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ABSTRACT 

In plants, anisotropic cell expansion depends on cortical microtubules that serve as 

tracks along which macromolecules and vesicles are transported by the motor kinesins 

of unknown identities.  We used cotton (Gossypium hirsutum) fibers that underwent 

robust elongation to discover kinesins that were involved in cell elongation and found 

GhKinesin-4A expressed abundantly.  The motor was detected by immunofluorescence 

on vesicle-like structures that were associated with cortical microtubules.  In 

Arabidopsis thaliana, the orthologous motor At KINESIN-4A/FRA1, previously 

implicated in cellulose deposition during secondary growth in fiber cells, was examined 

by live-cell imaging in cells expressing a fluorescently tagged functional protein.  The 

motor decorated vesicle-like particles that exhibit linear movement along cortical 

microtubules at velocities averaged at 0.89 µm/min, which was significantly different 

from those linked to cellulose biosynthesis.  We also discovered that At KINESIN-

4A/FRA1 and the related At Kinesin-4C play redundant roles in cell wall mechanics, cell 

elongation, and the axial growth of various vegetative and reproductive organs as the 

loss of At Kinesin-4C greatly enhanced the defects caused by a null mutation at the 

Kinesin-4A/FRA1 locus.  The double mutant displayed a lack of cell wall softening at 

normal stages of rapid cell elongation.  Furthermore, enhanced deposition of arabinose-
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containing carbohydrate was detected in the kinesin-4 mutants.  Our findings 

established a connection between the Kinesin-4-based transport of cargoes containing 

non-cellulosic components along cortical microtubules and cell wall mechanics and cell 

elongation in flowering plants.   
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INTRODUCTION 

Plant growth and form are in large the collective result of anisotropic expansion of cells 

produced earlier by the meristem.  Anisotropic growth of plant cells is governed by the 

cortical microtubules (MTs) that are oriented perpendicularly to the cell expansion axis 

(Cyr and Palevitz, 1995).  Ordered deposition of cellulose microfibrils outside the 

plasma membrane according to the MT orientation establishes the expansion restriction 

in that particular dimension (Lloyd and Chan, 2008; Paredez et al., 2006b).  The 

dynamic cortical MT network provides tracks for the traffic of the cellulose synthase 

(CESA) enzyme and MT-associated CESA compartments (MASCs) (Crowell et al., 

2010).  In fact, CESA is linked to cortical MTs via the CSI1 protein that directly interacts 

with MTs(Li et al., 2012).  However, it is unclear how MASCs interact with MTs and very 

little if any is known about the exocytotic process dedicated to the delivery of CESA 

complexes to the plasma membrane.   

 

It is known that perturbations of cellulose biosynthesis by partial loss-of-function 

mutations often lead to inhibited cell elongation and consequently dwarfism of whole 

plants (Somerville, 2006).  In addition, alteration of the synthesis and deposition of non-

cellulosic carbohydrate components also can cause dwarfed growth phenotypes 

(Atmodjo et al., 2013; Scheller and Ulvskov, 2010).  Unlike cellulose that is synthesized 

by plasma membrane-bound CESA complexes, carbohydrates like hemicellulose and 

pectin are made in the Golgi apparatus, packaged in vesicles at trans-Golgi network 

(TGN), and delivered to the plasma membrane via exocytosis before being deposited in 
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the nascent cell wall (Worden et al., 2012).  Unfortunately, very little is known about 

molecular mechanisms that regulate the vesicular transport of these carbohydrates 

toward the plasma membrane.  In particular, it is unclear whether they are transported 

along cortical MTs by MT-dependent motor proteins. 

 

Unicellular cotton fibers (seed trichomes) grow directionally on the ovule epidermis 

following pollination.  Remarkably, these cells assume diffuse cell expansion for over 

ten days prior to the initiation of secondary cell wall deposition (Tiwari and Wilkins, 

1995).  Again, guiding the ordered deposition of cell wall materials is the dynamic MT 

network, which is organized perpendicularly to the fiber growth axis during the 

elongation phase (Seagull, 1992).  We anticipated that MT-based motor kinesins 

actively participate in fiber growth and discovered a number of genes encoding kinesins 

that are abundantly expressed in developing cotton fibers (Lu et al., 2005; Preuss et al., 

2003; Preuss et al., 2004).  The functions of the motors encoded by orthologous genes 

can be dissected in the model plant Arabidopsis thaliana by examining phenotypes in 

leaf trichomes, analogous to cotton fibers, exhibited by the corresponding mutants.  

Interestingly, defects in trichome morphogenesis often are linked to null mutations of 

such kinesins (Lu et al., 2005; Oppenheimer et al., 1997; Preuss et al., 2003).  Further 

investigations have recovered over a dozen kinesins abundantly expressed during fiber 

cell elongation in the cotton Gossypium hirsutum.  Among them, we report here a 

member of the Kinesin-4 subfamily named Gh KINESIN-4A which shares the highest 

homology to the FRA1 (fragile fiber 1) protein previously reported in A. thaliana (Zhong 

et al., 2002).  FRA1, or At KINESIN-4A, was implied in the deposition and orientation of 
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cellulose microfibrils during secondary cell wall synthesis in fiber cells in A. thaliana 

(Zhou et al., 2007).  However, the fra1 phenotype in cell elongation indicates that the 

motor must function during primary cell growth as well.  Because the fra1 mutation does 

not alter MT organization, it is rather obscure whether At KINESIN-4A/FRA1 acts as a 

motor for transporting CESA or MASCs or whether the phenotype of misoriented 

cellulose microfibrils is caused indirectly by defects in non-CESA trafficking events 

along cortical MTs.   

 

Mutations in the orthologous Kinesin-4A/BC12 gene in rice also inhibit cell elongation 

and cause dwarfed growth phenotypes (Li et al., 2011; Zhang et al., 2010), similarly to 

what is demonstrated by the fra1 mutation in A. thaliana.  However, the rice motor was 

first implicated in cell cycle progression as the bc12 mutant had reduced number of 

parenchyma cells in the internode than that in the wild-type (Zhang et al., 2010).  

Unexpectedly, the same motor was proposed to bind to the promoter of a gene involved 

in gibberellic acid (GA) biosynthesis, thus hypothesized to function inside the nucleus 

(Li et al., 2011).  These reports are contradictory to the anticipated typical function of 

these kinesins as motors for delivering cargoes along MTs in the cytosol.  Conventional 

kinesins carry cargoes and walk along the MT track by using the energy released from 

ATP hydrolysis after their ATPase activity is activated by MT-binding.  Therefore, it is 

unclear how these kinesins would function inside the nucleus where MTs are absent.  

Unfortunately, the localization and intracellular motility of the rice or any other plant 

Kinesin-4 motors have not been examined in live cells so that definite conclusions are 

yet to be drawn.  
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Members of the Kinesin-4 subfamily are MT plus end-directed motors that are found in 

multicellular fungi like Aspergillus as well as animals and plants, and in animal cells their 

functions are mostly linked to mitosis and cytokinesis (Miki et al., 2005; Wickstead and 

Gull, 2006).  Reported Kinesin-4 members typically contain a chromatin-binding site 

outside their motor domains, and drive chromosome movement along spindle MTs 

toward their plus ends near the metaphase plate during prometaphase and bind to anti-

parallel MTs in the spindle midzone for the establishment of MT-overlapping zone from 

late anaphase to cytokinesis (Mazumdar and Misteli, 2005).  But both the fra1 mutant 

and FRA1/AtKinesin-4A over-expression plants do not exhibit noticeable phenotypes in 

mitosis (Zhong et al., 2002; Zhou et al., 2007).  Furthermore, outside their motor 

domains plant Kinesin-4 motors share limited sequence homology with their animal 

counterparts (Lee and Liu, 2004).  Preliminary localization studies showed that At 

KINESIN-4A/FRA1 primarily appears at the cell cortex in fixed interphase cells (Zhong 

et al., 2002).  Therefore, unlike its animal counterparts, At KINESIN-4A/FRA1 perhaps 

does not function as a mitotic motor in A. thaliana.   

