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Summary 

Cellular immune mechanisms of psychiatric disorders and the stress response  

Mary-Ellen Lynall 

Multiple psychiatric disorders have been associated with abnormalities in the immune system. 

As I summarise in my opening chapter (Chapter 1), evidence from human and animal studies 

suggests that the immune system may be implicated in the pathogenesis of these disorders, at 

least in a subset of patients. However, the direct evidence for a causal role of immune 

mechanisms is limited. Moreover, there are currently no good biomarkers that allow us to 

identify which patients with psychiatric disorders have immune dysfunction, and thus might 

benefit from alternative treatment approaches. I outline the limits of what is known about the 

causality of immune dysfunction in psychiatric disorders from the existing literature, much of 

which focuses on soluble biomarkers in peripheral blood in observational case-control studies. 

This stimulates consideration of more mechanistically refined biomarkers, with a focus on 

which immune cell subsets, and what cellular mechanisms, might play a causal role in 

psychiatric symptoms. In this thesis, I use human genetic data, human immunophenotyping 

and animal models to investigate whether psychiatric disorders and stress are associated with 

dysfunction in particular immune cell subsets, and the evidence for a causal, pathogenic role of 

different immune cells. 

 

In Chapter 2 I describe an analysis of a flow cytometry study of peripheral immune cell subsets 

in people with depression and age- and sex-matched controls. I used univariate and 

multivariate analyses to investigate the immunophenotypes associated with depression and 

depression severity. I found that depressed cases, compared to controls, had significantly 

increased immune cell counts, especially neutrophils, CD4+ T cells and monocytes, and 

increased inflammatory proteins. Depressed cases were partitioned into two subgroups by 

forced binary clustering of cell counts: the inflamed depression subgroup had increased 

myeloid and lymphoid cell counts, increased CRP and IL-6, and was more depressed than the 

uninflamed majority of cases. Relaxing the presumption of a binary classification, data-driven 

analysis identified four subgroups of depressed cases: two of which were associated with 

increased inflammatory proteins and more severe depression, but differed in terms of myeloid 
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and lymphoid cell counts, raising the possibility that there may be more than one type of 

‘inflamed depression’. 

 

Stress is one putative cause of immune dysfunction contributing to the pathogenesis of 

multiple psychiatric disorders, and recent work has highlighted the potential role of the 

meningeal compartment of the immune system in behaviour. As described in Chapter 3, I used 

an animal model to investigate the effects of stress on the peripheral and meningeal immune 

compartments (the latter being poorly accessible in humans). Using flow cytometry and 

transcriptomic (including single cell) analyses, I demonstrated dysregulation of both myeloid 

and lymphoid immune cells in the periphery and meninges, and showed that B cells may 

influence behaviour by regulating meningeal myeloid cell activation.  

 

In Chapter 4, I investigated the implications of genome wide association studies (GWAS) of 

psychiatric disorders for cellular immunity. I tested for enrichment of GWAS variants 

associated with multiple psychiatric disorders (cross-disorder or trans-diagnostic risk), and 5 

specific disorders (cis-diagnostic risk), in regulatory elements in immune cells. For this analysis, 

I used three independent epigenetic datasets representing multiple organ systems and 

immune cell subsets. Trans-diagnostic and cis-diagnostic risk variants (for schizophrenia and 

depression) were enriched at epigenetically active sites in brain tissues and in lymphoid cells 

(T, B and NK cells), especially stimulated CD4+ T cells. There was no evidence for enrichment of 

either trans-risk or cis-risk variants for schizophrenia or depression in myeloid cells. This 

suggests a model where stimuli, e.g., stress or infection, activate T cells to unmask the effects 

of psychiatric risk variants, contributing to the pathogenesis of mental health disorders. 

 

In summary, the results from the human studies highlight the involvement of both the innate 

and adaptive immune system in psychiatric disorders. They further suggest that there are likely 

both shared and distinct contributions of cellular immunity to the pathogenesis of different 

psychiatric disorders. The results from the mouse model support the role of psychological 

stress in contributing to immune abnormalities in psychiatric disorders and suggest that the 

effects of stress may in part be mediated by stress-induced alterations in the meningeal 

immune system. These results are summarised in a concluding chapter (Chapter 5) which 

highlights outstanding questions, and priorities for future research, in the current 

understanding of the role of the immune system in mental health disorders. 
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Chapter 1: Introduction 

 

1.1 Inflammation in depression 

Depression affects millions of people worldwide, but the underlying pathogenesis is poorly 

understood and current therapeutic interventions have limited efficacy (Kessler et al 2005a). 

Depression is a relapsing-remitting disorder involving a constellation of psychological and 

somatic symptoms. Its core symptoms, which must be present for at least two weeks, are (1) 

low mood (2) decreased energy and (3) decreased interest or pleasure in activities (World 

Health Organization 2004). Diagnostically, depression can occur in the context of Major 

Depressive Disorder (MDD), as part of another psychiatric disorder, e.g., bipolar disorder, or 

“comorbid” with a medical disorder. Major depressive disorder (MDD) affects 10-15% of the 

population (Kessler et al 2005b), and at least one third of patients with depression do not 

respond to conventional antidepressants that target serotonin or other monoamines (Rush et 

al 2006). Treatment-resistant depression (TRD) is associated with increased hospitalisation and 

suicide attempts (Amital et al 2008) but the mechanisms of treatment-resistance are unclear 

and novel treatments are urgently needed. 

 

Immuno-psychiatry - a combined approach drawing on immunology, neuroscience and 

psychiatry - has recently emerged as an inter-disciplinary framework for the mechanistic 

understanding of depressive disorders. Some patients with MDD have increased circulating 

levels of inflammatory cytokines, chemokines and C-reactive protein (CRP) (Kohler et al 2017a, 

Valkanova et al 2013). Moreover, there is experimental evidence that inflammation can cause 

depressive behaviours, both from animal studies showing that exposure to pro-inflammatory 

cytokines results in social withdrawal and anhedonia (Miller & Raison 2016), and from human 

studies demonstrating that treatment (for hepatitis) with a pro-inflammatory cytokine 

(interferon) is followed by increased incidence of MDD (Pinto & Andrade 2016). Convergently, 

meta-analytic reviews of clinical trial data have consistently demonstrated that anti-

inflammatory drugs can significantly improve comorbid mood and fatigue symptoms, 

measured as secondary endpoints, in patients with medical inflammatory disorders 

(Kappelmann et al 2018, Kohler et al 2014, Wittenberg et al 2019). These and other findings 

support the hypothesis that depressive symptoms – whether part of MDD or associated with 

inflammatory or autoimmune conditions – could be caused or exacerbated by activation of the 

immune system.  
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In this introductory chapter, I will summarise our current understanding of the relationship 

between the immune system and the brain; summarise the immune abnormalities that have 

been associated with depression; examine the evidence that this immune dysregulation 

contributes causally to symptoms; outline the possible sources of inflammation in depression; 

consider the evidence for an inflamed subgroup of patients with depression; and examine how 

inflammation relates to (potentially transdiagnostic) symptoms or endophenotypes in 

psychiatry. 

 

1.2 The immune system and its relationship with the brain 

In order to further consider the role and sources of inflammation in depression, I will first 

recap the principal functions and features of the immune system, and our current 

understanding of the relationship between the immune system and the brain. The function of 

the immune system is to protect the body from pathogens and other forms of tissue damage. 

The immune system generates inflammatory responses to pathogens and tissue injury, but 

also plays a critical role in the regulation and resolution of inflammation (Mauri & Menon 

2017, Sakaguchi et al 2020, Serhan & Levy 2018). Cells in the immune system can circulate in 

the blood or reside in tissues or lymphoid organs (including the thymus, spleen, bone marrow 

and lymph nodes) (Lewis et al 2019, Masopust & Soerens 2019, Randolph et al 2017).  

 

The immune system is composed of an innate and an adaptive arm. The innate system 

provides the initial response to injury – this response is rapid, and is non-antigen specific, 

instead triggered by generic classes of molecules present on pathogens (PAMPs, pathogen-

associated molecular patterns) or associated with tissue injury (DAMPs, damage-associated 

molecular patterns) (Seong & Matzinger 2004). The innate immune system includes phagocytic 

cells such as neutrophils and monocytes, and soluble factors such as the complement system, 

acute phase proteins and pro-inflammatory cytokines (e.g., interleukin-6, IL-6), although 

adaptive immune cells also secrete many of the same cytokines (Commins et al 2010). 

Monocytes develop in the bone marrow, circulate and mature in the blood, and can travel to 

tissues where they mature into macrophages (Guilliams et al 2018). Tissue macrophages can 

be derived from circulating monocytes or, alternatively, seeded into tissues prenatally. 

Neutrophils are short-lived cells (several days) and are normally found in the blood. They are 

some of the first responders to an insult: signals from a tissue indicating damage or the 
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presence of pathogens cause neutrophils to migrate to the site of injury (Liew & Kubes 2019). 

Acute phase proteins are markers of inflammation which are increased in blood during acute 

inflammation and include C-reactive protein (CRP). Acute phase proteins have many and varied 

functions, which include tagging microbes for destruction, altering blood clotting, and 

mediating negative feedback on the inflammatory response (Schrödl et al 2016).  

 

The adaptive system, which includes T and B cells, provides a delayed but specific response to 

infection by recognising and targeting particular antigens (molecular shapes) on invading 

pathogens. The adaptive system generates highly specific memory of previous infections, 

based on gene rearrangements in B and T cells, so that subsequent encounters with the 

pathogen generate a stronger and more rapid response (the basis of vaccination) (Farber et al 

2014, McHeyzer-Williams & McHeyzer-Williams 2005). The innate immune system also has 

memory, but this is based on epigenetic changes rather than on gene rearrangement, and is 

less specific than adaptive memory – an initial immune challenge can alter the innate response 

to subsequent, unrelated challenges (Dominguez-Andres & Netea 2019).  

Traditionally, the immune system and the brain/mind were considered distinct systems, 

separated by the blood-brain barrier. There were known to be myeloid immune cells resident 

in the brain, but these microglia, the most numerous immune cells in the central nervous 

system, are derived from embryonic yolk sac primitive macrophages which invade the brain in 

early embryogenesis and proliferate in situ (Ginhoux et al 2010, Schulz et al 2012). In rodents, 

fate-mapping studies demonstrated that yolk-sac derived microglia persist into adulthood with 

no substantial contribution of peripheral blood monocytes to the microglial pool under 

homeostatic conditions (Ginhoux & Prinz 2015), although whether the same is true in humans 

is less clear. Moreover, until recently, the brain was also thought to lack a lymphatic system 

(the drainage system by which tissue fluid is monitored by lymph nodes, a key part of the 

immune system). All this seemed to reinforce the idea that the brain is segregated from the 

peripheral immune system. It makes sense that the brain is protected from inflammation to a 

degree – neurons are, for the most part, not regenerated: the collateral damage and cell death 

that accompany inflammation are thus particularly problematic in the brain. Moreover, the 

brain sits in an enclosed box (the skull), so the oedema that usually accompanies inflammation 

could cause dangerous compression of the brain. However, it is increasingly clear that the 

immune system and brain are deeply entwined: immune cells regulate the development and 

activity of the nervous system, and the nervous system regulates immune responses 
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throughout the body (Dantzer 2018). Moreover, it has recently been discovered that the brain 

has its own local immune system (in addition to microglia and perivascular macrophages) in 

the meninges, the lining of the brain (Rua & McGavern 2018), and that the brain does have its 

own lymphatic drainage system, externalised to the meninges (Aspelund et al 2015, Louveau et 

al 2015). The meningeal immune and lymphatic systems provide additional mechanisms by 

which the body’s immune system can affect and be affected by the brain. 
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Figure 1-1 Pathways by which the immune system may act on the brain to induce behavioural change. 

Effects of immune cells and inflammatory mediators on the brain and behaviour may be mediated by 

direct action of cells, antibodies and soluble components on central nervous system (CNS) cells, with 

infiltration of cells and cytokines across the blood-brain barrier. Alternatively, cells and soluble 

components may act indirectly on the brain via effects on brain epithelium/endothelium; via the 

meningeal immune system; by the action of immune cells or cytokines on afferent vagal nerve 

signalling; or via the effects (not shown) of inflammation on neurotransmitter metabolism (see text for 

more details). Immune cells can be recruited to the CNS from the peripheral bone marrow, passing via 

the peripheral circulation, or be recruited directly from the skull bone marrow to the meninges, via 

channels in the skull.      
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Mechanistic studies, primarily in rodents, have revealed that there are multiple pathways by 

which the immune system can act on the brain to induce behavioural change (see Figure 1-1), 

which include: 

1. Cytokines crossing the blood-brain-barrier to act directly in the brain (Menard et al 

2017). 

2. Cytokines acting on brain endothelium / epithelium (Blank et al 2016). 

3. Afferent neural signalling by immune cells or cytokines modulating vagus nerve activity 

(Bluthe et al 1996). 

4. Effects of inflammation on the metabolism of neurotransmitters or the generation of 

neurotoxic metabolites (Dantzer 2018, O'Connor et al 2009b). 

5. Infiltration of peripheral immune cells into the brain (Wohleb et al 2013). 

6. The effects of antibodies on the brain, as suggested by associations between 

autoantibodies (especially anti-NMDA receptor antibodies) and psychiatric symptoms 

(Kayser & Dalmau 2016) and the effects of passive transfer of patient anti-NMDAR 

antibodies on rodent brain function (Jezequel et al 2017, Planaguma et al 2015). 

7. Effects mediated by the meningeal immune system (see Section 1.2.1 below). 

 
In this thesis, we often refer to ‘inflammation’ and its association with different exposures or 

disorders. Inflammation is a broad term, originally encompassing the four cardinal signs of 

infection – redness, swelling, heat and pain, as described by the Roman scholar Celsus in the 

first century AD – but with no agreed-upon modern definition. It has generally come to mean 

‘a protective response of the organism to stimulation by invading pathogens or endogenous 

signals’ (Netea et al 2017), but in clinical studies, molecular markers associated with this (e.g., 

increases in plasma cytokines) are often used as a proxy indicator of inflammation. Here, we 

use the term in this modern and broad sense. We allow ‘inflammation’ to include both markers 

of the acute phase of inflammation, as well as mediators important in the resolution of 

inflammation, given that, in many studies, it is not possible to determine whether a given 

marker or cell type has a pro- or anti-inflammatory role. 

 

1.2.1 The meningeal immune system and its potential role in psychiatric symptoms 

Until recently, the brain was viewed as an immune-privileged site, and with the exception of 

perivascular macrophages and microglia the healthy brain was thought to be essentially devoid 

of immune cells. However, recent data demonstrating immune cells within the meninges in the 

steady state challenged this dogma (Kipnis 2016, Rua & McGavern 2018). Healthy meninges 
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contain both innate and adaptive immune cells, including all major haematopoietic lineages 

(Ajami et al 2018, Korin et al 2017, Schafflick et al 2021). Most meningeal immune cells are 

sited behind the blood-brain-barrier (or blood-meningeal-barrier) as, like most cells in the 

central nervous system, they are not labelled by high-molecular weight markers injected into 

the vascular system (Korin et al 2017, Schafflick et al 2021). The extent to which there is 

recirculation between peripheral and meningeal compartments in health is unclear, although 

there is evidence from parabiosis experiments of long-term meningeal tissue-residency for at 

least some myeloid cells and B cells in the meninges (Cugurra et al 2021, Schafflick et al 2021), 

and some meningeal T cells express surface markers associated with long-term tissue-

residency (Urban et al 2020). Moreover, meningeal immune cells need not be recruited via the 

blood – they can traffic directly from the skull bone marrow to the meninges via specialized 

channels crossing the inner skull bone (Brioschi et al 2021, Cugurra et al 2021, Herisson et al 

2018). The meninges also contain a system of lymphatics which are physically related to the 

dural venous sinuses and drain to the deep cervical lymph nodes (Aspelund et al 2015, Louveau 

et al 2015). Immune cells around these sinuses monitor the cerebrospinal fluid (CSF) draining 

the brain for antigens and support local immune effector functions within the meninges 

(Rustenhoven et al 2021).  

 

Experiments in rodents suggest that meningeal immune cells can have an important role in 

homeostatic behaviour even in the absence of infection or peripheral inflammation; such 

investigations have primarily focused on the role of meningeal T cells. Data suggest that 

meningeal CD4+ T cells can impact cognition, social behaviour, fear memory, and responses to 

stress in rodents (Cohen et al 2006, Derecki et al 2010, Filiano et al 2016, Herz et al 2021). 

These effects can occur via immune cell cytokine signalling to neurons, including the action of T 

cell IFN-γ (Filiano et al 2016) or T cell IL-4 (Herz et al 2021) on neurons. In addition, meningeal 

γδ T cells have been shown to regulate homeostatic anxiety levels via IL-17 signalling to 

neurons (Alves de Lima et al 2020). Such studies have demonstrated relevant cytokine 

production by meningeal T cells during the studied behavioural tasks, and some have used cell 

specific genetic knock-outs or chimeric animals to demonstrate the importance of cytokine 

production by a specific cell type (i.e. T cells) or the importance of cytokine signalling to a 

specific cell type (e.g., neurons). However, without effective tools for spatially targeting or 

selectively depleting specific immune cells in the meninges, we cannot conclusively infer that it 

is meningeal (rather than peripheral) T cells which are crucial for the observed effects on 

behaviour in these studies. 
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1.3 Evidence of inflammation in depression 

1.3.1 Peripheral soluble inflammatory markers in depression 

Biomarker research in immuno-psychiatry to date has mainly focused on blood proteins such 

as cytokines and CRP. Increased blood levels of pro-inflammatory cytokines and acute phase 

reactants have been repeatedly reported in case-control studies of major depressive disorder 

(MDD) compared to non-depressed controls, with meta-analytic evidence for increased 

interleukin(IL)-6, tumour necrosis factor (TNF)-α, IL-10, soluble IL-2 receptor, IL-13, IL-18, IL-12, 

IL-1 receptor antagonist, soluble TNF receptor 2 and CRP, but decreased interferon(IFN)-γ, in 

MDD (Chamberlain et al 2018, Kohler et al 2017a, Syed et al 2018, Valkanova et al 2013). 

Depression (in people who are otherwise physically well) is also associated with altered 

peripheral blood chemokines, with increased CCL2, CCL3, CCL11, CXCL7 and CXCL8 and lower 

levels of CCL4 compared to controls (Leighton et al 2018). However, absolute levels of these 

proteins are low; the effect sizes are modest; and there are many sources of variation in blood 

cytokines and chemokines that can confound the association with depressive symptoms. 

Importantly, only some MDD patients show evidence of inflammation by these measures: for 

example, only ~30% of MDD cases have CRP greater that the upper limit of normal (3mg/L) 

(Chamberlain et al 2018).  

 

1.3.2 Peripheral cellular immunophenotypes in depression 

As described above, blood proteins – like cytokines and CRP – have been the focus of most 

immune biomarker research in psychiatry to date; the potential utility of cellular immune 

markers has been relatively under-explored. Most case-control studies of leucocyte subsets 

have used small samples, limited immunophenotyping panels, and have generated somewhat 

inconsistent results. Depression has been reproducibly associated with leucocytosis, an 

increased neutrophil to lymphocyte ratio, and an increased ratio of CD4+ to CD8+ T cells (Maes 

et al 1992c, Mazza et al 2018, Zorrilla et al 2001). However, there are less consistent results 

concerning regulatory T cells, Th17 cells, natural killer (NK) cells, monocytes, and B cells 

(Grosse et al 2016a, Grosse et al 2016b, Hasselmann et al 2018, Maes et al 1992b, Patas et al 

2018, Pavon et al 2006, Suzuki et al 2017). Notably, many prior studies have measured the 

relative frequency of each immune cell subset in proportion to the superset of peripheral 

blood mononuclear cells (PBMCs). Such relative cell counts are difficult to interpret since a 
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decrease in the relative proportion of any given subset may reflect either an absolute decrease 

in their number or an absolute increase in the number of another PBMC subset.  

 

1.3.3 Peripheral immune transcriptional phenotypes in depression 

A number of studies have examined gene transcription in peripheral blood samples, primarily 

in whole blood or PBMCs, which can easily be separated from blood using density gradient 

centrifugation. Analysis of candidate genes in whole blood samples by qPCR has consistently 

demonstrated increased inflammatory gene expression (interleukin 1-beta, IL1B; interleukin 6, 

IL6; tumour necrosis factor-alpha, TNF; macrophage migration inhibitory factor, MIF) and 

decreased glucocorticoid receptor (GR) expression in MDD cases compared with healthy 

controls (Cattaneo et al 2013). In an independent sample, absolute expression of IL1B and MIF 

were increased in patients with TRD compared to treatment-responsive MDD (Cattaneo et al 

2016). Other studies have used microarray or RNA sequencing (RNAseq) to analyse gene 

expression more broadly and have generally demonstrated increased expression of genes in 

innate immune pathways and decreased expression of genes in adaptive immune pathways in 

MDD compared to controls, although the specific genes over- or under-expressed in 

depression are highly variable across different studies (Wittenberg et al 2020). The results of 

case control studies of gene expression in mixed cellular samples are summarized in Table 1-1. 

 

Findings of MDD-associated transcriptomic changes raise a key question: what is the cellular 

source of these gene expression changes? Are depression-related changes in IL1B and GR 

expression coupled within individual cells or within a specific subset of abnormal cells? 

Transcriptional analyses of mixed samples implicate especially cells of the myeloid lineage 

(monocytes, neutrophils and dendritic cells) (Leday et al 2018), but almost all genes are 

expressed in multiple cell subsets, so cannot easily be attributed to a particular cell subset. A 

second limitation of gene expression analyses of heterogeneous mixtures of cells is that 

between-group differences in gene expression may not reflect changes in cell-intrinsic gene 

expression, instead simply reflecting group differences in the proportion of component cellular 

subsets (Lyons et al 2010). To mitigate this problem, measured or bioinformatically estimated 

cell numbers can be used as covariates in models of the effects of depression on gene 

expression, but this cannot adequately adjust for differences in cell proportions across 

samples. Moreover, in heterogeneous samples, transcriptomic changes in one cell subset may 

be diluted or obscured by signals (which may be opposite in direction) from other cell subsets 
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(Lyons et al 2010).  Thus, transcriptomic analysis of sorted cell subsets, or single cells, may be 

necessary to uncover disease-related pathways in MDD, as has been the case for other 

conditions (Lee et al 2011, Martin et al 2019, McKinney et al 2010). To date, there have been 

no genome-wide analyses of gene expression in sorted immune cell subsets in MDD, and no 

studies of single cell gene expression in immune cells in MDD. A small number of studies have 

examined expression of candidate transcripts in sorted monocytes and T cells. These are 

summarized in Table 1-2, and are suggestive of an increase in monocyte proinflammatory 

signalling, increased monocyte chemotaxis, and monocyte glucocorticoid resistance in MDD, as 

well as potential alterations in T cell receptor diversity in MDD.  

 



 

 

Table 1-1 Gene expression in peripheral blood samples (whole blood and PBMCs) in depression (MDD) vs. controls.  

Includes only studies with >20 samples per group. Excludes studies testing candidate genes by qPCR-only. PBMC, peripheral blood mononuclear cells. MA, 

microarray; RNAseq, RNA sequencing; WGCNA, weighted gene co-expression network analysis; rMDD, recurrent MDD, MDD-R, MDD treatment responders; 

MDD-NR, MDD non-treatment responders; BPD, bipolar disorder; DE, differentially expressed; IPA, Ingenuity Pathway Analysis; RBC, red blood cell; BMI, body 

mass index; FDR, false discovery rate. 

Publication Sample size Assay Comments on 
clinical sample  

Covariate 
adjustment 

Findings 

Whole blood 
(Spijker et 
al 2010) 

21 MDD 
21 CTL 
 
Replication: 
13 MDD 
14 CTL 

Collection in heparin-
coated tube; transferred 
to PAXgene within 60 
mins of venipuncture or 
simulation. 
Stimulation of whole 
blood with LPS (10 
ng/mL), 5-6hrs, 37°C 
 
44K Agilent whole 
genome array, RT-qPCR 
validation. 

MDD = 
unmedicated, 
no comorbid 
physical 
diagnosis, 
currently 
depressed 

Matched for 
age, sex, 
smoking, (for 
females) 
reproductive/m
enstrual state.  
No covariate 
adjustment. 

Signature of top 12 DE probes/genes distinguished MDD from 
control in both basal and LPS-stimulated samples: FLJ23556, 
ITGB3, LMNA, NBR1, AL833005, CAPRIN1, CLEC4A, KRT23, 
MLC1, PLSCR1, PROK2, ZBTB16 
 
12-gene signature replicated in second cohort for LPS-
stimulated (but not basal) samples. 
 
qPCR validated findings (same direction of change) for the 
following 7 transcripts (of 8 transcripts tested): 

- Upregulated: CAPRIN1, CLEC4A, KRT23, PLSCR1, PROK2 
- Downregulated: MLC1, ZBTB16 

(Mostafavi 
et al 2014) 

463 MDD 
459 CTL 

Collection in PAXgene 
tubes; 
Library preparation with 
polyA selection (i.e. 
mRNA). 
Illumina HiSeq 2000; 
50/51-bp single end 
reads, average depth 
70M reads/sample. 
Filtered for protein-
coding genes only and 

MDD = 
medicated and 
unmedicated  

Yes – 39 
covariates 
included in 
model, including 
BMI, gender, 
smoking, age. 

2 DE genes at FDR P<0.1 (Fig. S5): COPG upregulated and 
MICOS10 (MINOS, mitochondrial inner membrane protein) 
downregulated in MDD.  
MDD associated with upregulation of Reactome IFN-α/β 
pathway. 
 
No genome-wide significant differential isoform ratios. 



 

 

minimum expression. 14k 
genes analysed. 

(Jansen et 
al 2016) and 
(de Kluiver 
et al 2019) 
NB. same 
sample 

882 depressed 
MDD 
635 remitted MDD 
331 CTL 
 
Including: 
N=246 depressed 
MDD + increased 
appetite/weight, 
N=341 depressed 
MDD + decreased 
appetite/weight. 

Heparin tube, then 
transfer to PAXgene 
within 60 minutes. 
Affymetrix U219 array 
18k genes analysed. 

 Yes – models 
included sex, 
age, smoking, 
RBC count, ± 
BMI 

Jansen 2016 analysis: DE changes in current MDD vs. CTL (129 
genes at FDR P<0.1) >> DE in remitted MDD vs CTL (where no 
DE genes at FDR P<0.1) 
 
Following 18 genes DE at FDR<0.05 for current MDD vs. control:  

- Upregulated in MDD: LRRC4, PVRL1, DYSF, TNFRSF10C, 
SSH2 

- Downregulated: KLRD1, IL2RB, GZMB, CALM1, TGFBR3, 
SNRPD3, APOBEC3G, PTPN4, KLRK1, NCALD, ERG28 
(C14orf1), COX18 

 
Pathways: increase in IL-6 signalling; decrease in NK cytotoxicity 
in MDD. 
 
De Kluvier 2019 analysis: DE in MDD subgroups, stratified by 
changes in appetite/weight. MDD+increased appetite/weight 
subgroup vs. CTL showed more substantial DE than subgroup 
with decreased weight/appetite. Top pathways implicated in 
MDD+increased appetite/weight were NK mediated 
cytotoxicity, IL-3, IL-5 and GM-CSF signalling, caspase pathway, 
NFAT transcription factor pathway, GATA3 pathway. BMI 
adjustment attenuated signals. 

(Guilloux et 
al 2015) 

34 MDD 
33 CTL 
 
Subanalyses: 
18 MDD-R v.s 18 
CTL 
14 MDD-NR v.s. 14 
CTL 
  

PAXgene collection tubes 
Illumina HT12-v4.0 array. 
12k probes analysed. 
 
qPCR validation 

MDD = 
currently 
depressed, 
unmedicated, 
non-psychotic, 
with comorbid 
anxiety; 
subsequent 
treatment 
response 
assessed. 

Samples age- 
and gender-
matched.. 

MDD vs. CTL: 303 DE genes at P<0.01:  
MDD-NR v.s CTL – 842 DE genes at P<0.01, abs(FC)>20%, 
implicating inflammation and leucocyte recruitment pathways 
(IPA). 
MDD-R v.s. CTL – 89 DE genes  
 
qPCR MDD-NR vs. CTL: the following genes (total 21 tested) 
showed significant change (uncorrected P<0.05) in same 
direction in qPCR and microarray: 

- Downregulated: ADSL, CD3D, GZMA, RPL4, RPL5, RPL17, 
TIMM23 



 

 

- Upregulated: ARHGEF11, IL17RA, OSCAR, TBXAS1 
(Yamagata 
et al 2017) 

Cohort 1: 
21 MDD v.s. 30 
CTL 
Cohort 2:  
18 MDD v.s. 19 
CTL 

Collection tube not 
specified; 
QIAamp RNA Blood Mini 
Kit 

Cohort 1 age 
≥50 
Cohort 2 age 
≥20 

Groups 
unbalanced for 
age 

Genes downregulated in current MDD compared to CTL in 
cohort 1: SLC35A3, HIST1H2AL, YEATS4, ERLIN2, and PLPP5.  
Decrease in HIST1H2AL in current MDD validated by qPCR in 2nd 
cohort. 

(Ciobanu et 
al 2018) 

83 MDD (includes 
27 rMDD);  
438 CTL 

PAXgene collection tubes; 
Illumina HT-12 v4 Array; 
9k genes analysed. 
  

Relatively 
healthy older 
adults (70-
90yo) 

Yes – age, BMI, 
sex 
 

WGCNA: no modules associated with lifetime or current MDD; 1 
of 24 modules was associated with rMDD at FDR P<0.2. This 
module was not associated with covariates. 
Implicates downregulation of protein processing in ER and Coat 
Protein 2 mediated vesicle transport. 

(Hori et al 
2018)  

Cohort 1: 
47 currently 
depressed (47 
MDD, 7 BPD) 
14 remitted 
depression (12 
MDD, 2 BPD) 
54 CTL 
 
Cohort 2: 
59 currently 
depressed MDD 
60 CTL 

PAXgene collection tubes; 
Agilent 4x44K array; 28k 
probes used for 
differential expression 
analysis. 
 
qPCR validation. 

Majority of 
participants 
medicated. 

Cohorts 
matched for age 
and sex.  

Candidate approach: focus on 8 candidate ribosomal genes 
taken from study of stress vulnerability showed increase in 
RPL17, RPL34, RPL36AL in currently depressed patients in 
Cohort 1 (not corrected for multiple comparisons). Association 
of current depression with increase in RPL17 and RPL34 
replicated by qPCR in an independent cohort (Cohort 2) and not 
driven by medication use. 

(Leday et al 
2018) 

Cohort 1: 
128 MDD 
64 CTL 
Cohort 2: 
94 MDD 
100 CTL 

Affymetrix U133 plus 2.0 
array 
19k probes analysed. 

Subset of MDD 
had comorbid 
anxiety 
disorder. 

Yes – age, sex, 
batch, anxiety ± 
BMI included in 
models. 

165 genes DE in both studies with same direction of fold-
change (P value thresholds chosen as largest threshold 
associated with twice as many DE genes as expected by 
chance). 
Pathways: increase in innate immune pathways; decrease in 
adaptive immune pathways. 
Differences attenuated by inclusion of BMI as covariate. 

  



 

 

PBMCs 
(Glahn et al 
2012) 

Used pedigree 
information from 
total 1122 
individuals, of 
whom 215 had 
rMDD 

Isolated ‘Lymphocytes’ 
using Histopaque 
gradient i.e. sample is 
PBMCs. 
Illumina Sentrix WG-6 
Series 1 BeadChips 
Analyzed 11k genes 
(those with heritability 
>0.2) 

Blood sample 
collected 12-
15 years prior 
to 
ascertainment 
of MDD status. 

Yes – age and 
sex included in 
model. 

13 transcript levels showed significant genetic correlation with 
rMDD at FDR P<0.1. Top transcripts: RNF123 (E3 ubiquitin-
protein ligase family), PDXK, ZFP64, RWDD2A, B4GALT7, 
MARK2, GADD45A, PIGN, HTT, ABHD12 
 

(Savitz et al 
2013) 

29 depressed (21 
MDD and 8 BPD) 
24 CTL 

PBMC isolation by Ficoll-
Paque. 
Illumina HT-12 v4 
Expression BeadChip 
 
RT-qPCR validation. 

 Groups 
balanced for 
age, sex, BMI.  

26 DE genes at FDR P<0.05; fold-change>1.25. 
Upregulated in MDD: ADM, APBB3, CITED2, HLA-H, Hs.572649, 
IER5, NFKBIZ, NR4A2, RNU1-3, RNU1-5, RNU1F1, RNU1G2, 
SERTAD1, SNHG1, SNORD12C, SNORD31, TNF 
 
Downregulated in MDD: BRI3P1, CD160, CFD, CTSZ, GAPDHL6, 
LOC100008589 (ribosomal RNA), LOC100132394, 
LOC100134364, NUCKS1 
 
RT-qPCR for the 12 known protein-coding genes confirmed 
direction of change for ADM, APBB3, CD160, CITED2, IER5, 
NR4A2, NUCKS1, SERTAD1, and TNF but not CTSZ, CFD and 
NFKBIZ. 
 
Ingenuity Pathway Analysis of DE genes implicated: 
1) NFkβ / TFGβ / ERK network and  
2) cell cycle/kinase network. 

(Le et al 
2018) 

78 MDD 
79 CTL 

PBMC isolation using Cell 
Preparation Tubes. 
Library preparation for 
RNAseq: Illumina Truseq 
Stranded mRNA (i.e. 
coding and noncoding 
RNA) 

Unmedicated 
(≥3 weeks), no 
major medical 
comorbidities, 
no psychosis. 

Yes – model 
included age, 
sex, batch, BMI 
± smoking. 

WGCNA: 2 modules were associated with depressive symptoms 
across all participants (MDD and CTL pooled). Modules were 
enriched for apoptosis, BCR signalling and PI3K activity. 
 
*Note samples were mapped to antisense strand in error. 



 

 

Sequencing: Illumina 
HiSeq 3000 150bp paired-
end. Average depth 30M 
reads/sample. 
Filtered to obtain 
autosomal genes only, 
and to exclude lowly 
expressed genes.  
6k genes analysed. 

(Cole et al 
2021) 

187 MDD (94 
treatment-
resistant; 47 
treatment-
responsive; 46 
untreated) 
44 CTL 

PBMC isolation by density 
centrifugation,  
Library preparation for 
RNAseq: Illumina TruSeq 
stranded mRNA 
Sequencing: Illumina 
Hiseq 4000 75bp paired-
end. 
Average depth 54.5M 
reads/sample. 
Filtered to obtain coding 
genes only and exclude 
lowly expressed genes. 

Mixture of 
medicated and 
unmedicated, 
no major 
medical 
comorbidities, 
no psychosis. 

Yes – model 
included age, 
BMI, sex, batch 
± other clinical 
factors 

Only 1 DE gene in MDD vs CTL participants (decreased 
HIST1H2AE in MDD) 
No DE genes between CTL and MDD subgroups. 
 
Evidence of increased biological ageing in MDD vs HC (using 
transcriptional signature of 888 age-associated genes). 
 



 

 

Table 1-2 Gene expression in peripheral blood cell subsets in depression (MDD) vs. controls. 

11β-HSD-1, 11β-hydroxysteroid dehydrogenase type 1; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; GILZ, glucocorticoid-induced leucine-

zipper; TCR, T cell receptor. 

Publication Sample 
size 

Assay Clinical sample 
comments 

Covariate 
adjustment 

Findings 

Monocytes 
(Carvalho et 
al 2014) 

47 MDD 
47 CTL 

CD14+ cells MACS-
sorted from 
cryopreserved 
PBMCs. 
RT-qPCR of 47 genes. 

Unmedicated 
(≥1 week) MDD  

Yes – age and 
gender (+BMI for 
GR ratio) included 
in models 

Decreased GRα/GRβ isoform ratio in MDD vs CTL. 
Genes upregulated in MDD at Simes-corrected P<0.05: CCL20, IL1B, 
EREG, PDE4B, CXCL2, IL8, TNFAIP3, BTG3, PTX3, ADM, CDC42, ATF3, 
MAFF, BCL2A1, IL6, MAPK6, IL1A, MXD1, PTGS2, SERPINB2, CXCL3, IRAK2, 
EGR3, DUSP2, TNF, PU.1, RGC32, CCL2, IL1R1, TREM1, THBD, CCL7, 
STX1A, AREG. 
No genes significantly downregulated in MDD  
The 47 genes tested fell into two co-expression clusters: a 
proinflammatory cluster and a chemotaxis/adhesion cluster.  

(Grosse et al 
2015) 

56 MDD 
31 MDD 

CD14+ cells MACS-
sorted from 
cryopreserved 
PBMCs. 
RT-qPCR 

89% medicated 
MDD 

Yes – age, BMI, 
gender and 
smoking included 
in model 

Planned analysis:  
- No difference in composite gene expression score in MDD vs CTL 

– score composed of genes implicated in MDD in (Carvalho et al 
2014). Score = count of genes outside of CTL mean ±1 s.d. value, 
summing +1 for upregulated and -1 for downregulated genes. 

Exploratory age-stratified analysis:  
- Increased gene expression score and decreased GRα/β ratio in 

MDD patients aged ≥28 years only. 
- Increased IL1B and TNF expression in MDD ≥28yo 

(Hasselmann 
et al 2018) 

35 MDD 
35 CTL 

CD14+ cells MACS-
sorted from 
cryopreserved 
PBMCs. 
RT-qPCR 

Unmedicated 
(≥2 weeks) MDD 

Covariates not in 
model, but 
samples matched 
for age, sex, BMI, 
smoking, 
comorbidities. 

Decreased GR mRNA and downstream target GILZ in MDD. No difference 
in expression of MR or 11β-HSD-1 (t-test; no multiple comparison 
correction). 

(Hung et al 
2019) 

47 MDD 
33 CTL 

PBMC isolation by 
Ficoll-Paque then 

Unmedicated 
(≥1 week) MDD 

Yes – age, sex, 
smoking and BMI 

6 microRNA regulators of TLF4-signaling tested. At uncorrected P<0.05, 
miR-146a and miR-155 downregulated in pre-treatment MDD vs CTL 



 

 

fresh CD14+ 
magnetic selection. 
RT-qPCR 

included in 
ANCOVA 

T cells 
(Hasselmann 
et al 2018)  

35 MDD 
35 CTL 

CD3+ cells MACS-
sorted from 
cryopreserved 
PBMCs. 
RT-qPCR 

Unmedicated 
(≥2 weeks) MDD 

Covariates not in 
model, but 
samples matched 
for age, sex, BMI, 
smoking, 
comorbidities. 

No difference in T cell expression of GR, GILZ, MR, or 11β-HSD-1. 

(Patas et al 
2018) 

20 MDD 
20 CTL 

PBMC isolation by 
Ficoll-Paque 
CD4+ cells isolated 
from cryopreserved 
PBMCs by negative 
selection 
RT-qPCR and TCR 
sequencing  

Unmedicated 
MDD. 

Balanced for age, 
sex, BMI, 
smoking. 

Expression of T cell subset transcription factors tested (FOXP3, T-bet, 
GATA3, RORC). Increased FOXP3 in MDD vs. CTL. Flow cytometry 
demonstrated that this reflected increased Treg proportion of total CD4+ 
T cells in MDD. 
 
Sequencing of TCR beta chain CDR3 region in n=5 MDD, n=5 CTL (to 
confirm flow cytometry result) demonstrated increased Vβ 5.1 usage in 
MDD vs. CTL. 

B cells, NK cell, dendritic cells, neutrophils 
No data available 
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1.3.4 Central nervous system immunophenotypes in depression 

As summarised in Table 1-3, multiple lines of evidence from both in vivo CSF and neuroimaging 

studies, as well as post-mortem studies, point to brain immune abnormalities in MDD. 

However, the relationship between peripheral blood and central (brain) immune abnormalities 

in MDD is unclear. In the existing data, there is little evidence of correlation between 

peripheral and central markers of inflammation in MDD and some evidence of lack of 

correlation between peripheral proinflammatory markers and microglial activation as indexed 

by translocator protein (TSPO) binding (Enache et al 2019, Schubert et al 2021). However, most 

studies of central inflammation have been small and most have not measured peripheral and 

central inflammation concurrently. More generally, animal work has shown that the fidelity of 

the transcriptional response in blood compared to tissues is dependent on both the pathway 

implicated and the nature of the immune insult (Singhania et al 2019). Nonetheless, it is clear 

that in humans, low-grade inflammation in the periphery can alter the CNS immune 

compartment. For example, intravenous administration of low-dose endotoxin (LPS), a 

pathogen-associated molecular pattern, induces increases in not only peripheral, but also 

central (CSF), IL-6 with greater increases in CSF IL-6 (but not peripheral IL-6) being associated 

with a greater LPS-induced deterioration in mood (Engler et al 2017). 

 

Table 1-3 Central nervous system immunophenotypes in depression.  

