

accuracy = 55.9%). Therefore, we increased the contrast of the stimuli to 0.035 for the 149 

remaining participants in the tDCS experiment (12 for Anodal, 20 for Sham). Statistical 150 

analyses with and without the participants who performed the task with lower contrast 151 

showed similar results.  152 

We tested participants on an orientation identification task (Figure 1a) during a test 153 

block (100 trials; no feedback) followed by five training blocks (100 trials each; with per trial 154 

feedback). Each trial began with a fixation cross for a jittered duration between 300-600ms 155 

(in increments of 100ms) followed by the noise patterns and Gabor patches. Two Gabor 156 

frames (i.e., 33ms) were presented in between pairs of noise frames (i.e. four noise frames 157 

were presented before and after the Gabor frames) to ensure temporal integration of the 158 

Gabor and noise patterns (Lu and Dosher 2009). Participants were asked to fixate and judge 159 

the orientation (left vs. right) of the Gabor patch (45° or 135°; Figure 1a). 160 

 161 

MRI data acquisition  162 

We collected MRI data on a 3T Siemens PRISMA scanner (Wolfson Brain Imaging Unit, 163 

Cambridge) using a 32-channel head coil. We acquired T1-weighted structural data 164 

(MPRAGE; TR = 2s; TE = 2.98ms; number of slices = 176; voxel size = 1mm isotropic) and 165 

echo-planar imaging (EPI) data at rest (gradient echo-pulse sequences; TR = 0.727s; TE = 166 

34.6ms; number of slices = 72; voxel size = 2mm isotropic; Multiband factor = 8; flip angle = 167 

48º; number of volumes = 825; duration = 10m; whole brain coverage). EPI data comprised 168 

two runs (10 min per run), during which participants fixated on a cross in the middle of the 169 

screen. 170 

We collected MRS data using a 32-channel head coil and a MEGA-PRESS sequence 171 

(Mescher et al. 1998): TE = 68ms, TR = 3000ms; 256 transients of 2048 data points were 172 

acquired in 13 min experiment time; a 14.28ms Gaussian editing pulse was applied at 1.9 173 



8 
 

(ON) and 7.5 (OFF) ppm; water unsuppressed 16 transients (Table S1, following consensus 174 

guidelines (Lin et al. 2021)). Water suppression was achieved using variable power with 175 

optimized relaxation delays and outer volume suppression. We conducted automated 176 

shimming followed by manual shimming. We acquired spectra from two MRS voxels (25 x 177 

25 x 25 mm3): in early visual cortex (EV voxel) and the left dorsolateral prefrontal cortex 178 

(DLPFC voxel; Figure 2a). We manually positioned the MRS voxels using anatomical 179 

landmarks on each participant’s T1 scan, ensuring that voxel placement was consistent across 180 

participants. The EV voxel was placed medially in the occipital lobe with the lower face 181 

aligned with the cerebellar tentorium and as posterior as possible towards the occipital pole 182 

given the voxel dimensions. The DLPFC voxel was placed within the left hemisphere and 183 

above the superior margin of the lateral ventricles. The center of gravity for the EV voxel 184 

was: x=0.8±1.8mm, y=-80.2±2.4mm, z=8.2±2.9mm in MNI space (partially covering V1 and 185 

V2 regions), and for the DLPFC voxel was: x=-24.4±2.0mm, y=33.0±7.0mm, z=25.1±6.2mm 186 

in MNI space. The order of the voxels was counterbalanced across participants. During the 187 

MRS acquisitions participants fixated on a cross in the middle of the screen to encourage 188 

similar levels of alertness across participants. 189 

 190 

tDCS data acquisition  191 

We used a multi-channel transcranial electrical stimulator (neuroConn DC-STIMULATOR 192 

MC, Ilmenau, Germany) to deliver anodal or sham stimulation in a double-blind manner. We 193 

used a pair of rubber electrodes (3 × 3 cm2 stimulating electrode, 5 × 5 cm2 reference 194 

electrode), placed in square sponges that had soaked in saline. For anodal stimulation, 1mA 195 

current was ramped up over 10s, was held at 1mA for the duration of training (~25min) and 196 

was subsequently ramped down over 10s. For sham stimulation, the current ramped up (10s) 197 

and down (10s) in the beginning of the session. To achieve consistent electrode placement 198 

across participants when targeting the early visual cortex, we used a 10–20 system EEG cap 199 
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as reference and centered the anode on Oz and the cathode on Cz. This montage has been 200 

extensively used in tDCS studies targeting the early visual cortex (e.g. (Raveendran et al. 201 

2020; Spiegel et al. 2013) and has been shown to successfully increase excitability in this 202 

region (Antal and Paulus 2008). 203 

 204 

Data analysis 205 

Behavioral data analysis 206 

Three participants from the main study and one from the tDCS experiment (from the Sham 207 

group) were excluded due to high starting performance (over 75%). We further excluded 7 208 

participants from the tDCS experiment (2 from the Anodal and 5 from the Sham group) due 209 

to atypical response times (i.e. RT<0.2s) that suggested the participants did not engage with 210 

the task. This resulted in N=22 for the main study and N=32 for the tDCS experiment (N=18 211 

for Anodal, N=14 for Sham), consistent with sample sizes in our previous studies (Frangou et 212 

al. 2018). Following previous studies using a single-training session (Frangou et al. 2019) we 213 

calculated performance accuracy per participant and compared accuracy in the pre-training 214 

block to accuracy in the max-training block (i.e. we selected the block with the higher 215 

accuracy between the last two training blocks per participant to account for potential fatigue 216 

effects towards the end of the training).   217 

Further, to model processes related to decision making, we fitted the behavioral data 218 

for each block using the Diffusion Model Analysis Toolbox (DMAT; Vandekerckhove and 219 

