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Highlights 35 

 PBMCs showed no differential transcriptomic signature between depressed cases 36 

and healthy controls.  37 

 38 

 There was significant evidence of accelerated biological ageing in major depression 39 

compared to healthy controls.  40 

Abstract 41 

The increasingly compelling data supporting the involvement of immunobiological 42 

mechanisms in Major Depressive Disorder (MDD) might provide some explanation forthe 43 

variance in this heterogeneous condition. Peripheral blood measures of cytokines and 44 

chemokines constitute the bulk of evidence, with consistent meta-analytic data implicating 45 

raised proinflammatory cytokines such as IL6, IL1β and TNF. Among the potential 46 

mechanisms linking immunobiological changes to affective neurobiology is the accelerated 47 

biological ageing seen in MDD, particularly via the senescence associated secretory 48 

phenotype (SASP). However, the cellular source of immunobiological markers remains 49 

unclear.  Pre-clinical evidence suggests a role for peripheral blood mononuclear cells 50 

(PBMC), thus here we aimed to explore the transcriptomic profile using RNA sequencing in 51 

PBMCs in a clinical sample of people with various levels of depression and treatment 52 

response comparing it with that in healthy controls (HCs). There were three groups with 53 

major depressive disorder (MDD): treatment-resistant (n=94), treatment-responsive (n=47) 54 

and untreated (n=46). Healthy controls numbered 44. Using PBMCs gene expression 55 

analysis was conducted using RNAseq to a depth of 54.5 million reads. Differential gene 56 

expression analysis was performed using DESeq2.  The data showed no robust signal 57 

differentiating MDD and HCs. There was, however, significant evidence of elevated 58 

biological ageing in MDD vs HC. Biological ageing was evident in these data as a 59 

transcriptional signature of 888 age-associated genes (adjusted p < 0.05, absolute 60 

log2fold > 0.6) that also correlated strongly with chronological age (spearman correlation 61 

coefficient of 0.72). Future work should expand clinical sample sizes and reduce clinical 62 

heterogeneity. Exploration of RNA-seq signatures in other leukocyte populations and single 63 

cell RNA sequencing may help uncover more subtle differences. However, currently the 64 

subtlety of any PBMC signature mitigates against its convincing use as a diagnostic or 65 

predictive biomarker.  66 

 67 
 68 

 69 

 70 
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 76 

Introduction 77 

 78 

Major Depressive Disorder (MDD) remains one of the most aetiologically opaque of human 79 

disorders, yet one that continues to exert a powerfully negative toll on human health - 80 

physical as well as mental.  MDD is both heterogeneous in its phenotypic expression and 81 

complex is its genetic and physiological correlates. Among the latter there are increasingly 82 

compelling data supporting the involvement of immunobiology in MDD. However, the 83 

mechanisms underpinning this relationship remain unclear. Peripheral blood measures 84 

constitute the bulk of evidence with consistent meta-analytic data implicating raised 85 

proinflammatory cytokines. The most comprehensive genome-wide association study 86 

(GWAS) to date on MDD used 7 major cohorts and identified 44 independent loci and 153 87 

genes1. Forty-five of these were in the extended major histocompatibility complex (MHC), 88 

which is central to acquired immunity and to leukocyte interactions. 89 

Whole-transcriptome studies offer another variant of genome-wide search for disease-90 

related mechanisms by measuring mRNA expression levels of each gene in a relevant 91 

tissue. RNA sequencing (RNA-seq) uses next-generation sequencing to provide a 92 

quantitation of RNA or gene expression. Recent studies have used this method in MDD. One 93 

of the largest examined a total sample of 922 people (463 with MDD and 459 health 94 

controls) and sequenced RNA from whole blood2. A relatively small number of genes were 95 

found to be associated with MDD (29) at a very relaxed false discovery rate (FDR) threshold 96 

of 0.25. With the more customary and restrictive FDR threshold of 0.05, no significant genes 97 

were found. They also showed modest enrichment for the IFN α/β pathway, which included 98 

three significant genes at FDR<0.25.  99 

A number of potential mechanisms have linked immunobiological changes to affective 100 

neurobiology. Among these is the accelerated biological ageing seen in MDD. Immune cell 101 

senescence has a well-documented effect on both epigenome and transcriptome3. MDD has 102 

