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Abstract

The dominant uncertainty in the current measurement of the Hubble constant (H0) with strong gravitational lensing
time delays is attributed to uncertainties in the mass profiles of the main deflector galaxies. Strongly lensed
supernovae (glSNe) can provide, in addition to measurable time delays, lensing magnification constraints when
knowledge about the unlensed apparent brightness of the explosion is imposed. We present a hierarchical Bayesian
framework to combine a data set of SNe that are not strongly lensed and a data set of strongly lensed SNe with
measured time delays. We jointly constrain (i) H0 using the time delays as an absolute distance indicator, (ii) the
lens model profiles using the magnification ratio of lensed and unlensed fluxes on the population level, and (iii) the
unlensed apparent magnitude distribution of the SN population and the redshift–luminosity relation of the relative
expansion history of the universe. We apply our joint inference framework on a future expected data set of glSNe
and forecast that a sample of 144 glSNe of Type Ia with well-measured time series and imaging data will measure
H0 to 1.5%. We discuss strategies to mitigate systematics associated with using absolute flux measurements of
glSNe to constrain the mass density profiles. Using the magnification of SN images is a promising and
complementary alternative to using stellar kinematics. Future surveys, such as the Rubin and Roman observatories,
will be able to discover the necessary number of glSNe, and with additional follow-up observations, this
methodology will provide precise constraints on mass profiles and H0.

Unified Astronomy Thesaurus concepts: Hubble constant (758); Strong gravitational lensing (1643); Super-
novae (1668)

1. Introduction

The current expansion rate of the universe, the Hubble
constant H0, anchors the scale and the age of the universe.
There is an ongoing debate about the precise value of H0,
where some local distance ladder measurements based on
calibration using Cepheids (e.g., Riess et al. 2021) are in
significant statistical disagreement with measurements extra-
polated from the cosmic microwave background (CMB; e.g.,
Aiola et al. 2020; Planck Collaboration et al. 2020). Another
distance ladder analysis based on calibration using the tip of the
red giant branch (TRGB) stars results in a consistent
measurement with the CMB (Freedman et al. 2020; Freed-
man 2021). This discrepancy indicates either unaccounted-for
systematics in one or multiple measurements (e.g.,
Efstathiou 2020; Mortsell et al. 2021) or new physics beyond
the standard model of cosmology. Multiple independent and
precise measurements of H0 are essential in providing a definite
resolution to the current tension.

Relative time delays between multiple gravitationally lensed
images provide a one-step distance anchor of the universe, and
thus H0. This probe is independent of the local distance ladder
and the sound-horizon-physics anchors of the CMB and large-
scale structure probes. The method, known as the time-delay
cosmography, has been proposed more than half a century ago
to utilize the transient nature of supernovae (SNe) for

measuring the time delays (Refsdal 1964). Time-delay
cosmography was first applied by measuring the time delays
of multiply lensed quasars with multiseason monitoring
campaigns (e.g., Kundić et al. 1997; Schechter et al. 1997;
Fassnacht et al. 2002; Tewes et al. 2013; Courbin et al. 2018;
Millon et al. 2020a). The discovery of numerous lensed quasar
systems, follow-up monitoring, high-resolution imaging, and
precise spectroscopic observations have led to a precise
measurement of H0 using seven multiply lensed quasars (Wong
et al. 2020; Shajib et al. 2020; Millon et al. 2020b). These
measurements assumed particular forms of the mass density
profiles of the deflector galaxies. The mass-sheet degeneracy
(MSD; see Falco et al. 1985; Schneider & Sluse 2013), an
inherent transform leaving the lensing observables invariant
while changing the time-delay prediction, poses limits in the
precision of H0 measurements in the absence of additional data.
Birrer et al. (2020) introduced an additional degree of freedom
to the mass density profiles to avoid constraining the lens
model based on the specific form of the mass profiles
previously chosen. Birrer et al. (2020) constrained the MSD
solely by stellar kinematics observations of the deflector galaxy
hierarchically on the deflector population-level mitigating
covariances among the assumptions of individual lenses. For
the achieved 5% precision measurement of H0, Birrer et al.
(2020) combined the seven TDCOSMO lenses with 33 galaxy–
galaxy lenses from the Sloan Lens ACS (SLACS) survey
(Bolton et al. 2008; Shajib et al. 2021). The interpretation of the
kinematics measurements is impacted by the mass-anisotropy
degeneracy (Binney & Mamon 1982; Dejonghe & Mer-
ritt 1992), and mitigating this degeneracy requires assumption
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on the stellar anisotropy distribution or spatially resolved
kinematics measurements (e.g., Cappellari 2008; Barnabè et al.
2011; Yıldırım et al. 2020). A forecast for future constraints
using kinematics observations in breaking the MSD within the
assumptions of the Birrer et al. (2020) analysis is provided by
Birrer & Treu (2021).

An alternative to lensed quasars, as in fact anticipated in the
original work by Refsdal (1964), are multiply resolved
gravitationally lensed SNe (glSNe). glSNe are exquisite
laboratories for fundamental physics, as well as astrophysical
properties of the host and lens galaxies (see Oguri 2019, for a
review of strong lensing of SNe and other explosive transients).
We refer to Goobar et al. (2002), for example, for early
explorations of cosmological parameter forecasts with hun-
dreds of glSNe.

Although strongly lensed galaxies and quasars (QSOs) are
more common than currently discovered occurrences of glSNe,
glSNe have notable advantages, particularly if they are of Type
Ia (SNe Ia). The luminosities of SNe Ia have a small dispersion
after correcting for the relations with the light-curve shape,
observed color, and properties of their host galaxies, making
them a “standardizable candle” (see, e.g., Phillips 1993; Guy
et al. 2007; Scolnic et al. 2018). Knowledge about the apparent
magnitude, at the source redshift of the SNe, in the absence of
any lensing effect allows us to directly measure the lensing
magnification factor at the locations relevant to predict the time
delays, breaking the MSD (see also, e.g., Kolatt & Bartel-
mann 1998; Oguri & Kawano 2003; Foxley-Marrable et al.
2018). Thus, breaking the MSD does not require an a priori
knowledge of the SN Ia absolute magnitude, thus keeping the
inference from time-delay cosmography independent from the
local distance ladder calibration. Additionally, SNe Ia have a
well-studied family of light curves with a well-defined
maximum at ∼18 days from explosion (e.g., Yao et al. 2019;
Miller et al. 2020) and hence can be used for an accurate
measurement of time delays, with significantly fewer follow-up
observations than quasars. Recent simulations of lensed SNe Ia
also find that the time-delay measurement is not impacted
significantly from microlensing (Goldstein et al. 2018; Huber
et al. 2021). Moreover, since SNe fade away, we can obtain
post-explosion imaging to validate the lens model (see, e.g.,
Ding et al. 2021).

glSNe Ia are also complementary to lensed QSOs in the
strategy for discovering these systems. Owing to their small
luminosity scatter, glSNe Ia can be discovered owing to the
lensing magnification increasing their brightness. This would
not need highly spatially resolved observations, as is the case
for lensed QSOs, important for testing potential biases from
selecting high angular separation events. This was demon-
strated in the discovery of the first resolved strongly lensed
SN Ia, iPTF16geu (Goobar et al. 2017). At z= 0.409, the SN
was found to be 30 standard deviations too bright compared
with the SN Ia population, prompting space-based and laser-
guided star–adaptive optics (LGS-AO) follow-up. While
iPTF16geu had a short time delay of ∼1 day (Goobar et al.
2017; More et al. 2017), hence not ideal for measuring H0, the
system could uniquely be used for a direct inference of the
lensing magnification (e.g., Foxley-Marrable et al. 2018;
Dhawan et al. 2020). Simulations of wide-field surveys like
the Zwicky Transient Factory (ZTF) suggest a median time
delay of ∼1–5 days (Goldstein et al. 2019; Wojtak et al. 2019)
based on a magnification discovery channel. Upcoming deeper

surveys, such as the Vera Rubin Observatory Legacy Survey of
Space and Time (LSST), are expected to discover glSNe based
on image multiplicity at fainter magnitudes, shifting the median
time delay to ∼10 days (Wojtak et al. 2019), making glSNe Ia
compelling probes of H0. glSNe also offer a unique opportunity
to obtain time delays from resolved spectroscopy, a method
that requires very few epochs of observations (Johansson et al.
2021; Bayer et al. 2021).
With the advent of transient astrophysics and the anticipated

discovery of more glSNe from current and future time-domain
facilities, glSNe can play a major and complementary role in
time-delay cosmography and beyond. In particular, the
complementarity in constraining the MSD with magnification
measurements in addition to stellar kinematics measurements
allows one to rigorously check for systematics inherent in
either of the two approaches, as well as gain further statistical
precision in the most limiting domain of time-delay cosmo-
graphy to date.
Additionally, strong gravitational lensing systems are

powerful probes of elliptical galaxy properties and evolution
(e.g., Treu & Koopmans 2002; Auger et al. 2010; Shajib et al.
2021). Nonimaging data—such as the time delays, the stellar
kinematics, or the image magnifications—provide additional
constraints on the gravitational potential, or equivalently the
mass distribution. In such studies, the adopted values of
cosmological parameters can indeed have significant physical
outcomes. For example, Blum et al. (2020) demonstrated that
adopting the CMB-based H0 value for the seven TDCOSMO
systems leads to galaxy mass distributions with a cored
component in the dark matter profile. However, Shajib et al.
(2021) combined only the stellar kinematics with the lens
imaging data (without any time-delay measurement) to find that
the deviation from the power-law profile in elliptical galaxies
can also be caused by a higher normalization in the dark matter
profile instead of having a cored component. The hierarchical
analysis of Birrer et al. (2020) simultaneously constrained both
the mass distribution in galaxies and H0 for the first time from
the combination of stellar kinematics and lensing information.
glSNe Ia will similarly provide simultaneous constraints on the
galaxy mass distribution and cosmological parameters. Further-
more, a sufficiently large glSN Ia sample spanning a wide
redshift range can provide direct insights into the evolution of
massive elliptical galaxies.
In this paper, we aim to exploit the uniform behavior of the

population of SNe Ia to reduce uncertainties in the lens
modeling arising from the MSD. We extend the hierarchical
inference framework by Birrer et al. (2020) and incorporate
SN Ia apparent magnitudes, for both lensed and global
unlensed populations, on the likelihood level in the cosmo-
graphic inferences. We perform forecasts at the same level of
complexity as presented by Birrer & Treu (2021), now
replacing the kinematics observables with SN Ia brightness
measurements, for different scenarios and highlight the key
ingredients required to achieve an H0 measurement with
precision below 2%.
The paper is structured as follows. Section 2 provides a

general review on the key concepts of time-delay cosmogra-
phy, with a special focus on the MSD and approaches to
constrain it. Section 3 defines the methodology, model
parameterization, likelihood, and sampling approach used for
the forecasts. Section 4 presents different forecast scenarios
with regard to H0 inferences. We discuss the key components
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and implications of this work in Section 5 and conclude in
Section 6.