 

In order to determine how the function of Gh KINESIN-4A and At KINESIN-4A/FRA1 is 

linked to cell elongation, we designed experiments aimed at detecting their intracellular 

localization and motility in live cells.  Expressed in a functional fusion protein of At 

KINESIN-4A/FRA1 and fluorescent proteins under the native promoter, the motor 

exhibited motile patterns drastically different from that of the cellulose synthase CESA 



8 

 

or MT polymerization.  Our results led us to conclude that At KINESIN-4A/FRA1 

functions as a vesicular motor that tracks along cortical MTs for regulating the delivery 

of non-cellulosic components in the primary cell wall during robust cell expansion.  

Moreover, we have discovered that among three closely related Kinesin-4 members in 

A. thaliana, At KINESIN-4A/FRA1 and At KINESIN-4C, but not At KINESIN-4B, 

demonstrated functional redundancy in cell elongation and axial growth across different 

plant organs.  

 

RESULTS 

Comparative Analysis of the Plant Kinesin-4 Motors 

The 1033-amino acid cotton Gh KINESIN-4A protein was identified based on a full 

length cDNA clone isolated from a cDNA library of young cotton fibers (GenBank 

accession number, KJ701508). Like At KINESIN-4A/FRA1, it contains the motor domain 

toward the N-terminus and coiled-coil domains occupying large portions outside the 

motor domain (Figure 1).  Such a feature resembles that of the mouse Kinesin-4 motor 

Mm KIF4.  The two plant kinesins share high degrees of homology across the 

polypeptides (Figure 1).  When the two plant kinesins and Mm KIF4 were compared, the 

homology outside the motor domain dropped significantly (Figure 1).   

 

In the A. thaliana genome, there are two more genes that encode Kinesin-4 motors, 

namely At KINESIN-4B (At3g50240) and At KINESIN-4C (At5g60930).  At KINESIN-4A 
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is more closely related to At KINESIN-4B than to At KINESIN-4C (Richardson et al., 

2006).  In the model monocot Oryza sativa (rice), two Kinesin-4 genes can be found 

(Guo et al., 2009), one resembling At KINESIN-4A/FRA1 and the other At KINESIN-4C 

in a phylogenetic analysis using the sequences of the motor domains of Kinesin-4 

motors (Supplemental Figure 1A).  When sequences outside the motor domains of the 

three Kinesin-4 motors in A. thaliana were compared, in general lower homology was 

found than the motor domains (Supplemental Figure 1B).  Again, the homology of the 

non-motor sequences between At KINESIN-4A and At KINESIN-4B is higher than that 

between At KINESIN-4A and At KINESIN-4C.  

 

Gh KINESIN-4A Localizes to Vesicle-like Structures 

Because the expression of Gh KINESIN-4A was detected at early stages of cotton fiber 

elongation, we hypothesized that the motor protein could be detected in fiber cells.  In 

order to do so, we prepared polyclonal antibodies using the polypeptide of amino acids 

476-702 of Gh KINESIN-4A as the antigen.  Affinity purified antibodies detected a major 

band at ~116-kDa, which together with degradation products were absent when the 

antibodies were depleted by the antigen, on SDS-PAGE (Figure 2A).  The antibodies 

were then used for localization of the Gh KINESIN-4A protein in cotton fibers by 

immunofluorescence.  The resulting signals decorated particles that are associated with 

cortical MTs (Figure 2B, C).  This result suggests that Gh KINESIN-4A may be 

associated with vesicle-like structures at the cell cortex. 
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Intracellular Motility of At Kinesin-4A 

To further elucidate the function of Kinesin-4A in plants, we employed the genetically 

tractable system of A. thaliana in which genetic transformation and live-cell imaging can 

be done routinely.  We tested a number of constructs by transformation into a mutant 

with a T-DNA insertion at the Kinesin-4A locus (kinesin-4a) which, due to the loss of its 

transcript (data not shown), exhibited growth phenotypes resembling those of fra1 

(Zhong et al., 2002).  Ultimately we selected a construct expressing the VisGreen-At 

KINESIN-4A-GFP fusion protein under the native At KINESIN-4A/FRA1 promoter based 

on its functionality and visibility by fluorescence microscopy.  The fusion protein 

completely suppressed/complemented the dwarf growth phenotype caused by the 

kinesin-4a mutation (Figure 3A).  Multiple transformants exhibited robust growth 

indistinguishable from the wild-type plant and were subsequently used for imaging the 

fusion protein in live-cells under a confocal microscope.  Based on the functional 

complementation, we trusted that the motility shown by this fusion protein would 

represent that of the native motor in cells of A. thaliana.  

 

Among cells that exhibited serious elongation defects in the kinesin-4a mutant, the 

epidermal cells at the abaxial surface of the central vein in developing leaves were 

particularly obvious, concomitant with the severe defect in leaf blade elongation.  It 

suggested the function of the motor there, therefore, we chose to examine these cells.  

The VisGreen-At KINESIN-4A-GFP signal in cells of the transgenic lines was detected 

in the cell cortex as particles (Figure 4A-C, Supplemental Movie 1).  These particles 
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often moved in linear tracks that could be revealed by time-averaged/projected image 

(Figure 4B).  Although not all particles decorated by At KINESIN-4A were motile, a 

significant portion of them demonstrated persistent movement as demonstrated by the 

Kymograph (Figure 4D).   

 

Because the fluorescent signal of VisGreen-At KINESIN-4A-GFP frequently followed 

linear tracks, we tested whether the motor followed the tracks of cortical MTs.  We 

adopted the mCherry-TUB6 marker (Nakamura et al., 2010)  for observing cortical MTs 

in these cells.  Plants expressing both VisGreen-At KINESIN-4A-GFP and mCherry-

TUB6 were selected after crosses.  Indeed, the At KINESIN-4A particles were detected 

on the mCherry-TUB6-labeled MT tracks (Figure 5A, B).  When single particles were 

detected to be associated with MTs, it was found that they often moved along the MT 

track, and disappeared from the MT focal plane after continuously moving along linear 

tracks (Figure 5B).  This type of processive movements can be clearly demonstrated by 

Kymographs (Figure 5C).   

 

We quantified the distributions of the velocity frequency and run length demonstrated by 

the VisGreen-At KINESIN-4A-GFP movement along cortical MTs.  The distributions 

indicated, upon Gaussian fits, that the motor moved at an average velocity of 0.89 

µm/min with an average run length of 1.16 µm (n=372) (Figure 6A).  Typically, the 

velocities were within 2 µm/min, suggesting that FRA1 was not a very fast motor in vivo, 

when compared to conventional kinesin in animal cells that move at velocities of a few 
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micrometers per minute.  The run lengths distributed primarily within 2 µm, suggesting 

that the motor mostly walked long MTs for shorter than 2 min before it fell from the track.   

 

Because it was proposed that At KINESIN-4A/FRA1 might be involved in the motility of 

CESA enzyme complex, we then examined GFP-CESA3 in similar cells.  It was found 

that GFP-CESA3 demonstrated motilities of an average rate of 0.19 µm/min (n=214) 

(Figure 6C), similar to what has been reported in hypocotyl cells previously (Crowell et 

al., 2009; Paredez et al., 2006a).  We further investigated whether the motility of the 

cellulose synthase complex (CSC) would be affected by the loss of Kinesin-4A.  To do 

so, the YFP-CESA6 fusion protein was expressed in the kinesin-4a mutation 

background.  The GFP-CESA6 motility still established linear tracks in the mutant, 

similarly to what was observed in the control cells (Supplemental Figure 2).  We 

determined that the YFP-CESA6 particles traveled bi-directionally at constant velocities 

and the velocity distribution for CESA particles was averaged at 213 ± 45 nm min-1 in 

the control cells and 196 ± 90 nm min-1 in kinesin-4a mutant cells. 