Tuerlinckx, 2008, 2007). The drift diffusion model (DDM) consisted of seven parameters: (1) 220 

The mean drift rate (DR) and (2) across-trial variability (s) in drift rate indicate stimulus 221 

discriminability; that is, a higher drift rate denotes faster and more accurate responses. The 222 

drift rate varies from trial to trial, following a normal distribution with mean DR and standard 223 

deviation s. (3) The decision threshold (TH) controls the speed-accuracy tradeoff and 224 

represents the amount of evidence required for making a decision. A higher decision 225 
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threshold denotes slower but more accurate responses, suggesting that participants tend to 226 

make more cautious decisions. (4) The mean starting point (z), and (5) variability of starting 227 

point (sz) reflect the observer’s prior bias at stimulus onset. In the case of the diffusion 228 

model, the starting point of the decision process at stimulus onset is assumed to vary 229 

randomly from trial-to-trial, according to a uniform distribution with mean z and standard 230 

deviation sz. This random variation may reflect, for example, the influence of recent 231 

preceding trials. (6) The mean non-decision time (Ter) and (7) variability of non-decision 232 

time (st) denote the time that includes early encoding processes (i.e. before the diffusion 233 

decision process) and late motor response processes (i.e. after the diffusion decision process). 234 

The non-decision time is assumed to vary randomly across trials according to a uniform 235 

distribution with mean Ter and standard deviation st. The diffusion model assumes that the 236 

observed response time is the sum of the non-decision component and the diffusion decision 237 

component. 238 

Based on previous studies (Liu and Watanabe 2012; Petrov et al. 2011), we 239 

constructed five different models. Model 1 assumed that learning did not change any 240 

parameter of the model (Null model); Model 2 assumed that learning changed drift rate (DR 241 

model); Model 3 assumed that learning changed drift rate and decision threshold (DR-TH 242 

model); Model 4 assumed that learning changed drift rate, decision threshold and non-243 

decision time (DR-TH-Ter model); Model 5 assumed that learning changed all the parameters 244 

of the model (Full model). We used Bayesian information criterion (BIC) for the five 245 

constructed models and selected model DR-TH-Ter that had the lowest mean BIC value 246 

across participants (i.e. null model: 3246.22, DR model: 3267.02, DR-TH model: 3234.13, 247 

DR-TH-Ter model: 3228.73, full model: 3308.36). Quantile-probability plots were used to 248 

inspect the model fitting. Data from one participant in the tDCS study (from the Anodal 249 

group) were excluded from further analysis as the model fit did not converge. 250 

 251 
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MRS data analysis 252 

We pre-processed the MRS data using MRspa v1.5c 253 

(www.cmrr.umn.edu/downloads/mrspa/). We applied Eddy current, frequency and phase 254 

correction before subtracting the average ON and OFF spectra, resulting in edited spectra. 255 

We used LCModel (Provencher 2001) to quantify metabolite concentrations by fitting model 256 

spectra of glutamate (Glu), glutamine (Gln), γ-amino-butyric acid (GABA), glutathione 257 

(GSH) and N acetylaspartate (NAA) to the edited spectra (Figure 2a). The model spectra of 258 

all metabolites were generated based on previously reported chemical shifts and coupling 259 

constants using the GAMMA/PyGAMMA simulation library of VESPA (Versatile 260 

Simulation, Pulses and Analysis, (Soher et al. 2011)) for carrying out the density matrix 261 

formalism. A 20 x 20 spatial matrix was used to simulate the spatial variations inside and 262 

outside the nominal PRESS dimensions. Simulations were performed with the same RF 263 

pulses and sequence timings used on our 3T scanner. 264 

We focused on glutamate rather than glutamine, as it is the primary excitatory 265 

neurotransmitter and it is known to play a key role in brain plasticity and learning (Riedel 266 

2003). Glu has been shown to be separable from glutamine and reliably quantified when 267 

measured with MEGA-PRESS at 3T (Sanaei Nezhad et al. 2018) and the spectra are fitted 268 

using LCModel (O’Gorman et al. 2011; van Veenendaal et al. 2018). Our glutamate 269 

measurements are in agreement with the spectral quality criteria outlined in previous work 270 

(Sanaei Nezhad et al. 2018). Following these criteria, we were able to distinguish glutamate 271 

from glutamine for most participants. We conducted additional control analyses, excluding 272 

data in cases that Gln could not be fit (n=4, EV voxel).  273 

We refer to GABA concentration as GABA+, as MRS measurements of GABA with 274 

MEGA-PRESS include co-edited macromolecules (Mullins et al. 2014). We referenced Glu 275 

and GABA+ concentrations to the concentration of water and validated our findings by 276 
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referencing Glu and GABA+ to NAA to ensure our results were not driven by the chosen 277 

reference (Lunghi et al. 2015). 278 

All spectra had linewidth below 10Hz and Glu and GABA+ Cramer-Rao lower bound 279 

(CRLB) values smaller than 10%. DLPFC data for 5 participants were excluded due to lipid 280 

contamination, as detected by visual inspection by two independent reviewers (PF, JZ), 281 

resulting in N=22 for EV and N=17 for DLPFC. Signal-to-noise ratio (SNR) was computed 282 

using LCModel as the amplitude of the NAA peak in the difference-spectrum divided by 283 

twice the root mean square of the residual signal (Provencher 2001). We report average 284 

concentrations of Glu and GABA+, in addition to quality indices (CRLB, linewidth, SNR), 285 

per MRS voxel (Table S2). To control for potential differences in data quality across 286 

participants, we performed control analyses that accounted for variability in absolute CRLB 287 

