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Abstract

Thermoacoustics is a branch of fluid mechanics, and is as such governed by the conservation
laws of mass, momentum, energy and species. While computational fluid dynamics (CFD)
has entered the design process of many applications in fluid mechanics, its success in
thermoacoustics is limited by the multi-scale, multi-physics nature of the subject. In his
influential monograph from 2006, PROF. FRED CULICK writes about the role of CFD in

thermoacoustic modeling:!

The main reason that CFD has otherwise been relatively helpless in this subject is
that problems of combustion instabilities involve physical and chemical matters
that are still not well understood. Moreover, they exist in practical circumstances
which are not readily approximated by models suitable to formulation within
CFD. Hence, the methods discussed and developed in this book will likely be

useful for a long time to come, in both research and practice.

[...] It seems to me that eventually the most effective ways of formulating predic-
tions and theoretical interpretations of combustion instabilities in practice will
rest on combining methods of the sort discussed in this book with computational

fluid dynamics, the whole confirmed by experimental results.

Despite advances in CFD and large-eddy simulation (LES) in particular, unsteady simulations
for more than a few selected operating points are computationally infeasible. The ‘methods
discussed in this book’ refer to reduced-order models of thermoacoustic oscillations. Whether
intentional or not, the last sentence anticipates the advent of data-driven methods, and
encapsulates the philosophy behind this work.

This work brings together two workhorses of the design process: physics-informed
reduced-order models and data from higher-fidelity sources such as simulations and ex-
periments. The three building blocks to all our statistical inference frameworks are: (i) a
hierarchical view of reduced-order models consisting of states, parameters and governing

equations; (i1) probabilistic formulations with random variables and stochastic processes; and

! Culick, Fred: Unsteady Motions in Combustion Chambers for Propulsion Systems. NATO Research and
Technology Organisation, 2006.
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(111) efficient algorithms from statistical learning theory and machine learning. While leverag-
ing advances in statistical and machine learning, we demonstrate the feasibility of Bayes’
rule as a first principle in physics-informed statistical inference. In particular, we discuss
two types of inverse problems in thermoacoustics: (i) implicit reduced-order models repre-
sentative of nonlinear eigenproblems from linear stability analysis; and (i1) time-dependent
reduced-order models used to investigate nonlinear dynamics. The outcomes of statistical
inference are improved predictions of the state, estimates of the parameters with uncertainty
quantification and an assessment of the reduced-order model itself.

This work highlights the role that data can play in the future of combustion modeling
for thermoacoustics. It is increasingly impractical to store data, particularly as experiments
become automated and numerical simulations become more detailed. Rather than store the
data itself, the techniques in this work optimally assimilate the data into the parameters of
a physics-informed reduced-order model. With data-driven reduced-order models, rapid
prototyping of combustion systems can feed into rapid calibration of their reduced-order
models and then into gradient-based design optimization. While it has been shown, e.g. in
the context of ignition and extinction, that large-eddy simulations become quantitatively
predictive when augmented with data, the reduced-order modeling of flame dynamics in
turbulent flows remains challenging. For these challenging situations, this work opens up
new possibilities for the development of reduced-order models that adaptively change any

time that data from experiments or simulations becomes available.

The reader in mind is a scientist or engineer with an interest in data-driven methods. For
readers mostly interested in the results, we provide references to our ideally more self-
contained publications where available. For the more methodological chapters, we provide
JUPYTER notebooks so that inclined readers are able to familiarize themselves with the
statistical and numerical concepts of this work. They are either available on GITLAB? for
download or as a BINDER? executed within the browser. More information on JUPYTER

notebooks are found online.*

Zhttps://gitlab.com/hyu/phd-thesis-tutorials
3https://mybinder.org/
“https://jupyter-notebook.readthedocs.io/en/stable/
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Chapter 1
Thermoacoustics

This chapter is a literature review of thermoacoustics with an emphasis on reduced-order
models. In Chapter 1.1, we discuss the progress and interplay between theoretical models,
computational methods and experimental techniques. We give an outline of the thesis based
on this idea. In Chapter 1.2, we provide an overview of reduced-order models beyond
computational fluid dynamics. In Chapter 1.3, we discuss existing tools that elucidate the
role of parameters in reduced-order models. This sets the stage for the so-called inverse
problem, a statistical perspective on reduced-order modeling, which is introduced in the next
chapter (Chapter 2).

1.1 Thermoacoustic modeling

Thermoacoustic oscillations (also known as combustion instabilities) are a persistent chal-
lenge in the design of jet and rocket engines [1, 2]. They arise inside combustion chambers
from various interactions between flames, sound and the flow, leading to structural damage
in the worst case. They must not occur during operation under any critical circumstances,
and thus have to be mitigated at the design stage. An example of the costs associated with
the inability to mitigate thermoacoustic oscillations is given by the development of the F-1
engine for the SATURN V rocket, which required more than 3,200 full-scale tests, 2,000 of
which were to eliminate thermoacoustic oscillations [2]. Even today, the onset of thermoa-
coustic oscillations is difficult to predict, and their existence holds back the exploration of
favorable operating regimes in gas turbine engines. Robust prediction would pave the way
for the development of engines with higher performance, lower emissions and less noise.
While the notoriety of thermoacoustic oscillations began in the middle of the twentieth

century with the invention of jet and rocket engines due to their high energy densities, the
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phenomenon had already been observed by artisans and experimentalists in the beginning of
the nineteenth century [3, 4]. LORD RAYLEIGH gave an explanation in as early as 1878 [5]:

If heat be periodically communicated to, and abstracted from, a mass of air
vibrating (for example) in a cylinder bounded by a piston, the effect produced
will depend upon the phase of the vibration at which the transfer of heat takes
place. If heat be given to the air at the moment of greatest condensation, or
taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or

abstracted at the moment of greatest condensation, the vibration is discouraged.

While the so-called Rayleigh criterion has since then been formalized and extended, the
physical explanation still holds true today [6-8].

With a physical explanation of the interaction between flames and sound as well as the
governing equations of reacting flows at our disposal, this raises the question as to why the
reliable prediction of thermoacoustic oscillations remains so elusive. When viewed through
the lens of scientific inquiry, the scientific method encounters practical challenges at each
step (Fig. 1.1):

Theory. A fully resolved simulation of the governing equations of fluid mechanics, also
known as direct numerical simulation (DNS), including turbulence, combustion and
acoustics is computationally infeasible for industrial applications [9]. Therefore, ap-
proaches based on computational fluid dynamics (CFD) filter the governing equations
according to physical length and time scales, whose a-priori identification is challeng-
ing even if only a subset of possibly interacting physical mechanisms is considered,
e.g. aeroacoustics, gas dynamics, multi-phase flow, turbulent combustion or combus-
tion noise [10-16]. In simulations based on the Reynolds-averaged Navier-Stokes
(RANS) equations, the unsteadiness due to turbulence is removed by applying time or
ensemble averaging and modeling the resulting Reynolds stress tensor. Despite their
shortcomings for transient flows, RANS simulations are still considered state-of-the-art
for industrial applications as a compromise between accuracy, performance and ease
of use [17-19]. In large-eddy simulations (LES), low-pass filters are applied so that
only the sub-grid scales require modeling. While the higher resolution compared
to RANS simulations makes LES more suitable for targeting complex geometries,
detailed chemistry and transient behavior, computational time and cost compared to
non-CFD approaches hinder their widespread adoption in industry [20-22]. Non-CFD
approaches are reviewed in the next section (Chapter 1.2). In summary, both CFD and
non-CFD approaches to thermoacoustics are not only governed by first principles but

represent reduced-order models with closures.
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Prediction. The vision of computational fluid dynamics, and DNS in particular, is expressed
in a two-hundred year old thought experiment popularly known as Laplace’s demon
[23, Chapter 2]:

We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know
all forces that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to submit these
data to analysis, it would embrace in a single formula the movements of the
greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would

be present before its eyes.

In reality, predictions are compromised by a practical lack of access to governing
equations as well as initial and boundary conditions. Instead, a reduced-order model
is used, whose parameters are necessarily not universal constants but are based on
scaling arguments and fitted from laboratory experiments. For example, turbulence
closures based on eddy viscosity rely on parameters such as Prandtl mixing length,
static and dynamic Smagorinsky constants or others, whose values are chosen accord-
ing to the flow configuration [24, Chapters 8 to 13]. In LES of flame dynamics and
thermoacoustics, it has been observed that predictions strongly depend on the choice
of boundary conditions [25-27]. For acoustic boundary conditions, the widely used
choice of numerically non-reflecting boundary conditions requires relaxation in order
to predict realistic levels of resonance [25]. For thermal boundary conditions, widely
used choices including (i) constant-temperature (Dirichlet), (i1) adiabatic (Neumann)
and (ii1) heat-transfer (Robin) formulations are outperformed in predicting frequency
and amplitude of the unstable mode by LES coupled with conjugate heat transfer
[27]. In general, systematic investigations into the impact of model parameters on the
predictions provide useful insight into the reduced-order model: Predictions which
depend too strongly on the choice of model parameters in order to achieve accept-
able accuracy call into question the validity of the reduced-order model in the first
place. Both quantitative and qualitative methods for understanding the role of model

parameters are reviewed in the last section of this chapter (Chapter 1.3).

Validation. The degree to which a reduced-order model is validated is limited by the
accuracy and precision of the corresponding experiment. In thermoacoustics, the

following two reasons complicate the acquisition of high-quality data [2]:
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1. It is very difficult to take detailed measurements of the internal flow inside

combustion chambers due to the high pressures and temperatures.

2. The physical mechanisms involved in thermoacoustic oscillations, including
turbulent combustion, acoustics and spray dynamics, are potentially numerous
and highly unsteady.

In particular, there are difficulties associated with the (simultaneous) measurements
of unsteady quantities such as fluctuating heat release rates, growth rates in the un-
steady case as well as spatial distributions of gas and wall temperatures. The results
are incomplete, inaccurate or imprecise data. Low-quality data poses a significant
challenge, both for the scientific method with humans in the loop and data-driven
methods automatically executed by machines.

(Formulate hypothesis.)
Build model.

(Make prediction.) (M‘)dify hYPOtheSiS-)

<Compare prediction to experiment.

Fig. 1.1 The scientific method ideally follows three steps: (i) In a theory step, a mathematical
model is derived based on a hypothesis. (i1) In a prediction step, the model is solved, either
analytically or numerically. (iii) In a validation step, the outcome of an experiment informed
by the hypothesis is compared to the model prediction. The three steps of the scientific
method form a feedback loop: If the model and the experiment do not sufficiently agree, the
hypothesis is modified and the procedure is repeated.

In summary, (i) reduced-order models, (ii) predictions based on the reduced-order models
as well as (iii) experiments to validate the reduced-order models all fail to offer the highest
level of resolution due to various constraints. This hinders scientists and engineers in

fully understanding the behavior of the system under investigation. The aim of this work
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is to develop frameworks that rigorously combine the imperfect information from theory,
computation and experiment in order to enable objectively more accurate and trustworthy
predictions. Therefore, we adopt the abstract viewpoint of solving so-called inverse problems,
which are introduced in the next chapter and formulated in the language of probability theory
and statistics (Chapter 2). In Parts II and III, we explore two classes of thermoacoustic
models and formulate the inverse problems, respectively. In Part IV, we summarize the

results and provide an outlook for the statistical perspective on thermoacoustic modeling.

1.2 Reduced-order models

For this literature review, we distinguish between reduced-order models of thermoacoustics
in the linear and nonlinear regimes, respectively. The linear regime describes the onset of
the thermoacoustic oscillations, and is characterized by exponential growth in amplitude.
The nonlinear regime describes thermoacoustic oscillations with saturated amplitude, and
exhibits varying degrees of nonlinear dynamics. This distinction between linear and nonlinear
dynamics is a common approach to flow instabilities [28, Chapter 1].

In the linear regime, we begin by linearizing the governing equations of fluid mechanics.
In the simplest form, the linearized governing equations for momentum and energy in one

dimension become [29]

du;  dpr
Pogrtor =0 (1.1
api duy

where the density is denoted by p, the velocity in the x-direction by u, the pressure by p, the
ratio of specific heats by y and the heat release rate by g. The subscript indices denote the
order of perturbation. Combining Eq. (1.1) and (1.2), we obtain

dq

=(r- )7 : (1.3)

82Pl 232P1

c
ot? 0 9x2

where ¢ = \/W denotes the speed of sound. Eq. (1.3) is a wave equation, which elucidates
the acoustic nature of Eq. (1.1) and (1.2). Depending on the assumptions, more general
wave equations are derived, for example including indirect noise due to entropy, vorticity or
composition fluctuations [30-32]. For illustration purposes, we continue to refer to Eq. (1.1)
and (1.2) throughout this section as their salient features are representative of analysis in the
linear regime [29].
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The heat release rate g1 in Eq. (1.2) encompasses the complex interaction between flames,
sound and the flow, and therefore requires closure. In the simplest case, the closure assumes
the form of an n-7 model [33, Chapter 1]:

q1(x,t) =nuy(x,t — 1) (1.4)

where n denotes the interaction index, and 7 denotes the time delay. Physically speaking,
the flame is treated as a black box with u; as input and ¢; as output. Alternatively, the
relationship between u; and ¢ is represented by a flame transfer function, where a gain
and a phase are recorded at each forcing frequency [34-36]. This corresponds to a Fourier
transform of the n-7 model where n and T become functions of forcing frequency. Various
extensions are possible: In a flame transfer matrix, the flame as a black box has multiple
ports, e.g. for u; and p;, compared to the n-7 model which has a single input port for u;
[37]. In a flame describing function, gain and phase are not only functions of forcing
frequency but also of amplitude [38—42]. This extension to the flame transfer function
describes nonlinear phenomena such as saturation, bistability and hysteresis. In general,
thermoacoustic oscillations in the linear regime are sufficiently well described by linear
acoustics, i.e. linear in the acoustic pressure pi, but require a nonlinear model for the heat
release rate, e.g. nonlinear in the time delay 7 [43].

Linear stability analysis of Eq. (1.1) and (1.2) requires the treatment of a nonlinear eigen-
problem! [28, Chapter 2]. The three principal tools in thermoacoustics for the derivation of
these eigenproblems are (i) traveling waves, (i1) Galerkin modes and (iii) Helmholtz modes
[29, Tutorial 1]. Traveling waves are characteristics of the linearized governing equations
subject to jump and boundary conditions [44, Chapter 11]. For acoustic elements of constant
cross section with homogeneous mean flow, the computation of the characteristics is straight-
forward. Industrial applications with complex geometries are modeled as thermoacoustic
networks, i.e. series of acoustic elements [45]. The jump conditions between the acoustic ele-
ments are derived from the linearized Euler equations. The forward- and backward-traveling
waves are reflected according to the boundary conditions, and form standing waves that grow
or decay in time. The eigenvalues of the thermoacoustic network, i.e. the growth rates and
frequencies of the standing waves such that all jump and boundary conditions are satisfied,
are found iteratively using shooting methods [46, Chapter 4]. Galerkin modes project the
solution to the linearized governing equations onto a vector space formed of acoustic modes

[47]. The partial differential equations become an initial value problem, i.e. a set of ordinary

! Nonlinear eigenproblems are nonlinear in the eigenvalue but linear in the eigenvector. A nonlinear
eigenproblem in thermoacoustics arises when there is a time delay between the heat release rate g; and the
acoustic pressure p; or the acoustic velocity u;.
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differential equations in time. In practice, Galerkin modes are difficult to compute for at
least two reasons [48]: Firstly, it is not trivial to construct a basis for the vector space unless
the acoustic boundary conditions are trivial, e.g. open or closed ends. Secondly, the mode
shape of the thermoacoustic oscillation is not necessarily well approximated by acoustic
modes, depending on the activity of the flame. Helmholtz modes are the Laplace transform
of the solution to the linearized governing equations [48]. The partial differential equations
become a boundary value problem, i.e. a set of partial differential equations in space but not
in time. Numerical methods to solve the resulting large nonlinear eigenproblems are based
on fixed-point iteration and Krylov solvers [48]. In annular combustion chambers which
exhibit a discrete rotational symmetry, it is sufficient to simulate a single burner section if
Bloch-periodic boundary conditions are used in the azimuthal direction [49]. Treatment of
nonlinear eigenproblems as inverse problems is the subject of Part II.

In the nonlinear regime, linear stability analysis is extended by weakly nonlinear stability
analysis [28, Chapter 5]. For example, an autonomous dynamical system in one dimension is

given by the ordinary differential equation

dx
7= (1.5)

In a linear stability analysis, the right-hand side is linearized around a fixed point xg with

f(xo) = 0:

dx df

— — . 1.6

& e, (x=%0) (1.6)
If (the real part of) df/dx is negative, the fixed point xg is linearly stable. If (the real
part of) df/dx is positive, the fixed point xq is linearly unstable. In a weakly nonlinear
stability analysis, the right-side is expanded into a higher-order polynomial. For example,

the third-order expansion

dx 3

— ~Xx— 1.7

q S (1.7)
has two linearly stable fixed points at x = 1 and x = —1 as well as one linearly unstable
fixed point at x = 0. However, the basin of attraction switches from x = —1 tox =1 or

vice versa whenever a perturbation causes x to switch signs. This serves as a prototype for
thermoacoustic bistability, a phenomenon exacerbated by the presence of non-normal modes
with transient growth and triggering [50-52].

Alternatively, the nonlinear regime is observed in time series obtained by numerical
integration of reduced-order models, e.g. using the G-equation. The G-equation is a kinematic
description of premixed flames with prescribed velocity fields [53, 39]. It generates realistic

flame transfer functions and flame describing functions [35, 36, 54-56]. When coupled with
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a simple representation of the acoustics, e.g. one-dimensional Galerkin modes, the reduced-
order model reproduces period doubling, quasiperiodicity and chaos [57]. The time-accurate
calculation of the G-equation is discussed in detail in Part III. While thermoacoustic chaos
has been observed in both laboratory experiments and industrial applications, thermoacoustic
limit cycles characterized by an amplitude and a frequency are most relevant in practice
[58—60]. Limit cycles, even the unstable ones, are efficiently identified with continuation
methods and visualized in phase portraits [61, 62]. Their stability is determined by Floquet
analysis, which is the equivalent to linear stability analysis for fixed points [63, Chapter 8].
More generally, the stability of a dynamical system is determined by covariant Lyapunov

vector analysis [64].

1.3 Model parameters

Model parameters, as opposed to universal constants or design parameters, introduce con-
siderable uncertainty into reduced-order models. In thermoacoustics, a model parameter
particularly prone to uncertainty is the time delay 7 (Eq. (1.4)). It is an amalgamation of
different intricate physical mechanisms, e.g. injection, atomization, vaporization, mixing
and reaction in the case of a liquid propellant [65]. As such, it is extremely sensitive to the
operating conditions of the combustion chamber. In turn, the onset of thermoacoustic oscilla-
tions shifts according to the Rayleigh criterion as the time delay affects the phase between
fluctuations in heat release rate and pressure [33, Chapter 1]. While extreme sensitivity is
potentially exploited in the design and control of combustion chambers, all reduced-order
models short of DNS suffer from the corresponding uncertainty [29].

We attribute the uncertainty in reduced-order models to two sources [66]:

Parametric uncertainty. The quantification of parametric uncertainty starts from the as-
sumption that the reduced-order model and its parametrization are perfectly valid over
the entire design space. Then, the values of the model parameters are estimated from
laboratory experiments. The confidence in their values depends on the precision of
the noisy data. Parametric uncertainty falls under the category of aleatoric uncertainty,
also known as statistical error [67]. Although the exact values of the model parameters
are unknown, there is no doubt that they are well defined and obtainable to arbitrary

precision in the limit of infinite, accurate data.

Structural uncertainty. Structural uncertainty goes further than parametric uncertainty, and
questions the validity of the reduced-order model itself. Even if the model parameters

are estimated to arbitrary precision, structural uncertainty exists if there is significant
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bias between predictions made by the reduced-order model and experimental mea-
surements. In a first instance, the model parameters become functions of the state
variables, e.g. of pressure or temperature, and now vary in space and time. In a second
instance, additional degrees of freedom are introduced in order to relax the equations of
the reduced-order model. Structural uncertainty falls under the category of epistemic
uncertainty, also known as systematic error [67]. This means that structural uncertainty
is rooted in the ignorance of the modeler, and thus arguably more difficult to identify
and mitigate.

One tool for uncertainty propagation, i.e. studying the effect of the uncertainty in the
reduced-order model on its predictions, is sensitivity analysis. Sensitivity analysis is well-
established in the study of hydrodynamic and thermoacoustic instability [68—70]. Sensitivity
is traditionally understood as the response to perturbations that are either deliberate, e.g.
changes in the context of design or control, or stochastic, e.g. fluctuations in turbulent flow.
Nevertheless, sensitivity analysis is also meaningful in the context of reduced-order models
and uncertainty quantification.