The formalism and inference schemes presented in this work
are implemented in the open-source software HIERARC,5 and
the scripts to reproduce the presented work are publicly
available.6 Lensing calculations are performed with LENSTR-
ONOMY7 (Birrer & Amara 2018; Birrer et al. 2021).

2. Time-delay Cosmography with Strongly Lensed SNe

In this section, we review the principles of time-delay
cosmography for lensing and time delays (Section 2.1). We
then emphasize how an MSD affects the observables and thus
the inference of cosmographic quantities, and we specifically
discuss the ability of glSNe in breaking the MSD with absolute
lensing magnifications (Section 2.2).

2.1. Cosmography with Strong Lenses

The phenomena of gravitational lensing can be described by
the lens equation, which maps the source plane coordinate β to
the image plane θ as

, 1( ) ( )b q a q= -

where α is the angular shift on the sky between the original
unlensed position and the lensed observed position of an
object.

For a single deflector plane, the lens equation can be
expressed in terms of the physical deflection angle â as

D

D
, 2s

ds
ˆ ( ) ( )b q a q= -

where Ds and Dds are the angular diameter distances from the
observer to the source and from the deflector to the source,
respectively. In the single lens plane regime, we can introduce
the lensing potential ψ such that

3( ) ( ) ( )a q qy= 

and the lensing convergence as

1

2
. 42( ) ( ) ( )q qk y= 

The relative arrival time ΔtAB between two images θA and θB
originating from the same source is

t
D

c

D

c
, , , 5t t

AB A B AB[ ( ) ( )] ( )q b q bt t tD = - = DD D

where c is the speed of light,

⎡
⎣⎢

⎤
⎦⎥

,
2

6
2

( ) ( ) ( ) ( )q b q b qt y=
-

-

is the Fermat potential (Schneider 1985; Blandford &
Narayan 1986), and

D z
D D

D
1 7t d

d s

ds
( ) ( )º +D

is the time-delay distance (Refsdal 1964; Schneider et al. 1992;
Suyu et al. 2010), with Dd the angular diameter distance from

the observer to the deflector. In the last line of Equation (5) we
chose the notation ΔτAB to describe the relative Fermat
potential between two images.
Constraints on the Fermat potential difference ΔτAB and a

measured time delay ΔtAB allow us to constrain the time-delay
distance DΔt. This absolute physical distance anchors the scale
in the universe within the redshifts involved in the lensing
configuration. The Hubble constant is inversely proportional to
the absolute scales of the universe and thus scales with DΔt as

H D , 8t0
1 ( )µ D

-

mildly dependent on the relative expansion history from current
time (z= 0) to the redshifts of the deflector and the source.

2.2. The MST and the Ability of Lensing Magnifications in
Breaking It

2.2.1. MST Impact on Time Delays and Imaging Data

The mass-sheet transform (MST) is a multiplicative trans-
form of the lens equation (Equation (1)) given by

1 , 9( ) ( ) ( )b q a q ql l l= - - -

which preserves image positions (and any higher-order relative
differentials of the lens equation) under a linear source
displacement β→ λβ (Falco et al. 1985). The term (1− λ)θ in
Equation (9) above describes an infinite sheet of convergence
(or mass), hence the name MST. Only observables related to
the unlensed apparent source size, to the unlensed apparent
brightness, or to the lensing potential are able to break this
degeneracy.
The convergence field transforms according to

1 . 10( ) ( ) ( ) ( )k q lk q l= + -l

Thus, the same relative lensing observables can result if the
mass profile is scaled by the factor λ with the addition of a
sheet of convergence (or mass) of κ(θ)= (1− λ).
The different observables described in Section 2.1 relevant

for time-delay cosmography transform by an MST term λ as
follows: the image positions remain invariant

; 11( )q q=l

the source position scales with λ as

; 12( )b bl=l

the Fermat potential scales with λ as

, 13AB, AB ( )t l tD = Dl

and so does the time delay as

t t . 14AB, AB ( )lD = Dl

When transforming a deflector profile with an MST, the
inference of the time-delay distance (Equation (7)) from a
measured time delay and inferred Fermat potential transforms
as

D D . 15t t,
1 ( )l=lD

-
D

Thus, the Hubble constant, when inferred from the time-delay
distance DΔt, transforms as (from Equation (8))

H H . 160, 0 ( )l=l
5 https://github.com/sibirrer/hierArc
6 https://github.com/sibirrer/glSNe
7 https://github.com/sibirrer/lenstronomy
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Achieving precise and accurate constraints on the radial
density profile required to measure H0 necessitates external
data and puts high demand on the precision and accuracy of
those measurements and priors. We refer the reader to Section 2
of Birrer et al. (2020) for a discussion on interpretations of an
MST in regard to a parameterized profile and physical limits
of it.

There are two promising observables that have the ability to
break the MST independent of the time delays: the stellar
velocity dispersion measurements of the deflector galaxy and
the absolute magnification measurement from knowledge of the
apparent unlensed brightness of a source component.

For the remainder of this paper, we chose the convention of
λ to be the mapping from a model prediction ignoring MST
effects to the target prediction of the correct answer.

2.2.2. Stellar Velocity Dispersion

The stellar velocity dispersion of the main deflector galaxy is
directly sensitive to the deflector potential. Joint lensing and
kinematics measurements have been used to constrain the mass
profiles of massive elliptical galaxies (Shajib et al. 2021) and
are the sole constraining anchor on the MST in the H0

measurement by Birrer et al. (2020). The observed stellar
velocity dispersion σv scales with an MST as

. 17v v, ( )s ls=l

A fractional uncertainty in the velocity dispersion measure-
ment σv, obs or model prediction σv, model propagates to a
fractional uncertainty in the MST as

⎡
⎣⎢

⎤
⎦⎥

2 , 18v

v

v

v

, obs

, obs

, model

, model
( )dl

l
ds
s

ds
s

= -

where we identified the target truth (measured) velocity
dispersion with σv,λ= σv, obs and the model without the MST
correction with σv= σv, model of Equation (17). Thus, an
achievable 5% uncertainty in the measurement of σv propagates
to a 10% uncertainty in λ. Beyond the measurement
uncertainty in σv, projection uncertainties and degeneracies
are present in the interpretation of the measurement, the model
uncertainty. In particular, the mass-anisotropy degeneracy
limits the precision, so only spatially resolved kinematics
observations are able to break this secondary, but relevant,
degeneracy (e.g., Yıldırım et al. 2020; Birrer & Treu 2021).
Constraints on the radial extent of the mass profile with
spatially resolved kinematics are possible. Equation (18) is,
however, applicable for the covariant uncertainties among
multiple measurements or integral field unit spectroscopy. A
forecast utilizing kinematic measurements of ground- and
space-based facilities on a larger sample of lenses within the
same assumptions as Birrer et al. (2020) is presented by Birrer
& Treu (2021).

2.2.3. Absolute Lensing Magnifications

An alternative to kinematics, and a key element in the
exploration in this work, are absolute magnification constraints
(Kolatt & Bartelmann 1998; Foxley-Marrable et al. 2018).
Absolute lensing magnifications, μ, change under an MST by

. 192 ( )m l m=l
-

A fractional uncertainty in the lensing magnification propagates
to a fractional uncertainty in the MST as

⎡
⎣⎢

⎤
⎦⎥

0.5 0.5 . 20obs

obs

model

model

( )dl
l

dm
m

dm
m

dm
m

= - = - -

The observed magnification μλ is the ratio

F

F
, 21obs

obs

unl
( )m =

where Fobs is the observed flux of an image and Funl is the
unlensed apparent brightness of the object in the absence of the
lensing effect. While measuring the observed flux of a lensed
object is achieved to subpercent precision on a regular basis, a
lensing-independent measurement of μλ requires, in addition,
knowledge of the unlensed apparent brightness of the object in
the same observational band as the measurement. We stress
that the measurement of the lensing magnification does not
require knowledge or calibration of the absolute luminosity,
which is a key requirement in measuring H0 with SNe Ia (e.g.,
Freedman et al. 2019; Riess et al. 2019). Only the probability
distribution function of the apparent magnitude of the source at
the redshift of the source is required.
The estimation of the MST scaling for a given lens model

relevant for the time-delay prediction, and thus the measure-
ment of H0, requires, in addition, an accurate lensing
magnification prediction in accordance with the Fermat
potential prediction. While the time-delay prediction is less
susceptible to small-scale model inaccuracies,8 as it relies only
on an accurate lensing potential, the local magnification is
impacted more significantly, as it relies on the second-order
differentials of the potential. In addition to small-scale dark
matter structure, both along the line of sight (LOS) and within
the main deflector as substructure, stellar microlensing is an
additional source of lensing magnifications for sources of the
size of exploding SNe (e.g., Dobler & Keeton 2006; Yahalomi
et al. 2017; Foxley-Marrable et al. 2018; Suyu et al. 2020).
We can approximately separate the different components

entering the local magnification prediction into a smooth
macro-model component μmacro and an additional perturbation
by dark matter structure on milliarcsecond scales, Δμmilli, and
stellar microlensing, Δμmicro, as

9

. 22local macro milli micro ( )m m m m» + D + D

Millilensing depends on the halo substructure and on the
LOS abundances of small field halos. Stellar microlensing
depends on the local projected stellar surface density and can
vary significantly from lens to lens and from image position to
image position.
The relative difference in λ for either an infinitesimal change

in the apparent unlensed magnitude, δFunl, a change in the
lensed observed flux, δFobs, the model predicted magnification,
δμmodel, or the physical cause of local millilensing (microlen-
sing), δμmilli (δμmicro), while keeping all other quantities fixed,

8 See Gilman et al. (2020b) for the impact of unresolved small-scale dark
matter structure on the predicted time delays, resulting in a scatter of about
2.5% on an individual lens; see also Liao et al. (2018) and Keeton &
Moustakas (2009).
9 Magnification effects are, in general, not additive. We justify the
approximation by the different scales of macro-, milli-, and microlensing.
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can be expressed as (Equations (20), (21), (22))

⎡
⎣⎢

⎤
⎦⎥

F

F

F

F
0.5

. 23

unl

unl

obs

obs

macro milli micro ( )

dl
l

d d

dm
m

d m
m

d m
m

= -

+ +
D

+
D

In words, while keeping all other parameters fixed, an
increase in Funl leads to an increase in λ, an increase in Fobs

leads to a decrease in λ, and an increase in the lensing
magnifications μmacro, Δμmilli, and Δμmilli leads to an increase
in λ. On the other hand, errors in the measurement or
estimation of these quantities result in shifts of λ in the
opposite direction.