(Kreis 2016), linewidth and SNR across participants. 288 

Further, we conducted whole brain tissue-type segmentation of the T1-weighted 289 

structural scan and calculated the percentage of gray matter (GM), white matter (WM) and 290 

cerebrospinal fluid (CSF) voxels in each MRS voxel. We then divided the Glu and GABA+ 291 

concentrations by [1-CSF fraction] to ensure our results were not driven by variability in 292 

tissue composition within the MRS voxel across participants and used these tissue-corrected 293 

values in further analyses. 294 

 295 

rs-fMRI data pre-processing  296 

We pre-processed the rs-fMRI data in SPM12.3 (v6906; 297 

www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the Human Connectome Project 298 

(HCP) pipeline for multi-band data (Smith et al. 2013). In particular, we first coregistered 299 

(non-linear) the T1w structural images (after brain extraction) to MNI space to ensure that all 300 

participant data were in the same stereotactic space for statistical analysis. We then (a) 301 

corrected the EPI data for any spatial misalignments between EPI volumes due to head 302 
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movement (i.e. aligned each run to its single band reference image), (b) coregistered the 303 

second EPI run to the first run (rigid body) to correct any spatial misalignments between runs, 304 

(c) coregistered the first EPI run to the structural image (rigid body) and (d) normalized them 305 

to MNI space for subsequent statistical analyses (applying the deformation field of the 306 

structural images). Data were only resliced after MNI normalization to minimize the number 307 

of interpolation steps. Following MNI normalization, (e) data were skull-stripped, (f) 308 

spatially smoothed with a 4mm Gaussian kernel to improve the signal-to-noise ratio and the 309 

alignment between participant data (two times the voxel size; (Chen and Calhoun 2018)), (g) 310 

wavelet despiked to remove any secondary motion artifacts (Patel et al. 2014), and (h) had 311 

linear drifts removed (linear detrending due to scanner noise). Slice-timing correction was not 312 

applied, following previous work on fast TR (sub-second) acquisition protocols (Smith et al. 313 

2013). Data from 4 participants were excluded from further analysis due to head movement-314 

related artifacts during the rs-fMRI acquisition, as measured by wavelet despiking (spike 315 

percentage higher than 10% (Patel et al. 2014)), resulting in a total of N=18. 316 

Next, we applied spatial group Independent Component Analysis (ICA) using the 317 

Group ICA fMRI Toolbox (GIFT v3.0b) (http://mialab.mrn.org/software/gift/) to identify and 318 

remove components of noise. Principal Component Analysis was applied for dimensionality 319 

reduction, first at the subject level, then at the group level. The Minimum Description Length 320 

criteria (Rissanen 1978) were used to estimate the dimensionality and determine the number 321 

of independent components, resulting in 34 independent components. The ICA estimation 322 

(Infomax) was run 20 times and the component stability was estimated using ICASSO 323 

(Himberg et al. 2004). Following recent work on back-reconstruction methods for ICA 324 

denoising at the group level (Du et al. 2016), we used Group Information Guided ICA (GIG-325 

ICA) back-reconstruction to reconstruct subject-specific components from the group 326 

components. We visually inspected the results and identified noise components according to 327 

published procedures (Griffanti et al. 2017). Using consensus voting among 3 experts (VK, 328 
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PF, JG), we labelled 11 of the 34 components as noise that captured signal from veins, 329 

arteries, CSF pulsation, susceptibility and multi-band artefacts. 330 

To clean the fMRI signals from motion artefacts and the noise components, we 331 

followed a soft cleanup ICA denoise approach (Griffanti et al. 2014). That is, we first 332 

regressed out the motion parameters (translation, rotation and their squares and derivatives; 333 

(Friston et al. 1996) from each voxel and ICA component time course. Second, we estimated 334 

the contribution of every ICA component to each voxel’s time course (multiple regression). 335 

Finally, we subtracted the unique contribution of the noise components from each voxel’s 336 

time course to avoid removing any shared signal between neuronal and noise components. 337 

We did not include the global signal as a nuisance regressor, as it has been shown to capture 338 

behaviorally relevant information (Li et al. 2019) and neuronal signals (for review see Uddin 339 

2020). Following ICA denoise, the data were high-pass filtered at 0.01Hz and treated for 340 

serial correlations using the FAST autoregressive model (Corbin et al. 2018; Olszowy et al. 341 

2019) and the residual time course from this step was used for all subsequent connectivity 342 

analyses. 343 

 344 

Functional connectivity analysis  345 

We computed functional connectivity between the two MRS voxels. First, we computed the 346 

overlap across participant MRS voxels for EV and DLPFC separately and created group 347 

MRS masks that included voxels present in at least 50% of the participants’ MRS voxels. 348 

Then, for each participant and ROI, we computed the first eigenvariate across all gray matter 349 

voxels within the ROI to derive a single representative time course per ROI. 350 

We computed the functional connectivity between the EV and the DLPFC MRS 351 

voxels as the Pearson correlation between the eigenvariate time course from each of the MRS 352 

masks. We then applied Fisher z-transform to the correlation coefficient and averaged across 353 

runs to derive an EV-DLPFC connectivity value per participant. To test for specificity of the 354 
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EV-DLPFC connectivity results, we computed the functional connectivity between EV and a 355 

control area (primary motor cortex: M1). We defined a left M1 mask of equal size to the 356 