From a system-theoretic point of view, sensitivity analysis is embedded into an optimiza-

tion problem with constraints [71, Chapter 2]:
minimize J(x,0) (1.8)

subjectto R(x,0)=0 (1.9)

where x denotes the variables characterizing the state of the system, and 6 denotes the model
parameters. The governing equations R of the reduced-order model, e.g. conservation laws
or the linearized governing equations (1.1) and (1.2), constrain the minimization of the
quantity of interest J, e.g. cost, error or a growth rate. In an optimization problem, the role of
sensitivity analysis is to find the direction of gradient ascent (Eq. (1.8)):

A dx

P A T 1.1
6~ 96 " oxdo (110
where the Jacobian dx/d@ is implicitly given by (Eq. (1.9))
dR OJR dx
— t——= 1.11
96 " 9xde (L1

In direct sensitivity analysis, the sensitivity equation (1.11) is solved either directly or

approximately via finite differences. In adjoint sensitivity analysis, the adjoint equation (1.12)
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is alternatively solved for the Lagrange multiplier ¢:

oJ 1R
S5 =0 (1.12)

where the Lagrange multiplier ¢ is the adjoint to the state vector x. Hence, the sensitiv-
ity dJ/d6 is given by (Eq. (1.10), (1.12), (1.11))

A/ aJ  9Jdx

@_%+£E (1.13)
_dJ  ;ORdx
=56~ % 738 (1.14)
_dJ  ;OR
—%4— 30 (1.15)

The details regarding the implementation, e.g. the computational costs associated with direct
and adjoint sensitivity analysis, the pitfalls of continuous and discrete adjoints and the
possibly automated development of adjoint solvers, are noteworthy but beyond the scope of
this discussion [72]. Instead, we focus on the physical insight from sensitivity analysis with
respect to reduced-order models.

The relationship between sensitivity analysis and parameteric uncertainty is obvious. If 6
represents design parameters, sensitivity analysis reveals the optimal modifications that result
in stable operation for example [73-75]. At the same time, it quantifies the uncertainty due
to manufacturing tolerances or coarsely resolved geometric features in the reduced-order
model. If 6 represents model parameters, sensitivity analysis reduces the computational
cost of uncertainty quantification via identification of active subspaces and construction of
surrogate models [76, 77]. The insight from sensitivity analysis into the structural uncertainty
of a reduced-order model is less obvious, and subject of the following discussion.

In a first instance, we assume we have neglected a physical mechanism in the reduced-

order model. A first-order correction to the reduced-order model is given by (Eq. (1.9))
R(x,0)+Sx=0 , (1.16)

where § is a zero-valued matrix in the reduced-order model without correction. One example
in thermoacoustics for such a first-order correction to a reduced-order model is the concept
of sensitive time-lag introduced for liquid propellants, where the time delay 7 is not assumed

constant but to be a function of the acoustic pressure p; [33, Chapter 1]. The sensitivity of J
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with respect to the elements of § is given by the matrix (Eq. (1.15))

j—é =oxT | (1.17)
which is also known as the structural sensitivity [78]. In hydrodynamics, structural sensitivity
is able to quantify the uncertainty arising from the base flow [79]. The uncertainty in the
eigenvalues is represented by a pseudospectrum, and calculated from the corresponding
resolvent operator [80, Chapter 2]. In thermoacoustics, structural sensitivity has been used to
devise closed-loop control based on the optimal placement of dampers [8§1-83]. At the same
time, it is able to account for uncertainties in reduced-order models due to neglected physical
mechanisms, e.g. acoustic attenuation in Eq. (1.3).

In a second instance, we call the validity of the governing equations of the reduced-order

model into question. We relax the constraints by admitting a residual o (Eq. (1.9)):
R(x,0)+0=0 |, (1.18)

where ¢ vanishes in a perfectly valid reduced-order model. The residual o would represent a
source or a sink term in a conservation law, or forcing in a harmonic oscillator, just to name

a few actuation mechanisms. The sensitivity of J with respect to the residual o is given by
(Eq. (1.15)) v

o o7, (1.19)
which is also known as the receptivity [78]. In CFD, receptivity analysis reveals the re-
gions in the computational domain where the quantity of interest reacts most sensitively
to discretization error, and thus serves as an indicator for the adaptive refinement of the
computational mesh in order to mitigate the structural uncertainty in the discretized governing
equations [84]. In thermoacoustics, receptivity analysis has been used to devise open-loop
control, e.g. based on secondary injection of fuel into a diffusion flame [82]. In general, it is
able to account for uncertainties in reduced-order models due to neglected inputs and outputs,
e.g. bleed flows, air films and heat loss in turbomachinery.

In summary, sensitivity analysis is a versatile tool for uncertainty propagation in the linear
regime. In the nonlinear regime, stochastic approaches include Monte-Carlo simulations and
polynomial chaos [85]. In a polynomial chaos expansion, the solution to the reduced-order
model is considered a realization of a random variable, which is projected onto a basis of
uncorrelated random variables with the corresponding coordinates. In an intrusive approach,
a projection of the governing equations is solved in each coordinate. In a non-intrusive

approach, the governing equations of the reduced-order model are solved for each sample of
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the polynomial chaos. Polynomial chaos for uncertainty quantification has been successfully
adopted by the CFD, combustion and aeroelasticity communities among others [86—88].
In thermoacoustics, stochastic approaches have been applied to reduced-order models of
turbulent swirl combustors [89-91]. While capable of uncertainty quantification in the
nonlinear regime, polynomial chaos and, to a lesser degree, Monte-Carlo simulations suffer
from the curse of dimensionality unlike adjoint sensitivity analysis. In general, they rely on
dimensionality reduction techniques such as active subspaces, which are beyond the scope of
this discussion [92].

We conclude that the state of the art in thermoacoustic modeling incorporates a variety of
tools, combining reduced-order models based on first principles with uncertainty propagation
based on variational or stochastic approaches. At the same time, the fluid mechanics com-
munity is appropriating non-traditional, data-driven approaches such as machine learning
[93, 94]. In areas such as computer vision and natural language processing, machine learning
has unprecedentedly accomplished human and superhuman prediction accuracy despite the
lack of input in the form of governing equations or first principles. This thesis is meant to be a
contribution towards the efforts of the fluid mechanics community to reconcile data-driven ap-
proaches, which are widely perceived as black boxes, with the tradition of physics-informed
reduced-order modeling. As a precursor to machine learning, we introduce statistical learning
to thermoacoustic models, i.e. statistical inference using Bayes’ rule (Chapter 2). More or
less surprisingly, statistical learning is a versatile tool whose foundation in probability theory
and statistics enables it to formulate and solve a number of seemingly unrelated tasks in a
natural manner, e.g. parameter estimation, uncertainty quantification and model comparison.
After Parts II and III, where we perform statistical inference for two types of thermoacoustic

models, we return to this discussion in the concluding chapter (Chapter 10).



Chapter 2
Inverse problems

Towards the end of Chapter 1, we commented on the uncertainty present in reduced-order
models without providing a definition. This chapter reviews the language of probability
theory in order to continue with a more educated discussion of statistical inference and the
so-called inverse problem in terms of probability distributions and their associated statistics.
This discussion is necessary because it enables the development of data-driven techniques
throughout the rest of this thesis. For the interpretation of data and the incorporation into our
reduced-order models, we rely on probability theory to provide us with first principles for
statistical inference in contrast to ad-hoc statistics such as bias or variance. In particular, we

substantiate the notions of belief, randomness and knowledge beyond thermoacoustics.
Supplementary material:

* Chapter2/Statistical inference.ipynb (Git, Binder).

* Chapter2/Stochastic processes.ipynb (Git, Binder).

2.1 Statistical inference

In science and engineering, we introduce reduced-order models due to various constraints
(Chapter 1.1). The governing equations of a reduced-order model deviate from the governing
equations of the natural phenomenon. Hence, the predictions by the reduced-order model are
never exact. Thus, it is not meaningful to call a reduced-order model or any of its predictions
true or false; they are by definition always false. Alternatively, we quantify our degree of
belief within a non-Boolean framework' with the following requirements [95, Chapter 1]:

' A Boolean framework is characterized by binary variables holding one of two possible values, i.e. 0 or 1,
true or false, etc.


https://gitlab.com/hyu/phd-thesis-tutorials/-/blob/master/Chapter2/Statistical%20inference.ipynb
https://mybinder.org/v2/gl/hyu%2Fphd-thesis-tutorials/master?filepath=Chapter2%2FStatistical%20inference.ipynb
https://gitlab.com/hyu/phd-thesis-tutorials/-/blob/master/Chapter2/Stochastic%20processes.ipynb
https://mybinder.org/v2/gl/hyu%2Fphd-thesis-tutorials/master?filepath=Chapter2%2FStochastic%20processes.ipynb

16 Inverse problems

* A degree of belief is represented by a real number.

* A degree of belief qualitatively varies according to ‘common sense’. For example: If a
prediction A (“The value lies between 0 and 1.”) is more plausible than a prediction B
(‘The value lies between 1 and 2.”), then the negated prediction A (‘The value does not
lie between 0 and 1.) is less plausible than the negated prediction B (‘The value does
not lie between 1 and 2.).

* A degree of belief relies only on the knowledge available, not on the mode of reasoning.
Although belief has a subjective component by definition, the degree of belief is well-

defined once our subjective and objective knowledge is quantified.

Cox’ theorem states that such a belief framework must follow the rules of probability theory
[96]. The task of statistical inference is to assess a quantity of interest related to our reduced-
order model based on our corresponding degree of belief.

Probability theory as the language of statistical inference is somewhat controversial. This
controversy is rooted in two complementary interpretations of probability and inference [97,
Chapter 1]: Frequentist probability assumes that the degree of belief is approximated by the
relative frequency in a repeated experiment. The task of frequentist inference is to construct
estimators for the quantity of interest from the experimental data, and to devise metrics for
these estimators such as confidence intervals or p-values. Bayesian probability goes further
in assuming that the degree of belief is also conditional on knowledge independent of the
experiment. Bayesian inference computes the inverse probability, i.e. the degree of belief
in our knowledge conditional on the experimental data. A settlement of this controversy
is beyond the scope of this discussion. In practice, they are not mutually exclusive, and
subject to personal view [97, Appendix B]. Nevertheless, we examine several arguments in
favor of the Bayesian interpretation over the frequentist interpretation within the context of
reduced-order models: Firstly, a prediction from a reduced-order model is strictly speaking
not frequentist as a repetition of the derivation or computation does not necessarily increase
confidence. Secondly, it is not always straightforward to construct estimators, especially
if the relationship between the quantity of interest and the measured quantity is nonlinear.
Thirdly, the belief in a reduced-order model does not stem from a single experiment but a
variety of sources and measurements, e.g. numerical simulations, laboratory experiments as
well as on-line calibration. Therefore, we adopt the Bayesian interpretation, and henceforth
use the expressions ‘degree of belief” and ‘probability’ interchangeably.

A brief summary of the relevant definitions and theorems (without proofs) from probabil-
ity theory leading to Bayes’ rule is provided below [95, Chapter 2]. They form the calculus
of statistical inference, and are referenced extensively throughout the rest of the thesis. Note
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that we assume no previous knowledge of measure theory [98, Chapter 2]. For example, we
do not distinguish between sample spaces and event spaces, i.e. probabilities and probability
densities. For countable sample spaces, this is not problematic, and the power set of the
sample space serves as an event space. For uncountable sample spaces such as R”, measures
and thus probabilities are only defined on certain event spaces that are all strict subspaces of
the power set of R". Nevertheless, we exchange rigor in favor of clarity for a wider audience,

and instead provide the more mathematically inclined reader with relevant footnotes.

Definition 2.1 (Random variable). A random variable X : Q — Q' is a function between the
two sample spaces Q and ©'.> The probability P of an event x € Q' is given by

PX =x)=pu({o|X(0)=x}) , (2.1)
where i : Q@ — R* denotes a real measure on the sample space Q with u(Q) = 1.3

Definition 2.2 (Joint probability). The joint probability of two random variables X : Q — Qx
and Y : Q — Qy is defined as

PX =xY =y) = p{o|X(@) =x}n{o| Y (@) =y}) . 2.2)

It quantifies the degree of belief in simultaneous X =xand ¥ =y.

Theorem 2.1 (Sum rule). The relationship between the joint probability distribution P(X,Y)
and the marginal probability distributions P(X) and P(Y) is given by*

PX=x)= Y PX=xY=y) , (2.3)
yeQy

PY=y)= ) PX=xY=y) . (2.4)
x€Qy

2 A random variable X : (Q,2) — (',B) is a measurable function, where Q and Q' are sample spaces,
2( and B are event spaces and (Q,%2(, 1) forms a probability space with the real measure g : A — R™, i.e.
uQ) =1

3 The real measure P : B — R on the event space B is induced by the random variable X.

4 For uncountable sample spaces such as R”, replace summation with integration [98, Chapter 4]:

PX=x)= A PX=x,Y=y)dy , PY=y)= A PX=x,Y =y)dx
Y X
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Definition 2.3 (Conditional probability). The conditional probability of two random variables
X:Q—QyandY : Q— Qy is defined as

Lo |X(0) =xin{o|Y(0) =y})

PIY =y|X=x)= o

(2.5)

It quantifies the degree of belief in ¥ =y given X = x.

Theorem 2.2 (Product rule). The relationship between the joint probability distribution
P(X,Y) and the conditional probability distributions P(Y | X) and P(X | Y) is given by

PX=x,Y=y)=PX=x)P(Y =y |X =x) (2.6)
=PY=y)PX=x|Y=y) . (2.7)
Definition 2.4 (Statistical independence). Two events X = x and Y = y are statistically

independent if
PX=xY=y)=PX=x)P(Y =y) . (2.8)

Two random variables X and Y are statistically independent if they are independent for
all events x € Qy and y € Qy. More specifically, it follows from the product rule that for
P(X =x) # 0 (Theorem 2.2):

PY=y|X=x)=PY=y) . (2.9)

Theorem 2.3 (Bayes’ rule). The relationship between the conditional probability distribu-
tion P(Y | X) and its so-called inverse probability distribution P(X |Y) is given by

PX=x)P(Y =y |X =x)
P(Y =y) ’

PX=x|Y=y)= (2.10)
where the prior (probability) is denoted by P(X = x), the likelihood (function) by P(Y =y |
X = x) and the posterior (probability) by P(X = x| Y =y).> The probability P(Y = y) is

also known as the evidence.

Following the discussion in Chapter 1.1, our generative picture of reduced-order modeling

in the language of probability theory is presented:

> Note that, although the likelihood P(Y =y | X = x) is a probability in y € Qy, it is thought of as a function
of x € Qx (‘the likelihood of x”):

Y PY=y|X=x)=1 , Y P¥=y|X=x)#1 . .11

yer XEQy

The terminology is a common cause of confusion [99, Chapter 2].
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* We derive a reduced-order model M. The belief in M is given by

P(M) . (2.12)

* We select a set of parameters 0 for our reduced-order model M. Assuming that there
are multiple reduced-order models with the same parametrization under consideration®,

the belief in O is given by

P(6) = M (2.13)

) P(6,M)

M

Y Pm)P(6 | M) . (2.14)

M

* We find the state x corresponding to our reduced-order model M and our set of
parameters 0. Assuming that there are multiple reduced-order models with the same

parametrization under consideration as well as exploring a range of parameters, the

belief in x is given by
P(x)=Y ) P(x,6,M) (2.15)
:g:z::P(O,M)P(x] 6,M) (2.16)

5

=Y Y P(M)P(6 |M)P(x| 6,M) . 2.17)
0

In summary, the marginal probability distributions P(0) and P(x) representing our belief
in the parameters and the state, respectively, are successively computed using the sum and
product rules (Theorems 2.1, 2.2). In practice, the prior probability distribution P(M) is either
uniform or based on the complexity of the reduced-order model under consideration [99,
Chapter 28]. The conditional probability distributions P(6 | M) and P(x | 6, M) constitute a
graphical model of reduced-order modeling (Fig. 2.1).”

If experimental data is available in addition to a reduced-order model, we formulate the

so-called forward and inverse problems of statistical inference.

6 For simplicity, we assume a shared parametrization between models. In general, a parametrized model
forms a subspace over the function space of all functions. If models have different parametrizations, it is
generally possible to construct a subspace over the function space of all functions that contains all parametrized
models. Therefore, the assumption of shared parametrization does not restrict generality.

7 Note that a graphical model is not purely a visual illustration, but represents the causal dependence of a
random variable on all nodes upstream in the graph [99, Chapter 23].
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hidden

truth

Fig. 2.1 A graphical model of reduced-order modeling. On the one hand, we have an
experiment which is supposed to reproduce the truth. On the other hand, we have a reduced-
order model of the system under investigation. We assign values to the parameters of the
model, and solve for the state of the system. In our graphical model, we are not able to
compare the state with the truth because it is hidden from us. Instead, we obtain noisy
measurements from the experiment, and compare a prediction based on the reduced-order
model to the imperfect observation of the truth.

Definition 2.5 (Forward problem). Given a reduced-order model M, a set of parameters 6
and the state x, as well as observations y of the truth from an experiment, our degree of belief
is given by their likelihood

P(y|x,0,M) . (2.18)

Maximume-likelihood (ML) estimation finds the state x, the parameters 0 and the reduced-
order model M that maximize the likelihood P(y | x,0,M).

Most efforts in thermoacoustics as outlined in Chapter 1, including reduced-order modeling,
sensitivity analysis and uncertainty propagation, have focused on the forward problem, i.e.
either (i) on how to derive reduced-order models, how to optimally calibrate the parameters
in the reduced-order models, and how to solve the reduced-order models (Chapter 1.2), or
(i1) on how variations in the parameters affect predictions of a quantity of interest, and how
they alter the nonlinear dynamics (Chapter 1.3). In practice, ML estimation is not necessarily
performed probabilistically but variationally by minimizing the negative logarithm of the
likelihood, also known as the negative log-likelihood. For example, least-squares regression,
in order to find the reduced-order model that best fits the experimental data, assumes a
likelihood function with normally distributed observations [100, Chapter 3].
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Definition 2.6 (Inverse problem). Given a reduced-order model M, a set of parameters 0
and the state x, as well as observations y of the truth from an experiment, our degree of belief

is given by the posterior probability
P(x,0,M|y) . (2.19)

Maximum-a-posteriori (MAP) estimation finds the state x, the parameters 6 and the reduced-
order model M that maximize the inverse probability P(x,0,M | y).

It follows from Bayes’ rule that ML estimation is a special case of MAP estimation if the

prior P(x,0,M) is uniform and as such not a function of the state x, the parameters 6 or the

reduced-order model M (Theorem 2.3):

P(x,0,M)P(y | x,6,M)
P(y)

However, the distinction between forward and inverse problems is not limited to the use

P(x,0,M|y) = <P(y|x,0,M) . (2.20)

of a prior. Firstly, the inverse problem represents the uncertainty in the form of a posterior
probability distribution over (x, 0, M), from which all their statistics are derived, whereas
the forward problem focuses on a single scalar such as the log-likelihood or the root-mean-
square error, for which ML estimation finds optimal values of (x, 6, M). Secondly, the inverse
problem is able to address the uncertainty in a reduced-order model on multiple levels [99,
Chapter 28]. For example, the degree of belief in a model M and a set of parameters 8 given
data y, independent of the uncertainty in the predictions based on the state x, is given by
(Theorem 2.1)

P(OM|y)=) P(x,0,M|y) . (2.21)

X

Thirdly, ML estimation based on the forward problem is prone to ill condition so that the
optimal (x, 8, M) is either non-unique or very sensitive to the data y. The ad-hoc approach is
regularization in order to promote weight decay or sparsity [100, Chapter 3]. The analogous
approach in an inverse problem is the inclusion of a prior in agreement with Bayes’ rule
(Theorem 2.3).

In practice, the posterior probability distribution over (x, 6, M) is not computed directly
due to its high dimensionality. Instead, the inverse problem for reduced-order models is
layered into three levels of statistical inference, i.e. state estimation, parameter estimation
and model estimation [99, Chapter 28].

Definition 2.7 (State estimation). Given a reduced-order model M, a set of parameters 0, as

well as observations y of the truth from an experiment, our belief in the state x is given by the



22 Inverse problems

posterior probability (Theorem 2.3)

(x| 0,M)P(y|x,0,M)
P(y|6,M)

P
P(x|y,0,M) = (2.22)
In general, the experiment exists independently of the modeler so that the observations y
do not depend on the parameters 6 or the reduced-order model M as long as the statistical
inference is conditioned on the state x (Fig. 2.1):

P(x|6,M)P(y|x)
P(y|6,M)

P(x|y,0,M)= (2.23)
Definition 2.8 (Parameter estimation). Given a reduced-order model M, as well as observa-
tions y of the truth from an experiment, our belief in a set of parameters 0 is given by the
posterior probability (Theorem 2.3)

Po 1) = L

(2.24)

Note that parameter estimation uses the evidence P(y | 6,M) from state estimation as its
likelihood (Definition 2.7).

Definition 2.9 (Model estimation). Given observations y of the truth from an experiment,
our belief in the reduced-order model M is given by the posterior probability (Theorem 2.3)

P(M)P(y | M)

PV y) = =503

(2.25)
Note that model estimation uses the evidence P(y | M) from parameter estimation as its
likelihood (Definition 2.8). Furthermore, the normalization of the prior P(M) is problematic
if the sample space of reduced-order models is infinite-dimensional. Alternatively, model
comparison is performed instead of model estimation:

P(M'|y) _P(M') P(y | M')

POM|y) ~ P(M) P(y|M) (2:20)

Thus, the calculation of the evidence P(y) is avoided, and only the relative degrees of belief
for the priors P(M) and P(M’) are required.