 

We also tested whether At KINESIN-4A/FRA1 was associated with the CESA-

containing SmaCC or MASC structures.  When SmaCCs/MASCs, marked by the CESA-

interacting protein CSI1 fused with RFP (Li et al., 2012), were detected in cells 

expressing GFP-KINESIN-4A, the two signals rarely co-localized as 1 out of 66 GFP-

KINESIN-4A puncta overlapped with those of RFP-CSI1 (Supplemental Figure 3A).  

Moreover, the dynamics of GFP-Kinesin-4A was different from that of RFP-CSI1 as 
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GFP-KINESIN-4A moved much faster and was short-lived (< 5s) (Supplemental Figure 

3B).  Thus it is unlikely that At KINESIN-4A/FRA1 is responsible for the motility of the 

CESA enzyme complex or vesicular structures containing CESA because of the 

discrepancy of localization patterns and velocities.  Notably, all these velocities were 

significantly slower than that of MT polymerization reported by the EB1b-GFP marker at 

4.4 µm/min (n=213) (Figure 6D).  Thus we concluded that At KINESIN-4A/FRA1 

functions neither in MT polymerization nor in CESA motility.  

 

Retarded Axial Growth and Seed Production in kinesin-4 Mutants  

We hypothesized that the three Kinesin-4 members functioned redundantly for cell 

elongation in A. thaliana.  In order to test this hypothesis, we first isolated the kinesin-4b 

and kinesin-4c single mutants carrying T-DNA insertions at the corresponding loci.  

Unlike the fra1/kinesin-4a mutant, these two mutants produced plants indistinguishable 

from the wild-type control (Supplemental Figure 4).  This result suggested that Kinesin-

4A plays the primary role if the three motors were functionally redundant.  We then 

generated kinesin-4a; kinesin-4b and kinesin-4a; kinesin-4c double mutants.  Because 

KINESIN-4B shares higher degree of sequence homology to KINESIN-4A than 

KINESIN-4C, we expected that the kinesin-4b would enhance the growth defects 

caused by kinesin-4a.  But the kinesin-4a; kinesin-4b double mutant resembled the 

kinesin-4a single mutant (Figure 7A-D), further suggesting that At KINESIN-4B does not 

play a significant role in axial growth in A. thaliana.  The kinesin-4a; kinesin-4c double 
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mutant, compared to the kinesin-4a single mutant, however, exhibited a much higher 

degree of growth retardation across the entire plant (Figure 7A-D).   

 

One of the most striking phenotypes exhibited by the kinesin-4a; kinesin-4c double 

mutant was the diameter of the seedling rosette prior to inflorescence emergence.  

While the wild-type leaves expanded rapidly, the double mutant produced significantly 

smaller seedling rosettes (Figure 7A).  The axial growth of leaf blades was severely 

retarded in the double mutant (Figure 7B).     

 

Because we initially detected this motor in rapidly elongating cotton fibers, we wanted to 

examine whether trichome growth was affected in the mutant.  Both the kinesin-4a 

single and kinesin-4a; kinesin-4c double mutants produced trichomes most with three 

prongs as seen in the wild-type leaf.  This result is different from what has been 

reported for the two other kinesin motors that we identified earlier in cotton fibers, KCBP 

and KINESIN-13A as the null mutations of the orthologous genes resulted in reduced or 

enhanced trichome branching in A. thaliana, respectively (Lu et al., 2005; Oppenheimer 

et al., 1997; Preuss et al., 2003).  However, we found that the stalk of trichomes was 

significantly shorter in the kinesin-4a mutant than that in the wild-type control and the 

kinesin-4c mutation enhanced this short stalk phenotype (Supplemental Figure 5).   
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Furthermore, we found that the growth of inflorescence stems was severely affected by 

the loss of KINESIN-4A, and again the kinesin-4c mutation greatly enhanced such 

phenotypes of dwarfed inflorescence stems (Figure 7D).  The organ elongation 

phenotype was further manifested during silique development, both in terms of the 

length of siliques and seeds produced per silique (Figure 7E, F).  The drastic shortening 

of the siliques produced by the kinesin-4a; kinesin-4c double mutant was concomitant 

with the reduction of seeds produced in these siliques (Figure 7F).   

 

The kinesin-4a; kinesin-4c mutant lacks cell wall elasticity during cell expansion 

The localization of KINESIN-4A to cortical MT arrays (Figure 5) and decreased axial 

growth exhibited by kinesin-4a; kinesin-4c double mutants (Figure 7) led us to 

hypothesize that cell wall mechanics might be altered in the double mutants.  To 

examine this possibility we used Atomic Force Microscopy (AFM) to probe the rigidity of 

abaxial epidermal cells overlaying the midrib in young leaves (ME cells); these cells 

showed marked elongation defects in the mutant and were accessible to the method.  In 

2 week old WT plants, ME cells exhibited an increase in rigidity correlated with age 

(Figure 8A); the oldest leaf was most rigid while the youngest two leaves were far less 

rigid along cell walls perpendicular to the surface.  This trend was not observed in the 

kinesin-4a; kinesin-4c double mutant ME cells (Figure 8A). ME cells from the kinesin-4a; 

kinesin-4c plants exhibited more rigid perpendicular cell walls in the youngest leaves 

when compared to WT; the rigidity in double mutant ME cells was almost on par with 

that of older leaves of WT or kinesin-4a; kinesin-4c double mutants.  It is interesting to 
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note that the oldest leaves (Leaf 1) did not show any difference in rigidity between WT 

and the double mutant.  Similar differences in rigidity were observed when all cell wall 

data was considered from AFM scans (Figure 8B); these data are noisier due to cell 

length differences and surface geometry (see Materials and Methods). 

 

We reasoned whether the difference in cell wall mechanics between the mutant and 

control cells was caused by the difference in the carbohydrate composition in the cell 

wall like cellulose.  When the total sugar composition was analyzed, it was found that 

glucose and most other notable sugar forms did not show obvious difference between 

the control wild-type sample and kinesin-4a single or kinesin-4a; kinesin-4c double 

mutants (Table 1).  However the arabinose composition was consistently elevated from 

~18 mg•g-1 in the control to ~28 mg•g-1 in the mutants (Table 1).  This result further 

indicated that the mutations did not alter the amount of cellulose deposited in the cell 

wall, but did change non-cellulosic carbohydrates like pectin.  

 

DISCUSSION 

In this report, we revealed the intracellular localization and motility of the Kinesin-4A 

motor in both live-cells in A. thaliana and in fixed cotton fibers.  Our data suggest that 

this kinesin motor most likely functions in vesicular transport for non-cellulosic materials 

during rapid cell elongation.  The data also suggest that transport and deposition of non-

cellulosic materials during cell elongation are required for robust cell growth.  

Furthermore, we found that At KINESIN-4A/FRA1 and At Kinesin-4C motors function 
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redundantly to support anisotropic cell expansion and axial growth of organs across the 

entire plant in A. thaliana. 