MRS masks based on anatomical coordinates (MNI coordinates [-36, -26, 48]). 357 

 358 

Statistical analysis 359 

To test for within-subject differences across measurements, we conducted a repeated 360 

measures ANOVA in SPSS. For post-hoc pairwise comparisons we tested for significance at 361 

p=0.025 (Bonferroni corrected for two statistical tests). For testing the relationship of two or 362 

more variables, we used robust least-squares regression (robustfit function in MATLAB) for 363 

reweighting potential outliers. In particular, we used multiple regression models with two 364 

independent variables (DR and TH, or Glu and GABA+) to minimize the number of 365 

statistical tests. Prior to performing a multiple regression, we ensured that the independent 366 

variables are not collinear. For all control analyses, we used a simple linear regression model 367 

with the variable of interest (i.e. the variable that showed a significant relationship) and test 368 

for significant differences between predictors. For easier interpretation of the results, we also 369 

report a standardized r-coefficient by converting the regression’s t-statistic with the following 370 

formula: 𝑟 = 𝑠𝑖𝑔𝑛(𝑡) ∗ ට ௧మ

௧మାௗ௙
. For visualization purposes, we plot the fitted lines according 371 

to the following formula: yଵ,ଶ = b଴ + bଵ,ଶ ∗ xଵ,ଶ + bଶ,ଵ ∗ mean(xଶ,ଵ) , where yi is the 372 

expected outcome value for the i-th predictor, b0 is the beta weight for the constant term, bi is 373 

the weight for the i-th predictor, and xi is the vector of the i-th predictor. In line with previous 374 

MRS studies (de la Fuente-Sandoval et al. 2016; Modinos et al. 2017) exploratory 375 

associations between additional functional connectivity measures (e.g. intrinsic connectivity) 376 

and our MRS and learning measures were assessed.  377 
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Results 378 

Training alters perceptual decision processes 379 

We tested participants on an orientation identification task during a pre-training test block 380 

(without feedback) and five training blocks (with per trial feedback) (Figure 1a). On each 381 

trial, participants were asked to identify the orientation (45° or 135°) of a Gabor grating that 382 

was masked with Gaussian noise. Our results showed that participants improved in their 383 

judgments within a single training session (Figure 1b), as indicated by significant differences 384 

in performance during training (repeated-measures ANOVA: main effect of block: 385 

F(5,105)=3.04, p=0.013). In particular, following previous studies (Frangou et al. 2019) using 386 

a single-training session, we compared performance (accuracy) in the pre-training block to 387 

maximum training performance (max-training; i.e., performance at the training block with the 388 

higher accuracy between the last two training blocks per participant). Our results showed 389 

significantly higher performance after training (t(21)=4.43, p<0.001), consistent with 390 

previous reports showing behavioral improvement for early learning (i.e., within a single 391 

training session; for a review see Sagi, 2011).  392 

We next asked whether training alters processes related to decision making. We 393 

modelled the data with five different drift diffusion models following previous work (Liu and 394 

Watanabe 2012; Zhang and Rowe 2014). Using BIC as in previous studies (Liu and 395 

Watanabe 2012; Petrov et al. 2011), we selected the model with the lowest mean BIC value 396 

across participants. We then extracted the following parameters related to decision processes 397 

from this model (model 4: DR-TH-Ter Model): (1) drift rate (DR), indicating the rate at 398 

which participants accumulate information for making a perceptual judgment, (2) decision 399 

threshold (TH), indicating the amount of information required to make a judgment, and (3) 400 

non-decision time (Ter), indicating the time for early encoding processes and late motor 401 

response processes. Comparing the model parameters between pre-training and max-training 402 

blocks, we found that drift rate significantly increased after training (t(21)=4.48, p<0.001; 403 
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Figure 1c) and decision threshold significantly decreased after training (t(21)=-3.85, p=0.001; 404 

Figure 1d), whereas no significant changes were observed for the non-decision time due to 405 

training (t(21)=1.08, p=0.293). These results suggest that training improves the rate at which 406 

participants accumulate information and the amount of evidence they require for making a 407 

decision, rather than non-decision related processes. 408 

Figure 1 409 

 410 

Glutamate relates to evidence accumulation for perceptual decision making 411 

Recent work has linked visual cortex glutamatergic excitation and GABAergic inhibition to 412 

perceptual judgments and learning (for a review see Ip and Bridge, 2021). Here, we tested the 413 

role of excitatory (Glu) and inhibitory (GABA) neurotransmitters in perceptual decision 414 

making processes, as identified by diffusion modeling of performance in the orientation 415 

identification task. We measured Glu and GABA+ at rest (i.e., participants had their eyes 416 

open and fixated on a central cross) from voxels placed in (a) the early visual cortex (EV 417 

MRS voxel; Figure 2a) that is known to be involved in orientation discrimination and 418 

learning (Jia et al. 2020; Schoups et al. 2001) and (b) the left dorsolateral prefrontal cortex 419 

(DLPFC MRS voxel; Figure 2a) that is known to be involved in the read-out of sensory 420 

information from visual cortex, transforming input to decision variables (Heekeren et al. 421 

2004) and accumulating the decision variables during perceptual decision making (Heekeren 422 

et al. 2006; Philiastides et al. 2011). Further, previous studies have shown that activity in 423 

DLPFC correlates with drift rate (Heekeren et al. 2006) and disruption of processing in left 424 