In conclusion, probability theory is a powerful tool for addressing the uncertainty in
reduced-order models. In the presence of experimental data, we treat reduced-order models
as inverse problems, and perform multiple levels of Bayesian inference. In Parts II and III,

we demonstrate this approach for two classes of reduced-order models in thermoacoustics,
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1.e. eigenproblems and time series. In the remaining sections of this chapter, we continue
our discussion of reduced-order modeling from a statistical perspective in order to better

understand the relationship between models and data.

2.2 Stochastic processes

As discussed in the previous section, probability theory as the language of statistical inference
is somewhat controversial. In essence, we describe the unknown with the language of the
random, thus equating two distinct epistemological concepts. In accepting this premise, we
continue to consider families of random events in this section. Stochastic processes extend
the notion of random variables from the previous section, which are defined for a single

random event [101, Chapter 3].

Definition 2.10 (Stochastic process). A stochastic process is a family of random variables
(Xw)pew : Q — Q' over the index set W. The probability P of an event x € Q' is given by
(Definition 2.1)

PX=xw)=u({o|Xy(0)=x}) . (2.27)

Examples of stochastic processes include time series, i.e. random variables as a function of
time, and model closures, e.g. reaction rates as a function of pressure and temperature. Index
sets are either discrete or continuous, with a countable or uncountable number of elements,
respectively. In the context of reduced-order models, the elements of an index set represent
design parameters of the experiment such as time or operating conditions which are under
the modeler’s control. The index set W is also referred to as the design space or the operating
regime of the experiment.

Stochastic processes are defined by the joint and conditional probability distributions
shared between their random variables. In particular, we discuss two types of stochastic
processes: Gaussian processes and Wiener processes.

Definition 2.11 (Gaussian process). A stochastic process is Gaussian if the joint probability
distribution of any finite subset of random variables is Gaussian.

Thus, a Gaussian process is fully defined by its mean m : W — ' and its covariance function
k:W xW — Q' [102, Chapter 2]:

mw) =E[X,] (2.28)

k(ww') =E [(X, —m(w)) (X —m(Ww'))] (2.29)
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where E[X,,] denotes the expected value of the random variable X,, for the index w. In
practice, problems are set up in such a way that the Gaussian processes a priori have zero
mean and unit variance [103]. In the following discussion, we focus on specifying the
covariance function k, which is also known as the kernel of the Gaussian process [102,
Chapter 4].

Definition 2.12 (Kernel). A kernel k: W x W — ' is a function that correlates two points
from the index set W by mapping them into the sample space Q' C R. On top of that, we

require kernels to be symmetric and positive semi-definite.

Theorem 2.4. The sum of two kernels is a kernel:
(k1 + ko) (w,w') = kg (w,w') +ka(w,w') . (2.30)
Theorem 2.5. The (pointwise) product of two kernels is a kernel:
(k1 X ko) (w,w') = ky (w,w)ka(w,w') . (2.31)

Theorems 2.4 and 2.5 provide the calculus to construct kernels by recombination. We use
three classes of kernels: constant kernels, white kernels and squared-exponential (SE) kernels.
Similarly to physical models, the choice of kernel introduces structure and scaling. Therefore,
we discuss the structure of the kernels in detail, although not necessarily rigorously, in order

to equip the reader with an intuition regarding statistical modeling [104, Chapter 2].

Definition 2.13 (Constant kernel). For Q' C R, the constant kernel is given by
k(w,w') =07 | (2.32)

where 6 € R represents the noise level.

Definition 2.14 (White kernel). For Q' C R, the white kernel is given by

1 w=w
Kmw) =4 "7 (2.33)
0 w#w

Definition 2.15 (Squared-exponential kernel). For Q' C R, the squared-exponential (SE)

kernel is given by

/12
k N — _M 2.34
(w,w') =exp ( 207 ) (2.34)

where 0; € R represents a characteristic unit of the index set W.
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For a constant kernel, the two-point correlation between wy,w, € W has the covariance

matrix (Definition 2.13)

Si,= (Gfi GJE) . (2.35)

%r O

For X| = x1, the conditional probability distribution of the random variable X; is given
by .4 (x1,0), which is a delta distribution (Corollary A.2). This means that the realiza-
tion x(w) of the stochastic process (X,,),,cyy is fully determined by the realization of a single
random variable X,,. In fact, ‘constant’ refers to both the function values of this kernel and
the shape of its realizations (Fig. 2.2, left).

For a white kernel, the two-point correlation between w,w; € W has the covariance

matrix (Definition 2.14)
1 0
Yio= . 2.36
1,2 (0 1) (2.36)

For X| = x1, the conditional probability distribution of the random variable X; is given
by .4°(0,1), which is a standard normal distribution (Corollary A.2). This means that all
random variables X,, are statistically independent (Definition 2.4). In fact, ‘white’ refers to

the realizations of this kernel sharing the characteristics of white noise (Fig. 2.2, right).

21
0
—21
0 2 4 6 8 10 0 2 4 6 8 10
w w
(a) Constant kernel (o7 = 1). (b) White kernel.

Fig. 2.2 Realizations of Gaussian processes for constant (left) and white kernels (right) with
3-o confidence intervals. The ten realizations of the constant kernel are straight, horizontal
lines. The realization of the white kernel is sampled at a resolution of Aw = 0.01.

For the SE kernel, we offer a more informal discussion of mean-square continuity and
differentiability [102, Chapter 4]. The two-point correlation between wi,w, € W is a function
of 8 = wy —wy > 0, and has the covariance matrix (Definition 2.15)

B 1 exp (—6%/2)\ _ 1 1-62/2
2= (exp (—8%/2) I T\1-822 1 ’ (37
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where a second-order approximation of the exponential term is introduced for 0 < 1.
For X| = x1, the conditional probability distribution of the random variable X; is given
by A (L1, Z9)1) (Corollary A.2):

32
L)1 ~ X1 {1 E 7} : (2.38)

T8t (2.39)

For 6 — 0, the random variable X, converges to the value x| in the sense that its mean L)
converges to the value x; and that its standard deviation /Y|, vanishes linearly, which
amounts to mean-square continuity. The three-point correlation between wy,wy, w3 € W is a

function of 6 = w3 —wy = wp —wq > 0, and has the covariance matrix (Definition 2.15)

1 exp (—6%/2) exp(—26?)
Zi23= | exp(—6%/2) 1 exp (—6%/2) (2.40)
exp (—282) exp(—6%/2) 1
1 1-682/24+6%8 1-282428*
~ [ 1-8%2/2+84/8 1 1-8%/2+8%/8| . (2.41)
1-28%+28% 1-68%/2+6%/8 1

where a fourth-order approximation of the exponential term is introduced for 6 < 1. For X; =
x1 and X> = xp, the conditional probability distribution of the random variable X3 is given
by A (31,2, X3|1,2) (Corollary A.2):

312~ (20 —xp) [1- 52} ) (2.42)

Tya~28% (2.43)

For 0 — 0, the random variable X3 converges to the value 2x, — x|, which represents the
linear extrapolation of the indices wj and w; to the index w3, in the sense that its mean [
converges to the value 2x; — x| and that its standard deviation \/m vanishes quadratically,
which amounts to mean-square (first-order) differentiability. Without loss of generality, the
n-point correlations extend to arbitrarily high orders 7 so that the realizations of the SE kernel
are infinitely differentiable and smooth. Realizations of Gaussian processes with SE kernels
are shown in Fig. 2.3. The variations are smooth, and the distance between peaks and troughs
is approximately 20;. It follows either from visual inspection of Fig. 2.2 and 2.3 or from
comparison between the two-point correlations (Eq. (2.35)—(2.37)) that the constant kernel

and the white kernel are limiting cases of the SE kernel for 6; — o and o6; — 0, respectively.
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R L /
A

(a) SE kernel (o; = 1). (b) SE kernel (o; = 2).

Fig. 2.3 Realizations of Gaussian processes for squared-exponential (SE) kernels of different
characteristic units with 3-o confidence intervals. For each characteristic unit, the variations
in the three realizations are smooth. The coherence of the variations scales with o;.

We conclude our treatment of stochastic processes with a second example, the Wiener

process [105].

Definition 2.16 (Wiener process). A stochastic process (X, ),cr+ : @ — Q' is a Wiener
process if it has the following properties:

Independent increments. For s <t < u < v, the random variables X; — X and X, — X, are
statistically independent (Definition 2.4).

Stationary increments. For s < ¢, the random variable X; — X; has the same probability

distribution as the random variable X;_;.

Normal increments. All random variables X,, are Gaussian. In particular, the random

variable X at the index w = 1 has unit variance:

X; ~ A (0,1) . (2.44)

In physics, realizations of the Wiener process are also known as Brownian motion: The
sample space Q' represents the position of a particle in space, and the index w represents a
point in time. At time w = 0, the position of the particle is known. Afterwards, the trajectory
of the particle is a so-called random walk. This means that the motion of the particle between
two successive snapshots is not deterministic but subject to a probability distribution. If the
snapshots are taken Aw units of time apart from each other, it follows from Definition 2.16

that the steps of the random walk follow a normal distribution with a variance of Aw:

Xaw ~ A (0,Aw) . (2.45)
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In the limit of Aw — 0, Brownian motion thus becomes the integral of white noise. Realiza-

tions of the Wiener process in one dimension (' = R) are shown in Fig. 2.4.

Fig. 2.4 One hundred realizations of the Wiener process, sampled at a resolution of Aw =
0.001, with 3-c0 confidence intervals (¢ = y/w). Note that the realizations are continuous
but nowhere differentiable.

In conclusion, we consider two types of stochastic processes for statistical inference.
Firstly, Gaussian processes are characterized by their marginalization property: For a stochas-
tic process as a possibly uncountable family of random variables, it is sufficient to specify
the joint probability distributions of all finite subsets of random variables (Definition 2.11).
In Part II, we use the theory of Gaussian processes to analyze experiments performed over a
range of operating conditions. Secondly, the Wiener process is characterized by the Markov
property: For s < t, the conditional probability distribution of the random variable X; given
the random variable X, represents a step in a random walk that is independent from all the
earlier steps in the random walk (Definition 2.16). In Part III, we use the theory of the Wiener

process to analyze experimental data in the form of time series.
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2.3 Model selection

In Chapters 2.1 and 2.2, we equipped reduced-order models, which are parametric in nature,
with statistical models, i.e. random variables and stochastic processes, the latter of which
are nonparametric in nature. Nevertheless, stochastic processes rely on so-called hyperpa-
rameters, in contrast to model parameters. For example, the kernel of a Gaussian process
has hyperparameters such as o7 and o; (Definitions 2.13, 2.15). Although hyperparameters
are not physical parameters of the reduced-order model in the first place, the choice of
hyperparameters significantly affects the model parameters and thus the model predictions
inside and outside the design space.

In general, there are two strategies to learning parameters: In optimization, the parameters
are reduced to a single set of values that maximizes or minimizes a quantity of interest, i.e.
to a point estimate in the maximum-likelihood (ML) sense (Definition 2.5). In statistical
inference, the parameters are represented by a probability distribution which incorporates
prior knowledge. The optimal set of parameters is the most probable one, i.e. from a
maximum-a-posteriori (MAP) estimate (Definition 2.6). There are multiple combinations
and variations of these two strategies when it comes to parameter and hyperparameter

estimation. Our strategy follows the so-called evidence framework [106]:
1. Perform statistical inference for the model parameters.
2. Optimize the hyperparameters.

As the statistical model is determined by the choice of hyperparameters, the optimization of
hyperparameters is also known as model selection.

On the one hand, statistical inference of the model parameters in a Bayesian framework
carefully calibrates the reduced-order model by introducing every observation exactly once,
either sequentially or batchwise. This matters because model predictions are biased towards
prior knowledge or observations otherwise. On the other hand, optimization of the hyper-
parameters is less restrained in its usage of the observations. This is because we are only
interested in an optimal set of values but not their uncertainties as long as the hyperparam-
eters maximize or minimize the quantity of interest. In practice, when observations are
introduced sequentially, it takes at least one pass to learn the model parameters, and generally
multiple passes to also learn the hyperparameters. This is a common thread for the algorithms
developed in Parts II and II1.

In general, the optimization of the hyperparameters is an iterative procedure. For a
Gaussian process, we select a kernel and a set of hyperparameters 6™P such that the Gaussian
process prior has zero mean and unit variance (Chapter 2.2). We denote this model by M =
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M(6™P), and the Gaussian process prior for the model parameters 6 is given by P(6 | M).

For given observations y, the likelihood of the model parameters 6 is given by P(y | 6,M).

Bayes’ rule tells us that the posterior probability distribution is given by (Theorem 2.3)
P(6 [M)P(y|6,M)

PO |y,M) = 0130 . (2.46)

The most obvious quantity of interest to maximize over the hyperparameters 6™P would be
the posterior probability P(8 | y, M) of the MAP point estimate 6. This would eliminate the
probability distribution over the model parameters 0 from the optimization problem, and
thus simplify it. But it would not do near-uniform probability distributions justice where the
MAP point estimate 0 barely stands out against other nearby point estimates of the model
parameters 0. Therefore, we instead eliminate the probability distribution over the model

parameters 6 by considering the evidence (Theorem 2.3)
P(y| M) = / P(6 | M)P(y|0,M)d6 . (2.47)

Due to the integration of the likelihood (weighted by the prior), the evidence P(y | M) is also
known as the marginal likelihood. Another way to understand the significance of the marginal
likelihood P(y | M) is again based on Bayes’ rule (Theorem 2.3). If we have no preference
for any reduced-order model and use a uniform prior, then the posterior probability is given

by (Eq. (2.20)) o
M)V

P(y)

Thus, the marginal likelihood P(y | M) allows us to compare our degrees of belief in various

P(M |y)= <P(y|M) |, (2.48)

reduced-order models.

In practice, the logarithm of the evidence log(P(y | M)), also known as the log-marginal
likelihood, is maximized over the hyperparameters 8™P, and thus the models M = M(6™P),
using gradient descent [102, Chapter 5]. The role of the evidence in learning the hyperparam-
eters establishes the naming of our strategy as the evidence framework [106]. We conclude
the discussion about model selection by showcasing two academic, noise-free examples in
order to provide the reader with more intuition regarding statistical modeling.

In the first example, we consider two observations of the same value y = 0 at the
two indices w = 1 (Fig. 2.5). We consider two kernels, i.e. the constant kernel and the
white kernel, corresponding to pure signal and noise, respectively (Definitions 2.13, 2.14).
On the one hand, the constant kernel is only able to properly handle observations of the
same value. This is the case here, and the marginal likelihood of the model parameters is
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1/ V2T & exp(—0.919) (Table 2.1, first row). On the other hand, the white kernel is able to
handle any data. The marginal likelihood of the model parameters is 1/(27) ~ exp(—1.838),
which is less than the value for the constant kernel (Table 2.1, second row). Therefore, the
statistical model with the constant kernel is more plausible here although the likelihood of
each observation is 1/ /27 for both statistical models. This example reflects the preference
of the evidence framework for simpler models with fewer degrees of freedom, all other things

being equal.
— predictions | — predictions |
21 @ Observations 21 @ Observations
s 0 o S o
-2 —2]
—1 0 1 —1 0 1
w w
(a) Constant kernel (o7 = 1). (b) White kernel.

Fig. 2.5 Model predictions of Gaussian processes for constant (left) and white kernels (right)
with 3-0 confidence intervals. There is no uncertainty in the model prediction of the constant
kernel. The white kernel has the same uncertainty in the model prediction as the prior except
at the indices w = +1 of the observations, where the uncertainty vanishes. The log-marginal
likelihoods are given in Table 2.1.

In the second example, we consider multiple observations over the equidistant design
interval —1 <w < 1 (Fig. 2.6). In the first case, the observations are sampled from y = w>,
in the second case from y = w>. Both cases have similar trends in that the observation y
monotonically increases with the index w and holds the same value for the indices w =0
and w = £1. But they differ in their degrees of smoothness, i.e. an observation following y =
w't even becomes discontinuous at the index w = 1 in the limiting case of n — . We consider

the product of a constant kernel and an SE kernel (Theorem 2.5):

/12
k(w,w') = 02ex M . 2.49
)= ofexp (M5 (2.49
The optimized hyperparameters and log-marginal likelihoods are shown in Table 2.1 (third
and fourth row). In terms of hyperparameters, the or-values are similar, and the main

3

difference lies in the oj-values. Since an observation following y = w~ is smoother than

one following y = w”, it allows for a larger characteristic unit 6;. When Gaussian processes
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and distance-based kernels are involved, this example reflects the tendency of the evidence
framework to consider smoother models more plausible. In the context of reduced-order
modeling, this is a highly desirable property for any model selection strategy. For example, if
we consider the observations of the model parameters to be derived from the same experiment
over a design parameter w but using different reduced-order models and parametrizations,
the evidence framework favors reduced-order models which explain the observations with
parametrizations that are ideally constant, linear, etc., in this particular order. This coincides
with our intuition that a model parameter, unlike the state of the system under investigation,
should by definition be universal® over a wide range of design parameters. This is useful
insight on which we will fall back in Parts II and III, e.g. in our treatment of nonparametric
regression (Chapter 3.3).

— predictions | — predictions |
21 @ Observations 21 @ Observations
X 0 / * /_ < 0 \,/ * 0/.\
—21 -2
—1 0 1 —1 0 1
w w
(a)y:w3. (b)y:ws.

Fig. 2.6 Model predictions of Gaussian process and SE kernel for observations of varying
smoothness with 3-c confidence intervals. An observation following y = w? (left) is signifi-
cantly smoother than one following y = w* (right), which is also evident in the confidence
intervals of the interpolated and extrapolated model predictions. The log-marginal likelihoods
are given in Table 2.1.

Table 2.1 Hyperparameters and log-marginal likelihoods (Fig. 2.5, 2.6).

o o |log(P(y|M))
constant kernel 1 — —-0.919 Fig. 2.5, left
white kernel — — —1.838 Fig. 2.5, right
SE kernel 0.846 0.575 —4.487 Fig. 2.6, left
SE kernel 0.641 0.275 —4.793 Fig. 2.6, right

8 Arguably at this point, universality is a somewhat vague concept. Ideally, a model parameter is constant
over the design parameters. More realistically, the variation of a model parameter with respect to the design
parameters is at least smooth. We return to this discussion in the context of strong and weak parametrizations
(Chapter 3.3).
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Bayesian regression






Chapter 3
Nonlinear regression

We continue the discussion from Chapter 2, and present a hierarchical framework for state
estimation, parameter estimation and model selection based on nonlinear regression. There
are two main ingredients to our hierarchical framework: (i) the shift of the observations
from the level of the states to the level of the model parameters using parametric regression
(Chapter 3.1); and (ii) the relaxation as well as the regularization of reduced-order models
inside nonparametric regression (Chapter 3.3). We provide definitions for our notions of
models, model parameters and states, which are also featured in the index at the end of
this document. Regarding the reduced-order models, we put an emphasis on nonlinear
eigenproblems in the context of thermoacoustics (Chapter 3.2). Nevertheless, our framework
applies to all reduced-order models following the graphical model of Fig. 2.1.

Supplementary material:
* Chapter3/Least-squares regression.ipynb (Git, Binder).

* Chapter3/Expectation-maximization algorithm.ipynb (Git, Binder).

3.1 Least-squares regression

In Part II, we consider a reduced-order model of the implicit form!

F:CxRM xRN 5 C |, (3.1)

! Viz., the function F maps the state x € C, the model parameters 8 € RM and the design parameters w € RV
onto a complex number F(x,8;w) € C. The reduced-order model is implicit in that the state is not given as a
function x = f(6;w) of the model and design parameters but is found by solving F(x,6;w) = 0 for given 0
and w.


https://gitlab.com/hyu/phd-thesis-tutorials/-/blob/master/Chapter3/Least-squares%20regression.ipynb
https://mybinder.org/v2/gl/hyu%2Fphd-thesis-tutorials/master?filepath=Chapter3%2FLeast-squares%20regression.ipynb
https://gitlab.com/hyu/phd-thesis-tutorials/-/blob/master/Chapter3/Expectation-maximization%20algorithm.ipynb
https://mybinder.org/v2/gl/hyu%2Fphd-thesis-tutorials/master?filepath=Chapter3%2FExpectation-maximization%20algorithm.ipynb
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(x,0,w) — F(x,0;w) =0 . (3.2)

where the (complex) state of the system? is denoted by x and the model parameters by the
M-dimensional vector 8. The N-dimensional vector w denotes the design parameters of
each experiment, e.g. the operating conditions set by the experimentalist. For a series of
K experiments indexed by 1 < k < K with design parameters w € {w; € RV | 1 <k < K}
and observations y € {y; € C | 1 <k < K} of the true state x € {x; € C | 1 <k < K}, the

governing equations of the reduced-order model are alternatively written as

F:CxRM 5 ¢C | (3.3)
(xk,0) — Fi(xx,0) = F(x, O3w) =0 . (3.4)
The least-squares residual of the reduced-order model with respect to the observations is
given by?
J e eexl? s (y—1
(x,0) _ZT = k=) (Bgpg) g 01 —x1) (3.5)
k k

where a superscript asterisk denotes complex conjugate. The positive semi-definite matrix
(Zobs )kl = Gk25kl, where the symbol § denotes the Kronecker delta, is the covariance matrix of
the observations. For a positive semi-definite quadratic form J and a reduced-order model F,

least-squares regression poses an optimization problem with constraints:

minilglize J(x,0) (3.6)
X,
subjectto  Fi(x;,0)=0 , 1<k<K . (3.7)

A necessary condition for the optimal set of parameters 8 is given by [107, Chapter 7]

o
0 00,

dJ
26 9%

dJ

doxy
dé,,

=0 1<m<M . 3.8
co 46 ; 1=m< (3.8)

6
In general, the roots of F in x are not analytical so that the derivatives of x in 6 are found

via implicit differentiation [107, Chapter 8]. The first (total) derivative of x in 0 is given by

(Eq. (3.2))
dF  JF OF dx

a6, 96,  oxde,

=0 , (3.9)

2 Note that the state of the system is implicitly defined as the solution to the reduced-order model without
regard towards the physical interpretation by the modeler. For example, if the reduced-order model is an
eigenproblem that sets the determinant of a matrix to zero, the state of the system is represented solely by the
eigenvalue but not the eigenvectors.