Assay type Evidence  

CSF cytokine 
measurements 

Analyses of cytokine levels in cerebrospinal fluid (CSF) have been limited, 

with small sample numbers, but there is meta-analytic evidence for 

increased IL-6 (effect size, ES = 0.4) and IL-8 (ES = 0.57) in CSF in MDD (Wang 

& Miller 2018). 

Positron emission 
tomography imaging 
of translocator 
protein (TSPO) 
binding 

There is meta-analytic evidence for elevations in TSPO binding (ostensibly 

indicating microglial activation) in MDD in anterior cingulate cortex (ACC), 

temporal lobe, prefrontal cortex (PFC), insula and hippocampus – areas of 

the brain functionally implicated in emotion regulation and mood disorders 

– but not in occipital cortex, parietal cortex and thalamus (Enache et al 2019, 

Schubert et al 2021). In vivo TSPO ligand binding correlates with pro-

inflammatory microglial and astrocyte polarization in rodents (Pannell et al 

2020), although what TSPO binding reflects in humans remains controversial 

(Perry 2018). 
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Post-mortem brain 
transcriptomic 
analysis 

A meta-analysis of the association between MDD and gene expression in 

post-mortem brain samples (anterior cingulate, dorsolateral prefrontal 

cortex and amygdala) demonstrated divergent MDD-associated signatures in 

males and females, with increases in microglia-related genes in males, but 

decreases in females (Seney et al 2018). Some of the pathways identified as 

altered might relate to changes described in studies of peripheral blood 

samples: both sexes showed an under-expression of inner mitochondrial 

membrane genes in MDD, and females (but not males) showed a decrease 

in antigen processing pathways. The brain samples were heterogeneous 

mixtures of cells and the cellular source of these alterations is unclear. 

Another study found a similar divergence of MDD-associated differential 

expression in males and females (Labonte et al 2017). 

Post-mortem 
myeloid cell 
histology 

In MDD associated with suicide, compared to controls, there is evidence of 

an increased proportion of activated/neurotoxic microglia as quantified by 

microglial morphology (Torres-Platas et al 2014) (in ACC), density of 

activated (HLA-DR+) microglia (Steiner et al 2008) (in ACC and dorsolateral 

PFC), and density of microglia positive for the inflammation-induced 

tryptophan metabolite quinolinic acid (Steiner et al 2011) (in ACC). One 

study also found an increased density of blood-vessel-associated Iba-1+ 

macrophages in ACC in MDD associated with suicide compared to controls 

(Torres-Platas et al 2014). 
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1.4 Evidence that inflammation contributes causally to psychiatric symptoms in 

depression 

As described above, there is a large body of evidence showing that depression is associated 

with altered immune function. However, for immune dysfunction to be compelling for 

biomarker development or as a treatment target, we require evidence that inflammation – or 

some aspect of it – contributes causally to symptoms in depression. Sources of evidence which 

speak to causality include clinical observational studies; longitudinal cohort studies 

demonstrating that inflammation precedes depression; randomized controlled trial data 

demonstrating that treating inflammation can improve symptoms; genetic association data; 

animal models; and human experimental and mechanistic studies demonstrating the pathways 

by which inflammation can affect brain function and symptoms. We consider here each of 

these in turn.  

 

1.4.1 Clinical observational studies 

Clinical observations have suggested a potential role for inflammation in the development of 

mood symptoms. We know that medical treatments that activate the immune system (e.g., 

IFN-α and IL-2) substantially increase the risk of depressive symptoms (Capuron et al 2001, 

Pinto & Andrade 2016). This suggests a causal role for inflammation in mood, albeit in non-

physiological circumstances. Inflammation – as measured by pro-inflammatory cytokine levels 

– has also been associated with reduced responsiveness to standard (especially serotoninergic) 

antidepressant treatment, both cross-sectionally and in some prospective studies (Arteaga-

Henriquez et al 2019, Haroon et al 2018, Jha et al 2019, Jha et al 2017, Lanquillon et al 2000, 

Strawbridge et al 2015); and inflammation has also been prospectively associated with reduced 

responsiveness to psychological therapy (Strawbridge et al 2020). Inflammation in depression 

may thus indicate a pathological process which is not amenable to treatment with current 

therapies, or which counteracts the mechanism of action of current therapies (e.g., 

inflammation affecting metabolism of serotonin precursors (O'Connor et al 2009b), affecting 

the efficacy of SSRIs). However, it is also possible that inflammation is merely indexing another 

factor independently associated with treatment resistance, for example, childhood trauma or 

disease severity. 
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1.4.2 Longitudinal cohort studies in non-clinical populations 

Longitudinal cohort studies in non-clinical populations have shown that immune dysregulation 

can be detected prior to onset of depression – a necessity, if inflammation is to be causal. 

There is meta-analytic evidence that both increased CRP and IL-6 are prospectively associated 

with subsequent depressive symptoms (Mac Giollabhui et al 2021). These data are supportive 

of immune causality in depression, since if inflammation precedes depression, the 

inflammation cannot simply be a consequence of the disorder or of behaviours caused by its 

symptoms. However, such results could reflect the effects of risk factors for depression which 

precede its onset - such as high body mass index (BMI), childhood trauma, or family 

environment – on both the immune system and the brain. For such risk factors, inflammation 

may or may not mediate their effects on depression risk. Observational cohort studies cannot 

entirely distinguish between these possibilities, although studies which have carefully 

controlled for many key risk factors still find evidence that inflammation precedes depression 

onset (Khandaker et al 2014). 

 

1.4.3 Randomized controlled trials 

In randomized controlled trials (RCTs) of patients given immunomodulatory treatments for 

conditions other than depression, anti-inflammatory treatments improve mood scores 

(Wittenberg et al 2019). This effect could not be entirely attributed to mood improvements 

related to improvements in patients’ medical symptoms: mood scores improved following 

treatment with anti-IL6 or anti-TNF therapy even in those whose physical symptoms did not 

improve (Wittenberg et al 2019). Turning to randomised controlled trials (RCTs) where 

depression was the treatment target, adjunctive treatment with the non-steroidal anti-

inflammatory drugs (NSAID) celecoxib has shown efficacy against depressive symptoms (Abbasi 

et al 2012, Akhondzadeh et al 2009, Majd et al 2015, Muller et al 2006), including at a meta-

analytic level (Kohler et al 2014), supporting a causal contribution of inflammation to 

symptoms. It is likely that only a subset of patients (those with inflammation) will benefit from 

immunomodulation. There is substantial evidence from secondary analyses of trial data that 

patients with depression and evidence of inflammation are most likely respond to 

immunomodulatory treatments – often, such treatments do not show overall efficacy in 

unselected patients with depression. One randomized controlled trial used infliximab to inhibit 

TNF-alpha in patients with depression without medical comorbidities (Raison et al 2013). An 

exploratory analysis showed that those with high CRP improved following treatment, but those 
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with a low CRP had worse outcomes following TNF blockade, compared to placebo, with the 

estimated threshold point for response at a CRP of 5mg/L. Another trial of infliximab, but for 

depression in the context of bipolar disorder, showed a reduction in overall depressive 

symptoms only in those reporting childhood maltreatment (McIntyre et al 2019): a reanalysis 

of the data showed that infliximab was particularly effective against anhedonic symptoms, 

especially in participants with high baseline TNF-α (Lee et al 2020). Trials of adjunctive 

minocycline for depression (minocycline is an antibiotic known to decrease microglial 

activation, among other anti-inflammatory effects) have yielded mixed results (Dean et al 

2017, Husain et al 2017, Nettis et al 2021, Savitz et al 2018), but, as with infliximab, there is 

evidence that patient stratification using markers of inflammation can help to select those 

patients most likely to respond. In an RCT of adjunctive minocycline for treatment-resistant 

depression an exploratory analysis showed evidence of response in participants with high CRP, 

with an estimated threshold point for response at a CRP of 2.8mg/L (Nettis et al 2021). 

Similarly, in an RCT of adjunctive minocycline (± low-dose aspirin) for bipolar depression, 

minocycline was particularly effective in participants with higher baseline IL-6 concentrations 

(Savitz et al 2018). 

 

1.4.4 Genetic data 

Genetic data can also shed light on the potential causal contribution of the immune system to 

depression. The random segregation of alleles during reproduction and the stability of the 

genetic code over the lifespan means that genotype-phenotype associations can be used to 

identify genetic loci likely to causally contribute to disease pathogenesis. In psychiatry, the 

most common methodological approach to finding such loci is through the meta-analysis of 

large case-control genome-wide association studies (GWAS). GWAS studies in MDD have 

mainly implicated variants in non-exonic regions of the genome, with pathway analysis of 

genes near these variants primarily suggestive of effects on synaptic structure and 

neurotransmission, but also of effects on cytokine production (Howard et al 2019, Wray et al 

2018). Notably, associations with classical human leukocyte antigen (HLA) alleles, seen in 

classical autoimmune diseases, have not been observed in depression (Glanville et al 2020). By 

seeking evidence of greater than chance overlap between GWAS risk variants and the genomic 

regions known to be epigenetically active in different cells type or tissues, we can infer which 

cell types/tissues are likely to be pathogenically important in a given condition. Such 

approaches have been extensively used to investigate the brain cell types and regions 
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implicated by depression risk variants (Finucane et al 2018, Li et al 2018a). No studies to date 

have demonstrated enrichment of depression risk variants in any specific immune cell type; 

one study showed lack of enrichment of MDD risk variants in immune cell subsets (Finucane et 

al 2018), although this study drew on GWAS results from 2016 which have now been 

superseded by much better powered studies of depression. It is not surprising that the key 

signals from GWAS studies to date have primarily implicated the brain. Given that depression is 

first and foremost a condition of the mind, we would expect MDD-related genetic signals in the 

immune system to be smaller, or to be relevant in only a subset of patients. The extent to 

which depression risk variants affect immune function is only beginning to be investigated.   

 

As discussed above, depression has been associated with multiple alterations in the immune 

system in clinical cohort studies, but it is difficult to infer causality from such studies because 

of the risk of confounding. For example, observed inflammation in depression may be due to 

the consequences of a depression diagnosis, e.g., decreased ability to self-care or other pro-

inflammatory lifestyle changes, which are a consequence, rather than a cause, of depression. 

One way to overcome these confounding effects is to use genetic risk scores as a proxy for 

susceptibility to disease (Lohoff 2010). The effects of a genetic risk score on an outcome of 

interest (e.g., pro-inflammatory cytokines) can be assessed independent of case-control status 

(e.g., by using cohorts of controls or by controlling for the effect of diagnosis), mitigating the 

potentially confounding effects of common disease comorbidities or the consequences of 

disease on the outcome measures. MDD is highly polygenic, with a heritability of ~40-50%: 

summary statistics from genome-wide association studies can thus be used to generate 

polygenic risk scores (PRS) for individuals, capturing their susceptibility to disease due to 

assayed common genetic variants. Studies have shown some modest effects of high depression 

PRS on the standard markers of peripheral inflammation typically assayed in research studies 

of inflammation in depression. A high depression PRS has been robustly associated with 

increased peripheral white cells counts (Sealock et al 2021, Sewell et al 2020), but not with 

pro-inflammatory cytokines (Palmos et al 2021), and with mixed results for CRP (Palmos et al 

2021, Sewell et al 2020). Depression PRS scores are also (modestly) predictive of case status for 

several autoimmune diseases (psoriasis, inflammatory bowel disease and type 1 diabetes) 

(Glanville et al 2021). Genetic correlations between disorders can also be used to identify 

disorders with shared genetic pathophysiology – notably, there is a genetic correlation 
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between depression and inflammatory bowel disease and depression and psoriasis (Glanville 

et al 2021, Howard et al 2019). 

 

Another genetic approach to evaluating potential causality is mendelian randomization (MR), 

which tests exposure-outcome associations by using genetic variants as instruments reliably 

associated with the exposure of interest which, because of random allele segregation, should 

not relate to confounding variables. For example, genetic risk variants for high white cell count 

(WCC) can be used to analyse the potential causal role of increased WCC in depression. MR 

studies of inflammation in depression have supported a causal role for increased WCC and 

increased IL-6 in risk for depression and depressive symptoms (Perry et al 2021, Sealock et al 

2021, Ye et al 2021), but a (counterintuitively) protective effect of increased CRP against 

depressive symptoms (Ye et al 2021). 

 

1.4.5 Animal models 

Several animal models have been used to investigate the effects of inflammation on 

behavioural phenotypes relevant to depression, and the mechanisms uncovered support 

causal effects of the immune system on the brain and behaviour which may also be important 

in humans with depression. As these models rely on mimicking the risk factors for depressive 

symptoms (e.g., psychosocial stress, infections), they will be discussed in Section 1.5 on the 

proposed sources of inflammation in depression, and Section 1.6 on the effects of stress on 

cellular immunity. 

 

1.4.6 Human experimental and mechanistic studies  

We have discussed evidence that inflammation is associated with depressive disorder, with 

some evidence that the association is causal. But if such a link is to be believed, it is important 

that we have plausible mechanisms for how this could occur at an immunological and 

neurobiological level: How can peripheral inflammation lead to depressive symptoms? 

Crucially, how does inflammation affect brain regions and neural circuits known to be 

important for depressive symptoms? 

 

Studies of human participants undergoing experimental or clinical induction or antagonism of 

inflammation have demonstrated important within-person effects of inflammation on mood-
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relevant circuitry and mood-relevant neurotransmitter systems, as outlined in Table 1-4. Such 

studies have especially implicated the ventral striatum – important for reward processing and 

motivation – and the insula – important for interoception and punishment sensitivity – 

potentially linking inflammation to the maladaptive motivational changes observed in 

depression (Savitz & Harrison 2018). Importantly, looking across participants, the magnitude of 

the inflammation-related circuit changes detected has often been found to correlate with the 

changes in mood or anhedonic symptoms induced by these paradigms.  

 

Table 1-4 Human experimental studies involving induction or manipulation of inflammation: effects on 

mood-relevant brain circuitry. 

Experimental 

paradigm 

Findings 

Endotoxin 
administration 

Low-dose endotoxin (LPS) administration acutely decreases ventral striatal 

activity to reward cues, and this ventral striatal activity correlates with the extent 

of endotoxin-induced depressed mood (Eisenberger et al 2010). Low-dose 

endotoxin also increases glucose metabolism in the insula, as detected by PET, 

and this correlates with the endotoxin-induced change in social interest 

(Hannestad et al 2012). 

Vaccination When inflammation is induced experimentally in human using typhoid 

vaccination, participants experience an acute deterioration in mood (at 3 hours) 

which correlates with increased activity in the anterior cingulate cortex (ACC) 

during an emotional face-processing task (Harrison et al 2009a), as well as an 

acute increase in fatigue and confusion which correlates with increased activity in 

interoception-related regions during a Stroop task (Harrison et al 2009b). 

Vaccination has also been shown to lead to acute microstructural alterations in 

the insula which correlate with fatigue (Harrison et al 2015); to lead to increased 

intra-insula functional connectivity which correlates with fatigue (Stefanov et al 

2020); and to acutely enhance punishment (compared to reward) sensitivity, 

correlating with decreased coding of reward prediction error in the ventral 

striatum and increased coding of punishment prediction error in the insula 

(Harrison et al 2016). 

Interferon 
administration 

IFN-α administration acutely enhances amygdala reactivity to sad faces, and the 

extent of this change is predictive of the effect of chronic IFN-α administration on 

mood (Davies et al 2021). IFN-α has also been shown to decrease ventral striatal 
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activity during a reward-based gambling task, and to decrease striatal update and 

turnover of dopamine precursors (consistent with decreased striatal dopamine 

release); these changes correlated with the chronic mood, anhedonic and 

fatigue-related effects of IFN-α (Capuron et al 2012). IFN-α induces acute 

changes in striatal microstructure which correlate with subsequent development 

of chronic IFN-α related fatigue (but not mood) symptoms (Dowell et al 2016). 

Chronic IFN-α administration has also been shown to lead to increases in 

glutamate concentrations in the ACC and basal ganglia (as measured by magnetic 

resonance spectroscopy), with changes in basal ganglia glutamate correlating 

with IFN-α-associated decreases in motivation scores (Haroon et al 2014). The 

effects of IFN-β administration (another type I interferon which induces sickness 

behaviours) have been much less investigated, but a study assessing changes in 

appetitive motivation and reactivity to negative emotional stimuli in healthy 

participants receiving 8 consecutive days of IFN-β found that IFN-β decreased 

appetitive motivation and decreased ventral striatal responses (consistent with 

altered reward processing), but did not increase negative affect, or alter 

amygdala reactivity to emotionally salient stimuli (Coch et al 2019). 

Cytokine 
blockade 

TNF-α antagonism acutely decreases amygdala reactivity to sad faces, and the 

extent of this change is predictive of the positive effect of chronic TNF-α 

antagonism on mood (Davies et al 2021). Circulating TNF-α levels also correlate 

with brainstem serotonin transporter (5-HTT) availability in the brain as 

measured by SPECT imaging, and inhibition of TNF-α with etanercept has been 

shown to decrease brainstem 5-HTT availability (Krishnadas et al 2016). 

 

1.4.7 Causal role of peripheral (vs central) inflammation in depression without medical 

comorbidity 

As a final perspective on our consideration of immune causality in MDD, it is useful to consider 

the evidence for a distinct causal contribution of the peripheral immune system to psychiatric 

symptoms (as distinct from the potential contribution of immune cells in the brain and 

meninges). If peripheral immune activity were to causally contribute to psychological 

symptoms, this would open the door to new ways of treating psychological disorders – we may 

be able to ‘repurpose’ existing (already approved) therapies which target peripheral immune 

cells or molecules to help some patients with psychological symptoms.  
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The idea that peripheral inflammation induced by inflammatory stimuli or inflammatory 

conditions can affect mood is not controversial. Along with the evidence discussed above, such 

causal effects are also supported by the efficacy of (peripherally restricted) anti-cytokine drugs 

for mood symptoms in chronic inflammatory diseases, independent of improvement in 

physical symptoms (Kappelmann et al 2018, Wittenberg et al 2019). Whether peripheral 

inflammation contributes causally to mood in MDD that is not comorbid with medical disorders 

is less clear. One hypothesis is that the peripheral inflammation observed in MDD simply 

reflects or is a consequence of changes (inflammatory or otherwise) in the brain. If this is the 

case, peripheral samples might provide useful biomarkers, but peripheral immune 

abnormalities would not constitute useful direct therapeutic targets. Evidence that TNF 

blockade (infliximab) improves symptoms in patients with MDD and raised CRP goes against 

this, as infliximab does not cross the blood-brain barrier, suggesting a causal role for peripheral 

TNF in mood symptoms not associated with medical disorders (Raison et al 2013). Animal 

studies also demonstrate that peripheral inflammation resulting from psychological (rather 

than immunological) stressors makes a causal contribution to psychological symptoms. For 

example, depletion of IL-6 from peripheral haematopoietic cells only (using IL6-/- bone marrow 

chimeras) confers resilience to stress, suggesting that stress-induced peripherally-derived IL-6 

is important for behaviour (Hodes et al 2014). Moreover, transfer of peripheral (lymph node) 

leucocytes from chronically stressed mice to unstressed mice was shown to have an 

antidepressant effect in recipient mice, highlighting that the peripheral immune system may 

also contribute to behavioural resilience to stress (Brachman et al 2015). 

 

1.5 Proposed sources of inflammation in depression 

There are multiple proposed sources of the inflammation associated with psychiatric disorders 

including stress, infection, comorbid or subclinical inflammatory disorders, obesity, 

environmental insults, lifestyle factors, genetics, gut microbial dysbiosis, and altered gut 

barrier integrity. Several of these mechanisms may be relevant, or interact, in a given 

individual. The extent to which these sources of inflammation converge on a common 

pathology underlying inflammation in psychiatric disorders is unclear. In the table below (  
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Table 1-5), I consider the evidence for each of these potential contributing factors, and some 

insights into the role of these risk factors from animal models, with a more in-depth focus on 

the potential role of stress in the following section (Section 1.6).  
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Table 1-5 Proposed sources of inflammation in depression. 

Source Evidence / proposed mechanism 

Infection Human data: In epidemiological surveys, both severe and minor infections have 

been shown to increase the risk of depression and suicide, with risks highest in the 

two years following infection, but persistently raised above baseline even many 

years later (Benros et al 2013, Kohler et al 2017b, Lund-Sorensen et al 2016). 

Whether this reflects a failure to completely resolve inflammation (i.e., an ongoing 

proinflammatory state) or damage occurring at the time of infection in unclear. 

Human studies of the effects of pathogen associated molecular patterns (e.g., 

endotoxin) and infection-associated cytokines on brain and behaviour are described 

in Section 1.4.6.  

 

Animal models: In rodents, infection-induced depressive symptoms are frequently 

modelled by exposing animals acutely to pathogens; to pathogen-associated 

molecular patterns such as endotoxin/lipopolysaccharide (LPS) and the viral mimetic 

poly(I:C); or to cytokines known to be produced during inflammatory responses 

(e.g., interferons). Such investigations have revealed multiple mechanisms by which 

pathogens can elicit sickness- or depressive-like behaviours including via the action 

of interferon on brain endothelium/epithelium (Blank et al 2016); via the effects of 

LPS-induced IL-1 on brain endothelium (Liu et al 2019); and via LPS-induced or IFN-γ-

induced upregulation of the tryptophan-degrading enzyme IDO (O'Connor et al 

2009a, O'Connor et al 2009b). Inflammation-associated depressive symptoms are 

associated with microglial activation, and new chemogenetic tools to selectively 

modulate microglial activity show that striatal microglial activation is sufficient to 

cause depressive behaviours and necessary for LPS-induced aversive behaviour, with 

microglial/myeloid cell IL-6 and prostaglandin secretion being key to the effect 

(Klawonn et al 2021). Interestingly, stress can exacerbate the effects of peripheral 

inflammation on the immune system: for example, chronic stress potentiates LPS-

induced prefrontal and hippocampal NF-κB activation in rats (Munhoz et al 2006). 

Non-human primates have also been used to investigate the effects of peripheral 

inflammation on depression-relevant mood circuitry: in vivo microdialysis and PET 

experiments have demonstrated that chronic IFN-α administration leads to 

anhedonia and decreased striatal dopamine release (Felger et al 2013). 

  



 

 

43 

Comorbid 
chronic 
inflammatory 
disease 

Human data: Epidemiological studies demonstrate that chronic autoimmune 

disorders increase the risk of subsequent mood disorder (Benros et al 2013). There 

is evidence that in patients with inflammatory or autoimmune diseases, the 

associated inflammation makes a causal contribution to mood: meta-analytic 

analysis of the effects of anti-cytokine treatments on mood scores in patients with 

inflammatory disorders showed a positive effect on mood of IL-6 blockade, even 

when only considering those whose primary disease did not respond to treatment 

(Wittenberg et al 2019). Incipient, undiagnosed or subclinical inflammatory disease 

may also contribute to depression that is ostensibly not associated with medical co-

morbidity, but the clinical importance of this effect is unclear.  

 

Animal models: Animal models of chronic inflammatory disorders recapitulate some 

of the neurobiological changes seen depression and suggest mechanisms underlying 

the effects seen in humans. For example, in a rat model of rheumatoid arthritis (RA) 

which is associated with anhedonia (adjuvant-induced arthritis), cortical and 

hippocampal BDNF were decreased (Pedard et al 2018). In another model of RA 

(human TNF-alpha transgenic mouse model), chronic RA-like pathology led to TNF-

dependent myeloid cell activation in the cortex, changes also seen on post-mortem 

histology from humans with RA (Suss et al 2020).  

Obesity Human data: Obesity may causally contribute to mood symptoms via psychological 

mechanisms (e.g., negative self-appraisal). However, obesity may also contribute to 

depressive symptoms via its proinflammatory effects. Notably, obese adipose tissue 

releases pro-inflammatory cytokines including TNF-α and IL-6 (Ouchi et al 2011), as 

well as leptin, a hormone best known for signalling energy availability, but which 

also has pro-inflammatory effects, stimulating both innate and adaptive immune 

cells (Naylor & Petri 2016). In observational studies, BMI statistically explains some 

of the observed association between inflammation and depressive symptoms 

(Chamberlain et al 2018), but given the pro-inflammatory effects of adipose tissue, 

obesity cannot be considered a simple confounder of the relationship between 

inflammation and depression. Obesity-induced inflammation may also, in part, 

mediate the effects of stress on symptoms: human epidemiological studies and 

primate studies of the experimental effects of stress suggest that chronic stress 

increases upper body obesity (Jayo et al 1993). Moreover, there is evidence for an 

immunometabolic subtype of depression associated with increased appetite, altered 

energy homeostasis and obesity (Milaneschi et al 2020)(see Section 1.7.1). 
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Animal models:  Animal models using high fat diet (HFD) to mimic human diet-

induced obesity show that HFD/obesity-induced inflammation is dependent on a 

vicious cycle of interactions dependent on CD8+ T cells and macrophages within 

adipose tissue (Nishimura et al 2009). 

Pro-
inflammatory 
environmental 
insults / 
lifestyle 
factors 

There is evidence that smoking, alcohol, low cardiorespiratory fitness, sleep 

disruption and the effects of environmental pollution all contribute to peripheral 

inflammation (O'Connor et al 2009c, Tsai et al 2019). For example, air pollution 

exposure has been associated with higher rates of subsequent depression (Roberts 

et al 2019) and also with increased peripheral CRP and IL-6 (Li et al 2017). Like the 

effects of obesity, these cannot simply be considered confounders to be factored 

out, as the inflammation they cause may contribute to symptoms. Equally, however, 

symptoms of depression and known risk factors for MDD (e.g., low socio-economic 

status) make many of these exposures more likely. The causal pathways between 

mood symptoms, lifestyle-related behaviours and inflammation remain 

underexplored. 

Gut 
microbiome 
and gut 
barrier 
integrity 

Human data: Immune dysregulation in MDD may also reflect microbial dysbiosis or 

altered gut physiology. Depression has been associated with replicated increases 

and decreases in multiple taxa of bacteria, corresponding to a decrease in anti-

inflammatory butyrate-producing bacteria (e.g., Faecalibacterium and Coprococcus) 

and an increase in pro-inflammatory butyrate-depleting bacteria (e.g., Eggerthella) 

(Nikolova et al 2021b). Depression and anxiety have also been associated with a gut 

microbiome over-representative of LPS biosynthetic genes, increased plasma levels 

of LPS and LPS-binding protein, and increased plasma markers of impaired gut 

epithelium tight junction barrier integrity (zonulin and FABP2) (Alvarez-Mon et al 

2019, Stevens et al 2018), possibly reflecting increased bacterial translocation from 

the gut to the blood in MDD. 

 

Animal models: Germ-free mice, mice treated with antibiotics, and faecal microbiota 

transplants have been extensively used to investigate the effects of microbiota on 

behaviours relevant to depression, demonstrating that microbiota are essential for 

appropriate stress-responses and social behaviour, and can modulate 

anxiety/depressive behaviours (Nagpal & Cryan 2021). Such studies have 

demonstrated multiple immune and non-immune (neural, hormonal and metabolic) 

pathways by which gut microbiota can affect symptoms. Immune mechanisms of 
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depressive symptoms include gut bacteria-induced accumulation of Th17 cells in the 

hippocampus (Medina-Rodriguez et al 2020) as well as microbiome-dependent 

increases in stress-induced peripheral IL-6 (Bailey et al 2011) and hippocampal IL-1β 

(Pearson-Leary et al 2020). Notably, in mice, chronic stress causes T cell- and IFN-γ-

dependent increases in gut permeability, and an increase in bacterial translocation 

to the liver (Ferrier et al 2003), convergent with the findings of altered gut barrier 

integrity in human depression described above. Studies using faecal microbiota 

transplants from humans to rodents have shown that depressed compared to non-

depressed microbiota can induce depression-related phenotypes in rodents, 

providing evidence for a causal contribution of microbial dysbiosis to symptoms 

(Chinna Meyyappan et al 2020). 

Reduced 
exposure to 
non-
pathogenic 
microbes 

The absence in many modern human environments of ‘old friends’, i.e., microbes 

with whom we co-evolved, is hypothesized to impair immunoregulatory responses, 

with evidence that humans raised in urban environments without pets (vs. rural 

environments with animals) show delayed resolution of stress-induced increases in 

peripheral leucocytes and decreased IL-10 (an immunoregulatory cytokine) 

following psychosocial stress (Bobel et al 2018). 

Genetic 
propensity 

See discussion in Section 1.4.4 

Psychosocial 
stress  

See Section 1.6 (next section) for a discussion of the effects of stress on cellular 

immunity, including acute stress, chronic adult stress and early life stress, all of 

which are hypothesized to contribute to immune abnormalities in depression. 

 

1.6 The effects of stress on immunity 

There is strong meta-analytic evidence that the risk of depression is increased both by stressful 

life events in adulthood (Kendler et al 1999) and by adverse childhood experiences (Teicher & 

Samson 2013). There also is evidence that stress is associated with similar immunological 

changes to those observed in some patients with depression, supporting the hypothesis that 

inflammation may be a link in the causal pathway from stress to depression. For example, 

there is meta-analytic evidence from observational studies that childhood adversity is 

associated with increases in adult CRP, IL-6 and TNF-α (Baumeister et al 2016) and some 

evidence from observational studies (variably reproduced) that various forms of chronic stress 

(e.g., caregiver stress) are associated with increases in CRP and IL-6 (Rohleder 2019). 

Acute/subacute stress has also been associated with changes in peripheral blood cell counts. 

For example, intensive care doctors on- compared to off-shift show increased blood white cell 
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counts (Heidt et al 2014). In terms of adaptive immunity, in observational studies, subacute 

naturalistic stressors (e.g., exams) tend to be associated with suppressed measures of cell-

mediated immunity (e.g., T cell proliferative responses); preserved or increased 

immunoglobulin titres; and decreased antibody and cellular responses to vaccination (Glaser et 

al 1992, Madison et al 2021, Segerstrom & Miller 2004). Chronic stress (e.g., caregiver stress) 

tends to be associated with suppression of both T cell and B cell immunity, including decreased 

T cell proliferative responses, as well as decreased antibody and cellular responses to 

vaccination (Kiecolt-Glaser et al 1996, Madison et al 2021, Segerstrom & Miller 2004). 

 

Experimental studies of induced stress allow a clearer interpretation of the causal relationship 

between stress and immune changes, with the limitation that – for ethical reasons – only acute 

(and not chronic) stress can be studied in this way in humans. Experimentally-induced acute 

stress has been shown to lead to immunological changes similar to those seen in depression, 

with meta-analytic support for acute stress-induced increases in IL-6, IL-1β, IL-10 and TNF-⍺ 

(Marsland et al 2017). One method of inducing acute stress experimentally is the Trier Social 

Stress Test (TSST), where participants give a presentation and perform mental arithmetic in 

front of unsympathetic judges. A study in teachers showed that the TSST increased IL-6 

production from peripheral blood cells (IL-6 was measured following stimulation of whole 

blood in vitro with LPS) (Bellingrath et al 2013), although which specific immune cells were 

responsible for this increased IL-6 production is unclear. Teachers with high levels of chronic 

stress (perceived effort to reward ratio) showed higher baseline levels of IL-6 prior to the TSST. 

Mirroring findings in observational studies of the relationship between subacute stress and 

peripheral cell counts, participants exposed experimentally to socially evaluated cold pressor 

stress (a mixed psychological and physiological stressor) showed increased relative counts of 

peripheral monocytes (as a percentage of total live cells) (van de Wouw et al 2021). Similar to 

findings in observational studies of participants with subacute/chronic stress, experimentally 

induced acute stress leads to decreased lymphocyte responses to in vitro stimulation 

(Segerstrom & Miller 2004). Which (if any) of these immune consequences of stress contribute 

to the behavioural effects of stress in humans remains unclear. 

 

In order to address how stress-induced immune changes causally contribute to behavioural 

susceptibility to stress, the mechanisms of immune responses to stress, and the effects of 

stress on tissues that are poorly accessible in humans, animal models of stress have been 
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extensively investigated (Tsyglakova et al 2019). These include models of acute psychological 

stress, early life stress and chronic stress. Like in humans, both acute and chronic stress 

produce an increase in peripheral IL-6 in rodents. However, while in humans, acute stress has 

been shown to increase IL-6 production from immune cells (Bellingrath et al 2013), a study in 

rodents showed that, at least in mice, the key source of acute stress-induced IL-6 is brown 

adipocytes and not immune cells (Qing et al 2020). For chronic stress, however, experiments 

using IL6-/- bone marrow chimeric mice have shown that haematopoietic cell IL-6 is critical for 

the induction of stress-induced behavioural abnormalities (Hodes et al 2014). 

 

Animal models of chronic stress – including repeated social defeat (RSD), chronic unpredictable 

stress (CUS) and chronic restraint stress models – have suggested that multiple immune 

mechanisms contribute to the negative behavioural effects of stress. These include: microglial 

activation (Kreisel et al 2014); microglial oxidative stress (Lehmann et al 2019); endothelial IL-1 

receptor dependent priming of microglia (Wohleb et al 2014); inflammasome activation (Iwata 

et al 2016); type 1 IFN activity (Tripathi et al 2021); and increased blood-brain barrier 

permeability and consequent entry of peripheral IL-6 into the brain (Menard et al 2017). As 

summarised in Figure 1-2A, there is also a large body of animal work showing that psychosocial 

stresses cause release of inflammatory monocytes into the circulation from reserves in the 

bone marrow and spleen (Weber et al 2017), mirroring the findings in humans discussed 

above. The release of these Ly6Chi inflammatory monocytes is hypothalamic-pituitary-adrenal 

(HPA) axis-dependent (Niraula et al 2018) and the monocytes released are distinguished by 

expression of pro-inflammatory cytokine genes, glucocorticoid resistance, and surface 

expression of receptors for MCP-1 (CCL2) and other chemokines (Weber et al 2017). There is 

some evidence that IL-1-dependent trafficking of inflammatory monocytes to the brain, 

recruited by microglia, contributes to the detrimental effects of stress on neuronal function 

and behaviour (McKim et al 2018, Wohleb et al 2014, Wohleb et al 2013), although this 

remains controversial (Lehmann et al 2016).  
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The contribution of adaptive immunity to the behavioural response to stress has been less 

investigated, but mouse experiments modulating the adaptive immune system by genetic 

manipulations, antibody depletion of adaptive immune cells, or adoptive transfer of immune 

cells between animals have shown that brain-reactive T cells are necessary for behavioural 

resilience to stress (Cohen et al 2006); that microbiota-induced Th17 cells can promote 

susceptibility to learned helplessness in response to acute footshock stress (Beurel et al 2013, 

Medina-Rodriguez et al 2020); and that adoptive transfer of lymphocytes from chronically 

stressed mice can induce an anti-depressant phenotype in naïve or stressed recipient mice 

(Brachman et al 2015, Scheinert et al 2016). Acute stress has been shown to increase T cell 

infiltration to the brain and choroid plexus (Lewitus et al 2008), and high levels of 

glucocorticoid signalling at the choroid plexus block the stress-induced infiltration of Th2 and 

Glucocorticoid-insensitive 
inflammatory monocytes released 

from bone marrow and spleen

Monocyte trafficking to 
meninges and brain

Periphery

Brain and meninges

Local immune activation
Microglial IL-1β, IL-6 STRESS
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‘Blood-brain 
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Depressive 
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Figure 1-2 Effects of stress on the immune system in the brain and periphery  

Recruitment of pro-inflammatory, glucocorticoid-insensitive monocytes to the central nervous system 

may mediate the link between stress and depression (figure created based on (Weber et al 2017)). Parts 

of the figure were drawn by using pictures from Servier Medical Art, which is licensed under a Creative 

Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).     
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Treg cells to the brain (Kertser et al 2019), although the contribution of these brain-infiltrating 

cells to the behavioural response to stress remains unclear. 

 

Early life stress in rodents, although less investigated from an immunological perspective than 

chronic stress, has also been associated with immune abnormalities. Neonatal repeated 

maternal separation (RMS) in rodents, a model of parental neglect, leads to increases in tissue 

IL-6 and TNF-⍺ and increased microglial activation in the days/weeks immediately following 

RMS (Dutcher et al 2020). These increases do not tend to persist into adulthood without 

rechallenge, but RMS rodents who are re-exposed to stress in adulthood show greater pro-

inflammatory tissue cytokine responses (in both brain and non-brain tissues) and increased 

microglial activation compared to adult-stressed animals not exposed to RMS (Dutcher et al 

2020).	 

 

In terms of the effects of stress on the meningeal immune compartment, one T cell-focused 

study showed that neither subacute nor chronic stress affected IL-17a expression in meningeal 

ɣδ or ⍺β T cells (Alves de Lima et al 2020), but there has otherwise been no investigation of the 

effects of acute stress, chronic stress or early life stress on meningeal immune cells in either 

humans or animal models. 

 

1.7 Diagnostic considerations 

1.7.1 Evidence for an immune subtype in MDD, and associations of inflammation with specific 

symptoms or endophenotypes  

There are no universally accepted subtypes of MDD, but a distinction akin to the contrast 

between ‘typical’ and ‘atypical’ depression (from the Diagnostic and Statistical Manual of 

Mental Disorders) has recently gained traction as biologically meaningful (Lamers et al 2010). 

In the NESDA cohort study, patients with typical depression did not show immune activation, 

while atypical patients – characterized by increased appetite and weight gain – had increased 

levels of CRP and IL-6 (Lamers et al 2013, Milaneschi et al 2020). This effect could be seen even 

when groups were matched for BMI (Simmons et al 2018). Atypical (but not typical) depression 

also shows genetic correlation with obesity (Milaneschi et al 2017). These and other data 

support an ‘immunometabolic’/atypical subtype of depression with greater prominence of 

symptoms related to altered energy expenditure (Milaneschi et al 2020). The previously 
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described RCT data demonstrating responses to adjuvant infliximab or minocycline only in 

MDD patients with evidence of inflammation also support the hypothesis of an immune 

subgroup in MDD (Nettis et al 2021, Raison et al 2013). 

 

 
Figure 1-3 Inflammatory markers with strong evidence for links to specific depressive symptoms. 

Acute phase reactants and pro-inflammatory cytokines (blue boxes) have been particularly linked to 

anhedonia and neurovegetative symptoms. Methods supporting these links (red boxes) include 

correlations between symptoms and inflammatory markers in observational studies; mendelian 

randomization studies; and evidence from randomized controlled trials that immunomodulatory 

treatment show particular efficacy against specific depressive symptoms. See text for further details. 

CRP, C-reactive protein; IL-6, interleukin-6; TNF, tumour necrosis factor. 

 

In a complementary approach, other studies have sought not to identify patient subgroups, but 

assessed whether inflammation relates to particular symptom domains or cognitive 

endophenotypes. Peripheral inflammation, as indexed by CRP and IL-6, is not uniformly 

associated with all depressive symptoms (see Figure 1-3). Consistent with the evidence for an 

immunometabolic/atypical subgroup in MDD, studies have tended to associate inflammation 

with atypical or ‘neurovegetative’ symptoms (changes in appetite or sleep, or psychomotor 

slowing) (Milaneschi et al 2020). CRP has been particularly associated with fatigue, increased 
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sleep, and increased appetite, while IL-6 has been associated with anhedonia, increased sleep 

and decreased appetite (Milaneschi et al 2021); inflammation was less associated with anxiety 

symptoms. Mendelian randomization (MR) analyses further support a causal role for increased 

IL-6 specifically in fatigue (Milaneschi et al 2021). Another MR analysis supported a causal role 

for IL-6 in suicidality (Kappelmann et al 2021). MR analyses have not supported a specific 

causal link between CRP or IL-6 and anhedonia (Kappelmann et al 2021). Randomized 

controlled trial data, however, do support a specific role for inflammation in anhedonia. In 

treatment-resistant depression, anti-TNF-α therapy (Raison et al 2013) and anti-IL-6 therapy 

(Salvadore et al 2018) were associated with specific improvements in anhedonia compared to 

placebo, even where (for anti-IL-6 therapy) there was no evidence of efficacy for depressive 

symptoms overall. Likewise, in an RCT of anti-TNF therapy for bipolar depression, anti-TNF-α 

was particularly effective against anhedonia, especially in participants with high baseline TNF-α 

(Lee et al 2020). This is in keeping with the experimental evidence in humans described in 

Section 1.4.6, which demonstrates a particularly strong link between modulation of 

inflammation and altered activity in reward circuitry – the circuitry most implicated in 

anhedonic symptoms (Husain & Roiser 2018).  

 

Together, the above findings suggest that inflammation may contribute specifically to 

neurovegetative symptoms and anhedonia rather than to overall risk of depression diagnosis. 

However, these symptoms can be present in numerous neurological and psychiatric disorders. 

For example, while anhedonia is a cardinal symptoms for depressive disorders, it is also a 

symptom of schizophrenia, traumatic brain injury, post-traumatic stress disorder, substance 

use disorder, Parkinson’s disease, and Alzheimer’s disease (Husain & Roiser 2018). Such data 

challenge the simplistic view that inflammation contributes to depression as a discrete 

disorder, instead prompting consideration of the idea that inflammation has a transdiagnostic 

effect on cognition and symptoms, a hypothesis we now move on to consider. 