DLPFC with brain stimulation impairs performance accuracy, corresponding to decreased 425 

drift rate (Philiastides et al. 2011). To test the link between these neurotransmitters and 426 

learning-dependent changes in decision processes due to training on the orientation 427 

identification task, we related Glu and GABA+ levels  in these regions with change (i.e. max-428 

training block minus pre-training block) in the drift diffusion model parameters that showed 429 
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significant differences due to training (multiple regression with DR and TH as independent 430 

variables). 431 

We found a significant negative relationship between EV Glu and DR change after 432 

training but not TH change (multiple regression: DR: b=-2.13, t(19)=-2.83, r=-0.54, p=0.011; 433 

TH: b=-0.41, t(19)=-0.24, r=-0.05, p=0.815; Figure 2b). The relationship of EV Glu with DR 434 

change was significantly different from the relationship of EV Glu with TH change (Z=-2.05, 435 

p=0.041; EV Glu – DR: r=-0.59; EV Glu – TH: r=0.09; DR – TH: r=-0.36), suggesting that 436 

EV Glu relates to DR rather than TH change. We didn’t observe any significant relationship 437 

between: a) EV GABA+ and DR change nor TH change (multiple regression: DR: b=-0.44, 438 

t(19)=-0.76, r=-0.17, p=0.458; TH: b=-1.83, t(19)=-1.37, r=-0.30, p=0.187; Figure 2c), b) 439 

DLPFC Glu and DR change nor TH change (multiple regression: DR: b=1.04, t(14)=1.17, 440 

r=0.30, p=0.262; TH: b=-4.46, t(14)=-1.10, r=-0.28, p=0.291; Figure 2d), and c) DLPFC 441 

GABA+ and DR change nor TH change (multiple regression: DR: b=-0.02, t(14)=-0.04, r=-442 

0.01, p=0.969; TH: b=-3.17, t(14)=-1.54, r=-0.38, p=0.146; Figure 2e). The relationship 443 

between EV Glu and DR change remained significant when we performed the following 444 

control analyses: a) referenced Glu to NAA rather than water (b=-1.71, t(20)=-3.11, r=-0.57, 445 

p=0.006), b) excluded 4 participants due to poor Gln fit (b=-2.47, t(16)=-3.51, r=-0.66, 446 

p=0.003), and c) controlled for MRS data quality (absolute CRLB: b=-2.58, t(20)=-4.75, r=-447 

0.73, p<0.001; linewidth: b=-1.78, t(20)=-3.00, r=-0.56, p=0.007; SNR: b=-2.27, t(20)=-3.97, 448 

r=-0.66, p=0.001). Further, the relationship of EV Glu with DR change was significantly 449 

different from the relationship of EV GABA+ with DR change (Z=-2.07, p=0.038; EV Glu – 450 

DR: r=-0.59; EV GABA+ – DR: r=-0.09; EV Glu – GABA+: r=0.26), suggesting that EV 451 

Glu rather than GABA+ relate to information accumulation. There was no significant 452 

relationship between EV Glu and DR before training (b=0.94, t(20)=1.01, r=0.22, p=0.324), 453 

suggesting that our results could not be simply due to variability in pre-training performance. 454 

These results indicate a significant contribution of DR change to EV Glu, suggesting that 455 
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faster rates of information accumulation after training relate to lower glutamatergic excitation 456 

in early visual cortex. 457 

Figure 2 458 

 459 

Visual-DLPFC functional connectivity for perceptual decision making 460 

Previous work has shown that functional connectivity at rest predicts individual variability in 461 

a range of tasks (for reviews see Harmelech and Malach, 2013; Vaidya and Gordon, 2013), 462 

including perceptual learning (Baldassarre et al. 2012; Frangou et al. 2019). Further, previous 463 

studies have linked functional connectivity in visual and frontal cortex to perceptual 464 

judgments and learning-dependent plasticity (for reviews see Guerra-Carrillo et al., 2014; 465 

Kelly and Castellanos, 2014). Here, we tested whether functional interactions between early 466 

visual cortex and DLPFC—as measured by rs-fMRI—relate to decision making processes 467 

and neurochemical processing (glutamatergic, GABAergic) when training on an orientation 468 

identification task. 469 

First, we tested whether functional connectivity between EV and DLPFC relates to 470 

drift rate and decision threshold (multiple regression with DR and TH as independent 471 

variables). We measured functional connectivity as the correlation between rs-fMRI time 472 

courses from gray matter voxels within the EV and DLPFC voxels (EV-DLPFC 473 

connectivity). We observed a significant negative relationship between EV-DLPFC 474 

functional connectivity and DR change but not TH change (multiple regression: DR; b=-2.32, 475 

t(15)=-2.94, r=-0.60, p=0.010; TH; b=1.91, t(15)=0.63, r=0.16, p=0.538; Figure 3a). The 476 

relationship of EV-DLPFC functional connectivity with DR change was significantly 477 

different from the relationship of EV-DLPFC functional connectivity with TH change (Z=-478 

2.03, p=0.043; (EV-DLPFC connectivity – DR: r=-0.60; EV-DLPFC connectivity – TH: 479 

r=0.07; DR – TH: r=-0.36), suggesting that EV-DLPFC functional connectivity relates to DR 480 

rather than TH change. There was no significant relationship between EV-DLPFC functional 481 
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connectivity and DR before training (b=0.59, t(16)=0.66, r=0.16, p=0.521), suggesting that 482 

our results could not be simply due to variability in pre-training performance. We did not 483 

observe a significant relationship of functional connectivity between early visual cortex and a 484 

control region (M1) with DR change (b=-1.57, t(16)=-1.64, r=-0.38, p=0.121), nor when 485 

controlling for the relationship with EV-DLPFC connectivity (b=0.41, t(16)=0.31, r=0.08, 486 

p=0.762), suggesting that our results are specific to EV-DLPFC connectivity. Thus, our 487 

results indicate a significant contribution of DR change to EV-DLPFC connectivity, 488 

suggesting that faster rates of information accumulation due to training relate to lower 489 

functional connectivity between early visual and dorsolateral prefrontal cortex. 490 

