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De novo exploration and self-guided learning of potential-
energy surfaces
Noam Bernstein1, Gábor Csányi2 and Volker L. Deringer 2,3*

Interatomic potential models based on machine learning (ML) are rapidly developing as tools for material simulations. However,
because of their flexibility, they require large fitting databases that are normally created with substantial manual selection and
tuning of reference configurations. Here, we show that ML potentials can be built in a largely automated fashion, exploring and
fitting potential-energy surfaces from the beginning (de novo) within one and the same protocol. The key enabling step is the use
of a configuration-averaged kernel metric that allows one to select the few most relevant and diverse structures at each step. The
resulting potentials are accurate and robust for the wide range of configurations that occur during structure searching, despite only
requiring a relatively small number of single-point DFT calculations on small unit cells. We apply the method to materials with
diverse chemical nature and coordination environments, marking an important step toward the more routine application of ML
potentials in physics, chemistry, and materials science.
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INTRODUCTION
Atomic-scale modeling has become a cornerstone of scientific
research. Quantum-mechanical methods, most prominently based
on density-functional theory (DFT), describe the atomistic
structures and physical properties of materials with high
confidence;1 increasingly, they also make it possible to discover
previously unknown crystal structures and synthesis targets.2 Still,
quantum-mechanical material simulations are severely limited by
their high computational cost.
Machine learning (ML) has emerged as a promising approach to

tackle this long-standing problem.3–12 ML-based interatomic
potentials approximate the high-dimensional potential-energy
surface (PES) by fitting to a reference database, which is usually
computed at the DFT level. Once generated, ML potentials enable
accurate simulations that are orders of magnitude faster than the
reference method. They can solve challenging structural problems,
as has been demonstrated for the atomic-scale deposition and
growth of amorphous carbon films,13 for proton-transfer mechan-
isms,14 or dislocations in materials,15,16 involving thousands of
atoms in the simulation. More recently, it was shown that ML
potentials can be suitable tools for global structure searches
targeting crystalline phases,17–20 clusters,21–24 and
nanostructures.25

Assembling the reference databases to which ML potentials are
fitted is currently mostly a manual and laborious process, guided
by the physical problem under study. The first artificial neural
network (NN)-type potential for materials3 was made by
enumerating known crystal structures for silicon and used to
describe high-pressure phase transitions.26,27 To incorporate
vacancies, surfaces, and so on, hierarchical databases for transition
metals have been built that start with simple unit cells and
gradually add relevant defect structures;28,29 liquid and amor-
phous materials can be described by iteratively grown databases
that contain relatively small-sized MD snapshots.30–33 A “general-
purpose” Gaussian approximation potential (GAP) ML model for
elemental silicon was recently developed34 that can describe

crystalline phases with meV-per-atom accuracy, treat defects,
cracks, and surfaces,35 and generate amorphous silicon structures
in excellent agreement with experiments.36 Despite their success
in achieving their stated goals, none of these potentials are
expected to be even reasonable for crystal structures not included
in their databases, say, hitherto undiscovered phases that only
become stable at very high pressures.
In contrast, structure searching (i.e., a global exploration of the

PES) can be a suitable approach for finding structures to be
included in the training databases in the first place.18–20,37 The
principal idea to explore configuration space with preliminary ML
potentials is well established: since the first high-dimensional ML
potentials have been made, it was shown how they can be refined
by exploring unknown structures,3,26,31 and “on the fly” schemes
were proposed to add required data while an MD simulation is
being run.5,38–40 We have previously shown that the PES of boron
can be iteratively sampled without prior knowledge of any crystal
structure involved; we called the method “GAP-driven random
structure searching” (GAP-RSS),18 reminiscent of the successful ab
initio random structure-searching (AIRSS) approach.41,42 Subse-
quently, we demonstrated, by way of an example, that the crystal
structure of black phosphorus can be discovered by GAP-RSS
within a few iterations, and we identified several previously
unknown hypothetical allotropes of phosphorus.19