also been linked to the senescence associated secretory phenotype (SASP), a dynamic 103 

secretory molecular pathway indicative of cellular senescence4. This speaks to a more 104 

elaborate biology linking cell biology, transcriptome and inflammatory proteins produced by 105 

the cell. 106 
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The cellular source of immunobiological markers in depression remains a key unanswered 107 

question. PBMCs are a key source of peripheral cytokines and pre-clinical models have 108 

suggested some PBMC subsets can enter the brain and contribute to onset of sickness 109 

behaviour in the context of stress. Monocytes recruited to the brain have been linked to 110 

behavioural changes associated with anxiety and with direct effects on neuronal dendritic 111 

spine remodelling linked to cognitive deficits5,6,7.  Similarly, CD4+ T cells have been to linked 112 

to stress-related behavioural changes via mitochondrial fission leading to xanthine 113 

upregulation and subsequent oligodendrocyte proliferation in the amygdala8.  114 

Given the weight of the preclinical evidence suggesting a role for PBMCs, we aimed to 115 

explore the transcriptomic profile using RNA-seq in PBMCs in a clinical sample of people 116 

with various levels of depression and treatment response and compare with that in healthy 117 

controls.  118 

We aimed to answer the following research questions. 119 

1) Is there evidence of differential gene expression between healthy controls and MDD 120 

or between healthy controls and sub-types of MDD? 121 

2) Is there evidence of elevated immune ageing MDD compared to healthy controls? 122 

 123 

 124 

  125 
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Methods 126 

 127 

Participants. This was a non-interventional study, conducted as part of the Wellcome Trust 128 

Consortium for Neuroimmunology of Mood Disorders and Alzheimer’s disease (NIMA). 129 

There were five clinical study centres in the UK: Brighton, Cambridge, Glasgow, King’s 130 

College London, and Oxford. All procedures were approved by an independent Research 131 

Ethics Committee (National Research Ethics Service East of England, Cambridge Central, 132 

UK; approval number 15/EE/0092) and the study was conducted according to the 133 

Declaration of Helsinki. All participants provided informed consent in writing and received 134 

£100 compensation for taking part. 135 

 136 

Sample and eligibility criteria. We recruited four groups of participants: treatment-resistant 137 

depression, treatment-responsive depression, untreated depression, and healthy volunteers.  138 

Eligibility criteria can be viewed in full in Supplementary Information (Supplementary Table 139 

1). 140 

Patients were assigned to one of three subgroups or strata, per protocol:  141 

 142 

(i) treatment-resistant (DEP+MED+) patients who had total Hamilton Depression 143 

Rating Scale (HAM-D) score > 13 and had been medicated with a 144 

monoaminergic drug at a therapeutic dose for at least six weeks;  145 

(ii) treatment-responsive (DEP-MED+) patients who had total HAM-D < 7 and had 146 

been medicated with a monoaminergic drug at a therapeutic dose for at least six 147 

weeks; and  148 

(iii) untreated (DEP+MED-) patients who had HAM-D > 17 and had not been 149 

medicated with an antidepressant drug for at least six weeks.  150 

 151 

Questionnaire assessments. Psychological symptoms and childhood adversity were 152 

assessed by administration of questionnaires as previously described9 (see Supplementary 153 

Information). Baseline depression severity was rated using the 17-item HAM-D. 154 

  155 

Sampling and isolation of PBMCs 156 

Whole blood was collected in K2EDTA tubes (BD, USA) by peripheral venepuncture and 157 

allowed to cool to room temperature for a minimum of 45 minutes. PBMCs were collected 158 

from the interphase following density gradient centrifugation. RNA was extracted using the 159 

RNeasyMini Kit (Qiagen, Germany) as per the manufacturer’s instructions. RNA was eluted 160 

in 50ul RNase-free H2O and stored at -80°C before being sent for sequencing.  161 

