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Abstract: 

Luminescent SiCxOy:H films，which are fabricated at different CH4 flow rates using 

very high-frequency plasma-enhanced chemical vapor deposition technique, exhibit 

strong photoluminescence (PL) with tuning from near-infrared to orange regions. The 

PL features an excitation wavelength independent recombination dynamic. The silicon 

dangling bond (DB) defects identified by electron paramagnetic resonance spectra are 

found to play a key role in the PL behavior. The first-principles calculation shows that 

the Si DB defects introduce a mid-gap state in the band gap, which is in good 

agreement with the PL energy. Moreover, the band gap of a-SiCxOy:H is found to be 

mainly determined by Si and C atoms. Thus, the strong light emission is ascribed 

from the recombination of excited electrons and holes in Si DB defects, while the 

tunable light emission of the films is attributed to the substitution of stronger Si–C 

bonds for weak Si–Si bonds. It is also found that the light emission intensity shows a 

superlinear dependence on the pump intensity. Interestingly, the film exhibits a net 

optical gain under ultraviolet excitation. The gain coefficient is 53.5cm-1 under a 

pumping power density of 553mW cm-2. The present results demonstrate that the 

SiCxOy system can be a very competitive candidate in the applications of photonics and 

optoelectronics. 
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1. Introduction 

The development of Si-based luminescent materials is motivated by the demand 

for cheap and complementary metal-oxide semiconductor (CMOS) light sources that 

are compatible with on-chip optical interconnect. Progress has been recently made in 



understanding and optimizing light emission from Si-based materials, such as SiOx, 

SiNx, and SiNxOy [1-11]. A breakthrough in this field is the realization of optical gain 

and light amplification from SiOx-based material. Owing to the difficulty of electrical 

injection in wide band gap SiOx [2], silicon dioxide is commonly replaced with silicon 

nitride as a promising luminescent material for efficient electrical excitation [12-14]. 

Compared with silicon nitride, however, silicon oxynitride more effectively improves 

equivalent carrier injections in LEDs, thus significantly increasing the probability of 

carrier recombination [15, 16]. Extensive studies have recently focused on dielectric 

silicon oxycarbide (SiCxOy) due to its efficient light emission and applicability in Si 

chips. SiCxOy, which is widely used as an interlayer dielectric to reduce parasitic 

capacitance and resistance capacitance (RC) delay in Si chips, generally features 

strong white light emission [17-19]. Moreover, a SiCxOy host matrix provides a 

remarkably higher solid solubility for rare earths, such as Eu and Er, compared with 

SiO2 [20, 21]. In addition, the SiCxOy matrix can also be used as donor that contributes 

to the light emission of Eu2+ ions via energy transfer [22]. So far, defect states, such as 

C-related oxygen vacancies (C-NOVs), Si-NOVs, and Si-related oxygen deficiency 

centers, have been proposed to demonstrate the PL mechanism in SiCxOy [23-25]. 

Nikas et al recently reported that white luminescence results from the recombination 

of carriers between energy bands and their tail states associated with the Si–O–C and 

/or Si–C bonds [26]. Although considerable effort has been devoted to understanding 

PL characters in SiCxOy, the origin of PL remains contradictory because of 

complicated Si phase structures, such as Si, SiC, and SiOx, which coexist in SiCxOy. 

In addition, orange to near-infrared emitters that are based on silicon oxycarbide are 

still far from being established. In particular, the optical gain in a-SiCxOy has never 

been studied. 

   In this work, we report on strong orange to near-infrared switching PL and net 

optical gain in SiCxOy:H film. The silicon dangling bond (DB) defects identified by 

electron paramagnetic resonance spectra are found to play a key role in the PL 

behavior. The first-principles calculation shows that the Si DB defects introduce a 

mid-gap state in the band gap. Moreover, the band gap of a-SiCxOy:H is found to be 

mainly determined by Si and C atoms. The origin of PL is discussed and a 

three-level-luminescence model is proposed to illustrate the PL and optical gain in 

a-SiCxOy films.   