 

Diversified Functions of Kinesin-4 Members 

Although the founding member of Kinesin-4, the mouse KIF4 was initially identified as 

an organelle motor, later studies have drawn our attentions to the functions of this class 

motors on mitosis (Sekine et al., 1994; Vanneste et al., 2011).  Animal Kinesin-4 motors 

contain chromatin-targeting domains besides having a nuclear localization signal 

(Vanneste et al., 2011).  Such a feature is critical for the motor’s function in 

chromosome congression during prometaphase in order to align them to the metaphase 

plate.   

 

Besides its function on chromatin, Kinesin-4 motors of animal origins also demonstrate 

functions on interpolar MTs after anaphase by decorating the MT-overlapping zone 

(Kurasawa et al., 2004; Zhu and Jiang, 2005).  The mouse KIF4 interacts with the MT-

cross linker PRC1 (Protein Regulator of Cytokinesis 1) in the MAP65/Ase1 family 

(Kurasawa et al., 2004).  Together, the mouse PRC1 and Kinesin-4 function in 

establishing a MT-overlapping zone near the MT plus ends and play a critical role in 

cytokinesis (Bieling et al., 2010b; Subramanian et al., 2013).  At KINESIN-4A was 

detected along cortical MTs in interphase cells but not on chromosomes or mitotic MT 

arrays during mitosis (data not shown).  Thus, we conclude that At KINESIN-4A unlikely 

bears mitotic functions in A. thaliana. 
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It is noteworthy that the KIF4 kinesin was also demonstrated in the anterograde 

transport of vesicles in axons (Peretti et al., 2000).  Hence, it becomes evident that 

motors in the Kinesin-4 subfamily have diversified functions, even within a single 

species.   

 

Kinesin-4 Motility in vitro and in vivo 

The velocity of Kinesin-4 motors has been extensively tested in vitro.  The founding 

member of the Kinesin-4 subfamily, KIF4 demonstrates an in vitro velocity at ~0.034 

µm/sec or 2.04 µm/min toward MT plus ends (Sekine et al., 1994).  When a fusion 

protein containing the motor and coiled-coil domains of the At KINESIN-4A/FRA1 

(FRA1(707)-GFP) was assayed in vitro, it exhibited a higher velocity of 0.4 µm/sec or 24 

µm/min toward MT plus ends (Zhu and Dixit, 2011).  The motors in the subfamily are 

assumed to bear similar structural features that are supported by the high degree of 

sequence homology.  These two conclusions were drawn based on different 

approaches that may have contributed to the discrepancies on their motilities when 

assayed in vitro.  In fact, the frog Kinesin-4 Xklp1 exhibited drastically faster (~14X) 

velocity in vitro than under the semi in vivo conditions when egg extract was used 

(Bieling et al., 2010a). Such discrepancies between in vitro and in vivo assays can be 

found for other kinesins as well (Vanneste et al., 2011).  When the motor was reported 

by a functional full-length fusion protein and assayed in vivo, the outcome would 

comfortably reflect the native scenario.   
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There is another factor that might have contributed to the disagreement of in vitro and in 

vivo results.  Autoinhibitory mechanisms are often associated with kinesin motors by 

having the motor activity inhibited by direct motor-to-tail interactions within the 

polypeptides (Verhey and Hammond, 2009).  In fact, the mammalian Kinesin-4 member 

Kif12A motor exhibits such an intramolecular autoinhibition mechanism (Cheng et al., 

2014).  The self-inhibited motors can be activated through cargo binding or 

phosphorylation in the tail domains, for example (Verhey and Hammond, 2009).  It has 

been demonstrated that the autoinhibition may be attenuated by compromised 

intramolecular interaction (Cheng et al., 2014).  When the truncated version FRA1(707)-

GFP was assayed in vitro (Zhu and Dixit, 2011), it likely was in an activated state 

because of lacking the tail domain.  This nature might have contributed to the high 

velocity of the truncated motor and the narrow distribution (homogeneity) of the 

velocities in vitro.  A different scenario is expected when the motor is loaded with its 

cargo.  Under working conditions in vivo, At KINESIN-4A/FRA1 would be present in 

both inactive as well as partially and fully active forms, depending on their status of 

cargo binding.  In addition, cytosolic viscosity might have also slowed down of the motor 

under working conditions.  Consequently, they would display a relatively wide range of 

velocities in addition to some being immobile.  

 

Collectively, we conclude that At KINESIN-4A/FRA1 is rather a slow motor when 

compared to the conventional kinesin.  However, it unlikely serves as a motor for 



20 

 

transporting CESA-rich vesicles described as small CESA compartments or 

microtubule-associated cellulose synthase compartment which are tethered on 

depolymerizing MTs (Gutierrez et al., 2009), because the At Kinesin-4A/FRA1velocity is 

fast and not steady and their trajectory is non-linear.  In fact, it has been concluded that 

the slow movement of CESA enzymes on cortical MTs is unlikely driven by kinesins 

(Paredez et al., 2006a).  In contrast, motile At KINESIN-4A/FRA1 motors mostly run at a 

steady-rate along a linear trajectory as revealed by Kymograph (See Figure 5).  Thus 

we conclude that At KINESIN-4A/FRA1 exhibits a novel type of motility along cortical 

MTs in actively elongating plant cells.   

 

It is intriguing what the cargo(s) of the plant KINESIN-4A motor are.  After ruling out 

CESA or its related compartments, we speculate that it may be involved in delivering 

membranous compartments containing non-cellulosic carbohydrate components for cell 

wall synthesis.   

 

Plant Kinesin-4 and Primary Cell Growth/Elongation  

The previous in vivo analysis of the fra1 mutant has indicated that At KINESIN-4A/FRA1 

is involved in the cellulose deposition during secondary cell wall thickening although the 

mutant shows normal cellulose contents in the cell wall (Zhong et al., 2002).  

Surprisingly, over expression of the motor causes severe reduction of the thickness of 

the secondary cell wall in fiber cells (Zhou et al., 2007).  Interestingly, the motor is 

expressed not only in cells undergoing secondary growth but also in the meristem as 
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well as in parenchyma cells (Zhou et al., 2007).  Our AFM-based examinations revealed 

abnormal cell wall mechanics in the epidermal cells of unexpanded leaves in the 

kinesin-4a; kinesin-4c double mutant.  In the wild-type leaves, these cells would 

undergo rapid and robust expansion, concomitant with softening decreases in cell wall 

rigidity.  Our data indicated a lack of softening in the double mutant during expansion, 

that was consistent with the small leaf size and curling morphology.  The rigid cell wall 

phenotype at early stages of cell elongation is likely associated with the kinesin-4a 

mutation and enhanced by the kinesin-4c mutation .  Together with the fact that the 

cotton ortholog is abundantly expressed during fiber elongation stages, these lines of 

evidence further support the function of At KINESIN-4A/FRA1 during primary cell 

elongation.   

 

In general, we often focus on cellulose deposition when primary cell elongation is 

examined.  Undoubtedly, compromised cellulose synthesis by mutations in the CESA 

genes causes defective cell elongation (Beeckman et al., 2002).  In the cell wall, 

cellulose microfibrils are spaced by matrix components like non-cellulosic complex 

carbohydrates or proteinaceous components.  Hemicelluloses directly contribute to the 

strength of the plant cell wall by cross-linking cellulose microfibrils (Scheller and Ulvskov, 

2010).  For example, defects in the biosynthesis of the hemicellulose glucuronoxylan 

cause severe seedling dwarfism (Wu et al., 2010), somewhat similar to what kinesin-

4a/fra1 mutants behave.  Although the significance of their proper addition to the 

nascent cell wall is widely recognized (Hayashi and Kaida, 2011), it is unclear how their 

deposition is coordinated with that of cellulose and how cell wall remodeling is taking 
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place after complex carbohydrates are deposited.  We know very little if any about how 

hemicelluloses and pectin are delivered by exocytosis after being packaged at TGN.  In 

addition, vesicles from TGN may contain enzymes that function in softening cellulose 

microfibrils in the nascent cell wall during rapid expansion.  It is proposed here that 

these vesicles may be transported along cortical MTs by kinesin motors like KINESIN-

4A/C during rapid elongation of plant cells.  Improper deposition of non-cellulosic 

carbohydrates in the cell wall may have altered the deposition and/or organization of 

cellulose microfibrils.  This notion is consistent with the observed aberrantly oriented 

cellulose microfibrils in the fra1 mutant cells (Zhong et al., 2002).  Consequently, the 

stems of the fra1 mutant become fragile.  Therefore, we suggest that orchestrated 

deposition of components like pectin and hemicelluloses would directly influence the 

outcome of cell elongation and vice versa.  In fact, it has been documented that a 

reduction in one cell wall component may cause a compensatory increase in another 

cell wall component. For example, pectin content is significantly elevated in two 

cellulose deficient kor and prc1 mutants (Fagard et al., 2000; His et al., 2001).   