 

1.7.2 Evidence for transdiagnostic immunopathology in psychiatric disorders 

Clinical diagnosis for mental health disorders is comprised of multiple, categorically distinct 

clinical syndromes such as schizophrenia, MDD, and bipolar disorder. However, symptoms 

overlap between different psychiatric diagnoses, and comparative investigations of psychiatric 

disorders have revealed both shared and specific genetic (Cross-Disorder Group of the 

Psychiatric Genomics Consortium 2019, Lee et al 2021, Peyrot & Price 2021) and 
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environmental risk factors (Kessler et al 1997, Schmitt et al 2014), and brain transcriptomic 

profiles (Gandal et al 2018). Thus, some genetic and environmental risks operate trans-

diagnostically across multiple psychiatric syndromes, rather than being cis-diagnostically 

aligned to a specific syndrome, as would be expected if each disorder was a biologically 

discrete disease entity. These and other data support a general predisposition to 

psychopathology or ‘p factor’ which captures an individual’s likelihood of developing any 

psychiatric disorder (Caspi et al 2014).  

 

Immune system abnormalities have been observed in case-control studies of many psychiatric 

disorders, including schizophrenia (Khandaker et al 2015, Miller & Goldsmith 2017), MDD 

(Miller & Raison 2016), bipolar disorder (Rosenblat & McIntyre 2017), autism spectrum 

disorder (ASD) (Meltzer & Van de Water 2017), and attention deficit hyperactivity disorder 

(ADHD) (Hoekstra 2019). Among the most consistently reported findings, across multiple 

disorders, are increased C-reactive protein (CRP) (Yuan et al 2019), increased pro-inflammatory 

cytokines (Goldsmith et al 2016, Yuan et al 2019), increased white blood cell counts in both 

myeloid and lymphoid lineages (Barbosa et al 2014, Breunis et al 2003, Fernandez-Egea et al 

2016, Grosse et al 2016b, Jackson & Miller 2020, Miller et al 2013, Munkholm et al 2018), and 

inflammasome activation (Alcocer-Gomez et al 2014, Kim et al 2016, Saresella et al 2016). 

Polygenic risk scores for both depression and schizophrenia have been associated with 

increased peripheral white cell counts, although MDD PRS was more associated with increased 

neutrophil counts and schizophrenia PRS was more associated with increased lymphocyte 

counts (Sewell et al 2020). Mendelian randomization studies support a causal role for IL-6 in 

both depression and schizophrenia (Perry et al 2021) and multiple psychiatric disorders show 

genetic correlations with immune disorders (Tylee et al 2018). The gut dysbiosis associated 

with psychiatric disorders also shows a consistent transdiagnostic pattern across depression, 

bipolar disorder, schizophrenia and anxiety disorders (Nikolova et al 2021b). Moreover, 

environmental exposures that elicit an immune response are risk factors for multiple 

psychiatric disorders, including in utero or parental infections (Al-Haddad et al 2019, Lydholm 

et al 2019), childhood and adult infections (Benros et al 2011, Benros et al 2013, Breithaupt et 

al 2019, Kohler-Forsberg et al 2019), childhood adversity (Hostinar et al 2015), and acute or 

chronic stress (Rohleder 2019). Finally, there is some evidence from observational studies that 

anhedonia and psychomotor slowing correlate with peripherally measured inflammation in 

disorders beyond MDD. For example, in PTSD, peripheral inflammation, especially IL-6, has 
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been associated with anhedonia and altered reward circuitry connectivity (Mehta et al 2020); 

and in schizophrenia, peripheral inflammatory cytokines correlate with psychomotor slowing 

(Goldsmith et al 2020) and predict subsequent development of negative symptoms including 

anhedonia (Goldsmith et al 2019). 

 

On the basis of this evidence, it is conceivable that the immune system could be implicated in 

the pathogenesis of multiple psychiatric disorders. However, the limited immunophenotyping 

that has been applied across multiple disorders (only plasma CRP/cytokines and coarse 

peripheral blood cell counts have good cross-disorder data available for comparison) as well as 

the lack of transdiagnostic immunophenotyping studies mean that the degree to which the 

immune contribution to different psychiatric disorders is shared or distinct remains an open 

question. Moreover, it is unclear whether immunopathology is simply an additive risk factor 

increasing susceptibility to multiple diagnoses; makes a specific trans-diagnostic contribution 

to symptoms such as anhedonia and fatigue; affects prognosis (e.g., by contributing to 

treatment resistance) across multiple disorders; or reflects a trans-diagnostic subgroup of 

patients with an immune pathogenesis.  

 

1.8 Summary 

I have outlined the large body evidence that depression is associated with altered protein, 

cellular and transcriptional immunophenotypes, and the growing body of evidence from 

multiple sources that inflammation makes a causal contribution to symptoms in depression. I 

have also explored the possible sources of inflammation in depression, focusing especially on 

the marked effects of stress on the immune system. Key gaps in our knowledge, however, 

remain. In particular, studies have tended to focus on genes or proteins in whole blood, or on 

coarse-grained cellular subsets. Deeper cellular immunophenotyping is required to determine 

the specific cell subsets and pathways implicated in depression and the stress response. The 

causal contribution of cellular immunophenotypes to symptoms remains unclear, as does the 

extent to which there is common or distinct cellular immunopathology contributing to 

different psychiatric disorders. Moreover, the role of the recently discovered meningeal 

immune system in stress and depression has hardly been explored. The analyses and 

experiments in the chapters to follow aim to address these outstanding questions. 
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Chapter 2: Peripheral blood flow cytometry immunophenotypes in 

health and depression 

 

2.1 Introduction 

As discussed in Chapter 1, inflammatory mechanisms could be plausible targets for 

repurposing or de novo development of immunomodulatory drugs for anti-depressant efficacy 

in cases of ‘inflamed depression’, i.e., clinical symptoms of depression associated with clinical 

or biomarker evidence of inflammation. Inflamed depression hypothetically includes cases of 

‘co-morbid’ depression associated with major medical inflammatory disease; as well as a 

subgroup of MDD cases with low-grade inflammation detectable by blood or brain biomarkers. 

The concept of inflamed depression as a subgroup of MDD implies that there is an un-inflamed 

subgroup of cases who are depressed without any evidence for inflammation. This is an 

important distinction to be able to make in the design of clinical trials for immune-targeted 

anti-depressant drugs, which should be precisely focused on the cases most likely to have a 

favourable benefit:risk response to treatment. This motivates the search for peripherally 

accessible biomarkers of inflammation which could be used to guide stratified treatment for 

patients with depression. The identification of such biomarkers to guide treatment has long 

been a goal of psychiatry research, but at present, no biomarkers are used to guide treatment 

for any psychiatric condition. 

 

Most work on peripheral biomarkers in depression (summarised above in Section 1.3) has 

focused on soluble components of the immune system such as cytokines and acute phase 

proteins. A major limitation of such measurements is that blood levels of proteins reflect the 

combined output of multiple different cell and tissue types, both rendering the measurements 

noisy as biomarkers, and making it difficult to attribute depression-associated changes in these 

markers to any particular immunopathological mechanism. For example, while peripheral 

blood IL-6 is often presumed to come from myeloid cells (e.g., (Bellingrath et al 2013)), it is also 

produced by adaptive immune cells (Barr et al 2010) as well as many ‘non-immune’ tissues and 

cells, e.g., adipocytes (Qing et al 2020). This limitation has prompted investigation of cellular 

phenotypes as biomarkers in depression, aiming to associate depression with abnormalities in 

particular immune cell subsets. The simplest cellular phenotypes are counts of different 

immune cell subsets in venous blood samples. In terms of peripheral blood cell counts, 
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depression has been reproducibly associated with leucocytosis, neutrophilia, an increased 

neutrophil to lymphocyte ratio, an increased ratio of CD4+ to CD8+ T cells (Maes et al 1992c, 

Mazza et al 2018, Zorrilla et al 2001), and increased numbers of intermediate monocytes 

(Alvarez-Mon et al 2019, Hasselmann et al 2018, Nowak et al 2019). Other findings have mainly 

been inconsistent or seen in only small studies. Depression has been associated with both 

decreased (Cai et al 2017, Zorrilla et al 2001) and unchanged (Demir et al 2015) lymphocyte 

counts and both increased or unchanged numbers of non-classical monocytes (Alvarez-Mon et 

al 2019, Hasselmann et al 2018, Nowak et al 2019). One study associated depression with 

increased memory CD4+ T cell counts (Maes et al 1992a) and some patients with depression 

also show increased CD8+ T cells and B cells ((Maes et al 1992a) and (Maes et al 1992b)). 

Depression has also been associated with reduced numbers of regulatory B cells in two small 

studies (Ahmetspahic et al 2018, Duggal et al 2016), but associations between depression and 

regulatory T cells and other T cell polarization states have been inconsistent (Alvarez-Mon et al 

2019, Grosse et al 2016b, Hasselmann et al 2018, Jahangard & Behzad 2020, Patas et al 2018, 

Suzuki et al 2017).  

 

One issue in interpreting cellular immunophenotyping data is that many prior studies have 

measured the relative frequency of each immune cell subset in proportion to the superset of 

peripheral blood mononuclear cells (PBMCs), or some other cellular superset (e.g. the 

percentage of classical monocytes of total monocytes) (e.g., (Grosse et al 2016b, Nowak et al 

2019)). Such relative cell counts are difficult to interpret since a decrease in the relative 

proportion of any particular subset may reflect either an absolute decrease in their number or 

an absolute increase in the number of another subset. It is thus preferable to analyse absolute 

count data where possible. A further challenge is that with modern cytometry, it is now 

possible to analyse counts of a large number of immune cells subsets (10s-100s) from a single 

blood sample. If depression-associated changes are assessed independently for each immune 

cell subset, the number of univariate statistical tests creates a substantial multiple 

comparisons problem, necessitating increasing sample sizes, and motivating multivariate 

approaches to the data. The variable immunophenotyping findings from case-control studies 

may also in part stem from patient heterogeneity, reflecting the inclusion of depressed 

participants both with and without inflammation, and potentially with differing underlying 

immunopathologies.  
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2.2 Hypotheses 

We hypothesize that in patients with major depressive disorder, analysis of cellular 

immunophenotypes in peripheral blood samples can identify one or more subgroups of 

patients with evidence of inflammation and generate hypotheses about the underlying 

pathophysiology of depression in these patients, as well as potential treatment targets. 

 

2.3 Methods 

We measured absolute numbers of 14 immune cell subsets from peripheral blood samples in 

206 cases of depression and 77 healthy controls. We used multiple univariate and multivariate 

methods to identify cell counts that were significantly different between all cases and controls, 

and to explore the correlations between immune cells, inflammatory proteins, and clinical 

variables. We tested the hypothesis that a subgroup of depressed cases would have peripheral 

inflammation (Lamers et al 2013, Raison et al 2013) by a “top-down” analysis, dividing the 

cases into two subgroups based on their immune cell profiles, then testing for significant 

differences between them in terms of inflammatory proteins and clinical variables. We also 

used a more “bottom-up” or data-driven analysis to identify a theoretically unconstrained 

number of immune cell-stratified subgroups of cases and then tested for immunological and 

clinical differences between subgroups. 

 

Study design 

This was a case-control study of peripheral blood cell counts in depression cases and healthy 

controls. Depression cases were ascertained as those participants who screened positive for 

current or past depressive symptoms on the Structured Clinical Interview for DSM-5 Disorders 

(SCID) screening questionnaire (First et al 2016), completed the Hamilton Rating Scale for 

Depression (HAM-D), and screened negative for bipolar disorder or non-affective psychosis. 

114 cases (55%) had moderate-severe depressive symptoms (HAM-D ≥ 17), of whom 61% were 

currently taking anti-depressant medication; 50 cases (24%) had mild depressive symptoms 

(HAM-D 8-16) of whom 90% were currently medicated; and 42 cases (20%) had minimal 

depressive symptoms (HAM-D ≤ 7) of whom 100% were medicated. By design, this was a 

clinically heterogeneous sample inclusive of depressed cases across a spectrum of symptom 

severity and antidepressant medication exposure. Matched healthy controls were recruited 

from the general population by advertisement and defined as participants with no personal 
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history of depression, no previous antidepressant treatment for any indication, no history of 

any major psychiatric disorder as defined by SCID screening questionnaire, and current HAM-D 

total score <7. All participants satisfied inclusion criteria including age 25-50 years, and 

exclusion criteria including major medical disorder and immune-modulating drug treatment. 

All study assessments were completed at one of five UK centres as part of the Biomarkers in 

Depression (BIODEP) study (Chamberlain et al 2018), which was approved by an independent 

research ethics committee (National Research Ethics Service East of England, Cambridge 

Central, UK; 15/EE/0092). All participants gave informed consent in writing and received £100 

compensation.  

 

Medical comorbidity 

One exclusion criterion for the BIODEP study was a lifetime history of any serious medical 

disorder likely to compromise the interpretation of immunological data. Of the 283 

participants included in this cohort, 276 participants completed a self-report medical 

questionnaire and had a complete medications list ascertained. Participants with any condition 

requiring treatment with regular oral corticosteroids were excluded. Participants with mild 

inflammatory disorders were not excluded. One participant reported regular NSAID use. The 

self-report medical questionnaire, which asked about past or current conditions, indicated that 

41 participants possibly had a current inflammatory disorder as follows: 28 reported asthma 

(mostly not requiring treatment: 7 requiring inhalers, none requiring oral medication), seven 

reported psoriasis (none requiring any topical or oral treatment), three reported type II 

diabetes mellitus (one diet-controlled only; none insulin-dependent), two reported coeliac 

disease and two reported arthritis (not requiring any treatment). Conservatively, these 

participants were deemed to have ‘minor inflammatory disease’ for the analysis presented 

here. Thyroid stimulating hormone was measured (normal range 0.4-4.5 mIU/L): based on this, 

15 participants had evidence of biochemical hypothyroidism and 3 participants had evidence of 

biochemical hyperthyroidism. 6 participants were euthymic but treated with thyroxine or 

levothyroxine. TSH levels were not significantly different between controls and MDD 

participants (MWU P = 0.8). 

 

Assessments  

Participants completed the following clinical assessments and self-report questionnaires: 

Hamilton Depression Rating Scale (Hamilton 1960); Beck Depression Inventory v2.0 (Beck et al 
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1996); Chalder Fatigue Scale (Chalder et al 1993); Snaith-Hamilton Pleasure Scale (Snaith et al 

1995); State-Trait Anxiety Inventory (Spielberger et al 1983); Childhood Trauma Questionnaire 

(Bernstein et al 1994); and Life Events Questionnaire (Brugha & Cragg 1990). Height and weight 

were measured to calculate body mass index (mass / height2). For 269 of the 283 participants, 

the HAM-D, CRP, absolute cell counts and flow cytometry were measured in the same month; 

and, for all participants, these assessments were completed within 80 days. Fasting venous 

blood samples were taken between 8am and 10.30am for measurement of absolute blood cell 

counts using a standard clinical haematology panel (neutrophils, eosinophils, basophils, 

lymphocytes, monocytes, red cells and platelets); flow cytometry (CD4+ T cells, CD8+ T cells, B 

cells, classical monocytes, non-classical monocytes, intermediate monocytes, CD16hi NK cells, 

CD56hi NK cells and NKT cells); high-sensitivity C-reactive protein; lipid profile; and plasma 

interleukin-6 (IL6).  

 

Immuno-phenotyping  

Flow cytometry was performed at each study centre on fresh PBMCs using live-dead stain 

(BioLegend 423106) and the following antibodies: PE anti-CD3 (BD 555333), V500 anti-CD4 (BD 

560768), PerCPCy5.5 anti-CD8 (BD 560662), APC anti-CD19 (BD 557744), AF488 anti-CD56 (BD 

557699), PB anti-CD14 (BD 558121) and PECy7 anti-CD16 (BD 557744). We manually gated all 

data in FlowJo™, blind to case/control status of each participant, according to the gating 

strategy in Figure 2-1.  
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Figure 2-1 Peripheral blood mononuclear cell flow cytometry gating strategy. 

Plots show recorded flow cytometry events, where each dot represents one recorded event (interpreted 

as one cell), and colour represents density of events. Arrows and black boxes show selection and 

sequential hierarchical gating (filtering) of events, using forward and side scatter (FSC and SSC) and the 

intensity of fluorophore-conjugated antibody staining (x and y axes as labelled) to select groups of cells 

corresponding to known immune cell subsets, e.g., CD4+ T cells are here defined as live-dead (LD) 

staining negative, CD3+CD56-CD4+CD8-. 
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Calculation of absolute cell counts 

To derive absolute cell counts for the 14 cell types used in this analysis, flow cytometry counts 

(gated as percentages relative to larger cell subsets) were multiplied by the relevant absolute 

cell counts from the haematology counts (see Figure 2-2 for a schematic of the processing 

pipeline). More specifically:  

(1) Gated flow cytometry data were imported to [R] using [R] package flowWorkspace 

(Finak & Jiang 2018). The data were used to generate percentage features as outlined 

in the “multiplier” column of Table 2-1. These “multiplier” counts are proportions 

which are multiplied with the absolute cell counts from the hematology panel in order 

to generate absolute cell counts of different cell subtypes. For example, a participant’s 

absolute CD4+ T cell count = proportion of lymphocytes which are CD4+ T cells (the 

multiplier, derived from flow cytometry) * the absolute lymphocyte count (from the 

hematology panel). 

(2) Missing flow cytometry multiplier counts and hematology cell counts were imputed by 

multiple imputation under a multivariate normal model using [R] package mix (Ripley 

2017) via the function ImputeData from [R] package mclust (Scrucca et al 2016). In 

total, only 0.33% of counts in this analysis required imputation. 

(3) Percentage multipliers and absolute counts were tested for batch effects of clinical 

center (5 centers) using a Kruskal-Wallis (KW) test for each cell count. All the 

percentage multipliers showed marked batch effects related to clinical center, 

consistent with the fact that flow cytometry was performed locally at each center. For 

the hematology panel (local venepuncture but assayed centrally), only the absolute 

lymphocyte count (P = 0.005) and monocyte count (P = 0.08) showed evidence of a 

center-related batch effect.  

(4) For those features showing significant center effects at P < 0.1 by KW test, the features 

were Box-Cox transformed to normalize the counts using the [R] caret package (Kuhn 

2008) preProcess function; debatched for the effect of clinical center using [R] limma 

package (Ritchie et al 2015) removeBatchEffect function; then inverse Box-Cox 

transformed to return the data to their original distribution. To avoid the introduction 

of bias which may occur with unbalanced groups, no design matrix was included in the 

removeBatchEffect function. 

(5) The debatched multipliers (from flow data) were multiplied by the debatched absolute 

cell counts (from the hematology panel) as per Table 2-1 to generate the 14 absolute 
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cell counts used in this analysis: neutrophils, eosinophils, basophils, red blood cells, 

platelets, CD4+ T cells, CD8+ T cells, classical monocytes, intermediate monocytes, non-

classical monocytes, CD16hi NK cells, CD56hi NK cells, NKT cells and B cells. 

These 14 endpoints were selected as the 14 cell subsets which could reliably be discriminated 

based on the flow cytometry panel and haematology data acquired. 

 

Table 2-1 Derivation of fine-grained absolute cell counts from coarse absolute count data and flow 

cytometry data. 

Counts for each cell type were obtained by multiplying the value of the “multiplier” column with the 

“input count”. Where the “multiplier” is non-unity, this is a percentage derived from flow data. The 

“input count” data are taken from the haematology panel. 

Final cell count Multiplier  
(Percentage feature from flow data) 

Input count 

Neutrophils 1 Absolute neutrophil count  

Eosinophils 1 Absolute eosinophil count  

Basophils 1 Absolute basophil count  

Red blood cells 1 Absolute red blood cell 
count  

Platelets 1 Absolute platelet count  

CD4+ T cells CD4+ T cells / ( CD3+ cells + NK cells + B cells )  Absolute lymphocyte 
count  

CD8+ T cells CD8+ T cells / ( CD3+ cells + NK cells + B cells )  Absolute lymphocyte 
count  

Classical 
monocytes 

classical monocytes /  
(classical monocytes + intermediate monocytes + 
non-classical monocytes) 

Absolute monocyte count 

Intermediate 
monocytes 

intermediate monocytes /  
(classical monocytes + intermediate monocytes + 
non-classical monocytes) 

Absolute monocyte count 

Non-classical 
monocytes 

non-classical monocytes /  
(classical monocytes + intermediate monocytes + 
non-classical monocytes) 

Absolute monocyte count 

CD16(hi) NK cells CD16(hi) NK cells / ( CD3+ cells + NK cells + B cells )  Absolute lymphocyte 
count  

CD56(hi) NK cells CD56(hi) NK cells / ( CD3+ cells + NK cells + B cells )  Absolute lymphocyte 
count  

NKT cells NKT cells / ( CD3+ cells + NK cells + B cells )  Absolute lymphocyte 
count  

B cells B cells / ( CD3+ cells + NK cells + B cells )  Absolute lymphocyte 
count  
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Figure 2-2 Schematic of analysis pipeline for cell count data. 

Schematic shows the univariate and multivariate analysis techniques used to analyse the cell count 

data. See methods for more details. BIC, Bayesian Information Criterion; ICL, Integrated Complete 

Likelihood. 

 
 
Statistical analysis 

All analyses were performed in [R] version 3.5.1 (R Core Team, 2018). P-values were corrected 

for multiple comparisons using the Benjamini-Hochberg procedure to control the false 

discovery rate (FDR). Group or subgroup effects on continuous variables were tested using 

Wilcoxon-Mann-Whitney or Kruskal Wallis tests, with FDR-corrected Conover non-parametric 

tests for post-hoc comparisons. (Sub)group effects on categorical variables were tested by 𝝌2 

tests with FDR-corrected 𝝌2 tests for post-hoc pairwise comparisons. 
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Principal components and partial least squares analysis 

We used multivariate methods to deal with the high-dimensional, correlated data available on 

each participant. Principal components analysis (PCA) was used to identify the major 

dimensions of variation and co-variation over all 14 immune cell counts, uninformed by clinical 

phenotype. PCA was performed using [R] function prcomp with zero-centering and unit-

variance scaling of data prior to singular value decomposition.  

 

To identify the variability in the data which most relates to the clinical phenotype, we 

performed a partial least squares analysis. Partial least squares (PLS) is a statistical technique 

which finds the linear combinations of ‘predictors’ (here, the 14 cell counts) which most relate 

to variability in the ‘response’ variable (here, case vs. control status or a matrix of symptom 

scores). Where a component is found significantly to predict MDD status or its severity, the 

‘weights’ in the PLS model indicate which of the different cell types most contribute to this 

ability of the model to predict the response, allowing interpretation of the model. Partial least 

square discriminant analysis (PLS-DA) was used to identify the weighted function of immune 

cell counts most predictive of case/control status; partial least squares regression (PLS-R) was 

used to identify the weighted function of all 14 immune cell counts most strongly associated 

with multiple (four) clinical measures of depression severity within the cases, viz, HAM-D, BDI, 

Chalder Fatigue and SHAPS scores. PLS was performed using the NIPALS algorithm via [R] 

package ropls (Thevenot et al 2015). For PLS-R, we used the default mean-centering and unit-

scaling of predictor and response variables. For PLS-DA, we used weighted centering of 

predictors prior to PLS in order to avoid biases due to unequal group sizes (Brereton & Lloyd 

2014). The number of significant PLS components was determined using the default ropls 

method. A component is only added to the PLS model if the P2Y metric (proportion of 

response explained) is > 1% and Q2Y > 0, i.e., if the predicted residual sum of squares of the 

model including the new component (estimated by 7-fold cross-validation) is less than the 

residual sum of squares of the model with the previous components only.  

 

The cumulative Q2Y reflects the predictive ability of the PLS model. For both PLS-DA and PLS-R, 

the p-value for the predictive ability of the model (pQ2) was estimated by permuting group 

labels or clinical score sets (5000 permutations): pQ2 is the proportion of permuted cumulative 

Q2Y values above the original cumulative Q2Y for the model. We used the following method to 

test whether particular cell counts contributed significantly to the PLS model (i.e., testing the 



 

 

64 

significance of predictor weights): (1) use [R] package boot to resample the participant data 

and calculate the PLS model (and associated weights) using the resampled data (1000 

resamples). (2) Generate a z-score for the cell count weight by dividing the cell count weight 

obtained in the original PLS model by the standard error of the bootstrapped PLS weights. (3) 

Significant weights are defined as those with an absolute z-score >3 as previously described 

(Fernandez-Egea et al 2016). PLS plots show only those cell count weights found to be 

significant by this metric. This method is more conservative than using VIP (Variable 

Importance in Projection) >1 to select significant weights. All cell counts designated significant 

in this analysis had VIP>1.  

 

Clustering analysis 

We used Gaussian finite multivariate mixture modelling, and consensus clustering, to identify 

subgroups of cases that shared an immune cell profile in common with each other and in 

contrast to the immune cells profile of cases in other subgroups (Hornik 2005, Scrucca et al 

2016). See Figure 2-2 for a schematic of the clustering analysis pipeline. We used Gaussian 

finite multivariate mixture modelling via [R] package mclust (Scrucca et al 2016) to detect 

clusters present in the data by using an initial hierarchical agglomeration clustering based on 

scaled, centred single value decomposition of the 14 cell counts, following by an expectation 

maximization algorithm to detect the components (clusters) present in the data. The optimal 

model type and the optimal number of clusters was determined using the Bayesian 

Information Criterion (BIC). For data-driven clustering, the number of components (clusters) 

was allowed to vary from 1 to 9 at every iteration of the mixture model and the best model 

was selected by BIC. To generate consensus partitions of participants into subgroups, we first 

performed Gaussian mixture modelling on the total dataset to select the category of models to 

be considered (e.g., VVI, EEI), then performed mixture modelling on 5000 randomly selected 

90% subsets of the data (selection without replacement) using that model type to generate 

5000 data partitions. To detect clusters (subgroups) which are more stable and not sensitive to 

particular data points, we performed consensus clustering of 5000 randomly selected 90% 

subsets of the data using [R] package clue (Hornik 2005). For each clustering partition 

generated, we used clue::cl_predict function to predict the cluster membership for the left-out 

10% of the data. Finally, we used the clue::cl_ensemble function to find the consensus 

clustering which minimized the Euclidean dissimilarity of the 5000 clustering partitions 

generated. We also used an alternative goodness of fit metric - the Integrated Completed 
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Likelihood (ICL) - to test for the optimal model type and component number (Biernacki et al 

2000). For our data, this selected the same model types and cluster numbers as the BIC metric. 

 

Statistical comparison of subgroups 

Following clustering, we then compared the clinical and demographic correlates of the four 

subgroups (immunophenotypes) detected. For continuous variables (e.g., cell counts, age, BMI, 

symptoms scores), we used a Kruskal-Wallis test for the overall effect of subgroup on the 

variable. For variables where the Kruskal-Wallis p-value was <0.05, we used [R] package 

PMCMRplus to perform post-hoc Conover non-parametric tests for significant differences 

between every pair of subgroups, with Benjamini-Hochberg FDR adjustment for multiple 

comparisons across all the subgroup pairs. The p-values shown on graphs comparing features 

subgroup-by-subgroup represent corrected p-values, and non-significant comparisons are not 

shown. For categorical variables (e.g., tobacco use, current antidepressant use), we tested for 

the overall effect of subgroup on the variable using a 𝝌2 test with simulated p-values via [R] 

function chisq.test. Where P < 0.05 for the overall 𝝌2 test, we performed post-hoc testing of 

which pairs of populations differ. A 𝝌2 test with simulated p-values was performed for each pair 

of subgroups, and the raw p-values were adjusted across all pairwise comparisons using 

Benjamini-Hochberg FDR correction. Only pairs with adjusted p-values <0.05 were deemed 

significant. Where there were only two subgroups, statistical tests performed to compare 

subgroups were simple 𝝌2 tests with simulated p-values (for categorical variables) or Mann 

Whitney U tests (for continuous variables). 

 

Sensitivity analysis: generation of cell count residuals 

To test whether there was evidence for depression-associated immune subgroups independent 

of some potentially confounding factors, we used linear regression to mitigate the effects of age, 

sex, BMI, recent infection history and tobacco use before analysis of residualised counts of the 

14 immune cell subsets. In order to generate ‘residual cell counts’, absolute cell counts were 

Box-Cox transformed using [R] caret package preProcess as previously. The [R] MASS package 

function stepAIC was then used to perform model selection with default parameters. The initial 

model used for each cell count c was as follows, with recent infection and current tobacco use 

defined as binary yes-no variables: 

𝑐 = 	𝛽! +	𝛽"𝑠𝑒𝑥 +	𝛽#𝐵𝑀𝐼 +	𝛽$𝑎𝑔𝑒 + 𝛽%𝑟𝑒𝑐𝑒𝑛𝑡	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 + 𝛽&𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑡𝑜𝑏𝑎𝑐𝑐𝑜	𝑢𝑠𝑒 + 𝜀	 [𝐸𝑞. 2.1] 
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For each of the 14 cell counts, the residuals of the chosen linear model were designated the 

‘residual cell counts’ and used directly for further analyses (PCA, PLS and clustering). To allow 

stepwise model comparison and residual calculation, missing values for BMI (8 data points), 

tobacco use (4 data points) and the presence of recent infection (6 data points) were imputed 

at their median or modal value. These imputed values were only used to generate residual cell 

counts, and not used in statistical comparisons between cases/controls or between subgroups. 
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2.4 Results 

Sample characteristics 

Quality-controlled absolute counts of 14 cell types were available on a sample of 283 

participants comprising 206 depressed cases (143 female, 66 male) and 77 healthy controls (52 

female, 25 male). Case and control groups did not significantly differ in terms of mean age, sex, 

or current use of tobacco or cannabis. As expected, the cases were significantly more 

depressed, anxious and fatigued, and reported significantly more current stress, childhood 

trauma, alcohol use and unemployment, than controls (Table 2-2). By design, the cases were 

clinically heterogeneous, and enriched for moderate-severe depressive symptom scores 

despite current or past treatment with monoaminergic anti-depressant medication. 

 

Case-control differences in peripheral blood cell counts and inflammatory proteins  

We first estimated case-control differences in peripheral blood cell counts and inflammatory 

proteins using multiple univariate comparisons. Serum CRP (Mann-Whitney U: P = 0.003, effect 

size = 0.18) and plasma IL-6 concentrations (P = 0.04, effect size = 0.14), as well as absolute 

counts of neutrophils (P = 0.01, effect size = 0.15), intermediate monocytes (P = 0.02; effect 

size = 0.14) and CD4+ (helper) T cells (P = 0.003, effect size = 0.18), were significantly increased 

in the depressed group (Figure 2-3A). When case-control comparisons were corrected for the 

16 biomarkers tested (FDR < 0.05), CRP and CD4+ T cells remained significantly different 

between the groups. 

 

Exclusion of the 41 participants with ‘minor inflammatory disease’ did not substantially alter 

the data structure: it remained true that the only cell type increased in MDD following FDR 

correction was the CD4+ T cell count (unadjusted P = 0.002), with trends towards increased 

neutrophils (unadjusted P = 0.04) and intermediate monocytes in MDD (unadjusted P = 0.02). 

 

Correlational and principal components analysis of cellular, protein and clinical variables 

We estimated correlations between all immunological, clinical and demographic variables in 

the whole sample (N=283) (Figure 2-3B). Immune cell counts and inflammatory protein 

concentrations were positively correlated with each other, as were questionnaire measures of 

symptom severity and stress. The strongest pair-wise correlations between cell counts and 

clinical variables were between neutrophil count and HAM-D score (Spearman’s r = +0.27, FDR  
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P = 0.00003), and neutrophil count and BDI score (r = +0.25, FDR P = 0.0002).   

Participant characteristics Control 
(median, 
IQR) 

MDD 
(median, 
IQR) 

P-value 
(MWU) 

Effect 
size 
𝒁/√(𝒏) 

n (missing 
data) 

Number of participants N = 77 N = 206 - 
 

  
Age 32.5  

(28.3, 39.1) 
35.3  

(28.7, 42.9) 
0.09 0.10 0 

BMI 23.5  
(21.3, 27.6) 

26.6  
(23.0, 31.2) 

***0.0008 0.20 8 

Hamilton depression rating 0  
(0.0, 1.0) 

17 
(14.0, 20.0) 

***2E-53 0.74 0 

Beck depression inventory  1  
(0.0, 3.0) 

24 
(15.0, 31.2) 

***8E-43 0.70 6 

Chalder fatigue score 11  
(8.0, 11.0) 

19  
(14.0, 23.5) 

***4E-33 0.64 3 

Snaith-Hamilton Pleasure 
Scale  

0 
(0, 0) 

4 
(1, 7) 

***2E-24 0.58 4 

STAI (state subscale) 25  
(22.0, 29.0) 

50  
(38.5, 57.5) 

***2E-39 0.68 3 

STAI (trait subscale) 27  
(24.0, 32.0) 

60  
(52.0, 68.0) 

***1E-48 0.73 3 

Childhood trauma score 35.0  
(33.0, 38.5) 

49.5  
(40.0, 62.0) 

***3E-19 0.51 6 

Recent stressors (z-score) -0.9  
(-0.9, -0.3) 

-0.2  
(-0.4, 0.5) 

***1E-10 0.37 4 

Number of previous 
ineffective antidepressant 
treatments (<75% response) 

- 1.0  
(1.0, 3.0) 

- - 7 

 
Control 
(percent) 

MDD 
(percent) 

P-value 𝝌2 n (missing 
data) 

Female sex 68% 69% 0.8 0.09 0 
Unemployed (including for 
medical reasons) 

0% 23% ***0.0005 21.4 3 

Current tobacco use 11% 12% 0.8 0.09 4 
Current alcohol use 33% 48% *0.03 4.81 5 
Current cannabis use 3% 6% 0.3 1.57 5 
Current antidepressant use - 75% - 

 
5 

Table 2-2 Demographic and clinical characteristics of the study population. 

P-values for comparison of control vs. MDD by Mann-Whitney (MWU, continuous variables) or 𝝌2 

testing (categorical variables): *p<0.05, **p<0.01, and ***p<0.001. MDD, major depressive disorder; 

IQR, interquartile range; BMI, body mass index; STAI, Stait-Trait Anxiety Inventory. Number of missing 

data values for each variable are also shown (total n=283 participants). 
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Figure 2-3 Peripheral immunophenotypes in MDD and control participants. 

(A) Comparison of 14 absolute cell counts, high sensitivity CRP and plasma IL-6 in major depressive 

disorder (MDD, n=206) and matched controls (n=77). Boxplots show median and interquartile range, 

with the outer violin shape showing the full distribution of data. Colour indicates statistical significance 

by Mann Whitney U test (purple P < 0.05; red FDR P < 0.05). FDR p-values are corrected for 16 multiple 

comparisons. See Table 2-3 for underlying data and effects sizes. (B) Spearman correlations between 

immunological, clinical and demographic variables. Only those correlations significant at FDR P < 0.05 

are shown. FDR p-values are corrected for 325 multiple comparisons. Colour indicates the correlation 

coefficient (Spearman’s r); dark blue outlines group together similar variables. 

 

Spearman correlations between immunological and clinical variables

pg
/m

l
m

g/
L

Cell counts                            Soluble proteins
co

un
t /

 m
icr

oli
te

r

n.s.
p<0.05
FDR p<0.05

Significance

A

B

Cell counts

Soluble proteins

Clinical 
variables

RBCs
Plate

lets

Baso
phi

ls

Eosi
nop

hils

Neut
rop

hils

Mono
cyt

es 
(cla

ssi
cal

)

Mono
cyt

es 
(int

erm
edi

ate
)

Mono
cyt

es 
(no

n−c
las

sic
al)

CD4+  T ce
lls

CD8+  T ce
lls

B ce
lls
NKT ce

lls

CD16
hi  NK ce

lls

CD56
hi  NK ce

lls

CRP
Plas

ma IL
−6

Depr
ess

ion
 (H

AM−D
)

Depr
ess

ion
 (B

DI)

Anhe
don

ia (
SHAPS)

Chal
der

 fat
igu

e

Child
hoo

d tr
aum

a (C
TQ)

Rece
nt s

tres
s (L

EQ)

State
 an

xie
ty (

STAI−S
)

Tra
it a

nxi
ety

 (S
TAI−T

)

Age BMI

RBCs
Platelets

Basophils
Eosinophils
Neutrophils

Monocytes (classical)
Monocytes (intermediate)

Monocytes (non−classical)
CD4+ T cells
CD8+ T cells

B cells
NKT cells

CD16hi NK cells
CD56hi NK cells

CRP
Plasma IL−6

Depression (HAM−D)
Depression (BDI)

Anhedonia (SHAPS)
Chalder fatigue

Childhood trauma (CTQ)
Recent stress (LEQ)

State anxiety (STAI−S)
Trait anxiety (STAI−T)

Age
BMI

Demographic 
variables

x106

Plasma IL−6

CRP

control MDD

1

10

100

0.1

1.0

10.0

100.0
Non−classical

monocytes CD4+ T CD8+ T B cells NKT cells CD16(hi) NK CD56(hi) NK

RBCs Platelets Basophils Eosinophils Neutrophils Classical
monocytes

Intermediate
monocytes

control MDD control MDD control MDD control MDD control MDD control MDD control MDD

0.00

0.05

0.10

0.00

0.02

0.04

0.06

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

5

10

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.00

0.25

0.50

0.75

1.00

100

200

300

400

500

1

2

3.5

4.0

4.5

5.0

5.5

0.00

0.05

0.10

0.15

0.20

-1
-0.5
0
0.5
1

x103x103 x103 x103 x103

x103x103x103x103x103x103x103



 

 

70 

 

Table 2-3 Univariate comparison of immunological features in patients with MDD compared to controls.  

P-values for comparison of control (N=77) vs. MDD (N=206) by Mann-Whitney U (MWU) testing. * = FDR 

adjusted P<0.05 following correction for 16 multiple comparisons by Benjamini-Hochberg control of 

false discovery rate. MDD, Major Depressive Disorder; IQR, Interquartile Range; IL-6, interleukin-6. NB. 

Platelets are included as a ‘cell count’, although not strictly a cell type. 

 

 

  

Humoral factors Control 
(median, IQR) 

MDD 
(median, IQR) 

P value 
(MWU) 

Effect size 
Z / Ö n 

High sensitivity CRP 
(mg/L) 

0.7 
(0.4, 1.8) 

1.2 
(0.6, 3.3) 

*0.003 0.18 

Plasma IL-6  
(pg/ml) 

0.512  
(0.346, 0.704) 

0.635  
(0.406, 1.071) 

0.04 0.14 

Absolute cell counts 

Red blood cells  
(x106 /µL) 

4.7 
(4.3, 5.0) 

4.7 
(4.4, 5.0) 

0.7 0.03 

Platelets (/µL) 239  
(201, 270) 

242  
(217, 284) 

0.7 0.08 

Basophils (x103/µL) 0.020  
(0.020, 0.030) 

0.030  
(0.020, 0.030) 

0.2 0.08 

Eosinophils (x103/µL) 0.130  
(0.080, 0.200) 

0.150  
(0.090, 0.250) 

0.09 0.10 

Neutrophils (x103/µL) 3.400  
(2.690, 4.180) 

3.875  
(2.935, 4.957) 

0.01 0.15 

Monocytes, 
classical (x103/µL) 

0.318  
(0.243, 0.405) 

0.348  
(0.281, 0.442) 

0.1 0.10 

Monocytes, 
intermediate (x103/µL) 

0.008  
(0.004, 0.014) 

0.010  
(0.006, 0.015) 

0.02 0.14 

Monocytes,  
non-classical (x103/µL) 

0.037  
(0.023, 0.063) 

0.041  
(0.024, 0.063) 

0.6 0.03 

CD4+ T cells (x103/µL) 0.934  
(0.797, 1.146) 

1.108  
(0.862, 1.333) 

*0.003 0.18 

CD8+ T cells (x103/µL) 0.430  
(0.334, 0.551) 

0.415  
(0.320, 0.548) 

0.5 0.04 

B cells (x103/µL) 0.071  
(0.042, 0.109) 

0.074  
(0.049, 0.121) 

0.3 0.07 

NKT cells (x103/µL) 0.060  
(0.030, 0.100) 

0.043  
(0.026, 0.075) 

0.08 0.11 

CD16hi NK cells (x103/µL) 0.084  
(0.037, 0.136) 

0.099  
(0.051, 0.151) 

0.2 0.08 

CD56hi NK cells (x103/µL) 0.015  
(0.010, 0.020) 

0.014  
(0.010, 0.022) 

0.9 0.01 
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Principal component analysis was used to summarise the correlated data on 14 blood cell 

counts in terms of the first 2 principal components, which together accounted for 29% of the 

total variance-covariance. The first principal component (PC1; 19% total (co)variance) was a 

weighted average of all cell counts, most strongly weighted on myeloid cells (neutrophils, 

basophils and classical monocytes) and CD4+ T cells (Figure 2-4A). The second principal 

component (PC2; 10% total (co)variance) was most strongly weighted on classical and non-

classical monocytes and CD16hi NK cells (Figure 2-5A). Similar results were obtained when PCA 

was repeated with cases with minor inflammatory conditions excluded (Figure 2-5B), and for 

sex-specific subgroups of cases (Figure 2-5C,D).  