 

2. Samples and experimental details 



Amorphous silicon oxycarbide films were prepared on Si wafers and quartz via 

VHF-PECVD technique. SiH4, O2, and CH4 were used as the reactant gas sources. 

The flow rates of SiH4 and O2 were maintained at 3.5 and 1.2 sccm, respectively, 

whereas the flow rates of CH4 varied from 5 to 20 sccm. The as-deposited films were 

designated as Sx(x = 1, 2, 3, 4) with the flow rates of 5, 10, 15, and 20 sccm During 

deposition, the radio frequency power, chamber pressure, and substrate temperature 

were 30 W, 20 Pa, and 250 °C, respectively. The as-deposited films were also 

dehydrogenated at 400 °C for 1 h, and then annealed at 500 °C for 1 h in a 

conventional furnace under a nitrogen atmosphere. PL measurements were taken on a 

Jobin Yvon fluorolog-3 spectrophotometer. The band gaps of the films were 

determined from transmittance measurements, which were obtained with a Shimadzu 

UV-3600 spectrophotometer. The chemical compositions of Si, C, and O were 

determined by XPS. The microstructures of the films were characterized with a JEOL 

high-resolution TEM. The local atomic environment and bonding configuration 

within the films were recorded using FTIR spectroscopy. The paramagnetic defects in 

the films were analyzed with EPR measurements. The SiNx/a-SiCxOy/SiO2 

strip-loading waveguide with 30 μm wide and 1cm long was fabricated on quartz. 

Optical gain was measured by the standard VSL technique. The sX hybrid functional 

was also used to calculate the band properties of SiCO systems, as well as the involved 

point defect.  

The DFT simulations were performed using the CASTEP plane wave 

pseudopotential code. The norm conserving pseudopotential was used with the cutoff 

energy of 750eV in all calculations. The amorphous SiCxOy structures were calculated 

by the GGA exchange correlational function with the Gamma point scheme due to a 

large supercell. The screened exchange hybrid functional was applied in all electronic 

property calculations to correct the well-known band gap error and provide the correct 

electron localization distribution. The amorphous SiCO models were generated by the 

first principles molecular dynamics (MD) method according the following steps: first, 

the system with a given ratio of Si, C, and O atoms underwent a high-temperature 

melting process at 2500 K for 10ps. Second, the system was then gradually cooled 

down to 300 K at the quenching rate of 100K/ps. Third, a rough geometry optimization 

was applied and H atoms were included to passivate the remaining dangling bonds (DB) 

on Si and C atoms. Finally, an accurate geometry optimization was performed until the 

residual force on each atom was lower than 0.01eV/Å.    

3. Results and discussion 



  

 

 

 

Fig. 1. (a) The cross-sectional high-resolution TEM image of the S2. (b) The Si 2p XPS spectra 

for S1, S2, S3, and S4. 

The film microstructure was analyzed with high-resolution TEM (HRTEM). Fig. 

1(a) presents the cross-section HRTEM image of S2. S2 does not show any sharply 

contrasting structures, which clearly indicates that no Si or SiC nanostructures exist in 

the film and that the film is amorphous. The Si 2p core level spectra of the films (Fig. 

1(b)), which indicate the coexistence of different ionic states of Si atoms, were 

analyzed to gain more insight on phase structures in the films. The binding energy of 

the Si 2p peak is 101.5eV for S1, which was grown at a CH4 flow rate of 5 sccm. The 

binding energy gradually increased to 102.1eV as the CH4 flow rate increased to 20 

sccm. The binding energy of the Si 2p peak for all the films is higher than that of SiC 

(100.8 eV) and lower than that of SiO2 (103.2 eV)[27]. These results indicate that the 

SiCxOy phase is the dominant phase in the films.  