In the context of ML potential fitting, the so-called “active
learning” schemes that detect extrapolation (indicating when the
potential moves away from known configurations) are currently
receiving much attention. A query-by-committee active-learning
approach was suggested in 2012 by Artrith and Behler: two NN
potential fits are made to the same database, and if their
prediction differs for a given (new) structure, this structure needs
to be added to the database.43 More recently, Jinnouchi et al.
demonstrated how ab initio molecular dynamics (AIMD) simula-
tions of specific systems can be sped up by active learning of the
computed forces (in a modified GAP framework), using the
predicted error of the Gaussian process to select new data points
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and to improve the speed of AIMD.38,40 In the context of structure
exploration, Shapeev and coworkers employed moment tensor
potentials44 with active learning45 to generate ML potentials,20,46

and E and coworkers described a generalized active-learning
scheme for deep NN potentials.47 So far, these studies mainly
focused on specific intermetallic systems, namely, Al–Mg47 and
Cu–Pd, Co–Nb–V, and Al–Ni–Ti.46. Furthermore, Podryabinkin
et al.20 showed that their approach can identify existing and
hypothetical boron allotropes.
In this work, we present an efficient and unified approach for

generating reference databases for fitting ML potentials, exploring
structural space from the beginning (de novo) by ML-driven
searching and similarity measures, all without any prior knowl-
edge of what structures are or are not relevant. In contrast with
continuous active learning, our aim is to converge to a potential
that can describe a wide range of configurations without the need
for additional fitting. We demonstrate the ability to cover a broad
range of structures and chemistries, from graphite sheets to a
densely packed transition metal. Our work provides conceptual
insight into how computers can discover structural chemistry
based on data and similarity measures alone, and it paves the way
for a more routine application of ML potentials in material
discoveries.

RESULTS
A unified framework for exploring and fitting structural space
The overarching aim is to construct a ML potential with minimal
effort, both in terms of computational resources and in terms of
input required from the user. In regard to the former, we use only
single-point DFT computations to generate the fitting database.18

In regard to the latter, we define general heuristics wherever
possible, such that neither the protocol nor its parameters need to
be manually tuned for a specific system. The ML architecture to
which we couple our method is based on a hierarchical
combination of two-, three-, and many-body descriptors,32 and it
uses GAP as the regressor.4 The remaining two parameters that
need to be set by the user are a “characteristic” distance and
whether the material is primarily covalent or metallic. For the
distance, we choose tabulated covalent (for C, B, and Si)48 or
metallic (for Ti) radii, depending on the nature of the system.
These define the volume of the initial structures and the cutoffs
for the ML descriptors (Methods section).
Our approach is based on an iterative cycle, as shown in the

diagram in Fig. 1a. We generate ensembles of randomized
structures as in the AIRSS framework,41,42 a structure-searching
approach that is widely used in physics, chemistry, and materials
science.49–51 In the first iteration, we generate 10,000 initial
structures, from which we select the N most diverse ones using
the leverage-score CUR algorithm.52 In the context of PES models,
the CUR algorithm was proposed53 and then used29,32,34 for
selection of sparse (representative) points for Gaussian process
regression, and also proposed for selection of training configura-
tions.54 The distance between candidate structures is quantified
by the Smooth Overlap of Atomic Positions (SOAP) descriptor,55

which has been widely used in GAP fitting32,34 and in structural
analysis.56–58 While SOAP is normally used to discriminate
between pairs of environments of individual atoms, we here use
a configuration-averaged SOAP descriptor57 that compares entire
unit cells to one another (Methods section). We find that selecting
the most representative structures is critical, because we can only
evaluate a small number (≪ 10,000) with DFT. In addition, the
starting configurations include dimers in vacuum at a wide range
of bond lengths; this serves to capture the exchange repulsion at
very short interatomic distances, and thereby to make the
potentials more robust.32

With the starting configurations in hand, we perform single-
point DFT computations and fit an initial potential to the resulting
data; in subsequent iterations, we extend the database and
thereby refine the potential.18 In each iteration, we start from the
same number of new random initial structures, and minimize their
enthalpy by using the GAP from the previous iteration. We then
select the N most relevant and diverse configurations from the full
set of configurations seen throughout the minimization trajec-
tories, for which we employ a combination of Boltzmann-
probability biased flat histogram sampling (to focus on low-
energy structures) and leverage-score CUR (to select the most
diverse structures among those), as illustrated in Fig. 1b. These
selected configurations are evaluated by using single-point DFT
calculations and added to the fitting database.
The iterative procedure runs until the results are satisfactory.