 

PC1 scores were positively correlated with serum CRP (r = 0.26, FDR P = 0.00004), and IL-6 (r = 

0.34, FDR P = 0.000004) concentrations. The depressed cases had higher mean PC1 scores than 

controls (Mann Whitney U: P = 0.006, standard effect size = 0.16, Figure 2-4B) and PC1 scores 

were positively correlated with multiple measures of symptom severity including observer-

rated depressive symptoms (HAM-D, r = 0.26, FDR P = 0.00004), self-reported depressive 

symptoms (BDI, r = 0.24, FDR P = 0.0002) and anhedonia (SHAPS, r = 0.23, FDR P = 0.0004), as 

well as BMI (r = 0.24, FDR P = 0.00004)(Figure 2-4B). A scatterplot of each participant’s scores 

on both PCs (Figure 2-4A) indicated that the majority of depressed cases had blood cell profiles 

overlapping those of healthy controls, but there was a subgroup of depressed cases with highly 

positive PC1 scores, indicating distinctively increased numbers of myeloid and CD4+ T cells. 

When participants with minor inflammatory conditions were excluded, PC1 remained 

associated with MDD diagnosis (P = 0.02) and HAM-D symptom severity (Spearman r = 0.23, 

FDR P = 0.002). 
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Figure 2-4 Principal components analysis of cellular immunophenotypes. 

(A) Principal components analysis (PCA) for the 14 absolute cell counts across all participants (n=283). 

On the left panel, each point (MDD in blue; controls in grey) represents one participant’s scores on the 

first two principal components (PC1 and PC2). Red arrows show the loadings of each cell count on the 

first two principal components. Ellipses show the 95% confidence ellipse for each group. Right hand 

panel shows the PCA eigenvector for PC1. (B) Spearman correlations between the first principal 

component of the cellular immunophenotype (PC1), clinical features, demographic features, and 

peripheral proteins (n=283 participants). Only correlations significant at FDR P < 0.05 are shown. FDR p-

values are corrected for 33 multiple comparisons. Colour indicates the correlation coefficient 

(Spearman’s r). The right-hand side boxplot shows the PC1 scores for MDD cases and controls (Mann-

Whitney test, estimate=0.54, effect size=0.16, P = 0.006). Boxplots show median and interquartile range, 

outer violin shape shows the full distribution of data. 
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Figure 2-5 Sensitivity of principal components analysis (PCA) to exclusion of minor inflammatory 

conditions and to sex. 

(A) Absolute counts: cellular PCA for all participants (N=283), corresponding to PCA shown in Figure 

2-4A (B) PCA where participants with minor inflammatory conditions have been excluded (N=242) (C) 

PCA for male participants only (N=88) (D) PCA for female participants only (N=195). 
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Discriminant analysis of immune cell counts most predictive of case/control status 

We used partial least squares (PLS) discriminant analysis (Figure 2-6A) to find the weighted 

function of the 14 immune cell counts that most accurately discriminated between cases and 

controls. This discriminant function accounted for a small but significant proportion (6.3%) of 

the variability in diagnostic status (P = 0.002, permutation test). Absolute cell counts for CD4+ T 

cells, neutrophils and eosinophils were significantly weighted on the discriminant function, 

indicating that a combination of these cell counts was most predictive of case/control status.  

 

Association of immune cell counts with severity of depression in cases 

We next used PLS regression to test the hypothesis that a weighted function of immune cell 

counts predicted variability of depressive symptom severity among the cases. We found that a 

single PLS-R component accounted for a small (7.3%) but significant proportion of the variance 

in depressive symptom scores measured on multiple clinical questionnaires (HAM-D, BDI, 

Chalder Fatigue and SHAPS) (P = 0.001, permutation test). The cell counts significantly 

weighted on the PLS-R component were neutrophils, NKT cells and B cells, indicating that a 

combination of these three cell counts was most strongly related to symptom severity, 

especially as self-reported by the BDI (Figure 2-6B).  
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Figure 2-6 Cellular predictors of MDD status and symptoms severity. 

(A) Partial least squares discriminant analysis (PLS-DA) for the predictors of case-control status. 

Response variable is major depressive disorder (MDD)/control status (purple point), predictor variables 

are the 14 absolute cell counts from Figure 2-3A (green points). Analysis includes all participants 

(n=283). A single component PLS model (Component 1) is significantly predictive of MDD status by 

permutation testing (P = 0.002). Of the 14 cell types, only those with significant weights in the model are 

labelled: neutrophils, eosinophils and CD4+ T cells (bootstrapped Z-score >3, see Methods). (B) Partial 

least squares regression (PLS-R) for the predictors of depressive symptom severity within the MDD 

group. Response variable is the matrix of symptoms scores (shown in purple), predictor variables are the 

14 absolute cell counts (green points). A single component PLS model (Component 1) is significantly 

predictive of MDD severity by permutation testing (P = 0.001). Of the 14 predictor cell types, only those 

with significant weights in the model are labelled: neutrophils, NKT cells and B cells (bootstrapped Z-

score >3, see Methods). Analysis includes MDD cases only (n=199 with full clinical scores available). 

SHAPS = Snaith-Hamilton Pleasure Scale. HAM = Hamilton Depression Rating Scale. 
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“Top-down” analysis of two subgroups of depressed cases 

To make a binary partition of depressed cases into two subgroups based only on their immune 

cell count data, we used Gaussian finite multivariate mixture modelling under the constraint 

that the number of distributions in the mixture must be two. This analysis identified one 

subgroup of N=81 cases (39%) that had increased absolute counts of several immune cells 

(monocytes, granulocytes, CD16hi NK cells, NKT cells, B cells, T cells and platelets) compared to 

a second subgroup of cases (N=125, 61%) (Figure 2-7A,B).  

 

The subgroup of cases with increased immune cell counts also had significantly increased 

inflammatory protein concentrations (CRP, P = 0.03, standard effect size = 0.16; and IL6, P = 

0.02, standard effect size 0.19; Figure 2-7C, Table 2-4), compared to the second subgroup with 

decreased immune cell counts, and hence it was referred to as the inflamed depression 

subgroup. Cases of inflamed depression had significantly higher severity of observer-rated 

depressive symptoms (HAM-D, P = 0.0002, effect size = 0.26) and self-reported depressive 

symptoms (BDI, P = 0.01, effect size = 0.18), compared to the uninflamed depression cases 

(Figure 2-7D, Table 2-4). Inflamed vs uninflamed cases had twice the rate of unemployment 

(33% vs.17%, P = 0.008), were slightly older (median age 38 years vs. 34 years, P = 0.01), and 

more likely to be smokers (19% vs. 7%, P = 0.01). However, the two subgroups did not differ 

significantly on sex, study centre, current antidepressant use, alcohol or cannabis use, reported 

recent infection or minor inflammatory disease, or BMI (Figure 2-8A, Table 2-4). 
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Figure 2-7 Theoretically driven (“top-down”) immune cell stratification into inflamed and uninflamed 

MDD subgroups.  

(A) Gaussian finite mixture modelling of the cellular phenotypes for MDD cases (n=206). Forced two-way 

mixture modelling identified two clustered immunophenotypes, uninflamed depression (UD, n=125 

cases, grey) and inflamed depression (ID, n=81, red). Plot shows the PCA scores for each case on cellular 

PC1 and PC, with cluster membership indicated by colour. (B, C, D) Comparisons between the two 

clusters. Boxplots show median and interquartile range for each cluster, with the outer violin shape 

showing the full distribution of data. Effects of cluster were tested by Mann-Whitney U or (for 

unemployment) 𝝌2, *P<0.05, **P<0.01, ***P<0.01. (B) Absolute cell counts (inputs to clustering). (C) 

Peripheral blood markers: C-reactive protein (CRP), interleukin-6 (IL-6) and triglycerides (not used as 

inputs to clustering). (D) Clinical phenotype of participants in each cluster. Bar annotations indicate 

participant numbers.  

A Forced two-way clustering of MDD 
cellular immunophenotypes by multivariate 
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Figure 2-8 Inflamed and uninflamed MDD subgroups: further clinical and demographic differences. 

(A) Results from forced two-way Gaussian finite mixture modelling of the cellular phenotypes for MDD 

participants as in Figure 2-7. Boxplots show median and interquartile range for each subgroup, with the 

outer violin shape showing the full distribution of data. Effects of subgroup were tested by Mann-

Whitney U, *P<0.05, **P<0.01, ***P<0.01. Bar charts show demographic and clinical variables for each 

subgroup, indicating the percentage of participants in each subgroup; bar annotations indicate numbers 

of participants. The effects of subgroup were tested by 𝝌2. N.s. indicates that the effect of subgroup is 

not significant. SHAPS = Snaith-Hamilton Pleasure Scale, STAI = State-Trait Anxiety Inventory. (B) 

Participant item-level responses for questions corresponding to MDD ‘typicality’. Bar charts indicate the 

percentage of participants in each subgroup giving each response. Effects of subgroup were tested by 

Mann-Whitney U, taking the question responses as an ordinal variable. N.s. indicates not significant. 
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Table 2-4 Clinical, demographic and serological features of the binary (“top-down”) clustering of MDD 

immunophenotypes.  

MDD, major depressive disorder; BMI, body mass index; IL-6, interleukin-6; BDI, Beck Depression 

Inventory; HAM-D, Hamilton Depression Scale; SHAPS, Snaith-Hamilton Pleasure Scale; STAI, State-Trait 

Anxiety Inventory. P-values shown are for Kruskal-Wallis (KW) or 𝝌2 tests of a significant effect of 

subgroup on the variable tested: *P<0.05, **P<0.01. The associated plots are shown in Figure 2-7 and 

Figure 2-8. Data from N=206 participants.  

 

 
Uninflamed 
depression (grey) 

Inflamed  
Depression (red) 

P-value 

N per subgroup (all MDD) 125 (61%) 81 (39%) 
 

Cell counts All cell counts low Increases in all 
granulocytes, all 
monocyte subsets, T cells, 
B cells and CD16hi NK cells 

See Figure 2-7B 

Percentage P-value (𝝌2) 

Female 68% 72% 0.7 

Current antidepressant use 77%  71% 0.5 

Current tobacco use 7% 19% *0.01 

Current alcohol use 51% 42% 0.3 

Current cannabis use 6% 6% 1 

Unemployed 17% 33% **0.008 

Recent infection 34% 30% 0.7 

Minor inflammatory disease 20% 17% 0.7 

Study center - - 0.6 

Median P-value (KW) 

HAM-D 16 19 **0.0002 

BDI 22 26 *0.01 

Chalder fatigue 19 19 0.7 

SHAPS (anhedonia) 3 4.5 0.1 

STAI – state anxiety 48.5 52 0.4 

STAI – trait anxiety 60 60 0.2 

Childhood Trauma Questionnaire 48.5 53 0.2 

Life Events Questionnaire z-score -0.18 -0.18 0.1 

Number of ineffective antidepressants 1 
  

1 0.9 

Age 33.6 38.4 *0.01 

CRP 1 1.5 *0.03 

Plasma IL-6 0.56 0.88 *0.02 

BMI 26.0 26.8 0.2 

Triglycerides 0.95 1.24 **0.002 
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Sensitivity analysis of immune cell binarization of un/inflamed depression 

To test the robustness of this key result – that binarization of all depression cases on cell 

counts identifies immunologically and clinically distinct subgroups of inflamed and uninflamed 

depression – we conducted two sensitivity analyses as follows: 

(i) Robustness to diagnostic eligibility criteria: we included only the subset of 

depression cases with a SCID diagnosis of major depressive disorder (MDD; 

N=139) 

(ii) Robustness to potential confounds in case-control data: we used linear 

regression to mitigate the effects of age, sex, BMI, recent infection history and 

tobacco use before case-control analysis of residualised counts of the 14 

immune cell subsets ( 

(iii) Figure 2-9).  

In both these sensitivity analyses, we replicated identification of a subgroup of inflamed cases 

with more severe depressive symptoms. The first principal component of the residual cell 

counts was very similar to PC1 for the absolute counts ( 

Figure 2-9A). Recapitulating the results for the absolute cell counts, PLS-R of residual cell 

counts identified a single component weighted on neutrophil and NKT cell counts as most 

predictive of depression severity (permutation test, P = 0.01). Binarization of depressed cases 

using residual immune cell counts again identified an inflamed subgroup with higher counts 

across all 14 cell types and increased HAM-D and BDI scores compared to an uninflamed 

subgroup ( 

Figure 2-9B,D).  
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Figure 2-9 Inflamed and uninflamed MDD subgroups: sensitivity analysis using adjusted (‘residual’) cell 

counts. 

(A) Sensitivity analysis: principal components analysis (PCA) of the 14 residual cell counts after linear 

regression of body mass index (BMI), age, sex, current tobacco use and recent infection on each cell 

count (MDD cases only, N=206); see Equation 2.1. Left-hand panel shows the eigenvector for the first 

principal component of the residual cell counts (PC1). Right hand panel shows the results of forced two-

way clustering of the residual cell counts, which identified two immune cell-stratified subgroups of 

cases: uninflamed depression (N=104, grey) and inflamed depression (N=102, red), overlaid on a 

scatterplot of PCA scores. (B) Boxplots show the median and inter-quartile range of residual cell counts 

for participants in each subgroup, with the violin outline showing the full distribution of data.  (C) 
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(CRP), interleukin-6 (IL-6) and triglycerides. Boxplots show median and interquartile range, with the 

outer violin shape showing the full distribution of data. (D) Depression rating scores for inflamed and 

uninflamed cases identified by binarization of residual immune cell counts. HAM-D = Hamilton 

Depression Rating Scale (practitioner-administered), BDI = Beck Depression Inventory (self-report). For 

(B), (C) and (D), subgroups were compared by Mann-Whitney U testing: n.s. not significant, *P<0.05, 

**P<0.01, ***P<0.001. Data from N=206 participants.  

 
“Bottom-up” analysis of immune-cell stratified subgroups of cases 

Next, we used Gaussian finite multivariate mixture modelling and consensus clustering, but 

without prior constraint on the number of distributions in the mixture. This identified 4 

subgroups of cases (Figure 2-10, Figure 2-11,   
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Table 2-5), each characterized by a distinct profile of absolute immune cell counts (Figure 

2-10B, Figure 2-11A). One subgroup comprised 58 cases (28%) with low counts for all cells and 

low CRP and IL-6 levels and was designated uninflamed (S0). Subgroups 2 and 3 had 

significantly increased inflammatory proteins, and significantly increased depressive symptom 

severity scores, compared to S0 (Figure 2-10C,D), but they differed from each other in terms of 

their immune cell profiles. Subgroup 3 had a stronger myeloid bias compared to subgroup 2, 

with significantly higher numbers of classical monocytes, intermediate monocytes, non-

classical monocytes and neutrophils. Subgroup 2 had a lymphoid bias with significantly higher 

numbers of adaptive immune cells (CD4+ T cells, CD8+ T cells and B cells) compared to the 

uninflamed subgroup.  
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Figure 2-10 Data-driven (“bottom-up”) immune cell stratification of MDD patients identifies subgroups 

with differing symptom severity. 

(A) Data-driven Gaussian finite mixture modelling of the cellular phenotypes for MDD cases (n=206) 

identified four discrete clusters (immunophenotypes). Plot shows the PCA scores for each participant on 

cellular PC1 and PC2, with cluster indicated by colour. The arbitrary cluster numbers and colours are 

used consistently throughout this figure to designate each cluster (subgroup 0, grey, n=58 cases; 

subgroup 1, orange, n=10; subgroup 2, blue, n=100; subgroup 3, red, n=38). (B) A radar plot shows the 

characteristic immune cell profile of each cluster of cases. Points represents the median value of the 14 

absolute cell counts for each of the four clusters, rescaled onto a 0 to 1 range (with higher values on the 

outside of the plot) to highlight relative differences between clusters. Cluster differences are significant 

for all counts shown (Kruskal-Wallis P<0.05); red blood cell and CD56hi NK cell counts did not differ 

between the clusters and are not shown. (C, D) Inflammatory proteins, clinical and demographic data 

for each immune cell-stratified subgroup of cases. Cases in subgroup 3 (inflamed, myeloid-biased) had 

A Multivariate mixture modelling of cell counts identifies 4 subgroups 
of MDD participants: subgroup membership overlaid on PC1 and 
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significantly increased observer-rated depressive symptoms (HAM-D, FDR P = 0.004), self-reported 

depressive symptoms (BDI, FDR P = 0.006), and anhedonia (SHAPS, FDR P = 0.006), compared to the 

uninflamed subgroup. Cases in subgroup 2 (inflamed, lymphoid-biased) likewise had significantly 

increased self-reported depressive symptoms (BDI; FDR P = 0.003), anhedonia (SHAPS; FDR P = 0.004), 

and fatigue ratings (CFS; FDR P = 0.02), compared to the uninflamed subgroup. Boxplots show the 

median and inter-quartile range of the relevant variable for each cluster, violin outline shows the full 

distribution of data. The effect of subgroup on each continuous feature is tested by Kruskal-Wallis 

testing. Where P < 0.05 for the overall Kruskal-Wallis test, we performed post-hoc Conover tests to 

identify which pairs of subgroups differ for that feature – for these variables, each subgroup was 

compared to every other subgroup. For unemployment, the bar chart indicates the percentage of 

participants in each subgroup and bar annotations indicate participant numbers. Subgroups were 

compared by 𝝌2 testing, with post-hoc 𝝌2 tests to compare pairs of subgroups. All p-values shown are 

corrected for the 6 pairwise subgroup-subgroup comparisons performed: FDR P *<0.05, **<0.01, and 

***<0.001. Pairwise comparisons which were non-significant following FDR correction are shown in 

Figure 2-11. HAM-D = Hamilton Depression Rating Scale (practitioner-administered), BDI = Beck 

Depression Inventory (self-report), SHAPS = Snaith-Hamilton Pleasure Scale. 
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Figure 2-11 Data-driven (“bottom-up”) immune-cell stratified MDD subgroups: further comparison of 

immunological, clinical and demographic features. 

(A) Gaussian finite mixture modelling of the cellular phenotypes for MDD participants (N=206) identified 
four discrete subgroups (immunophenotypes) as shown in Figure 2-10. The arbitrary subgroup 
numbers and colours are used consistently throughout this figure and Figure 2-10 to designate 
each subgroup (subgroup 0, grey, N=58 participants; subgroup 1, orange, N=10 participants; 
subgroup 2, blue, N=100 participants; subgroup 3, red, N=38 participants). Boxplots show the 
median and inter-quartile range of absolute cell counts in each subgroup, with the violin 
outline showing the full distribution of data. The effect of subgroup on each feature is tested 
by Kruskal-Wallis testing. n.s. indicates the overall effect of subgroup was not significant at 
P<0.05. Where P<0.05 for the overall Kruskal-Wallis test, we performed post-hoc Conover tests 
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for all possible subgroup pairs. P-values were corrected for the 6 pairwise subgroup 
comparisons performed (false discovery rate). Stars indicate adjusted p-values of *<0.05, 
**<0.01, and ***<0.001. Pairwise comparisons which were non-significant following correction are not 
shown. (B) Demographic features of each subgroup. Bar charts indicate the percentage of participants 
in each subgroup. Annotations on the bars indicate the number of participants in each subgroup. N.s 
indicates that the overall effect of subgroup on the feature is not significant by 𝝌2 testing. * indicates 
P<0.05 by 𝝌2 testing for the effect of subgroup. The results of post-hoc comparisons for each pair of 
subgroups are indicated in   



 

 

88 

Table 2-5. (C) Participant item-level responses for questions corresponding to MDD ‘typicality’. Bar 

charts indicate the percentage of participants in each subgroup giving each response. Effects of 

subgroup were tested by Kruskal-Wallis, taking the response as an ordinal variable. As none of the 

effects of subgroup were significant (n.s.) post-hoc comparisons were not performed. (D) Clinical 

features not differing between subgroups (significantly different clinical scores are shown in Figure 

2-10). Boxplots show the median and inter-quartile range of the relevant variable for each subgroup, 

violin outline shows the full distribution of data. The effect of subgroup on each continuous feature is 

tested by Kruskal-Wallis testing. STAI = State-Trait Anxiety Inventory. 

 
Notably, for the data-driven subgroups, there were no significant differences between the 4 

immune cell-stratified subgroups in terms of multiple, potentially confounding demographic 

and clinical factors (Figure 2-11B,D,   
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Table 2-5). Moreover, this four-way, bottom-up stratification of cases was not simply nested 

within the top-down binarization (Table 2-6). 
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Table 2-5 Data-driven (“bottom-up”) immune-cell stratified MDD subgroups: clinical, demographic and 

serological features. 

This corresponds to the subgroups shown in Figure 2-10 and Figure 2-11. MDD, major depressive 

disorder; BMI, body mass index; IL-6, interleukin-6; BDI, Beck Depression Inventory; HAM-D, Hamilton 

Depression Scale; SHAPS, Snaith-Hamilton Pleasure Scale; STAI, State-Trait Anxiety Inventory. P-values 

shown are for Kruskal-Wallis (KW) or 𝝌2 tests of the effect of subgroup on the variable tested: *P<0.05, 

**P<0.01, and ***P<0.001. For continuous variables, the post-hoc comparisons are shown in Figure 

2-10C,D and Figure 2-11A,D. For categorical variables, pairwise subgroup comparisons which are 

significant by post-hoc testing following correction for 6 multiple comparisons at P<0.05 are indicated in 

the table below as follows: (a) different from uninflamed depression subgroup, (b) different from 

subgroup 1, (c) different from subgroup 2, (d) different from subgroup 3. Data from N=206 participants.  
 

Subgroup 0 
(grey) 

Subgroup 1 
(orange) 

Subgroup 2 
(blue) 

Subgroup 3 
(red) 

P-value 

N per cluster 
(all MDD) 

58 (28%) 10 (5%) 100 (49%) 38 (18%) 
 

Cell counts All cell 
counts low 

Increases in non-
classical 
monocytes, 
CD16hi NK cells 
and B cells 

Increases in 
adaptive immune 
cells (B cells and T 
cells), and some 
innate immune 
cells 

Myeloid-dominant immune 
profile. Increase in innate 
and adaptive immune cells, 
with particularly marked 
increases in all monocyte 
subsets and in neutrophils 

See Figure 
2-11A 

Percentage P-value 
(𝝌2) 

Female 71% 70% 69% 68% 1 

Current 
antidepressant 
use 

77% 56% 78% 68% 0.3 

Current 
tobacco use 

4% 10% 14% 19% 0.1 

Current alcohol 
use 

54% 40% 46% 42% 0.6 

Current 
cannabis use 

4% 0% 7% 11% 0.4 

Unemployed 11% (b) 60% (a) 26% 24% **0.004 

Recent 
infection 

35% 10% 29% 43% 0.2 

Minor 
inflammatory 
disease 

18% 10% 19% 24% 0.7 

Study centre - - (d) - - (b) *0.04 

Median P-value 
(KW) 

HAM-D 15 18 18 19.5 **0.009 

BDI 18 21 27 25 **0.002 
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Table 2-6 Correspondence between forced two-way (“top-down”) and data-driven (“bottom-up”) MDD 

subgroups. 

 Forced two-way clustering 
Uninflamed  
depression 

Inflamed  
depression 

Data-driven clustering Subgroup 0 58 0 
Subgroup 1 0 10 
Subgroup 2 67 33 
Subgroup 3 0 38 

  

Chalder fatigue 17 15.5 21 20 **0.005 

SHAPS 
(anhedonia) 

1 3.5 5 4.5 **0.003 

STAI – state 
anxiety 

46 51.5 50 51 0.6 

STAI – trait 
anxiety 

57 57.5 62 61 0.2 

Childhood 
Trauma 
Questionnaire 

46 67.5 50 52.5 0.08 

Life Events 
Questionnaire 
z-score 

-0.18 -0.18 -0.18 0.13 0.4 

Number of 
ineffective 
antidepressants 

1 1 2 1 1 

Age 31.0 42.7 35.3 39.6 *0.02 

CRP 0.60 0.95 1.50 2.45 ***0.0003 

Plasma IL-6 0.53 0.54 0.69 0.89 **0.002 

BMI 25.4 23.7 26.6 31.2 **0.002 

Triglycerides 0.85 0.98 1.17 1.34 **0.006 
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2.5 Discussion 

In this study, we confirmed previous reports of case-control mean differences in CRP and IL-6, 

as well as increased absolute counts of neutrophils, intermediate monocytes, and CD4+ T cells 

in depressed cases, by the conventional approach of multiple univariate testing (Cattaneo et al 

2013, Chamberlain et al 2018, Kohler et al 2017a, Zorrilla et al 2001). We also observed that 

the immunological variables were correlated with each other, and with measures of depressive 

symptom severity, prompting further investigation with multivariate methods. The first 

principal component of the cellular data represented a weighted sum of all cell counts, 

especially myeloid and CD4+ T cells, and was positively correlated with both inflammatory 

protein concentrations and depressive symptom scores. Partial least squares (PLS) identified 

the weighted functions of immune cell counts, especially neutrophil cell counts, that optimally 

discriminated between cases or controls, or were most predictive of variation in depressive 

symptom severity.  

 

These results, in the context of the prior literature, tell us that peripheral blood cell counts are 

plausible as candidate biomarkers of “inflamed depression”, and the most informative cellular 

biomarkers are likely to summarise the status of a system of functionally or developmentally 

related cells, rather than a solitary “smoking gun”. Myeloid cells, especially neutrophils, were 

strongly implicated in these data. Absolute neutrophil numbers were increased in depressed 

cases, positively correlated with depressive symptom scores, and strongly weighted on the PLS 

functions that optimally discriminated cases from controls or predicted symptom severity. 

These findings are compatible with prior emphasis on the role of the innate immune system in 

depression and, more specifically, with reports of case-control differences in total leucocyte 

count, neutrophil count, or neutrophil/lymphocyte ratio (Maes et al 1992c, Mazza et al 2018, 

Surtees et al 2003, Zorrilla et al 2001). The hypercortisolemia observed in some depressed 

cases (Juruena et al 2018) may thus relate to the neutrophilia observed in these data and other 

studies (Jilma et al 1998, Manz & Boettcher 2014). Neutrophils can traffic to the brain and 

neutrophil depletion has been shown to mitigate the effects of inflammation on behaviour in 

animal models (Aguilar-Valles et al 2014). 

 

However, it would be simplistic at this stage to assert that myeloid cells are the only immune 

cells relevant to depression. For example, CD4+ helper T cells were correlated with myeloid cell 

counts, increased in depressed cases, and strongly weighted on the PLS discriminant function. 
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Helper T cells are known to facilitate cytokine production and other inflammatory responses by 

myeloid cells (Cohen et al 2013); and myeloid antigen presenting cells are important for 

activating and polarizing CD4+ T cells towards a terminally differentiated state (Steinman & 

Hemmi 2006). In short, there are two-way interactions between myeloid and lymphoid cells 

that may underlie the observed pattern of depression-related change in multiple cell types. A 

role for adaptive as well as innate immunity in depression is also compatible with 

transcriptional results (Leday et al 2018) that indicate coupled changes in peripheral whole 

blood expression of genes specialized for innate and adaptive immune functions.    

 

These results also tell us that not all cases of depression are equally likely to be associated with 

abnormal immune cell counts, which is compatible with prior expectations of a subgroup of 

cases with “inflamed depression”. We tested this prediction more explicitly using mixture 

modelling to decompose the multivariate distribution of immune cell counts in the depressed 

group into two or more component distributions or subgroups. Initially, we specified this 

analysis to identify two subgroups, which we found were indeed significantly different from 

each other immunologically and clinically. About 40% of depressed cases had increased 

immune cell counts, increased inflammatory proteins, and increased symptom severity scores, 

compared to the remaining 60% of uninflamed cases. These results are consistent with prior 

observations that approximately a third of MDD cases have CRP levels greater than the upper 

limit of the normal range (3 mg/L) and that depression is symptomatically more severe when 

associated with inflammation (Chamberlain et al 2018).  

 

However, there is no prior reason to assume that there should be only one subgroup of 

inflamed depression. When the multivariate mixture analysis was repeated, without 

constraining the algorithm to find a binary solution, we found 4 immune cell-stratified 

subgroups, of which two were associated with equivalently-increased inflammatory proteins 

and depressive symptom scores compared to the uninflamed subgroup. These two inflamed 

subgroups together accounted for about two thirds of cases, suggesting that the proportion of 

depression cases associated with inflammation may be underestimated by the conventional 

cut-off of CRP > 3 mg/L. Intriguingly, the existence of two inflamed subgroups, differentiated 

by their distinctively myeloid- vs lymphoid-biased immune cell profiles, suggests that there 

may be more than one mechanistic pathway to the same syndrome of high depressive 

symptoms and increased inflammatory proteins. For example, some cases of inflamed 



 

 

94 

depression may be caused primarily by proliferation or activation of myeloid cells, innately 

responding by pattern recognition receptors to acute stress or infection, whereas other cases 

may be driven by T helper cells or B cells with a longer-term memory of past exposure to 

stress, infection or other antecedent immune challenges. This concept of multiple species of 

inflamed depression, rather than a monolithic subgroup, could have important implications for 

the design of immunological interventions targeting more fundamentally causal mechanisms, 

rather than downstream biomarkers such as CRP or IL-6.  

 

Case-control designs are vulnerable to the effects of uncontrolled confounding variables and 

there are many demographic, clinical, and lifestyle factors that could have effects on 

peripheral immune biomarkers. This sample of cases was designed to encompasses 

considerable clinical heterogeneity, which is useful for the within-group analysis, but is not 

epidemiologically representative. The sample is relatively large (N=283; 206 cases), and the 

number of cell subsets counted is large (p=14), by comparison to prior immune cell studies of 

MDD; the order of magnitude difference between N and p is desirable for multivariate analysis. 

However, it will require an order of magnitude increase in sample size to fully explore and 

exploit the cellular resolution of contemporary immuno-phenotyping for stratification of 

inflamed depression. 

 

To conclude, we found that depression case status was associated with increased immune cell 

counts, especially neutrophils, CD4+ T cells and monocytes, and that within the depressed 

group, increased neutrophil and B cell counts were associated with increased symptom 

severity. However, not all patients with MDD had evidence of inflammation, and a 

theoretically-driven (“top-down”) binary clustering of MDD patients based on peripheral 

immune cell counts identified an inflamed subgroup of MDD associated with increased 

symptom severity. Our alternative data-driven (“bottom-up”) clustering approach in fact 

identified four immune-cell stratified MDD subgroups, of which two were associated with 

increased cell counts, increased inflammatory proteins, and more severe depression. These 

two inflamed groups differed in their cellular immunophenotypes and lymphoid/myeloid bias, 

suggesting that there may be multiple mechanistically distinct subgroups of inflamed 

depression.   
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Chapter 3: The meningeal and peripheral response to psychological 

stress in mice 

 

3.1 Introduction 

In this chapter, I investigate the effects of stress on the peripheral and meningeal immune 

systems, using a mouse model of chronic stress (chronic social defeat, CSD). As outlined in 

Chapter 1, numerous cell types and pathways have been implicated in the response to chronic 

stress, but beyond one study on γδ T cells (Alves de Lima et al 2020), there has been no 

previous investigation of the effects of stress on the meningeal immune system. The work I 

present here particularly implicates peripheral and meningeal B cells, so I begin with a brief 

overview of B cells, and what is known about their contribution to mood and the stress 

response. 

 

B cells are multifunctional and are best known as the precursors of antibody-producing plasma 

cells, but they also have antibody-independent functions such as antigen presentation to CD4+ 

T cells (Crawford et al 2006); the production of pro-inflammatory cytokines, including IL-6 (Barr 

et al 2010, Menard et al 2007); and the production of monocyte and neutrophil recruiting 

chemokines (Rauch et al 2012, Zouggari et al 2013). In contrast to these pro-inflammatory 

functions, some B cell subsets have immunoregulatory properties, inhibiting pathogenic 

inflammation via IL-10 secretion (Rosser & Mauri 2015). Indeed, recent data show that 

regulatory B cells may control inflammation in autoimmunity and organ transplantation (Blair 

et al 2010, Clatworthy et al 2009). Regulatory B cells have been shown to control innate 

immune cell activation (Iwata et al 2011), recruitment to the brain in the context of stroke (Ren 

et al 2011), and viral encephalitis (Mutnal et al 2014). Their contribution to regulation of innate 

immunity in the meninges, however, is unknown.  

 

B cell immunology and antibody responses have received very little attention in studies of 

depression or the stress response. Some peripheral blood phenotyping studies in human 

depression have shown higher numbers of circulating B cells (Maes et al 1992b) as well as 

reduced IL10-producing regulatory B cells in patients compared with non-depressed controls 

(Ahmetspahic et al 2018, Duggal et al 2016). These studies suggest that depression may be 
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associated with an expanded, dysregulated peripheral B cell compartment with an imbalance 

between immune activating versus regulatory functions. For the B cell response to stress, two 

longitudinal studies of students exposed to exam stress have shown stress to be associated 

with increased absolute or relative counts of peripheral B cells (Maes et al 1999, Turner et al 

2020), although another longitudinal study found exam stress to be associated with decreased 

relative peripheral B cell counts (McGregor et al 2016). These apparent inconsistencies may in 

part reflect the difficulty interpreting relative B cell counts, which are affected not only by 

changes in the number of B cells, but also by changes in the numbers of other immune cells in 

the superset used to define the relative count: notably, the study showing increased relative B 

cell counts post-stress quantified B cells as percentage of total PBMCs (Turner et al 2020) while 

the study showing decreased relative B cells post-stress quantified B cells as percentage of 

lymphocytes (McGregor et al 2016). In terms of B cell function, there is a large body of 

literature showing that chronic stress in humans is associated with poorer antibody responses 

to vaccination (Madison et al 2021). 

 

Observational studies of immune dysfunction in humans with stress and depression are useful, 

but limited in their capacity to deliver information on the immune system beyond the 

peripheral blood. Furthermore, they do not allow inference about the causality of the 

associations observed. To overcome this, we sought to investigate how immune cells, 

particularly B cells, changed in both the periphery and the meninges in the CSD mouse model 

of psychological stress, which produces anxiety and depressive-like behaviour in defeated 

animals (Brachman et al 2015). 

 

3.2 Hypotheses 

We hypothesize that chronic stress leads to changes in both the peripheral and meningeal 

immune cell compartments, including changes in B cell phenotypes and functions. We further 

hypothesize that this immune dysregulation is important for the pathogenesis of stress-related 

behaviours. 
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3.3 Methods 

Experimental animals  

C57BL/6J mice (Jackson Laboratories) or UBC-GFP mice (Jackson Laboratories, strain C57BL/6-

Tg(UBC-GFP)30Scha/J) were bred in-house. CD-1 aggressor mice were obtained from Charles 

River Laboratories as retired breeders. Cd19-/- mice (C57BL/6 background) were bred from 

animals kindly donated by Thomas Tedder (Duke University, NC) (Sato et al 1996, Yoshizaki et 

al 2012). All Cd19-/-, WT, and UBC-GFP animals were born, weaned and housed in the same 

room. Animals were housed in a reversed 12-h light/dark cycle (Lights OFF at 0900) and tested 

during the dark phase. All animals used were male, aged 7-28 weeks. All comparisons used 

groups of male animals matched for median age. Behavioural testing, chronic social defeat and 

tissue analysis for animals were performed using cohorts of animals balanced as far as possible 

for experimental conditions. Animal numbers and ages in each set of cohorts are shown in 

Figure 3-1. 
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Figure 3-1 Modelling stress using chronic social defeat.  

Male wild type (C57BL/6), UBC-GFP or Cd19-/- mice (C57BL/6 background) were co-housed with a large 

aggressive male CD-1 mouse for 11 days, separated by a transparent perforated partition, which was 

removed for 5 minutes each day (chronic social defeat condition, CSD). Control mice were housed with a 

conspecific, separated by a transparent perforated partition which remained in place throughout the 

experiment (homecage condition, HC). The lower panel shows the cohort of animals used for each assay, 

with cohorts balanced as far as possible for strain and condition. Ages indicate animal ages at baseline. 

The timeline shows the timing of social defeats (SD = 5 minutes social defeat), behavioural testing and 

sacrifice for tissue harvesting for each experimental cohort. All defeats and behavioural tests were 

performed in the dark phase. 

Day 1 2 3 4 5 6 7 8 9 10 11 12

SD SD SD SD SD SD SD SD SD SD SD 

Sacrifice 
and tissue 
analysis

Light/dark,
Open field

testing

Light/dark,
Open field 

testing

7 cohorts splenic flow 
cytometry, meningeal 
flow cytometry, plasma 
cytokines and behaviour
Ages: 7-11 weeks
N=13 WT HC
N=14 WT CSD
N=12 Cd19-/- HC
N=14 Cd19-/- CSD

1 cohort meningeal bulk 
microarray
Ages: 11-12 weeks
N=7 WT HC
N=7 WT CSD

4 cohorts splenic 
stimulation assays for 
IL10 production and 
secretion
Ages: 12-13 weeks
N=16 WT/UBC HC
N=16 WT/UBC CSD

1 cohort meningeal bulk 
RNA sequencing
Ages: 7-9 weeks
N=5 WT CSD
N=4 Cd19-/- CSD

1 cohort meningeal 
single cell RNA 
sequencing
Ages: 9-10 weeks
N=8 WT HC
N=4 WT CSD

6 cohorts behaviour only
Ages: 7-28 weeks
N=13 WT CSD
N=15 Cd19-/- CSD

Dominant Stressed
CD-1 mouse C57BL/6 or CD19-/- Light-dark 

box

Open field 
arena

Splenic flow cytometry

Plasma cytokines

Meningeal gene expression
and flow cytometry
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Chronic social defeat (SD) paradigm  

As previously described (Lehmann & Herkenham 2011), chronic social defeat was produced in 

an experimental intruder male mouse by co-housing with a dominant aggressor CD-1 male 

mouse. Animals were cohoused for 12 days. Aggressor CD-1 male mice were single-housed for 

>1 week prior to the experiment. In the SD condition, experimental mice were placed into the 

resident CD-1 mouse’s home cage into which a perforated partition had been placed down the 

middle to separate the pair. The partition was removed for 5 min per day for 11 days allowing 

interaction between the pair. To prevent bite wounds, the lower incisors of CD-1 mice were 

trimmed weekly. In the control HC condition, male experimental animals (C57BL/6 or Cd19-/- 

mice) were housed with another male C57BL/6 or Cd19-/- mouse respectively, separated by a 

perforated partition, for the duration of the experiment. 

 

Behavioural phenotyping  

At baseline and on day 11 following SD or HC housing, mice underwent behavioural testing. On 

day 11, testing was performed approximately 18 h following the day-10 SD session. On testing 

days, mice were allowed 30 min to acclimatize to the testing room; tested in the light-dark box; 

allowed to recover for 30 min; then tested in the novel open field arena. Automated tracking 

of behaviour was recorded as previously described (TopScan; Cleversys (Lehmann et al 2017)). 

The experimenter left the room during testing periods. Light-dark box test was conducted in a 

50 x 25 x 30 cm Plexiglas box divided into dark (one-third of total area) and light compartments 

with an open door. The number of transitions between compartments during 10 min was 

measured. Novel arena open-field testing was performed in a 50 x 50 x 50 cm open-field arena. 

The proportion of time spent in the central 50% of the arena during 15 min was measured. 

 

Tissue processing for flow cytometry and cytokines 

Mice in the SD group were euthanized the morning of day 12 at approximately 17 h following 

the 11th defeat. Matched day-12 HC mice were euthanized simultaneously. Animals were 

weighed, then injected intravenously with 5 µL of anti-CD45-conjugated FITC in 200 µL sterile 

PBS to label circulating intravascular cells. Animals were anaesthetised 5 mins after CD45 

injection using isofluorane, then euthanized by cardiac exsanguination, with blood samples 

collected in EDTA tubes. Animals were immediately perfused with cold PBS. Blood samples 

were centrifuged at >1600 g and the plasma supernatant frozen at -80°C for later cytokine 

analysis. Splenic dissection: the spleen was dissected, weighed, placed in ice-cold Roswell Park 
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Memorial Institute medium containing 10% foetal-calf serum (RPMI + 10% FCS), then passed 

through a 70 μm Nylon mesh (BD Biosciences) using a 1 mL syringe plunger. Erythrocytes were 

lysed in ammonium-chloride-potassium (ACK) buffer (Quality Biological 118-156-101). 