3Products over duplicate indices are subject to Einstein summation notation.
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dx dF\ ' oF

The second (total) derivative of x in 0 is given by (Eq. (3.9))

&’F  9°F N 9°F dr 0°F £+&Z_F£ﬂ+8_F d%x .
d6,d6, 06,06, 0x06,d6, 0xd6,,d6, IJx*> db,d6, IJx d6,ds,
(3.11)
dx  (oF\'[ 9%F L OF dx | PF dr | O°F dx dx
d6,d6,  \ ox 06,06,  0x96,d6,  0x06,,d6,  Ix* db,, db,
(3.12)

In a linear regression, where x is a linear function of 6, the necessary condition states
(Eq. (3.8)):

gty S A e =0 3.13
—(Yk—xk) ( obs)klE_E( obs)kl(yl_xl): : (3.13)

Substituting the Jacobian A;; = dx;/d6; into Eq. (3.13) gives
* -1 -1
Re (Akm (Zobs)klAl"> 6, = Re (Altm (Zobs)kl YI) ’ (3.14)

where Re denotes the real part of a complex number. Eq. (3.14) is a linear system of
equations (M x M), also known as the normal equations, whose solution is the optimal set of
parameters 6 [108, Chapter 4].

In a nonlinear regression, where there is no analytical solution of x in terms of 0,
Eq. (3.13) is solved iteratively, e.g. via the Newton-Raphson method [108, Chapter 5]:
S A
* de,,do,

dJ
deé,,

(6 —-08y=0 |, (3.15)

where the superscript index denotes the iteration step. The Hessian d>J/(d6,,d6,) is given
by (Eq. (3.13))

d2J dxz 1 dx; dZXz »
d6,,d6, 2Re (dem (o) de, de,de, (Zops) iy Or—x) | (3.16)

The Gauss-Newton method is a special case of the Newton-Raphson method when x is
quasilinear in terms of 6 (dx; /(d6,,d6,) ~ 0) or when the residual J is small (||y; —x;|[» < 1)

[108, Chapter 6]:
d%J dxf .. dx
m2Re( k (Zobls)k,j> . (3.17)
m n
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Note that this bilinear form is formally identical to the linear operator on the left-hand side
of the normal equations (Eq. (3.14)). This shows that linear regression is a special case of
nonlinear regression.

In a Bayesian regression, the likelihood function of the forward problem is given by
(Definition 2.5)

P(y|x,0,F)=

J(x, 9))
_— — . 3.18
det 2y 7 ( 2 G-18)

For maximum-likelihood (ML) estimation, the posterior probability distribution in the model

parameters 0 is given by (Definition 2.8)

P(8 |y.F) = (3.19)

/exp (—J<x2’9>) d6

The likelihood function P(y | x, 0, F) is normal in the observations y whereas the posterior
probability distribution P(6 |y, F) is not normal in the model parameters 6, and its exact
evidence P(y | F) = [exp(—J(x,0)/2) dO is unknown. The Laplace approximation expands
the unnormalized log-likelihood function into a second-order Taylor series in the model

parameters 6 around the optimal set of parameters 6 and the ML estimate £ [99, Chapter 27]:

(

A

A

) 1 dJ

J(£,
tog (y/(em) det (ZPly | x.0.7) ) ~ K52 5 LD (6, -)
m
1 Ay di A

(3.20)
The zeroth-order term in Eq. (3.20) is constant in 6. As a necessary condition, the first-order
term in Eq. (3.20) vanishes (Eq. (3.8)). Furthermore, the Hessian in the second-order term
is symmetric and positive semi-definite [107, Chapter 7]. For ML estimation, the posterior
probability distribution P(6 | y, F) is thus approximated by a normal distribution in the model
parameters 0 (Eq. (3.16), (3.19)):

1 1 . .
PO |y,F) = —)exp (—5 (6 — O) (Zﬁk])mn (6, — en)) , (3.21)

det(27r21ik
4y e
5 d6,,d6,

_ dx;
(Zlikl ) mn dem

5 ( c?bls)kl d_O,l

(Zops)w O —x1)> . (622
0
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where the matrix Zgl is also known as the Fisher information matrix [95, Chapter 8]. The
ML estimate of a Bayesian regression with Laplace approximation is by definition the same
as the optimal set of parameters 6 from a nonlinear regression. On top of that, Bayesian
regression quantifies the uncertainty in the model parameters 6 in the form of the covariance
matrix Y. For maximum-a-posteriori (MAP) estimation, we assume that the prior is given

by a normal distribution in the model parameters 0:
1

P(O|F)= ———exp (—1 (6, —62°) (Zpre), (6, — e,{”e)) . (3.23)
det (27 pre 2

The posterior is then also a normal distribution in the model parameters 6 (Appendix A):

1 1 _
P(Q | yaF) = v; cXp (_E (Gm - GII;ZOSt) (Zpolst)mn <6n - Ger)OSt)) )
/(27" det (£poq)
(3.24)
where the mean and the covariance matrix are given by
-1 -1 ~1
(Zpost>mn = (Zpre)mn + (Elik )mn ’ (3'25)
(Z;olst) . erll)ost _ [(Z&i)mn oPre 4 (Zli(l)mn én] . (3.26)
Algorithm 3.1 Bayesian regression with Laplace approximation (ML).
procedure SOLVEF(0, w) > Vectorized nonlinear solve.
for1 <k<Kdo
Solve Eq. (3.2) for x;. > Nonlinear solve.
end for
return x
end procedure
0 « gpre > Initialize 6.
X <~ SOLVEF(6,w)
while ‘ %! é‘ > EPS do > Nonlinear regression.
A A ~1
0« 6— (gieé é) %‘é > Linearized regression (Eq. (3.15)).
£ < SOLVEF(8,w)
end while ,
Z;l — % % . > Laplace approximation (Eq. (3.22)).
Z;olst — Zl;ré + 251 > Posterior covariance (Eq. (3.25)).
0P £t [T 6P + 24 6]. > Posterior mean (Eq. (3.26)).
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In conclusion, Algorithm 3.1 summarizes the steps in Bayesian regression with Laplace
approximation. The procedures for evaluating F', x and J as well as their first and second
derivatives are not shown. The linear and nonlinear regression procedures are essential
components within the Bayesian regression algorithm. The Laplace approximation enters
the algorithm for the ML estimation. Alternatively, the Laplace approximation expands
the unnormalized log-posterior (instead of the log-likelihood function) into a second-order

Taylor series in the model parameters 6 around the optimal set of parameters OP°S:

—log (\/ (27)"* det (Zpre ) det (Zops) P(6 | F)P(y]x, G,F))

J ( xpost’ epost) 4

1
5 50| (6 — 65°%) (3.27)
m QPOS
1 a2’
Z(9 —@posty _—~ 0 — @rost
+ 4 mn n ) demden epost( " " ) ’
where the modified residual is given by
T (x,0) =J(x,0)+ (6, — O5°) (Zpee), (6, —OF°) (3.28)

and the MAP estimate 6P°" satisfies the necessary condition

v/
de;n o dem epos[

+2 (Z—l)mn (G}l)ost o er;l)re)

pre

0 . (3.29)

Algorithm 3.2 summarizes the steps in Bayesian regression where the Laplace approximation

enters the algorithm for the MAP estimation.

Algorithm 3.2 Bayesian regression with Laplace approximation (MAP).

0 « gpre > Initialize 6.
X < SOLVEF(6,w)
while ‘ %) ‘ > EPS do > Nonlinear regression.
0
A A ! -1 !
0+ 06— (‘329]2 é) %’—6 5 > Linearized regression (Eq. (3.15)).
£ < SOLVEF(6,w)
end while ,
leolst — % ‘jsz)é > Laplace approximation (Eq. (3.22)).

OPost < 4.
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3.2 Nonlinear eigenproblems

As discussed in Chapter 1.2, the reduced-order model F for a linear stability analysis
in thermoacoustics involves a nonlinear eigenproblem. For a matrix-valued function L :
C x RM — C™" with the model parameters 8 € RY, the eigenproblem is to find a so-called
eigenvalue s € C such that the matrix L(s; 6) becomes singular. The corresponding right and
left eigenvectors ¢,¢" € C" are respectively given by

L(s;0)g=0 (3.30)

q'L(s:0)=0 (3.31)

where ¢,¢" # 0. For each eigenvalue s, the solutions to Eq. (3.30) and (3.31) are not
unique, and form their respective eigenspaces. In a linear stability analysis, the real part
of an eigenvalue s corresponds to the growth rate of a perturbation, and the imaginary part
corresponds to its angular frequency. Thus, the eigenvalue s characterizes the stability of
a system. If we equate the state x of a system to its stability, and perform a Bayesian
regression in observations of the eigenvalue s, we require the first and second derivatives of
the eigenvalue s with respect to the model parameters 8 (Chapter 3.1). In this section, we
describe two approaches to obtaining the eigenvalue sensitivities ds/d6 and d2s / dez.

The first approach involves a necessary and sufficient condition for singular L(s; 0) based
on the determinant [109, Chapter 3]:

F(s,0)=det(L(s;0))=0 . (3.32)

Otherwise, we follow the procedure as outlined by Eq. (3.9)—(3.12) via implicit differentiation.
The derivative of a determinant is given by Jacobi’s formula, which directly follows from
Laplace’s formula [110, Chapter 0].

Theorem 3.1 (Laplace’s formula). For any 1 <i < n, the determinant of a matrix A € C"*"
is given by

det(A) = Y Ajjadj(A);i (3.33)
j=1
where the adjugate of the matrix A is given by

adj(A) j; = (1)1 det ((Ak,)k it j) . (3.34)
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The submatrix (Ay) kotiitj 1S obtained by omitting the i-th row and j-th column from the

matrix A. If the matrix A is regular, then the inverse of the matrix A is given by

1
~ det(A)

adi(A) . (3.35)

Theorem 3.2 (Jacobi’s formula). The derivative of the determinant of a matrix A € C"*"

with respect to one of its entries A;; is given by

d det(A) = adj(A) ;i . (3.36)

ij

If the matrix A is regular, the derivative of its adjugate is given by

d
dA,'j

adj(A)u = adj(A) jiA,' —adj(A)uA ' (3.37)

For instance, the partial derivatives of F' with respect to 0 are given by (Eq. (3.32))

oF _ o1 (e gy 2L

92F o1y 9Lk 1, 0L
So g = det (L(5:0)) L (5:0) G0 L 5:0) 5
oL JdL;;

. —1/. kly—1/. ij

_det(L(s,G))ij (S,e)a—OnLh- (S,Q)E

et (L(5:0)) L (52 0) 2 L (339)
B Y 56,06, '

The second approach is based on perturbation theory, and bypasses the procedure as
outlined by Eq. (3.9)—(3.12) [111]. Implicit differentiation of Eq. (3.30) gives

8L,~j ds 8L,-j d
35 6, 9T 39,95 T Li(5:0)

&S

=0 . (3.40)

&
s

Multiplying Eq. (3.40) with the left eigenvector ¢ from the left gives the first-order eigen-
value sensitivity (Eq. (3.31))

iILij
ds B 9 89mqj 341
dem TaLij ’ ’

q; 8_st
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Implicit differentiation of Eq. (3.40) gives

9%L;j ds ds 9%L;; ds dL;; d%s dL;; ds dg;
6,30, 9" 9+ 9+
ds? d6,de,, dsd 0, d6,, ds d6,,do, ds d6,,deo,
ale‘j ds &ZLU ' 8L,-j dqj'

9596,,46,% " 56,06,% " 58, d6,
8L,~j ds d(]j 8L,-j dqj n ,'j(S; ) dij 0 ,
ds d6,d6,, 06, d6, do,,de,

(3.42)

Multiplying Eq. (3.42) with the left eigenvector ¢' from the left gives the second-order
eigenvalue sensitivity (Eq. (3.31))

f|:82Lij ds ds 82L,-J- ds 82L,-j ds 82L,-j ]
qj

@ U795 a8,d6, " 3596,d0, 9538, d6, 38,96,
d6,,d6, +9Lij
4 ds 4
q?. BL,-j ds 8Ll~j % qT 8L,-j£ 8L,~j dqj
i1 95 d6, 96, |d6,  Ti| ds d6, a6, | do,
T (3.43)
(el
4 ds el

Substituting the first-order eigenvalue sensitivity into Eq. (3.40), the first-order eigenvector
sensitivity is given by the linear system of equations

JdL
+ 0Ly
dq i 9k 20 i 8L,~~ 8Ll~ i
Lii(s:0)—L = m ]y, 3.44
15:0)54, 9Ly | as 98, |V G4
Qk as qi

The choice of which approach to use for eigenvalue sensitivity analysis depends on the
size of the eigenproblem and the number of parameters. On the one hand, the first approach
based on Jacobi’s formula is more straightforward as the implementation only requires a
series of linear algebra operations as well as a nonlinear solver [112, 113]. The second
approach based on perturbation theory additionally requires the computation of the left and
right eigenvectors as well as the first derivative of the right eigenvector. On the other hand,
once the eigenvectors and the first derivative are available, the implementation of the second
approach only requires a series of matrix-vector multiplications. This is computationally
inexpensive, and scales favorably with the number of parameters. Note that the second
approach based on perturbation theory is identical to the second-order eigenvalue sensitivity
analysis as outlined by MAGRI ET AL. up to notational differences [76]. In particular, the
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singularity in Eq. (3.44) is resolved by using the pseudoinverse, which is equivalent to

appending the orthogonality condition ¢ -dg/d6,, = 0 [108, Chapter 4].

3.3 Nonparametric regression

As discussed in Chapter 1.3, uncertainty in reduced-order models is attributed to two sources,
1.e. parametric and structural uncertainty. On the one hand, parametric uncertainty assumes
that the form of the governing equations is correct. In Chapter 3.1, we introduced Bayesian
regression as a tool to estimate the values of the model parameters and to quantify their
uncertainties. Nevertheless, we have already established that reduced-order models are
limited in their validity. Outside a certain regime, any particular reduced-order model
is biased in its predictions and underestimates the uncertainty of its predictions. On the
other hand, structural uncertainty questions the validity of the governing equations and
their parametrizations. We relax the structure of the governing equations by dropping the
requirement for model parameters to be constant over the entire design space. Unfortunately,
parameter estimation in this setting is generally ill-posed. This section addresses structural
uncertainty by formalizing the concepts of strong and weak parametrizations (see below).
More specifically, we present strategies to regularize this ill-posed problem by replacing the
notion of model parameters as universal constants with the more flexible notion of model
parameters as stochastic processes.

In a first step, we relax the reduced-order model by elevating the model parameters to the

rank of states, and thus combine state and parameter estimation:

~ X
X= (9) , (3.45)

where x denotes the augmented state. The augmented governing equations of a strongly

parametrized reduced-order model are given by (Eq. (3.2))

FEw) = (F (g’_eéw)> =0 . (3.46)

In terms of parameter estimation, this problem is solved by least-squares regression (Eq. (3.6),
(3.7)), i.e. finding the optimal set of parameters 6 (Fig. 3.1). The number of additional
equations required in the augmented governing equations is equal to the number of model
parameters added to the augmented state. The parametrization is strongly constrained in
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the sense that the model parameters 0 are identical for different design parameters w [114,
Chapter 5].

experiment experiment experiment

i

model

'

parameters

state state state

H | HE
U U

Os

Fig. 3.1 A graphical model of a strongly parametrized reduced-order model. For experiments
with different design parameters, the governing equations and model parameters stay the
same while the state of the system varies accordingly. The model parameters are found using
Bayesian regression (Chapter 3.1).

Following augmentation, strong parametrization is generally sufficient to close the gov-
erning equations of the reduced-order model but not necessarily the only approach. Taking
a step back, the requirements towards the augmented set of governing equations is more
generally described by the well-posedness of the problem [108, Chapter 12].

Definition 3.1 (Well-posed problem). A problem is well-posed if the mathematical model of

the physical phenomenon satisfies the following three conditions:
Existence. The problem has a solution.

Uniqueness. The solution to the problem is unique.

Stability. The solution to the problem is smooth with respect to the data.

In the context of partial differential equations, well-posedness refers to the existence, unique-

ness and stability of solutions with respect to the specifications of initial and boundary
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conditions. In the context of parameter estimation, a well-posed problem consists of find-
ing a suitably constrained parametrization for the augmented governing equations of the
reduced-order model. On the one hand, it is not difficult to find any solution to the parameter
estimation problem since it is always possible to fit a set of parameters to an experiment,
especially if the number of model parameters is not predetermined.* On the other hand,
uniqueness and stability of the parameter estimation problem are more difficult to achieve
for at least two reasons. Firstly, the number of independent observations for a given set of
design parameters is possibly less than the combined number of state variables and model
parameters. For example, the number of state variables in a CFD simulation scales with the
resolution of the discretization whereas the corresponding experiment is limited in its number
of sensors without perturbing the flow field. Secondly, even if the number of independent
observations is sufficient for any given set of design parameters, the data is generally polluted
with noise. This reduces the information content of the data and affects the uniqueness
and stability of the parameter estimation problem even when the number of independent
observations is nominally sufficient.

In a second step, we therefore propose regularization as an alternative to strict constraints
for augmenting the reduced-order model and formulating a well-posed problem (Fig. 3.2).
The augmented governing equations of a weakly parametrized reduced-order model are given
by (Eq. (3.46))

Faw) = F (0w _ (0 (3.47)
6—-06 0,

where the stochastic process 0,, is defined over the index set of the design parameters w
(Definition 2.10). The parametrization is weakly constrained in the sense that the model
parameters 0 are allowed to differ for different design parameters w [114, Chapter 5]. In the
spirit of statistical inference, we statistically model the variations in the model parameters
as stochastic noise (Chapter 2.1). Most importantly, the stochastic noise is correlated such
that model parameters for different design parameters are not statistically independent
(Definition 2.4). In particular, we select the Gaussian process ®,, to be a Gaussian process
because of their desirable properties with respect to well-posedness (Definition 3.1):

4 An instance of this is documented in the form of an anecdotal exchange between the physicists Freeman
Dyson and Enrico Fermi [115]:

In desperation I asked Fermi whether he was not impressed by the agreement between our
calculated numbers and his measured numbers. He replied, "How many arbitrary parameters
did you use for your calculations?" I thought for a moment about our cut-off procedures and said,
"Four." He said, "l remember my friend Johnny von Neumann used to say, with four parameters
I can fit an elephant, and with five I can make him wiggle his trunk." With that the conversation
was over.
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Existence. For a suitable choice of kernel functions, Gaussian processes are universal
approximators, and may represent arbitrary functions 6 as a function of w [116,
Chapter 2].

Uniqueness. We note that a Gaussian process with a constant kernel is equivalent to strongly
constrained parameter estimation, i.e. the parameters are estimated to be constant over
the entire design space (Definition 2.13). Furthermore, we note that the constant kernel
is a limiting case of the SE kernel for o; — o (Definition 2.15). This means that
nonparametric regression with Gaussian processes is a generalization of parametric
regression. The uniqueness in nonparametric regression is improved by increasing the

value of the characteristic unit o;.

Stability. Similarly, we note that a Gaussian process with a white kernel is equivalent
to individual estimates of the model parameters for each set of design parameters
(Definition 2.14). Again, we note that the white kernel is a limiting case of the squared-
exponential kernel for o; — 0 (Definition 2.15). The smoothness of the Gaussian
process, and hence the stability of the parameter estmation problem, is improved by

increasing the value of the characteristic unit o;.
So far, our nonparametric regression algorithm consists of two ingredients:

1. Bayesian regression translates the observations from the state space into the parameter
space. In a parametric regression, we estimate a global set of model parameters. In
a nonparametric regression, we estimate a local set of model parameters for each
set of design parameters and the corresponding observations. If not constrained or

regularized, the weak parameter estimation problem is possibly ill-posed.

2. Our Gaussian processes live in the parameter space, and regularize the otherwise
ill-posed problem. While Gaussian process regression is nonparametric, it involves a
number of hyperparameters such as the hyperparameter o for the constant kernel or
the hyperparameter o; for the SE kernel (Definitions 2.13, 2.15).