The intrinsically small scatter of SNe Ia is a well-suited
population to constrain the MST. An intrinsic scatter of 10% in
the peak brightness after light-curve width and color correc-
tions (Scolnic et al. 2018) allows one, at least in principle, to
constrain the MST to 5% in the absence of other uncertainties.
Thus, glSNe are not only able to provide precise time-delay
measurements owing to their transient and well-characterized
nature, but at the same time SNe Ia or any other standardizable
form of SNe allow one to constrain the currently dominating
error budget of time-delay cosmography, the MST.

The constraints on the MST rely on precise and accurate
determinations of all the parameters listed in Equation (23).
The uncertainty in apparent unlensed brightness of SNe Funl,
millilensing Δμmilli contribution, and the microlensing effect
Δμmicro are the dominant uncertainty components in constrain-
ing the MST. Systematic limitations in the usage of glSNe
relate to dust extinction impacting the flux measurement Fobs

and selection effects related to milli- and microlensing. We will
review limitations and systematics of glSNE in breaking the
MST in Section 5.

3. Methodology

In this section, we describe the methodology to measure H0

from a set of glSNe by constraining the MST with the apparent
magnitude distribution of an unlensed SN sample. We lay out
the model assumptions and define the hyperparameters
governing the cosmological expansion, SN brightness distribu-
tion, and mass profiles of the lensing galaxies. Furthermore, we
detail the implementation of the likelihood for the different
observations that allow us to efficiently perform a joint
hierarchical sampling of the posteriors. We describe the SN Ia
population assumptions and analysis in Section 3.1 and the
glSN population assumptions and analysis in Section 3.2.
Separately, we discuss the impact and the treatment of LOS
structure in Section 3.3. In Section 3.4, we state the joint
hierarchical inference problem based on the previous parts of
this section. In Section 3.5, we provide an approximate
analytical error propagation. The methodology presented here,
in terms of parameterization and likelihood calculation, is
implemented in the open-source software HIERARC.

3.1. Sn Ia Population

We focus in this work on the SN Ia population. Here we
describe the SN Ia magnitude–redshift relation and the like-
lihood for the unlensed SN Ia sample in Section 3.1.1. In
Section 3.1.2, we then state the specific model and likelihood

assumptions for the combined lensed and unlensed SNe Ia
samples that we implement in this work.

3.1.1. Unlensed SN Ia Sample

SNe Ia can be standardized as precise (relative) distance
indicators. This involves well-known corrections for their
luminosity–width and luminosity–color relations (Guy et al.
2007, 2010). In addition, the SN Ia inferred luminosity needs to
be corrected for its dependence on the host galaxy properties
(e.g., stellar mass; refer to Scolnic et al. 2018, for details of the
standardization procedure and bias corrections). The distance
modulus, μB, relates the standardized apparent magnitude of an
unlensed SN Ia, denoted as *mB , to the absolute magnitude MB

as

*m M D z5 log 25, 24LB B dist ( ( )) ( )m- = = +

where DL(z) is the luminosity distance from the observer to the
redshift of the SN and μdist is the distance modulus.
There are several large samples of the cosmological SNe Ia

in the literature, e.g., Pantheon (Scolnic et al. 2018), Joint
Light-curve Analysis (JLA; Betoule et al. 2014), or the Dark
Energy Survey (DES; Abbott et al. 2019). For our analyses we
use the largest, up-to-date compilation, i.e., the Pantheon SN Ia
data set (Scolnic et al. 2018). For these SN Ia samples,
covariances in the calibration parameters ξsys and their
evolutionary trends need to be taken into account.
Lensing magnifications, be it weak lensing from large-scale

structures, strong lensing from massive deflectors, or micro-
lensing from stars, change the flux or apparent magnitude by

F F m m 2.5 log , 2510( ) ( )m m= = -m m

where μ is the unsigned absolute magnification. For a single
SN, we can formally write down the likelihood of an observed
peak brightness Fobs given a luminosity distance DL, lensing
magnification μ, and absolute magnitude MB as the likelihood
of the data given a flux prediction Fmodel while marginalizing
over calibration and other uncertainties, such as dust extinction,
or uncertainty in the peak time, as

F D M

F F p F D M p d

, ,

, , , .

26

L

L

obs B

obs model model b sys sys sys

( ∣ )

( ∣ ) ( ∣ ) ( )

( )



ò x x x

m
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For a sample of SNe, denoted as SNe , different procedures
and models have been employed for the parameterization,
calibration, and marginalization of systematic errors on the
population level, and we refer to the relevant work for details
(e.g., Betoule et al. 2014; Scolnic et al. 2018; Abbott et al.
2019). For this work, when combining such an SN sample with
glSNe, we require the likelihood ,SNe SNe( ∣ )  p x of the global
data set given the cosmological prediction of the luminosity
distances with parameters π and the intrinsic brightness
distribution of the SN population ξSNe.
To facilitate the evaluation of the likelihood, for example,

Scolnic et al. (2018) compressed the marginalization in a
Gaussian covariance matrix across all the measured apparent
magnitudes in the SN sample as

⎡⎣ ⎤⎦m m

,

exp , 271

SNe SNe

1
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1

2
T
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covsn

( ∣ )

( )
( ) ( )

  p x

D S D= -
p S

-
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where Δm is the difference in the observed and predicted
apparent magnitude of a nonevolving intrinsic mean brightness
of the SN population, nsn is the length of the data vector, and
Σcov is the error covariance matrix when marginalized over the
systematics variables in Gaussian form.

3.1.2. Model Parameterization and Assumptions with Pivot Magnitude

We assume, for simplicity of this work, that the intrinsic
peak brightness distribution is redshift independent. This is
typically assumed in cosmological analyses with SNe Ia, based
on comparisons of spectroscopic and photometric properties of
local and high-z SNe Ia (e.g., Petrushevska et al. 2017, and
other studies of high signal-to-noise data of high-z SNe Ia).

To obtain the absolute luminosity of an unlensed SN Ia at the
redshift of the glSNe in our sample would require an
independent calibration of the absolute luminosity distance,
e.g., as done for the distance ladder. However, since we want to
derive a relative magnification at the lensed source redshift, we
can use the apparent magnitude of the unlensed SNe Ia from the
cosmological sample and infer it at the redshift of the lensed
SN. For this, we replace using an MB term with an apparent
magnitude at a specific redshift, zpivot, mp,

m m z m D z D z, 5 log log . 28L Lsn p p 10 10 pivot( ) [ ( ) ( )] ( )= + -

This parameterization results in a likelihood that is only
dependent on relative distance ratios without the need of
external data or constraints on top of a population of observed
peak brightness of SNe. We describe the intrinsic distribution
of apparent peak brightness at the pivot redshift p(mp) by a
Gaussian in astronomical magnitude space with a mean mp and
width σ(mp).

With these simplifications, we can write the likelihood for a
single SN as

⎡
⎣⎢

⎤
⎦⎥

F D m m

F F m

p m m m dm

, , ,

1

2
exp

2

, , 29
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obs

obs p
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p p p p
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( ( ))

( ∣ ( )) ( )



ò

m s

ps

m

s
s

= -
- ¢ ¢

´ ¢ ¢

where F mp( )¢ ¢ is the shorthand form of the model predicted
flux given an apparent magnitude msn calculated by
Equation (28) from mp ¢ and the luminosity distance ratio,
and then turned into flux units of the observations while
considering the lensing magnification (Equation (25)). σobs is
the Gaussian error in the flux measurements, and the term
p m m m,p p p( ∣ ( ))s¢ in the equation above describes the like-
lihood of a specific pivot magnitude to be drawn from the
Gaussian distribution m m,p p( ( )) s .

For an ensemble of SNe characterized with the likelihood of
Equation (27), the marginalization over a Gaussian distribution
in mp is analytic and can directly be folded in the error
covariance matrix as

mdiag , 30cov cov
2

p( ( )) ( )sS S¢ = +

and the marginalized likelihood is given by

⎡
⎣

⎤
⎦
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2
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SNe p p

cov

T
cov

1

sn
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p S
D S D=

¢
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3.2. Deflector Population

We first discuss general considerations about the deflector
parameterization and the necessary degrees of freedom to allow
for an accurate recovery of the time-delay prediction
(Section 3.2.1). We then formulate the inference problem and
the general form of the joint likelihood of the imaging data,
time delays, and lensed SN peak brightness observations
provided by a glSN (Section 3.2.2). Lastly, we provide a
Gaussian approximation of the likelihood for a fast margin-
alization and efficient evaluation (Section 3.2.3).

3.2.1. Deflector Parameterization and Measurements

The uncertainty in the deflector mass distribution dominates
the current error budget in the H0 inference, a statement directly
reflecting the MST. A popular model describing strong
gravitational lensing imaging data on galaxy-scale lenses is
the power-law elliptical mass distribution (PEMD; Bar-
kana 1998; Tessore & Metcalf 2015) combined with an
external shear component. The popularity of the PEMD+shear
model is a consequence of its ability to describe the data
sufficiently well while keeping the degrees of freedom in the
deflector model to a computationally affordable number.
Although considered simplistic, the PEMD+shear model’s

degrees of freedom can describe the primary azimuthal and
radial observables. However, the observables in the radial
direction are related to the third-order differential of the lensing
potential, while the parameterization of the PEMD profile
explicitly assumes a one-to-one connection between the
observable invariant quantity and the mass density at the
position of the Einstein ring, leading to overconstrained mass
profiles and potentially biased inferences in the radial density
profile, and subsequently H0 (see, e.g., Kochanek 2002;
Sonnenfeld 2018; Kochanek 2020, 2021; Birrer et al. 2020;
Birrer 2021).
To mitigate possible overconstraints on the internal mass

density profile, Birrer et al. (2020) added an additional degree
of freedom with an MST on top of the PEMD+shear profiles of
the TDCOSMO sample. A PEMD+shear+MST profile has the
adequate degrees of freedom at and around the Einstein ring,
where the multiple images appear, to estimate the relative
Fermat potential. Higher-order differentials are subdominant in
the effect on the predicted time delays (e.g., Sonnenfeld 2018).
In addition, since the constraints on the MST from the lensing
magnification are directly derived at the region relevant for the
time-delay prediction, potential inadequacies of the PEMD
+shear+MST profile further outward or toward the center of
the deflector do not impact the accuracy in the inferred time-
delay prediction, and thus H0 measurement.
In this work, we assume that the population of lenses can be

described by a PEMD+shear+MST profile. Furthermore, we
assume that the PEMD+shear parameters can be measured
accurately for each lens individually from the imaging data
without population covariances, and that the MST parameter λ
transforming the internal density profile of the main deflector,
denoted as λint, follows a Gaussian distribution with mean λint
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and sigma σ(λint). We refer to Section 3.3 for a discussion on
different MST components. We highlight that there can be
physical covariances between the PEMD parameters and λint,
as well as among the physical projected scale and λint. A
possible physical projection dependence has been accounted
for by Birrer et al. (2020) with an explicit parameterization of
λint as a function of the ratio of deflector half-light radius
relative to the Einstein radius. In this work, for the purpose of
providing a forecast, we do not include secondary dependen-
cies and covariances of λint and instead refer to Birrer et al.
(2020) for the radial dependence and to Wagner-Carena et al.
(2021) for a general treatment of lens model hyperparameter
inferences within a hierarchical framework.