Fig. 2(a) shows the room-temperature PL spectra of the as-deposited SiCxOy film 

grown at different CH4 flow rates. The PL emission band gradually blueshifts from 735 

nm to 630 nm as CH4 flow rate increases from 5 to 20 sccm. Moreover, PL intensity is 

enhanced. Increasing the CH4 flow rate to 20 sccm significantly increases the integrated 

PL intensity by more than two orders of magnitude compared with the PL intensity of 

the film grown at the CH4 flow rate of 5 sccm. Interestingly, the tunable light emissions 

are visible to the naked eye in a bright room even at an excitation wavelength of 325 nm 

from a Xe lamp (Fig. 2 (b)). The tunable light emission from a–SiCxOy can be 

controlled by modulating the CH4 flow rate. Fig. 2(c) shows that that the PL peak 

positions for all the films are almost independent of excitation wavelengths. Meanwhile, 

the FWHM of the PL spectra for all the films almost do not widen as the excitation 

wavelength decreases from 375 nm to 275 nm (Fig. 2(d)). These phenomena are 

completely different from that observed PL that is governed by the band tail states 

recombination mechanism[28]. In that mechanism, the FWHM of PL gradually widens 

with the decrease of the excitation wavelength. These results indicate that the PL in our 

case may result from defect-related luminescence centers. 



 

Fig. 2. (a) PL spectra of SiCxOy films grown at different CH4 flow rates: 5sccm (S1), 10sccm 

(S2), 15sccm (S3) and 20sccm (S4). (b) Light-emitting photos from the films under an excitation 

wavelength of 325 nm from Xe lamp.(c) PL peak energy versus the excitation wavelength for S1, S2, 

S3, and S4, (d) The full wide at half of maximum (FWHM) of the PL band excited at different 

wavelengths for S1, S2, S3, and S4. 

 

Fig. 3. Room temperature EPR spectra of the films fabricated with different CH4 flow rates. 

The EPR spectra (Fig. 3) of the films were examined to gain more insight on the 

origin of PL from a–SiCxOy films. The g value of the EPR signal from the films can be 

calculated according to gBH=hv, where B, H, h and v is the Bohr magnetron, the 

spin Hamiltonian, Planck’s constant and the X band frequency, respectively[29]. The 

spectra for all the films exhibit an EPR signal with the same g value of 2.0047 and the 

same line width △Hpp of approximately 10 G, which is assigned to unpaired silicon 



DB defects[30]. These characteristics confirm the existence of Si DB defects in the 

films. As the CH4 flow rate increases from 5 to 20 sccm, the integrated EPR signal 

intensity, which is proportional to the calculated concentration Ns of the Si DB defects, 

gradually increases from 1.17×1019 cm-3 to 2.19×1019 cm-3. Therefore, the increase in 

PL with increasing CH4 flow rates likely originated from the increased concentration 

of Si DB defects. To confirm this hypothesis, S2 was annealed at 500 ºC for 1 h in a 

conventional furnace under a nitrogen atmosphere. Fig. 4 shows the PL spectra of the 

as-deposited S2 and the S2 annealed at 500 ºC in N2. The PL positions of the two 

samples do not noticeably change. However, the PL intensity of the annealed S2 is 

significantly enhanced by more than twice compared with that of S2. The Fig. 4 inset 

shows that thermal annealing at 500 ºC also remarkably enhanced the EPR signal with 

the same g value of 2.0047 and the same line width △Hpp of approximately 10 G as 

that of S2. Based on EPR results, the concentration of unpaired Si DB defects of the 

annealed S2 is increased by two-fold compared with that of S2, as revealed in Fig. 4 

inset. This change is similar to that of PL intensity. Thus, the enhanced PL of the 

annealed film resulted from the increased concentration of Si DB defects. It is well 

known that the annealing process in N2 ambient induces the diffusion of nitrogen atoms 

inside the film, and then the nitrogen atom will replace the Si in the network to form 

Si-N bonds and leave a new dangling bond, which may explain the increased 

concentration of Si DB defects after annealing treatment. However, the nitridation of 

SiCxOy film is unlikely to occur at 500 ºC because this annealing temperature is not 

enough to decompose the N2 gaseous molecules. 