Meningeal dissection: following exsanguination and perfusion, the head was removed and 

placed in cold HBSS. Skin and muscle were cleaned from the skulls, which were kept cold in 

HBSS until meningeal dissections. The meninges (dura, arachnoid and pia) were dissected into 

ice-cold RPMI+10% FCS by removing the meninges from the skull cap, skull base, and brain 

surface with the aid of a dissecting microscope following a previously described protocol 

(Bowyer et al 2012). The meningeal tissue was passed through a 70 μm Nylon mesh (BD 

Biosciences 352350) using a 1 mL syringe plunger.  

 

Meningeal and splenic samples were centrifuged at 350 g, resuspended in 300 µL staining 

volume, then stained with Fixable viability dye eFluor 780 (eBioscience 65-0865-14) for 10 min 

in the dark at room temperature (for live vs. dead cell gating). Samples were washed and the 

pellet resuspended in 20 µL Brilliant Violet stain buffer plus 0.5 µL mouse serum plus (for the 

lymphoid spleen panel only) 0.5 µL of purified rat anti-mouse CD16/32 antibody (BD 553141). 

Fc block was not used for the meningeal or myeloid panels because of the cross- blockade of 

CD64 by anti-CD16/32. Fluorophore-conjugated antibodies to surface antigens (Table 3-1) 

were added, and then PBS, to make a final staining volume of 50 µL. Samples were stained for 

20 min on ice in the dark, washed once, then resuspended in fixative (1% formaldehyde, 0.02% 

sodium azide, and 2% glucose in PBS) prior to flow cytometry acquisition (see below). 

 

Flow cytometry acquisition and manual gating 

Flow cytometry data were collected on a BD Fortessa flow cytometer. For meningeal samples, 

the fixed cell suspension was diluted to > 0.7 mL and run in its entirety. For splenic samples, it 

was not necessary to collect the entire sample as percentage counts (of total live cells) were 

combined with splenic weight to estimate cell counts. Compensation was performed for each 

session using UltraComp eBeads (eBioscience 01-2222-42) conjugated to antibodies used in 

the sample panels except for Red-780/60, where a mixture of live and ethanol-killed 

splenocytes stained with Fixable Viability dye eFluor 780 (eBioscience 65-0865-14) was used as 

a compensation control. Cell subsets were defined by manual gating in FlowJoTM according to 

the gating strategies shown in Figure 3-3 and Figure 3-4. The following meningeal immune 

populations were identified: B cells, CD11b+ DCs, CD11b- DCs, pDCs, Ly6Chi monocytes, 
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CD64+MHCII- macrophages, CD64+MHCII+ macrophages, meningeal microglia-like 

macrophages, neutrophils, NK cells, NKT cells, T cytotoxic and T helper cells. The following 

splenic cell populations were identified: Plasmablasts/plasma cells, IgD- B cells, IgD+ B cells, 

CD9+ B cells, cytotoxic T cells, helper T cells, NK cells, NKT cells, CD11b+ cDCs, CD11b- cDCs, 

pDCs, neutrophils, F4/80+ macrophages, Ly6ChiCD11b- cells and Ly6Chi monoctyes. B220, a well-

validated B cell marker, was used in flow cytometric studies (rather than CD19) so that B cells 

could be identified in both WT and CD19-/- mice, as in the latter, CD19 obviously cannot be 

used to define B cells. 

 

 

Analysis of meningeal count data 

Previous publications have assessed the effects of experimental manipulations by comparing 

cell counts between group as percentages of live CD45+ cells. This method is subject to bias 

because, for example, the manipulation may cause a decrease in one cell type that can falsely 

lead to an apparent increase in another cell type if only relative proportions are compared. 

However, it is difficult to compare absolute cell numbers in the meninges because the 

completeness of dissection will vary from animal to animal, introducing considerable noise. 

Increasing the number of animals in a single experiment to overcome this is stymied by the 

considerable time to dissect, dissociate and stain each meningeal sample. To overcome these 

problems, we performed meningeal dissections on 53 mice, performed in 7 cohorts, balanced 

Table 3-1 Meningeal and splenic immunophenotyping panels. 

Three multi-parameter immunophenotyping panels were used for flow cytometric analysis of 

meningeal and splenic immune cells. The number of antigens targeted per panel is limited by the flow 

cytometer and its setup, so to allow analysis of a greater number of surface antigens, we optimized 

both a lymphoid-focused and a myeloid-focused splenic panel. Only a limited number of cells are 

aquired from the meninges, so only a single flow panel was used for meningeal samples. The 

fluorophore-conjugated antibodies to surface antigens used for each panel are indicated: the row entry 

indicates the surface antigen targeted for that panel, and the column heading indicates the fluorophore 

to which the antibody was conjugated, i.e., in the meningeal panel, a BUV395-conjugated anti-CD45 

antibody was used to assay CD45 expression. LD = live-dead fixable viability stain. See Figure 3-3 and 

Figure 3-4 for the combinations of surface antigens used to identify and quantify particular immune cell 

subsets using these panels. 
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for both strain and condition (as far as possible), to avoid any systematic bias in dissection by 

mouse strain or experimental condition. I personally performed all dissections for which the 

data were pooled for flow cytometry analysis, avoiding any confound by experimenter. Data 

were combined across all cohorts by including cohort as a variable in the models used to 

compare cellular abundance and marker expression (Equations 3.1, 3.3 and 3.4 below).  

 

In multi-parameter flow cytometry, the analytical challenge of comparing multiple cell counts 

across groups is similar to the statistical challenge of analysing read counts in RNA sequencing 

datasets. We thus repurposed an [R] package for analysis of RNA read counts, DESeq2 (Love et 

al 2014) to compare group differences in cell counts using a negative binomial model. The 

problem of differing efficacies of meningeal dissection produces noise in cell count data 

analogous to the problem of different library sizes in RNA sequencing count data. In DEseq2, 

library size correction is used to normalize for differing sequencing depths across samples. The 

size factor used for normalization is calculated for each library as the median ratio of gene 

counts relative to the geometric mean per gene – this is preferable to using total summed 

counts as the library size factor, as summed counts are susceptible to bias from a few highly 

expressed and differentially expressed genes (Anders & Huber 2010). Here, we repurpose the 

DESeq2 median ratio library size correction to account for the effects of differing meningeal 

dissection efficacy while minimizing the influence of differentially abundant cell counts. We 

noted that results were not substantially different if library size correction was not used. The 

linear predictor for the negative binomial model for cell subset i with conditional mean 𝜇!  was 

defined as: 

log(𝜇') = 	𝛽! +	𝛽"𝑐𝑜ℎ𝑜𝑟𝑡 +	𝛽#𝑠𝑡𝑟𝑎𝑖𝑛 +	𝛽$𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝛽%(𝑠𝑡𝑟𝑎𝑖𝑛 × 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) [𝐸𝑞. 3.1]	 

Volcano plots show the effects of the relevant contrast (e.g., SD vs. HC or Cd19-/- vs. WT).  

 

Analysis of splenic cell count data 

Immune cell subset data is often analysed in terms of proportions of CD45+ cells. However, 

this approach is subject to significant bias - an apparent decrease in one cell subset may simply 

reflect an increase in another cell subset. It is thus preferable to analyse absolute counts. As it 

is not practical to immunophenotype an entire spleen for each animal, we combined 

proportional flow counts (gated as per Figure 3-4) with splenic mass to obtain estimated 

absolute cell counts as follows: 

𝑐'( = 22.9	 × 10& ×𝑚' × 𝑝'( [𝐸𝑞. 3.2] 
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where c = estimated absolute count, i = mouse identity, j = cell subtype, m = splenic mass (in 

milligrams) and pij = the proportion of live cells of cell subset j in mouse i's splenic cells, derived 

from flow cytometry data. The constant multiplier 22.9 x 105 was taken from a previous report 

of the number of cellular nuclei per milligram of mouse spleen (Mizen & Petermann 1952). 

Splenic cell counts for N=40 mice were then compared using package DEseq2 (Love et al 2014) 

as for meningeal cell counts (Equation 3.1 above), but without the need for library size 

correction because splenic weight - unlike total meningeal weight - can be measured, so a 

correction for estimated completeness of dissection is not required. Automated clustering was 

not performed for splenic flow cytometry data as surface marker detection was split across 

two multicolour panels (lymphoid and myeloid panels), which precludes joint clustering 

analysis across all markers.  

 

Automated clustering analysis of immunophenotyping data and comparison of per-cluster 

median fluorescence intensity  

We confirmed our findings from manually gated meningeal flow cytometry data in a parallel, 

automated analysis of this data, modified from a workflow for analysis of mass cytometry data, 

CyTOF workflow (Nowicka et al 2017). In brief, we used [R] packages flowSOM (Van Gassen et 

al 2015) and ConsensusClusterPlus to perform clustering of meningeal extravascular immune 

cells (Wilkerson & Hayes 2010). See Figure 3-2 and its legend for a schematic of the approach 

and further details of data analysis. Following clustering, cells were further downsampled to 

1000 cells per sample to produce a combined-sample tSNE representation using [R] Rtnse 

(Krijthe 2015), onto which manual and automated clustering labels were overlaid for 

visualization. 

 

Statistics: functional marker expression 

Expression of functional markers was analysed from flow cytometry data in two ways. Firstly, 

for candidate functional markers of interest in a given cell subset (e.g., % CD69+ of B cells), the 

percent of cells positive for a given marker were manually gated. Because of non-normality of 

the data, this was followed by using rank-based linear models (using [R] package Rfit (Kloke & 

McKean 2012)) to estimate the effect of animal cohort and condition or strain on these 

percentages. Secondly, the effects of strain or stress on biexponentially transformed median 

fluorescence intensity (MFI) of functional markers in each cell subset was tested by linear 
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modelling. For the effects of condition (tested in wild type animals only, SD vs. HC), the model 

used was: 

𝑀𝐹𝐼	(𝑜𝑟	%	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 	𝛽! +	𝛽"𝑐𝑜ℎ𝑜𝑟𝑡 +	𝛽$𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 	𝜀 [𝐸𝑞. 3.3] 

For the effects of strain (tested in homecage animals only, wildtype vs. Cd19-/-), the model used 

was: 

𝑀𝐹𝐼	(𝑜𝑟	%	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 	𝛽! +	𝛽"𝑐𝑜ℎ𝑜𝑟𝑡 +	𝛽#𝑠𝑡𝑟𝑎𝑖𝑛 + 	𝜀 [𝐸𝑞. 3.4] 

See Figure 3-2 for a schematic of the overall analytical approach. For both approaches, p-

values for the effect of strain or condition were FDR-corrected across all markers tested.  
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Figure 3-2 Schematic summarizing manual and automated analysis of meningeal flow cytometry data.  

We used complementary manual (blue boxes) and automatic (red boxes) data analysis strategies. 

Manual gating was used to define absolute total meningeal counts, and to quantify the percentage of 

cells within a subset positive for functional markers, e.g., CD69. Automated clustering was used to 

detect clusters of cells, their relative counts, and median functional marker expression (MFI) in different 

experimental conditions. To perform automated gating, FlowJo workspaces, files, and manual gates (for 

comparison) were imported and manipulated using [R] flowWorkspace (Finak & Jiang 2018) and 

flowCore (Hahne et al 2009). Manually gated extravascular live singlet leucocytes (i.e., intravenous 

CD45-negative microglia-like macrophages and leucocytes) were selected for further automated 

processing (see gating strategy in Figure 3-3). [R] flowAI::flow_auto_qc was used to remove signal 

acquisition and dynamic range abnormalities to generate quality-controlled datasets (Monaco et al 

2016). Prior to clustering, each of the 53 meningeal datasets were then downsampled to either the total 

number of extravascular immune cells or 20,000 extravascular immune cells, whichever was greater. 

Following downsampling, there was no overrepresentation of any animal group in the combined dataset 

of all cells (linear model was non-significant for the effect of strain and condition on the number of cells 

included). Downsampled concatenated cells from all 53 animals were automatically clustered into k = 

1:20 clusters using [R] FlowSOM::BuildSOM (Van Gassen et al 2015) and [R] ConsensusClusterPlus with a 

Euclidean disease metric (Wilkerson & Hayes 2010) based on the following markers:  Ly6G, CD11b, 

CX3CR1, Ly6C, MHCII, CD45, CD64, B220, CD11c, CD3, CD4, NK1.1. Clustering solutions were manually 

inspected and k = 18 was chosen for the best agreement with the granularity of manually gated cell 

subsets. The automated clusters generated were manually annotated by inspection of lineage marker 

expression in each cluster. 

 

Flow 
cytometry 

data

Manual gating of 
cellular subsets and 
marker-positivity in 

flowJo
Compensation and 

selection of live singlet 
leucocytes in flowJo

Preprocessing in 
[R] with flowCore

and flowAI

Functional markers: gated % positive cells
Rank-based linear model

Downsampling and 
automated clustering 

with [R] flowSOM

Relative cell counts
DEseq2: negative binomial GLM

Functional markers: median expression per cluster
Linear model

Absolute cell counts:
DEseq2 analysis:

Negative binomial GLM
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Singlets (rough) Cells (rough) Time Singlets Cells Live 

Extra-vascular 

Leucocytes 

DCs pDCs CD11b+ 
cDCs 

CD11b- 
cDCs 

B cells CD69+ 

Macrophages 

CD64+MHCII-  
macrophages 

CD64+MHCII+  
macrophages 

NK NKT 

Lymphoid 

T
helper

 

T
cytotoxic

 

cDCs 

Neutrophils 

Ly6Chi monocytes 

Microglia-like 
macrophages 

CD45(hi) 

Figure 3-3 Meningeal flow cytometry gating strategy. 

Gating strategy used to identify live, extravascular meningeal immune cells. Injection of intravenous 

labelled CD45-FITC was used to identify and exclude intravascular immune cells. The ‘Time’ gate was 

used to exclude low quality cells at the beginning and end of a flow cytometry run. Key cell types were 

identified as follows:  

- Microglia-like macrophages: Live intravenous-CD45- CD45loCD11bint 

- pDCs: Live intravenous-CD45- CD45int/hiCD11chiMHCIIhiB220int/hiCD11bloLy6Chi 

- cDCs: Live intravenous-CD45- CD45int/hiCD11chiB220lo 

- Neutrophils: Live intravenous-CD45- CD45int/hiLy6GhiLy6Cint 

- B cells: Live intravenous-CD45- CD45int/hiB220+ 

- Macrophages: Live intravenous-CD45- CD45int/hiB220-CD11b+CD64int/hi 

- NK cells: Live intravenous-CD45- CD45int/hiB220-CD3-NK1p1+ 

- NKT cells: Live intravenous-CD45- CD45int/hiB220-CD3+NK1p1+ 

- Helper T: Live intravenous-CD45- CD45hiB220- NK1p1-CD3+CD4+ 

- Cytotoxic T: Live intravenous-CD45- CD45hiB220- NK1p1-CD3+CD4- 
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A Splenic lymphoid panel gating strategy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B Splenic myeloid panel gating strategy 
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Figure 3-4 Splenic flow cytometry gating strategies  

Gating strategies used to identify splenic immune cells using lymphoid-focused (A) and myeloid-focused 

(B) flow cytometry panels. The ‘Time’ gate was used to exclude low quality cells at the beginning and 

end of a flow cytometry run. Key cell types were identified as follows:  

- Plasmablasts/plasma cells: Live CD11b- CD138+FSCint/hi 

- B cells: Live CD11b-CD3-MHCII-NK1p1-B220+ 

- NKT cells: Live CD11b-CD3+IgD-NK1p1+ 

- NK cells: Live CD11b-CD3-MHCII-NK1p1+ 

- Helper T cells: Live CD11b-CD3+IgD-NK1p1-CD4+ 

- Cytotoxic T cells: Live CD11b-CD3+IgD-NK1p1-CD4- 

- Neutrophils: Live Ly6ChiLy6Cint 

- Classical dendritic cells (cDCs): Live CD11chiMHCII+B220- 

- Plasmacytoid dendritic cells (pDCs): Live CD11cintB220+CD11bloLy6C+ 

- F4/80+ macrophages: Live B220- Ly6Glo/intLy6Clo/intF4/80+ 

- Inflammatory monocytes: Live B220- Ly6Glo/intLy6Clo/intF4/80-Ly6C+CD11b+ 

- Ly6C-CD11b+ monocytes: Live B220- Ly6Glo/intLy6Clo/intF4/80-Ly6C-CD11b+ 
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Plasma cytokine data 

Blood samples were acquired from mice by cardiac puncture at the time of sacrifice on day 12 

of the chronic social defeat protocol. Samples were collected into EDTA tubes, centrifuged at 

>1600g, and stored at -80 degrees. At a later date, samples were thawed and the 53 samples 

(each in duplicate) were split across two plates, balanced for strain and condition. A logistic 

regression with the following link function did not show any significant relationship between 

plate, y, and any aspect of experimental design: 

g(𝐸(𝑦)) = 	𝛽! +	𝛽"𝑐𝑜ℎ𝑜𝑟𝑡+	𝛽#𝑠𝑡𝑟𝑎𝑖𝑛 +	𝛽$𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 [𝐸𝑞. 3.5] 

Plasma cytokines were analyzed in duplicate according to manufacturer's instructions on a 

MAGPIXTM using Bio-Plex ProTM Mouse Cytokine 23-plex Assay M60009RDPD, MAGPIXTM 

Calibration Kit MPX-CAL-K25 and Performance Validation Kit MPX-PVER-K25. Data were 

captured on the following cytokines: CCL11 (Eotaxin), G-CSF, GM-CSF, IFN-γ, IL-1⍺, IL-1β, IL-2, 

IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17A, CXCL1 (KC), CCL2 (MCP-1, 

MCAF), CCL3 (MIP-1⍺), CCL4 (MIP-1β), CCL5 (RANTES) and TNF-⍺. Values below the lower limit 

of detection were imputed at half the lower limit of detection, and cytokines for which >10% of 

values were below the lower limit of detection were removed from analysis. For cytokines 

included in analysis (CCL11, G-CSF, IL-1⍺, IL-6, IL-12 (p40), IL-17A, CXCL1 (KC), CCL3 (MIP-1⍺), 

CCL5 (RANTES) and TNF-⍺), group differences were compared by rank-based linear model 

using [R] package Rfit (Kloke & McKean 2012) to account for the non-parametric distribution of 

data and to minimise the bias from imputation of values below the lower limit of detection. P-

values were adjusted for multiple comparisons (Benjamini-Hochberg method) across the 10 

cytokines tested.  

 

Intracellular IL-10 

Spleens from UBC-GFP (cohort 1) or WT (cohorts 2-4) animals were first weighed, then mashed 

through a 70 μm cell strainer with the rubber end of a 3 mL syringe into a single cell suspension 

and pelleted. Red blood cell lysis with ACK buffer was performed for 5 min at room 

temperature, and the reaction stopped by diluting with HBSS + 0.1% BSA. Cells were pelleted, 

transferred through a 35 μm cell strainer, and live cells were counted on a hemocytometer via 

Trypan Blue exclusion. Stimulation for IL-10 production and intracellular IL-10 staining were 

performed similarly to as described elsewhere (Matsushita & Tedder 2011). Briefly, cells were 

diluted in RPMI-based medium, plated with equal density in triplicate (two stimulated wells 

and a negative control) before stimulation with LPS (10 mg/mL), PMA (10 ng/mL), ionomycin (1 
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μg/mL), and monensin (2 μM) for 5 h, then stained with antibodies to CD45, CD3, CD11b, 

CD19, CD9 and IL-10 prior to acquisition of flow cytometry data. B cells and B cell %IL-10 

positivity were manually gated (B cells defined as live CD45+CD11b-CD3-CD19+ cells). The effect 

of stress on B cell IL-10 production was tested by linear model as follows: 

𝐼𝐿10	%	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 	𝛽! +	𝛽"𝑐𝑜ℎ𝑜𝑟𝑡 +	𝛽#𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 	𝜀 [𝐸𝑞. 3.6] 

Supernatants from these experiments were tested in duplicate or triplicate for IL-10 protein 

levels by ELISA (mouse IL-10 DuoSet #DY417), performed as per manufacturer’s instructions, 

with lower limit of detection 31.2 pg/ml.  

 

IL-10 stimulation conditions were as follows: 

Stimulation medium composition (cells plated in triplicate): 
Constituent Product number Final concentration 
RPMI+ Glutamax                   GIBCO # 61870-036  
Foetal Bovine Serum             Sigma # F4135   10% 
Sodium Pyruvate          GIBCO # 

11360                              
1mM 

Hepes Buffer Corning/Cellgro # 25-060-
CI 

10 mM 

MEM Nonessential amino 
acids                     

Corning/Cellgro #25-025-CI 1x 

Penicillin-Streptomycin                        Gibco # 15140-148 Penicillin: 100U/ml, 
Streptomycin: 100 
μg/ml 

Beta-Mercaptoethanol                             Sigma # M-7522        50 uM 
  
Compounds used for stimulation: 

Constituent Product number Final concentration 
Phorbol-12-Myristate 13-Acetate 
(PMA) 

Alexis # 445-004-M001    10 ng/ml 

Ionomycin Sigma # I0634          1 μg/ml 
Monesin  Sigma # M5273        2 μM 
LPS Sigma # L2880                  10 μg/ml 
Brefeldin A Sigma # B6542        10 μg/ml 

Positive stimulation wells (2 per mouse) contained PMA + Ionomycin + LPS + Monesin + 

Brefeldin A. Unstimulated wells contained (1 per mouse) contained Monesin + Brefeldin A. 

 
Meningeal microarray data 

Meninges were dissected as described above for flow cytometry, then centrifuged and stored 

in Trizol. Samples were triturated using syringe needles, then total RNA was extracted using a 

Qiagen miRNeasy Mini kit (Cat:217004). Labelled probes were run on an Affymetrix GeneChip™ 
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Mouse Gene 2.0 ST Array (Cat:902118) using protocols and processes recommended by the 

GeneChip manufacturer (Affymetrix, Inc). Data were RMA-normalized and limma (Ritchie et al 

2015) was used to test for differential expression of genes in SD vs. HC conditions. Pre-ranked 

gene set enrichment analysis (ranking by t-statistic) using [R] clusterProfiler (Yu et al 2012) was 

performed to test for enrichment of Hallmark pathways (Liberzon et al 2015) in stress, with 

Benjamini-Hochberg FDR-correction of p-values across all tested pathways. xCell (Aran et al 

2017) was used to estimate meningeal cell type composition in each sample, and estimated 

cell proportions in each condition were compared using Mann-Whitney U tests. 

 

Debatching variables for the effect of cohort 

As to be expected, there were substantial effects of mouse cohort on immunological and 

behavioural endpoints. To allow visualization of group differences, we generated debatched 

values for the following features: plasma cytokine levels; meningeal percentage positive and 

absolute counts; splenic percentage positive and absolute counts; and behavioural outcomes. 

Features were debatched for linear batch effects using limma’s removeBatchEffect function 

(Ritchie et al 2015). As the original data were not normal, they were transformed prior to 

debatching to improve normality: count data were transformed using 

DESeq2::rlogTransformation; all other data were Box-Cox transformed using [R] package caret 

(Kuhn 2008). Following debatching, data were inverse transformed to return the data to their 

original scales. These debatched data were used for graphical representation and for 

correlating immunophenotypes with behaviour but were not used for statistical analysis of 

group differences (for group statistical analyses, cohort was simply included as a factor in the 

statistical models as described above). 

 

Meningeal bulk RNA sequencing data  

Meningeal samples were prepared as described above for flow cytometry. Care was taken to 

remove intact sheets of meningeal tissue, which were transferred to RNAlater and stored at -

80°C. Samples were homogenized using a Precellys 24TM. Total RNA was extracted using an 

RNeasy Plus Micro Kit (Qiagen, Cat:74023) and RNA quantity and integrity was assessed by 

Bioanalyzer (Agilent Inc). 500 ng of total RNA was used in conjunction with the TruSeq® 

Stranded Total RNA Library Prep kit (Illumina Inc, Cat:20020597). Library quality was checked 

by Bioanalyzer and quantitated by Qubit (ThermoFisher Scientific Inc). Equimolar quantities 

from each sample library were pooled and run on a Highoutput Next-Seq 550 kit. We used 
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Salmon, run in mapping-based mode (Patro et al 2017), to generate per-gene counts, initially 

aligning to the GENCODE transcriptome, taking advantage of transcript-resolution estimates to 

improve differential gene expression analysis (Soneson et al 2015). Preranked gene set 

enrichment analysis (ranking by DESeq2 Wald statistic) using [R] clusterProfiler v3.14.0 (Yu et al 

2012) was performed to test for enrichment of Hallmark pathways (msigdbr v7.0.1) (Liberzon 

et al 2015) in stress, with FDR-correction of p-values across all tested pathways. 

 

Meningeal single cell RNA sequencing  

Droplet-based single cell RNA sequencing (10x Genomics’ Chromium v2 platform) was 

performed on meningeal cells from 2 groups of HC mice and 1 group of SD mice, with each 

group consisting of cells pooled from 4 mice. Live, nucleated, singlet cells (DAPI-DRAQ5+) were 

sorted on a BD FACS Aria Fusion into HBSS + 10% FBS prior to droplet encapsulation. Transcript 

data were acquired with an Illumina NextSeq 550 sequencer and single cell feature counts 

were generated using the standard Cellranger V2 pipeline. Single cell RNA sequencing data 

were then processed following the strategy shown in Figure 3-5. In brief, to obtain N = 6694 

quality-controlled single cell transcriptomes, we performed the following steps. We defined 

cell-containing vs. empty droplets (cell calling) using DropletUtils::emptyDrops (Lun et al 2019). 

We then excluded cells that were outliers based on a high number of mitochondrial reads 

(>8.3% of total reads), which indicates likely damaged/dying cells, and excluded outlier cells 

with a very high or low number of detected genes per cell (range for included cells = 174 – 

4548). We removed from analysis any genes which were not expressed with >1 count in >1 

cell. Droplets likely containing more than one cell were identified and removed using the 

doublet detection method scrublet (Wolock et al 2019): doublet rates in the three samples 

were estimated as 6.9%, 5.1% and 3.4%. Gene expression libraries were normalised using 

deconvolution-based normalization via scran (Lun et al 2016); highly-variable genes (3599 

genes) were selected by choosing those genes where biological variation across samples was > 

0 (using scran::decomposeVar). Although all samples were run on the same 10X chip on the 

same day, there can be systematic differences between data from different 10X lanes. To 

combine data from the three lanes while correcting for any batch effects, we used mutual 

nearest neighbour (MNN) batch correction via batchelor::multiBatchNorm and fastMNN 

(Haghverdi et al 2018). To identify groups of similar cells, i.e., cell subsets, we performed 

clustering of the MNN-corrected gene expression PCA components across all single cells using 

the leidenalg clustering algorithm (Traag et al 2019). The cellular identity of each cluster was 
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manually annotated by comparing marker genes expressed in each cluster with those in 

existing single cell datasets. Two B cell clusters were identified. Differential gene expression 

between SD and HC cells within B cell clusters was performed as follows: read counts were 

renormalized within the cluster; genes differentially expressed between SD and HC in 

pseudobulk samples of empty droplets (i.e., likely representing ambient RNA) were removed as 

described elsewhere (Ernst et al 2019); genes expressed in ≤15% of cells in the cluster were 

removed; then gene expression in SD vs. HC cells was compared using a Mann-Whitney U test, 

with Benjamini-Hochberg FDR correction of p-values across all tested genes. To identify 

differentially up- and down-regulated pathways, pre-ranked gene set enrichment analysis was 

performed using clusterProfiler (Yu et al 2012) with genes ranked by -log10 (Mann-Whitney U 

test P-value) * sign(LFC). The cell cycle stage of each cell was estimated using scran::cyclone 

(Scialdone et al 2015). 

 

Cellular stress-related genes 

A list of cellular stress-related genes was generated by choosing the top 20 genes found to be 

upregulated in murine single cells following incubation at 37°C for 60 minutes (Adam et al 

2017) which were also expressed in our dataset. The expression of these genes in each single 

cell was summarized using Seurat::AddModuleScore (Stuart et al 2019). Module scores were 

compared between HC and SD animals using a Mann Whitney U test. 
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Figure 3-5 Meningeal single cell RNA sequencing data processing pipeline. 

Three droplet-based single cell RNA sequencing libraries (10X Chromium), each including data from n=4 

mice, were prepared and analysed as per the schematic. At each stage of processing, the numbers given 

for each library (HC1, HC2 and CSD) indicate the number of cellular transcriptomes passing the quality 

control (QC) filter indicated. See text for more details of analysis. UMI, unique molecular identifier 

(molecular barcode); MNN, mutual nearest neighbour. 
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3.4 Results 

Social defeat (SD) stress leads to dysregulation of the peripheral B cell compartment occurs 

in mice  

We performed chronic social defeat stress in wild type mice and collected tissue for flow 

cytometric analysis (Figure 3-1). As expected, on day 11 following the onset of the SD protocol, 

mice showed a behavioural phenotype consistent with anxiety and decreased motivation to 

investigate, with a reduction in the number of crosses to the light area in a light-dark box, and 

a reduction in the distance travelled in a novel open-field arena, in the defeated group 

compared to home cage controls (HC) (Figure 3-6A). 

 

Flow cytometry showed that on day 12 following the onset of the SD protocol, there was a 

significant increase in splenic neutrophils, Ly6Chi monocytes, and F4/80hi macrophages 

compared to controls (Figure 3-6B), indicating innate immune system activation. Peripheral 

blood cytokines in SD animals were similar to those in controls, except for a significant increase 

in G-CSF, a neutrophil-mobilising cytokine (Figure 3-6C). Additionally, splenic 

plasmablasts/plasma cells (terminally differentiated B cells) were significantly increased in SD 

mice (Figure 3-6B), as were splenic CD9+ B cells (Figure 3-6D). CD9 has been described as a 

marker of IL-10-producing regulatory B cells (Sun et al 2015) and IL-10 secretion in B cells is 

enhanced by activating stimuli (Mauri et al 2003, Yoshizaki et al 2012).  We therefore directly 

assessed B cell IL-10 production following stimulation ex vivo. We confirmed a significant 

increase in the percentage of IL-10+ regulatory B cells in the SD group, both at baseline and 

following ex vivo stimulation, and an associated increase in secreted IL-10 in the supernatants 

from these stimulations (Figure 3-6E,F). It was striking that the effect of stress on intracellular 

IL-10 was detectable without stimulation, suggesting that even without a classical immune 

stimulus, stress can alter B cell cytokine production. There was also evidence of B cell 

activation more broadly, with increased expression of CD25 on B cells in SD animals (Figure 

3-6G,H). There were no differences in T cell number or activation in the SD group compared 

with controls (Figure 3-6B,H). Together, these data demonstrate that social stress in rodents is 

associated with abnormalities in the peripheral B cell compartment, with evidence of increased 

activation and an expansion of both IL-10-producing B cells and plasmablasts/plasma cells. 
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Figure 3-6 Dysregulation of the peripheral B cell compartment in mice subjected to chronic stress. 

(A) Effects of chronic stress (11 days) on behaviour (median ±IQR). N = 13 control mice (HC = home 

cage), N = 14 social defeat (SD). (B) Volcano plot showing the effects of SD on splenic immune cell 

subsets. Results of a negative binomial model, FDR P < 0.05; each datapoint summarizes the effect of SD 

for that cell type across all mice, with the x-axis indicating the magnitude of change in absolute cell 

counts and the y-axis indicating the statistical significance of the change. The 14 subsets tested were 

IgD+ and IgD- B cells; NK cells; NKT cells; plasmablasts/plasma cells; helper and cytotoxic T cells; 
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plasmacytoid dendritic cells (pDCs); CD11b+ and CD11b- classical DCs (cDCs); neutrophils; Ly6Chi 

monocytes, Ly6ChiCD11b- myeloid cells; and F4/80+ macrophages. N = 40 mice in overall model: count ~ 

animal cohort + strain + condition + strain:condition (see Methods). Boxplots show absolute splenic cell 

counts corresponding to the data in the volcano plot. (C) Effects of stress on peripheral blood cytokines. 

Boxplots show the median and interquartile ranges for serum cytokines in each group (N = 13 

homecage, N = 14 chronic stress). Groups were compared using rank-based linear models for the effects 

of experimental condition and mouse cohort with FDR-correction across the 10 tested cytokines. G-CSF 

levels were significantly increased (FDR P = 0.004) in stressed compared to homecage mice.  There was a 

trend towards increased IL-6 (uncorrected P = 0.1) and IL-17A (uncorrected P = 0.1) in stress. (D) Effects 

of SD on splenic B cell subsets (median ± IQR; Mann-Whitney U test, **P < 0.01); N = 10 HC, N = 11 SD. 

(E) Stimulation of splenocytes from stressed and homecage animals by LPS, PMA and ionomycin: 

supernatant IL-10 measured by ELISA. IL-10 values were calculated based on a sigmoidal 4-parameter 

standard curve fit using Prism software. Linear models (log IL-10 ~ condition + batch) for stimulated 

samples showed an effect of stress on supernatant IL-10 (P=0.01). IL-10 was not detectable in the 

supernatant from unstimulated PBMCs. Each datapoint represents one animal, showing the average of 

2-3 technical replicates. Data are debatched for the effect of cohort for visualization. Data from n=12 SD 

and n=11 HC animals assayed across 3 cohorts. (F) Effects of stress on regulatory B cells and T cells. 

Splenocytes were either stimulated with lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate 

(PMA) and ionomycin (I) or unstimulated for 5 h. Linear models (IL-10 ~ condition + batch) for both 

stimulated and unstimulated samples showed an effect of stress on B cell intracellular IL-10 in both 

stimulated (P=0.004) and unstimulated (P=0.002) cells (n=16 CSD, n=16 HC animals) assayed across 4 

cohorts. The effect of stress on intracellular T cell IL-10 was not significant in either stimulated (p=0.3) or 

unstimulated (p=0.96) cells (n=12 CSD, n=11 HC animals). Each datapoint corresponds to one animal 

and is the average of 2-3 technical replicates for that animal; **P<0.05. Datapoints are debatched for 

the effect of cohort for visualization, but statistics are performed on raw data. (G) Effects of SD on 

splenic cell subset functional marker expression, measured by percent positivity. Groups were compared 

using rank-based linear models for the effects of experimental condition and mouse cohort followed by 

FDR correction (for 27 marker percentages tested, only 3 comparisons shown here). (H) Effects of 

chronic stress on splenic cell subset functional marker expression, measured by median fluorescence 

intensity (MFI). Tile plots correspond to the two flow cytometry panels run for each mouse spleen. Tile 

colours indicate the linear model estimates (coefficients) for the effect of stress on MFI. Linear model 

includes condition (SD vs. HC) and animal cohort. Size of tile indicates significance following FDR 

adjustment for multiple comparisons in each panel (56 comparisons for myeloid panel, 35 comparisons 

for lymphoid panel). N = 10 HC, N = 11 SD. All replicates are biological.  
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Psychosocial stress is associated with an increase in meningeal monocytes but a reduction in 

meningeal B lymphocytes 

In addition to immune profiling in the spleen, we also investigated the effects of social stress 

on meningeal immune cells. Analysis of healthy mouse meninges by flow cytometry followed 

by either manual (Figure 3-7A,B) or automated gating (Figure 3-7C,D) of cell populations 

revealed heterogeneous immune cell populations, including innate and adaptive immune cells, 

as other investigators have described previously (Ajami et al 2018, Korin et al 2017). To ensure 

that intravascular immune cells were excluded, a CD45 antibody was administered 

immediately prior to tissue retrieval. B cells represented a major component of healthy mouse 

meninges, comprising ~25% of all immune cells (Figure 3-7B), consistent with recently 

published data (Brioschi et al 2021). Following SD, only two meningeal immune populations 

showed significant changes from their counts in homeostasis: B cells, which were significantly 

decreased, and Ly6Chi monocytes, which were increased, with convergent results from the 

analysis of manually gated absolute counts (Figure 3-7E) and the analysis of automatically 

gated relative (proportional) cell counts (Figure 3-7F). There were trends towards increases in 

neutrophils and macrophages but no significant change in meningeal T cell counts (Figure 

3-7E,F). In support of this finding, analysis of cell counts estimated by computational 

deconvolution of bulk meningeal transcriptomic data (microarray data) confirmed a reduction 

in naïve B cells and an increase in monocytes and neutrophils in meninges obtained from 

stressed mice (Figure 3-8A).  

 

Of the residual meningeal B cells in SD mice, an increased proportion were activated in 

compared with meningeal B cells in control mice, as evidenced by expression of CD69 (Figure 

3-8B), but there were insufficient cell numbers to perform ex vivo stimulation assays to 

measure IL-10 production. Meningeal Ly6Chi monocytes, Ly6Cint monocytes, and macrophages 

also showed evidence of activation, with higher expression of CD11b (Figure 3-8C). Bulk 

transcriptomic analysis of stressed meninges confirmed that innate immune response pathway 

genes associated with myeloid cell activation, including ‘TNF 𝛼 signaling via NFkB’ and ‘IL6 Jak 

Stat3 signalling’ were increased, as well as a number of other innate and adaptive immune 

pathways such as ‘Complement, ‘interferon γ response’ and ‘interferon 𝛼 response’ pathways 

(Figure 3-8D).  
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Within the stressed group, we observed a significant positive correlation between meningeal B 

cell numbers and the number of light-dark crosses (Figure 3-8E), showing that lower meningeal 

B cell numbers are associated with a more severe behavioural phenotype. Likewise, higher 

numbers of meningeal Ly6Chi monocytes were associated with reduced distance travelled in a 

novel open-field arena (Figure 3-8E), indicative of reduced exploratory drive. Correlations 

between splenic and meningeal cell counts (assayed in the same animals) were minimal (Figure 

3-9), arguing against the hypothesis that the meningeal cell counts simply reflect immune 

activity in the periphery. Together, these data demonstrate that social stress is associated with 

B cell activation in both the periphery and meninges, but that in contrast to the periphery, 

meningeal B cell numbers are markedly reduced in the context of stress. 
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Figure 3-7 Chronic stress is associated with an increase in meningeal myelomonocytic cells but a 

reduction in meningeal B lymphocytes.  

(A) Meningeal immune cell subsets (manually gated as per the gating strategy in Figure 3-3) overlaid on 

a tSNE plot of downsampled cytometry data from the N = 53 mouse meninges used in the study. Insets 

show surface marker expression for B220, Ly6G and Ly6C overlaid on the tSNE plot. Intravascular 

immune cells were identified by intravenous CD45 labelling prior to harvest and excluded from analysis. 
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(B) Relative proportions (median ± IQR) of extravascular immune cells identified in healthy meninges 

(manual gating). Pie chart indicates median proportion of each subset. N = 13 HC mice. (C) Automated 

clustering of meningeal flow cytometry data by flowSOM, visualized by tSNE; downsampled data from N 

= 53 mouse meninges, showing strong agreement with manual gating. (D) Annotation labels for 

automatically detected clusters were determined by surface marker expression profiles as shown. The 

colour in the heatmap represents the median of the 0-1 transformed marker expression calculated over 

cells from all the samples, varying from blue for lower expression to red for higher expression. The 

numbers indicate the actual expression values. (E) Volcano plot showing the effects of stress (negative 

binomial model) on absolute counts of meningeal extravascular immune cells (manual gating). N = 53 

mice in overall model: count ~ animal cohort + strain + condition + strain:condition (see Methods). The 

13 cell subsets tested were Ly6Chi monocytes; helper and cytotoxic T cells; CD11b+ and CD11b- classical 

dendritic cells (cDCs); plasmacytoid DCs (pDCs); microglia-like macrophages; neutrophils; natural killer 

(NK) cells; NKT cells; CD64+MHCII+ and CD64+MHCII- macrophages; and B cells. Each data point 

represents a cell subset, indicating the fold-change in that cell count in stress vs. homecage and the 

significance of that fold change. Cell subsets which are significantly different following correction for 

multiple comparisons are shown in red. Boxplots show percent of meningeal extravascular immune cells 

in wildtype home cage (N=13) and stressed (N=12) mice for the significant cell counts (B cells and 

inflammatory monocytes). (F) Volcano plot showing the effects of stress on relative counts of meningeal 

extravascular immune cell subsets (automated gating). Data show a significant increase in meningeal 

Ly6Chi monocytes and a significant decrease in meningeal B cells in stress, equivalent to the results of 

the analysis using manually gated counts. 
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Figure 3-8 Meningeal response to chronic stress. 

(A) Cell count enrichment scores (median ±IQR) from cellular deconvolution of meningeal microarray 

data support the flow cytometry results shown in Figure 3-7E,F. Mann-Whitney U tests (unadjusted): *P 

< 0.05, **P < 0.01. N = 7 SD, N = 7 HC, biological replicates.  (B) Effects of chronic stress on meningeal 

immune cell activation (manual gating for percent positivity). Rank-based linear models including 

condition and cohort. P-values corrected for 7 comparisons tested (4 shown), FDR P * < 0.05, ** < 0.01. 