 162 
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 163 

RNA-sequencing and processing.  164 

PBMC samples were taken from four separate population groups as follows: 44 healthy 165 

controls, 94 MDD treatment-resistant, 47 MDD treatment-responsive, 46 MDD untreated 166 

patients. All PBMC samples had an RNA Integrity Number (RIN) ≥ 8 and were analysed for 167 

gene expression levels by RNA-Seq to an average depth of 54.5 million read pairs. Reads 168 

were trimmed using Cutadapt 1 (version cutadapt-1.9.dev2)10. The reference used for 169 

mapping was the Homo sapiens genome from Ensembl, assembly GRCh38, annotation 170 

version 84. Reads were aligned to the reference genome using STAR 2 (version 2.5.2b)11. 171 

Reads were assigned to features of type ‘exon’ in the input annotation grouped by gene_id 172 

in the reference genome using featureCounts 3 (version 1.5.1). Strandedness was set to 173 

‘reverse’ and a minimum alignment quality of 10 was specified. After filtering for only protein 174 

coding genes, we observed a median of 40 million exonic aligned reads per sample (>85%). 175 

 176 

RNA-sequencing differential expression analysis. Differential expression analysis was 177 

performed using DESeq2 (version 1.18.1)12. The count matrix was initially filtered to include 178 

only coding genes, with a mean of > 1 read per sample. For the comparisons of binary 179 

clinical covariates (e.g. gender, tobacco) one group was compared to the other. For 180 

continuous clinical covariates (e.g. age, BMI) the patients in the lower quartile were 181 

compared to those in the upper quartile. No additional covariates were used in the DEseq2 182 

model when comparing clinical covariates. For the comparisons between HC group and the 183 

MDD groups the 15 clinical covariates (Figure 1b) identified as having > 5 significant 184 

associated genes (adjusted p < 0.01) and “batch” were included as covariates in the model. 185 

To control for extreme outlier values typical in large and heterogeneous datasets, a Cooks 186 

cut-off of 0.2 was used. All other parameters were left to default. Significance was set at an 187 

adjusted p of < 0.01. For full details see the Supplementary Information. 188 

 189 

 190 

Deconvolution analysis. The per sample distribution of cell types was estimated by 191 

Cibersort13, using the Deseq2 normalised expression values (no additional covariates) as the 192 

mixture file, and the LM22 (22 immune cell types) signature gene file. Quantile normalisation 193 

was disabled. All other parameters were left to default. 194 

 195 

RNA-sequencing randomised cases and controls. The 231 samples were randomised 196 

using the r function “sample” (without replacement), and were then split into two random 197 

groups, one with 44 samples and one with 187 samples (in line with the real group 198 

distribution and n). These two groups were then differentially compared using DESeq2 as 199 
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described above. For full details see the Supplementary Information (refs 14,15). 200 

 201 

Co-expression analysis. The co-expression network cluster analysis was based on the 202 

analysis performed by Le et al16 and used their code as a template. The method is detailed 203 

in full in Supplementary Information. Briefly, a correlation tree was generated from the 204 

expression matrix based on Pearson correlation coefficients and a topological overlap 205 

matrix. Clusters were identified by cutting the tree at a height of 0.95. To identify any clusters 206 

with significantly different gene expression between HC and MDD samples, a metagene for 207 

each cluster was generated using per gene Z-scores. For each cluster the mean expression 208 

z-score across all genes in that cluster was calculated, for each sample. The resultant 209 

scores for the HC samples were compared to that of the MDD samples using an unpaired, 210 

two-tailed T-test. p values were adjusted using the Benjamini-Hochberg procedure. 211 

 212 

Expression microarray analysis. The GSK-HiTDiP MDD17 microarray data was 213 

downloaded from GEO (GSE98793) and the 22 samples that were reported to have failed 214 

QC were removed. The expression data was then quantile normalised using Limma18. 215 

Unannotated probe sets were removed. To control for genes represented by several 216 

different probe sets, Jetset19 was used to select the probe set for each gene with the highest 217 

Jetset score. This resulted in 20,191 valid probe sets. Differential expression analysis was 218 

performed between the HC and MDD groups using Limma, and included batch, age, gender 219 

and anxiety as additional covariates. All other parameters were left to default. The quantile 220 

normalised expression values were corrected for batch using Limmas “removeBatchEffect” 221 

function. 222 

 223 

RNA-sequencing biological age meta-genes. A list of PBMC age associated genes was 224 

identified by using Deseq2 to compare the samples of lowest to highest quartile of age, as 225 

described above. Next the expression values (non-corrected but outlier capped) for the 226 