Here, we terminate our searches after 2500 DFT data points have
been collected, and our results show this to be sufficient to
discover and describe all structures discussed in the present work.
Other quality criteria, such as those based on the distribution of
energies in the database,18 might be defined as well; the
generality of our approach is not affected by this choice.

Diversity-based selection
We demonstrate the method for boron, one of the most
structurally complex elements.59 With the exception of a high-
pressure α-Ga-type phase, all relevant boron allotropes contain B12
icosahedra as the defining structural unit.59 Boron has been the
topic of structure searches with DFT60–63, and more recently, with
ML potentials for bulk allotropes18,20 and gas-phase clusters.22 Our
previous work showed how the PES for boron can be fitted in a ML
framework,18 leading to an interatomic potential able to describe
the different allotropes. However, at that time, we generated and
fed back 250 cells per iteration (without further selection), and
added the structure of α-B12 manually at a later stage.18

Our new protocol “discovers” the structure of α-B12 in a self-
guided way, as shown in Fig. 2. The figure compares the
performance of our selection procedure with alternatives: (i)
random selection and (ii) using CUR but on the matrix of SOAP
vectors rather than similarity kernels (see Methods section for
details). The first of these, random selection, improves the
database much less after the first few iterations, and ends up
with the highest error (gray in Fig. 2). The second, which uses CUR
but neglects the nonlinear aspects of the similarity kernel, initially
performs well, but soon stops reducing the error (green). Note that
this algorithm is exactly the same as the one used in potential
fitting to select representative environments (in that case, even
computing the complete similarity kernel matrix quickly becomes
impractical). The use of CUR on the similarity kernel for selecting
structures to be included in the next iteration is shown to be the
most efficient (purple in Fig. 2).
The increasingly accurate description of the B12 icosahedron is

reflected in a gradually lowered energy error, falling below the
10meV/atom threshold with fewer than 2000 DFT evaluations,
and below 4meV/atom once the cycle is completed. This
improvement is best understood by inspecting the respective
lowest-energy structures that enter the database in a given
iteration (Fig. 2).64 The lowest-energy structure at point A already
contains several three-membered rings, but no B12 icosahedra yet.
With one more iteration, there is a sharp drop in the GAP error
(from 175 to 51meV/at), concomitant with the first appearance of
a rather distorted α-B12 structure (B). The final database has seen
several instances of the correctly ordered structure (C).

Learning diverse crystal structures
Our method is not restricted to a particular chemical system. To
demonstrate this, we now apply it to three prototypical materials
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side by side: carbon, silicon, and titanium, which all exhibit
multiple crystal structures.
In carbon (Fig. 3a), both the layered structure of graphite and

the tetrahedral network of diamond are correctly “learned” during
our iterations. For graphite, the energy error reaches a plateau
after only a few hundred DFT evaluations; for diamond, the initial
error is very large, and after a dozen or so iterations, we observe a
rapid drop—concomitant with a drop in the error for the
structurally very similar lonsdaleite (“hexagonal diamond”). The
final prediction error is well below 1meV/atom for the sp3-
bonded allotropes, and on the order of 4 meV/atom for graphite.
We have previously shown that the forces in diamond show
higher locality than those in graphite, making their description by
a finite-ranged ML potential easier,32 given that sufficient training
data are available. We also note that our method captures the
difference between diamond and lonsdaleite very well: its value is
27meV/atom with the final GAP-RSS version, and 28meV/atom
with DFT.
In silicon (Fig. 3b), the ground-state (diamond-type) structure is

very quickly learned, more quickly so than diamond carbon, which
we ascribe to the absence of a competing threefold-coordinated

phase in the case of Si. We further test our evolving potentials on
the high-pressure form, the β-tin-type allotrope (space group I41/
amd), which is easily discovered; the larger residual error for β-Sn-
type than for diamond-type Si is consistent with previous studies
by using a manually tuned potential.34 We also test our method
on a recently synthesized open-framework structure with 24
atoms in the unit cell (oS24),65 which consists of distorted
tetrahedral building units that are linked in different ways, which
the potential has not “seen”. Still, a good description is achieved
after a few iterations.
In titanium (Fig. 3c), a hexagonal close-packed (hcp) structure is

observed at ambient conditions; however, the zero-Kelvin ground
state has been under debate: depending on the DFT method,
either hcp or the so-called ω phase is obtained as the minimum.
Our method clearly reproduces the qualitative and quantitative
difference between the two allotropes (22 meV/atom with the
final GAP-RSS iteration vs. 24 meV/atom with DFT) at the
computational level we use, namely PBEsol.66