(C) Effects of chronic stress on meningeal median functional marker expression (for Figure 3-7C 

clusters). Tile colours indicate linear model estimates (coefficients) for the effect of stress (model 

includes condition and cohort). Tile size indicates significance following FDR adjustment (102 

comparisons). (D) Gene set enrichment analysis of bulk meningeal microarray data (same mice as Figure 

3-8A): Hallmark gene sets enriched at FDR P < 0.05 in stressed (N=7) compared to control (N=7) 
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meninges. (E) Spearman correlations between behavioural susceptibility to stress and 

immunophenotype in stressed wild-type animals. Correlations significant at FDR P < 0.05 are shown in 

inset. All replicates are biological. 

 

 

 
Figure 3-9 Correlations between meningeal and splenic immune cell subsets. 

Spearman correlations between splenic and meningeal immune cell counts in wild-type animals. Blue 

indicates a positive correlation and red a negative correlation; size of circle indicates significance of the 

correlation. N = 27 for meningeal counts; N = 21 for splenic counts; includes both SD and HC animals. 
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Meningeal B cell response to stress 

To better characterize B cell responses to stress, we used droplet encapsulation high 

throughput single-cell RNA sequencing (scRNAseq) (10x Genomics platform) to profile 

meningeal immune cells from non-stressed and stressed mice Figure 3-10A. Of the 21 clusters 

that were annotated based on their expression of canonical marker genes, we found two 

mature B cell clusters – an MHCIIlo cluster (N = 150 cells) and an MHCIIhi cluster (N = 369 cells) 

(Figure 3-10B), that were present in similar proportions in control and stressed meninges 

(Figure 3-10C,D).  

 



 

 

125 

 
Figure 3-10 Single cell RNA sequencing of meningeal immune cells: clustering, identification of B cells 

and cluster abundances in stressed and unstressed animals.  

(A) Leiden clustering of quality controlled single cells (N = 6694) cells from N = 8 control mice and N = 4 

chronically stressed mice overlaid on UMAP representation. (B) Expression of Cd79a (part of B cell 

receptor complex); Tnfrsf13c (BAFF receptor); Ms4a1 (CD20) and H2-Aa (MHCII gene) overlaid on the 

UMAP projection highlights the B cell clusters. The cluster “Mature B cells 1” (N = 150 cells) has low 

expression of MHCII genes (H2-Aa) and is referred to as the MHCIIlo B cell cluster while “Mature B cells 

2” (N = 369 cells) is characterized by higher expression of MHCII genes and is referred to as the MHCIIhi B 

cell cluster. (C) UMAP projection of cells from the two mature B cell clusters (MHCIIhi B cells and MHCIIlo 

B cells). (D) Proportion of B cell subsets in SD (social defeat) vs. home cage (HC) mice. Both MHCIIlo and 
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MHCIIhi B cells are decreased in stressed (SD) vs. home cage (HC) mice as a percentage of total single 

cells, but the relative proportion of cells in each of the two B cells subsets is not altered in stressed vs. HC 

mice (Fisher’s exact test; P = 0.3).  

 

Differential gene expression analysis showed an increase in several innate immune response 

genes in the MHCIIhi B cell cluster in stressed meninges, including Ngp, Lcn2, Camp, and 

S100a9 (Figure 3-11A,B). The proteins encoded by these genes have direct antimicrobial 

effects, but they can also regulate inflammation and myeloid cell activation, both positively 

and negatively. For example, Ngp encodes a cysteine protease that inhibits cathepsin (Boutte 

et al 2011), whilst Lipocalin 2, the protein encoded by Lcn2, promotes an anti-inflammatory M2 

macrophage phenotype (Guo et al 2014) but can also promote M1 microglial activation (Jang 

et al 2013). Camp inhibits macrophage pro-inflammatory cytokine production (Torres-Juarez et 

al 2015) as well as IFN-γ-mediated activation of monocytes, macrophages, and DCs (Nijnik et al 

2009). S100a9 is an alarmin that can mediate anti-inflammatory innate immune cell re-

programming (Ulas et al 2017) and promote the generation of myeloid suppressor cells (Dai et 

al 2017). The most downregulated gene in stressed B cells was Cst3, which encodes Cystatin-C, 

a cysteine protease inhibitor that can modulate neutrophil chemotaxis (Leung-Tack et al 1990). 

These data show that meningeal B cells undergo significant transcriptional changes during 

stress, with induction of innate immune transcriptional programs and the production of anti-

microbial peptides that enable cross-talk with meningeal myeloid cells, with the potential to 

both activate and regulate these cells.  

 

Gene set enrichment analysis (GSEA) of the meningeal scRNAseq B cell datasets showed an 

enrichment of Reactome pathways involved in mRNA quality control (particularly nonsense-

mediated decay), ribosomal function and mRNA translation in stress (Figure 3-11C), suggesting 

that these meningeal B cells are geared towards increased protein production. There were no 

genes that were differentially expressed between SD and HC mice in the MHCIIlo B cell cluster 

in a significant manner, perhaps due to the lower number of cells in this cluster (and hence 

lower power to detect differential expression). B cell cytokine/chemokine and receptor genes 

(including Il6, Tnf, Il10, Csf2) were not generally sufficiently expressed for differential 

expression analysis (a common problem with the limited depth of sequencing generated by 

10x Chromium methodology, see Figure 3-11D).  
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Figure 3-11 Single cell RNA sequencing of meningeal immune cells: transcriptomic responses of 

meningeal B cells to stress.  

(A) Single cell differential expression analysis for cells in the MHCIIhi B cell cluster. N = 369 cells from N = 

8 HC and N = 4 SD mice. Differential expression was tested by Mann-Whitney U with Benjamini-

Hochberg correction for multiple comparisons. Dashed cut-off lines indicate FDR P < 0.1 and log fold 

change > 0.2. No genes were differentially expressed in the MHCIIlo B cell cluster. (B) Effect of stress on 

gene expression in B cells. Plot shows genes differentially expressed at FDR P < 0.1 and absolute log fold 

change (LFC) > 0.2 in MHCIIhi B cell cluster of single cells (as shown in volcano plot). Expression values 

are also shown for the MHCIIlo B cell cluster but no genes were significantly differentially expressed in 
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this cluster. Circle colour indicates row-scaled mean gene expression. Circle size indicates the proportion 

of single cells in the cluster expressing the gene. (C) Single cell analysis: Reactome pathways enriched in 

the MHCIIhi cluster of meningeal B cells in SD compared to HC mice at FDR P < 0.05. N = 369 cells. No 

pathways were enriched in the MHCIIlo B cell cluster. (D) Single cell analysis: plot shows differential 

expression of B cell cytokines and chemokines, and key B cell receptors, in meningeal B cells. Colour 

indicates log fold change of gene expression in SD vs HC mice in B cell clusters. Dark grey indicates no 

gene expression detected. Tile annotations indicate the FDR P-value for differential expression. Where 

no P-value is shown (i.e., all genes except Ccr7), gene expression was insufficient to test differential 

expression (criterion for testing: gene expressed in > 15% of cells in the cluster).  

 

Immune cells localise to tissue niches via chemokine-chemokine receptor interactions, for 

example the CXCL13-CXCR5 axis plays a central role in localizing peritoneal B1 cells, a 

predominantly tissue-resident B cell subset that is enriched for natural antibody production 

and regulatory B cells (Ansel et al 2002). In addition, cytokines such as B cell activating factor of 

the TNF receptor family (BAFF) are required for B cell survival in lymphoid organs and the 

peritoneal cavity (Mackay et al 2003). We therefore considered several explanations for the 

reduced number of B cells observed in the meninges of stressed mice; firstly, disruption of 

niche-localizing chemokine-chemokine receptor interactions leading to B cell migration out of 

the meninges, and secondly, reduced meningeal B cell survival due to decreased expression of 

survival factors within the niche or activation-induced cell death. To address the question of 

whether there was disruption of the chemokine or cytokine cues within the meninges, we 

assessed bulk microarray data obtained from meninges of SD or HC mice. Following SD, there 

was no significant reduction in Cxcl13 or Tnfsf13b (the gene encoding BAFF); in fact the trend 

was towards an increased expression of these genes (P < 0.05 uncorrected for multiple 

comparisons, Figure 3-12A). These data suggest that the reduction in meningeal B cells 

observed in defeated mice was not due to a loss of known tissue ‘niche’ factors. There was a 

trend towards decreased Ccr7 expression in the larger MHCIIhi B cell cluster in SD (Uncorrected 

P = 0.04, Figure 3-11D). Normally, B cell CCR7 promotes homing of B cells to lymph nodes, so 

this result goes against the hypothesis that the observed reduction in B cells was because of 

enhanced migration out of the meninges to draining lymph nodes. 

 

Another possible explanation for reduced B cell numbers would be cell loss due to death, so 

we also examined the scRNAseq data for evidence that meningeal B cells may be undergoing 
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increased cell death during SD. We did not find any increase in cell stress-associated genes 

(Figure 3-12B), apoptosis or necrosis Reactome pathways in meningeal B cells in SD, nor was 

there an increased proportion of mitochondrial reads per cell, as would be expected in dying 

cells (Figure 3-12C). Additionally, stress was not associated with changes in the proportion of B 

cells estimated to be in each cell cycle phase (Figure 3-12D), suggesting the altered number of 

B cells is not due to suppression of local proliferation.     
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Figure 3-12 Meningeal response to stress: B cell cytokines, cell cycle phases, and indicators of cellular 

stress in B cells. 

(A) B cell cytokines and chemokines differentially expressed in chronically stressed vs. control meninges 

(bulk microarray) at unadjusted P < 0.05. N = 7 HC, N = 7 SD; same mice as Figure 3-8A. Genes for B cell 

cytokines BAFF (Tnfsf13b) and Cxcl13 were not reduced and showed a trend towards increased 

expression in stress. No cytokines or chemokines were differentially expressed following FDR 

adjustment. (B) Violin plots show the expression of selected genes related to cellular stress. Expression 

of Junb is significantly decreased in SD compared to HC (FDR P = 0.003). Right hand panel shows the 

effects of SD on the summary Seurat module score comprised of 20 cellular stress-related genes. There 

was no significant difference between HC and SD cells. (C) Boxplots show the percentage of 

mitochondrial reads per cell (median ± interquartile range) in MHCIIlo and MHCIIhi B cells. P-values show 

the results of a Mann Whitney U test for the effects of condition on the percentage of mitochondrial 

reads per cell. (D) Barplots show the fraction of cells in the MHCIIlo and MHCIIhi B cell clusters estimated 

to be in each cell cycle stage (using [R] package cyclone). There were no significant differences between 

conditions (HC = home cage; SD = social defeat) in the proportion of cells in each cell cycle stage (Fisher’s 

exact test: P = 0.6 for MHCIIlo B cells, P = 0.3 for MHCIIhi B cells).  
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Peripheral B cell deficiency results in an increase in baseline meningeal neutrophil number 

and in monocyte activation 

To determine whether abnormalities in the B cell compartment might causatively affect 

meningeal myeloid cell activation and infiltration, we investigated Cd19-/- mice. Cd19 encodes 

for a co-activating molecule expressed by B cells, and its deficiency results in mice with a 

reduced number of peripheral B cells. B1a cells, which include regulatory B cells, are 

particularly affected in this model (Engel et al 1995, Rickert et al 1995). Cd19-/- mice have been 

widely used to interrogate the potential immunoregulatory role of B cells (via secretion of IL-

10), in contexts such as experimental autoimmune encephalitis and collagen-induced arthritis 

(Matsushita et al 2008, Yanaba et al 2008, Yoshizaki et al 2012). The Cd19-/- model of B cell 

deficiency lacks the more substantial effects on antibody secretion and other B cell effector 

functions that would be seen with antibody or genetic depletion of B cells. Analysis of the 

spleen in Cd19-/- mice confirmed a reduction in the total number of B cells (Figure 3-13A), 

including IgD+ (naïve) and IgD- subsets, as well as a reduction in CD9+ B cells (a subset enriched 

for regulatory B cells) and plasma cells (Figure 3-13A, B). However, although there was a trend 

towards a reduction in meningeal B cells in Cd19-/- mice compared with their wildtype (WT) 

C57BL/6 counterparts, this did not reach statistical significance (Figure 3-13A). This model thus 

allowed us to assess the effects of a decrease in peripheral B cells, including regulatory B cells, 

on meningeal immunity in health and following social defeat. The lack of decrease in 

meningeal B cells also suggests that at least part of the meningeal B cell compartment is in 

disequilibrium with the peripheral B cell pool, a characteristic associated with a long-term 

tissue-resident cell phenotype (Masopust & Soerens 2019). 

 

Unstressed Cd19-/- mice mirrored some, but not all, aspects of the peripheral immune 

activation we observed in stressed mice, with an increase in splenic neutrophils (Figure 3-13B), 

and in MHCII expression on splenic DCs (Figure 3-13C), as well as increased plasma G-CSF 

(Figure 3-13D). The residual splenic B cells in Cd19-/- mice also showed a more activated 

phenotype, with increased expression of CD25 and MHCII (Figure 3-13C). In the meninges, we 

observed an increase in neutrophils and cytotoxic T cells in Cd19-/- mice (Figure 3-13E) as well 

as higher expression of CD69 and CD11b on meningeal macrophages and monocytes, 

consistent with a more activated phenotype within the meningeal myeloid compartment 

(Figure 3-13F).  
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We next tested for behavioural differences between Cd19-/- and WT mice at baseline and 

following SD. At baseline, Cd19-/- mice showed reduced exploration of a novel environment 

compared with WT controls (Figure 3-13G). Following SD, there was no difference between 

Cd19-/- and WT animals on novel arena exploration or light dark testing (Figure 3-13G). 

Meningeal monocyte numbers significantly increased in WT animals following SD, but in Cd19-/- 

animals, basal monocyte numbers were already at an equivalent level to that observed in 

stressed WT animals and did not show a further significant increase (Figure 3-13H). Bulk RNA 

sequencing of meninges obtained from mice subjected to SD demonstrated an increase in 

‘interferon 𝛼	response’ and ‘interferon γ response’ pathways in Cd19-/- mice compared to WT 

counterparts (Figure 3-13I), pathways that we had also found to be increased by SD in the 

meninges in WT animals, suggesting convergent effects of psychological stress and CD19 

deficiency on meningeal interferon signalling. We thus demonstrate that B cells play a role in 

negatively regulating meningeal myeloid cell activation in homeostasis and in the context of 

social defeat.  
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Figure 3-13 Peripheral B cell deficiency results in an increase in baseline meningeal neutrophil number 

and in monocyte activation.  

(A) Effects of CD19 deficiency on B cell subsets (median ± IQR). Statistics for IgD+/- B cells are as per 

negative binomial model in Figure 3-13B. CD9+ B cells: Mann-Whitney U test ***P < 0.001. Splenic data: 

N = 10 WT, N = 8 Cd19-/-. Meningeal data: N = 13 WT, N = 12 Cd19-/-. (B) Effects of CD19 deficiency 

(negative binomial model) on splenic immune cell counts. N = 40 mice in overall model (see Methods); 

14 cell subsets tested: IgD+ and IgD- B cells; NK cells; NKT cells; plasmablasts/plasma cells; helper and 
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cytotoxic T cells; plasmacytoid dendritic cells (pDCs); CD11b+ and CD11b- classical DCs (cDCs); 

neutrophils; Ly6Chi monocytes, Ly6ChiCD11bneg myeloid cells; and F4/80+ macrophages. (C) Effects of 

CD19 deficiency on splenic immune cell activation. Tile colours indicate linear model estimates 

(coefficients) for the effect of CD19 deficiency on MFI (model includes strain and cohort). Size of tile 

indicates significance following FDR adjustment for multiple comparisons in each flow panel (56 

comparisons for myeloid panel, 35 comparisons for lymphoid panel). N = 10 WT, N = 8 Cd19-/- mice. (D) 

Effects of CD19 deficiency on peripheral blood cytokines. Boxplots show the median and interquartile 

ranges for serum cytokines in each group (N = 13 wildtype, N = 12 Cd19-/-). Groups were compared using 

rank-based linear models for the effects of strain and mouse cohort followed by Benjamini-Hochberg 

correction for multiple comparisons across the 10 tested cytokines. *FDR P < 0.05. (E) Effects of CD19 

deficiency (negative binomial model) on absolute counts of 13 meningeal extravascular immune cell 

subsets: Ly6Chi monocytes; helper and cytotoxic T cells; CD11b+ and CD11b- classical dendritic cells 

(cDCs); plasmacytoid DCs (pDCs); microglia-like macrophages; neutrophils; natural killer (NK) cells; NKT 

cells; CD64+MHCII+ and CD64+MHCII- macrophages; and B cells. N = 53 mice in overall model. (F) Effects 

of CD19 deficiency on meningeal median functional marker expression (MFI). N = 13 WT, N = 12 Cd19-/-. 

(G) Baseline and post-stress behaviour in WT (N = 14 pre- and post-stress) and Cd19-/- mice (N = 15 pre-

stress; N=13 post-stress); littermate controls. Linear model including strain and cohort at each time 

point; brackets indicate significance of strain effect *P < 0.05. (H) SD-induced changes in meningeal 

monocytes in wild type and Cd19-/- mice, presented side-by-side for comparison. *FDR P < 0.05. (I) 

Positively enriched Hallmark gene sets in stressed Cd19-/- compared to stressed WT meninges (bulk 

RNAseq data) at FDR P < 0.05 (N = 5 WT; N = 4 Cd19-/-).  
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3.5 Discussion 

Overall, the work described in this chapter shows that in the peripheral B cell compartment, 

social stress is associated with activation of B cells and an increase in (IL-10-producing) 

regulatory B cells and terminally differentiated B cells (plasmablasts/plasma cells) in the 

spleen. In the meninges, social stress was likewise associated with activation of local tissue B 

cells, and these meningeal B cells showed increased expression of genes encoding anti-

microbial peptides with known immunomodulatory effects on myeloid cells. 

 

The potential importance of the immunoregulatory effects of B cells on meningeal myeloid 

cells was demonstrated by the increase in meningeal neutrophils observed in unstressed Cd19-

/- compared to unstressed WT mice, as well as the increased expression of activation markers 

such as CD69 and CD11b on meningeal monocytes and macrophages. Furthermore, compared 

with WT mice, CD19-deficient mice showed enrichment of IFN-γ response genes in the 

meninges following social stress, confirming the importance of B cells in regulating the effects 

of IFN-γ in the meninges. This could potentially occur via the increased B cell Camp expression 

demonstrated in the scRNAseq data following stress (Nijnik et al 2009). IFN-γ is a potent 

myeloid cell activator and has previously been implicated in the link between the immune 

system and behaviour, with evidence for both beneficial and detrimental effects. In animals, 

IFN-γ can activate the choroid plexus to promote CNS immune cell recruitment following injury 

(Kunis et al 2013). IFN-γ can also increase hippocampal neurogenesis, improve learning (Baron 

et al 2008), and modulate GABAergic neurotransmission to support social behaviour (Filiano et 

al 2016). Conversely, IFN-γ can mediate increased synaptic pruning in infection-associated 

inflammation (French et al 2019). Furthermore, in a murine chronic stress model, IFN-γ 

deficiency led to reduced corticosterone, cytokine, and behavioural responses to stress 

(Litteljohn et al 2010). In humans, increased plasma IFN-γ has been associated with stress-

induced and generalized anxiety (Hou et al 2017, Maes et al 1998). Our data demonstrating the 

capacity of B cells to control IFN-γ signalling in the meninges thus suggest an important, 

clinically relevant facet of B cell function.  

 

Other mechanisms by which B cells might modulate myeloid cells include the production of the 

regulatory cytokine IL-10. We observed an increase in splenic B cell IL10 production in stressed 

animals, however Il10 expression in meningeal B cells was not sufficient to allow its detection 

using 10X Chromium scRNAseq (which provides relatively shallow sequencing depth). The 
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limited number of meningeal B cells present also meant that we were unable to assay the 

effects of stress on meningeal B cell IL-10 protein production. However, it may be that 

meningeal B cells also produce IL-10 as well as immunoregulatory anti-microbial peptides. The 

phenotype and contribution of crawling/intravascular meningeal B cells also remains an 

interesting question. 

 

We have not identified the cause of the changes in B cells observed following stress, but there 

are several potential explanations for these findings. If there is continuous re-circulation 

between the meningeal and peripheral B cell compartments, it could be that stress increases B 

cell migration from the meninges to the circulation or deep cervical lymph nodes, without a 

corresponding increase in recruitment of B cells from the blood or skull bone marrow into the 

meninges. Stress has previously been shown to suppress recruitment of regulatory T cells to 

the brain via the choroid plexus gateway (Kertser et al 2019). Alternatively, it may be that 

changes in the peripheral and meningeal B cell compartment are not directly linked, and that 

meningeal B cells either die, or enter the brain in the context of stress, and that independent 

of this, peripheral B cells become activated, proliferate, and terminally differentiate. Indeed, 

while there were no transcriptional hallmarks of apoptosis present in the meningeal scRNAseq 

data set, the chronic nature of the stress means that meningeal B cell death could have 

occurred in the acute phase of the paradigm and be undetectable at the time point analysed. 

The baseline phenotype of the Cd19-/- mice sheds some light on this question; the fact that the 

marked reduction in peripheral B cell numbers observed in this strain is not mirrored by a 

similar reduction in meningeal B cells is instructive, suggesting that only a portion of the 

meningeal compartment is in continuity with the circulating B cell compartment. Therefore, 

the changes in meningeal B cells may represent a combination of these effects.  

 

To conclude, we found, as summarized in Figure 3-14, that psychosocial stress was associated 

with changes in both the peripheral and meningeal B cell compartments, with activation and 

expansion of some peripheral B cell subsets and activation and contraction of meningeal B 

cells. While some of these changes may contribute to symptoms, other changes may be 

beneficial for tissue repair and restoration of the normal homeostatic state. Overall, these data 

suggest that B cells may affect behaviour by regulating meningeal myeloid cell activation and 

meningeal interferon responses, shedding light on the cellular networks at play in the 

immunological response to stress. 
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Figure 3-14 B-cells are abnormal in psychosocial stress and regulate meningeal myeloid cell activation. 

In stressed mice (middle panel), in the periphery, we observed increased numbers of classical 

monocytes, neutrophils, plasma cells and regulatory B cells compared to unstressed mice (left hand 

panel). Stressed mice also showed increased plasma cell activation; naïve and memory B cell activation, 

and increased plasma G-CSF. In meninges from stressed mice, we observed increased numbers of 

monocytes and neutrophils; increased activation of meningeal myeloid cells; decreased numbers of B 

cells, which were activated and had increased expression of antimicrobial peptides; and increased 

interferon-⍺ and interferon-γ signalling. These immunological changes were associated with decreased 

exploratory behaviour in a novel arena and anxious behaviour on light-dark box testing. In CD19 

deficiency (right hand panel), in the periphery, we observed increased neutrophils; decreased naïve and 

memory B cells; decreased regulatory B cells; decreased plasma cells; and increased plasma G-CSF. In 

meninges from Cd19-/- mice, we observed increased meningeal B cell activation; increased meningeal 

myeloid cell activation; increased meningeal neutrophils; and increased interferon-⍺ and interferon-γ 

signalling. These changes were associated with decreased exploratory behaviour. Parts of the figure 

were drawn by using pictures from Servier Medical Art, which is licensed under a Creative Commons 

Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).    
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Chapter 4: Genome-wide association studies of psychiatric disorders: 

implications for cellular immunity 

 

4.1 Introduction 

As discussed in Chapter 1, it is conceivable that the immune system could be implicated in the 

pathogenesis of multiple psychiatric disorders. Since germline genetic variants cannot be the 

consequence of disease, sequence variation associated with a disorder (or disorders) could 

shed light on the immune processes or cells likely to cause mental health symptoms. There is 

already some genetic evidence that a component of psychiatric risk is mediated by the immune 

system. Polygenic risk scores (PRS) for depression, bipolar disorder and schizophrenia are 

associated with increased lymphocyte counts (Sewell et al 2020); mendelian randomization 

studies support a causal role for IL-6 in both depression and schizophrenia (Perry et al 2021); 

and there are genetic correlations between immune disorders and multiple psychiatric 

disorders (Pouget et al 2019, Tylee et al 2018) (see Section 1.4.4 for a fuller discussion of the 

genetic evidence for immune involvement in MDD). A pathway analysis of genes trans-

diagnostically associated with schizophrenia, bipolar disorder and MDD has implicated 

neuronal, histone and immune pathways (Network & Pathway Analysis Subgroup of Psychiatric 

Genomics 2015); although a larger trans-diagnostic analysis did not implicate immune cells or 

pathways (Cross-Disorder Group of the Psychiatric Genomics Consortium 2019).  

 

Most genetic variants associated with psychiatric risk are in non-coding regions of the genome, 

likely exerting their effects by altering the activity of regulatory elements (Gusev et al 2014) 

such as promoters or enhancers. Enhancers can be linearly distant (>10 kilobases) from the 

genes they regulate (Won et al 2016). Some regulatory elements control gene expression in 

multiple tissues, but others are specific to particular tissues, or particular cell states. For 

example, some enhancers are active in stimulated but not resting immune cells (Alasoo et al 

2018, Chow et al 2014, Soskic et al 2019). The locations and activity status of putative 

enhancers and promoters in a given tissue can be identified through characteristic epigenetic 

modifications, such as histone modifications.  
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Epigenetic mechanisms have long been thought to be important in psychiatry, especially in 

mediating gene-environment interactions (Klengel & Binder 2015, O'Donnell & Meaney 2020). 

Epigenetic data from brain tissues have been extensively used to investigate the brain cell 

types and regions implicated by psychiatric risk variants (Girdhar et al 2018, Hauberg et al 

2020, Li et al 2018a), by testing whether risk variants tend to be concentrated, or “enriched”, 

in regions of the genome that are active in a given tissue. However, the enrichment of 

psychiatric risk variants in immune cell subsets has not been extensively explored. Studies to 

date have tended to use functional information from whole blood or immune organs, which 

obscures and dilutes possible effects in the myeloid and lymphoid immune cell subsets 

comprising these samples. There is some evidence of enrichment of risk variants for bipolar 

disorder in genes characteristic of neutrophils, T cells and haematopoietic stem cells; and for 

schizophrenia at genes in T cells and chromatin marks in T and B cells (Finucane et al 2018). To 

our knowledge, no studies have demonstrated enrichment of trans-diagnostic risk, or of cis-

diagnostic risk for MDD or ASD, in any immune cell type (Alonso-Gonzalez et al 2019, Cross-

Disorder Group of the Psychiatric Genomics Consortium 2019, Howard et al 2019, Stahl et al 

2019), or tested whether immune cell enrichment is independent of brain tissue enrichment 

(rather than simply due to coincidental overlap of active genomic regions in brain and immune 

system cells). 

 

4.2 Hypotheses 

We hypothesize that some genetic risk variants for psychiatric disorders act via their effects on 

regulatory elements in specific immune cell subsets, thus potentially modulating the response 

of these cells to infections and other environmental stimuli. We further hypothesize that some 

of these immunogenetic mechanisms may represent a common pathogenic pathway to 

multiple psychiatric disorders.  

 

To test these hypotheses, we integrated data on common genetic variants associated with 

trans- and cis-diagnostic risks for psychiatric disorder(s) with data on epigenetically active 

genomic regions in multiple human cell and tissue types. More formally, we tested the null 

hypothesis that a given set of risk variants was not co-located with tissue-specific marks of 

epigenetic activation more frequently than expected by chance in each of multiple tissues 

(Roadmap/ENCODE (Consortium 2012, Roadmap Epigenomics et al 2015)), in 19 sorted 
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immune cell subsets (BLUEPRINT (Chen et al 2016)), and in ex vivo stimulated naïve and 

memory CD4+ T cells and macrophages (Soskic dataset (Soskic et al 2019)). To contextualise 

these results, we conducted parallel analyses of three “positive control” disorders: Alzheimer’s 

disease, a brain disorder for which genetic risk has been associated with myeloid immune cells 

(Novikova et al 2021); rheumatoid arthritis, a canonical adaptive autoimmune disorder; and 

body mass index (BMI), a common comorbidity which may contribute to observed immune 

abnormalities in psychiatric disorders (McLaughlin et al 2021). To our knowledge, this is the 

first in-depth investigation of the immunological implications of GWAS variants conferring risk 

for psychiatric disorders. 
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4.3 Methods 

Trans- and cis-diagnostic genetic risk variants for psychiatric disorders   

The primary GWAS datasets used for the identification of trans- and cis-risk genes are listed in 

Table 4-1. 

We used summary statistics from a meta-analysis of trans-diagnostic risk across 8 mental 

health or neurodevelopmental disorders (Cross-Disorder Group of the Psychiatric Genomics 

Consortium 2019): ASD, bipolar disorder, MDD, obsessive-compulsive disorder, schizophrenia, 

anorexia nervosa, ADHD, and Tourette syndrome. For analysis of cis-risk, i.e. cis-diagnostic risk 

of a specific psychiatric disorder, we separately tested 5 large primary genome-wide 

association studies (GWAS) of MDD (Levey et al 2021), bipolar disorder (Stahl et al 2019), 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics 2014), autism (Grove 

et al 2019), and ADHD (Demontis et al 2019). For comparative purposes, we analysed GWAS 

results for BMI (Pulit et al 2019), Alzheimer’s disease (Jansen et al 2019), and rheumatoid 

arthritis (Okada et al 2014). For all disorders except MDD, we selected the largest publicly 

available, predominantly-European GWAS dataset; for MDD, we used a larger recent European 

GWAS (Levey et al 2021). 
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Table 4-1 Genome-wide association study details.  

Genetic variants associated trans-diagnostically with risk for 8 psychiatric disorders and cis-

diagnostically with risks for each of 5 specific psychiatric / neurodevelopmental disorders, and 3 positive 

control disorders. Loci associated with risk were thresholded at P < 5x10-8, then distance-based clumping 

was used to define independently significant loci. 

Study Number 
cases 

Number 
controls 

Number of 
genome-wide 
independently 
significant loci 

Download link 

Cross-disorder 
psychiatric risk 
(Cross-Disorder 
Group of the 
Psychiatric 
Genomics 
Consortium 2019) 

162,151 276,846 115 https://pgcdata.med.unc.ed
u/cross_disorder/pgc_cdg2_
meta_no23andMe_oct2019_
v2.txt.daner.txt.gz 

Depression (Levey 
et al 2021) 

264,984 581,929 122 dbGaP Study 
Accession: phs001672.v6.p1 

Schizophrenia 
(Schizophrenia 
Working Group of 
the Psychiatric 
Genomics 2014) 

36,989  113,075 108 https://pgcdata.med.unc.ed
u/schizophrenia/ckqny.scz2s
npres.gz 

Bipolar disorder 
(Stahl et al 2019) 

20,352 31,358 16 https://www.med.unc.edu/p
gc/download-results/ 
File = 
daner_PGC_BIP32b_mds7a_
0416a 

Autism (Grove et al 
2019) 

18,382  27,969 2 https://pgcdata.med.unc.ed
u/autism_spectrum_disorde
rs/iPSYCH-
PGC_ASD_Nov2017.gz 

ADHD (Demontis et 
al 2019) 

19,099  34,194 10 https://pgcdata.med.unc.ed
u/adhd/adhd_eur_jun2017.g
z 

Body mass index 
(Pulit et al 2019) 

806,834 NA 1023 https://zenodo.org/record/1
251813#.X_iGVS-l1TZ 
File = bmi.giant-ukbb.meta-
analysis.combined.23May20
18.txt 

Alzheimer’s disease 
(Jansen et al 2019)  

71,880 383,378 25 https://ctg.cncr.nl/document
s/p1651/AD_sumstats_Janse
netal_2019sept.txt.gz 

Rheumatoid 
arthritis (Okada et 
al 2014) 

14,361  43,923 48 http://plaza.umin.ac.jp/~yok
ada/datasource/files/GWAS
MetaResults/RA_GWASmeta
_European_v2.txt.gz 
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Testing for enrichment of genome-wide genetic risk at regulatory elements (ROADMAP data) 

Stratified linkage disequilibrium score regression (s-LDSC) can be used to test whether genetic 

risk is concentrated or enriched in a genomic annotation, e.g., a set of active regulatory 

elements in a specific cell type (Finucane et al 2015). S-LDSC hinges on the fact that the disease 

association statistic for a given genetic variant depends on whether that variant is linked to the 

disease, but also whether variants in linkage disequilibrium (LD) with that variant are linked to 

the disease. By testing whether variants in LD with the annotation of interest tend to have 

higher association scores than variants elsewhere, we can calculate an enrichment score 

capturing the tendency of SNP-based heritability for that disease to be co-located with that 

annotation (Finucane et al 2015).  We used this method to test for enrichment of psychiatric 

risk variants at active regulatory elements in 88 cell or tissue types (see Figure 4-1 for analysis 

pipeline). 

 

For a given tissue, CHiP-seq data assaying multiple histone marks can be integrated to segment 

the genome into annotations representing different functional epigenetic states, e.g., 

enhancers, promoters, repressed regions (Roadmap Epigenomics et al 2015). The IDEAS 

algorithm (Zhang & Hardison 2017) leverages shared features across cell types to improve this 

segmentation. Lacking a strong prior hypothesis about which particular regulatory elements in 

immune cells would be implicated by psychiatric risk, we generated a simple functional 

annotation of active states for each tissue in the Roadmap Epigenomics Dataset, which 

includes samples from all major organ systems including brain, heart, muscle, gut, adipose, 

skin, reproductive and immune tissues (Roadmap Epigenomics et al 2015). Data for a given 

tissue or cell type sometimes come from multiple donors – as is the case for most of the brain 

and immune samples – and sometimes from single donors (see 

https://egg2.wustl.edu/roadmap/web_portal/meta.html for metadata). Immune cell subsets 

were magnetically sorted from live donor blood samples; brain tissues were homogenized 

post-mortem samples. For each Roadmap tissue/cell type, we generated a whole genome 

binary annotation of active regulatory elements from IDEAS annotations based on 5 epigenetic 

histone marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3 and H3K9me3). We combined the 

6 IDEAS annotations representing active promoters and enhancers to generate a single binary 

annotation of active regulatory elements for each tissue. More exactly, we merged the IDEAS 

annotations for active transcription start sites (10_TssA); regions flanking active TSS 

(8_TssAFlnk); weak TSS (14_TssWk); enhancers (4_Enh); genic enhancers (6_EnhG); and genic 
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enhancers associated with transcription (17_EnhGA), following a previous definition of active 

states (Backenroth et al 2018). We generated partitioned linkage disequilibrium (LD) scores for 

each tissue as recommended, using HapMap3 SNPs (Finucane et al 2015). 

 

 
 
Figure 4-1 Schematic of analysis pipeline used to assess enrichment of genetic risk variants at regulatory 

elements in different tissues and cell subsets.  

Genome-wide association study (GWAS) summary statistics (red box) were integrated with information 

on cell-subset-specific and tissue-specific active promoters and enhancers from three epigenetic 

datasets (green boxes). See methods for details. MAF, minor allele frequency; MHC, major 

histocompatibility complex; s-LDSC, stratified linkage disequilibrium score regression; SNP, single 

nucleotide polymorphism; BMI, body mass index; TSS, transcription start site. 

 
We then used s-LDSC to test the enrichment of psychiatric risk variants in each cell type, using 

a separate model for each cell type, as is standard. Summary statistics were preprocessed 

using the LDSC recommended script munge_sumstats.py and we performed s-LDSC for each 

tissue in the Roadmap dataset, using recommended settings, excluding the MHC regions. 
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To further dissect the s-LDSC results for the active annotations, we also performed s-LDSC for 

the 3 types of genomic element comprising the active annotation: promoters, enhancers, and 

genic enhancers. We generated partitioned LD scores for the promoters (10_TssA, 8_TssAFlnk 

and 14_TssWk), enhancers (4_Enh) and genic enhancers (6_EnhG and 17_EnhGA) then 

performed s-LDSC using default settings for each of these annotations in the Roadmap immune 

tissues. The p-values from s-LDSC indicate the significance of the coefficient for the cell type 

specific annotations. P-values were corrected for multiple comparisons across tissues using 

Benjamini-Hochberg false discovery rate. Heatmaps are coloured by p-value rank to aid 

comparison across disorders or across annotations which are differently powered. 

 

To account for the possible confounding effect of shared regulatory elements between brain 

and immune tissues, we also performed brain-conditioned enrichment analyses: for each 

tissue’s s-LDSC model, we added terms for the active regulatory annotations for possibly 

confounding brain regions. In the LDSC model, 𝜏 (SNP-heritability) for a given genomic 

category/annotation (𝐶) is estimated by regressing 𝜒"	(the SNP association statistics) against 

ℓ(𝑗, 𝐶) (the linkage disquilibrium score for SNP 𝑗 with respect to category/annotation 𝐶): 

𝐸[𝜒#]	~∑ 𝜏) 	ℓ(𝑗, 𝐶)*
)+" 	     [Eq.	4.1] 

For the original s-LDSC models, the annotations (𝐶) included in each multiple regression were 

the cell specific annotation of interest plus the standard non-cell type specific annotations 

(baseline v1.2, see https://storage.googleapis.com/broad-alkesgroup-

public/LDSCORE/readme_baseline_versions). For the brain-conditioned models, the categories 

in each regression additionally included the annotations for the potentially-confounding brain 

regions. 

 

SNP heritability Z-scores (heritability / standard error) and s-LDSC Z-scores (enrichment 

coefficient / standard error) were estimated using LDSC. To compare the results of the original 

and brain-conditional analyses, I used a one-sided two-sample Z-test as follows, where 𝛽# is 

the coefficient for the annotation in the original analysis and 𝛽" is the coefficient in the brain-

conditional analysis. SE is the standard error of the coefficient for the original (𝑆𝐸#) or 

conditional (𝑆𝐸") analysis. Z-scores were converted to p-values. 

𝑍 = ,!	.	,"
/(12!)"4(12")"

	       [Eq.	4.2] 

 



 

 

146 

Testing for enrichment of genetic risk variants in cell-type specific active 

promoters/enhancers 

To compare enrichment of genetic risk at regulatory marks in different immune cell subsets, 

and immune cells stimulated under different conditions, we used the CHEERS algorithm (Soskic 

et al 2019), see Figure 4-1 for analysis pipeline. CHEERS quantifies the overlap of lead 

(independently significant) genetic risk variants with cell-specific epigenetic peaks. Crucially, 

CHEERS facilitates the comparison of similar cell types or conditions, which tend to have similar 

epigenetic profiles, by calculating peak specificity scores, indicating how specific a peak is to 

that cell type relative to other cell types, then quantifying cell-type enrichment as the 

specificity-weighted sum of overlaps of disease risk variants with these peaks. While s-LDSC 

leverages genome wide-information, CHEERS focuses on risk loci which meet genome-wide 

significance. In brief, CHEERS identifies peaks which overlap lead variants or variants in strong 

LD (r2 > 0.8) with lead variants, then calculates the mean cell type specificity score (in that cell 

type) of those peaks, which captures the degree of enrichment of that cell type for a given 

disorder. One-sided p-values were reported from a discrete uniform distribution (reflecting the 

ranking of specificity scores within each cell type) and corrected for multiple comparisons 

across tissues using a Bonferroni correction. To identify lead disease risk loci, all summary 

statistics were processed consistently: liftover to hg38, harmonization, removal of MHC region, 

and distance-based clumping (see below for more detail). We applied CHEERS using two 

human H3K27ac ChIP-seq datasets: (i) BLUEPRINT consortium data from 19 sorted 

unstimulated immune cells subsets (Chen et al 2016) and (ii) the Soskic immune stimulation 

data from sorted and ex vivo stimulated immune cells (Soskic et al 2019). H3K27ac marks 

active (rather than inactive or poised) enhancer and promoter regions (Consortium 2012, 

Creyghton et al 2010). In the Soskic immune stimulation experiment, macrophages, naïve CD4+ 

T cells and memory CD4+ T cells were stimulated using different cytokine cocktails associated 

with autoimmunity or known to promote different cell fates. In addition, generic T cell 

receptor and CD28 co-stimulation signals were provided in all stimulated T cell conditions using 

beads coated with anti-CD3 and anti-CD28 antibodies. H3K27ac data were processed as 

described previously (Soskic et al 2019) to obtain cell-type specificity scores for H3K27ac peaks 

in each cell type or state. Here, we ran CHEERS using r2 linkage disequilibrium values taken 

from unrelated European individuals from the 1000 genomes dataset (Lowy-Gallego et al 

2019), calculated using PLINK (Purcell et al 2007).  
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To compare the enrichment between stimulated and unstimulated cell subsets, we used a one-

sided, two-sample Z-test as follows, where 𝑥# is the mean specificity rank for the stimulated 

cell subset and 𝑥" is the mean specificity rank for the corresponding unstimulated cell subset. 

SE is the standard error of the mean and depends on the number of SNPs overlapping peaks. 

For a given disorder, SE is the same across different annotations, as peaks are called across the 

dataset as a whole. Z-scores were converted to p-values. 