 

Our results further suggest that orchestrated secretion of non-cellulosic carbohydrates 

to the cell wall also is critical for cell wall mechanics.  For example, arabinose is 

abundantly found in pectin deposited in the middle lamella.  Pectin is often linked to 

xyloglucan prior to secretion (Popper and Fry, 2008).  The loss of the Kinesin-4 motor 

somehow might have altered modification of arabinose-containing carbohydrates so that 

pectin and hemicellulose would contain more arabinose.  Consequently, such changes 

might result in reduced elasticity of the cell wall prior to elongation as observed here.   
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In summary, in this study we detected At KINESIN-4A/FRA1 along cortical MTs.  Our 

results support the notion that the kinesin likely acts as a long expected motor for 

vesicle transport in rapidly elongating plant cells.  This finding inspires us to search for 

protein(s) that allow the loading of vesicles to the Kinesin-4 motor in higher plant cells 

that undergo rapid elongation. 

 

MATERIALS AND METHODS 

Plant Materials and Growth Conditions 

The cotton G. hirsutum plants were grown under the greenhouse condition in Davis, CA.  

The A. thaliana plants were grown under controlled conditions as described previously 

(Kong et al., 2010; Lee et al., 2007).  T-DNA insertion lines SALK_084463, 

SALK_022231, and SALK_124215 at the Kinesin-4A/FRA1, Kinesin-4B, and Kinesin-4C 

loci were acquired from the Arabidopsis Biological Research Center at the Ohio State 

University.  Standard genetic crosses were carried out between mutants and wild-type 

plants and among the mutant lines.  The marker lines expressing mCherry-TUB6, 

EB1b-GFP, and GFP-CESA3 (Crowell et al., 2009; Dixit et al., 2006; Nakamura et al., 

2010) were generously provided by the corresponding colleagues.  

 

Isolation of the Gh Kinesin-4A cDNA  
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A full-length cDNA clone of Gh KINESIN-4A was isolated from a cotton fiber specific 

cDNA library (Pear et al., 1996), using a similar approach as described in one of our 

previous reports (Preuss et al., 2004).  The cDNA clone was subsequently sequenced 

at a commercial DNA sequencing facility.  The GenBank accession number if 

GhKinesin-4A is KJ701508. 

   

Detection and Verification of the T-DNA Insertions 

Standard polymerase chain reaction (PCR)-based method was applied to detect the 

reported T-DNA insertions according to an established protocol (Krysan et al., 1999).  

The T-DNA specific primer is LBa1 5’-TGGTTCACGTAGTGGGCCATCG-3’ for the 

SALK lines used in this study.  Gene specific primers include 84463LP 5’-

ATTTGCTCCACGGTGATAGTG-3’ and 84463RP 5’-TCGCGACGTTTTTAGAATCAG-3’ 

for SALK_084463 of Kinesin-4A; 22231LP 5’-CATAGGTGCAAATGGGAACAC-3’ and 

22231RP 5’-AACATGTGCACCTTCTTTTCG-3’ for SALK_022231 of Kinesin-4B; and 

124215LP 5’-GCCATGAGTTTGTGCATCTC-3’ and 124215RP 5’-

TGCTCACTTCAAGAAAAGTTGG-3’ for SALK_124215 of Kinesin-4C.  The kinesin-4a, 

kinesin-4b, and kinesin-4c mutations were detected by using primer combinations of 

LBa1 and 84463RP, 22231RP, or 124215RP, respectively.  

 

Genetic Suppression/Complementation of the kinesin-4a Mutation 
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The genomic fragment of the At Kinesin4A gene included its coding sequence and the 

1828 bp upstream fragments from the initiation ATG and was amplified from a genomic 

DNA preparation by PCR using the Phusion DNA polymerase (New England Biolabs). 

The primers were 47820P-F (5’-

CACCTCATAGAAATCAATCTCTCGTAGATCAGTGATCAC-3’, 5’-CACC, underlined, is 

for directional cloning) and GA-47820-R (5’-

TGCGCCTGCGCCCATGATCTTATTAGGTAGAGCCTTAAGTCG-3’, the 12bp fragment, 

underlined, encodes a “Glycine-Alanine” duplicates linker between AtKinesin4A and 

FLAG to facilitate functional fusion). The amplified fragment was cloned into the pENTR 

vector by a TOPO based cloning strategy according to manufacturer’s instruction 

(Invitrogen). In addition, a VisGreen GFP (Teerawanichpan et al., 2007) fusion was 

added to the N-terminus of the AtKinesin4A protein by the following manipulation. The 

promoter region of the AtKinesin4A gene was amplified by primers of 47820P-F and 

47820P-R (5'-GCCCTTGCTCACCATTGGAAGAAGAAGAAGAAGTAATCTAGAATCG-

3', the 15-bp fragment underlined is the reverse complement sequence of the first 15-bp 

of coding sequence of AtKinesin4A to provide an overlap for subsequent fusion PCR). 

The VisGreen-coding sequence was amplified by primers of VisGreen-F (5’-

CTTCTTCTTCTTCCAATGGTGAGCAAGGGCGAGGAGC-3’, the 15 bp fragment 

underlined is the last 15 bp in front of initiation ATG of AtKinesin4A to provide an 

overlap for subsequent fusion PCR) and VisGreen-R (5’- 

CCGCTCGAGCTTGTACAGCTCGTCCATGCCGTGAG-3’, Xho I site underlined, the 

lower-case overhang was added for effective digestion reaction). The PCR fragments of 

promoter region and VisGreen was linked by fusion PCR using Phusion DNA 
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polymerase (Thermo Fisher), modified from a published protocol (Szewczyk et al., 

2006). The resulting fusion fragment was cloned into the pENTR vector by a TOPO 

based cloning to get the Entry 1 clone. The AtKinesin4A coding sequence was amplified 

by 47820-F  (5’-

CACCCTCGAGGGCGCAGGCGCAATGGAATCTACGCCGCCACCGGATG-3’, the 5’ 

end CACC is for directional cloning, the italic is Xho I site, and the underlined 12bp 

fragment encodes a “Glycine-Alanine” duplicates linker between VisGreen and 

AtKinesin4A to facilitate functional fusion) and GA-47820-R (5’-

TGCGCCTGCGCCCATGATCTTATTAGGTAGAGCCTTAAGTCG-3', the 12bp fragment, 

underlined, encodes a “GlycineAlanine” duplicates linker between AtKinesin4A and GFP 

to facilitate functional fusion). The resulting fragment cloned into the pENTR vector by a 

TOPO based cloning to get the Entry 2 clone. Both the Entry 1 vector and Entry 2 vector 

were digested by Not I and Xho I, further ligation reaction was conducted between the 

Gel purified fragment containing promoter and VisGreen and the fragment containing 

the coding sequence of AtKinesin4A. Finally, the resulting Entry 3 clone was delivered 

into pGWB4 (Nakagawa et al., 2007) by recombination reaction to get 

PKinesin4A::VisGreen-Kinesin4A-GFP construct.  The resulting plasmids were transformed 

into the agrobacteria GV3101, followed by transformation into A. thaliana according to 

the standard floral dipping protocol (Clough and Bent, 1998).   

