
Supplementary information for: f -electron
hybridised Fermi surface in magnetic field-induced

metallic YbB12

H. Liu,1† A. J. Hickey,1† M. Hartstein,1 A. J. Davies,1

A. G. Eaton,1 T. Elvin,1 E. Polyakov,1 T. H. Vu,1 V. Wichitwechkarn,1

T. Förster,2 J. Wosnitza,2,3 T. P. Murphy,4 N. Shitsevalova,5

M. D. Johannes,6 M. Ciomaga Hatnean,7 G. Balakrishnan,7

G. G. Lonzarich,1 Suchitra E. Sebastian1∗.

1Cavendish Laboratory, University of Cambridge,
JJ Thomson Avenue, Cambridge, CB3 0HE, UK.

2 Dresden High Magnetic Field Laboratory (HLD-EMFL)
and Würzburg-Dresden Cluster of Excellence ct.qmat,

Helmholtz Zentrum Dresden Rossendorf,
Bautzner Landstrasse 400, Dresden, 01328, Germany.

3 Institut für Festkörper- und Materialphysik,
Technische Universität Dresden, Dresden, 01062, Germany.

4 National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA.
5 The National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine.

6 Center for Computational Materials Science, Naval Research Laboratory,
Washington, DC, 20375, USA.

7 Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom.

∗To whom correspondence should be addressed: suchitra@phy.cam.ac.uk.
†These authors contributed equally to this work.

November 18, 2021

1



This supplementary information considers non-Lifshitz-Kosevich (LK) quantum oscillation amplitude

temperature-dependence for gapped models in comparison to the LK temperature-dependence

for gapless models.

Supplementary note 1: Model simulations

To distinguish between gapless and gapped models of quantum oscillations in the unconventional

insulating phase, here we simulate the quantum oscillation amplitude for various gap sizes. We

use the formulation of refs. (1, 2); the ratio of the first harmonic between the gapped state and

the normal state is:

𝑀g

𝑀n
=

sinh(𝑋)
𝑋

∫ ∞

0
cos

(
𝑋𝜇

𝜋

)
𝜕𝜇

(
𝜇√︁

𝜇2 + (Δ/𝑇)2
tanh

(√︁
𝜇2 + (Δ/𝑇)2

2

))
d𝜇, (1)

where 𝜇 is the chemical potential, Δ is the isotropic gap size, and 𝑋 is the temperature damping

coefficient given by 𝑋 = 2𝜋2𝑘B𝑇𝑚
∗/𝑒ℏ𝐵0. Here, 𝑘B is Boltzmann’s constant, 𝑇 is temperature,

𝑚∗ is the quasiparticle effective mass, 𝑒 is the electron charge, ℏ is the reduced Planck constant,

and 𝐵0 = 𝜇0𝐻 is the applied magnetic field (3).

If we set 𝑇 = 𝑋𝜔𝑐/(2𝜋2) and Δ/𝑇 = 2𝜋2Δ/𝜔c𝑋 = 𝜋𝛿/𝑋 , we find:
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, (2)

where 𝜔c is the cyclotron frequency. We therefore find the ratio of the first harmonic between

the gapped state and the normal state to be:
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Gapped model simulations of the non-LK form of quantum oscillation amplitude at low temperatures

are shown in the lower inset to Fig. 4a for various gap sizes (i.e. various sizes of 𝛿), compared

with the LK growth in quantum oscillation amplitude at low temperatures for gapless models

(i.e. 𝛿 = 0).
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Supplementary note 2: Model comparisons with experimental
data

Upper insets to Fig. 4a and Fig. 4b of the main text show the growth in quantum oscillation

amplitude of the 700 T frequency in magnetic torque and 800 T frequency in electrical resistivity

plotted against 𝑋2, respectively, in the unconventional insulating phase of YbB12. The LK

exponential low temperature growth of the measured quantum oscillation amplitude observed

for both electrical transport and torque magnetisation is in striking contrast to the non-LK

finite temperature activation expected for gapped models of quantum oscillations (lower inset

to Fig. 4a).

For the insulating regime of YbB12 in which temperature dependent quantum oscillations are

measured, the isotropic gap size at 40 T is given by 2Δ ≈ 15 K (4), which yields 𝛿 ≈ 12

for 𝑚∗/𝑚e = 7 for the quantum oscillation frequencies shown in Fig. 4. Simulations with

various values of 𝛿 are shown in the lower inset of Fig. 4a in the main text (1, 2, 5). For

the gapless case (𝛿 = 0), quantum oscillation amplitude simulations show an exponential LK

growth at low temperature, while for the gapped case (finite 𝛿, shown for values up to 𝛿 = 10,

similar to YbB12), quantum oscillation amplitude simulations show non-LK finite activation

behaviour at low temperature. A comparison of measured quantum oscillation amplitude growth

at low temperature with model simulations thus evidences neutral gapless excitations in the

unconventional insulating phase of YbB12.

Supplementary note 3: Low temperature model expansion

A further simplification may be yielded at low temperatures by using a low temperature expansion.

We perform a series expansion of the term sinh(𝑋)/𝑋 corresponding to the temperature damping

term 𝑅T in the Lifshitz-Kosevich (LK) formula that describes the temperature dependence of
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quantum oscillations for particles obeying the Fermi-Dirac distribution (3).

For small 𝑇 , a series expansion of the temperature dependence term yields:

𝑅T ≈ 1 − 𝑋2

6
+ O
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)
. (4)

The quantum oscillation amplitude therefore linearly increases with decreasing 𝑋2 approaching

the zero 𝑇 limit. The low temperature growth in quantum oscillation amplitude is captured by

the relative change of quantum oscillation amplitude at a finite temperature 𝐴(𝑇) with respect

to the amplitude at the lowest measured temperature 𝐴0, given by:
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6
. (5)

A plot of (𝐴0 − 𝐴(𝑇))/𝐴0 against 𝑋2 would therefore yield a straight line with a gradient equal

to 1/6 at low temperatures for low-energy excitations within the gap. In contrast, in the absence

of low-energy excitations, gapped quantum oscillation models would yield a much reduced

change in amplitude as a function of 𝑋2 at low temperatures well below the gap temperature

scale (Lower inset to Fig. 4a) (1, 2, 5). A simplified comparison to distinguish between gapless

and gapped forms of measured quantum oscillation amplitude is thus provided by this low

temperature expansion.

4



Supplementary References

1. Miyake, K. de Haas-van Alphen oscillations in superconducting states as a probe of gap

anisotropy. Physica B Condens. Matter 186-188, 115–117 (1993).

2. Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous

de Haas-van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

3. Shoenberg, D. Magnetic oscillations in metals (Cambridge University Press, Cambridge,

UK, 1984).

4. Sugiyama, K., Iga, F., Kasaya, M., Kasuya, T. & Date, M. Field-induced metallic state in

YbB12 under high magnetic field. J. Phys. Soc. Japan 57, 3946–3953 (1988).

5. Zhang, L., Song, X. Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators.

Phys. Rev. Lett. 116, 046404 (2016).

5