3.2.2. glSNe Inference

From the imaging data, I, we can measure the lens model
parameters within our model assumptions, ξpl, which in turn
provide the Fermat potential differences between the multiple
images Δτpl and the lensing magnifications μpl at the position
of the appearances of the glSN. With measured relative time
delays Δt and a model providing values for Δτpl, λ, and DΔt,
we can predict the time delay and evaluate the time-delay
likelihood of the data given the model. From the same lens
model, we can compute the likelihood of the measured glSN
brightness F given the model prediction of μpl, λ, and msn.

The joint likelihood I t F D m, , , ,t sn( ∣ ) lD D of the imaging,
time delay, and flux measurements—given the relevant
parameters of the hierarchical inference, DΔt, msn, and λ—
can be written as a product of the likelihoods of the different
independent data sets

I t F I

t F

D m

D m

p d d

, , , , ,

, , , ,
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where we explicitly marginalized over the magnification and
Fermat potential parameters μpl and τpl. To describe the
imaging data I and to compute the likelihood at the pixel level,
we require a lens model ξpl and a model of all the light
components ξlight. We can describe the imaging likelihood and
prior product on Δτpl and μpl as
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Here Δτ(ξpl) and μ(ξpl) are unique functions of ξpl, and the
, ,pl pl pl light∣ ( ) ( )∣t m x xD¶ ¶ is the Jacobian determinant. This

means that the likelihood and prior product of Equation (33)
can be computed by sampling ξpl from the posterior

I p, ,pl light pl light( ∣ ) ( ) x x x x and evaluating for the posterior
sample of the quantities Δτpl(ξpl) and μpl(ξpl). For the
modeling choices and posterior sampling when marginalizing
over complex source structure, we refer to previous work (e.g.,
Suyu et al. 2009; Birrer et al. 2015).

3.2.3. Gaussian Likelihood Approximation

Until this point in this subsection, we did not make any
assumption on the form of the likelihood (Equation (32)) or on
the shape of the imaging modeling posteriors (Equation (33)).
To facilitate the calculation of the likelihood in Equation (32),
we approximate the likelihood in Gaussian form. In particular,
we write the imaging likelihood from Equation (33) as

⎡
⎣

⎤
⎦

I p, ,

1

2 det
exp

1

2
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D
D D
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whereΔΔτμ≡ (Δτ−Δτ0, μ−μ0), with (Δτ0, μ0) being the
maximum likelihood estimator; nΔτμ is the length of the vector
ΔΔτμ; and ΣΔτμ is the error covariance matrix describing the
Gaussian uncertainties in the measurement from the ima-
ging data.
The Gaussian form of the time-delay likelihood

t D , ,t pl( ∣ ) tlD DD of Equation (32) reads
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where nΔt are the number of relative time-delay measurements,
ΣΔt is the relative time-delay measurement error covariance
matrix, and ΔΔt is the difference between the predicted time
delay (Equation (5) including an MST term of Equation (14))
and measured time delay Δt.
The Gaussian form of the flux amplitude likelihood
F m , ,sn pl( ∣ ) ml of Equation (32) is

⎡
⎣

⎤
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F m , ,

1

2 det
exp

1

2
, 36

n
F

F F F

sn pl

T 1

F
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p S
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where nF is the number of flux measurements, ΣF is the glSN
flux measurement error covariance matrix, and ΔF is the
difference between the predicted peak flux of the SNe and
measured flux F.
The marginalized likelihood of Equation (32) with the

Gaussian approximations for the individual likelihood compo-
nents (Equations (34), (35), (36)) is a Gaussian integral.
We can join the data vector of the time delays Δt and fluxes

F as dΔtF≡ (Δt, F) and write the joint measurement
covariance matrix as

⎡
⎣

⎤
⎦

0
0

. 37t

F
data ( )S S

S
= D

In this forecast, we assume no covariant measurement
uncertainties between the time delays and the microlensing
impact on the magnification. It has been shown that the
microlensing effect on time-delay measurements can be
mitigated with early-phase multicolor light curves when the
microlensing effect is achromatic (Goldstein et al. 2018).
At the same time, we can transform the covariance matrix of

the imaging posteriors ΣΔτμ into the data vector space,
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resulting in

D c m
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where 1n tD and 1nm are vectors of size nΔτ and nμ, respectively,
with 1 at each element. The joint likelihood of Equation (32) is
then given by
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with nΔtF≡ nΔt+ nF, and the total error covariance matrix
being the sum of the measurement covariance and the
marginalized uncertainty in the model

, 40tot data model ( )S S S= +

and ΔΔtF being the difference of the data vector dΔtF and the
model prediction.

3.3. LOS Mass Distribution

Mass over- or underdensities along the LOS of the strong-
lensing system cause, to first order, shear and convergence
perturbations. Reduced shear distortions do have a measurable
imprint on the azimuthal structure of the strong-lensing system
(see, e.g., Birrer 2021), while the convergence component of
the LOS, denoted as κext, is equivalent to an MST and thus not
directly measurable from imaging data. The total MST, the
relevant transform to constrain for an accurate cosmography
and H0 measurement, is the product of the internal and external
MST (e.g., Schneider & Sluse 2013; Birrer et al. 2016, 2020)

1 . 41ext int( ) ( )l k l= - ´
The lensing kernel impacting the linear distortions, both

shear and κext, is different from the standard weak-lensing
kernel (McCully et al. 2014, 2017; Birrer et al. 2017, 2020;
Fleury et al. 2021b). The lensing kernel can be described as the
product of three different angular diameter distances entering
DΔt in Equation (7) (Birrer et al. 2020; Fleury et al. 2021a), and
thus κext can be described as the product of the individual
kernels entering Equation (7) as

1
1 1

1
, 42ext

d s

ds

( )( ) ( )k
k k

k
- =

- -
-

where κd is the weak-lensing effect from the observer to the
deflector, κs is that from the observer to the source, and κds is
that from the deflector to the source (Birrer et al. 2020).
Alternatively, but equivalently, the kernel can be described in
the multiplane formalism with the main deflector included,
while keeping the Born approximation in between (e.g., Birrer
et al. 2017; Fleury et al. 2021b).

The LOS lensing contribution can be estimated by tracers of
the large-scale structure, using either galaxy number counts
(e.g., Greene et al. 2013; Rusu et al. 2017) or weak-lensing
measurements (Tihhonova et al. 2018). These measurements,
paired with a cosmological model including a galaxy–halo
connection, are able to constrain the probability distribution of
κext to a few percent per LOS.

For an accurate measurement of H0, the combined internal
and external MST of Equation (42) is required. Since glSN
magnification is directly probing the combined λ, the LOS

contribution effectively only adds a scatter in the inference, and
an accurate overall population selection function is not required
(see Birrer et al. 2020, for the same argument using kinematics
to break the MST). The overall lensing selection function is
only relevant when demanding a physical interpretation of the
internal and external contributions separately.
In this work, for practical simplicity but without impact on

expected biases or uncertainty budget, we assume a Gaussian
scatter in κext of 0.03 with a population mean at zero along the
LOSs of the lenses.

3.4. Hierarchical Analysis and Sampling

Our goal is to jointly infer and marginalize over population
hyperparameters in the SN distribution, lensing deflector
profiles, and cosmological parameters, given the joint data set
of lensed and unlensed SNe, and MST-invariant lensing
quantities from imaging data. We follow the same approach
as Birrer et al. (2020), except that we add the SN magnification
likelihood instead of the stellar kinematic one, and as an
external data set we are using a sample of unlensed SNe instead
of a sample of galaxy–galaxy lenses with measured kinematics.
We want to calculate the probability of the cosmological

parameters, π, given the joint data set, p ,i
NL SNe( ∣{ } ) p ,

where i
L is the data set of an individual strong lens (including

imaging data, time-delay measurements, SN flux measurement,
and LOS properties), N is the total number of lenses in the
sample, and SNe is an SN data set.
In addition to π, we introduce ξpop, which incorporates all

the additional population-level model parameters not yet
marginalized over the individual data sets, including their
covariant impact on the likelihoods of individual lenses. Using
Bayes’s rule and considering that the data of each individual
lens i are independent, we can write

p p
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p d
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=
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Table 1 summarizes the hyperparameters describing the
cosmological parameters, the SN brightness distribution, and
the lens population that we are sampling hierarchically. We
also state the parameter priors we employ in the forecast. We
refer to Birrer et al. (2020) for the formal approximation we are
making in the Bayesian analysis while treating other lens model
parameters independently among the different lenses and to
Wagner-Carena et al. (2021) for a hierarchical analysis
inferring a wider range of lens model hyperparameters.
The likelihood of an individual lens for a given set of

hyperparameters, ,i
L pop( ∣ )  p x , is given by the integral of the

individual parameters according to the specified distribution of
the hyperparameters

p d, , , 44i i
L pop L pop( ∣ ) ( ∣ ) ( ∣ ) ( )   òp x p x x x x=

where p(ξ|ξpop) is the distribution function of the individual
parameters ξ as specified by the population parameters ξpop,
and ,i

L( ∣ )  p x is the likelihood specified by Equation (32)
and its Gaussian form (Equation (39)) when stating the angular
diameter distances as a function of the cosmological parameters

8

The Astrophysical Journal, 924:2 (21pp), 2022 January 1 Birrer, Dhawan, & Shajib



π. The same statement as for the lens likelihood
(Equation (44)) applies for the SN sample likelihood

,SNe pop( ∣ )  p x . The marginalization in ,SNe pop( ∣ )  p x goes
over the SN brightness distribution hyperparameters mp and
σ(mp). We note that the SN distribution parameters are shared
for both the SN population likelihood and the individual lens
likelihoods, as well as the cosmological parameters relevant to
describe the relative expansion history. The absolute scales of
the universe, stated in the form of H0, only enter explicitly in
the time-delay likelihood.

3.5. Analytic Error Propagation

Before we present the forecast and results with the full
hierarchical sampling and propagating of the covariances in the
model described in Section 3.4, we also provide an analytic,
simplified, approximate error propagation. This calculation is
easily accessible, is fast to compute, and provides valuable
insights into the relative importance of different uncertainty
components impacting the final H0 constraints.