PBMC age related genes were scaled (per gene z-score), with the sign inversed for genes 227 

that were downregulated with age. Finally, the mean scaled value (across all sig genes) per 228 

sample was calculated. This value was considered as the samples biological age. The 229 

samples biological age was then plotted against the samples chronological age, and the 230 

spearman correlation value determined. To optimise this metric, we repeated over a range of 231 

adjusted p and log2fold change cut-offs and selected the combination with the greatest 232 

correlation with patient age. For full details see the Supplementary Information. 233 

 234 

  235 
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Results 236 

 237 

Quality control and identification of confounding variables. 238 

The NIMA samples were deeply sequenced and aligned to the human genome, exhibiting a 239 

high per sample alignment and feature counts rate (> 85% alignment, median of 40 million 240 

exonic reads, per sample). Deconvolution analysis13 showed the distributions of cell types to 241 

be consistent between the samples and typical of PBMCs (Figure 1A). Deseq2 Differential 242 

expression analysis identified fifteen potentially confounding clinical covariates (each with > 243 

5 significant genes each at adjusted p < 0.01) from a panel of 87 (Figure 1B), with Age, 244 

Gender and BMI showing the strongest effects by an order of magnitude (1,244, 625 and 245 

203 significant genes respectively). The expression profiles for the Age, Gender and BMI 246 

associated genes were consistent across all samples (Figure 1C) and the most differential 247 

genes (Figure 1D) were consistent with the relevant biology (e.g. the most significant gender 248 

related genes were UTX and HYA which are X and Y linked 20,21). We therefore concluded 249 

firstly that the data was of a high quality both technically and experimentally, and secondly 250 

that, given the size of the observed effect in the primary data, it was appropriate to control 251 

for the fifteen confounding clinical covariates in the downstream analysis. 252 

 253 

There is no robust evidence for a differential expression signature between HC and 254 

MDD in PBMCs 255 

We used differential expression analysis to characterise any differences between HC and 256 

each of the MDD groups (MDD, treatment-resistant, treatment-responsive and untreated), 257 

using an adjusted p cut-off of < 0.01, and including all 15 confounding clinical covariates plus 258 

batch as interaction terms. One significantly different gene was evident between HC and 259 

MDD (HIST1H2AE, adjusted p = 0.008) and none between HC and MDD responders, MDD 260 

resistant or MDD untreated. We additionally tried reduced differential models - without BMI, 261 

with Age, BMI and Gender only and with Batch only, however it made no meaningful 262 

difference to these results. Observing only one significant gene suggested that either 1) the 263 

adjusted p-value threshold was too strict, or 2) the adjusted p-value threshold was 264 

reasonable, and we were observing type I error at HIST1H2AE. When we viewed the per 265 

sample expression at HIST1H2AE (Figure 2A) it showed the difference in expression 266 

between HC and the MDD groups to be highly subtle. This was also true for the two genes of 267 

lowest p-value (non-significant) for each of the four comparisons (Figure 2A-D).  268 

 269 

Figure 2E highlights the two most significant genes from each of two comparisons of 270 

randomised cases and controls. Randomised groups are labelled G1-G4. At the 250 most 271 

highly significant genes for each comparison the distributions of p-values were almost 272 
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identical to that of randomised cases and controls (Figure 2F). This was in stark contrast to 273 

age, gender and BMI. These observations suggested that relaxing the adjusted p-threshold 274 

would not increase the number of true positives. We next estimated the number of false 275 

positives expected in this dataset at a range of adjusted p thresholds by generating 50 276 

differential expression comparisons using randomised cases and controls and taking the 277 

median and maximum numbers of significant genes (Figure 2G). The results showed that 278 

we would expect on average three false positives at adjusted p < 0.01, suggesting that it 279 

was not unlikely for HIST1H2AE to be false positive in this case. Though it is difficult to 280 

prove a negative outright, the balance of probabilities suggest that the data more strongly 281 

supported the absence of a HC vs MDD differential expression signature in PBMCs. 282 