 

Production of Anti-Gh Kinesin-4A Antibodies and Immunolocalization 
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A cDNA fragment encoding polypeptide of amino acids 476-702 in Gh Kinesin-4A was 

amplified using the primers of 5’-CACCGAGGTGATTCCAGAGAAATTGAG-3’ and 5’-

ATTGTCGACGAGCAGCAGATTTACGAGCT-3’.  The resulting fragment was cloned 

into the pGEX-KG vector (Guan and Dixon, 1991) at the EcoRI and SalI sites.  

Consequently, a GST fusion protein was expressed in bacteria and purified before 

being used as an antigen for immunization in two rabbits.  Specific antibodies were 

purified as described previously (Preuss et al., 2004).  

 

Cotton fibers were collected from growing cotton bolls and fixed for immunolocalization 

as we have done for other motors (Preuss et al., 2004).  Besides the anti-Gh Kinesin-4A 

antibodies, the DM1A anti-tubulin antibody (Sigma) was used to label MTs.  The 

secondary antibodies used in this study are FITC-conjugated donkey anti-rabbit IgG, 

and Texas Red-conjugated donkey anti-mouse IgG (Rockland Immunochemicals). In 

the control experiment, antibodies were pre-absorbed with the antigen prior to their 

application. 

 

Fluorescent Microscopy and Digital Imaging  

Cotton fibers were fixed and processed for immunolocalization as described previously 

(Preuss et al., 2003).  Stained fiber cells were observed under an Eclipse 600 

fluorescent microscope (Nikon). 
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Live cell imaging of VisGreen-At KINESIN-4A-GFP was carried out under a spinning 

disk confocal microscope equipped with lasers for GFP and mCherry (Intelligent 

Design), as described previously (Hotta et al., 2012). Time-lapsed images were further 

processed in the Metamorph software package (Molecular Devices) for analysis of 

motility using the Kymograph tool. The run length distribution of VisGreen-AtKinesin4A-

GFP and the velocity distribution of VisGreen-At KINESIN-4A-GFP, GFP-CESA3 and 

EB1b-GFP were calculated in Origin software (Origin Lab) by frequency counts. 

Histograms of run length and velocity distribution of VisGreen-AtKinesin4A-GFP were 

fitted by a quick fit method in Origin using the function of ExpDecay with offset. 

Histograms of velocity distribution of GFP-CESA3 and EB1b-GFP were fitted using the 

Gauss Function y � �� � ��
�
������

�

���  in Origin. The mean values and 95% confidence 

interval were calculated in SAS (SAS software). 

 

To observe YFP-CESA6/RFP-TUA5 in the kinesin-4a mutation (SALK_084463) 

background, a standard genetic cross was made between the mutant and YFP-CESA6 

plus RFP-TUA5 reporter line (Lei et al., 2013).  Fluorescent signals were observed 

under a Yokogawa CSUX1 spinning disk confocal system operated by the Metamorph 

software (Molecular Devices), followed by image and particle analyses via the ImageJ 

and Imaris (Bitplane) software packages, as described previously (Bashline et al., 2013). 

 

Atomic force microscopy (AFM) - based nanoindentation 
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AFM - based nanoindentation was performed as follows, according to published studies 

(Braybrook and Peaucelle, 2013; Peaucelle et al., 2011).  WT (Col) and kinesin-4a; 

kinesin-4c double mutant seedlings were grown on standard media (1/2MS, 1g/L 

sucrose, MES pH 5.7, B-vitamins, 0.7% agar) in long day conditions at 20°C for 2 

weeks.  At the 2 week mark, seedlings were removed from media and leaves dissected 

from the plant; at this time all plants had roughly 4 dissectible leaves, with 1-2 more 

small leaves that were not easily dissected (Supplemental Figure 6). Dissectible leaves 

were further cut to allow a flat abaxial area to be presented upwards (Supplemental 

Figure 6).  These cut areas were fixed to a glass slide using 1% low melt agarose made 

in 0.55M mannitol. A sealing ring was placed around the mounted tissue samples and 

filled with 0.55M mannitol to plasmolyze cells.  Samples were set to plasmolyze for 15-

30 minutes and then mounted under a JPK NanoWizard 3 AFM (JPK, Berlin, DE).  

AFM-based nanoindentations were performed with a 1µm diameter rounded pyramidal 

tip attached to a cantilever of 42.859 N/m (Windsor Scientific, Slough, UK). The same 

cantilever was used for all samples and was calibrated using thermal tuning.  Before 

each experiment the sensitivity of the cantilever was determined by indentation on glass.  

Indentations were performed in grids of 32x32 points over 100µm x 50µm areas 

(Supplemental Figure 6), at a force of 500 nN which yielded an average indentation 

depth of 250 nm on perpendicular to surface cell walls and 500nm on parallel walls. 

Apparent Young’s moduli (EA) were calculated using JPK Data Processing Software (v. 

spm-4.3-41; JPK, Berlin, DE) using experimentally determined sensitivity and cantilever 

spring constants, and spherical tip geometry.  Reported EA values are taken from 

indentation curves.  Sample numbers: WT Leaf 1, n=3; WT Leaf 3, n=3; WT Leaf 4, n=3; 
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kinesin-4a; kinesin-4c Leaf 1 n=3; kinesin-4a; kinesin-4c Leaf 3 n=4; kinesin-4a; kinesin-

4c Leaf 4 n=4.  Data in ‘perpendicular wall’ box plots correspond to bulked EA values 

from perpendicular walls, 20 values per sample.  All data correspond to the following 

number of bulked EA values: WT Leaf 1 n=3072; WT Leaf 3 n=3072; WT Leaf 4 n= 

3072; kinesin-4a; kinesin-4c Leaf 1 n=4096; kinesin-4a; kinesin-4c Leaf 3 n=4096; 

kinesin-4a; kinesin-4c Leaf 4 n= 4096. Data was graphed in MATLAB using the Violin.m 

package, and t-tests were performed therein as well. 

 

Cell wall composition analysis 

Mature inflorescence stems of wild type and mutants were collected and ground into 

fine powder in liquid nitrogen with a mortar and pestle. The ground material was 

homogenized in 70% and 100% (v/v) ethanol using a Polytron homogenizer and further 

extracted with methanol:chloroform (1:1, v/v) and acetone. The resulting cell wall 

residues were dried in a vacuum oven and used for analysis of total sugar composition. 

Cell wall sugars (as alditol acetates) were determined following the procedure described 

by (Hoebler et al., 1989). Sugars were analyzed using a Perkin–Elmer Clarus 500 gas–

liquid chromatograph instrument equipped with a 30 m x 0.25 mm (i.d.) silica capillary 

column DB 225 (Alltech Associates). Two biological replicates for wild type and mutants 

were used for cell wall sugar analysis and each sample was run in duplicate. 