Looking beyond the minimum structures, the DFT
energy–volume curves are, by and large, well reproduced by
GAP-RSS; see Fig. 3d–f. There is some deviation at large volumes
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for hcp and ω-type Ti, but this is an acceptable issue as these
regions of the PES are not as relevant, corresponding to negative
external pressure. If one were interested in very accurate elastic
properties, one would choose to include less dense structures by
modifying the pressure parameters (Methods section, Eq. (5)).
Indeed, it was recently shown that a ML potential for Ti, fitted to a
database of 2700 structures built from the phases on which we
test here (ω, hcp, and bcc) and other relevant structures can make
an accurate prediction of energetic and elastic properties.67

Entire potential-energy landscapes
While the most relevant crystal structures for materials are usually
well known and available from databases, we show that our
chemically “agnostic” approach is more general. In Fig. 4, we
present an energy–energy scatter plot for the last set of GAP-RSS
minimizations, evaluated with DFT and with the preceding GAP
version, and again across three different chemical systems. We
survey both the low- and higher-energy regions of the PES—up to

1 eV per atom, which is very roughly the upper stability limit at
which crystalline carbon phases may be expected to exist.68 The
higher-energy regions clearly exhibit a larger error; when
generating a potential for specific crystalline phases, one might
choose to exclude them at a later stage. We specifically do not
exclude high-energy structures, because we aim to generate
potentials that will be useful for future structure searches.
To analyze and understand the outcome of these searches in

structural and chemical terms, we use a dimensionality reduction
technique to draw a two-dimensional structural map. Various
types of SOAP-based maps have been used with success to
analyze structural and chemical relationships in different material
datasets.56,58,69 Here, we use them to illustrate how different
materials (including their allotropes as known from chemistry
textbooks) are related in structural space.
To compare different materials with inherently different

absolute bond lengths, we rescale their unit cells such that the
minimum bond length in each is r0= 1.0 Å, inspired by
approaches for topological analyses of different structures.70 We
then use kernel principal component analysis with a SOAP kernel
to represent the structures in a 2D plane. Figure 5 shows the
resulting plot, in which we have encoded the species by symbols
and the average coordination number by color (coordination
numbers are determined by counting the nearest neighbors up to
1.2 r0).
The results fall within four groups, moving from the left to the

right through Fig. 5. The first group is given by graphite-like
structures; they are threefold coordinated and only carbon
structures (circles) are found there. Roman numerals in Fig. 5
indicate examples, and in this first group, we observe flat (i) and
buckled (ii) graphite sheets. In the second group, we have fourfold
coordinated (“diamond-like”) networks, made up of both carbon
and silicon (recall that we are using a normalized bond length, so
diamond-type carbon, and diamond-type silicon will fall on the
same position in the plot). The structures that are shown as insets
are characteristic examples; from left to right, there is a distorted
lonsdaleite-type structure (iii), the well-known unj framework (also
referred to as the “chiral framework structure” in group-14
elements (iv)),71 and a more complex sp3-bonded allotrope (v).
While the axis values in our plot are arbitrary, they naturally reflect
the structural evolution toward higher coordination numbers, and
therefore we next observe a set of high-pressure silicon structures
(squares), such as the simple-hexagonal one (vi), with an
additional contribution from lower-coordinated titanium struc-
tures (circles). Finally, there is a set of densely packed structures,
all clustered closely together; these are titanium structures
including hcp (vii) and the ω type (viii). In the center of the plot,
there is a structure that bears resemblance to none of the
previously mentioned ones (ix), an energetically high-lying and
strongly disordered intermediate from a relaxation trajectory that
was added to the reference database, rather than a local minimum
(see also Supplementary Tables 1–3). This dissimilarity is reflected
in relatively large distances from other entries in the SOAP-based
similarity map.