Figure 3 491 

 492 

Second, we tested whether EV-DLPFC functional connectivity relates to 493 

glutamatergic or GABAergic processing in EV and DLPFC (multiple regression with Glu and 494 

GABA+ as independent variables). We observed a significant positive relationship between 495 

EV-DLPFC connectivity and EV Glu but not EV GABA+ (multiple regression: EV Glu: 496 

b=0.34, t(15)=2.18, r=0.49, p=0.046; EV GABA+: b=0.61, t(15)=1.89, r=0.44, p=0.078; 497 

Figure 3b). The relationship of EV-DLPFC functional connectivity with EV Glu was not 498 

significantly different from that of EV-DLPFC functional connectivity with EV GABA+ 499 

(Z=0.22, p=0.824; (EV-DLPFC connectivity – EV Glu: r=0.53; EV-DLPFC connectivity – 500 

EV GABA+: r=0.48; EV Glu – EV GABA+: r=0.26). We didn’t observe any significant 501 

relationships between EV-DLPFC and DLPFC Glu nor DLPFC GABA+ (multiple 502 

regression: DLPFC Glu: b=-0.19, t(12)=-0.64, r=-0.18, p=0.531; DLPFC GABA+: b=-0.14, 503 

t(12)=-0.22, r=-0.06, p=0.826; Figure 3c). The relationship between EV-DLPFC connectivity 504 

and EV Glu remained significant when we performed the following control analyses: a) 505 

referenced Glu to NAA rather than water (b=0.66, t(16)=2.88, r=0.58, p=0.011), b) excluded 506 

4 participants due to poor Gln fit (b=0.51, t(13)=2.87, r=0.62, p=0.013), and c) controlled for 507 
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MRS data quality (absolute CRLB: b=0.55, t(16)=3.07, r=0.61, p=0.007; linewidth: b=0.42, 508 

t(16)=2.56, r=0.54, p=0.021; SNR: b=0.44, t(16)=2.74, r=0.57, p=0.015). Further, we found 509 

no significant relationship between EV-M1 functional connectivity and EV Glu (b=0.33, 510 

t(16)=1.72, r=0.40, p=0.104), nor when controlling for the relationship with EV-DLPFC 511 

connectivity (b=-0.08, t(16)=-0.33, r=-0.08, p=0.744), suggesting that our results are specific 512 

to EV-DLPFC connectivity. Thus, our results indicate a significant contribution of EV Glu to 513 

EV-DLPFC connectivity, suggesting that lower early visual cortex excitation relates to lower 514 

functional connectivity between early visual and dorsolateral prefrontal cortex to support 515 

faster rates of information accumulation. 516 

 517 

Increasing excitation in the visual cortex impairs learning 518 

To extend beyond correlational approaches, we employed anodal tDCS to perturb cortical 519 

excitability during training on the orientation identification task. Anodal tDCS is an 520 

excitatory stimulation protocol that has been shown to increase cortical excitability in visual 521 

(Antal et al. 2004) and motor cortex (Nitsche and Paulus 2000). We have previously shown 522 

that anodal tDCS results in improved learning in the context of a visual task that requires 523 

enhanced excitability (Frangou et al. 2018). As our main experiment showed that lower 524 

visual cortex excitation relates to faster drift rate after training on the orientation 525 

identification task, we hypothesized that excitatory stimulation would impair learning 526 

compared to sham stimulation.  527 

To test this hypothesis, we trained two groups of participants on the orientation 528 

identification task, one receiving anodal and the other sham stimulation during training. As in 529 

the main experiment, we compared accuracy, DR and TH in the max-training block against 530 

the pre-training block. We found that participants who received anodal stimulation during 531 

training showed lower improvement after training compared to those who received sham 532 

stimulation. In particular, a repeated measures ANOVA on accuracy showed a significant 533 
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Group (Anodal, Sham) x Block (pre-training, max-training) interaction (F(1,30)=4.68, 534 

p=0.039; Figure 4a) and post-hoc comparisons showed significant performance improvement 535 

after training (i.e. increased accuracy) for the Sham (t(13)=3.23, p=0.004) but not the Anodal 536 

group (t(17)=0.95, p=0.356).  537 

Further, a repeated measures ANOVA on DR showed a significant Group (Anodal, 538 

Sham) x Block (pre-training, max-training) interaction (F(1,29)=8.39, p=0.007; Figure 4b). 539 

Post-hoc comparisons showed significant changes in DR after training (i.e. faster drift rate) 540 

for the Sham (t(13)=3.07, p=0.009) but not the Anodal group (t(16)=-0.001, p=0.999), 541 

suggesting that participants in the Anodal group showed slower drift rate after training 542 

compared to those in the Sham group. Finally, a repeated measures ANOVA on TH showed a 543 

significant main effect of Block (F(1,29)=10.59, p=0.003; Figure 4c) but not a significant 544 

Group (Anodal, Sham) x Block (pre-training, max-training) interaction (F(1,29)=0.88, 545 

p=0.356), suggesting that the effect of the anodal stimulation was specific to the rate of 546 

information accumulation. Note that, DR before training was not different between the 547 