The optimization of the hyperparameters inside the Gaussian processes is the third and
missing ingredient to our algorithm. Unfortunately, it poses a chicken-or-egg dilemma: (1)
without knowledge of the optimal hyperparameters, the Gaussian processes do not properly
regularize the Bayesian regression; (ii) without a properly regularized Bayesian regression,
we do not correctly infer the model parameters from the observations in the state space;
and (ii1) without correct estimates of the model parameters, we are not able to optimize the

hyperparameters. In Algorithm 3.3, we break this cycle of infinite regress by introducing
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experiment experiment experiment

( model

Fig. 3.2 A graphical model of a weakly parametrized reduced-order model. Unlike the
strongly parametrized reduced-order model, the model parameters also vary with the design
parameters of the experiment (Fig. 3.1). The model parameters are not strictly constrained
but regularized by a stochastic process, e.g. a Gaussian process (dashed lines).

a prior for a single instance of model parameters. This prior forms the starting point for a

recursive procedure based on the expectation-maximization (EM) algorithm [117]:

Expectation step. We take the Gaussian process from the step k — 1 with the hyperparame-
ters Gl?fli as well as the posterior probability distributions P(0; | (y)1<i<k—1,M (Gl?iq )
for the steps 1 < j < k— 1 in order to predict the prior probability distribution P(6 |
Vi) 1<i<k—1 ,M(O,?ZI;)) for the step k. We take the prior P(6y | (y;)1<i<k—1 ,M(Ggfi)),
and find the posterior probability distribution P(6; | (v/)1</<x,M(68>%)), which ac-
counts for the observation y;, using Bayesian regression over the observation yy
(Chapter 3.1). For the first step, when there is no Gaussian process yet, we have to
directly provide a prior P(0; | M), either from theoretical considerations or from an

earlier uncertainty quantification.

Maximization step. For the steps 1 < j <k — 1, we update the posterior probability distri-
butions P(8; | (y1)1<1<x_1,M(8;"2)) to P(6; | (v1)1<1<k, M(6}*")) in order to account
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for the observation yy:

k(wj,w) ost re

o0+ 0 (g a5
T k(i wi) \F g

where k(w,w’) denotes the kernel function of the Gaussian process with the hyperpa-

rameters GI?XI; (Definition 2.12). Finally, we update the hyperparameters GI?XI; to 9,? P

to fit the posterior probability distributions P(6; | (y;)1<i<x, M(6;*")) for the steps

1 < j <k (Chapter 2.3).

We conclude our treatment of nonparametric regression with a discussion on the Gaussian
process prior P(6 | M). Note that it is not the same as the prior P(6; | M) from the first
expectation step. The model parameter 6; is a random variable for the design parameter w
whereas the realization 0 is a stochastic process over the entire design space W. By default,
the mean and the variance of the observations are used to normalize the Gaussian process
prior such that it has zero mean and unit variance (Chapter 2.2). In the case of Algorithm 3.3,
the observations of the model parameters are the inferred posterior probability distributions
P(6; | (yl)lglgk_l,M(Gl?Xq)) for the steps 1 < j < k— 1. This leads to significant bias
towards the earlier observations in the calculation of the Gaussian process prior. For instance,
the posterior Glp %%t "and thus the observation Vi, enters the calculation of the Gaussian process
prior at every step k whereas the posterior GIEOSt, and thus the observation yg, only enters the
algorithm at the very last step K. Ideally, the Gaussian process prior is consistent at every
step k of the nonparametric regression algorithm.

In order to alleviate this shortcoming, we extend the expectation-maximization algorithm
with a message-passing (MP) algorithm [118, Chapter 4]. Instead of a single loop over the
index set, we restart our nonparametric regression from the beginning and perform multiple
loops. However, we do not discard any posterior estimates of the model parameters but reuse
them for the calculations of means and variances in all future loops. In the language of
Bayesian networks and belief propagation, every instance of Bayesian regression would be
viewed as a node in a graph, and the retained posterior estimates of the model parameters
represent messages from all the past nodes. While there exists no proof of convergence for
message passing over cyclical graphs, we have found the posterior estimates of the model
parameters to be sufficiently converged after at most three loops. The construction of the

Gaussian process prior using message passing is outlined in Algorithm 3.4.



50 Nonlinear regression

Algorithm 3.3 Nonparametric regression with Gaussian processes and expectation maximi-
zation.
procedure LEASTSQUARES(w, 6P, y) > Bayesian regression (Chapter 3.1).
... > Algorithm 3.2
return 6P, £
end procedure

procedure GPFIT([w], [8P%], [Zpost)) > Fit Gaussian process.
/... > [102, Algorithm 5.1]
return 6P

end procedure

procedure GPPREDICT([w], [8P*], 8P, ) > Predict from Gaussian process.
/... > [102, Algorithm 2.1]
return 0

end procedure

procedure GPCOV(6MP, w;, wy) > Compute (co-)variance between wi and wy.
o1 < k(w1,w2) > Definition 2.12.
return o,

end procedure

6 < gre
6[1],2[1] < LEASTSQUARES(w[1],8,y[1])
6™P « GPrT([w(1]],[6[1]],[Z[1]]).

for2<k<Kdo > [teration over index set.
6 < GPPREDICT(w([l : k—1],0[1 : k— 1], 0™P wlk]) > Expectation step.
6[k],L[k] < LEASTSQUARES(w[k], 8, y[k])
for1 <j<k—1do > Bayesian update.

GPcov (6™P w[j],wk

: : KD (o — 6
Ol = O+ Ghcov (857 ik wik) O =9
end for
O™MP < GPRIT(w([l : k],0[1 : k], Z[1 : k]). > Maximization step.

end for
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Algorithm 3.4 Nonparametric regression with Gaussian processes, expectation maximization
and message passing.

[OMP] « ] > Initialize message passing.
procedure GPFIT([w], [8P%], [Zpos)) > Fit Gaussian process.
OPOst < (9Pt — mean([OMP])) /std([6MP]) > Normalize 6P,
... > [102, Algorithm 5.1]

return 6"
end procedure

procedure GPPREDICT([w], [@P], §MYP, w) > Predict from Gaussian process.
... > [102, Algorithm 2.1]
0 < 0 *std([6MP]) + mean([6MP]) > Denormalize 6.
return 0

end procedure

procedure GPCov(O™P, wy, wy) > Compute (co-)variance between wi and wy,.
o1 < k(wi,wo) > Definition 2.12.
O12 < 012 * std([OMF])? > Denormalize o7;.
return ojp

end procedure

for 1 </ <#MP do > Loops of message passing.

6 < o

6[1],2[1] < LEASTSQUARES(w[1],8,y[1])

Append 0[1] to OMP, > Update message passing.

oM « GPrrT([w(1]], [6[1]], [Z[1])).

for2 <k<Kdo > [teration over index set.
6 < GPPREDICT(w[1 : k—1],0[1 : k— 1], 0™P w[k]) > Expectation step.
0[k],X[k] < LEASTSQUARES(w[k], 8, y[k])
for1 <j<k—1do > Bayesian update.

GPcov (6™P wlj], wlk])

OL1 = OL+ Ghcov (857 ik wix)) O =9
end for
Append 6k to 6MP, > Update message passing.
6P < GPFIT(w[l : k], 0[1 : k], Z[1 : k]). > Maximization step.
end for

end for







Chapter 4

Rijke tube

We apply the ideas from Chapters 1 to 3, namely reduced-order modeling and statistical
inference, to the Rijke tube, a simple yet representative thermoacoustic system. We briefly
describe the Rijke tube set-up by RIGAS ET AL. [119] (Chapter 4.1). The thermoacoustic
models consist of two components: a base-flow model and an acoustic model. The base-flow
models are compared to temperature measurements at the inlet and the outlet of the Rijke
tube as well as on its outside wall (Chapter 4.2). The optimal model parameters are found
using nonlinear regression (Chapter 3.1). The acoustic models are compared to growth (or
decay) rates and frequencies extracted from pressure measurements (Chapter 4.3). In a first
step, we estimate the model parameters as well as their uncertainties by using Bayesian
regression (Chapters 3.1, 3.2). In a second step, we improve upon the results by using
nonparametric regression, and compare the various reduced-order models to each other from
the rigorous perspective of Bayesian inference (Chapters 2.3, 3.3). The thermoacoustic
models were developed in collaboration with PROF. MATTHEW JUNIPER at the UNIVERSITY
OF CAMBRIDGE. The experimental data was provided by DR. NICHOLAS JAMIESON.

4.1 Experimental set-up

The electrically heated Rijke tube is a simple and inexpensive system that contains all the
essential physics of thermoacoustic instability without the complexities of industrial systems
such as jet or rocket engines. Its simplicity means that it is well suited for comparing
experimental observations to theoretical predictions. The Rijke tube consists of a vertical
pipe with an electric heater installed inside. When hot, the electric heater causes a buoyancy-
driven flow to form inside the tube. For electric powers in the range of 0 to 400 W, velocities
of the base flow are measured to be on the order of 0.1 to 1 m/s. This corresponds to virtually

zero Mach number.
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Pressure fluctuations form and travel through the Rijke tube. The pressure fluctuations
are reflected at the ends of the Rijke tube to form a standing wave. As a result, compression
and rarefaction of the air inside the Rijke tube and the associated changes in the flow speed
at the electric heater cause the convective heat transfer between the electric heater and the air
to become unsteady. A small time delay exists between the velocity and heat release rate
fluctuations [120]. This time delay is crucial in determining the phase difference between
the pressure and heat release rate fluctuations. The boundary conditions and the heat release
mechanism determine the shape of the standing wave as well as its growth or decay rate.
The phase difference is used in the Rayleigh criterion to predict the onset of thermoacoustic
instability [5].

On the left-hand side of Fig. 4.1, a one-dimensional schematic of the Rijke tube is
presented. The Rijke tube has a length of /,, +[;, and a diameter of d. The electric heater
is located at a distance of /,, from the bottom. On top of the Rijke tube, an adjustable iris
is installed which acts as an orifice. On the right-hand side of Fig. 4.1, a schematic of the
electric heater is shown. It consists of a ceramic disc with nichrome wire wrapped around it.
Measurements of the Rijke tube and the electric heater are given in Table 4.1. More details
on the experimental set-up and the instrumentation are given by RIGAS ET AL. [119]. Note
that the length /;, of the upper section is different from their specification because the iris is

treated as an extension to the upper section.

Table 4.1 Measurements of Rijke tube.

quantity measurement

d 47.4mm inner diameter of Rijke tube

dj I mm distance between two windings

d; 32.2 mm inner diameter of electric heater
dy, 0.559 mm wire diameter

Iy 784 mm length of upper section of Rijke tube
Iy 15 mm length of electric heater

L, 250 mm length of lower section of Rijke tube
Ny 12 number of wire windings

t 1.5mm thickness of Rijke tube

The electric power is incremented from 0 to 340 W in steps of 10 W. Twenty repetitions
are performed at each step. A microphone placed 55 mm from the bottom of the Rijke
tube is used to measure the pressure fluctuations over time. The complex amplitudes of
the pressure fluctuations are extracted from the filtered signal via a Hilbert transform [121].
As the electric power increases, the Rijke tube exhibits a subcritical bifurcation. Therefore,

two different measurement techniques are used: Below the Hopf point, the decay rates and
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Fig. 4.1 Schematics of Rijke tube (left) and electric heater (right).

angular frequencies are measured from pulsed forcing. Above the fold point, the growth rates
and angular frequencies are measured by holding the system steady with feedback control and
then releasing it. In each case, a linear regime is identified where oscillations grow or decay
exponentially. No measurements are taken in the bistable regime. The measured growth and
decay rates as well as the frequencies are shown in Fig. 4.2. More details regarding the Hopf
and fold points as well as the signal processing of the sampled pressure fluctuations are given
by RIGAS ET AL. [119].
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Fig. 4.2 Experimental measurements of growth rates (left) and frequencies (right) in Rijke
tube. A subcritical bifurcation occurs near Q = 200W.

4.2 Base flow

The base flow inside the Rijke tube is buoyancy-driven: The electric heater increases the
temperature of the air inside the pipe. The pressure difference due to the surrounding air
begins to overcome the gravitational pull acting on the air inside the Rijke tube. The mass
flow rate increases until the net force is in balance with the various drag mechanisms inside
the Rijke tube. As the acoustics depend on the base flow, a model for the latter is required.
For a one-dimensional base flow in the vertical x-direction, mass balance is given by
dp

L4V (pi)=0 . (4.

In a steady flow, Eq. (4.1) reduces to
piA = const 4.2)

where A denotes the cross section area of the Rijke tube. The bar indicates that the velocity u
in x-direction is averaged over the cross section. Evaluated at the inlet (subscript 1), just
downstream of the electric heater (subscript f) and at the outlet (subscript 2), Eq. (4.2) gives

pri1Ay = prifAy = PriipAy (4.3)

where A denotes the cross-section area of the Rijke tube, and A, denotes the cross-section
area of the iris. The density and the temperature between the inlet of the Rijke tube and the
electric heater are assumed to be constant. In general, the condition just downstream of the
electric heater is different from the condition at the outlet of the Rijke tube due to heat loss

through the pipe walls.
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Energy balance is given by

oT
pcvy%—pﬁ-chT:q . (4.4)

Effects due to viscosity and heat conduction are neglected. The substantial derivative of the
pressure is also assumed to be negligible. Between the inlet of the Rijke tube and a plane just
downstream of the electric heater, Eq. (4.4) gives

priiAicy, (Tr—T) =0 4.5)

where Q denotes the heat release rate due to the electric heater, which is equal to its electric
power. Between a plane just downstream of the electric heater and the outlet of the Rijke
tube, Eq. (4.4) gives

dT
p1lZ|A1Cpa = J'L'd(]x(T) , L <x<l,4+1l, (4.6)

T(l,)=Tr |, 4.7)

where ¢, denotes a heat release rate times unit area. The heat release rate times unit area g, is
assumed to be only a function of the temperature 7. Hence, Eq. (4.6) is a first-order ordinary
differential equation. The matching boundary condition is given by Eq. (4.7).

Momentum balance is given by

—

i

po, +pE-V)i=-Vp+pg , (4.8)

where g denotes gravity. Its absolute value g is 9.81 m/ s. Losses due to viscous and inviscid
effects are treated separately. The first integral of a steady streamline between the inlet and
the outlet of the Rijke tube gives

1 2 d

Lty
2

il - —(pr — — dx . 4.

2 ), Pdt(u)df (p2—p1) 8/0 P 4.9)

Integrating by parts, the integral on the left-hand side of Eq. (4.9) gives

1 e d o, 1, 1 ,\ 12 ,dp
oLy di= (2pud—= ——[F2Ly 4.10
2/,1 P () (2p2”2 2p1”1> 2 ), (4.10)

For buoyancy-driven flows, the Boussinesq approximation states that variations in density

are negligible unless related to gravity [122, Chapter 14]. Strictly speaking, the Boussinesq
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approximation may only be applied if the temperature gradients are small. In the Rijke
tube, this is clearly violated for large heat release rates O, where the temperature difference
between the inlet and the outlet of the Rijke tube is of the same order of magnitude as the
temperature inside the Rijke tube. Nevertheless, the Boussinesq approximation is applied

because it simplifies the analysis. Eq. (4.9) becomes

1 5 1 5 L+l
(P2+§P2”2> - (Pl +§P1M1> +8/O pdx=0 . 4.11)

Since loss mechanisms are treated separately, it is assumed that the flow is isentropically
accelerated from ambient conditions before entering the Rijke tube, and isentropically
decelerated to ambient conditions after exiting the Rijke tube. Thus, the sum of the static
pressure and the dynamic pressure at the inlet of the Rijke tube differs from the sum of the

static pressure and the dynamic pressure at the outlet of the Rijke tube by

1 1
<p1 +5p1u%) - (pz+§pzu%) =p1g(lutly) - (4.12)

By adding inviscid drag at the inlet and the outlet of the Rijke tube as well as viscous drag at

the electric heater, the final form of the momentum balance is

L+
g/,u +y (p1 —p(T)) dx—C; %plﬁ% -G (ff) %pzag —03’2—;151 =0 (4.13)
where C1, C; and C3 are dimensionless proportionality constants. Inviscid loss mechanisms
do not depend on viscosity. As such, they are Reynolds-independent in theory. They scale
with the dynamic pressure pu?/2, and only depend on the geometry. The proportionality
constant C; does not depend on the area of the cross section at the inlet A; because the
environment is much larger than the Rijke tube. The proportionality constant C; is a function
of the ratio between the adjustable cross-section area of the iris and the cross-section area of
the Rijke tube A /A;. The form of the viscous drag term is inspired by the laws for channel
and pipe flows as well as the flow around a sphere which state that the drag coefficient is
inversely proportional to the Reynolds number [123, Chapter 4.9]. As the density in the
lower section of the Rijke tube is assumed to be equal to the ambient density, the buoyancy

term only has to be evaluated in the upper section of the Rijke tube.
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4.2.1 Adiabatic model

Eq. (4.3), (4.5), (4.6), (4.7) and (4.13) govern the buoyancy-driven flow inside the Rijke tube.
In order to evaluate the buoyancy term in Eq. (4.13), the heat release rate times unit area ¢,
in Eq. (4.5) needs to be specified. In a first approximation, the base flow in the upper section
of the Rijke tube is assumed to be adiabatic (¢, = 0). Eq. (4.5) gives

T(x):Tf , L <x<l,+1L, . (4.14)

It is shown later that this assumption is not justified. Nevertheless, it yields a simple model
which offers a first quantitative understanding of the buoyancy-driven flow inside the Rijke
tube. This is particularly relevant for the mass flow rate and the flow speeds, for which no
measurements exist. Their knowledge allows us to estimate the dimensionless numbers that
characterize the base flow and to classify their respective regimes.

With uniform density in the upper section of the Rijke tube, Eq. (4.13) becomes

| A\ 1 5 Wi _
(p1—py) 8l —C1§P1u1 -G (A—l) P2ty — C3d—%u1 =0 . (4.15)
The flow speeds iy and it are given by
i = Q , (4.16)
prAicy (Tr—Th)
iy — Q 4.17)
p2Azc, (Tr—Th)
Substituting Eq. (4.16) and (4.17) into Eq. (4.15) gives
. 2 . 2 .
Q' Q' Q'
1-9)-C, -C —C; = 4.1
(1-19) C1<1_0) 6‘219(1_19 Gi—5=0 (4.18)

1 1 A\ (A2 uly,
Ci=—=0C , CG=—=0 (—) (—) , Cy= Cs
L™ 201, 27 261, 7\ A ) \ Ay > piglyd?
g0 R i
p1A1cpyTh P1
Eq. (4.18) has a single unknown ¢+. The non-dimensional quantity ¥ is between zero and
one. Finally, Eq. (4.18) gives a cubic equation:

O+ (C1Q? -~ 30" = 3) 92 + (CLO* + G50 +3) ¥ —1=0 . (4.19)
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If the drag is purely viscous (C; = C; = 0), Eq. (4.19) has a unique physical solution ¥:

Discarding the trivial solution ¥ = 1, the cubic equation is reduced to a quadratic equation:
02— (C50'+2) 0 +1=0 . (4.20)

Due to Viete’s theorem, Eq. (4.20) has two positive solutions 9 for positive C} Q', one larger
and one smaller than one. Because 1 has to be between zero and one for a buoyancy-driven
flow, it follows that the physical solution to Eq. (4.19) is indeed unique. The physical
solution ¥ continues to exist when the inviscid drag terms are added back to Eq. (4.19).

Eq. (4.19) represents a model of the steady flow inside the Rijke tube. The input variables
are the electric power Q and the cross-section area A, of the iris. The output variable ¥
characterizes the state of the Rijke tube. All other flow variables are calculated from 9.
The drag coefficients C;, C, and C3 are the model parameters, which are found from a
nonlinear regression (Chapter 3.1). The predicted temperature at the outlet of the Rijke tube
is compared to experimental measurements for an open iris. The relationship between the
observable quantity 7> and the output variable ¥ is given by

= 4.21)

Within the experiment, the drag coefficients Cy, C; and C3 all have a similar effect on the
buoyancy-driven flow inside the Rijke tube. If the drag increases, the velocity decreases. If
the heat release rate Q is held constant, a slower mass flow rate results in a larger temperature
jump from T; to Ty. The buoyancy force increases until it is in balance with the drag.
Therefore, a simultaneous regression in all three parameters is an ill-posed problem. Because
the inviscid losses at the inlet and the outlet of a pipe are well-studied phenomena, they are
taken from flow charts as C; = 0.578 and C, = 2 [124].

In Fig. 4.3, the results of the nonlinear regression are shown. The predicted temperature
at the outlet of the Rijke tube matches the experimental measurements well. The flow speeds
at the inlet and the outlet of the Rijke tube are on the order of magnitude of 0.75 and 1.3m/s
respectively, which are reasonable values. The fitting of the viscous drag coefficient gives
C3 =49.23 (Table 4.2). A theoretical estimate gives C3 ¢, = 156. This is based on the crude
assumption that the flow through the electric heater behaves like a collection of n,, + 1 channel
flows [123, Chapter 4.2]. The pipe Reynolds number is approximately 2350 in the lower
section of the Rijke tube, which is just above the critical Reynolds number of 2300. But since
the dynamic viscosity of air increases with temperature, the buoyancy-driven flow in the
upper section of the Rijke tube is expected to be laminar. At the electric heater, the blockage

ratio is approximately 50 %, which results in a wire Reynolds number of approximately 56.



4.2 Base flow 61

550 14—
. — model o inlet
] . experiment — 1 Oi_outlet
o 450 é :
E E
= < 0.6
8 350 9
5 ¢ ? 02
250 : : : : : :
0 100 200 300 0 100 200 300
power [W] power [W]

Fig. 4.3 Model predictions of outlet temperature (left) and inlet/outlet speed (right) from
adiabatic base-flow model.