To first order, the relative H0 uncertainty, HH 00s , comprises
the uncertainty in the population mean of the MST parameter,10

l, and the uncertainty when performing an uncorrelated error
propagation when fixing constl = as
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In the following, we approximate the uncertainty budget for
the distinct terms in Equation (45). For simplicity of this
analysis, we assume that for all lenses, and all images, the
uncertainty terms are identical. In practice, and in the full
inference, inverse uncertainty weighting must be considered.

3.5.1. Uncertainty Terms in the MST

The first term on the right-hand side of Equation (45) can be
determined with absolute lensing magnifications. The popula-
tion-level uncertainty in l can, to first order, be expressed as
the uncertainty in the population mean of the apparent unlensed
brightness mp,

11 which is covariant among all lenses, the
uncertainty in the relative expansion history translating the
apparent magnitude of the distribution of the external SN
sample to the glSN source redshift, and uncorrelated measure-
ment uncertainties for each individual lens (Equations (20) and
(23)) as
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where Nlens is the number of lens systems. Furthermore, for
simplicity, we assumed equal precision in the individual
relative magnification measurements in Equation (46) for
each lens.
The relative magnification uncertainty per lens with fixed

source population mean mp can be written, following
Equation (23), as
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The first term on the right-hand side of the equation above is
the intrinsic scatter in the standardizable source, the second is
the flux measurement uncertainty, and the following ones are
the different scales of the lensing effect. The factor 1/4 comes
from the fact that we consider quadruply lensed quasars, as this
approximation assumes the random errors in the milli- and
microlensing effects to be uncorrelated among the different
images. The macro-model magnification uncertainties are
covariant, and thus we omit the factor 1/4 in the
approximation.

3.5.2. Time-delay and Fermat Potential Uncertainties

The second term on the right-hand side of Equation (45)
encompasses all other sources of uncertainties not related to
global inference shifts due to the MST. In particular, this
involves uncertainties in the time-delay measurements, the
Fermat potential uncertainty for a specified mass profile family
(in our case PEMD+shear) from high-resolution imaging data,
and the random uncertainties in the LOS convergence estimates
and the internal MST. In addition, we include in this second
term uncertainties in the relative expansion history that
translate the angular diameter distance measurements to the

Table 1
Summary of the Model Parameters Sampled in Joint SN + Strong Lensing

Hierarchical Inference

Name Prior Description

Cosmology (flat ΛCDM):
H0 (km s−1 Mpc−1) 0, 150([ ]) Hubble constant

Ωm 0, 1([ ]) Current normalized matter density

Mass profile:

intl 0.5, 1.5([ ]) Internal MST population mean
σ(λint) =0.03 1σ Gaussian scatter in λint

SN population:
mp 0, 30([ ]) Mean of the apparent magnitude dis-

tribution of the SN population at
zpivot = 0.1

σ(mp) =0.1 1σ Gaussian scatter in intrinsic SN
magnitude distribution at fixed red-
shift mp

Line of sight:

extk =0 Population mean in external conv-
ergence of lenses

σ(κext) =0.025 1σ Gaussian scatter in κext

10 Including internal and external MST effects.

11 The differential in logarithmic astronomical magnitude m with regard to
relative linear flux I is I m I e2.5 log 1.08610( )¶ ¶ = - » - . Thus, small scatter
described in astronomical magnitudes is approximately the same scatter in
relative flux.
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lensing system, DΔt, relative to the scales at current time, and
thus H0, which we denote as σ(H0/Dz=SL).

In terms of distance measurements, we can approximately
write
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The time-delay distance uncertainty per lens (Equation (49)) is,
to first order, a weighted product of all the different images.
The random uncertainty in the MST acts as a noise term for the
individual distance measurements for each lens.

4. Forecast

Having formulated the methodology and parameterization in
the previous sections, we perform different forecast scenarios
based on predicted number of glSNe, quality of measurements,
and systematics effect. In Section 4.1 we state the expected
number of glSNe and time-delay measurements and our
assumptions on milli- and microlensing effects in the
magnification. In Section 4.2 we state the lens model, source
configuration, and uncertainties expected from imaging data on
the Fermat potential and magnifications. In Section 4.3 we
present the scenario for current and future unlensed SN data
sets. Finally, in Section 4.4 we present the inference results for
the different forecast scenarios.

4.1. Lens Population, Time-delay, and Magnification
Uncertainties

In this work, we focus on the discoveries expected by the
Vera Rubin Observatory LSST. We do not perform an
independent forecast, and we derive our fiducial forecast
scenario based on previous work in the literature.

4.1.1. Expected glSNe with LSST

Goldstein & Nugent (2017) and Goldstein et al. (2018)
estimated, based on the catalog by Oguri & Marshall (2010),
the number of glSNe Ia to be up to 500–900 in 10 yr of LSST
with unresolved photometric magnification detection where the
brightest SN image reaches a peak apparent i-band magnitude
of 22.15 or brighter. Wojtak et al. (2019) compared two
different discovery techniques, by magnifaction and resolved
image multiplicity, and estimated the annual discovery rate

with LSST to be 61 with magnification, 44 with resolved image
multiplicity, and 89 in a hybrid discovery scheme.
It has been noted that lensed SNe found via image

multiplicity exhibit longer time delays and larger image
separations, making them more suitable for cosmological
constraints than their counterparts found via magnification
(Wojtak et al. 2019; Huber et al. 2019). Huber et al. (2019) find
that restricting the expected time-delay measurement to a
minimum precision of <5% and an accuracy of <1% (if based
solely on LSST observations) would reduce the number of
lensed SNe Ia to about one per year. This rate can be increased
by a factor of 216 by employing other instruments for follow-
up observations. Beyond LSST, for example, Pierel et al.
(2021) predict that the Roman observatory will discovery ∼11
glSNe Ia. With follow-up efforts in measuring the time delays
of the subsample restricted on the most promising time-delay
measurements (Huber et al. 2019), LSST+follow-up is able to
provide <1% overall statistical precision on H0 from the time-
delay uncertainties of 20 glSNe Ia (e.g., Suyu et al. 2020).

4.1.2. Milli- and Microlensing

Milli- and microlensing effects on the magnification of the
glSNe can significantly impact the ability of glSNe to be used
as standardizable candles. Millilensing is an effect caused by
dark subhalos of the main deflector or along the LOS (e.g.,
Dalal & Kochanek 2002; Gilman et al. 2020a; Hsueh et al.
2020) or baryonic effects (e.g., Hsueh et al. 2016; Gilman et al.
2017). Flux ratio anomalies at the ∼10% level have been
studied and used to constrain dark matter properties with
quardruply lensed quasar flux ratio anomalies (e.g., Gilman
et al. 2020a; Hsueh et al. 2020). For the physical source size of
SNe, Kelly et al. (in preparation) estimated for SN Refsdal
(Kelly et al. 2015) a ∼10% scatter from millilensing based on
the forward-modeling methodology by Gilman et al.
(2019, 2020a).
Microlensing caused by stars or other compact objects in the

foreground lensing galaxy or along the LOS can be a more
significant limit to the standardization of glSNe. Microlensing
can independently magnify or demagnify individual images of
the background source (Dobler & Keeton 2006; Bagherpour
et al. 2006), introducing scatter into the shape and amplitude of
the resulting light curves. The effect of microlensing on each
lensed image depends on the local smooth lensing properties
(convergence κ, shear γ) and the stellar (or compact) projected
mass fraction κ*/κ. For example, Schechter & Wambsganss
(2002) investigated stellar microlensing effects on lensed
quasars at image magnifications of μ∼ 10 with moderate
compact object mass fractions and showed that for such
scenarios the expected microlensing scatter can result in more
than an astronomical magnitude. Yahalomi et al. (2017)
investigated microlensing in iPTF16geu and concluded that
the scatter results in 0.73 mag from the microlensing effect
alone. All in all, microlensing poses significant limits to the
utility of glSNe in being used as a probe of standardizable
magnification.
Foxley-Marrable et al. (2018), with the aim of assessing

glSNe Ia to be standardizable in the same spirit as this work,
evaluated the effect of microlensing on glSNe Ia for various
image configurations. They found that there are regions of
parameter space where the effect of microlensing is suppressed
enough for the glSN Ia to be standardizable. Specifically,
regions of low κ, low γ, and high s are subject to microlensing
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scatter of σML∼ 0.15 in astronomical magnitude, particularly at
early times. Physically, this corresponds to asymmetric
configurations with at least one image located far outside the
Einstein radius, which will experience the least amount of
microlensing.12

When Foxley-Marrable et al. (2018) combined their
microlensing models with the glSN Ia catalog from Goldstein
& Nugent (2017), they predicted that ∼22% of the ∼930
glSNe Ia to be discovered by LSST will be standardizable
(σML∼ 0.15 or below for at least one image). The standardi-
zabe sample has a median maximal time delay of 44 days and
consists of a 5:1 ratio of doubles versus quads. Foxley-
Marrable et al. (2018) further concluded that from their sample
of 650 glSNe Ia, of which accurate time delays can be
measured, the MSD can be broken at the 0.5% level when
considering microlensing and intrinsic scatter of the SNe as the
source of statistical uncertainties.

4.1.3. Specific Numbers and Uncertainties of This Forecast

Overall, restricting the follow-up effort to a considerably
smaller number than the overall expected discoveries optimized
to derived time-delay precision and accuracy, LSST is expected
to provide sufficient statistical precision on time delays with a
subpercent error budget on final H0 constraints. However, using
glSNe for standardizable magnification constraints may require
a larger and potentially different subset of the glSN Ia
population to be further investigated with follow-up efforts.
Given that the mass profile uncertainties are at the 10% level
for individual lenses, we consider in this forecast a scenario
with an extended sample of glSNe Ia beyond the subset of
Huber et al. (2019) and Suyu et al. (2020) with lower-precision
time-delay measurements, including glSNe with both shorter
time delays and fainter images.

In this forecast, we design a scenario where time-delay
precision and the standardizable nature of glSNe Ia can be
utilized. We stress that time-delay measurement and flux
standardization do not necessarily need to come from the same
lenses.13

We chose a lens population roughly following Foxley-
Marrable et al. (2018). In total, we perform our forecast with
144 glSNe, among which 24 are quads and 120 are doubles.
For the quad population, we split the sample into eight crosses,
eight cusps, and eight fold configurations.14 The doubles we
split into three different configurations each consisting of 40
systems.

For the redshift distribution, we assume a uniform distribu-
tion of the deflector redshift, zlens, between z= 0.1 and z= 0.5,
and for the source redshift, zsource, a uniform distribution in

z 0.2, 1.lens[ ] + , similar to the distribution by Huber et al.
(2019) and Suyu et al. (2020) restricting to the brighter
population for both accurate time-delay and flux measurements.
We stress the importance of rapid spectroscopic follow-up to
confirm the SN type, and we assume that the follow-up has
been acquired for the SN sample and the SNe have been
robustly typed.