𝑍 = 5!	–	5"
/#(12)"

      [Eq.	4.3] 

 

Identification of independent risk loci 

To identify independently significant loci for each disorder, we reprocessed all summary 

statistics consistently. Given the lack of well-matched linkage disequilibrium data for the 

populations underlying these studies, we aimed to conservatively identify independent lead 

variants without using LD information or conditional analysis within loci. We first lifted over 

the summary statistics (autosomal chromosomes only) and harmonized variants to the 

reference strand using the EBI summary statistics snakemake pipeline 

(https://github.com/EBISPOT/gwas-sumstats-harmoniser). Alleles with a minor allele count 

<10 were filtered out; where minor allele counts were not available, these were imputed from 

GnomAD v2.1.1 (Karczewski et al 2020) European frequencies lifted over to GRCh38. We then 

filtered all summary statistics to those variants also present at minor allele frequency > 0.01 in 

1000 genomes phase 3 (unrelated European participants) called against GRCh38 (Lowy-Gallego 

et al 2019). To find independently significant lead loci, we used the Open Targets genetics 

finemapping pipeline (https://github.com/opentargets/genetics-finemapping) to filter 

summary statistics to variants with P < 5 x 10-8 (excluding MHC region chr6:28510120-

33480577) and performed distance-based clumping of significant variants with a clumping 

distance of ±500kb. The number of lead SNPs identified for each disorder is shown in Table 

4-1. ASD was excluded from downstream CHEERS analysis as only two significant loci were 

detected.  

 

Over-representation analysis 

Following CHEERS analysis, to test which biological pathways were implicated in T cells, we 

identified those T cell-specific peaks overlapped by disease risk variants, selected the genes 

overlapping those peaks or with transcription start sites nearest to those peaks, then 
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performed pathway analysis on those genes. More specifically, we selected (for a given 

disorder) the union of peaks highly specific (CHEERS specificity rank >0.9) to any T cell subset in 

the Soskic immune stimulation dataset which were also overlapped by risk variants for that 

disorder. For each peak, we used the ChIPseeker seq2gene function (Yu et al 2015) to identify 

the union of those genes overlapping the peak and those genes with a promoter region 

overlapping the peak, or (if no promoter overlapped the peak) the gene with the nearest 

transcription start site (up to a maximum of 10 kilobases away). The selected genes were 

tested for enrichment of GO biological processes and Reactome pathways using a 

hypergeometric test via the clusterProfiler enricher function, with Benjamini-Hochberg 

correction for multiple testing (Yu et al 2012). 

  



 

 

149 

4.4 Results 

Trans-diagnostic psychiatric risk is enriched at active chromatin states in T cells  

For trans-diagnostic risk of having any one of 8 major psychiatric disorders, we tested for 

enrichment of genetic risk at active regulatory elements in 88 cells or tissues from the 

Roadmap consortium, using stratified linkage disequilibrium score regression (s-LDSC). We 

found that three main tissue classes were significantly enriched for trans-diagnostic risk 

variants at regulatory elements, following correction for multiple comparisons: multiple adult 

and foetal brain regions; T cells; and pancreatic islets (Figure 4-2). 

 

In the central nervous system (CNS), trans-risk variants were most strongly enriched at 

regulatory elements in foetal brain tissue samples. There was also significant enrichment (PFDR 

< 0.05) at active regulatory elements in brain structures previously reported as abnormal in 

neuroimaging studies of psychiatric disorders: dorsolateral prefrontal cortex, angular gyrus, 

inferior temporal lobe, anterior caudate, cingulate gyrus, hippocampus and substantia nigra.  

 

In the immune system, trans-risk variants were significantly enriched (PFDR < 0.05) at 

epigenetically active genomic sites in multiple T cell subsets, including cytotoxic, helper and 

regulatory T cells in adult blood and T cells in cord blood. Conversely, there was no enrichment 

(P > 0.05) of trans-risk in myeloid cells (monocytes, neutrophils). We here use Benjamini-

Hochberg correction for multiple testing, as the epigenomic profiles of different cell types are 

correlated rather than independent. 
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Figure 4-2 Enrichment of trans-diagnostic risk at active regulatory elements (active promoters and 

enhancers) in 88 tissues from the Roadmap epigenomics consortium.  

P-values are shown for the results of stratified linkage disequilibrium score regression (s-LDSC) analysis, 

taking the union of active elements in a given cell type as the annotation of interest (see Methods). The 

p-values from s-LDSC were used to test the null hypotheses that risk variants were not co-located with 

epigenetically activated sites more frequently than expected by chance, using the Benjamini-Hochberg 

false discovery rate to correct for multiple tests across N=88 tissues, PFDR < 0.05 (purple). Tissues with 

nominally significant enrichment (P < 0.05, green) are also shown for context. HUVEC, human umbilical 

vein endothelial cells; vHMEC, variant human mammary epithelial cells; PFC, prefrontal cortex; HSC, 

hematopoietic stem cell; PMA-I, phorbol-myristate-acetate and ionomycin. 
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Many regulatory elements are common to multiple tissues, so we reasoned that this pattern of 

CNS and immune system enrichment for trans-risk variants could be driven by coincidental 

overlap of brain and T cell active elements. In this case, the genetic risk would be theoretically 

expected to have pathogenic effects primarily by its modulation of epigenetically active sites in 

the brain, with no clearly independent pathogenic role mediated by T cells. We therefore 

repeated the s-LDSC analysis but included the active annotations for all 10 significantly 

enriched brain regions as extra terms in the s-LDSC models for every other cell type. In this 

brain-conditioned analysis, both helper and cytotoxic T cells remained strongly enriched for 

trans-diagnostic genetic risk (Figure 4-3B), while pancreatic islets did not. For enriched immune 

tissues in the original analysis (at PFDR < 0.05), none showed significantly decreased enrichment 

following brain-conditioned analysis (two-sample Z-test, P > 0.05, Table 4-2). Conversely, 

including the annotation for male foetal brain (the brain tissue showing strongest enrichment) 

as an extra term in s-LDSC models significantly reduced trans-risk enrichment in all other brain 

regions (Z-test P < 0.05) except the substantia nigra (P = 0.09) and hippocampus (P = 0.07), 

reflecting some overlap of active elements between different brain regions at different 

developmental phases, and validating our statistical approach (Figure 4-3A). We showed the 

same effect for female foetal brain, the second most strongly enriched brain tissue (Figure 

4-3A), excluding a potential effect of sex differences in brain development. 

 

The global active annotation used as a binary marker of epigenetic activation combines trans-

risk enrichment at three different classes of regulatory elements: active promoters, genic 

enhancers (enhancers found in gene bodies), and non-genic enhancers. To identify which 

classes were most enriched for trans-risk, we tested each class separately and found that the 

enrichment of trans-risk observed in terms of the global active annotation in T cells was not 

driven by a single class of regulatory element: there was enrichment of trans-risk at both active 

promoters (PFDR < 0.05) and enhancers (PFDR < 0.05 for genic enhancers) (Figure 4-3C). 
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Figure 4-3 Trans-diagnostic risk enrichment at epigenetically active sites in brain tissue and, 

independently, in T cells. 

(A) Validation of brain-conditioned analysis method: repeat of the analysis in Figure 4-2, including the 

active regulatory annotation for foetal male brain as an additional term in the s-LDSC models for other 

cell types. LHS shows original s-LDSC for brain regions; RHS shows s-LDSC analysis with the addition of 

foetal male brain annotation to all models. Asterisks indicate those annotations showing significantly 

decreased enrichment in the conditional compared to the original analysis (two-sample Z-test P < 0.05).  

(B) Brain-conditioned analysis: right-pointing bars show repeat of the analysis in Figure 4-2, including 

the active regulatory annotations for all 10 significantly enriched brain regions as additional terms in 

each of the s-LDSC models for all other cell types. Left-pointing bars show the original results, as in 

Figure 4-2. Following conditional analysis, there was no significant decrease in enrichment significance 

for any immune tissues (P > 0.05). (C) Enrichment of trans-diagnostic risk in immune cell enhancers, 

genic enhancers and active promoters in Roadmap immune tissues. Tile size indicates s-LDSC 

significance: large tiles show results significant at PFDR < 0.05, using the Benjamini-Hochberg procedure 
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to correct for the 78 annotations tested; mid-sized tiles show nominally significant results (P < 0.05) for 

context. Tile fill indicates the P-value rank within each annotation across cell types.
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Table 4-2 Trans-diagnostic risk enrichment at epigenetically active sites in brain and T cells: statistical 

comparison of original vs. brain-conditioned stratified linkage disequilibrium score regression (s-LDSC) 

models by Z-test. 

Upper table: Comparison of original s-LDSC models and brain-conditioned s-LDSC models, which include 

the active annotations for all 10 significantly enriched brain regions as extra terms in the model for 

every other cell type. For immune tissues enriched for trans-diagnostic risk variants in the original 

analysis, none showed significantly decreased enrichment following brain-conditioned analysis. Lower 

table: Comparison of original s-LDSC models and conditional s-LDSC models including the annotation for 

male foetal brain (the brain tissue showing strongest enrichment for trans-diagnostic risk variants) as an 

extra term. Inclusion of male foetal brain reduced trans-risk enrichment in all other brain regions (except 

the substantia nigra and hippocampus), reflecting some overlap of active elements between different 

brain regions at different developmental phases and validating our statistical approach. Same effect 

shown for a conditional s-LDSC analysis including the annotation for female foetal brain, the second 

most strongly enriched brain tissue, as an extra term. 

 

Immune cell subsets for which trans-risk 
showed significant enrichment (q < 0.05) in 
original s-LDSC model 

Original model vs. conditional model including all 
10 significantly enriched brain regions 

T cytotoxic naive cells (peripheral blood) z=0.34; p=0.37 
T helper naive cells (peripheral blood) 2 z=0.20; p=0.42 
T cytotoxic memory cells (peripheral blood) z=0.21; p=0.42 
T helper 17 cells (PMA-I stimulated) z=0.19; p=0.42 
T helper cells (PMA-I stimulated) z=0.19; p=0.42 
T helper memory cells (peripheral blood) 1 z=0.17; p=0.43 
T regulatory cells (peripheral blood) z=0.20; p=0.42 
T effector/memory (peripheral blood) z=0.26; p=0.40 
T helper cells (peripheral blood) z=0.20; p=0.42 
T helper naive cells (peripheral blood) 1 z=0.28; p=0.39 
T helper memory cells (peripheral blood) 2 z=0.18; p=0.43 
T cells (cord blood) z=0.23; p=0.41 
 Original model vs. 

conditional model 
including foetal male 
brain 

Original model vs. 
conditional model 
including foetal female 
brain  

Brain Angular Gyrus z=1.80; p=0.04 z=2.19; p=0.01 
Brain Anterior Caudate z=1.74; p=0.04 z=2.20; p=0.01 
Brain Cingulate Gyrus z=1.75; p=0.04 z=2.19; p=0.01 
Brain Germinal Matrix z=2.61; p=0.005 z=2.92; p=0.002 
Brain Hippocampus Middle z=1.50; p=0.07 z=1.99; p=0.02 
Brain Inferior Temporal Lobe z=1.80; p=0.04 z=2.19; p=0.01 
Brain Dorsolateral Prefrontal Cortex z=1.94; p=0.03 z=2.31; p=0.01 
Brain Substantia Nigra z=1.34; p=0.09 z=1.77; p=0.04 
Foetal Brain (female) z=1.73; p=0.04 NA 
Foetal Brain (male) NA z=2.77; p=0.003 
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Cis-diagnostic risk is enriched at active chromatin states in T cells  

Using data from the Roadmap Epigenomics Consortium, we next investigated the enrichment 

of cis-diagnostic risk variants at epigenetically active sites in brain tissues and immune cells for 

each of 5 mental health or neurodevelopmental disorders (schizophrenia, bipolar disorder, 

MDD, autism and ADHD) and each of 3 positive control disorders (Alzheimer’s disease, obesity 

[BMI], and rheumatoid arthritis).  

 

In the CNS, cis-risks for adult-onset mental health disorders (schizophrenia, bipolar disorder, 

MDD) were enriched in multiple foetal and adult brain tissues, and cis-risks for child mental 

health or neurodevelopmental disorders (autism, ADHD) were enriched more selectively in 

foetal brain tissue. Cis-risk for obesity (BMI) was also enriched for active sites across multiple 

foetal and adult brain tissues; but cis-risk for Alzheimer’s disease was only (nominally) 

significantly enriched in hippocampus; and cis-risk for rheumatoid arthritis was not enriched in 

any brain tissue (Figure 4-4A).  

 

In the immune system, similarly to trans-risk, cis-risks for schizophrenia, bipolar disorder, MDD 

and autism were enriched at globally activated sites in one or more T cell subsets (but with 

mainly nominal significance P < 0.05; Figure 4-4B). Cis-risk for rheumatoid arthritis was strongly 

enriched at globally active sites in multiple immune cell subsets; cis-risk for Alzheimer’s disease 

was significantly enriched in myeloid cells and B cells, consistent with previous work (Kim et al 

2021, Novikova et al 2021); and cis-risk for BMI was only enriched in one T cell class at P < 0.05 

(Figure 4-4B).  
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Figure 4-4 Cis-diagnostic risk enrichment at epigenetically activated sites in adult and foetal brain tissue 

and immune cells for 8 specific disorders.  

For each of 5 mental health disorders (schizophrenia, bipolar disorder, major depressive disorder [MDD], 

autism, and attention deficit-hyperactivity disorder [ADHD]), and for each of 3 positive control disorders 

(obesity, Alzheimer’s disease and rheumatoid arthritis), enrichment of cis-risk variants at active 

regulatory elements (active promoters and enhancers) was tested in (A) 10 brain tissue samples (3 

foetal) and (B) 26 immune cell classes (3 foetal) (Roadmap Epigenomics et al 2015). P-values are shown 

for the results of stratified linkage disequilibrium score regression (s-LDSC) analysis, taking the union of 

active elements in a given cell type as the annotation of interest. Tile size, from large to small, indicates 

P-value thresholds from PFDR < 0.05 (significant after Benjamini-Hochberg correction for all 88 tissues 

tested, including those not shown here), through P < 0.05 (nominally significant), to P ≥ 0.05 (not 

significant). Tile fill indicates the P-value rank within each disorder across all cells/tissues to facilitate 

comparisons across results from differently-powered genetic association studies.  
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The statistical significance of enrichment results depends partly on the sample size of the 

underlying GWAS and the heritability and polygenicity of the disorder (factors influencing 

power, and captured by the SNP-based heritability Z-score) (Finucane et al 2015); but also on 

the strength of functional enrichment of the phenotype in that annotation. We hypothesized 

that, for immune enrichment in psychiatric disorders, the relationship between GWAS power 

and enrichment might not hold because (a) psychiatric disorders could differ in the degree to 

which genetic immune factors contribute and (b) immune-relevant genetic risk factors might 

only be important in a subgroup of patients, and the proportion of the subgroup of total cases 

would thus affect the immune enrichment detected. Therefore, for the two most enriched 

immune and brain annotations (naïve cytotoxic and helper T cells; foetal male and female 

brain), we tested the correlation between heritability Z-score and functional enrichment Z-

score across the 9 disorders included in this study. Strikingly, we found a strong relationship 

between disorder heritability Z-score and detected brain enrichment (foetal male brain: 

Spearman’s 𝜌	=	0.87, P = 0.005; foetal female brain: 𝜌	=	0.87, P = 0.005), but no correlation 

between heritability Z-score and immune enrichment (cytotoxic T cells: Spearman’s 𝜌	=	0, P = 

1, helper T cells: 𝜌	=	0.03, P = 0.9) (see Figure 4-5). This suggests that differences in GWAS 

power are not the primary driver of the different strengths of immune enrichment we 

observed for different disorders. Differences between disorders in the extent to which 

immunopathology contributes to symptoms, or the size of the patient subgroup with an 

immune pathogenesis, may be more important.  
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Figure 4-5 Correlations between GWAS SNP heritability Z-scores and s-LDSC Z-scores across disorders. 

Correlations are shown for the two brain and two immune annotations most significantly enriched for 

trans-risk. Spearman’s correlations with heritability z-score are as follows: foetal male brain 𝜌 = 0.87, P 

= 0.005; foetal female brain 𝜌 = 0.87 P = 0.005; cytotoxic T cells 𝜌 = 0, P = 1; helper T cells: 𝜌 = 0.03, P = 

0.9.  
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Trans- and cis-risk variants are enriched at active enhancers/promoters in lymphoid cells: 

BLUEPRINT data 

To assess the generalizability of these results in an independent dataset, we tested for 

enrichment of trans- and cis-risk variants at active enhancer/promoter marks (H3K27ac) in 

sorted immune cell subsets from the BLUEPRINT consortium (Chen et al 2016), using the 

CHEERS algorithm (Soskic et al 2019). The CHEERS algorithm assesses enrichment of genetic 

risk variants at cell subset-specific epigenetic marks by calculating peak specificity scores, 

which indicate how specific an epigenetic peak is to that cell type relative to other cell types 

(see Methods). Cell-type enrichment is calculated as the specificity-weighted sum of overlaps 

of disease risk variants with these peaks, allowing effects in epigenetically similar cell types to 

be distinguished. These peak specificity scores are necessarily less correlated across cell 

subsets than the underlying epigenetic marks, so we here use Bonferroni correction to correct 

for multiple comparisons, as previously (Soskic et al 2019). We replicated our prior key finding 

from the Roadmap data, i.e., trans-risk was significantly enriched at epigenetically active sites 

in lymphoid cells; but not myeloid cells (Figure 4-6A). We also showed that cis-risk for 

schizophrenia and depression was significantly enriched after controlling for multiple 

comparisons (PBonf < 0.05) in lymphoid but not myeloid cells (confirming in this dataset the 

convergent, nominally significant results for these disorders in the Roadmap dataset). The lack 

of myeloid enrichment was not due to problems with the myeloid data, as we detected the 

expected enrichment of Alzheimer’s Disease risk variants in macrophages (Figure 4-6A). As well 

as T cell enrichment, we also find enrichment of trans-risk and cis-risk for schizophrenia and 

(especially) depression in B cells, as well as enrichment of trans-risk and cis-risk for 

schizophrenia in NK cells. For ADHD and bipolar disorder (less well-powered GWAS studies 

with fewer independent significant loci available for analysis, see Table 4-1), no cell types were 

enriched at PBonf < 0.05 (Figure 4-6A). Despite both schizophrenia and depression showing 

strong lymphoid enrichment, the specific histone peaks overlapped by risk variants for these 

disorders were not generally shared between them (Figure 4-6B,C). This indicates that cis-risks 

for these two disorders were convergently enriched at a cellular level but distinct at the level 

of specific regulatory elements. It was also notable that cis-risk variants for obesity overlapped 

with a set of H3K27ac sites that was largely disjoint with the sets of regulatory elements 

overlapping with cis-risk variants for psychiatric disorders (Figure 4-6B,C).   
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Figure 4-6 Trans- and cis-diagnostic risk variant enrichment at histone-acetylated marks on adult 

immune cells in the BLUEPRINT dataset.  

(A) Bar plots show enrichment of genetic risk for each disorder at active promoters/enhancers (H3K27ac 

marks) in unstimulated, sorted immune cells. CHEERS was used to detect enrichment of risk loci at cell-

type specific H3K27ac peaks (see Methods). The dotted black line marks the nominal significance 

threshold, P < 0.05; the solid black line marks the Bonferroni-corrected significance threshold, PBonf < 
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0.05. Note differing x-axis scales. (B) Venn diagram shows counts of variant-peak overlaps shared 

between disorders and unique to each disorder (each peak is only counted once even if overlapping 

multiple variants). (C) Upset plot for all BLUEPRINT immune stimulation H3K27ac immune peaks 

overlapped by risk variants for each disorder, showing counts (vertical bars) of shared peaks, compared 

to total peak number implicated by each disorder (horizontal bars). 

 

Trans- and cis-diagnostic risk variants are enriched at histone-acetylated sites in stimulated T 

cells: Soskic immune stimulation dataset 

Given that risk of mental health disorders is affected by both genetic variation and 

environmental factors, we reasoned that trans- and cis-risk variants could be most significantly 

enriched at sites that were epigenetically activated in immune cells stimulated by cytokines 

(mimicking environmental insults) towards different activated cell fates. To investigate this 

hypothesis, and to assess the robustness of our principal findings in a third independent 

dataset, we used CHEERS to test whether trans- and cis-risks were enriched at cell subset-

specific regulatory elements (H3K27ac marks) active during immune cell activation, using a 

dataset of human naïve and memory CD4+ T (helper) cells and macrophages stimulated ex vivo 

in the presence of 13 cytokine combinations. Chromatin activity was assessed at early and late 

timepoints after exposure to cytokine stimulations (16h and 5 days for T cells and 6h and 24h 

for macrophages), as well as in unstimulated cells (Soskic et al 2019). Both trans-diagnostic risk 

variants, and cis-risk variants for MDD, were most significantly enriched in memory T helper 

cells at day 5 following T cell stimulation with anti-CD3/anti-CD28 beads that mimic activation 

occurring with T cell receptor-crosslinking; trans-risk variants and cis-risk variants for 

schizophrenia were also significantly enriched in memory T helper cells at 16 h and in naïve T 

helper cells at day 5 only (Figure 4-7). The histone acetylation peaks that overlapped with cis-

risk variants for MDD in late-activated memory T cells were almost completely disjoint with the 

peaks that overlapped with cis-risk variants for schizophrenia in late-activated memory T cells 

(Figure 4-8A), again demonstrating convergence of enrichment at the immune cell subset level, 

but divergence at the molecular level of specific regulatory elements. Similarly, although trans-

risk and cis-risk for schizophrenia showed the most similar pattern of immune cell enrichment, 

most of the SNP-peak overlaps driving these results were not shared (Figure 4-9A), implying 

that trans-risk immune enrichment is not purely being driven by schizophrenia cis-risk variants. 

Trans-risk enrichment was generally greater for stimulated than unstimulated T cells, with 

smaller differences in the magnitude of enrichment between different cytokine stimulation 
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conditions (Figure 4-7). For 9 of the 10 cytokine conditions (all except Th17-cytokine polarizing 

condition), trans-risk enrichment was significantly greater (Z-test, P < 0.05) in stimulated 

compared to unstimulated late-activated memory T cells.   
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Figure 4-7 Trans- and cis-risk variant enrichment at histone-acetylated marks on experimentally 

stimulated immune cells in the Soskic immune stimulation dataset. 

Bar plots show enrichment of genetic risk for each condition at active promoters/enhancers (H3K27ac 

marks) in sorted and unstimulated or ex vivo stimulated immune cell classes: macrophages, naïve CD4+ 

(helper) T cells and memory CD4+ T cells, assayed at both early and late timepoints after stimulation 
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with one of several different cytokine cocktails promoting differentiation to different T cell states (as 

shown in row labels). CHEERS was used to detect enrichment of risk loci at cell-type specific H3K27ac 

peaks (see Methods). The dotted black line marks the nominal significance threshold, P < 0.05; the solid 

black line marks the Bonferroni-corrected significance threshold, PBonferroni < 0.05. Note differing x-axis 

scales. 

 
As in the two prior independent datasets, there was no enrichment for trans- or cis-risk of 

psychiatric disorders at epigenetically activated sites in myeloid cells, either stimulated or 

unstimulated, with the exception of enrichment of bipolar disorder risk in IL-26-stimulated 

macrophages (Figure 4-7). Cis-risk variants for obesity were enriched in unstimulated and 

stimulated T cell states (Figure 4-7), but only 9 of the 108 depression-associated H3K27ac 

peaks also overlapped with BMI risk variants (Figure 4-9A,B), indicating that cis-risks for 

obesity and depression were enriched at distinct regulatory elements in the same cell subsets.  

 

For disorders showing enrichment in T cells, we performed pathway analysis 

(overrepresentation analysis) for those genes overlapping or with transcription start sites 

nearest to the T-cell specific histone acetylation peaks overlapped by risk variants (although we 

note that distance-based measures are limited in their ability to link epigenetic peaks with the 

genes to which they are functionally linked). Trans-risk and cis-risk for schizophrenia showed 

enrichment of pathways including epigenetic regulation, pre-notch processing, and oestrogen-

dependent gene expression in T cells. In contrast, rheumatoid arthritis showed enrichment of 

lymphoid cell differentiation, activation, and response to antigenic stimulus (Figure 4-10). 
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Figure 4-8 Soskic stimulated immune cell dataset: overlap of H3K27ac peaks implicated by different 

disorders. 
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(A) Heatmap shows the subset of peaks with specificity for late-activated naïve and/or memory CD4+ T 

cells which are also overlapped by risk variants for either trans-risk, schizophrenia, or major depressive 

disorder. Each row corresponds to a H3K27ac peak overlapping a risk variant; each column corresponds 

to a different cytokine-induced cell state (see legend), ordered as in Figure 4-7. Blue fill shade represents 

how specific each peak is to each cell state (specificity rank of the peak normalized to the mean 

specificity rank of all peaks). Row annotations indicate peaks which overlap (dark red) or do not overlap 

(grey) risk variants for the disorder indicated. Of the late-activation T cell specific peaks, only 1 (starred 

*) is overlapped by both schizophrenia and depression risk variants. (B) Upset plot for all Soskic dataset 

H3K27ac immune peaks overlapped by risk variants for each disorder, showing counts (vertical bars) of 

shared peak overlaps, compared to total number of peaks implicated by each disorder (horizontal bars). 
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Figure 4-9 Variant-peak overlaps shared between disorders and unique to each disorder (Soskic immune 

stimulation dataset). 

(A) Venn diagrams show counts of variant-peak overlaps shared between disorders and unique to each 

disorder. For an upset plot of peak overlaps across all disorders, see Figure 4-8B. (B) All Soskic immune 

stimulation dataset peaks overlapped by risk variants for major depressive disorder. Each row 

corresponds to an H3K27ac peak overlapping a risk variant for MDD; each column corresponds to a 

different cytokine-induced cell state, ordered and coloured as in Figure 4-7. The blue fill shade 

represents how specific each peak is to each cell state (specificity rank of each peak normalized to the 

mean specificity rank of all peaks). Only 9 of the 108 MDD-associated H3K27ac immune peaks also 

overlap BMI risk variants. 
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Figure 4-10 Soskic stimulated immune cell dataset: pathway enrichment for genes nearest to peaks both 

specific to T cells and overlapped by risk variants. 

For peaks which were both highly specific to T cells (including both unstimulated and stimulated cells) 

and overlapped by trans-risk variants, nearest genes were identified and tested for enrichment for 

curated biological pathways (GO and Reactome) using a hypergeometric test. Results are shown only for 

those disorders which showed enrichment in T cell subsets. Only pathways with PFDR < 0.05 are shown, 

with a maximum of 10 pathways shown per condition. Fill colour indicates gene ratio (number of test 

genes in the pathway / total number of test genes). 
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4.5 Discussion 

We examined the enrichment of genetic risk variants for psychiatric disorders at epigenetically 

activated regulatory sites across multiple tissues. As expected, trans-diagnostic risk variants, 

commonly associated with multiple mental health and neurodevelopmental disorders, were 

significantly enriched at active regulatory sites in several adult and foetal brain tissue samples. 

Strikingly, we also found that trans-diagnostic risk variants were significantly enriched at an 

independent set of regulatory elements in peripheral blood lymphoid cells (but were not 

enriched in myeloid cells). Our key novel results – enrichment of trans-risk in T cells and lack of 

enrichment in myeloid cells – were statistically robust to multiple comparisons and replicated 

in three independent datasets, suggesting a previously unknown effect of trans-diagnostic 

genetic risk on T cells. Other lymphoid cells (for which fewer datasets were available) are likely 

also implicated in pathogenesis, as we also found enrichment of trans-risk in B cells and NK 

cells. 

 

Further investigation of cis-diagnostic risk variants, specifically associated with one of 5 mental 

health or neurodevelopmental disorders, confirmed significant enrichment of genetic risks for 

schizophrenia and major depressive disorder at active promoters and enhancers in peripheral 

lymphoid cells (but not myeloid cells). Epigenetically activated sites in T cells, especially 

cytokine-stimulated CD4+ T cells, were most consistently and significantly enriched for 

sequence variants associated with schizophrenia or MDD; however, the active regulatory 

elements overlapped by these cis-diagnostic variants were specific to each disorder. This 

suggests convergence of risk for schizophrenia and depression at a cellular level in the immune 

system, i.e. activated T cells, and raises questions about how the involvement of different 

specific regulatory elements in these two disorders might relate to the different phenotypic 

presentations of schizophrenia and depression. We also found strong enrichment of risk for 

depression in both naïve and memory B cells. To our knowledge, this is the first demonstration 

of enrichment of genetic risk for MDD at epigenetically active sites in lymphoid cells (or indeed 

any immune cell type). Notably, in all three datasets, immune enrichment of schizophrenia risk 

variants was much greater than for depression risk variants, despite the larger size of the 

depression GWAS dataset.  
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The cis-diagnostic enrichment results for schizophrenia and MDD were statistically robust to 

multiple comparisons and in clear contrast to the comparable results for 3 positive control 

disorders. Cis-risks for Alzheimer’s disease were significantly enriched at epigenetically 

activated sites in myeloid cells (but not lymphoid cells); cis-risks for rheumatoid arthritis were 

enriched at active sites in myeloid and lymphoid cells (but not brain tissue); and cis-risks for 

obesity (BMI) were enriched at active sites in brain tissue and (in some analyses) in immune 

cells, but with effects on regulatory elements distinct from those implicated by psychiatric 

disorders.  

 

On this basis, we propose that genetic variants associated with increased risk for psychiatric 

disorders are likely to interact with epigenetic activation of specific and distinct regulatory 

elements in both the central nervous system and the adaptive immune system. This 

hypothesis-generating work immediately raises three key questions. What environmental 

exposures cause epigenetic modification at risk-enriched sites in T cells? How could atypical T 

cell phenotypes cause changes in the CNS that are ultimately manifest as mental health or 

neurodevelopmental disorders? What are the antigen presenting cells (our data suggest they 

may be B cells) which activate atypical CD4+ T cells?    

 

Infection is the most likely environmental stimulus to induce epigenetic activation in the 

immune system. There is also increasing evidence that psychosocial stress, especially in early 

life, can cause epigenetic modification of glucocorticoid receptor-related genes in animal 

models; and early life adversity has been associated with long-term changes in blood immune 

biomarkers in human longitudinal studies (Klengel & Binder 2015). However, here we focus on 

the abundant epidemiological evidence that foetal and post-natal infections increase the risk 

for multiple psychiatric disorders (Al-Haddad et al 2019, Breithaupt et al 2019, Kohler-Forsberg 

et al 2019, Lydholm et al 2019).  The immune mechanisms by which early-life infection 

predisposes to later psychiatric symptoms are not known. But we do know that foetal or 

childhood infections can cause long-term changes in adaptive immune cell phenotypes, 

including T cell memory of antigens and B cell production of antibodies, that are crucial to 

development of adult immunity (Simon et al 2015). Thus, it is conceivable that the 

epigenetically activated sites enriched for trans- and cis-risks in T cells and memory B cells in 

these data were “marked” by exposure to infection or inflammation; and that genetic risk 

variants modulate the infection-induced activation of regulatory elements, leading to atypical T 
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or B cell phenotypes following infection in people at genetic risk of psychiatric disorder. There 

is already some epidemiological evidence for gene-by-environment interactions between 

infection and risk variants for schizophrenia (Borglum et al 2014, Clarke et al 2009, Demontis et 

al 2011) and MDD (Ye et al 2020). Many aspects of our data are compatible with this concept. 

For example, our finding that trans- and cis-diagnostic risk variants were enriched at sites 

epigenetically activated by delayed T cell responses to a wide range of pro-inflammatory 

cytokine stimuli seems consistent with the epidemiological finding that increased risk of 

multiple psychiatric disorders is found following a wide range of different infections (Benros et 

al 2011, Benros et al 2013, Brown & Meyer 2018, Meltzer & Van de Water 2017, Tioleco et al 

2021) .   

 

Atypical T cell phenotypes could conceivably have effects on the brain by at least two broad 

routes: via stimulus-driven T cell activation and via developmental pathways (Figure 4-11). 

Atypical T cells may impact on neuronal function via soluble inflammatory mediators (Alves de 

Lima et al 2020, Choi et al 2016); via contact-dependent mechanisms (Evans et al 2019); via 

depletion of metabolic precursors of monoamine neurotransmitters (Miyajima et al 2017); or 

via their effects on other immune or non-immune cells which in turn affect neurons (Evans et 

al 2019). Developmentally, T cells have an important physiological role in controlling microglial 

phagocytosis of synaptic terminals and neurites as part of normal childhood and adolescent 

neurodevelopmental programs of synaptic pruning (Pasciuto et al 2020). Thus atypical T cells in 

the meninges or brain could lead, via atypical synaptic pruning (Pasciuto et al 2020, Sekar et al 

2016), to the disrupted brain connectivity seen in schizophrenia and other psychiatric disorders 

(Morgan et al 2019).  

 

In contrast with autoimmune diseases, which tend to show greatest enrichment in early T cell 

activation states (Soskic et al 2019), the strongest enrichment for psychiatric risk variants was 

in T cells, especially late-activated memory CD4+ T cells, and memory B cells. This may reflect 

abnormalities in the resolution (rather than onset) of immune responses to infection or social 

stress, potentially leading to chronic, low-grade peripheral inflammation seen in many 

psychiatric disorders (Goldsmith et al 2016, Yuan et al 2019). 

 

The statistical significance of results for risk variant enrichment at epigenetically active regions 

reflects in part the sample size of the GWAS datasets used and the heritability and polygenicity 
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of the disorders. However, in contrast to our results for brain enrichment, we did not find any 

correlation between GWAS statistical power and immune enrichment. This suggests that while 

GWAS power can explain some differences between disorders in the observed significance of 

functional enrichment (as in the brain), differences in immune cell enrichment may in part 

reflect how frequently immune mechanisms are implicated in individual patients clinically 

diagnosed with a specific disorder. Thus, differences between disorders in the strength of 

immune enrichment seen here may be more indicative of between-disorder differences in how 

strongly immune mechanisms contribute to pathogenesis in general, or what proportion of 

cases have an immune pathogenesis. The immune enrichments we detected were significantly 

weaker than enrichments in brain tissues – this may reflect a weaker pathogenic contribution 

of epigenetically activated risk variants in the immune system (compared to the brain); or it 

may be that genetic immune mechanisms can have a larger effect but only in a subgroup of 

patients.  
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Figure 4-11 Schematic of potential pathogenic pathways by which genetic risk variants enriched at 

epigenetically active sites in T cells could lead to neuronal changes and ultimately psychiatric disorders. 

Atypical stimulus-driven activation pathway (light blue boxes): Infection or other stressors can induce 

epigenetic activation of regulatory elements in T cells that are enriched for trans- or cis-diagnostic risk 

variants, proximally causing atypical T cell phenotypes, and distally causing increased inflammatory 

activation of innate immune (myeloid) cells in the periphery and CNS. Atypical activation of T cells 

resident in the meninges or brain, or trafficking into the meninges and brain from the periphery, could 

have direct adverse effects on neuronal function. Developmental pathway (light green box): T cells 

typically control microglial pruning of neuronal synapses as part of normative brain developmental 

programs in childhood and adolescence. Atypical T cells, potentially induced by infection or stress in 

genetically-at-risk individuals, could promote atypical microglial pruning of synapses, contributing to the 

formation of disconnected networks or circuits in the adult brain.   

 
We focused here on European ancestry genetic results, as the currently available datasets are 

from European participants, but the immunogenetics of psychiatric risk should be examined in 

other ancestries. In addition, the epigenetic datasets used here are predominantly adult: given 

the role of developmental insults in psychiatric risk, it will be important to investigate genetic 

enrichment in immune cells sampled at different developmental stages, including adolescence. 

Likewise, the immune cell states considered in this analysis are the canonical states associated 
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with infection and autoimmunity. It will also be important to explore whether genetic risk 

variants modulate immune cell phenotypes induced by exposure to non-infectious 

environmental stimuli, e.g., stress, especially given that childhood adversity and other social 

stressors are known to profoundly increase risk for multiple psychiatric disorders (Herzog & 

Schmahl 2018). 

 

To conclude, we showed that genetic risk variants associated with multiple psychiatric 

disorders were significantly enriched at epigenetically active enhancers/promoters in adaptive 

immune cells, especially stimulated T cells. This enrichment at regulatory elements in adaptive 

immune cells was reproduced across multiple datasets; contrasted with a lack of enrichment at 

regulatory elements in myeloid cells; and our findings were not driven by genetic variants 

predisposing to high BMI. Overall, these data suggest a mechanistic role for adaptive immune 

cells in the pathogenesis of multiple psychiatric disorders, hypothetically by mediating the 

interaction between environmental exposures to biological or social threats and genetic risk 

variants.  
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Chapter 5: Discussion 

 

5.1 Summary of findings  

I here summarize our main findings, before moving on to discussing the broader implications 

of these results. In this thesis, we investigated the cellular immunophenotypes associated with 

stress, depression, and other psychiatric disorders in humans, and used animal models and 

genetic data to identify phenotypes and cellular subsets likely to causally contribute to 

psychiatric symptoms. Starting with an analysis of peripheral immunophenotypes in patients 

with depression, in Chapter 2, we used multi-parametric flow cytometry data to quantify 14 

subsets of peripheral blood cells in 206 people with depression and 77 age- and sex-matched 

controls. We used univariate and multivariate analyses to investigate the immunophenotypes 

associated with depression and depression severity. Depressed cases, compared to controls, 

had significantly increased immune cell counts, especially neutrophils, CD4+ T cells and 

monocytes, and increased inflammatory proteins (CRP and IL-6). Within-group analysis of cases 

demonstrated significant associations between the severity of depressive symptoms and 

increased neutrophil and B cell counts. Using forced binary clustering of cell counts, people 

with depression could be partitioned into two subgroups: the inflamed depression subgroup 

(N=81 out of 206; 39%) had increased myeloid and lymphoid cell counts, increased CRP and IL-

6, and was more depressed than the uninflamed majority of cases. Relaxing the presumption 

of a binary classification, data-driven analysis identified four subgroups of depressed cases: 

two of which (N=38 and N=100; 67% collectively) were associated with increased inflammatory 

proteins and more severe depression. These groups differed in terms of their myeloid and 

lymphoid cell counts: while one subgroup of inflamed depression showed increases in all cell 

counts measured, the second subgroup showed marked increases in adaptive immune cells, 

but less pronounced increases in myeloid cells. Results were robust to potentially confounding 

effects of age, sex, body mass index, recent infection, and tobacco use. Peripheral immune cell 

counts could thus be used to distinguish inflamed and uninflamed subgroups of depression, 

and these results indicate that there may be multiple mechanistically distinct subgroups of 

inflamed depression.  

 

In Chapter 3, in order to address the cellular mechanisms by which stress contributes to 

inflammation and behaviour, and in particular to assess the response of the meningeal 
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immune system to stress, we turned to a mouse model. We showed that in mice exposed to 

chronic psychosocial stress, there is widespread dysregulation of both the peripheral and 

meningeal immune compartments. Stressed mice showed increased splenic B cell activation 

and increased B cell secretion of the immunoregulatory cytokine IL-10. In the meninges, B cells 

were prevalent in homeostasis but substantially decreased following stress, whereas 

inflammatory (Ly6Chi) monocytes increased following stress, and meningeal myeloid cells 

showed increased activation. Single-cell RNA sequencing of meningeal B cells demonstrated 

the induction of innate immune transcriptional programmes following stress, including genes 

encoding antimicrobial peptides that are known to alter myeloid cell activation. Cd19-/- mice, 

that have reduced B cells, showed baseline meningeal myeloid cell activation and decreased 

exploratory behaviour. Together, these data suggest that B cells may influence behaviour by 

regulating meningeal myeloid cell activation. 

 

In humans, it is more difficult to address the causal contribution of different immune cell 

subsets to symptoms, but genetic association data from case-control studies of psychiatric 

disorders can shed some light on this question. Multiple psychiatric disorders have been 

associated with abnormalities in both innate and adaptive immune cells, but the role of these 

abnormalities in pathogenesis, and whether they are driven by psychiatric risk variants, 

remains unclear. In Chapter 4, we integrated genetic association data with tissue-specific 

epigenetic data to determine which immune cell subsets are likely to contribute to 

pathogenesis in psychiatric disorders. We tested for enrichment of GWAS variants associated 

with multiple psychiatric disorders (cross-disorder or trans-diagnostic risk), or 5 specific 

disorders (cis-diagnostic risk), in regulatory elements in immune cells. To test for enrichment, 

we drew on three independent epigenetic datasets representing multiple organ systems and 

immune cell subsets. Trans-diagnostic risk variants and cis-diagnostic risk variants (for 

schizophrenia and depression) were enriched at epigenetically active sites in brain tissues and 

in lymphoid cells (T, B and NK cells), especially stimulated CD4+ T cells. Strikingly, the finding 

that psychiatric risk variants were particularly enriched in adaptive immune cells was 

conserved across all three epigenetic datasets tested. There was no evidence for enrichment of 

trans-risk variants, cis-risk variants for schizophrenia, or cis-risk variants for depression in 

myeloid cells. This suggests a possible model where environmental exposures (e.g., infection or 

stress) activate T cells to unmask the effects of psychiatric risk variants, contributing to the 

pathogenesis of mental health disorders. 
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5.2 Implications for the role of innate and adaptive immunity in psychiatric disorders 

Surprisingly, given the prior focus of the literature on innate immune abnormalities in 

psychiatric disorders, all three lines of work in this thesis implicated adaptive immunity. In the 

depression immunophenotyping study, both of the inflamed subgroups of patients associated 

with increased depression severity showed abnormalities in adaptive immune cells; in the 

mouse model of stress, stress led to dysregulation of both peripheral and meningeal B cells, 

with evidence that B cells contribute causally to behavioural phenotypes; and in the genetic 

analysis, the results implicated adaptive immune cells – both T and B cells – in the 

pathogenesis of multiple psychiatric disorders. 