 

Accession Numbers 
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The Arabidopsis Information Resource (TAIR) locus identifiers for the genes mentioned 

in this study are At5g47820 for At KINESIN-4A/FRA1, At3g50240 for At KINESIN-4B, 

and At5g60930 for At KINESIN-4C.  The GenBank accession number of the Gh 

KINESIN-4A cDNA sequence is KJ701508. 
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Table 1. Cell wall composition in wild-type (WT) and kinesin-4 mutants (mg g-1 
cell wall)  

 

  

Sample Xylose Glucose Mannose Galactose Arabinose Rhamnose Fucose 

WT 71.2±7.0 270.0±44.7 13.6±1.4 23.3±1.6 18.3±0.3 13.1±0.2 3.5±2.3 

kinesin-4a 72.6±8.7 272.4±22.9 16.9±1.3 31.3±1.8 28.8±2.3 14.5±1.2 1.4±0.4 
kinesin-4a; 
kinesin-4c 73.5±4.3 243.0±25.3 14.3±0.7 26.2±1.8 28.1±1.4 11.8±0.9 1.5±0.5 
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FIGURE LEGENDS 

Figure 1. Homology among Kinesin-4 motors. The bar diagrams represent four Kinesin-

4 motors: Gh KINESIN-4A, At KINESIN-4A/FRA1, At KINESIN-4C, and MmKIF4 from 

mouse.  The motor domain is highlighted in tilted stripes, the neck domain in black, and 

coiled-coil domains in gray.  GhKinesin-4A is most closely related to At KINESIN-

4A/FRA1.  Sequence identity and similarity (in parentheses) were given between 

highlighted regions in paired comparisons.  Higher homologies are found in the motor 

domains than the rest between plant and animal Kinesin-4 motors. 

 

Figure 2. Gh KINESIN-4A is associated with vesicle-like structures along cortical MTs.  

(A) Affinity purified antibodies detect the Gh KINESIN-4A polypeptide (arrowhead, lane 

1) together with a degradation product (asterisk).  Both bands are not detected after 

blocking the antibodies by the antigen.  (B) Immunofluorescence of GhKinesin-4A and 

cortical MTs in a cotton fiber.  Particles decorated by anti-Gh KINESIN-4A (arrows) are 

associated with cortical MTs aligned perpendicularly to the axis of fiber elongation.  (C) 

Enlarged view of the boxed area in (B), showing close-view of puctate structures 

decorated by Gh KINESIN-4A (arrowheads) that are associated with cortical MTs. 

 

Figure 3. Complementation of the kinesin-4a mutation.  The kinesin-4a mutant exhibits 

dwarfed phenotype when compared to the wild-type.  Upon the expression of the 

VisGreen-At KINESIN-4A-GFP fusion protein, this growth retardation phenotype is 

completely suppressed as demonstrated by three independent transformation lines.  



39 

 

 

Figure 4. Live-cell imaging of the VisGreen-At KINESIN-4A-GFP fusion in leaf 

epidermal cells.  (A) The fusion protein appears in fluorescent particles at the cell cortex.  

(B) Time-averaged image represents the motile history of the fusion protein over 4 

minutes.  Arrows point at examples of processive movements.  Arrowheads highlight 

the region used for Kymographic analysis in (D).  (C) The fusion protein is only detected 

at the cortex but not in the interior part of the cell.  (D) Kymograph analysis shows the 

motility over 4 minutes.  Scale bar, 5 µm. 

 

Figure 5. Motility of VisGreen-At KINESIN-4A-GFP along cortical MTs. The merged 

images have MTs in red, AtKinesin-4A in green.  (A) Particles decorated by VisGreen-At 

KINESIN-4A-GFP are frequently associated with cortical MTs marked by mCherry-

TUB6.  Arrowheads highlight the region used for time-lapsed and Kymographic 

analyses.  (B) Examples of motile (arrowheads) and immotile (asterisks) AtKinesin-4-

decorated particles on a cortical MT.  Time in seconds is indicated on the left.  (C) 

Kymograph reporting the motility of both motile and immotile particles shown in (B) over 

270 seconds.  Scale bars, 5 µm (A) and 2.5 µm (B). 

 

Figure 6. Distributions of KINESIN-4A motility and run-length.  The mean values are 

shown with standard deviations and examined sample sizes.  Dotted lines represent the 

trends derived from Gaussian fits.  (A) Velocity frequencies of VisGreen-Kinesin-4A-

GFP that moves along cortical MTs.  (B) Distribution of the run length of VisGreen-
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KINESIN-4A-GFP.  (C) Frequency distribution of the cellulose synthase fusion GFP-

CESA3.  (D) The distribution of MT polymerization rates reported by the EB1b-GFP 

fusion.  

 

Figure 7. Retardation of axial growth caused by the kinesin-4a and kinesin-4c 

mutations. (A) Rosette morphology of 23-day old seedlings of the wild-type control, the 

kinesin-4a single, and kinesin-4a; kinesin-4b as well as kinesin-4a; kinesin-4c double 

mutants.  (B) Diameters of rosettes formed by the 18-32-day old seedlings of the 

aforementioned genotypes.  (C) Influorescences of 32-day old plants of the four 

genotypes.  (D) Quantification of the influorescence stem length in four different plants.  

(E) Fully developed siliques of the wild-type control, the kinesin-4a single, and kinesin-

4a; kinesin-4c double mutants.  (F) Numbers of seeds produced per silique in the wild-

type control, the kinesin-4a, kinesin-4b, and kinesin-4c single mutants, as well as 

kinesin-4a; kinesin-4b, kinesin-4b; kinesin-4c, and kinesin-4a; kinesin-4c double 

mutants.  Scale bars, 5 cm in (A) and (C) and 5 mm in (E).  

 

Figure 8. Cell wall rigidity is higher during developmental time in kinesin-4a; kinesin-4c 

double mutants. (A) Apparent Young’s Modulus values taken from cell walls 

perpendicular to the leaf surface for WT and kinesin-4a; kinesin-4c double mutant 

leaves.  Data were collected from epidermal cells overlaying the developing midrib and 

bulked by age and genotype from 3-4 biological replicates.  (B) All Apparent Young’s 

Modulus data from all walls in the assessed area. WT data is shaded grey and kinesin-
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4a; kinesin-4c in white. Means and medians are graphed on violin plots. Statistical 

groups in (A) are based on T-test P values of <0.001. 

 

SUPPLEMENTAL FIGURE LEGENDS 

Supplemental Figure 1. Phylogenetic analysis of Kinesin-4 motors. (A) The phylogeny 

analysis was carried out with the program PhyML (www.phylogeny.fr) based on the 

amino acid sequences of the kinesin motor domain. The maximum likelihood method 

was used. Branch support values were represented in percentages (%), and only values 

greater than 50% were displayed in the figure. The following kinesin proteins were 

included in the analysis: At KINESIN-4A/FRA1 (At5g47820), At KINESIN-4B 

(At3g50240) and At KINESIN-4C (At5g60930) are from Arabidopsis thaliana; Gh 

KINESIN-4A (KJ701508) is from cotton (Gossypium hirsutum); LOC_Os09g02650 and 

LOC_Os02g50910 from rice (Oryza sativa); PpKIN4-1a to -1e (Phypa_#437833, 

438737, 432365, 453193, 441211) and PpKIN4-2a to -2c (Phypa_#447296, 433281, 

446183) from Physcomitrela patens; and MmKIF4 (NP_032472) from mouse (Mus 

musculus).  The motor domain of At KINESIN-12A (At4g14150; AF193767) from A. 

thaliana served as an outgroup in the analysis.  (B) Sequence identity and similarity 

(parenthesis) between At KINESIN-4A and At KINESIN-4B and At KINESIN-4A and At 

KINESIN-4C in the motor domains as well as outside.  In the diagrams, the motor 

domains are highlighted in yellow, neck in red, and coiled-coils in blue.  
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Supplemental Figure 2. The kinesin-4a mutation does not affect the motility of the 

cellulose synthase complex.  (A) Representative single frame image of YFP-CESA6 

from the control and kinesin-4a seedlings. Epidermal cells ~2 mm below the apical hook 

were imaged by confocal microscopy. Five-minute time averaged images show that 

CESA particles along linear tracks. Bar = 10 µM. (B) Histograms of particle velocities. 