 

Fig.4. PL spectra of the S2 and the S2 annealed at 500 ºC in N2. Inset shows the corresponding 

EPR spectra. 
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Fig.5. FTIR spectra of the S2 and the S2 annealed at 500℃. 

 Fig. 5 shows the FTIR absorption spectra of S2 and the annealed S2. The S2 

spectrum shows the following absorption bands: two strong absorption bands at 800 

cm-1 and 1020 cm-1, which are attributed to the C–Si and Si–O–Si stretching vibration 

modes, respectively[31, 32]. In addition to the above two bands, a weak band at 1260 

cm-1 is ascribed to the Si–CH3 stretching vibration mode [33]. The 1520 and 2950 

cm-1 bands result from the C–H bending and stretching vibration band, respectively 

[33]. The 2150 cm-1 band is due to the stretching mode of Si–H bonds [34]. A 

remarkable feature in the FTIR spectra (Fig. 5) is that the signal of Si–H stretching 

vibration band decreased after annealing at 500 ºC. This result implies that the Si–H 

bonds were broken and that numerous silicon dangling bonds formed during the 

annealing process. Therefore, the increased concentration of Si DB defects can be 

attributed to broken Si–H bonds, which significantly increased after annealing S2 at 

500 ºC.   

  

Fig. 6. Optical band gap and C content of a-SiCxOy films as a function of CH4 flow rates. 



Fig. 6 shows the dependence of the optical band gap (Eopt) of the films on CH4 flow 

rates. Eopt is calculated from the Tauc plot equation (αhν)1/2=B1/2(hν- Eopt), where α is 

the absorption coefficient and hν is the photon energy[15]. Eopt increases from 2.6 to 2.9 

eV as the CH4 flow rate increases from 5 to 20 sccm. This behavior is closely correlated 

to the increased C content of the films, as revealed in Fig. 6. To gain more insight on the 

optical properties of a–SiCxOy films, the band characters of SiCO systems and involved 

point defect were calculated with the sX hybrid function. As shown in Fig. 7(a), the 

defect-free atomic structure of the amorphous SiCO model was constructed according 

to the procedures described in the experimental section. The component ratio in the 

model is close to the component ratio of S4 as measured by the XPS (Table 1).  

Table 1 

Si O C Bandgap(eV)
Experiment 44.83% 30.06% 25.11% 2.9
Simulation 45 (44.55%)31 (30.69%)25 (24.75%) 2.8

S4

 

Fig. 7. The amorphous SiCO model (S4) with no defects:(a) the atomic structure , (b) the DOS.   

     

Fig. 8. The S4 model with Si dangling bonds (a) atomic structure and defect orbital; (b) Partial DOS 

on Si atoms with DBs. 

In the model, each atom binds in the correct coordination and no 4-membered ring 



appears. The density of states (DOS) of the model, as calculated by the sX exchange 

correlation functional, is shown in Fig. 7(b). The calculated band gap is 2.8 eV, which is 

close to the optical band gap (2.9 eV) estimated by the Tauc plot equation (Fig. 6). The 

DOS figure shows a clean band gap for this defect-free model. Moreover, the valence 

band edge and conduction band edge are contributed by Si and C atoms. Therefore, the 

band gap of a–SiCxOy is mainly determined by the interaction among Si and C atoms. 