For the time-delay measurement, we assume that the light
curves can be resolved in follow-up observations and the
relative time delays can be measured with a precision of 2 days
per image pair.15 Along with spectroscopy obtained for the
typing, these cadenced observations provide further evidence to
distinguish the normal SNe Ia from peculiar subtypes (see, e.g.,
Taubenberger 2017, for review), since fast-declining and super-
Chandra subtypes do not show a second maximum in the near-
IR (NIR), unlike normal SNe Ia. The presence of an NIR
second maximum was further confirmation that iPTF16geu is a
normal SN Ia (Dhawan et al. 2020). In addition to precise time
delays, obtaining resolved photometry, in multiple wave bands,
is crucial for constraining the extinction properties. We assume
that, similar to the case for iPTF16geu, there are cadenced
observations in multiple optical and NIR filters to constrain the
extinction in the host galaxy and the individual LOSs in the
lens for each image (Dhawan et al. 2020). Accounting for
extinction correction, the magnification is inferred robustly
with small uncertainties, making it a subdominant contribution
to other sources.
For the flux uncertainty at peak brightness for the individual

images, we use an effective relative magnitude uncertainty
σeff(m) that includes possible uncertainties from small scale
milli- and microlensing effects
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This is a practically convenient noise definition when assuming
Gaussian uncorrelated error in terms of the uncertainty relevant
to constraining the MST. Beyond the intrinsic scatter in the SN
population, σ(mp), and the uncertainty in the macro-model
magnification, σ(μmacro), the term in Equation (51) above can
play a dominant role in the uncertainty budget and is by itself
uncertain given the current rare discoveries and follow-up data
of glSN systems.
We separate the σeff(m) term for the different images into

one image denoted as the standardizable one, σeff, std(m), and
all other images denoted as the microlensing dominated ones,
σeff, ML(m). For σeff, ML(m) we assume a scatter of one
magnitude, σeff, ML(m)= 1.0, making most images of glSNe
inefficient probes of the mass profile.
For the “standardizable image” we perform three different

scenarios for σeff, std(m). The first scenario, denoted as IDEAL,
sets σeff, std(m)= 0 for all measurements, assuming no milli-
and microlensing effects and perfect flux measurements. The
IDEAL scenario is meant to assess the error budget and the
precision floor of any other uncertainty component. The second
scenario, denoted as REALISTIC, sets σeff, std(m)= 0.2 for all
measurements. The REALISTIC scenario represents a likely
scenario for the uncertainty terms contained in σeff, std(m). A
specific split among its constituents is not required but is
motivated by a <10% flux measurement uncertainty, a ∼10%
millilensing uncertainty, and a ∼15% microlensing uncertainty.
The third scenario, denoted as EXTREME, sets σeff, std(m)= 1, a

12 We also refer to Weisenbach et al. (2021) for the reverse investigation of the
configuration with the largest magnification scatter due to microlensing.
13 The lenses need to be self-similar to translate the MST breaking to the time-
delay lenses.
14 This split is not based on ability of standardizable magnifications but
primarily for pedagogic illustration.

15 We refer to Equation (49) for the impact on the statistical error propagation
with different time-delay precision. Overall, in this forecast the time-delay
measurement uncertainties are subdominant to other sources of uncertainties.
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scenario where the magnification of every single image of a
glSN is dominated by small-scale microlensing magnification.
We highlight that these uncertainty terms should be interpreted
as statistical averages for the population of glSNe. In particular,
the microlensing component is expected to vary from image to
image substantially depending on the stellar surface brightness.

Table 2 summarizes our choices for the forecasts presented
in this work. We emphasize that our forecast scenario and
numbers operate under the assumption of imminent and
complete follow-up observation after a discovery or promising
candidate. The total number and numbers per year may be
lower with the dedicated follow-up, and we provide an
extended forecast prediction as a function of glSNe in
Section 4.5.

4.2. Deflector Model

The model parameters for the PEMD+shear model are
described in Table 3. We chose the same lens model for all
glSN systems for simplicity, but with general application of the
error propagation and uncertainties. The different source
positions of the glSNe for the cusp, cross, and fold
configurations are also provided in Table 3. We mimic high-
resolution imaging data constraints on the lens model
parameters with Gaussian errors on the lens model parameters,
also stated in Table 3. For the image positions of the multiply
lensed SNe, we assume an astrometric precision of ±0.005
arcseconds, achievable with high-resolution imaging around
SN peak brightness. Birrer & Treu (2019) highlighted the

importance and requirements on the astrometric precision of the
images of the time-variable sources. Our chosen precision
meets the requirement not to be the dominant uncertainty in our
inference.
We sample the posterior of the imaging data (Equation (33))

with the Gaussian likelihood in the lens model and image
position parameters while demanding the image positions
originating from the same source position for the proposed lens
model as a solution of the lens equation. We then transform the
posteriors into the relative Fermat potential and absolute
magnifications at the predicted image positions (Equation (33)).
The joint relative Fermat potential and magnification

posteriors for the cusp configuration are illustrated in
Figure 1. Similar posterior products are derived for the cross
and fold configurations and are presented in the Appendix
(Figures 5, 6).
The effective macro-model magnification uncertainty is

∼5% per image. The effective relative Fermat potential
uncertainty is ∼4% per image pair. The uncertainties are
comparable for the three different image configurations chosen
in this forecast and compatible with uncertainties obtained from
the analysis of real data by the H0LiCOW/SHARP/
STRIDES/TDCOSMO collaborations (Suyu et al.
2010, 2013; Wong et al. 2017; Birrer et al. 2019; Chen et al.
2019; Rusu et al. 2020; Shajib et al. 2020). The posteriors in
Fermat potential and magnification for our chosen configura-
tions and uncertainties are well approximated by multivariate
Gaussians, which justifies the use of the Gaussian likelihood of
Equation (34) with the covariance matrix ΣΔτμ.

4.3. Unlensed Field SN Data Set

The data set of unlensed (field) SNe fulfills two purposes.
First, it anchors the apparent unlensed population of SNe, mp
and σ(mp), and their uncertainties. The parameter mp directly
translates to l, and thus to H0. Second, the relative luminosity

Table 2
glSN Forecast Scenarios in Terms of Numbers of glSNe, Their Redshift

Distribution, and Measurement Uncertainties

Number of glSNe:

Cusp 8
Cross 8
Fold 8

Doubles 40+40+40

Total 144

Redshift distribution:

zlens 0.2, 0.5[ ] Deflector redshift
zsource z 0.2, 1.0lens[ ] + Source redshift

Measurement uncertainties (1σ):

δΔt ±2.0 days Time-delay
precision

σeff Effective magnitude precision
(Equation (51))

Scenario

σeff, std ±0.0 IDEAL

σeff, ML ±1.0

σeff, std ±0.2 REALISTIC

σeff, ML ±1.0

σeff, std ±1.0 EXTREME

σeff, ML ±1.0

Note. The parameters of the macro model and their uncertainties for the
forecast are presented in Table 3. The effective magnitude precision
(Equation (51)) is split between one image that is less affected by microlensing
(σeff, std) and the other images that are more strongly affected by microlensing
(σeff, ML).

Table 3
Deflector Model Parameters and Uncertainties for the Forecast

Parameter Value Description

Lens Model (PEMD+shear)

θE 1.0 ± 0.02 Einstein radius [arcsec]
γpl 2.00 ± 0.03 Power-law slope
e1 0.30 ± 0.01 Eccentricity of deflector
e2 −0.01 ± 0.01 Eccentricity of deflector
x0 0.00 ± 0.01 Center of deflector [arcsec]
y0 0.00 ± 0.01 Center of deflector [arcsec]
γ1 0.05 ± 0.01 External shear component
γ2 0.00 ± 0.01 External shear component

Image Configurations

(xs, ys) (0.15, 0.00) cusp source position [arcsec]
(xs, ys) (0.02, 0.00) cross source position [arcsec]
(xs, ys) (0.05, 0.10) fold source position [arcsec]
(xs, ys) (0.05, 0.40) double#1 source position [arcsec]
(xs, ys) (0.20, 0.20) double#2 source position [arcsec]
(xs, ys) (0.40, 0.20) double#3 source position [arcsec]

δθimage ±0.005 astrometric precision [arcsec]

Note. The parameters correspond to the PEMD+shear model. The uncertain-
ties represent high-resolution imaging data modeling uncertainties when the SN
is faded away.
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distances of SNe constrain the relative expansion history of the
universe, and thus Ωm in flat ΛCDM. The uncertainty on the
relative expansion history can have two ways to impact the
resulting H0 uncertainty: (i) the translation of the distance
measurement corresponding to the glSN systems at intermedi-
ate redshifts to the local distance constraints for a given MST
parameter l (Equation (48)), similar to an inverse distance
ladder; and (ii) the translation of the apparent magnitudes from
the distribution of unlensed (mostly lower redshifts) to the
glSN source redshifts (mostly higher redshifts; Equation (46)).

To assess current and future uncertainties coming from field
SN data sets, we set up two scenarios. First, we utilize the
Pantheon data set (Scolnic et al. 2018). In particular, we are
using the full covariance matrix product as described by
Scolnic et al. (2018). The covariance matrix includes the
intrinsic scatter in the SN Ia distribution, as well as covariant
systematic uncertainties. Second, we mimic a future SN data
set with an anticipated increase in the sample and lowering of
systematics over the coming 10 yr with the onset of the Roman
Space Telescope. We use the forecast covariance matrix by
Hounsell et al. (2018). The comparison between the

Figure 1. Mock image modeling posterior on the relative Fermat potential and lensing magnification between the image positions of a glSN when fit by a PEMD
+shear lens model for the cusp configuration. The lens model parameters and uncertainties are presented in Table 3. The configurations of the image position
(diamonds), inner caustic (green), and critical curve (red) are illustrated in the top right panel. The posteriors for the cross and fold configurations are presented in the
Appendix.
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hierarchical glSN inference with the current Pantheon sample
and the future SN sample allows us to emphasize the
importance of the field SN sample in the next decade to
utilizing glSNe to their full potential.

Table 4 provides the one-dimensional marginal constraints
on Ωm and mp derived from the two samples.

4.4. Forecast Results

We perform the hierarchical analysis of the parameters and
their priors presented in Table 1. We make use of the Gaussian
likelihoods of individual glSNe as presented in Section 3, with
the numbers of glSNe and uncertainties presented in Tables 2
and 3. We specified three different uncertainty scenarios for
σeff, std(m) (Equation (51), Section 4.1.1), IDEAL (0.0),
REALISTIC (0.2), and EXTREME (1.0). We also specified two
different unlensed SN scenarios, PANTHEON and FUTURE
(Table 4). Any combination of SN sample and σeff, std(m)
uncertainties results in six forecast scenarios. Figure 2 shows
the posterior inference with the scenarios of the PANTHEON
sample. Figure 3 shows the same inferences with the ROMAN
sample.