The mean velocity is 213 ± 45 in the wild type (n =1223) and 196 ± 90 in kinesin-4a 

(n=1279). 

 

Supplemental Figure 3. KINESIN-4A does not associate with SmaCCs/MASCs.  (A) 

No co-localization was observed in the merged image of GFP-Kinesin-4A and RFP-

CSI1. Circles denote GFP-KINESIN-4A and RFP-CSI1 above background. Bar = 5 μm. 

(B) GFP-KINESIN-4A and RFP-CSI1 show different dynamic behaviors. Time in 

seconds is indicated above the images.  Bar = 1 μm. 

 

Supplemental Figure 4. Growth phenotypes exhibited by the kinesin-4a, kinesin-4b, 

and kinesin-4c mutants.  While the kinesin-4a mutant shows dwarfed growth, the 

kinesin-4b, and kinesin-4c mutation do not cause a noticeable phenotype.  

 

Supplemental Figure 5. KINESIN-4A and KINESIN-4C regulate trichome elongation.  

Reduced trichome height caused by the kinesin-4a mutation is enhanced by kinesin-4c.   
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Supplemental Figure 6. Determination of cell wall mechanics in the wild-type (WT) and 

kinesin-4a; kinesin-4c double mutant.  (A) The WT and double mutant seedlings on agar 

plate.  (B) Representative leaves dissected from the WT and double mutant.  (C) AFM 

Apparent Youngs Modulus maps (32x32 bit, 100umx50um grid).  Each pixel represents 

the apparent Young's modulus from one nano indentation.  Perpendicular cell walls 

appear more rigid due to geometry and a difference in the indentation geometry; they 

allow cell shapes to be discerned.  The color scale is for all images. 

 

SUPPLEMENTAL MOVIES 

Supplemental Movie 1. Time-lapsed movie of VisGreen-At KINESIN-4A-GFP in 

epidermal cells shown in Figure 4.  

 

Supplemental Movie 2. Time-lapsed movie of VisGreen-At KINESIN-4A-GFP and 

mCherry-TUB6 in the epidermal cell shown in Figure 5.  

 



 

Figure 1. Homology among Kinesin-4 motors. The bar 

diagrams represent four Kinesin-4 motors: Gh 

KINESIN-4A, FRA1/At KINESIN-4A, At KINESIN-4C, and 

MmKIF4 from mouse.  The motor domain is 

highlighted in tilted stripes, the neck domain in black, 

and coiled-coil domains in gray.  GhKinesin-4A is most 

closely related to At KINESIN-4A/FRA1.  Sequence 

identity and similarity (in parentheses) were given 

between highlighted regions in paired comparisons.  

Higher homologies are found in the motor domains 

than the rest between plant and animal Kinesin-4 

motors. 



 

Figure 2. Gh KINESIN-4A is associated with vesicle-

like structures along cortical MTs.  (A) Affinity 

purified antibodies detect the Gh KINESIN-4A 

polypeptide (arrowhead, lane 1) together with a 

degradation product (asterisk).  Both bands are not 

detected after blocking the antibodies by the 

antigen.  (B) Immunofluorescence of GhKinesin-4A 

and cortical MTs in a cotton fiber.  Particles 

decorated by anti-Gh KINESIN-4A (arrows) are 

associated with cortical MTs aligned perpendicularly 

to the axis of fiber elongation.  (C) Enlarged view of 

the boxed area in (B), showing close-view of puctate 

structures decorated by Gh KINESIN-4A 

(arrowheads) that are associated with cortical MTs. 



 

Figure 3. Complementation of the kinesin-4a 

mutation.  The kinesin-4a mutant exhibits dwarfed 

phenotype when compared to the wild-type.  Upon 

the expression of the VisGreen-At KINESIN-4A-GFP 

fusion protein, this growth retardation phenotype is 

completely suppressed as demonstrated by three 

independent transformation lines. 



 

Figure 4. Live-cell imaging of the VisGreen-At 

KINESIN-4A-GFP fusion in leaf epidermal cells.  (A) 

The fusion protein appears in fluorescent particles 

at the cell cortex.  (B) Time-averaged image 

represents the motile history of the fusion protein 

over 4 minutes.  Arrows point at examples of 

processive movements.  Arrowheads highlight the 

region used for Kymographic analysis in (D).  (C) The 

fusion protein is only detected at the cortex but not 

in the interior part of the cell.  (D) Kymograph 

analysis shows the motility over 4 minutes.  Scale 

bar, 5 µm. 



 

Figure 5. Motility of VisGreen-At KINESIN-4A-GFP 

along cortical MTs. The merged images have MTs in 

red, AtKinesin-4A in green.  (A) Particles decorated 

by VisGreen-At KINESIN-4A-GFP are frequently 

associated with cortical MTs marked by mCherry-

TUB6.  Arrowheads highlight the region used for 

time-lapsed and Kymographic analyses.  (B) 

Examples of motile (arrowheads) and immotile 

(asterisks) AtKinesin-4-decorated particles on a 

cortical MT.  Time in seconds is indicated on the 

left.  (C) Kymograph reporting the motility of both 

motile and immotile particles shown in (B) over 270 

seconds.  Scale bars, 5 µm (A) and 2.5 µm (B). 



 

Figure 6. Distributions of KINESIN-4A motility and 

run-length.  The mean values are shown with 

standard deviations and examined sample sizes.  

Dotted lines represent the trends derived from 

Gaussian fits.  (A) Velocity frequencies of VisGreen-

Kinesin-4A-GFP that moves along cortical MTs.  (B) 

Distribution of the run length of VisGreen-KINESIN-

4A-GFP.  (C) Frequency distribution of the cellulose 

synthase fusion GFP-CESA3.  (D) The distribution of 

MT polymerization rates reported by the EB1b-GFP 

fusion. 



 

Figure 7. Retardation of axial growth caused by the 

kinesin-4a and kinesin-4c mutations. (A) Rosette 

morphology of 23-day old seedlings of the wild-

type control, the kinesin-4a single, and kinesin-4a; 

kinesin-4b as well as kinesin-4a; kinesin-4c double 

mutants.  (B) Diameters of rosettes formed by the 

18-32-day old seedlings of the aforementioned 

genotypes.  (C) Influorescences of 32-day old plants 

of the four genotypes.  (D) Quantification of the 

influorescence stem length in four different plants.  

(E) Fully developed siliques of the wild-type 

control, the kinesin-4a single, and kinesin-4a; 

kinesin-4c double mutants.  (F) Numbers of seeds 

produced per silique in the wild-type control, the 

kinesin-4a, kinesin-4b, and kinesin-4c single 

mutants, as well as kinesin-4a; kinesin-4b, kinesin-

4b; kinesin-4c, and kinesin-4a; kinesin-4c double 

mutants.  Scale bars, 5 cm in (A) and (C) and 5 mm 

in (E). 



 

Figure 8. Cell wall rigidity is higher during 

developmental time in kinesin-4a; kinesin-4c double 

mutants. (A) Apparent Young’s Modulus values 

taken from cell walls perpendicular to the leaf 

surface for WT and kinesin-4a; kinesin-4c double 

mutant leaves.  Data were collected from epidermal 

cells overlaying the developing midrib and bulked 

by age and genotype from 3-4 biological replicates.  

(B) All Apparent Young’s Modulus data from all 

walls in the assessed area. WT data is shaded grey 

and kinesin-4a; kinesin-4c in white. Means and 

medians are graphed on violin plots. Statistical 

groups in (A) are based on T-test P values of <0.001. 