A wake region is expected to form, which would result in a pressure drop on the trailing side
of the wire and cause inviscid drag [123, Chapter 4.12]. The wire Reynolds number is above
45, which marks the onset of vortex shedding. Nevertheless, it is assumed that the vortices
quickly dissipate because of the laminar pipe flow in the upper section of the Rijke tube.

Table 4.2 Nonlinear regression of adiabatic base-flow model. The drag coefficients C; and C;
are taken from flow charts [124].

model parameter estimated value ‘

Ci 0.578 inviscid loss at pipe inlet
(653 2 inviscid loss at pipe outlet (A /A] = 1)
C3 49.23 viscous drag at electric heater

The magnitudes of the individual drag mechanisms in Eq. (4.13) are calculated from the
parameters Cy, C, and C3. The ratios between the inviscid drag at the inlet and the outlet of

the Rijke tube and the viscous drag due to the electric heater are given by

Cipiusd? Copouid?
PG o020 | =2P22% o417 4.22)
2C3ulpuy 2C3 ulpuy

This shows that the buoyancy-driven flow inside the Rijke tube is dominated by the viscous
drag due to the electric heater. A similar comparison shows that the viscous drag due to the
inside wall of the Rijke tube is also negligible [123, Chapter 4.2]:

32(Ly+ lp)urdf

~0.010 . 4.23
2C3lhu1d2 ( )

Finally, an asymptotic analysis is performed on Eq. (4.20). Although the adiabatic base-

flow model is not expected to behave pathologically in the limits of small and large heat
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release rates Q, the same will not necessarily hold for more complicated base-flow models.
Therefore, it will prove advantageous to be able to compare their asymptotic behaviors to the
one of the adiabatic base flow.

Substituting Eq. (4.16) and (4.17) into Eq. (4.15) gives

(1-9) =C10”0* +C,0*0 +C,0' (1 —-0) . (4.24)

The left-hand side of Eq. (4.24) has a value between zero and one, which the right-hand side
of Eq. (4.24) has to match. As Q' goes to infinity, the right-hand side of Eq. (4.24) has to
stay finite. As ¥ goes to zero, the right-hand side of Eq. (4.24) is dominated by the term
in C}. The results of the asymptotic analysis are

1 1

_ _ Y
ﬂNCéQ’Z ) MINCQQ" , h~Q . (4.25)

As O goes to infinity, so do the temperature 7> and the flow speed i1, at the outlet of the
Rijke tube. The flow speed it; at the outlet of the Rijke tube and the mass flow rate go to zero.
This behavior is consistent within the adiabatic base-flow model: Because the density in the
upper section of the Rijke tube cannot become negative, the buoyancy term in Eq. (4.15) is
bounded by p;gl,. As the change in specific momentum across the electric heater iy — it
goes to infinity, the mass flow rate has to go to zero.

As Q' goes to zero, ¥ must go to one. The right-hand side of Eq. (4.24) is then dominated

by the term in Cj. The results of the asymptotic analysis are

)
1-9~,/C0 | awazw,/% : (4.26)
3

As Q' goes to zero, so do the flow speeds ii; and if» at the inlet and the outlet of the Rijke
tube as well as the mass flow rate. The temperature 7; at the outlet of the Rijke tube goes to
ambient temperature. This behavior is physical since zero heat release rate should result in

zero mass flow rate and no change in temperature across the electric heater.

4.2.2 Model with heat loss

In the adiabatic base-flow model, the temperature just downstream of the electric heater 7y is
equal to the temperature 73 at the outlet of the Rijke tube. While there are no measurements
of the temperature or the flow speed inside the Rijke tube, thermocouples are installed on
the outside wall of the Rijke tube (Table 4.3). In Fig. 4.4, the measured wall temperature
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profiles downstream of the electric heater are shown for three different electric powers Q.
At an electric power of 300 W, the wall temperatures at the electric heater (x = 0.25m) and
close to the outlet of the Rijke tube (x = 0.95m) differ by more than 150 K. Therefore, it is
not justified to assume that the flow inside the Rijke tube is adiabatic.

Table 4.3 Thermocouple positions on outside wall of Rijke tube.

|1 2 3 4 5
x|005m 025m 0.50m 0.75m 0.95m

550
o 50.0W
o 150.0 W
o 300.0W
9
D) 450'
E
<
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[«
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0.0 0.2 0.4 0.6 0.8 1.0
X [m]

Fig. 4.4 Experimental measurements of outside wall temperature profiles downstream of
electric heater. For high electric powers, the temperature just downstream of the electric
heater significantly differs from the temperature at the outlet of the Rijke tube.

In a non-adiabatic base-flow model, it is assumed that heat is lost through the wall of the
Rijke tube. In a first approximation, it is assumed that the heat loss is proportional to the
difference between the temperature inside the Rijke tube and the ambient temperature. The

heat release rate times unit area is given by
Ge=—h[T(x)-T] , (4.27)

where /1 denotes the heat transfer coefficient between the buoyancy-driven flow inside the
Rijke tube and the environment. The heat transfer between the buoyancy-driven flow inside
the Rijke tube and the environment consists of two heat transfer mechanisms coupled in
series: the heat transfer between the buoyancy-driven flow inside the Rijke tube and the

pipe as well as the heat transfer between the pipe and the environment. The heat transfer
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coefficient is given by
I 1 1

= 4.28
h + o (4.28)

where h; denotes the heat transfer coefficient between the buoyancy-driven flow inside the

Rijke tube and the pipe, and 4, denotes the heat transfer coefficient between the pipe and the

environment. Integration of Eq. (4.6) with Eq. (4.7) as boundary condition gives

ndh(x—1,)

Tx)=T1+(Tr—T7)exp| — —
() =Ty (1 = i) exp (T

) C L <x<l,+l, . (4.29)

The buoyancy term in Eq. (4.13) evaluates to

L+l P1g ( T2 ) wdh
—p(T))dx=-"Lrog(2) |, k=—0oH" . 4.30
g (o) ax=—Ff1oe (= A (430)

In the adiabatic limit, the buoyancy term would evaluate to

— lim %log <—2> = —piglim llog(19 + (1 —9)exp(—klp)) 4.31)
h—0 k—0 k
=pigh(1-79) (4.32)

which is in agreement with Eq. (4.15). Substituting Eq. (4.16), (4.17) and (4.30) into
Eq. (4.13) gives

v S

I} 11 A 11 A 1"
1 =% | +CQ——+C Q0 —— G =0 4.33
Og(T1 )+ 1 TR 5 TG ’ (433)
dh dh A\ (A lyrdh
cro T oo _mh (_2) <_1) Loy = Hhrdh
2p1A1ng 2p1A1ng Al Ay dhpl gAlcp
Evaluating Eq. (4.29) at x = [,, + [}, gives
T dhl, 1-7°
29 =0+(1—19)exp (— il ) (4.34)
T plAlch/ s

Eq. (4.33) and (4.34) represent a reduced-order model of the steady base flow inside
the Rijke tube. The input variables are the electric power Q and the cross-section area of
the iris A;. The output variables ¥ and 7> /T characterize the state of the Rijke tube. All
other flow variables are calculated from ¥ and 75 /T;. The drag coefficients C;, C; and Cs as
well as the heat transfer coefficients h; and h, are the model parameters, which are found
from a nonlinear regression (Chapter 3.1). As in the adiabatic base-flow model, the drag
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coefficients Cy, C; and C3 all have a similar effect on the buoyancy-driven flow inside the
Rijke tube. Hence, the drag coefficients C; and C, are again taken from flow charts. The
heat transfer coefficients /; and &, account for two independent effects. Firstly, the heat
transfer coefficient 4 determines how much heat the buoyancy-driven flow inside the Rijke
tube loses to the environment. Secondly, the proportions of the inner and outer heat transfer

coefficients &; and h, determine the temperature on the outside wall of the Rijke tube:

h.
Ty(x) =Ti+ +’ o (T(x) =Th) (4.35)
l (4
h; ndh(x—1,)1— 19)
=T+ Tr—T; — : 4.36
! hi+h()( f 1)exp< p]A]CpQ/ 19 ( )

Therefore, both the temperature 75 at the outlet of the Rijke tube and the wall temperatures 7,,,
have to be taken into account to make the simultaneous regression in the three parameters Cs,
h; and h, a well-posed problem. The relationship between the observable quantities 75 and 7,

and the output variables ¥ and 7, /T; is given by

T = F]Tl , (4.37)

no (1 wdh(x—1,) 1 — 9
T, =T |1 ——1 — - . 4.38
@ =T { JrhiJrho <19 >exp< piAic,Q 9 )] (+:38)

In Fig. 4.5, the results of the nonlinear regression are shown. Only the measurements
from the thermocouples downstream of the electric heater are used. The four errors for 73,
T,,(0.5m), T;,(0.75m) and T,,(0.95m) are equally weighted. The predicted temperatures at
the outlet of the Rijke tube and the wall temperatures match the experimental measurements
well. In Fig. 4.6, the various temperatures and flow speeds are summarized. The flow speeds
at the inlet and the outlet of the Rijke tube as well as just downstream of the electric heater
are on the order of magnitude of 0.25, 0.45 and 0.8 m/s respectively, which are reasonable
values. The fitting of the viscous drag coefficient and the heat transfer coefficients gives
C; = 287.26, h; = 5.67W/(m’K) and h, = 19.24 W/(m?K) (Table 4.4). The viscous drag
coefficient C3 is more than five times as large as for the adiabatic base-flow model (Table 4.2).
Nevertheless, it is still of the same order of magnitude as the theoretical estimate of 156
(Chapter 4.2.1). The pipe Reynolds number is approximately 800 in the lower section of
the Rijke tube, which is clearly below the critical Reynolds number of 2300. Thus, the

buoyancy-driven flow inside the Rijke tube is laminar everywhere.
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Table 4.4 Nonlinear regression of base-flow model with heat loss. The drag coefficients C;
and C, are taken from flow charts [124].

model parameter estimated value
G 0.578 inviscid loss at pipe inlet
(653 2 inviscid loss at pipe outlet (A, /A = 1)
C3 287.26 viscous drag at electric heater
hi [W/(m?K)] 5.67 heat transfer coefficient at inner wall
h, [W/(m’K)] 19.24 heat transfer coefficient at outer wall

The Nusselt number of a hydrodynamically and thermally undeveloped flow inside a

circular pipe with uniform surface temperature is modeled as [125, Chapter 3.8.1.5]

3.657

tanh (2,264, +1.7x7°)

0.0499X " tanh (X ) +

Nuy = , (4.39)

tanh (2.432 (Prx,)"/ 6)

Y. — L
7 dRePr
where Re denotes the Reynolds number, and Pr denotes the Prandtl number. Eq. (4.39) is

valid for 0 < X, < o and 0.1 < Pr < o. In a long pipe, Nuy converges to 3.657, which is
the Nusselt number for a fully developed flow inside a circular pipe with uniform surface
temperature [125, Chapter 3.8.1.3]. In the upper section of the Rijke tube, the Reynolds
number, the Nusselt number and the heat transfer coefficient evaluate to

Re~700 , Nuy;~593 |, imS.OS% ) (4.40)
m-K

The kinematic viscosity of air above 500K is taken at 4 x 107>m?/s and the heat con-
ductivity at 0.04W/(mK) [125, Appendix B]. Eq. (4.40) is in good agreement with h; =
5.67W/(m?K) from Table 4.4 regarding the inner heat transfer coefficient #;, considering
that the hydrodynamic and thermal entrance lengths vary depending on the electric power,
and that the temperature on the inside wall of the Rijke tube is not uniform. Nevertheless, the
agreement between Eq. (4.40) and Table (4.4) confirms that the buoyancy-driven flow inside
the Rijke tube is laminar.

The Nusselt number for the free convection at a vertical wall is given by [126]

0.67Ral/4

75 Ra<10° | (4.41)
(1 +(0.492/Pr)%/ 16)

Nuy = 0.68 +




4.2 Base flow 67

_ 530 — model 5o _ 530 — model
] . experiment ' M . experiment
o 450 o 4501
E E 00g0%®
8 350 8 3501
= °® g °
& 3
20100 200 300 2505160 200 300
power [W] power [W]
(a) Outlet of Rijke tube. (b) Wall at x = 0.50m.
_ 330 — model _ 330 — model
] . experiment ) . experiment
o 450 o 4501
E E
8. 350 2 350 sevee
g =)
& 3
20100 200 300 20100 200 300
power [W] power [W]
(c) Wall at x =0.75m. (d) Wall at x =0.95m.

Fig. 4.5 Model predictions of flow temperature at outlet and wall temperatures downstream
of electric heater from base-flow model with heat loss.

where Ra denotes the Rayleigh number. Eq. (4.41) also gives the Nusselt number for the free
convection at a vertical cylinder if d/L > 35Gr 1/ 4 where Gr denotes the Grashof number
[125, Chapter 3.9.2]. At high electric powers, we assume (B(7,, — TI))I/ * ~ 1, where B
denotes the thermal expansion coefficient. The kinematic viscosity of air above 400K is
taken at 3 x 107> m? /s [125, Appendix B]. With Gr ~ 5.25 x 10° and Ra ~ 3.68 x 10°, the
flow on the outside of the Rijke tube is in the transitional regime. Nevertheless, Eq. (4.41)
is expected to hold approximately. The Nusselt number and the heat transfer coefficient
evaluate to

Nuz = 127.11 ﬁ:4.86¥ . (4.42)

m-K

The heat conductivity of air above 400K is taken at 0.03W/(mK) [125, Appendix B].
The value given by Eq. (4.42) is only a quarter of the outer heat transfer coefficient s, =
19.24W/(m?K) taken from Table (4.4). There are multiple possible explanations why the

outer heat transfer coefficient 4, is underestimated, e.g. increased heat transfer in transitional
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Fig. 4.6 Model predictions of temperatures (left) and flow speeds (right) from base-flow
model with heat loss.

and turbulent flow, boundary layer development and heat transfer in the lower section of the
Rijke tube or physical differences between a cylinder and a vertical plate.

The results in Table (4.4) are used to assess the initial assumptions about the heat transfer.
Firstly, the thermal resistance of the pipe is neglected in Eq. (4.28). The thermal resistance
of the pipe is given by

t 2K
~75%107° mv . (4.43)

;Lsteel
The heat conductivity of stainless steel is taken at 20W /(mK). This is negligible com-
pared to the thermal resistances 1/h; = 0.176m?K/W and 1/h, = 0.052m?K/W. Secondly,
Eq. (4.27) implies that the heat loss of the Rijke tube depends only on the temperature at
every location x, and neglects the heat conduction inside the Rijke tube in the axial direction.

The heat conduction inside the pipe in the axial direction is given by

d2T h,- d
h
= 7L'dl‘k )Lsteelh —I—h (T(x> - Tl) ) (4-45)

where k is given in Eq. (4.30). The heat transfer in the radial direction is given by

hiho
hi + ho

Adh(T (x) - T}) = nd (T(x)-Ty) . (4.46)

The ratio between the two heat transfer mechanisms is given by

! Asteel dsz _ Asteelkzt
h(T(x)—Ty) dx? hy

(4.47)
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The ratio between the two heat transfer mechanisms does not depend on the location x.
It is known from the nonlinear regression that the value of k does not exceed 10m~! for
electric powers between 20 and 340 W. Thus, the ratio between the heat transfer mechanisms
does not exceed 0.15. This justifies the assumption that the wall temperature on the outside
wall of the Rijke tube only depends on the temperature of the buoyancy-driven flow inside
the Rijke tube. Thirdly, the heat conduction in the buoyancy-driven flow inside the Rijke
tube is considered. The ratio between the heat convection and the heat conduction in the
buoyancy-driven flow inside the Rijke tube is given by
piuicp

pe= B (4.48)

where Pe denotes the Péclet number. As k is inversely proportional to the mass flow rate, the
Péclet number scales with the square of the mass flow rate. At low electric powers, when
the mass flow rate vanishes, there is a regime where the heat conduction dominates the heat
convection in the buoyancy-driven flow inside the Rijke tube.

In Fig. 4.6, note that the temperature at the electric heater does not converge to the
ambient temperature in the limit of a cold electric heater. An asymptotic analysis reveals that
this result is intrinsic to the model. Substituting Eq. (4.34) into Eq. (4.33) gives

hl, 1-—
_log(19+(1—19)exp(— rd lb./ 0))
plAICpQ G4

s ., 0 :
=Cy+C{Q——+C 0 ——+C0 exp (

(4.49)

ndhl, 1—-10
1-9 1-9

piAic,Q ¥
Two cases are distinguished:

L. limy Q'/(1— 1) > 0. This implies that ¥ goes to one. It follows that the left-hand
side of Eq. (4.49) vanishes. This is a contradiction because at least Cg’ remains on the
right-hand side of Eq. (4.49).

2. limy_,,Q'/(1 =) = 0. All terms on the right-hand side of Eq. (4.49) except for C
vanish. The argument of the exponential term on the left-hand side of Eq. (4.49) goes

to negative infinity. This leaves

log(®) = —-C§ . (4.50)

Thus, ¥ converges to a value between zero and one. The prediction of the temperature 7
just downstream of the electric heater is 497.23 K. This is in excellent agreement with the

asymptotic behavior displayed in Fig. 4.6. In Fig. 4.7, temperature profiles of the buoyancy-
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driven flow downstream of the electric heater are shown for four different electric powers.
The temperature 73 at the outlet of the Rijke tube converges to the ambient temperature 7}
while the temperature T just downstream of the electric heater converges to a value above
the ambient temperature 77. The slope in the temperature profile becomes increasingly steep
near the electric heater. This is in agreement with the previous result that heat conduction in

the axial direction plays a dominant role at low electric powers.
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Fig. 4.7 Model predictions of flow temperature profiles downstream electric heater from
base-flow model with heat loss.

4.3 Acoustics

As discussed in Chapter 1.2, there are three principal tools in thermoacoustics to execute the
linear stability analysis [29, Tutorial 1]: traveling waves, Galerkin modes and Helmholtz
modes. They have in common that they introduce a separation of variables into the partial
differential equations. Traveling waves are characteristics of the partial differential equations,
where space and time are lumped into a single coordinate. In a Galerkin framework, ansatz
modes reduce the partial differential equations to a set of ordinary differential equations
in time. The Helmholtz equation is the Laplace transform of a wave equation, and more
specifically a partial differential equation in space and not in time. JUNIPER AND SUJITH
have demonstrated that the results of the corresponding eigenproblems are identical in
the limit of high resolution, with the exception of smearing or Gibbs phenomena near
discontinuities [29, Tutorial 1].
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In this section, we present two acoustic models: (i) a phenomenological model based on a
mass-spring-damper system coupled with the adiabatic base-flow model (Chapter 4.2.1); and
(i1) a network model based on traveling waves coupled with the base-flow model that includes
heat loss (Chapter 4.2.2). In the mass-spring-damper model, the characteristic function
for the eigenvalues is available so that the methods developed in Chapter 3.1 are directly
applicable. The network model is more representative of larger industrial applications so
that the Bayesian regression is based on a perturbation analysis instead of Jacobi’s formula
(Chapter 3.2). The emphasis of this discussion is placed on model comparison: In a first
instance, we find the optimal estimates for the model parameters of the reduced-order models
using least-squares regression followed by nonparametric regression. In a second instance,
we assess the structures of the reduced-order models by marginalizing the model parameters

within the evidence framework, drawing on many ideas from Chapters 1 to 3.

4.3.1 Mass-spring-damper model

In order to gain a first quantitative understanding of the acoustics inside the Rijke tube, we

investigate the following reduced-order model:
s +2Bs+ Q>+ Nexp(—st) =0 . (4.51)

This phenomenological model resembles the description of a mass-spring-damper system.
The model coefficient B represents a damping coefficient. The model coefficient Q is the
natural angular frequency of the mass-spring-damper system. The model coefficient N
represents a modified interaction index that does not have the same units as the interaction
index 7 in the n-7 model (Eq. (1.4)). The model coefficient T represents the time delay in
the n-7 model. Eq. (4.51) resembles the toy model investigated by JUNIPER AND SUJITH,
which is based on a perturbation analysis of a single Galerkin mode [29, Eq. (6)]. A damping
term in B has been added in order to account for acoustic radiation at the pipe ends, i.e.
reflection coefficients |R| < 1. In the limit of a thermoacoustically passive heat source

(N =0), Eq. (4.51) describes a regular mass-spring-damper system:
s24+2Bs+Q*=0 . (4.52)
The complex eigenvalues s are given by

s=-B+VB2-Q2~-B+jQ (4.53)
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where the final approximation is justified if B < Q. In summary, the purpose of this
phenomenological model is to capture the essential physics of the Rijke tube: oscillatory
behavior coupled with growth or decay, depending on the balance between acoustic radiation
and heat release.