 

While the immunophenotyping study and mouse model of stress implicated myeloid cells as 

well as lymphoid cells, in the genetic analysis, epigenetically active sites in myeloid cells were 

not significantly enriched for trans-risk variants or for cis-risk variants for schizophrenia or 

MDD, with this finding reproduced across all three epigenetic datasets. What does this mean 

for the pathogenic role of myeloid cells in these disorders? It may be that genetic risk variants 

are indeed enriched at epigenetically active sites in myeloid cells, but only in cell states or 

under stimulation conditions not represented in the three datasets we analysed. Alternatively, 

it could be that myeloid abnormalities seen in psychiatric disorders are causally downstream of 

(i.e., secondary to) the effects of epigenetically activated risk variants in lymphoid cells. This 

would be consistent with the well-known role of T cells in coordinating and modulating innate 

immune function (Cohen et al 2013, Guarda et al 2009, Kim et al 2007, Rauch et al 2012), 

including via inflammasome inhibition (Guarda et al 2009). Thus atypical T cell phenotypes 

could promote or sustain low-grade inflammatory states of the innate immune system in the 

periphery, the meninges, and the brain, that have been robustly associated with MDD, 

schizophrenia and other psychiatric disorders (Alves de Lima et al 2020, Filiano et al 2016, Ziv 

et al 2006). A third possibility is that inflammatory responses of myeloid cells do have a 

primary causal role in the pathogenesis of psychiatric disorders but that these are driven by 

entirely environmental factors, e.g., early life adversity, rather than by genetic factors or gene-

by-environment interactions. 
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It is also notable, and could seem somewhat contradictory, that while the animal stress model 

particularly implicated B cells, our genetic analysis demonstrated the most reproducible 

enrichment of psychiatric risk variants in T cells. However, this apparent contradiction may 

reflect the differences in scope of immunophenotyping between the animal and human 

datasets used for this analysis. On the one hand, the animal experiments were focused a priori 

on B cell phenotypes (although other animal studies have shown a T cell contribution to 

behavioural susceptibility to stress (Cohen et al 2006, Fan et al 2019)); and, on the other hand, 

the human data were focused on T cell subsets, with a relative paucity of B cell subsets 

available for our epigenetic analysis. The ROADMAP epigenetic dataset contained only two B 

cell datasets (compared to twelve T cell datasets) and there were no B cell data in the 

stimulated immune cell dataset. In the BLUEPRINT dataset where there was more even 

coverage of different immune cell subsets, trans-risk, cis-risk for schizophrenia and cis-risk for 

depression all showed enrichment in both T cells and B cells. Further work will thus be required 

to investigate the relative contribution of different adaptive immune cells to psychiatric 

disorders, including a fuller investigation of responses to stress in the meninges across the 

spectrum of adaptive immune cells, as well as analysis of the enrichment of psychiatric risk 

variants in a range of different stimulated adaptive immune cells. 

 

In summary, the work presented in this thesis suggests that multiple psychiatric disorders are 

likely to be associated with altered adaptive immune cell phenotypes, and our genetic work 

particularly highlighted the potential transdiagnostic importance of T cell responses to 

stimulation. It is thus useful to consider what is already known about adaptive immune cell 

phenotypes from patient studies, especially responses to stimulation.  

 

As summarised in Table 5-1, numerous psychiatric disorders have been associated with 

alterations in adaptive immune cells counts, cellular polarization, activation, signalling, and 

responses to stimulation. However, beyond investigations of simple immune cell counts (e.g., 

CD4+ T cell counts), such studies have mainly used small samples, are often confounded by 

medication use, and there is considerable variation in the experimental paradigms and 

stimulation conditions used. In addition, these studies have been primarily T cell focused, with 

little investigation of B cells (see Table 5-1 for details and references). This makes it difficult to 

integrate data across primary studies, but as seen in Table 5-1, the most consistent findings 

across different psychiatric disorders, compared to controls, are of increased T helper 17 
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(Th17) cells and abnormal T cell responses to stimulation, both in terms of cellular proliferation 

and cytokine production. Th17 cells are a subtype of T helper cells that produce the canonical 

cytokines IL-17, IL-22 and GM-CSF. They are peripherally enriched at mucosal surfaces in 

homeostasis, and mediate immune responses to extracellular bacteria, but are also known for 

their ability to initiate and propagate brain inflammation and neurovascular dysfunction in the 

context of brain autoimmunity (Balasa et al 2020, Platt et al 2020). IL-17 has both homeostatic 

and pathogenic roles in the CNS: IL-17 has been shown to promote CA1 hippocampal synaptic 

plasticity, glial BDNF production and short-term memory in mice (Ribeiro et al 2019). But IL-17 

has also been shown to inhibit synaptic plasticity and neurogenesis in the dentate gyrus of the 

hippocampus (Liu et al 2014) and to contribute to anxiety-like behaviour via its action on 

neurons (Alves de Lima et al 2020), and excess CNS IL-17 causes synaptic dysfunction and short 

term-memory deficits in a mouse Alzheimer’s Disease model (Brigas et al 2021). There may 

thus be a bell-shaped relationship between brain IL-17 signalling and synaptic signalling, with 

this delicate balance potentially disrupted by the excess IL-17 signalling associated with 

psychiatric disorders. How the diverse findings on abnormalities in T cell activation across 

different disorders might relate to brain function and symptoms is less clear.  
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Table 5-1 Adaptive immune cell phenotypes in different psychiatric disorders: cellular subsets, 

polarization, activation, responses to stimulation and other functional immune phenotypes.  

Disorder Findings 

Schizophrenia Cell subsets: First-episode psychosis has been associated with increased total 

lymphocyte counts and increased CD4+ T cell counts at a meta-analytic level (Miller 

et al 2013). Schizophrenia has also been associated with increased proportions of 

CXCR5+ memory CD4+ T cells, but decreased proportions of central memory CD4+ T 

cells (Fernandez-Egea et al 2016). B cells have been much less investigated (van 

Mierlo et al 2019). To date, only one study has examined B cell subsets in 

schizophrenia, finding a decrease in naïve B cells in chronic schizophrenia compared 

to controls (Fernandez-Egea et al 2016). Polygenic risk score (PRS) for schizophrenia 

has been associated with an increased total lymphocyte count (Sewell et al 2020). 

Polarization: Schizophrenia has also been associated with altered immune cell 

polarization states, however, many findings are yet to be reproduced, or are 

inconsistent – for example, schizophrenia has been associated with increases, no 

changes, and decreases in Tregs across multiple studies (Corsi-Zuelli et al 2021). 

Slightly more consistently, schizophrenia has been associated with increases in the 

proportion of IL-17-producing CD4+ cells (Th17) cells, including in never-medicated 

patients with first episode psychosis, with the increase in Th17 cells corrected by 

antipsychotic treatment (Ding et al 2014, Drexhage et al 2011a). In another study, 

however, only patients with recent-onset psychosis/ultra-high risk for psychosis who 

also had a childhood trauma history showed increases in Th17 cells compared to 

controls (Counotte et al 2018).  

Stimulation: From experiments involving ex vivo stimulation, there is evidence of 

decreased T cell proliferative responses to stimulation, including in unmedicated 

patients (Craddock et al 2007, Matloubi et al 2007). There is also evidence of 

increased IFN-γ production from PBMCs stimulated either by the T cell mitogen PHA 

(Kozlowska et al 2019) or by anti-CD3/CD28 (mimicking TCR engagement by antigen 

presenting cells) (Sahbaz et al 2020). Another study stimulating PBMCs found an 

increase in PHA-stimulated IL-2, but not PHA-stimulated IFN-γ, in schizophrenia 

(Rapaport & Bresee 2010).  

Activation: There is also evidence that even unstimulated T cells are more activated 

in schizophrenia (as measured by CD25+ expression) (Sahbaz et al 2020), as well as 

histological evidence (based on cellular morphology) of increased activation of CSF 

lymphocytes in schizophrenia (Nikkila et al 2001).  
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Major 
depressive 
disorder 

Cell subsets: Depression has been associated with both decreased (Cai et al 2017, 

Zorrilla et al 2001) and unchanged (Demir et al 2015) lymphocyte counts, but PRS 

for depression has been associated with increased total lymphocyte counts (Sewell 

et al 2020). Depression has also been associated with increased CD4+ T cell counts 

(Chapter 2, this thesis) and increased CD4/CD8 ratio (Zorrilla et al 2001) as well as 

increased memory CD4+ T cell counts (Maes et al 1992a). Some patients with 

depression also show increased counts of CD8+ T cells and B cells (Chapter 2, this 

thesis; (Maes et al 1992a) and (Maes et al 1992b)). In terms of B cells, depression 

has been associated with reduced numbers of peripheral IL10-producing regulatory 

B cells in two small studies (Ahmetspahic et al 2018, Duggal et al 2016).  

Polarization: Associations between depression and T cell polarization states, e.g., 

Tregs and Th17 cells, have been inconsistent (Alvarez-Mon et al 2019, Grosse et al 

2016b, Hasselmann et al 2018, Jahangard & Behzad 2020, Patas et al 2018, Suzuki et 

al 2017).  

Stimulation: Following ex vivo stimulation of immune cells, there is meta-analytic 

evidence of decreased proliferative responses to the mitogens PHA, conA and PWM 

(Zorrilla et al 2001). There is also some evidence of decreased T cell IL-2 in MDD, 

with decreased production of IL-2 from PBMCs stimulated by the T cell mitogen PHA 

in MDD compared to control participants, including in unmedicated MDD patients 

(Lin et al 2018, Weizman et al 1994). Another study found that unmedicated MDD 

patients, compared to controls, showed increased proliferation of CD4+ T cells and 

decreased CD4+ T cell TGF-β production in response to stimulation with anti-

CD3/CD28; these findings were not observed in medicated patients (Jahangard & 

Behzad 2020).  

Mitochondrial dysfunction: Another strand of work on adaptive immunity in 

psychiatry has highlighted the potential role of T cell mitochondrial dysfunction in 

psychiatric symptoms. In a mouse model, chronic stress caused T cell-specific 

dysregulation of mitochondrial fusion and decreased T cell mitochondrial respiration 

and glycolysis; transfer of CD4+ T cells from stressed to non-stressed mice was 

sufficient to cause anxiety-like behaviour (Fan et al 2019). Mirroring this, a recent 

human study found that patients with depression also show reduced T cell 

mitochondrial respiration and glycolysis (Gamradt et al 2021).  
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Bipolar 
disorder 

Cell subsets: Bipolar disorder has been associated with increased lymphocyte counts 

(Munkholm et al 2018) and PRS for bipolar disorder has also been associated with 

an increased total lymphocyte count (Sewell et al 2020). Few studies have examined 

T or B cell subsets, but there is some evidence for increased CD4+ T cell proportions 

and decreased CD8+ T cell proportions in bipolar disorder (Barbosa et al 2014, 

Magioncalda et al 2018). 

Polarization: Similarly to MDD and schizophrenia, there are mixed results on 

frequencies of Tregs in bipolar disorder (Barbosa et al 2014, do Prado et al 2013, 

Drexhage et al 2011b). Bipolar disorder has been associated with either increased 

Th17 cells or no change in Th17 cells (Becking et al 2018, Drexhage et al 2011b, 

Magioncalda et al 2018, Poletti et al 2017). 

Proliferation: Bipolar disorder has also been associated (albeit in medicated 

patients) with decreased CD4+ T cell proliferation following stimulation of PBMCs 

with the T cell mitogen concanavalin A (Pietruczuk et al 2018). 

Activation: Bipolar disorder has been associated with increased frequencies of 

activated T cells as measured by CD25+ expression (Barbosa et al 2014, Breunis et al 

2003), but no change or decrease in T cell activation as measured by the early 

activation marker CD69 (Breunis et al 2003, Maes et al 2021). 

Autism Cell subsets: In contrast to schizophrenia, depression and bipolar disorder, autism 

has been reproducibly associated with a decrease in CD4+ T cell counts (Ellul et al 

2021), but no change in CD8+ T cell or B cell counts. 

Polarization: There is meta-analytic evidence that autism is associated with 

increased Th17 frequencies and decreased Treg frequencies (Ellul et al 2021).  

Stimulation: Following stimulation with the T cell mitogen PHA, children with autism 

compared to typically developing controls showed decreased expression of the 

activation markers CD134 and CD25 on T cells; decreased IL-12p40 production; and 

increased GM-CSF, TNFα, and IL-13 production (Ashwood et al 2011). Another study 

which activated T cells using a combination of staphylococcal enterotoxin B and 

anti-CD28 found an increase in IL-6-producing and IL-10-producing CD4+ and CD8+ T 

cells in children with autism (and their non-affected siblings) compared to controls, 

as well as an increase in stimulated CD4+ T cell IFN-γ production in children with 

autism compared to controls (Saresella et al 2009). 

Results on lymphocyte proliferative responses to stimulation have not been 

consistent: autism has been associated with both reduced (Stubbs & Crawford 1977, 
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Warren et al 1986) and increased (Ashwood et al 2011) proliferative responses to 

stimulation with the T cell mitogen PHA. 

Obsessive-
compulsive 
disorder 

There has been limited investigation of adaptive immune cell phenotypes in OCD-

spectrum disorders, but one study found, similar to autism, increased Th17 and 

decreased Treg cells in children and adolescents with OCD compared to controls 

(Rodriguez et al 2019). 

 

In addition to the investigations of adaptive immunity in specific disorders described in Table 

5-1, there have also been some cross-disorder studies of adaptive immune cell function. One 

such study focused on lymphocyte signalling responses to stimuli across patients with ASD, 

bipolar disorder, MDD and schizophrenia, as well as control participants (Lago et al 2020). The 

authors used high content screening to measure the responses of different lymphocyte subsets 

(CD4+ T cells, CD4- T cells and CD3- lymphocytes i.e., predominantly B and NK cells) to 

stimulation by 14 different antigens, using phospho-specific flow cytometry to measure the 

activation of 42 intracellular signalling epitopes in response to these antigens. Across the 

disorders, 25 lymphocyte signalling nodes (cell subtype–epitope–ligand combinations) were 

significantly associated with different disorders, with abnormalities in both T cell and B cell 

signalling. Interestingly, there was substantial overlap between findings across the different 

disorders, with a spectral distribution of abnormalities on a continuum from MDD to bipolar 

disorder to schizophrenia to ASD, supporting the idea of transdiagnostic adaptive immune 

abnormalities in psychiatry. There has also been a cross-disorder investigation of metabolic 

markers on adaptive and myeloid immune cells in which the authors used flow cytometry to 

examine the expression of metabolic surface proteins (glucose receptor 1, insulin receptor and 

fatty acid translocase) on different PBMC subsets across ASD, bipolar disorder, MDD and 

schizophrenia (Lago et al 2021). The authors demonstrated alterations in these proteins on T 

cells and monocytes in schizophrenia relative to controls, but such differences were not seen 

in other psychiatric disorders, or on B cells. Finally, in one histological study of T cells and B 

cells in post-mortem brains in (pooled) patients with schizophrenia, unipolar and bipolar 

depression, increased B cells and T cells were seen in the hippocampal/parahippocampal 

region in patients compared to controls, with the B cell increase more prevalent in patients 

with mood disorders than in schizophrenia (Bogerts et al 2017). 
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The observational studies summarized above show widespread evidence of abnormal adaptive 

immunophenotypes in psychiatry, but cannot address the question of whether any of these 

changes contribute to pathogenesis or symptoms. Considering these data in the context of our 

new results suggests that some of these findings may be pathogenically important and 

prompts a renewed focus on this area. For example, it may be that the abnormal Th17 and T 

cell activation phenotypes observed in psychiatric disorders are pathogenic and have a genetic 

contribution from common variants that increase the risk of psychiatric disorders. The 

numerous T cell stimulation/activation abnormalities summarised in Table 5-1 are especially 

tantalizing, given that our genetic analysis implicated stimulated T cells in the pathogenesis of 

multiple psychiatric disorders. Abnormal T cell responses to activation are thus strong 

candidates for being transdiagnostically pathogenic. How psychiatric risk variants 

mechanistically link to these observed T cell phenotypes will require further investigation, 

focusing on T cell activation phenotypes in participants with or without candidate risk variants 

(i.e., those psychiatric risk variants overlapping epigenetically active sites in T cells and/or close 

to genes involves in these processes). Our work also implicated other adaptive immune 

subsets, especially B cells, but the way forward here is less obvious, as there has been much 

less investigation of B cell phenotypes in psychiatric disorders (see again Table 5-1). However, 

given our findings of the effects of stress on regulatory B cells in the mouse model; the 

behavioural phenotype of mice with reduced regulatory B cells; and the prior literature 

showing reduced regulatory B cells in depression, dysfunction of regulatory B cells, with 

potential down-stream effects on both myeloid and T cell activation, may make a pathogenic 

contribution to psychiatric disorders. It would be interesting to investigate whether psychiatric 

risk variants are associated with altered regulatory B cell numbers or function in genetically 

stratified human studies. 
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5.3 Outstanding questions 

The work in this thesis raises numerous further questions. Some key areas for future enquiry 

are as follows: 

 

Can we identify and characterise pathogenic adaptive immune cell subsets and responses to 

antigen in psychiatric disorders?  

Our findings particularly motivate further investigation of T cell and B cell phenotypes across 

multiple psychiatric conditions. Functional genomic analysis of adaptive immune cell subsets 

from patient cohorts will be particularly important to directly test for disorder- or symptom-

associated alterations in DNA accessibility, histone modifications, enhancer-promoter 

interactions, gene expression, antigen receptor repertoire, and metabolic function. In terms of 

epigenetic profiles, we hypothesize that alterations will be found at those adaptive immune 

cell promoter/enhancer peaks identified in our analysis as overlapping psychiatric risk SNPs. 

However, there may be broader epigenetic consequences of risk variants, especially given that 

our pathway analysis of the genes near immune SNP-peak overlaps implicated epigenetic 

regulation processes; this epigenetic regulation may occur at genomic sites distant from the 

risk variants. 

 

A key aspect of adaptive immune function not investigated in this thesis is antigenic specificity 

and antigenic receptor repertoires. Both B cell and T cell activation depend on the antigenic 

specificity of the B cell receptor (BCR) and T cell receptor (TCR) respectively, with intra-

individual diversity in receptors generated by genetic rearrangement of receptor gene 

segments and (for BCRs) by somatic hypermutation, as well as by the nature of the antigen 

encountered, and the immunological context. Each T or B cell expresses a single receptor, and 

the range of receptors expressed across all immune cells in an individual is referred to as the 

repertoire. Regarding B cell receptors and immunoglobulin repertoires in psychiatry, 

investigations have focused on the presence of serum antibodies against specific antigens – 

there has been no broader molecular characterisation of B cell repertoires by BCR sequencing. 

Depression has been associated with increases in IgM antibodies against neoantigens 

generated by oxidative and nitrosative stress (Maes et al 2011) and an increased prevalence of 

anti-serotonin IgG/IgM antibodies (Maes et al 2012). In psychosis, a small proportion of 

patients have anti-NMDAR antibodies, with some evidence for pathogenicity of these (Jezequel 

et al 2017, Planaguma et al 2015), and some children with post-streptococcal neuropsychiatric 



 

 

186 

syndromes have antibodies against striatal antigens, again with some evidence for 

pathogenicity of these (Hyman 2021). In terms of TCR repertoires in psychiatry, there has been 

only limited analysis of these in some in small studies. Depression has been associated with a 

trend towards reduced CD4+ T cell receptor diversity (i.e. increased clonality) (Patas et al 

2018), and in schizophrenia, there is some evidence for altered TCR V gene usage (Li et al 

2018b) and for increased TCR repertoire diversity in a subgroup of patients (Luo et al 2021). 

The relationship between psychiatric phenotypes and antigen-specific responses is thus only 

beginning to be investigated. 

 

Identifying pathogenic immunophenotypes in psychiatry is interesting not only from a 

mechanistic perspective, but also with a view to clinical biomarker development. To date, a 

few immune biomarkers have been used for the majority of psychiatric studies. In particular, 

high sensitivity CRP assays are widely used but also an unsatisfactory choice given the non-

specificity of CRP as a marker of immunopathology, its confounding by many environmental 

and biological factors unrelated to psychiatry, and its temporal variability. Pathogenically-

relevant biomarkers of immune dysfunction could be used in clinical populations to guide 

treatment pathways, potentially predicting responses to both current and novel 

pharmacological therapies, and to non-pharmacological therapies. For example, patients with 

psychiatric symptoms associated with immunopathology may respond better or worse to 

certain psychological therapies (Strawbridge et al 2020), or to alternative therapies such as 

exercise (Paolucci et al 2018, Rethorst et al 2015), vagal nerve stimulation (Bremner et al 

2020), or treatment with probiotics (Nikolova et al 2021a, Park et al 2018) compared to 

patients without immunopathology. Immune biomarkers could also identify individuals at high 

risk of developing psychiatric symptoms. For example, biomarkers could be used to identify 

those exposed to severe stress or infection who are likely to develop psychiatric symptoms as a 

consequence, allowing preventative or early intervention. Our work suggests that adaptive 

cellular phenotypes may prove promising as biomarkers, and may be relevant trans-

diagnostically and I outline our suggestions for future studies aimed at pinning down 

immunopathological changes in adaptive immune cells in Section 5.4 below. However, even if 

a pathogenic immune cell subset or signalling pathway is identified, there will be considerable 

challenges in using this understanding to generate a practical and clinically useful biomarker. A 

cell subset specific marker requiring single cell technologies or cellular sorting to be detected 

would likely be prohibitively expensive, precluding its general use in psychiatry. Moreover, 
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many intracellular molecules (e.g., RNA and metabolites) begin to degrade within 

minutes/hours of blood sampling. The psychiatric hospitals and outpatient settings where 

psychiatric patients are usually assessed do not generally have the lab processing facilities 

necessary to rapidly process time-sensitive samples. Moving from a lab-based marker of 

immunopathology to a useable and cost-effective clinical marker which can serve as its proxy 

will thus require considerable further investigation and investment. 

 

What is the role of meningeal and brain adaptive immune cells in psychiatric disorders? 

The work presented in this thesis using a mouse model of stress, along with work from the 

Kipnis group on the contribution of meningeal T cells to behaviour, summarized in Section 

1.2.1, suggests an important role for meningeal immune cells in normal behaviour and the 

response to stress in rodents. Moreover, rodent models have also demonstrated that 

peripherally restricted infection or immunization can lead to the accumulation of long-term 

resident T cells in the brain (Urban et al 2020), although the contribution of these cells to 

sickness behaviour is unclear. Along with our genetic findings implicating adaptive immune 

cells, these data suggest that adaptive immune cells located in the brain and meninges may be 

important in the immunopathogenesis of psychiatric symptoms. However, the contribution of 

brain and meningeal immune cells to behaviour in humans remains unclear. Two post-mortem 

histology studies have shown increases in T cells and B cells in the hippocampus in 

schizophrenia and mood disorders compared to controls (Bogerts et al 2017, Busse et al 2012) 

and studies of immune cell counts in CSF have shown a shift of CSF cells from lymphocytes to 

monocytes in psychosis/schizophrenia (Nikkila et al 1999, Rauber et al 2021). There has 

otherwise been little investigation of adaptive immune cells in the meninges or brain in the 

context of behaviour or psychiatric symptoms in humans. While it is practically very difficult to 

access the meningeal immune system and brain in humans with psychiatric disorders, it will be 

crucial to investigate evidence for a contribution of adaptive meningeal/brain immunity to 

behaviour and to psychiatric illness in humans.  

 

Ultimately, it is unlikely that clinically used biomarkers will be based on meningeal, brain or CSF 

sampling for the majority of patients; in most countries, CSF sampling will not happen on a 

major scale in psychiatric services. Nonetheless, investigation of meningeal/brain 

immunophenotypes may highlight pathogenic cellular subsets which might then be detectable 

in the periphery with more focused immunophenotyping. Pathogenic cells trafficking to the 
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CNS via the blood will form only a small proportion of peripheral immune cells, but there is 

proof-of-concept evidence that such cells can be detected in the periphery: for example, in 

multiple sclerosis, a transcriptomic signature of a disease-associated CNS-homing CD4+ T cell 

subset which was identifiable in post-mortem brain tissue samples in multiple sclerosis could 

also be detected in immune cells from peripheral blood samples taken from living patients 

(Kaufmann et al 2021). Moreover, while neuroimaging of inflammation has to date focused on 

TSPO ligands (for which binding relates to microglial activation), there are multiple other PET 

ligands in development which will allow neuroimaging of other central immune targets (Meyer 

et al 2020), and methods for imaging meningeal inflammation continue to develop (Bhargava 

et al 2021). Magnetic resonance imaging (MRI) correlates of inflammation in psychiatric 

disorders – including functional MRI, magnetic resonance spectroscopy (a technique to detect 

tissue metabolites), and quantitative magnetization transfer (a microstructural marker of 

tissue composition) – are also activate areas of research and could potentially serve as proxy 

markers of CNS cellular immunopathology (Drevets et al 2022). These areas of ongoing 

innovation raise the prospect that neuroimaging biomarkers could be used to detect 

immunopathology initially observed in patient CNS tissue samples or predicted by translational 

models, but using more clinically accessible technology. 

 

How does immunopathology evolve during development and over the course of psychiatric 

illness?  

Practical considerations mean that both the human and animal work presented in this thesis 

focused on a single time point. The human flow cytometry study was an observational cross-

sectional study, and data from the mouse stress model focused on a timepoint 11-12 days 

after the onset of chronic stress. In the future, it will be important to investigate the dynamics 

of the immune response to stress, and how immunopathology evolves over the course of 

psychiatric disorders. For example, in the human flow cytometry study, we identified several 

subgroups of inflamed depression. It is unclear whether these represent pathologically distinct 

disease processes, or whether these represent different phases of the same pathological 

process, and we are simply sampling the process at different points in its evolution. 

Longitudinal data will be needed to resolve this question in future. 

 

Most psychiatric disorders have their onset in childhood, adolescence or early adulthood 

(Solmi et al 2021). However, there has been little investigation into immune-brain interactions 
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over the course of development. The investigations presented in this thesis likewise focused on 

mature humans and mice, and drew on epigenetic datasets primarily generated from adult 

participants, as there were no suitable developmental immune epigenetic datasets to 

interrogate. If risk factors for psychiatric conditions such as in utero infections, childhood 

infections, maternal stress and early life stress are to contribute to immunopathogenesis in 

psychiatric disorders, it is the responses of immune cells at the developmental stage of the 

insult which will likely be most relevant to pathogenesis. Thus, an understanding of 

immunopathogenesis in psychiatry will require a deeper characterisation of the normal 

development of the immune system and its interactions with the brain during gestation, 

childhood and adolescence, as well as investigations into how these interactions are disrupted 

following developmental insults and during the emergence of psychiatric symptoms. There is 

evidence from animal studies that both B cells and T cells are crucial for normal brain 

development, with important effects on oligodendrocyte and microglial development, and on 

synaptic pruning (Pasciuto et al 2020, Tanabe & Yamashita 2018). Thus atypical T or B cell 

activity during development could lead to the disrupted brain connectivity and white matter 

alterations seen in schizophrenia and other psychiatric disorders (Koshiyama et al 2020, 

Morgan et al 2019), motivating further investigation of the developmental role of the adaptive 

immune system in the emergence of psychiatric symptoms. As above, understanding how 

psychiatric immunopathology develops will require longitudinal data. 

 

An understanding of how immunopathology emerges during development and in adulthood 

will necessarily include analyses of how risk factors for psychiatric disorders affect the immune 

system and its interactions with the brain. Multiple risk factors and environmental insults (as 

outlined in   
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Table 1-5) are associated with the inflammatory changes characteristic of psychiatric disorders, 

as most simply conceived, i.e., increases in pro-inflammatory cytokines, acute phase reactants 

and increased peripheral immune cell counts. However, such immune markers are highly non-

specific and cannot be attributed to dysfunction of any particular immune cell subset without 

further investigation. It will be particularly interesting to investigate whether there is any 

convergence of the effects of these risk factors onto a shared cellular immunopathology 

upstream of (and preceding) psychiatric symptoms. It is also unclear why some people, but not 

others, exposed to a particular insult (e.g., a stressor or an infection) show prolonged 

inflammatory changes and behavioural susceptibility to its effects. One explanation for this is 

genetic susceptibility, i.e., gene-environment interactions. In the future, it will be crucial to 

understand what contribution genetics makes to our immunological and behavioural 

susceptibility to such insults. 

 

Does immunopathology disrupt conventional psychiatric nosology? 

Our current diagnostic symptoms draw a line between idiopathic psychiatric disorders and 

psychiatric disorders in the context of, or secondary to, medical disorders. For example, 

according to both the Diagnostic and Statistical Manual of Mental Disorders, fifth edition 

(DSM-V) and the International Classification of Diseases, tenth edition (ICD-10), the diagnosis 

of MDD (or for ICD-10, a depressive episode) is only to be applied to patients in whom there is 

no causative organic pathology. ICD-10 suggests a separate diagnosis of ‘organic depressive 

disorder’ if the symptoms are thought to be a consequence of ‘cerebral disease, damage or 

dysfunction, or of systemic physical disorder known to cause cerebral dysfunction, including 

hormonal disturbances’ and DSM-V excludes a diagnosis of MDD if there is ‘evidence from the 

history, physical examination, or laboratory findings that the disturbance is the direct 

pathophysiological consequence of another medical condition’. Evidence of immunopathology 

in patients ostensibly with idiopathic psychiatric disease, as we describe in Chapter 2, is 

particularly disruptive to this traditional, but arbitrary, division into ‘organic’ and ‘non-organic’ 

psychiatric disorders. The evidence now suggests that immunopathology may contribute to 

symptoms both in the context of medical comorbidity and in patients without comorbidity. 

 

At the cellular level, it remains unclear to what extent the immunopathology of psychological 

symptoms without medical comorbidity overlaps with immunopathology driving such 

symptoms in the context of medical comorbidity, e.g., rheumatoid arthritis or multiple 
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sclerosis. This lack of clarity is in part because studies tend to either exclude participants with 

medical comorbidity (necessarily so if a study focuses on the diagnostic category of MDD), or 

do not ascertain detail on medical comorbidities, or are not adequately powered to investigate 

patient subgroups with or without different comorbidites. Immunophenotypes can be 

compared across different studies, but the variation in assays, clinical phenotyping instruments 

and experimental paradigms used make this difficult. Nonetheless, there is some evidence of 

both shared and distinct cellular immunopathology between depression associated and not 

associated with medical comorbidity. For example, depression in the context of multiple 

sclerosis has been replicably associated with decreased CD4+CCR7low T central memory cells 

and – unlike our findings in Chapter 2 – not associated with higher lymphocyte counts, but – in 

keeping with our findings in idiopathic depression – associated with increased classical 

monocytes (Brasanac et al 2021).  

 

A second way in which our findings disrupt conventional psychiatric nosology is in the finding 

that adaptive immune cells are implicated in the pathogenesis of multiple psychiatric 

disorders. If a given pathological process contributes to multiple disorders, patients with 

markedly different phenotypic presentations may benefit from a similar immune-targeting 

treatment approach, and this would open the door to immunologically-defined diagnoses in 

psychiatry, in stark contrast to our current symptom- and behaviour-based categories. 

Alternatively, these adaptive immune responses may differ across disorders – e.g., they may be 

antigen specific, with differing antigens triggering them in different disorders – and thus 

require different immunomodulatory treatment strategies.   

 

Mechanistically, there are several (non-mutually exclusive) ways that a given 

immunopathology might contribute to multiple psychiatric disorders. Firstly, it may be that a 

given immunopathology is frequently shared across disorders, but that the symptoms 

presented depend on the individual’s brain circuitry, with immunopathology lowering the 

threshold for whatever symptoms an individual is predisposed to express. Under this 

hypothesis, immune dysfunction could additively raise the risk of multiple psychiatric 

disorders, leading to clinical presentation of whichever psychiatric condition the immune-

perturbed individual has the greatest baseline risk for (due to other genetic or environmental 

factors). Secondly, a given immunopathology could drive specific symptoms – for example, 

fatigue, anhedonia or altered sleep – and thus contribute to that symptom in a range of 
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different clinical presentations, ranging from depression to schizophrenia to psychological 

symptoms in the context of multiple sclerosis or neurodegenerative conditions. Thirdly, it may 

be that there is substantial heterogeneity in the immunopathology driving even one symptom 

or disorder, and that there are multiple distinct immunopathologies to be discovered. For 

example, low mood could be driven by either stress-induced meningeal monocytic infiltration, 

or by aberrant T cell activation and signalling to the vagus nerve, and we would need to 

perform laboratory investigations in each individual patient to determine which 

immunopathology was contributing to symptoms in that individual. Under this third model, an 

understanding of immunopathology in psychiatry becomes substantially more challenging, as 

studies of very large numbers of patients will be needed to tease apart the immune 

heterogeneity of psychiatric symptoms. The work presented in Chapter 2 on the 

immunopathology of depression, which demonstrated multiple clusters of patients with 

inflamed depression, suggests that there may indeed be substantial heterogeneity of 

immunopathology in psychiatry.  

 

In summary, our work, and immunopsychiatry more broadly, challenge both the organic / non-

organic divisions used in our diagnostic criteria, and the individual disorder categories 

themselves. If immunopsychiatry is to lead to new diagnostic tools and treatment approaches, 

these will need to be developed and offered in a way that goes against the grain of current 

clinical approaches and cuts across often-siloed mental and physical healthcare settings. 

Moreover, such approaches will not intersect easily with current DSM/ICD diagnosis-based 

approval processes for novel treatments. Ensuring that patients benefit from our scientific 

findings will thus require considerable innovation both at the scientific level, and on a political 

and organizational level. 

 

5.4 Key future approaches 

Multiple approaches will be needed to address the challenges above, including innovations in 

both study design and in the immune endpoints measured. 

 

5.4.1 Study design 

Addressing the questions above will require longitudinal cohort studies which collect 

information on genetics, immunophenotypes, psychiatric symptoms and the exposome, with 
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the exposome broadly conceived to include pre- and peri-natal insults, developmental insults, 

and adult exposures, encompassing information about psychological, immunological and 

environmental exposures. Findings from existing cohort studies and animal models have 

emphasized the importance of collecting information on even very early (including prenatal) 

exposures (e.g., parental smoking) that are potentially correlated with stress or immune 

exposures: such exposures can have substantial and long-lasting effects on outcomes such as 

immune cell phenotypes and epigenetic profiles that will need to be disentangled from the 

effects of more recent exposures (Ladd-Acosta & Fallin 2019, Noor & Milligan 2018, Richmond 

et al 2018). It will be particularly important that cohort studies collect information on how the 

immune system and brain develop in tandem during foetal development, childhood and 

adolescence. 

 

If there is indeed transdiagnostic immunopathology in psychiatry, as our work suggests, this 

further emphasizes the importance of clinical studies which recruit not on the basis of 

diagnoses, but by either population sampling; by cross-disorder sampling; or by sampling 

based on exposures (e.g., to infection or stress). In terms of genetic research, there is a strong 

body of transdiagnostic research in psychiatric genetics (Cross-Disorder Group of the 

Psychiatric Genomics Consortium 2019, Lee et al 2021). However, there are currently no 

inflammation-stratified genome-wide association studies in psychiatry, meaning that in current 

GWAS results, any immunogenetic signals will be diluted by signals from patients for whom the 

immune system does not contribute genetic risk. In future work, it will be important to 

investigate the genetic variants specifically associated with inflammation in psychiatric 

disorders. 

 

5.4.2 Immunophenotyping 

As discussed above, our mouse and human work motivates the further investigation of cellular 

(especially adaptive) immunophenotypes in patient groups. Deeper immunophenotyping could 

either serve as novel endpoints in traditional DSM case-control designs, or form part of the 

longitudinal cohort or transdiagnostic study designs described above. A major difficulty will be 

in deciding which cellular phenotypes or ‘omic’ technologies to prioritise in future 

immunophenotyping studies. Our genetic work highlighted the potential importance of histone 

marks of enhancer activity as a starting point for investigation in clinical cohorts, but this is 

partly a function of the datasets that were available for analysis. It is unclear whether cellular 



 

 

194 

proteomics, transcriptomics, methylation, chromatin accessibility, histone marks, 

metabolomics or some combination of these will be most informative. Another consideration 

for future clinical studies is the use of single cell technologies. As highlighted by the single cell 

analysis of mouse meninges presented in this thesis, single cell RNA sequencing has 

considerable advantages over bulk RNAseq in allowing detection of cell-subset specific changes 

in gene expression. More generally, single cell approaches have the advantages that they allow 

the detection of novel pathology-associated cell subsets; omic data in multiple cell subsets can 

be assayed simultaneously; the heterogeneity of omic data across different cells can be 

analysed; patterns of covariation in omic data can be explored at the single cell level; and 

results are not confounded by differences in the cellular composition of samples between 

patients and controls. Single cell technologies also have significant limitations: lowly-expressed 

genes (including many cytokines) are not easily detected; the technology is expensive 

(necessarily reducing sample size); and current methods used for library preparation generate 

batch effects which can be difficult to correct for. Because of the relative strengths and 

limitations of bulk and single cell analyses, future approaches to immunophenotyping in 

psychiatry will likely be most successful if they take complementary approaches using both 

single cell technologies as well as bulk analyses of separated immune cell subsets.  

 

A key feature of adaptive immunity that we did not investigate is how stress and psychiatric 

phenotypes relate to antigenic receptor repertoires. TCR and BCR sequencing and analysis will 

allow in-depth investigation of this important aspect of adaptive immune function, and 

potentially prediction of the epitopes (i.e., the fragments of exogenous or endogenous 

antigens which bind to a TCR or BCR to generate a T or B cell response) which drive abnormal 

adaptive immune phenotypes in psychiatry, if such epitopes exist (Joglekar & Li 2021, 

Teraguchi et al 2020). 

 

Our genetic results suggest that some of the immunophenotypes linked to genetic risk for 

psychiatric disorders may only be revealed under stimulation conditions. It will thus be 

important to assay stimulated immunophenotypes in patients with psychiatric disorders, with 

stimuli ranging from in vivo paradigms such as stress or vaccination to in vitro paradigms such 

as exposure of immune cells to stress hormones, pathogen-associated molecular patterns, or 

cytokines, using paradigms similar to those described in Table 5-1, but in larger cohort studies, 

and with a trans-diagnostic focus. Linked to this, by highlighting ‘poised’ or primed genetic 
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elements in unstimulated cells which can predict subsequent transcriptomic responses to 

stimulation (e.g., (Provencal et al 2020)), epigenetic analysis of immune cells may offer a proxy 

method to detect stimulation-related phenotypes in patient populations while avoiding the 

practical difficulties associated with implementing stimulation assays at scale or as part of 

clinical care. 

 

As discussed, there has been very limited investigation of the CNS immune compartment in 

humans with psychiatric disorders. While practically difficult, it will be crucial to investigate the 

function and phenotypes of immune cells in the meninges and brain in order to better 

understand the role of the immune system in psychiatric symptoms. Such studies could include 

both post-mortem investigations of meningeal and brain immune cells, and studies of CSF 

immune cell phenotypes in live patients. These investigations should ideally be designed to 

allow paired analyses of immune cells in the CSF and periphery, so that the (more clinically 

useful) peripheral immune correlates of any central immune dysfunction can be identified, if 

possible. 

 

5.5 Conclusions 

I used human and animal models to uncover novel cellular immunophenotypes associated with 

depression and stress in the periphery and meninges. This work, along with the transdiagnostic 

genetic analyses presented, generated clear hypotheses about the immune cells likely to 

causally contribute to psychiatry symptoms, highlighting especially the importance of adaptive 

immune cells.  

 

The new results presented in this thesis support the existence of trans-diagnostic adaptive 

cellular immunopathology, and, importantly, further suggest that this cellular 

immunopathology is likely to causally contribute to symptoms. These findings motivate a 

precision medicine approach to diagnosis and treatment, but one based not on the categorical 

diagnoses traditionally associated with psychiatry, but on trans-diagnostic immune biomarkers. 

Taken in concert with a growing understanding of trans-diagnostic effects in psychiatry beyond 

the immune system, this work poses a challenge to traditional approaches to psychiatric 

assessment, nosology and treatment. Incorporating our emerging neuroscientific and 
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immunopsychiatric understanding of disease pathogenesis into clinical practice will require a 

wholescale revision of our approach to patient investigation and care.   
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