DISCUSSION
We have shown that automated protocols can be designed for
generating structural databases and fitting PESs of materials in a
self-guided way. This allows for the generation of ML-based
interatomic potentials with minimal effort, both in terms of
computational and user time, when combined with a suitable
fitting framework, of which many are presently available.
Formalizing the protocols for database construction is an
important step toward further methodological developments,
and ultimately, toward wide applicability of these techniques in
computational materials science.
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Fig. 2 “Learning” the crystal structure of α-rhombohedral boron.
Top: Error of iteratively generated GAP-RSS models, for the energy of
the optimized ground-state structure of α-B12, referenced to DFT.
Three independent runs are compared: random selection of points
(gray), our two-step selection procedure with CUR on SOAP vectors
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similarity kernels (purple). Bottom: Evolution of the B12 icosahedron as
the defining structural fragment. For three points of the N= 100
cycles, having completed 400 (“A”), 500 (“B”), and 2500 (“C”) DFT
evaluations in total, the respective lowest-energy structure (at the
DFT level) from this iteration is shown, as visualized by using
VESTA.64 Bonds between atoms are drawn using a cutoff of 1.9 Å;
note that there are further connections between the B12 icosahedra
with slightly larger B· · ·B distances
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Our RSS-based reference databases efficiently cover structural
space up to a given system size (here, 24 atoms in the unit cell).
Once a core database has been constructed in this way, it may be
readily improved by adding defect, surface, and liquid/amorphous

structural models in much larger simulation cells, while at the
same time being sufficiently robust to avoid unphysical behavior
—even when taken to the more extreme regions of configuration
space that are explored early on during RSS.
We targeted here the space of three-dimensional inorganic

crystal structures, but conceptually similar approaches may be
useful for nanoparticles23,72 and other lower-dimensional systems.
Finally, organic (molecular) materials are also beginning to be
described very reliably with ML potentials,7,11 and an interesting
open question is how to use the structural diversity inherent in
RSS in the context of organic solids.73

METHODS
Interatomic potential fitting
To fit interatomic potentials, we use the established GAP ML framework4

and the associated computer code, which is freely available for
noncommercial research at http://www.libatoms.org. Compared with
previous work, we here use suitable heuristics to automate and generalize
the choice of fitting parameters where possible. We stress again, however,
that the main development in the present work is in the automated
generation of databases, not the descriptors or the regressor.
We use a linear combination of 2-, 3-, and many-body terms following

refs. 32,74, with defining parameters given in Table 1. The 2-body (“2b”) and
3b descriptors are scalar distances and symmetrized three-component
vectors, respectively. For the many-body term, we use the SOAP kernel,55

which has been used to fit GAPs for diverse systems.28,32–34 The overall
energy scale of each descriptor’s contribution to the predicted energy
(controlled by the parameter δ)74 is set automatically in our protocol. The
2b value is set from the variance of energies in the fitting database, the 3b
value is set from the energy error between a 2b-only fit and the fitting
database, and the SOAP value is set from the energy error for a 2b+ 3b-
only fit.
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The cutoffs for the three types of descriptors are expressed in terms of
the characteristic radius r (Table 1): that for 2b is the longest range, while
that for 3b is the shortest (intended to capture only the nearest neighbors),
and the SOAP is intermediate in range. The resulting cutoff settings are
listed in Table 1, the characteristic radii r for the systems studied here
being 0.84, 0.76, 1.11, and 1.47 Å for B, C, Si, and Ti, respectively. An ad hoc
choice is made here between predominantly covalent (B, C, and Si) or
metallic (Ti) materials for selecting the appropriate tabulated radii;
however, settings based on the covalent radius for silicon also produce a
satisfactory fit for the metallic (β-tin type) modification (residual error
<10meV/at; Fig. 3b). Future work might explore more automated ways of
extracting optimal atomic radii from datasets, and suitable definitions for
multicomponent systems (we stress that the latter, in principle, can be
routinely treated by present-day ML potentials14,37,46). None of this is
expected to affect the conclusions of the present work.
The weights on the energies, forces, and stresses that are fit are set by

diagonal noise terms in Gaussian process regression.4 We set these
according to the reference energy of a given structure, to make the fit
more accurate for relatively low-energy structures at each volume while
providing flexibility for the higher-energy regions. The values are
piecewise-linear functions in ΔE, which is the per-atom reference energy

difference relative to the same volume on the convex hull bounding the
set of (V, E) points from below (in energy). For the energy, the error σE is
1 meV/atom for ΔE ≤ 0.1 eV, 100meV/atom for ΔE ≥ 1 eV, and linearly
interpolated in-between. For forces, the corresponding σF values are 31.6
and 316meV/Å, and for virials the σV values are 63.2 and 632meV/atom.