 283 

There is no evidence for clusters of highly correlating genes that are altered in MDD 284 

compared to HC. 285 

We next considered the possibility that a HC vs MDD differential signature in PBMCs could 286 

be too subtle to detect using single gene interactions. This could occur for example if it 287 

originated from a subset of cells within the population. Several transcriptomic studies have 288 

shown 22-25 that subtle signatures can be reliably detected by collapsing clusters of highly 289 

correlating genes into representative metagenes for differential expression analysis. This 290 

acts to reduce noise and multi-sample correction stringency at the expense of single gene 291 

resolution. To do so we removed genes with low expression (mean > 10, in the Combat 292 

corrected data) or with exceptionally high coefficient of variability (standard deviation / mean 293 

< 0.15), to reduce the chance that correlations could be driven by technical variability. Next, 294 

we generated a gene co-expression matrix from the remaining 5,356 genes and plotted it as 295 

a hierarchically clustered heatmap (Figure 3A). The heatmap showed clear structure and 296 

confirmed the existence of several clusters of highly correlating genes. To identify the 297 

correlation clusters, we used the method as described in Le et al16 (Supplementary 298 

Information). We identified 48 gene clusters with at least 50 genes in each. To validate these 299 

clusters, we plotted them as expression heatmaps (Figure 3B), which confirmed the highly 300 

correlating nature of the genes in each. Next, we set out to determine whether the 301 

expression at cluster metagenes differed between HC and MDD. We generated per cluster 302 

metagenes and compared the metagene expression for HC samples to MDD samples. We 303 

observed no significant difference (p < 0.25, unpaired, two tailed t-test with Benjamini-304 

Hochberg correction) between HC and MDD in any cluster (data not shown). Boxplots of 305 

the six clusters of lowest p-value (non-significant) highlighted the absence of any convincing 306 

biological differences at each cluster (Figure 3C). We therefore concluded that there was no 307 

evidence for clusters of highly correlating genes that are altered in MDD compared to HC in 308 

this dataset. 309 
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 310 

False positive genes were not random in PBMC data.  311 

We observed in our 50 differential comparisons involving randomised cases and controls 312 

that the most significant genes included genes of immune function (such as TNF and IFIT2) 313 

more frequently than we expected. This raised the possibility that false positives genes might 314 

preferentially be immune genes when looking at PBMCs.  315 

 316 

To test this hypothesis, for each gene we took the mean p-value across the fifty randomised 317 

comparisons, then selected the 50 most highly significant genes by mean p-value. We ran 318 

over representation analysis on the genes (using DAVID with GO biological processes and a 319 

background of the PBMC expressed coding genes) and found nine significantly enriched (< 320 

5% FDR) gene ontologies (Supplementary Table 2). All were immune related with the top 321 

three being “response to virus”, “type I interferon signaling pathway” and “cellular response 322 

to interleukin-1” and included the genes IFIT1, IFIT2, IFIT3 and CCL8. As we used a 323 

background specific to PBMCs, this enrichment was relative to PBMCs and not other cell 324 

types. Thus, was suggestive that genes of these immune functions are more prone than 325 

other classes of genes to the type of stochastic noise that can result in a false positive. 326 

Therefore, indicating that false positives are not random in these data and show a significant 327 

bias towards certain immune functions. This further supported that it would not be 328 

reasonable to relax the adjusted p threshold when comparing HC to MDD, as it would likely 329 

introduce an erroneous immune signal that could be confused for bona-fide.  330 

 331 

Relative to patient age biological age is significantly greater in MDD patients than HC 332 

To explore whether MDD patients showed increased biological ageing compared to HC, we 333 

estimated the biological age of each sample by taking the mean expression value (z-score) 334 

across all the age-related genes (see Methods and Supplementary Methods for full details) 335 

and plotted it against chronological age (Figure 4A). As expected, we observed a strong 336 

positive and significant linear correlation between biological and chronological age 337 

(Spearman Correlation Coefficient (SCC) = 0.72, p < 0.01). To determine whether MDD or 338 

HC patients showed altered biological ageing (relative to chronological age) we performed a 339 

linear regression using the model biological age ~ chronological age (Figure 4A). Next, we 340 

counted the number of HC or MDD patients above or below the regression line and found a 341 

subtle (HC -  26 below (59%), 18 above (41%), MDD – 78 below (42%), 109 above (58%)) 342 

but significant difference (p <0.05, Fisher’s exact test). To illustrate the difference in 343 

distribution, we used the residuals – i.e. the distance along the y-axis of each dot from the 344 

regression line (Figure 4B). Finally, to validate the result we replicated the analysis using 345 

the GSK-HiTDiP MDD whole blood microarray data. The results were comparable to PBMCs 346 
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(Figure 4A-B), with the MDD patients showing significantly elevated biological ageing 347 

relative to chronological ageing (HC -  35 below (61%), 22 above (39%), MDD – 48 below 348 