In addition to these six inferences with a fully covariant MST
component in the deflector model, we perform, as a reference
for the time-delay and PEMD+shear lens model uncertainties,
the forecast also without a covariant MST component by fixing

1intl = for both SN scenarios. The scenarios without the MST
do not depend on the error budget of the lensing magnifications
σeff(m) and the difference in the unlensed SN sample, and the
glSN sample only impacts the translation of the distance
measurements into H0. Table 5 summarizes the results with
regard to the relative precision on H0 for the eight different
scenarios considered in this work.

First, ignoring the MST, the mock data of measured time
delays and Fermat potential allow one to constrain H0 to 0.5%
precision with both the PANTHEON and ROMAN samples. This
set of forecasts serves as a statistical reference and does not
require standardizable magnifications to add information.

Once the MST is let free and only constrained by the
magnifications, both the impact of the uncertainties of σeffm
and the external SN sample significantly impact the resulting
constraints. The difference between the constraining power of
the PANTHEON and ROMAN samples can be seen prominently
when comparing the scenarios with σeff, mlm= 0, the IDEAL
case without microlensing. The PANTHEON inference results in
a precision of 0.8%, while the increased constraining power of
the ROMAN sample results in a 0.6% precision on H0. The error
budget of the PANTHEON_IDEAL scenario is dominated by
uncertainties in the unlensed SN population, whereas the
ROMAN_IDEAL achieves almost the same precision as a
scenario without an MST uncertainty.

When including REALISTIC or even EXTREME microlensing
uncertainties in our forecast, the uncertainties in intl start
dominating the constraining power on H0 as expected from the

constraining power on the magnification constraints
(Equations (46) and (47)). Overall, we highlight our fiducial
future scenario, ROMAN_REALISTIC, which provides a 0.9%
precision measurement on H0 with a full 10 yr LSST survey
paired with a ROMAN SN sample.

4.5. Generalized Forecast and Expected Time Line

Overall, the results of the full hierarchical inference
performed in Section 4.4 can be well approximated with the
analytical error propagation terms of Section 3.5. In this
section, we make use of the analytic error propagation and
generalize the forecast results of Section 4.4 for a range in the
number of glSNe.
Figure 4 shows the expected relative precision on H0 as a

function of the number of glSNe to be expected in the future for
the three different microlensing scenarios and the two different
external SN samples considered in this work. In about 2 yr of
the LSST survey when expecting ∼28 glSNe, we forecast for
the REALISTIC scenario a ∼3% precision on H0. With ∼150
glSNe for the ROMAN_REALISTIC scenario we expect a 1%
precision on H0. The precision of the external SN sample
substantially impacts the total error budget on H0 for >50
glSNe in the REALISTIC scenario. These numbers in terms of
years of LSST survey assume an optimal follow-up effort of the
discovery candidates.

5. Discussion

The forecast results presented in Section 4 only covered a
limited range of possible systematics and opportunities
regarding studying glSNe and measuring H0. In this section,
we discuss key systematics, as well as other windows of
opportunities, and give some general recommendations driving
the design requirements in future studies of glSNe to achieve a
sub-2% precision and accuracy of an H0 measurement.

5.1. Systematics

5.1.1. Selection Effects

Brightness selection effects in the discovery and follow-up
analysis of glSN systems may pose significant limitations in the
standardizable magnification methodology. Bright glSNe are
easier to discover and to follow up on. Such a selection can
impact unlensed brightness selection, as well as local lensing
magnification selection.
In our forecast and methodology, we assume an identical

unlensed peak SN brightness distribution for the unlensed field
sample and for the glSN population (mp). Unaccounted-for
differences between the unlensed field sample, mp, field, and the
glSN sample, mp, glSNe, result in a differential shift in H0 by

H

H
m m

1

2
. 520

0
p, glSNe p, field( ) ( )d

= -

Thus, an unaccounted-for relative selection effect of the field
SNe and glSNE of 2% results in a 1% bias in H0. Or in terms of
an error budget, an uncertainty in the relative magnitude
selection effect of 2% results in an additional error term of 1%
on H0 on top of the presented forecast results in Section 4.
Local lensing magnification, a combination of micro-, milli-,

and macrolensing effects, may overall dominate the brightness
selection. In particular, large (up)scatter in brightness for rare
microlensing events could significantly impact the selection

Table 4
Summary of Constraints Provided by the Two Field SN Samples Used in the
Forecast, the Pantheon Sample by Scolnic et al. (2018) and a Forecast for the

Roman Space Telescope by Hounsell et al. (2018)

Scenario Ωm mp σ(mp)

PANTHEON 0.299 0.022
0.023

-
+ 18.966 0.008

0.008
-
+ =0.1

ROMAN 0.300 0.004
0.005

-
+ 18.966 0.004

0.005
-
+ =0.1
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function. It is thus crucial to understand the microlensing
selection effect. Macrolensing selection biases are less of an
issue when performing the cosmographic analysis with time
delays obtained by the identical selection function. However,
when applying inferred mass profile constraints to lenses with
different selection criteria, such as lensed quasars, the relative
selection function comes into play.

5.1.2. SN Dependence with Redshift and Host Galaxies

Beyond the glSN systems and the required understanding of
their selection function, breaking the MST and measuring H0

also rely on an accurate and precise relative luminosity distance
and intrinsic SN distribution derived by an unlensed SN data
set. Such data sets are also used as a stand-alone cosmological
probe or as a key component of a combined cosmological
probe analysis, and their requirements and precision impact a
glSN+SN analysis, as presented in this work.

For example, strong ∼0.1–0.2 mag dependence on the local
host galaxy UV surface brightness, as reported by Rigault et al.
(2015), needs to be understood when making inferences from
high-redshift SNe Ia. However, if there are reliable apparent
magnitudes for unlensed field SNe available at the same
redshifts as the glSNe, this can circumvent systematics limiting

an SN sample in measuring the late-time relative expansion
history of the universe.
We also note that with increased distance (higher redshifts)

lensing effects also increasingly affect the apparent magnitudes
of the field SN sample as well. Relative selection effects (see
Section 5.1.1) also need to consider lensing selection effects in
the field SN sample.
We note that it is well known that the dust properties of

SN Ia hosts, parameterized by the total-to-selective absorption
ratio, RV, are very diverse and differ from the canonical value
of the Milky Way of RV= 3.1 (see, e.g., Brout & Scolnic 2021;
Thorp et al. 2021; Johansson et al. 2021, for recent studies).
Therefore, we require multiband data for each glSN in our
sample to constrain the RV and color excesses in the host and
lens galaxies. This is important since unresolved photometry
alone has been shown to underestimate the inferred magnifica-
tion, as seen for iPTF16geu (Goobar et al. 2017; Dhawan et al.
2020), mandating the need for optical and NIR coverage for
each image of the glSN.

5.1.3. Gaussian Uncertainty Approximations

In the forecast of this work, we assumed Gaussian
uncertainties in the measurements (linear flux units), lognormal
scatter in the intrinsic SN peak brightness distribution, and

Figure 2. Posterior inference for the forecast of 144 glSNe of the parameters and their priors presented in Table 1 (see also Tables 2 and 3 for details on the
uncertainties) with the Pantheon unlensed SN sample. We specified three different uncertainty scenarios for σeff, std(m) (Equation (51), Section 4.1.1), IDEAL (blue;
0.0), REALISTIC (orange; 0.2), and EXTREME (violet; 1.0). Figure 3 presents the same forecast with a Roman unlensed SN sample.
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Gaussian scatter in the milli- and microlensing magnifications.
The tails of the distributions need to be accurately captured to
guarantee an unbiased joint inference.16 In the current forecast,
we explicitly distinguish between logarithmic and linear units
and Gaussian likelihoods in either magnitude or flux units. This
is not meant to be accurate for any specific scenario but
primarily to emphasize the importance of accurately describing
a likelihood or a posterior product. Further care and emphasis
must be undertaken in describing the probability density
function (pdf) of the different components of the lensing
magnifications. Specifically, non-Gaussian tails in the distribu-
tions, when combining a large set of glSNe, may significantly
impact the resulting posterior pdf. The hierarchical sampling
and marginalization over population distributions further pose
challenges in the accuracy of the likelihood evaluation and
computational requirements. Gaussian or multivariate Gaussian
distributions have the advantage of analytic solutions for
marginalizations and likelihood evaluations, but the assump-
tions of Gaussian pdfs need to be tested to meet the
requirement of an accurate combined posterior inference.

5.2. Opportunities

Aside from additional potential systematics considerations,
there are also opportunities and circumstances that might
increase the resulting precision on H0 from glSNe relative to
our fiducial forecast scenario. This section lists and briefly
discusses a few of those opportunities.

5.2.1. glSNe without a Time Delay

The expected number of glSNe derived by Huber et al.
(2019) that we adopt in our forecast is, in part, based on the
requirement to achieve a time-delay measurement. There are
potentially many more glSNe expected to be discovered (see,
e.g., Goldstein et al. 2019) where a precise time-delay
measurement might not be expected. However, the availability
of measured time delays is not the dominant source of
uncertainty in our forecast. The primary information require-
ment to improve constraints on H0 is foremost a precise
absolute magnification measurement.

5.2.2. Galaxy–SN Lensing

There is also a set of “semi-strongly” lensed SNe expected
with a single magnified image available that is lensing through
the outskirts of a lensing galaxy. An absolute magnification

Figure 3. Posterior inference for the forecast of 144 glSNe of the parameters and their priors presented in Table 1 (see also Tables 2 and 3 for details on the
uncertainties) with a Roman unlensed SN sample (Table 4). We specified three different uncertainty scenarios for σeff, std(m) (Equation (51), Section 4.1.1), IDEAL
(blue; 0.0), REALISTIC (orange; 0.2), and EXTREME (violet; 1.0). Figure 2 presents the same forecast with the current Pantheon unlensed SN sample.

16 See, e.g., Section 4.4 of Park et al. (2021) for a discussion on tails in the
external convergence distributions impacting combined constraints on H0 for
200 quasar lenses.
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measurement remains possible in the absence of multiple
images, and such an enhanced sample might provide significant
information on the more extended galaxy density profile, thus
also constraining the physically plausible MST components
(see, e.g., Rodney et al. 2015, for such an analysis with a singly
lensed SN in a cluster environment). Such a probe is
conceptually similar to galaxy–galaxy lensing and can possibly
enhance the signal-to-noise ratio in the very innermost scales of
galaxies, where galaxy shape information is less accessible and
nonlinear perturbations may arise on the distortion of the
shapes (see, e.g., Coupon et al. 2013, for work using
magnifications of galaxies for such type of analysis).