Comparing structures
The same mathematical tools that are used to compare atomic
environments for the purpose of constructing potentials can also be used
to compare atomic configurations.56 As for the regression, for these
similarity kernels, we also use SOAP, although with different parameters
(nmax= lmax= 12, σat= 0.0875 Å, and rcut= 10.5 Å), to compare the
similarity of environments in selecting from which data to train (in the
CUR step). For the kernel PCA used to generate the map in Fig. 5, we use
nmax= lmax= 16, σ= 0.1 r0, and rcut= 2.5 r0, where r0 is the shortest bond
length, as described in the Results section. We obtain what we call a
“configuration-averaged” SOAP by averaging over all atoms in the cell. In
the SOAP framework,55 the neighbor density of a given atom i is expanded
using a local basis set of radial basis functions gn and spherical harmonics Ylm

ρiðrÞ ¼
P
j
exp �jr � rij j2=2σ2at
� �

¼ P
nlm

cðiÞnlm gnðrÞYlmðbrÞ; ; (1)

where j runs over the neighbors of atom i within the specified cutoff
(including i itself). To obtain a similarity measure between unit cells, rather
than individual atoms, we then average the expansion coefficients over all
atoms a in the unit cell

cnlm ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffi
8π2

2l þ 1

r X
i

cðiÞnlm; (2)

and construct the rotationally invariant power spectrum for the entire unit
cell57

pnn0 l ¼
X
m

cnlmð Þ�cn0 lm: (3)

Note that this is not equal to the average of the usual atomic SOAP
power spectra used to describe the atomic neighbor environments. The
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Fig. 5 Visualizing the highly diverse structures, both at low and relatively high energies above the global minimum, which have been
explored by GAP-RSS and added to the reference database in the last iteration. A similarity map compares three systems side by side (carbon,
triangles; silicon, squares; titanium, circles), as described in the text. The resulting plot (with arbitrary axis values) emphasizes relationships
between the different databases. The structures, “discovered” from scratch by our protocol, range all the way from threefold-coordinated
graphite, fourfold-coordinated (sp3-like) allotropes of C and Si, onward to high-pressure Si structures and finally densely packed variants of Ti.
A higher-energy structure (≈0.6 eV/at above diamond-type silicon) from an earlier step in a minimization trajectory is included as an example,
as enclosed by a dashed line

Table 1. Hyperparameters for descriptors that we use in GAP fitting

σat (Å) Nsp nmax lmax ζ rcut (Å)

(covalent) (metallic)

2-Body 0.5 30 9.0r 8.2r

3-Body 1.0 100 2.925r 2.665r

SOAP 0.75 2000 8 8 4 4.5r 4.1r

For all descriptors: Gaussian width σat (squared-exponential kernel for 2-
and 3-body; atomic density width for SOAP); number of sparse points Nsp.
For SOAP only: number of radial functions nmax and angular momenta lmax,
and kernel exponent ζ. Cutoffs rcut are expressed in terms of the
characteristic radius r, listed for each material in the Interatomic potential
fitting subsection
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final kernel to compare two cells, A and B, is then

kAB ¼
X
nn0 l

p ðcell AÞ
nn0 l p ðcell BÞ

nn0 l

 !ζ

; (4)

where ζ is a small integer number (here, ζ= 4).
For our main results, our diverse structure selection uses leverage-score

CUR52 applied to the matrix of similarity kernels between atomic
configurations. We also test a version of our method where the CUR
algorithm is applied to the rectangular matrix of configuration-averaged
SOAP vectors, rather than the square matrix of similarity kernels. This
qualitatively captures the same information, but neglects the nonlinear
nature of the exponentiation that transforms the (linear) dot product of
SOAP vectors into the similarity kernel. The results of these methods are
compared in Fig. 2 and Supplementary Fig. 1.