(42%), 65 above (58%)),  p<0.05, Fisher’s exact test). 349 

 350 

 351 

Discussion 352 

In this large, well-controlled and deeply sequenced data-set, we find no evidence for a 353 

differential expression signature in PBMCs between HC and MDD – as a whole or in the 354 

subtypes described; nor is there evidence for clusters of highly correlating genes that are 355 

altered in MDD compared to HC. We also found that biological age relative to chronological 356 

age is significantly greater in MDD patients than in HC. 357 

 358 

Our differential analysis showed only one gene to differ significantly (adjusted p < 0.01) 359 

between HC and MDD and none between HC and MDD sub-groups. Further investigation 360 

concluded that, given the concurrence between the distribution of p values for random 361 

samples and the HC and MDD group comparisons, the very low difference in expression 362 

between HC and MDD groups at these genes, and the numbers of expected false positives 363 

at this adjusted p-threshold, this was most likely a false positive, unlikely to be biologically 364 

meaningful, and that there was no justification for relaxing the p value threshold in this data. 365 

To test whether any HC vs MDD signature might be too subtle to detect at the single gene 366 

level, we generated 48 gene co-expression clusters and compared the metagenes between 367 

HC and MDD. We observed no significant differences in any cluster, or any convincing 368 

biological differences. We therefore concluded that the data more strongly supported the 369 

absence of a HC vs MDD differential expression signature in PBMCs. 370 

 371 

In addition, when we randomised cases and controls fifty times and performed over 372 

representation analysis, we found the most significant false positives to not be random but to 373 

have a significant immune phenotype, including “response to virus” and “type I interferon 374 

signalling pathway”. This further justified not relaxing the adjusted p threshold in this data, as 375 

doing so would likely introduce an erroneous immune signature that could be interpreted as 376 

bona fide. 377 

 378 

These results are, in many ways, comparable to previous transcriptomic studies in whole 379 

blood which also found no signature at adjusted p < 0.05 using larger sample numbers2. One 380 

strength of our approach is that we control for age, gender and BMI in our sample selection. 381 

In our opinion, we could not justify relaxing our adjusted p threshold. However, other studies 382 

identified signatures at adjusted p values ranging from p < 0.1 to p < 0.25.  383 
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 384 

A further strength of our study is that we present the per sample expression values for all 385 

genes of interest. We would argue that as other data2,26 presented signatures that were 386 

detectable only at adjusted p > 0.05 using around 1,000 samples each, these signatures are 387 

likely to be subtle. However, the omission of per sample expression data at the genes of 388 

interest, makes it difficult to establish how subtle and so it is difficult to form a robust opinion 389 

of how biologically meaningful these expression differences are. 390 

 391 

As mentioned in the introduction, evidence for an inflammatory protein signature in MDD is 392 

substantial. This is particularly the case for the proinflammatory cytokine IL-6, with several 393 

meta-analyses confirming this. There is also a longitudinal association between MDD and IL-394 

627, yet the tissue source of cytokines remains unclear. Our data strongly suggest that in this 395 

sample of MDD, the source of cytokines is unlikely to be PBMCs. Reflecting on other 396 

potential sources; neutrophils are increasingly seen as important for fine regulation of the 397 

immune-inflammatory response, outnumbering PBMCs by one or two orders of magnitude28. 398 

Neutrophils produce a large variety of chemokines and cytokines upon stimulation and can 399 

differentially switch phenotypes, displaying distinct subpopulations in different 400 

microenvironments29. If neutrophils confer the cytokine signature, it would be expected that 401 

gene expression studies of whole blood would capture their contribution. Another potential 402 

cell source are endothelial cells. These are ubiquitous in both brain and periphery. 403 