Anodal and Sham groups (Anodal vs. Sham: t(29)=0.65, p=0.521) and did not differ between 548 

the stimulation groups and the main study (one-way ANOVA with Group (Anodal, Sham, 549 

no-stimulation): F(2,52)=0.57, p=0.571), suggesting that the tDCS effects we observed after 550 

training were not due to variability across participants before training. We found similar 551 

results in a smaller group of participants (after removing six participants from the Anodal 552 

group who performed the task at a lower contrast level; see Methods); that is, repeated 553 

measures ANOVAs showed a significant Group x Block interaction for DR (F(1,24)=5.20, 554 

p=0.032, post-hoc for Anodal: t(11)=1.09, p=0.301) but not TH (F(1,24)=0.27, p=0.610). 555 

Figure 4 556 

 557 

 558 

Discussion 559 



23 
 

Training is known to improve perceptual decisions. Here, we test the neurochemical and 560 

functional connectivity mechanisms that support improved perceptual decisions due to 561 

training. Using MRS, we test for glutamatergic and GABAergic processing in early visual 562 

and decision-related regions. Using rs-fMRI, we test for functional interactions between these 563 

regions that relate to decision processes. Modelling behavioral performance using a drift 564 

diffusion model, we demonstrate that training results in faster evidence accumulation for 565 

orientation identification. These learning-dependent changes in decision processes relate to 566 

glutamate levels in visual cortex and functional connectivity between visual and dorsolateral 567 

prefrontal cortex. Our results suggest that efficient sensory processing and functional 568 

interactions between sensory and decision-related regions support improved decision making 569 

through training. Further, perturbing cortical excitability using tDCS disrupts evidence 570 

accumulation during training, providing a direct link between visual cortex excitation and 571 

perceptual decisions. Our findings advance our understanding of the role of learning in 572 

decision making in the following respects.  573 

First, we show that training improves behavioral performance on a visual orientation 574 

identification task by increasing the information accumulation rate and reducing the 575 

information needed to make a judgment. This is consistent with previous studies showing that 576 

training facilitates information accumulation for perceptual decision making (Dutilh et al. 577 

2009; Liu and Watanabe 2012; Petrov et al. 2011; Zhang and Rowe 2014). Further, our 578 

results using single-session training are consistent with previous work showing learning-579 

dependent changes early in the training (Frangou et al. 2018, 2019; Karni and Sagi 1993). 580 

Second, we demonstrate that glutamatergic excitation in the early visual cortex relates 581 

to early learning-dependent changes in sensory information processing during the decision 582 

processes (Jia et al. 2018; Ratcliff and McKoon 2008). Our results show that lower resting 583 

levels of early visual cortex glutamate, rather than GABA+, relate to increased drift rate after 584 

training, suggesting that lower excitatory processing in visual cortex relates to faster 585 
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information accumulation after training. This relationship is shown to be specific to 586 

glutamatergic rather than GABAergic processing in visual cortex. While it remains debated 587 

whether MRS measures synaptic vs. extra-synaptic neurotransmitter concentration (Stagg 588 

2014), some previous studies have linked glutamatergic excitation to visual discriminations 589 

(e.g. (Ip et al. 2019; Lally et al. 2014; Schallmo et al. 2019), while others GABAergic 590 

inhibition to performance in visual tasks (Edden et al. 2009; Frangou et al. 2018, 2019; 591 

Karlaftis et al. 2021; Rideaux and Welchman 2018; Shibata et al. 2017). Our results provide 592 

evidence that cortical glutamatergic excitation, known to relate to gain control mechanisms 593 

(Katzner et al. 2011), is involved in information accumulation during decision making. 594 

Previous studies have implicated frontoparietal networks in information accumulation 595 

during visual tasks (FitzGerald et al. 2015; Mazurek et al. 2003; Pisauro et al. 2017); yet, 596 

recent evidence suggests that stimulus (rather than value) information accumulation engages 597 

visual areas (Krueger et al. 2017). Our results highlight a key role for early visual cortex in 598 

decision making processes, showing that glutamate in early visual cortex (as measured by 599 

MRS at rest) relates to increased accumulation of information after training. This relationship 600 

was not significant for drift rate before training, suggesting a link between excitatory 601 

processing in visual cortex and improved perceptual decisions after training. It is possible that 602 

optimizing information accumulation with training relates to more efficient input processing 603 

in the visual cortex that involves reduced excitatory processing. This interpretation is 604 

consistent with previous studies showing that lower fMRI BOLD in decision-related areas 605 

relates to shorter duration of information accumulation (Pisauro et al. 2017).  606 

Further, it is possible, that in the presence of external noise, training reduces activity 607 

in visual cortex, as reflected by lower levels of glutamatergic excitability and reduced 608 

learning under excitatory stimulation. These reduced levels of excitation may correspond to 609 

exclusion of external noise (Lu et al. 2011), resulting in improved behavioral performance at 610 

early stages of learning (i.e. single training protocol employed in our study). The lack of a 611 
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significant relationship between DLPFC MRS measures and learning may suggest that 612 

learning— at early stages of training (i.e., single training session)— alters stimulus 613 

processing (i.e., sensory processes) in early visual cortex, rather than information 614 

accumulation processes in DLPFC. These results are consistent with the reverse hierarchy 615 

theory of perceptual learning, suggesting that training on difficult tasks (as in the case of the 616 

task employed in our study) engages early visual cortex (Ahissar and Hochstein 2004). 617 