In order to close our phenomenological model, the model coefficients B, Q, N and 7
are empirically related to the buoyancy-driven flow inside the Rijke tube. The damping

coefficient B and the natural angular frequency Q are modeled as

B=kp |, (4.54)
ey
Q= , (4.55)
(L +ka)+ (I, + kg)\/g

where kg denotes an end correction, assumed to be identical at both ends of the Rijke tube.
This takes into account that the ends of the Rijke tube are not perfectly open in the acoustic
sense. It is assumed that the pressure nodes lie slightly outside the Rijke tube. The first-
order end correction is theoretically estimated to be 0.3d ~ 14.1 mm [127]. The modified

interaction index N and the time delay 7 are modeled as

N=kyQ , (4.56)

0.2d,,
(L)

The proportion of the heat converted to mechanical work is assumed to be constant. The

f:kf

(4.57)

time delay 7 is assumed to scale as 0.2d,,/i(l, ). The latter is the result of a perturbation
analysis performed on the boundary layer of a laminar flow around a cylinder [120]. It
holds for low-frequency fluctuations. For (I, ) ~ 0.65m/s (Fig. 4.3), the threshold is
20i(1;)/d,, =~ 23,0005 !. The natural angular frequency of the Rijke tube is on the order
of e,/ (1, +1;,) ~ 1,000s~!, clearly below the threshold. In the limit of high flow speed and
small time delay (|st| < 1), a first-order approximation of the exponential term in Eq. (4.51)

representing the heat release gives
s+ (2B—N1)s+ (Q*+N) =0 (4.58)

where N7 enters the damping term with the opposite sign to B. This elucidates the potentially

destabilizing effect of the heat source in the limit of strong thermoacoustic activity (N7/B >

1), as well as the sensitivity of the growth rate to variations in the time delay 7 [29].
Therefore, we begin by performing a Bayesian regression of the mass-spring-damper

model coupled with the adiabatic base-flow model in the unstable operating regime (Q >
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200 W). The maximum-likelihood estimates of the model parameters are given in Table 4.5.
The end correction kg is about twice as large as the theoretical estimate of 14.1 mm, and has
low uncertainty. The time delay 7 is about thirty times as large as the theoretical estimate of
kr = 1. Nevertheless, the uncertainty is low, which indicates correct scaling in the unstable
operating regime. The model parameters ky and kp, which are expected to have a direct
impact on the growth rate, are marked by high uncertainty (Eq. (4.58)). The high uncertainty
in kp is justified since we expect a damping coefficient of approximately B = 8s~! for
a switched-off electric heater (Fig. 4.2). The sign of kg is unphysical because it implies
negative damping. However, this behavior is due to the fact that the training data so far only

encompasses positive growth rates, where damping mechanisms are not evident.

Table 4.5 Bayesian regression of mass-spring-damper model coupled with adiabtic base-flow
model. The uncertainty in the maximum-likelihood estimates is represented by the standard
deviation in the marginal probability distributions. Note that parametric regression only
quantifies the parametric uncertainty but not the structural uncertainty (Chapter 1.3).

model parameter estimated value standard deviation

kg [s~ 1] —6.54 0.94 (14.4 %)
ko [mm] 27.52 0.48 (1.7 %)
ky [s72W—1 81.68 8.98 (11.0%)
ke 30.80 0.97 (3.1%)

The low uncertainties in ko and k; as well as the high uncertainties in kp and ky are
reflected in the confidence intervals of the associated model coefficients Q, 7, B and N,
respectively (Fig. 4.8). The corresponding confidence intervals in the model predictions
of growth rates and frequencies at every operating point are found from the following

optimization problem with constraints:

2

maxiemize |5(6) — s(0) : (4.59)

subject 0 (6w —6) (Zg'), ., (60— 6,) =17 | (4.60)

where r denotes the confidence level, i.e. the radius of the confidence region in units of
standard deviations. A first-order approximation of Eq. (4.59) gives

2 A ds*
~ (O — O) {d@m

ds

5(6) —5(6) b,

} (6,—6,) . (4.61)
0
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The method of Lagrange multipliers gives the necessary condition [107, Chapter 9]:
ds*
dé,,

where A denotes a so-called Lagrange multiplier. Eq. (4.62) is an eigenproblem, where the

ds
o 46,

0

Lagrange multipliers A are the eigenvalues and the optimal 6,, — 6, is an eigenvector:

A ds* | ds A
max { (6 — Om) [d@m 36, @] (62— 6,) } (4.63)
=max{A (6, —6,) (Zg") (6a—6,)} (4.64)
=r’max{1} . (4.65)

The confidence intervals in the model predictions of growth rates and frequencies are shown
in Fig. 4.9. The model predictions of the frequencies reflect the low uncertainty in kg and k..
The model predictions in the growth rates are significantly more uncertain, especially towards
lower and higher electric powers.
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Fig. 4.8 Model predictions of mass-spring-damper model coefficients with 3-0 confidence
intervals (99.7 % confidence).
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Fig. 4.9 Model predictions of growth rates (left) and frequencies (right) in Rijke tube from
mass-spring-damper model with 3-c confidence intervals (93.9 % confidence!).

In Fig. 4.10, the model predictions of the growth rates and frequencies over the entire
operating regime (0 < Q < 340W) are shown. While the frequency is only slightly un-
derpredicted near zero power, the growth rate makes it clear that a strongly parametrized
mass-spring-damper model is not suited for the lower powers in the stable operating regime.
For Q — 0, the growth rate converges to —kp ~ 6.54s~! as predicted by Eq. (4.52) and (4.53)
(Table 4.5). In this particular experiment, the model predictions of the frequency are more
robust since Q2/N >> 1, and they only deviate slightly from the natural frequencies of the
Rijke tube with a thermoacoustically passive heat source. We therefore focus our attention
on the model predictions of the growth rate when we turn to nonparametric regression in the

next step.
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Fig. 4.10 Model predictions of growth rates (left) and frequencies (right) in Rijke tube from
mass-spring-damper model over entire operating regime.

! The 3-0 confidence interval is based on the 3-c confidence region in the model parameters. The well-
known values 68.3 %, 95.4 % and 99.7 % are for the 1-0, 2-0 and 3-0 confidence intervals of a one-dimensional
normal distribution, respectively. For four model parameters, the corresponding confidence regions have the
values 9.0 %, 59.4 % and 93.9 %, respectively.
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For the nonparamateric regression, we use a linear combination of the squared-exponential
kernel with a white kernel (Definitions 2.14, 2.15):

/12
2 w—w| 2 /
Gexp(—2)+6 w=w
1 20 !

k(W7 W/) - ) ‘W _W/|2 . ) (466)
Gf exp (7) wx=w

RN

which has the hyperparameters 6, o; and o;,. This kernel has automatic relevance determi-
nation (ARD) built-in [102, Chapter 5]: Plausible models tend to have high signal-to-noise
ratios over long distances, i.e. large oy and o; as well as small o;,. The recursive expectation-
maximization (EM) algorithm begins at Q = 340 W, and iterates from high powers to low
powers (Chapter 3.3). We use the results of the Bayesian regression over the unstable operat-
ing regime as the prior for the model parameters at Q = 340 W to initialize the EM algorithm
(Table 4.5).

In Fig. 4.11, the model predictions of the growth rates using nonparametric regression
based on Algorithms 3.3 and 3.4 are shown (Chapter 3.3). One loop of nonparametric
regression improves the model predictions of the growth rate to the point that the growth
rate at zero power is realistically predicted (Fig. 4.11, left). Multiple loops of nonparametric
regression with message passing further improve the model predictions up to the point that
all observations above Q = SOW are within the 3-c confidence interval (Fig. 4.11, right).
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(a) One loop. (b) Three loops of message passing.

Fig. 4.11 Model predictions of growth rates in Rijke tube from mass-spring-damper model
with Gaussian processes, expectation-maximization (left) as well as message passing (right).

In summary, the straightforward application of our nonlinear regression algorithms
noticably improves the model predictions of the state of the system, i.e. the growth rate and
the frequency. Before refining the analysis any further, we critically assess the relevance of
those improvements. Legitimately speaking, if only the model predictions of the state of
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the system were of interest, even a linear function would do a decent job at interpolating
the observations of growth rate and frequency (Fig. 4.2). The value of reduced-order and
phenomenological models does not only lie in their lower computational costs compared to
CFD but in the physical interpretability of their model parameters. In the design of jet and
rocket engines, it is not our aim to suppress unstable modes during operation, e.g. using active
control, but to identify favorable modifications to the system, and thus to system parameters
such as the time delay, in order to ensure that the modes in question do not become unstable
in the first place. The prerequisites are accurately estimated model parameters. For instance,
the mass-spring-damper model has four model parameters while each observation of growth
rate and frequency eliminates at most two degrees of freedom. For Q — 0, an improperly
regularized reduced-order model might encourage ky — oo such that the heat source would
be thermoacoustically active even at zero power. When further refining the applications of
our nonlinear regression algorithms, we thus redirect part of our attention from the state level
to the parameter level.

One particular strong suit of Bayesian methods is the principled addition of knowledge
to reduced-order models. In general, it is not possible to exactly infer the value of the model
parameters at a given operating point because there are four model parameters but only two
observed quantities. At zero power however, when N = 0, only the model parameters B and
of a regular mass-spring-damper system remain so that the number of model parameters
and the number of observed quantities is balanced (Eq. (4.52)). In particular, we estimate
the damping coefficient B to be approximately 9.22s~! (Fig. 4.2, left). In the maximization
steps of Algorithms 3.3 and 3.4, we hence optimize the hyperparameters of our Gaussian
processes using the posterior estimates already computed as well as the information available
at zero power. The difference this makes is shown in Fig. 4.12. Both physics-informed and
physics-uninformed model predictions of the damping coefficient B display similar trends:
(i) the values are fairly constant in the unstable operating regime; (ii) they increase in the
stable regime in the direction of lower powers; and (iii) they reach the value of the regular
mass-spring-damper system at zero power. From the last point of view, the physical piece
of information does not significantly improve the estimate at zero power. Nevertheless, it
affects the optimization of the hyperparameters from the first iteration of the expectation-
maximization algorithm, and thus the regularization of the model parameters over the whole
operating regime. Statistically speaking, the difference is marked by the distinction between
interpolation and extrapolation. On the one hand, the only source of a-priori regularization
in the physics-uninformed case is the prior used at Q = 340 W (Fig. 4.12, left). Therefore,
the model predictions of the damping coefficient remain fairly constant well into the stable

operating regime, and only begin to noticably increase at Q = 150 W. Towards the lower
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powers, the physics of the Rijke tube change rapidly which is reflected by the steep slope.
Consequently, the model predictions of the damping coefficient appear to slightly overshoot in
the vicinity of Q = 30W. On the other hand, the Gaussian processes in the physics-informed
case are aware of the conditions at zero power throughout the nonparametric regression
procedure (Fig. 4.12, right). The model predictions of the damping coeffient are less bound to
the prior used at Q = 340 W, and already begin to increase before Q =220 W in the direction
of lower powers. The slopes are flatter, and there is no overshooting near zero power.
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Fig. 4.12 Physics-informed model predictions of damping coefficients. On the left-hand side,
no physical information is added (Fig. 4.11, right). On the right-hand side, limy_, kg =

9.22s7! is introduced based on the zero-power analogy to a regular mass-spring-damper
system (Fig. 4.14, left).

Most notably, the damping coefficients are negative at higher powers, which is not
physical. In essence, this illustrates where model estimation goes further than parameter
estimation. More specifically, there are two routes here to establish that the mass-spring-
damper model is imperfect: Firstly, one enforces the sign of the model parameter. Then, the
model is imperfect because it does not explain the observations sufficiently well. Secondly,
one does not enforce the sign of the model parameter. Now, the model is imperfect because
the values of the model parameters are complicated to explain although the predictions are
improved. Fig. 4.12 exposes the imperfection of the mass-spring damper model via the
second route. The discussion on model assessment is continued in the concluding paragraphs
of this section.

Another feature in our phenomenological model of the Rijke tube requiring special
attention is the erratic behavior of the growth rate below Q = 50W (Fig. 4.11). The cause
is a chain of modeling decisions that affect the behavior in the limit of zero power: (i) the
base-flow speed (I, ) = i) vanishes (Eq. (4.26)); (ii) our empirical closure of the time

delay 7 is inversely proportional to the base-flow speed it; (Eq. (4.57)); and (ii1) the time
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delay 7 enters the governing equations of our reduced-order model as exp(—s7) (Eq. (4.51)).
Because the growth rates, and thus the real parts of the complex eigenvalues s, are negative,
our reduced-order model has a singularity at zero power. For near-zero powers, the time
delay 7 is mathematically sensitive to the rate at which it diverges, which is almost certainly
not captured by our empirical closures. In general, there are multiple options as to how to
suppress the zero-power singularity. For example, we could treat LIGHTHILL’s law as an

asymptotic case in the limit of high powers of a more well-behaved, empirical ansatz such as

0.2d,,
(L)

T=ke [1—exp (k2a(1,)*)] (4.67)
which would introduce at least one additional model parameter k,. Alternatively, we make
the subjective observation that the model parameter ky should go to zero so that the modified
interaction index N goes to zero at a higher rate in the limit of lower powers. The difference
this makes is shown in Fig. 4.13. Both physics-informed and physics-uninformed model
predictions of the modified interaction index N display similar trends in that they monotoni-
cally increase from lower to higher powers. Nevertheless, the physics-uninformed model
predictions have a visible inflection point near Q = 200 W whereas the physics-informed

model predictions are convex in shape thoughout the entire operating regime.

—GP —GP
=30, map =30, map '
| \
cé 201 mg 201
a 10 = 10
2. 2,
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power [W] power [W]
(a) No information. (b) limQ- _o0ks, limQ- okn.

Fig. 4.13 Physics-informed model predictions of modified interaction indices. On the left-
hand side, no physical information is added (Fig. 4.11, right). On the right-hand side,
limy_,okny = 0 is introduced in addition to limy_,okp = 9.22 s~! in order to suppress the
zero-power singularity T — oo (Fig. 4.14, right).

In comparison, Fig. 4.14 shows how every piece of physical information also improves the
model predictions of the growth rate. Physical information about the damping coefficient B
leads to virtually perfect model predictions of the growth rate for the range of Q > 100W

(Fig. 4.14, left). Over the whole operating regime, all observations of the growth rate are
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within a 3-0 confidence interval. Furthermore, physical information about the modified
interaction index N extends this range down to Q > 50 W, with little inaccuracy left for high
decay rates (Fig. 4.14, left). In particular, our reduced-order model picks up the waviness
in the observations of the growth rate, which is difficult to discern in the raw data with the
naked eye (Fig. 4.2, left).

In conclusion, the mass-spring-damper model with a time-delay term is a simple yet phys-
ical reduced-order model of the Rijke tube. For instance, the model parameter B is physically
interpreted to play the role of a damping coefficient, and to control the acoustic energy lost
to the environment. On a physical basis, this makes an interesting discussion regarding the
quality of this reduced-order model (Fig. 4.14): On the one hand, the mass-spring-damper
model with a time-delay term is a poor reduced-order model of the Rijke tube because
damping coefficients are not meant to become negative. On the other hand, nonparametric
regression gracefully handles the deficiency of this reduced-order model in a smooth manner.
This illustrates the robustness of Bayesian inference, 1.e. its ability to graciously reconcile our
models with imperfect data, that is incomplete, noisy, or possibly even contradictory. In this
particular case, the ability to match the observations and the expectation to keep the sign of
the model parameter are at odds here: Matching the observations is more highly prioritized
due to their high precision. This does not mean that the physical information is lost in the
process. Rather, the sign of the model parameter is less highly prioritized. On a positive note,
this reveals to the modeler that the energy-feeding mechanism is not properly captured by
the time-delay term.

We provide a discussion of model selection within the evidence framework at the end
of Chapter 4.3.2 when we are able to compare across different reduced-order models. Nev-
ertheless, this serves as an entry-point demonstration for the challenges of reduced-order
modeling as an inverse problem and the importance of regularization: Every piece of phys-
ical information, in addition to the model equations, serves as a beacon in the otherwise

unchartered parameter landscape.
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Fig. 4.14 Physics-informed model predictions of growth rates in Rijke tube from mass-
spring-damper model. On the left-hand side, limy_,,kp = 9.22 s~! is introduced based on
the zero-power analogy to a regular mass-spring-damper system. On the right-hand side,
limg_,ky = 0 is added in order to suppress the zero-power singularity 7 — eo.

4.3.2 Network model

A more realistic as well as versatile reduced-order model is provided by network models
based on traveling waves [45]. The Rijke tube is divided into two segments with uniform
flow properties. The electric heater is treated as a discontinuity. This is valid because the
heater Helmholtz number is approximately 0.015, which is much less than unity.> The
segments support standing waves that are coupled by jump conditions. The forward and
backward-traveling waves, that together form the standing waves, are governed by a set
of hyperbolic partial differential equations. The equations are solved by finding complex
eigenvalues that satisfy the jump and boundary conditions. Network models allow for greater
flexibility than the phenomenological model from Chapter 4.3.1 because each section, as
well as the jump and boundary conditions, are modeled independently. Most importantly,
network models are more physical than our ad-hoc mass-spring-damper model.

The three-dimensional system of hyperbolic partial differential equations is in its simplest

form reduced to the one-dimensional form [29]

Ju;  dpy
Pog T ox =0 (469
api du;

2 The Helmholtz number represents the ratio between the length of an acoustic element and the acoustic
wavelength of interest.
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where the subscript indices denote the order of perturbation (Eq. (1.1), (1.2)). Integration of
Eq. (4.68) and (4.69) gives the jump conditions

1+
[p]= =0, (4.70)

[

—1
[ul]l”+ = y}’po nuy(l, ,t—71) . 4.71)

The heat release rate perturbation g; is modeled with an n-7 model (Eq. (1.4)). The pressure

and velocity perturbations of the traveling waves are expressed as

pl(t,x):g(t—x_lu)—I—h(t—f—x_lu) , (4.72)

1 x—1, x—1,
ul(t,x):%{g(t— co >—]’l(t+ co ):| . (473)

The characteristics g and & represent the forward- and backward-travelling waves, respectively.

The Laplace transforms of Eq. (4.72) and (4.73) are given by

p(s,x) = g(s)exp (—sx_ l“) + h(s)exp (sx_ l“) : (4.74)

€0 €0

s, x) = —— {g(s) exp (—sx_ l”) —h(s)exp (sx_ l)} . (4.75)

Poco o co
At the ends of the Rijke tube, the ingoing waves are reflected as outgoing waves. The

boundary conditions are expressed as

. 21

$u(s) = Ry (s)exp(—st,) , Tu=— (4.76)
CO,u

» X 21,

hy(s) = Rpdp(s)exp(—sTp) , Tp= con 4.77)

where R, and R, are the complex reflection coefficients at the respective ends of the Rijke
tube. The network model of the Rijke tube is illustrated in Fig. 4.15.
Substituting Eq. (4.74)—(4.77) into Eq. (4.70) and (4.71) gives the jump conditions

[1+Rpexp(—sT,)] 8p(s) — [1 +Ruexp (—sT,)] hu(s) =0 (4.78)
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Fig. 4.15 Network model of Rijke tube.

1 1 N
1—Rpexp(—sTp)| &p(s) + 1—R,exp(—st,)| hy,(s
e (L R (=5m)](5)+ o (1= Ruexp (~sT)] ()
=Y e (—sT)[1— Ruexp (—st)] huls) (4.79)
YPo P0,uCo.u P uexp “ “ . .

The jump conditions are more conveniently expressed as a linear system of equations:

Ly L)\ (ha —0 (4.80)
Ly L) \ & 7

where the matrix entries are given by

Ly =1+R,exp(—st,) , (4.81)
L =—1—Rpexp(—s15) (4.82)
Y—1n
Ly = (1 + ——exp(—sf)) [l —Ryexp(—sT,)] (4.83)
Y Po
L ! [1—Ryexp(—sTp)] (4.84)
= —[1—Rpexp(—s . .
22 NG b E€Xp b

The homogeneous Eq. (4.80) has exactly one solution, the trivial solution /, = g; = 0,
unless the matrix L is singular [109, Chapter 4]. In summary, our network model poses an
eigenproblem in the complex eigenvalue s.

Similarly to the mass-spring-damper model, the model coefficients in Eq. (4.80) are
again empirically closed with the buoyancy-driven flow inside the Rijke tube. The complex
reflection coefficients at both ends of the Rijke tube are assumed to be identical. They are
modeled as

Ry = kpe +jkm (4.85)
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Rp = kre +Jkim - (4.86)

The complex reflection coefficients are assumed to be frequency-independent. The interaction

index n and the time delay 7 are again modeled as

n=kQ |, (4.87)
0.2d,,

T=k 4.88

"ol (4.83)

Overall, we follow the structure of the discussion from Chapter 4.3.1.

We begin by performing a Bayesian regression of the network model coupled with the
adiabatic base-flow model in the unstable operating regime (Q > 200 W). The maximum-
likelihood estimates of the model parameters are given in Table 4.6. The complex reflection
coefficient kre + j ki has a value close to —1, which is the expected value for an acoustically
open end. In particular, the absolute value is less than 1, which means that acoustic energy
is partially radiated into the environment. The model parameters k, and kr., which are
expected to have a direct impact on the growth rate (|kre + j kim| = kre), as well as the model
parameter k; are marked by high uncertainty. The model parameter kp, is marked by low
uncertainty because the resulting end correction is negligible compared to the travel times 1,
and T, (Z£(kre +jkim) & ® — kim). The high uncertainties in kge, k, and k; as well as the low
uncertainty in ki, are reflected in the model predictions of growth rate and frequency as

shown in Fig. 4.16.