Recently, Blank et al demonstrated a specific role in relation to aspects of depression-404 

relevant behaviour in mice by showing that downstream signalling of brain endothelial cells 405 

induces fatigue and cognitive impairment via impaired neurotransmission in the 406 

hippocampus30. However, assessing the individual contribution of endothelial cells in 407 

humans would be technically very challenging. Nevertheless, considering findings presented 408 

in a recent GWAS of MDD, it is important to consider that peripheral tissues may have less 409 

of an overall contribution than the brain. Wray et al integrated their GWAS data with 410 

functional genomic data, comparing their findings with bulk tissue RNAseq from genotype 411 

tissue expression (GTEx)1. Here only brain tissue showed enrichment, with the areas 412 

showing the most significant enrichment being cortical. This was in contradistinction to other 413 

tissue types including whole blood. 414 

 415 

The issue of body mass in MDD is complex. Wray et al found significant positive genetic 416 

correlations with body mass1 and Mendelian randomization (MR) analysis was consistent 417 

with BMI being causal or correlated with causal risk factors for depression. Also, negative 418 

MR results provide important evidence of no direct causal relationship between MDD and 419 
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subsequent changes in BMI. Adipose tissue actively secretes cytokines and obesity is itself 420 

associated with changes in the secretome of adipocytes leading to increased production of 421 

proinflammatory cytokines31. This raises the possibility that adipocytes may be a potential 422 

source of inflammatory cytokines acting as a tissue “reservoir”. Careful consideration should 423 

be applied when deciding whether BMI should be treated as a confounding variable in MDD 424 

or incorporated as part of disease pathogenesis.    425 

 426 

We demonstrated that MDD samples showed significantly elevated biological age compared 427 

to HC. Although significant, the effect was relatively subtle, comparable to that identified in 428 

CpG methylation data32. Diniz et al (2019) found MDD exhibited greater molecular 429 

senescence in young and middle-aged adults by examining the impact of MDD on the 430 

senescence associated secretory phenotype (SASP), a dynamic secretory molecular 431 

pathway indicative of cellular senescence4. More severe episodes of depression present 432 

with higher SASP indices and a significant interaction between current MDD episode and 433 

overweight, thus comorbid current MDD plus being overweight had the highest SASP index. 434 

While we have not correlated with direct measures of senescence such as SASP indices or 435 

epigenetic markers, we would argue that our finding is consistent with the literature and 436 

points to a potentially interesting biology.  437 

 438 

The strengths of this study lie in the high-quality RNA and large clinical dataset, sequenced 439 

to an average depth of > 54.5 million reads, which aligned with >70% of the reads mapping 440 

to exons. Thus, a deeply sequenced, well-controlled clinical sample. The limitations of this 441 

study relate to heterogeneity inherent in MDD. Within our study, there was also some 442 

heterogeneity within the assessing of prior medications as this was done using retrospective 443 

self-reporting, albeit based on a comprehensive structured instrument completed by an 444 

interviewer. The lack of medical comorbidities was an a priori decision and can be seen as 445 

both a strength in removing the potential confound of comorbid inflammatory illness and a 446 

limitation in respect of the typicality of an MDD group. 447 

The age range is relatively narrow and could be seen as a limitation in relation to 448 

interpretation of biological ageing. Lastly, we did not measure cytomeglaovirus (CMV) 449 

serostatus, which has been associated with differences in immune cell profiles33.  450 

 451 

 452 

 453 

Conclusion 454 

This study was a detailed and careful examination of the transcriptomic signal in PBMCs in 455 
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MDD and HCs. The lack of a significant differentiating signal between MDD and HCs was 456 

confirmed by the randomisation of the cases and controls. There was, however, evidence of 457 

elevated biological ageing relative to patient age in MDD vs HC. Future work should 458 

endeavour to expand clinical sample sizes, reduce MDD heterogeneity and account for 459 

confounds from the outset. Advances in RNA-seq at the level of the single cell may help 460 

uncover further, more subtle differences. However, the subtlety of any signature mitigates 461 

against convincing use as a diagnostic or predictive biomarker, and tissue enriched data is 462 

strongly indicative of brain tissue being the most informative in this regard. 463 