Thus, the widening of the band gap with increasing CH4 flow rate can be attributed to 

the replacement of weak Si–Si bonds by stronger Si–C bonds. Fig. 8(a) shows the 

electronic orbital of the Si dangling bond (DB) defect in the SiCxOy system, as given by 

the sX functional. The defect orbital is highly localized on two 3-fold Si atoms. The 

partial DOS (Fig. 8(b)) indicates that Si DB defects introduce a mid-gap state at 1.85 eV 

above the valence band minimum. This result is in good agreement with the PL peak 

energy observed in S4. Accordingly, the strong light emission of the films can be 

ascribed to the recombination of excited electrons and holes in Si DB defects. The 

tunable light emission with the increasing CH4 rate can be attributed to the substitution 

of stronger Si–C bonds for weak Si–Si bonds.  

To measure the optical gain coefficient, the geometry structure of SiNx/a-SiCxOy 

(S4)/SiO2 strip-loaded waveguide were fabricated, and the light emission is detected by 

VSL technique, as shown in the inset of Fig. 9. Fig. 9 shows the integrated PL intensity 

of S4 as a function of pump power. The integrated PL intensity is found to rise up with 

the pumping laser power in a superliner increase manner. This strongly indicates the 

existence of stimulated emission in the waveguide [35].  

Fig. 10 shows the amplified spontaneous emission (ASE) intensity IASE versus the 

pumping length from the strip-loaded SiNx/a-SiCxOy (S4)/SiO2 waveguide measured at 

a wavelength of 325nm. One can see that the IASE tends to increase with increasing the 

pumping length, as shown in the inset of Fig. 10. For the shorter pumping length 

(<800um), the IASE increase exponentially with the pumping length. According to the 

one-dimensioned amplifier model, IASE can be expressed by the following equation 

[36], 

( )
( ) ( )glSP

ASE

J
I l e l

g


    

where l is the pumping length of waveguide, JSP(Ω) is the spontaneous emission 

intensity within the small solid angle Ω, g is the net optical gain coefficient. By fitting 

with the one-dimensioned amplifier equation, the net optical gain coefficient g can be 

obtained. It is found that the net optical gain coefficient g is about 53.5cm-1 at 630 nm, 



which shows a comparable gain coefficient to that reported in Ref.[37]. It is the first 

time to observe the optical gain in a-SiCxOy films. Based on the above experimental 

and theoretical results, three-level luminescent model can be proposed to explain the 

observed optical gain, as shown in Fig. 11. Under excitation, the electrons from 

valence band are excited to the high excited state above conduction band and then relax 

very rapidly to the Si DB defects state. With this model, the population inversion 

between the Si DB defects radiative states and valence band would contribute to the 

observed optical gain in our case.   

 

Fig. 9. Pumping power dependence of PL intensity for S4 at an excitation wavelength of 325nm 

from He-Cd laser. The inset shows the geometry structure of SiNx/a-SiCxOy (S4)/SiO2 strip-loaded 

waveguide.  

 

Fig. 10. The ASE intensity at wavelength of 630 nm as a function of the excitation length for S4. 

The inset shows the PL spectra of waveguide (S4) with different pumping length. 



 

Fig. 11. Schematic three level energy diagram and the exciton recombination processes for 

a–SiCxOy film. 

4. Conclusions 

 A series of luminescent SiCxOy:H films were fabricated by VHF-PECVD technique. 

HRTEM measurements and Si 2p XPS spectra demonstrate that the films are 

amorphous SiCxOy phase structure. The films, which were fabricated at different CH4 

flow rates, exhibit strong photoluminescence with tuning from the near-infrared to 

orange regions. The PL and EPR spectra, as well as the first-principles calculation, 

reveal that the strong light emission resulted from the recombination of excited 

electrons and holes in Si DB defects that introduces a mid-gap state in the band gap. 

The net optical gain coefficient of 53.5cm-1 was also demonstrated in a-SiCxOy, which 

is explained using a three-level model based on population inversion of radiative states 

associated with the Si DB defects. The present results demonstrate that the SiCxOy 

system can be a very competitive candidate in the photonic and optoelectronic 

applications. 
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