Extending beyond correlational approaches, our tDCS intervention provides evidence 618 

for a direct link between excitatory processing in visual cortex and perceptual decisions, 619 

showing that increasing levels of excitation in the visual cortex through anodal tDCS disrupts 620 

information accumulation during training. At first glance, our results appear to be in contrast 621 

to previous studies showing that anodal tDCS facilitates performance in visual perception and 622 

memory tasks that involve excitatory processing (Barron et al. 2016; Frangou et al. 2018). 623 

Yet, the disruption of learning we observed due to anodal tDCS is in agreement with the 624 

negative relationship between visual cortex excitation and rate of information accumulation 625 

in the context of our orientation identification task. Interestingly, previous work using 626 

transcranial random noise stimulation (tRNS) during training on a fine orientation 627 

discrimination task has shown that tRNS improves performance compared to anodal or sham 628 

tDCS (Fertonani et al. 2011; Pirulli et al. 2013). While its mechanism of action remains 629 

debated, it is proposed that tRNS boosts signal detection by introducing stochastic resonance 630 

and enhancing processing of subthreshold stimuli (van der Groen and Wenderoth 2016). As 631 

low-contrast signal detection (van der Groen and Wenderoth 2016) and information 632 

accumulation in a perceptual decision making task (van der Groen et al. 2018) have been 633 

shown to benefit from tRNS, it would be interesting to test in future studies whether tRNS 634 

stimulation improves orientation identification performance. 635 

Third, we demonstrate that functional connectivity between visual and decision-636 

related regions relates to learning-dependent changes in decision making processes and 637 
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glutamatergic processing in visual cortex. In particular, our results show that lower visual-638 

frontal connectivity relates to faster information accumulation due to training and lower 639 

excitatory input processing, as indicated by lower levels of glutamate in visual cortex. It is 640 

possible that faster information accumulation due to training relates to more efficient local 641 

processing in visual cortex and interactions between visual and decision-related regions. This 642 

is consistent with previous work implicating local gain control mechanisms in visual cortex 643 

and reduced inter-areal connectivity when learning to identify targets in noise (Frangou et al. 644 

2019). Further, our findings highlight the role of neurochemical mechanisms in network 645 

connectivity, consistent with previous studies showing a link between glutamate levels and 646 

functional connectivity at rest within and between brain (Duncan et al. 2013; Kapogiannis et 647 

al. 2013). 648 

In sum, our findings provide novel insights in understanding the neurochemical 649 

mechanisms that underlie perceptual decision making. Combining multimodal brain imaging 650 

(MRS, rs-fMRI) with brain stimulation and computational modeling reveals a key role of 651 

glutamatergic processing for perceptual decisions. Our findings demonstrate that efficient 652 

local processing related to glutamatergic excitation and inter-areal connectivity supports 653 

improved perceptual decisions through training. In this work, we focused on measurements of 654 

neurotransmitters and connectivity at rest. Future work combining tDCS with multi-modal 655 

brain imaging during training could investigate functional changes in neurotransmission to 656 

uncover its role in regulating network activity and connectivity for learning and brain 657 

plasticity.  658 
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Figure Captions 933 

Figure 1. Behavioral task and performance: (a) Orientation identification task. Participants 934 

judged the orientation of a Gabor patch presented (45° or 135°) among Gaussian noise 935 

patterns. (b) Mean performance across participants for the pretest and training blocks. Mean 936 

drift rate (c) and threshold (d) derived from diffusion modeling (DR-TH-Ter Model) across 937 

participants for the pretest and training blocks. Error bars indicate standard error of the mean 938 

across participants. We used Bayesian information criterion (BIC) for five constructed 939 

models and selected model DR-TH-Ter with the lower BIC value (i.e. null model: 3246.22, 940 

DR model: 3267.02, DR-TH model: 3234.13, DR-TH-Ter model: 3228.73, full model: 941 

3308.36). 942 

 943 

Figure 2. Relationship of MRS glutamate and GABA+ to behavior: (a) MRS voxels and 944 

spectra in the early visual cortex (EV) and DLPFC. We illustrate a group MRS mask 945 

(sagittal, axial view) that covers a cortical area that is common in at least 50% of the 946 

participants’ MRS voxels (red: EV, yellow: DLPFC). Sample spectra from the MRS voxels 947 

show the LCModel fit, residual and respective fits for GABA+, glutamate, glutamine, 948 

glutathione and NAA. (b) Multiple regression of EV Glu with behavior: significant negative 949 

linear relationship with DR but not TH change (max-training block minus pre-training block). 950 

(c) No significant linear relationship of EV GABA+ with behavior. (d) No significant linear 951 

relationship of DLPFC Glu with behavior. (e) No significant linear relationship of DLPFC 952 

GABA+ with behavior. Significant results are indicated by closed symbols; non-significant 953 

results by open symbols. 954 

 955 

Figure 3. Relationship of EV-DLPFC functional connectivity to behavior and 956 

glutamate: EV-DLPFC functional connectivity (Fisher’s z), as measured by rs-fMRI, shows 957 

(a) a significant negative linear relationship with DR but not TH change (multiple 958 



39 
 

regression), (b) a significant positive linear relationship with EV Glu but not EV GABA+, 959 

and (c) no significant linear relationship with DLPFC Glu or GABA+. Significant results are 960 

indicated by closed symbols; non-significant results by open symbols. 961 

 962 

Figure 4. tDCS intervention: Mean (a) Accuracy, (b) drift rate and (c) decision threshold 963 

across participants in the Anodal and Sham groups for the pretest and max-training block. 964 

Error bars indicate standard error of the mean across participants. Open circles indicate 965 

individual participant data. 966 

 967 
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