Iterative generation of reference data
Randomized atomic positions are generated by using the buildcell code of
the AIRSS package version 0.9, available at https://www.mtg.msm.cam.ac.
uk/Codes/AIRSS. The positions are repeated by 1–8 symmetry operations,
and the cells contain 6–24 atoms. A minimum separation is also set, with a
value of 1.8r. The volumes per atom of the random cells are centered on V0
= 14.5r3 for covalent, and V0= 5.5r3 for metallic systems. In the initial
iteration, half of the structures are generated from the buildcell-default
narrow range of volumes, and half from a wider range, ±25% from the
heuristic value. In all later iterations, only the default narrow range is used.
The wide volume-range configurations are meant to simply span a wide
range of structures,18 and use only even numbers of atoms. The narrow
volume-range configurations are meant to be good initial conditions for
RSS, and so for 80% (20%) of the seed structures, we choose even (odd)
numbers of atoms, respectively. This is because for most known structures,
the number of atoms in the conventional unit cell is even (eight for
diamond and rocksalt, for example), although for some it is odd, including
the ω phase.75 Biasing initial seeds toward distributions that occur in
nature is a central idea within the AIRSS formalism.42 The setup of these
cells, in itself, has negligible computational cost compared with the
relaxations: generating 10,000 candidate structures required <5min on 16
cores (and constructing the SOAP vectors for structural selection required
on the order of 1 min). For the computational cost of potential fitting, see
Supplementary Fig. 3.
With the initial potential available, we then run structural optimizations

by relaxing the candidate configurations with a preconditioned LBFGS
algorithm76 to minimize the enthalpy until residual forces fall below
0.01 eV/Å. As in ref.,19 we employ a random external pressure p with
probability density

Pðp=p0Þ ¼ 1
β
exp � 1

β
p=p0

� �
; (5)

here with p0= 1 GPa, and β= 0.2. This protocol ensures that there is a
small but finite external pressure, and also some smaller-volume structures
are included in the fit.18,19 We choose the same pressure range for all
materials, for simplicity, although this value could be adjusted depending
on the pressure region of interest.19

The selection of configurations for DFT evaluation and fitting at each
iteration involves a Boltzmann-biased flat histogram and leverage-score
CUR, as illustrated in Fig. 1. To compute the selection probabilities for the
flat-histogram stage, the distribution of enthalpies (each computed using
the pressure at which the corresponding RSS minimization was done) is
approximated by the numpy77 histogram function, with default para-
meters. The probability of selecting each configuration is inversely
proportional to the density of the corresponding histogram bin, multiplied
by a Boltzmann biasing factor. The biasing factor is exponential in the
enthalpy per atom relative to the lowest enthalpy configuration, divided by
a temperature of 0.3 eV for the first iteration, 0.2 eV for the second, and
0.1 eV for all remaining iterations. The leverage-score CUR selection is
based on the singular-value decomposition of the square kernel matrix by
using the SOAP descriptors (with the dot-product kernel and exponentia-
tion by ζ, Eq. (4)). Applying the same algorithm to the rectangular matrix of
SOAP descriptor vectors was significantly less effective (Fig. 2).

Computational details
Reference energies and forces were obtained by using DFT, with projector-
augmented waves78,79 as implemented in the Vienna Ab Initio Simulation

Package.80 Valence electrons were described by plane-wave basis sets with
cutoff energies of 500 (B), 800 (C), 400 (Si), and 285 eV (Ti), respectively.
Reciprocal space was sampled and used a fixed “KSPACING” parameter in
VASP, amounting to 0.25 for B, Si, and Ti, and 0.35 for C (in units of Å−1

along the reciprocal lattice vectors which include the 2π factor). Exchange
and correlation were treated by using the PBEsol functional66 for all
materials except carbon, where the opt-B88-vdW functional81–83 was
chosen to properly account for the van der Waals interactions in graphitic
structures. Benchmark data for energy–volume curves were obtained by
scaling selected unit cells within given volume increments and optimizing
while constraining the volume and symmetry of the cell.
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