 464 
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 617 
Figure 1. Quality control and identification of confounding variables. A) Distribution of 618 

immune cell types across all 231 PBMC samples. Cell types are shown on the x-axis, and 619 

the percentage of the cell population that is described by each cell type is shown on the y-620 

axis. Each box represents all 231 samples. B)  Bar chart showing the number of significantly 621 

different genes (DESeq2 adjusted p value < 0.01) across all clinical parameters with at least 622 

5 significant genes. C) Gene expression heatmaps highlighting the size and consistency of 623 

the confounding effects of Age (left), Gender (middle), and BMI (right) on the PBMC RNA-624 

seq data. Samples are given by column and differentially expressed genes (adjusted p < 625 

0.01) by row. Colour intensity indicated row scaled (z-score) gene expression, with blue as 626 

low and yellow as high. D) Gene expression boxplots of the most significantly different gene 627 

between youngest and oldest (ROBO1), male and female (ZFY), and lowest and highest 628 

BMI (CA1). Sample groups are shown on the x-axis and gene expression values (Corrected 629 

DESeq2 normalised counts) on the y-axis. 630 

 631 

Figure 2. There is no evidence for a classical differential expression signature 632 

between HC and MDD in PBMCs. A) Gene expression boxplots highlighting the most 633 

significantly different genes between HC and MDD. Sample groups are shown on the x-axis 634 
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and gene expression values (DESeq2 normalised counts) on the y-axis. B) As A) however 635 

for HC vs the MDD treatment-resistant group. C) As A) however for HC vs the MDD 636 

treatment-responsive group. D) As A) however for HC vs the MDD untreated group. E) As A) 637 

however for the two most significant genes from each of two comparisons of randomised 638 

cases and controls. Randomised groups are labelled G1-G4. F) Distribution of differential 639 

expression p-values highlighting the consistency between HC vs MDD and randomised 640 

cases and controls. The 250 most significant genes for each comparison are shown on the 641 

x-axis (ranked from lowest to highest) and the p value (as -log10) on the y-axis. Lines are 642 

given for the three confounding variables Gender (‘male vs female’), Age (‘youngest vs 643 

oldest’), BMI (‘lowest vs highest’), HC vs the four MDD types (MDD, MDD treatment-644 

resistant, MDD treatment-responsive and MDD untreated), and for the average of 50 645 

comparisons of randomised cases and controls (‘random’). G) Bar charts highlighting the 646 

number of differentially expressed genes that were expected to be false positives by 647 

adjusted p threshold, based on 50 iterations of randomised cases and controls. The adjusted 648 

p threshold is given on the x-axis and the median (left) and maximum (right) number of 649 

expected false positives on the y-axis.  650 

 651 

 652 

Figure 3. There is no evidence for clusters of highly correlating genes that are altered 653 

in MDD compared to HC. A) Gene co-expression heatmap highlighting the presence of 654 

clusters of highly correlating genes in PBMC data. The x and y-axis show the 5,356 highly 655 

correlating genes. The colour intensity indicates the spearman correlation value between two 656 

given genes with blue as low and yellow as high. To highlight the presence of co-expression 657 

clusters the heatmap has been hierarchically clustered on both axes using Spearman 658 

distances, with UPMGA agglomeration and mean reordering. B) Gene expression heatmaps 659 

for six gene co-expression clusters, highlighting the consistency between the expression 660 

pattern of all genes within a cluster across all 231 samples. Samples are given by column 661 

and cluster genes by row. Colour intensity indicated row scaled (z-score) gene expression, 662 

with blue as low and yellow as high. C)  Gene expression boxplots for the six clusters with 663 

the lowest p-value (T-test) for HC vs MDD. Showing sample group on the x-axis and the 664 

cluster metagene expression (mean z-score) on the y-axis. All clusters are non-significant 665 

with adjusted p > 0.25. 666 

 667 
 668 
Figure 4. Relative to patient age biological age is greater in MDD patients than in HC. 669 

A) Scatterplots for PBMC RNA-seq data (left) and whole blood expression microarray data 670 

(right), showing the correlation between chronological age (x-axis) and biological age (y-671 
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axis) as defined by the mean expression z-score across all age-related genes, per sample. A 672 

linear regression line, alongside the Spearman Correlation Coefficient (SCC) and associated 673 

p-value is shown. B) Density plots of the residuals from the linear regressions in A). A 674 

positive residual indicates a sample above the regression line and negative below.  675 

 676 

 677 