5.2.3. Other Types of Standardizable Sources

Our forecast has focused on SNe Ia, in terms of the expected
numbers, intrinsic scatter, and light-curve properties, to
measure a peak brightness and a time delay. There are other
transient sources that can be standardizable. Different studies
succeeded in constructing a Type II SN Hubble diagram with a
dispersion of ∼10%–14% in distance (e.g., Nugent et al. 2006;
Poznanski et al. 2010; de Jaeger et al. 2015). The more
abundant Type II SNe may provide a valuable addition.
Though the light curves of Type II SNe are not as suited for
time-delay measurements as with SNe Ia, there might be
advantages in measuring an absolute magnification effect with
Type II SNe.

Beyond SNe, there are also gravitational waves (GWs) that
can be standardized remarkably well and thus may open up
opportunities beyond the capabilities of SNe. Repeated fast
radio bursts (FRBs) may also provide the possibility for a
standardization. For GWs and FRBs, one challenge will be the
required astrometric precision to precisely determine the
Fermat potential and macro-model magnification (see, e.g.,
Birrer & Treu 2019).

5.2.4. Constraints from Stellar Kinematics

In our forecast, we left out anticipated constraints from
stellar dynamics measurements on density profiles and break-
ing the MST, in part because there is a larger literature on
stellar kinematics in breaking the MST and existing recent
literature providing a forecast for this methodology for the
decade to come (Birrer & Treu 2021). Another reason is to
assess a kinematic-independent methodology in breaking the
MST, and thus constraints on the MST can be combined,
provided that both kinematics and standardizable

magnifications are consistent. We highlight that stellar
kinematic measurements can be performed on the glSN lenses
once the glSNe have faded away and thus might provide
similar, but independent, constraining power per glSN. Given
that both methodologies are expected to provide about 1.5%
precision on H0 in the next decade, this can result in stringent
consistency checks and mitigation of currently nonanticipated
systematics effects and establish a precise direct distance
anchor of the universe.

5.3. Recommendations

Based on our forecast and the discussion of possible
systematics and opportunities, we provide here some recom-
mendations for the community to help guide successful future
strategies in providing both accurate and precise measurements
of H0 with glSNe. We focus on some aspects that either
emerged directly from this work or deserve special emphasis.

1. Perform follow-up observations for standardizable glSN
candidates regardless of the expected time-delay preci-
sion. The precision on the mass profiles and hence H0

relies on the ability of standardizable magnifications.
Among the glSN Ia discoveries, those systems with low
expected microlensing events are the most valuable in
breaking the MST. A significant number of glSNe Ia
where at least one image is at lower magnification and
lower projected stellar density are necessary, regardless
of the time-delay precision (see also Foxley-Marrable
et al. 2018). It is thus important to allocate significant
follow-up efforts for those glSNe to be able to perform
the analysis as forecasted in this work.

2. Integrate weak- and strong-lensing SN analysis. To some
extent, the division of the field SN sample and the glSN
sample is an artificial cut in an underlying population of
SNe that get lensed. Most lensing is weak with few
percent magnification, while the tails in the lensing
magnification are effectively leading to glSNe. It is
important to characterize the lensing effects across the
entire spectrum to accurately describe the relative
selection effects. With a more distant SN sample, lensing
effects may inevitably become more prominent also for
the field SN sample.

3. glSN discovery strategy must provide a reproducible
selection function. Relative selection effects are possibly
a dominant source of uncertainty or unaccounted-for
systematics. Making use of the standardizable

Table 5
Summary of the Achieved Precision on H0 for the Six Forecast Scenarios of This Work, and the Two Scenarios When Keeping l Fixed

Scenario SN Sample σeff, std(m) σeff, ml(m) δH0/H0

PANTHEON_NO_MST Pantheon L L 0.6%
PANTHEON_IDEAL Pantheon 0.0 1.0 0.8%
PANTHEON_REALISTIC Pantheon 0.2 1.0 1.1%
PANTHEON_EXTREME Pantheon 1.0 1.0 2.5%
ROMAN_NO_MST Roman SNe L L 0.6%
ROMAN_IDEAL Roman SNe 0.0 1.0 0.6%
ROMAN_REALISTIC Roman SNe 0.2 1.0 0.9%
ROMAN_EXTREME Roman SNe 1.0 1.0 2.4%

Note. We specified three different uncertainty scenarios for the standardizable image σeff, std(m) (Equation (51), Section 4.1.1), IDEAL (0.0), REALISTIC (0.2), and
EXTREME (1.0). We also specified two different unlensed SN scenarios, PANTHEON and FUTURE (Table 4). Any combination of SN sample and σeff(m) uncertainties
results in six forecast scenarios. The resulting posterior inference on H0 is given in the last row. The posteriors are also presented in Figures 2 and 3 for the PANTHEON

and FUTURE SN sample, respectively.
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magnification effect to break the MST, it is crucial to
understand and reproduce the relative selection effect to
the percent level. A survey and discovery strategy must
account for the feasibility to reproduce the selection
function it contains. Known selection effects can then be
mitigated by, e.g., large-scale simulations (see, e.g.,
Scolnic & Kessler 2016; Kessler & Scolnic 2017, for the
use for field SN samples).

4. Extension of the hierarchical analysis to incorporate the
astrophysics of microlensing. The microlensing event
statistics is by itself a phenomenon that can probe the
compact matter composition and fraction (e.g., Schechter
& Wambsganss 2002; Kochanek 2004). Correlations
between stellar surface brightness and (microlensing)
magnification events allows one to distinguish and
measure the stellar initial mass function and other forms
of compact objects, such as primordial black holes.

6. Conclusions

Strongly lensed SNe (glSNe) can provide, in addition to
measurable time delays, lensing magnification constraints when
knowledge about the unlensed apparent brightness of the
explosion is imposed. In this paper, we discussed the
theoretical aspects that allow absolute lensing magnifications
to constrain a key property of the lensing mass profile that is
insufficiently constrained with lensing-only data owing to the
MSD. We then presented a hierarchical Bayesian analysis
framework to combine a data set of SNe that are not strongly
lensed and a data set of strongly lensed SNe with measured
relative time delays. We jointly constrain (i) the unlensed
apparent magnitude distribution of the population of SNe, (ii)

the lens model profiles with the magnification ratio of lensed
and unlensed fluxes on the population level, (iii) the relative
expansion history of the universe with the relative brightness of
SNe with redshift, and (iv) H0 with the time delays as an
absolute distance indicator.
We applied our joint inference framework on a future

expected data set of glSNe from 10 yr of the Rubin
Observatory LSST in combination with a future unlensed SN
sample from the Roman Space Telescope. We forecast that a
sample of 144 glSNe with well-measured time series and
imaging data have the statistical power to measure H0 to 1.0%
in the next decade.
We discuss further expected covariant systematic uncertain-

ties due to relative selection effects, dust extinction, and SN
redshift evolution. We discussed strategies to mitigate
systematics associated with using absolute flux measurements
of glSNe to constrain the mass density profiles. Among the key
systematic effect are relative selection biases in the discovery
and usage of the glSNe and the unlensed SN population due to
microlensing magnification effects. We emphasize that for a
1% precision on H0, a 2% overall accuracy in the standardiza-
tion of apparent brightness distributions between the SN
population in the field and the glSN population needs to be
achieved. With an additional 1% systematic uncertainty we
forecast an overall precision on H0 of 1.5%.
The methodology presented in this work is implemented in

the public software HIERARC and compatible with the
hierarchical analysis by Birrer et al. (2020). The implementa-
tion allows one to combine different observational constraints
self-consistently and can be adopted to the uncertain predic-
tions of the expected glSNe depending on survey and follow-up
strategies.

Figure 4. Expected relative precision on H0 as a function of the number of glSNe with one standardizable image magnification. Blue curves indicate the forecast with
the Pantheon SN sample (Scolnic et al. 2018), and red curves indicate the forecast with a future Roman SN sample (Hounsell et al. 2018). Thick solid lines mark our
REALISTIC expectations of microlensing (relative uncertainty of σeff, std(m) (Equation (51)) of 0.2). Dashed–dotted lines mark the IDEAL scenario of zero microlensing
(relative uncertainty of σeff, std(m) of 0.0). Dashed lines mark an extreme microlensing scenario (relative uncertainty of σeff, std(m) of 1.0). The vertical black dashed
line marks the expected number of 144 glSNe for a 10 yr LSST survey, with one image being only marginally affected by microlensing (Goldstein & Nugent 2017;
Foxley-Marrable et al. 2018) and an assumed optimal follow-up effort enabling the analysis. The quality and systematic uncertainties in the unlensed field SN sample
significantly impact the uncertainty budget for the expected number of glSNe. Calculations are made with the analytical error propagation of Section 3.5. https://
github.com/sibirrer/glSNe/Notebooks/analytic_error_propagation.ipnb
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Using SNe is a promising and complementary alternative to
using stellar kinematics observations to constrain the radial
mass density profiles of strong-lensing deflectors and can
achieve comparable precision to independent assumptions and
systematics. Future surveys, such as the Rubin and Roman
observatories, will be able to discover the necessary number of
glSNe, and with dedicated additional follow-up observations
this methodology will provide precise constraints on mass
density profiles and H0. These constraints will be key to
understanding the source of the current Hubble tension and will
additionally provide insights into the formation and evolution
of massive elliptical galaxies.

We thank Ariel Goobar, Justin Pierel, and Sherry Suyu for
useful comments on an earlier version of the manuscript. This
research was supported by the U.S. Department of Energy
(DOE) Office of Science Distinguished Scientist Fellow
Program.

Software: LENSTRONOMY (Birrer & Amara 2018; Birrer
et al. 2021), HIERARC (Birrer et al. 2020), ASTROPY (Astropy
Collaboration et al. 2013, 2018), EMCEE (Foreman-Mackey
et al. 2013).

Data Availability

The formalism and inference schemes presented in this work
are implemented in HIERARC,17 and the scripts to reproduce the
presented work are publicly available.18 Lensing calculations
are performed with LENSTRONOMY.19

Lens Model Posteriors

In this appendix, we provide the posteriors of the Fermat
potential differences and lensing magnification for the three
quad and three double lensing configuration based on the lens
model and source position parameters and uncertainties of
Table 3. We present the quadruply lensed configurations of the
cross in Figure 5 and the fold configuration in Figure 6. The
cusp configuration is presented in the main body of the text in
Figure 1. The posteriors for the three double configurations are
provided in Figure 7.

Figure 5. Mock image modeling posterior on the relative Fermat potential and lensing magnification between the image positions of a glSN when fit by a PEMD
+shear lens model for the cross configuration. The lens model parameters and uncertainties are presented in Table 3. The configuration of the image position
(diamonds), inner caustic (green), and critical curve (red) is illustrated in the top right panel.

17 https://github.com/sibirrer/hierArc
18 https://github.com/sibirrer/glSNe
19 https://github.com/sibirrer/lenstronomy
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