Table 4.6 Bayesian regression of network model coupled with adiabtic base-flow model. The
uncertainty in the maximum-likelihood estimates is represented by the standard deviation in
the marginal probability distributions. Note that the relative standard deviation of the model
parameter kg is measured with respect to 1 — |kre + jkim| &~ 1 + kRe-

model parameter  estimated value standard deviation

kRe —0.979 0.004 (20.6 %)

kim 0.071 0.005 (6.7 %)
k, [kgm~'s72W—1] 73.558 11.177 (15.2%)

k; 15.138 1.694 (11.2%)

In Fig. 4.17, the model predictions of the growth rates and frequencies over the entire
operating regime (0 < Q < 340 W) are shown. The frequency is only slightly overpredicted
for lower powers, whereas the growth rate is noticably underpredicted at first and eventually
swings towards Re(s) ~ —6s~!. In Fig. 4.18, the model predictions of the growth rates
using nonparametric regression based on Algorithm 3.4 are shown. Multiple loops of

nonparametric regression with message passing lead to virtually perfect model predictions
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Fig. 4.16 Model predictions of growth rates (left) and frequencies (right) in Rijke tube from
network model with 3-o confidence intervals (93.9 % confidence).

of the frequency and slightly improved model predictions of the growth rate in the range of
30W < Q0 < 100W.
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Fig. 4.17 Model predictions of growth rates (left) and frequencies (right) in Rijke tube from
network model over entire operating regime.

In the limit of zero power, det(L) = 0 simplifies to (Eq. (3.32))
1 —RyRpexp(—s(t,+1))=0 . (4.89)

With n = 0, only the complex reflections coefficients R, and R; remain so that the number
of model parameters and the number of observed quantities is balanced. In particular, the
complex reflection coefficients R, and R;, are estimated to be kre + jkim =~ —0.971 4+ 0.052]
in the limit of zero power. Furthermore, we suppress the zero-power singularity in the time
delay 7 by making the subjective observation that the model parameter k; should go to zero so
that limy_,, 7 < eo. Fig. 4.19 shows how these two additional pieces of physical information
make the model predictions of the growth rate virtually perfect. In particular, the network
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Fig. 4.18 Model predictions of growth rates (left) and frequencies (right) in Rijke tube from
network model with Gaussian processes, expectation-maximization and message passing.

model, like the mass-springer-damper model, picks up the waviness in the observations of
the growth rate, which is difficult to discern in the raw data with the naked eye (Fig. 4.2, left).
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Fig. 4.19 Physics-informed model predictions of growth rates in Rijke tube from network
model with 3-0 confidence intervals. limy_,,kre = —0.971 is added in order to support
a correct absolute value of the complex reflection coefficients in the limit of zero power.
limy_,o ke = 0is added in order to suppress the zero-power singularity 7 — oo.

With various reduced-order models of base flow and acoustics at our disposal, we
conclude our treatment with a model comparison on a statistical basis. While the discussion
is based on the evidence, also known as the marginal likelihood, or the logarithm thereof,
our model comparison procedure differs from our model selection procedure as outlined
in Chapter 2.3: For a Gaussian process, the posterior estimates of the model parameters
based on a Laplace approximation serve as observations in the parameter space. For our
reduced-order models under comparison, we take the original observations from the state
space. Therefore, the trained Gaussian processes of the model parameters serve as a prior,

and a likelihood function reverses the Laplace approximation in order to bridge the gap
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between parameter space and state space:

I P B SONC 2y g AGP
P(6|M)= det(znzGP)eXp< 2(9k 6.)" (Zgp)y (61— 6 )) , (490
1 1 % S
P(y|0,M)= mexp (—5 = 5k (0)* (Zo) gy 01 — 81 (91))) (4.91)

1 ( 1 {( (
~N————exp| — = —s
Vet 2mrgy P\ T2 [T

(4.92)

which is based on a first-order approximation of the complex eigenvalue s in the model

parameters 0 around the model parameters 667 3

as predicted by the Gaussian processes.
The marginal probability distribution, and thus the evidence, is retrieved from an inspection

of Eq. (4.92) based on Corollary (A.2):

1 1 v
P(y | M) = det (27rZeV) exp (_5 (yk — Sk (ekGP)) (Eevl)kl (yl — 8] (GIGP))) , (4.93)
d d *
(Zev)r = (Zobs)y + (d_;]]i) (ZGP)mn (d_;ll) . (4.94)

Note that the determinant and the quadratic form are real and Eq. (4.93) is well-defined
because the covariance matrix Xe, as a complex matrix is Hermitian.

Before we compute the evidence for the various reduced-order models, it is worthwhile
studying the structure of the covariance matrix X.,. The likelihood of the model parame-

QGP

ters is given by

1

o e ) () - 6))

(4.95)
The quadratic form inside the exponential term in Eq. (4.95) is the least-squares residual,

P(y| 6%, M) =

and measures the statistical distance between the model predictions and the observations
(Chapter 3.1). The covariance matrix X, represents the noise in the observations. Even
if the model predictions exactly match the observations (y; = sk(GkGP)), strong noise ef-

3 Note that all indices here, in particular for the model parameters 6, refer to the index of the experiment.
For example, the model parameters 6; = 6 (wy) are associated with the design parameters wy.
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fectively diminishes our belief in this set of model parameters due to the factor in front
of the exponential term in Eq. (4.95). The evidence P(y | M) is formally identical to the
likelihood P(y | 697, M) of the model parameters 85 except for the covariance matrix Zey
instead of Xy (Eq. (4.93)). In addition to the covariance matrix of the observations, which
measures the noise in the state space, it encompasses the covariance matrix of the model
predictions Egp as well as the eigenvalue sensitivities ds/d6, which are related to the model

and parameter spaces (Eq. (4.94)):

* The covariance matrix Xgp represents the model complexity (Chapter 2.3). Strong
correlations between the model parameters at different operating points are represented
by large values in the off-diagonal entries of the covariance matrix Xgp, which in
turn decreases the absolute value of the determinant det(Xy). This leads to higher
probabilities, which means that the evidence encourages reduced-order models with

less complexity.

* The eigenvalue sensitivity ds/dO represents the sensitivity of the state, i.e. the complex
eigenvalue s, with respect to the model parameters (Chapter 3.2). The argument is
similar: Large sensitivities increase the absolute value of the determinant det(Xcy). This
leads to lower probabilities, which means that the evidence discourages reduced-order

models with extreme sensitivity.

In summary, the evidence generalizes the likelihood of any particular set of model parameters.
The likelihood function quantifies the fit of the model predictions with respect to the observa-
tions whereas the evidence additionally introduces measures to penalize model sensitivity
and complexity.*

Table 4.7 gathers the evidence P(y | M) computed for the various variations of the
mass-spring-damper model and the network model investigated in Chapters 4.3.1 and 4.3.2.
The computations for the base-flow model with heat loss follow the same procedure. The
computation of the evidence formalizes the process of model comparison, which has so
far been done by visual inspection, e.g. of growth rates and frequencies. For reference,
the likelihood P(y | 6, M) computed for the various reduced-order models is also included
in Table 4.7. Note that the likelihood reacts strongly to improvements in the model fit
whereas the evidence is more conservative in its assessment based on model sensitivity and
complexity. For example, we compare two reduced-order models in order to illustrate that

likelihoods and evidence sometimes lead to different conclusions. On the one hand, our

4 Note that the influences of model fit, sensitivity and complexity are not directly separable: The terms Zops,
Ycp and ds/d0 all have different units, and are thus not additive. While the covariance matrix X¢y is the sum of
two other Hermitian matrices, there is no simple relationship between the inverse of the covariance matrix Xey
and the inverses of its summands.
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arguably most simple reduced-order model is the combination of an adiabatic base-flow
model and a mass-spring-damper model for the acoustics (Fig. 4.14, right). On the other hand,
our arguably most complex reduced-order model is the combination of a base-flow model
with heat loss and a network model for the acoustics (Fig. 4.20). The likelihoods favor the
more complex reduced-order model.”> Visual inspection confirms a good fit between model
predictions and observations for all reduced-order models. However, the evidence slightly
favors the more simple reduced-order model based on model sensitivity and complexity.’
Alternatively, the better model fit of the more complex reduced-order model according to the
likelihoods is invalidated by visual inspection of the large confidence intervals present in the
model predictions (Fig. 4.20). In conclusion, this is an instance where the robustness of one
reduced-order model outweighs the slighly better model fit of another reduced-order model,
which makes the evidence, rather than the least-squares residual or the likelihood, the natural

measure for model selection in Bayesian inference.

Table 4.7 Log-likelihoods P(y | 6,M) and log-marginal likelihoods P(y | M) for various com-
binations of base-flow and acoustic models. A large’ value of the log-likelihood P(y | 6, M)
indicates that the model parameters 0 are a good fit. A large value of the log-marginal likeli-
hood P(y | M) further indicates that the reduced-order model M is plausible in terms of model
sensitivity and complexity (highlighted in grey color). This table summarizes the results
of Chapters 4.3.1 and 4.3.2, i.e. the improvements to the mass-spring-damper (MSD) and
network models due to message-passing (MP) and physics-informed (PI) Gaussian processes.
The computations for the base-flow model with heat loss follow the same procedure.

base flow  acoustics log-evidence log-likelihood

log(P(y|M))  log(P(y|6,M))
adiabatic = MSD (w/o MP) —104.3 —154.2 Fig. 4.11, left.
adiabatic MSD —68.9 -92.0 Fig. 4.11, right.
adiabatic MSD (w/ PI) —64.6 —82.0 Fig. 4.14, left.
adiabatic  MSD (w/ PI) —-56.3 —62.8 Fig. 4.14, right.
adiabatic network -50.0 —46.2 Fig. 4.18.
adiabatic network (w/ PI) —46.0 —34.8 Fig. 4.19.
heat loss  network —67.0 —82.7 Not shown.
heat loss  network (w/ PI) —57.3 —44.2 Fig. 4.20, left.
heat loss  network (w/ PI) —59.4 —45.6 Fig. 4.20, right.

5 Adiabatic & MSD (w/ PI): —62.8. Heat loss & network (w/ PI): —44.2/45.6.

6 Adiabatic & MSD (w/ PI): —56.3. Heat loss & network (w/ PI): —57.3/59.4.

7 Note that likelihoods and marginal likelihoods usually assume negative values because the Gaussian
process priors are normalized to have standard deviations of 1. Therefore, a large value of the log-likelihood or
log-marginal likelihood usually means a negative number of relatively small absolute value.
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Fig. 4.20 Physics-informed model predictions of growth rates in Rijke tube from base-flow
model with heat loss and network model with 3-0 confidence intervals.
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Data assimilation






Chapter 5
Stochastic filtering and smoothing

Following the example of Chapter 3, we present another hierarchical framework for state
estimation, parameter estimation and model selection. Compared to nonlinear regression,
there are two main differences to stochastic filtering and smoothing!: Firstly, the emphasis
is on high-dimensional sample spaces. The state vector of the reduced-order model in Part II
is comprised of a single complex scalar, e.g. the eigenvalue of a linear stability analysis,
whereas stochastic filtering and smoothing is computationally feasible for entire flow fields
such as from DNS or LES. Secondly, we narrow the focus to time-dependent reduced-order
models with time as the index set. The governing equations are explicit, and govern the
transition from one state vector to the next in time. In Chapter 5.1, we introduce the notion
of Markov chains, which formalizes the transitions between state vectors in sample space. In
Chapter 5.2, we derive the Bayesian filter and smoother from first principles, i.e. the Markov
property and Bayes’ rule (Chapter 2.1), as well as special cases of the Kalman filter and
smoother. While it is possible to derive the Kalman filter from variational principles, where
the posterior estimate minimizes a least-squares residual, probability theory as the language
of statistical inference is superior in that it does not preclude nonlinear transitions between
non-normal probability distributions. In Chapter 5.3, we draw an analogy to nonparametric
regression (Chapter 3.3), and introduce combined state and parameter estimation. Although
the emphasis of Part III is on state and parameter estimation, we also briefly discuss model

selection and the issue of filter divergence.

Supplementary material:

I Note that the stochastics do not refer to random fluctuations in the state as they would arise in turbulence
for example. Instead, it goes back to the complementary interpretations of frequentist and Bayesian probability
(Chapter 2.1). In the Bayesian interpretation, probability theory and statistics are the natural language for
statistical inference regardless of random events.
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* Chapter5/Scalar advection.ipynb (Git, Binder).

* Chapter5/Lorenz system.ipynb (Git, Binder).

5.1 Markov chains

In Part III, we consider a reduced-order model of the time-dependent form

fOQxRY 5 Q | (5.1)
dx
E = f(x79) > (5.2)

where the state of the system is denoted by x € Q and the model parameters by 8 € RV,
The evolution of the state vector x is governed by the reduced-order model f and the model
parameters 6. In general, the sample space Q depends on the reduced-order model, and is
potentially high-dimensional or even infinite-dimensional (Definition 2.1).> Nevertheless,
we assume without loss of generality that the sample space Q2 is finite-dimensional [114,
Chapter 3]. Furthermore, we discretize the reduced-order model in time, which is also known
as the method of lines [108, Chapter 11]. For a sequence of timesteps #;, with 0 < k < K,
and observations y; of the true state x; = x(f), the governing equations of the reduced-order

model are alternatively written as

G:QxRM 50 | (5.3)

=Gl 1,0)=x i+ | fx(),0)dr . (5.4)

lk—1
The state of the system at a timestep #; is unambiguously defined by the state vector x;. Thus,
our belief in the state x; depends exclusively on our belief in (i) the previous state x;_; as well
as our choice of (ii) the governing equations f (or G) and (iii) the model parameters 0. At the
same time, the state vector x; is compared to noisy observations y; through a measurement

operator H. In terms of random variables, we formulate (Chapter 2.1)
Xk~ P [ x-1,0,f) (5.5)

vk =H(xx) ~ Py | x) (5.6)

2 In CFD for example, the obvious choice of sample space encompasses all the primitive variables, such as
velocities, pressures and temperatures, for every element of the discretized computational domain. This easily
adds up to at least 10° degrees of freedom, often more.
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In brief, the transition from one state to the next is governed by the operator G. The operator G
is derived from the reduced-order model f, and depends on the model parameters 8. The
states x; and the observations y; are considered realizations of their respective random
variables. The degrees of belief in each are subject to (‘~’) their conditional probability
distributions P(xy | x¢_1, 0, f) and P(y | xx), respectively. The degree of belief in the state x;
is conditional on the previous state x;_; and the choices of the reduced-order model f as
well as the model parameters 6. The degree of belief in the observation yy is conditional on
the true state x.

The rules of statistical inference for time-dependent reduced-order models are formalized
as follows [128, Chapter 4]. Firstly, we assume that the reduced-order model is described
by a Markov chain. This means that the belief in a state x; depends only on the belief in the

previous state x;_;:

1. The future is independent of the past given the present:

P(xp | X0:k—15Y1:k—1,0, f) = P(xx | x¢—1, 6, f) (5.7)

where x(.;_ denotes the state vectors at all timesteps from 7 to #;_, and yy.;_ denotes
the observations at all timesteps from # to #;_ .

2. The past is independent of the future given the present:

P(xg | Xk1:6,Vh41:5,0, ) = P(xk | Xk 41,0, f) (5.8)

where x;. 1.x and y;. 1.x respectively denote the state vectors and observations at all
timesteps from k + 1 to the final timestep K.

Secondly, observations are assumed to be statistically independent in time (Definition 2.4).

The probability of an observation depends only on the current state:

Py | X0:5 V1% 1, Yk 1:K, 0, f) = P(yk | xk) (5.9)

In Fig. 5.1, the relationship between state vectors and observations is shown as well as the
roles of governing equations, model parameters and measurements.

The ultimate goal of data assimilation would be to find the joint probability distribu-
tion P(xo.x,v1:x, 60, f). The corresponding sample space would span all state vectors x;
from timestep O to K and all observations y; from timestep 1 to K, as well as the reduced-
order model f and the model parameters 6. This joint probability distribution would give a

complete statistical description. In principle, all probability distributions of interest would
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equations,
Y Y

measurement measurement

|
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Fig. 5.1 Graphical model of time-dependent reduced-order model. The operator G and the
model parameters 6 govern the transition from one state to the next. The state vector x is
related to the observation y through a measurement operator H.

be derived from this joint probability distribution (Table 5.1). In practice, it is difficult to
compute this probability distribution because of the high dimensionality of this sample space
[129, Chapter 1]. Therefore, state estimation focuses on the more direct computation of

conditional probability distributions over a single timestep (Table 5.2).

Table 5.1 Conditional probability distributions in data assimilation.

task PDF description

state estimation P(xo:x | y1:x,0, f) Given a reduced-order model and its
parameters, what is our belief in a
series of states?

parameter estimation | P(0 | yi.x, f) Given a reduced-order model, what
is our belief in a set of parameters?
model comparison | P(f | y1:x) Between two reduced-order models,

in which one do we believe more?
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Table 5.2 Conditional probability distributions in state estimation.

task PDF description

filtering P(x | y1:,6,f) Given all observations from the past
and now, what is our belief in the
current state?

smoothing P(xx | y1:x,0, f) Given all observations from the past,
the future and now, what is our be-
lief in the current state?

prediction P(xk+y1|y1:x,0,f) | Given all observations from the past
and now, what is our belief in a fu-
ture state?

5.2 Kalman filter and smoother

For the filtering problems in Tables 5.2 and 5.3, Bayes’ rule gives (Theorem 2.3)

P(yi | Xk ¥1:6-1,0, )P(xk | y1:4—1,0, f)
P 0. f) =
| 10,6 f) P(ye | y1:k-1,0, 1)

_ P(yi | xi)P(xx | 11,0, f) _ (5.11)

P(yk | y1:4-1,0, 1)

(5.10)

The prediction P(xy | y1.k—1,6,f) in Eq. (5.11) is given by the Chapman-Kolmogorov equa-
tion (Theorem 2.1):

P(xt | 1410, f) = / P(xxit | Vi1, 0, f) dxe_y (5.12)
= /P(xk | Xk— 1,141, 0, F)P(X—1 | Y1:4-1,0, f) doxg—1 (5.13)
= /P(Xk | Xk—1,0, [)P(Xk—1 | y1:—1,0,f)dx—1 . (5.14)

The Chapman-Kolmogorov equation requires the statistical inverse P(xx_1 | y1:k—-1,0, f)
from the previous timestep #;_;. In general, it is solved either numerically [105], analytically
(Theorem 5.3) or by a Monte-Carlo simulation (Theorem 5.4). The steps in the Bayesian
filter are summarized as follows:

Theorem 5.1 (Bayesian filter).

1. Prediction step:

P(xg | y1:-1,0, 1) = /P(Xk | xk—1,0, f)P(xk—1 | y1k—1,0,f)dxe—r . (5.15)
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2. Update step:

O | x)P(xx | y1:e—1,0, f)
Pk | y1k-1,0, 1)

P
P(xi | y1:4,0, f) = (5.16)

At the timestep #; = x, the filtered and smoothed distributions are identical (Table 5.2).
If the smoothed distribution at a timestep #;| is known, the smoothed distribution at the
previous timestep #; is also known due to the nature of Markov chains (Eq. (5.8)). This is
formalized as follows (Theorem 2.1):

P(xx | y1:x,0,f) = /P(xkaxk—i—l | v1:x,0, f) dxg1 (5.17)
= /P(xk | Xk+1,V1:K5 0, )P (Xkt1 | Y1:k, 0, ) Xy (5.18)
= /P(xk | Xkt 1,01, 0, )P (X1 | y1:k, 0, ) Ao (5.19)

The probability distribution P(x;y1 | y1:x,0, f) in Eq. (5.19) is the smoothed distribution
from the subsequent timestep #;. 1. The probability distribution P(x; | x¢11,V1:4, 6, f) in
Eq. (5.19) is computed via Bayes’ rule (Theorem 2.3):

P(xt1 | X014, 0, F)P(xk | 1,0, f)
P(xpt1 | y1:4,0, 1)

_ PO [ %, 6, /)P | Y1k, 6, ) 5.21)

P(Xpt1 | Y160, f) ' '

P(xi | Xk 1,14, 0, f) = (5.20)

Note that Eq. (5.21) involves the filtered distribution P(xy | y1., 0, f) from the current
timestep #; (Theorem 5.1). The steps in the Bayesian smoother are summarized as follows:

Theorem 5.2 (Bayesian smoother).
1. Forward loop: Bayesian filter (Theorem 5.1).

2. Backward loop:

P(xet1 | %k, 0, f)P(xet1 | y1:x,0, f)
P(Xiq1 | Y160, f)

P(xx | y1:x, 60, f) = P(x |)’1:k797f)/

Note that both the Bayesian filter and smoother are sequential in nature. In the Bayesian
filter, the predicted distribution P(xy | y1.x—1,0, f) at a timestep . (Eq. (5.15)) mainly depends
on the filtered distribution P(x;_1 | y1:x—1, 0, f) from the previous timestep #;_1 (Eq. (5.16)).
In the Bayesian smoother, the smoothed distribution P(x; | y1.x, 0, f) at a timestep #; mainly



5.2 Kalman filter and smoother 99

depends on the smoothed distribution P(x;. | y1:x, 0, f) from the subsequent timestep ;. |
(Eq. (5.22)). The existence of sequential algorithms and dynamic programming for the
computation of filtered and smoothed distributions significantly reduces the complexity of
data assimilation [129, Chapter 1].

Two additional assumptions are introduced to make the computation of filtered and
smoothed distributions feasible. Firstly, the prior and the likelihood in the update step of the
Bayesian filter are assumed to be normal (Eq. (5.16)):

X~ N (W Cly) (5.23)

Yie ~ N (Hxg, Cee) (5.24)

where ./ denotes a normal distribution with respective mean and covariance matrix. The
mean of the prior is denoted by y/, its covariance matrix by C@w, and the covariance matrix
of the likelihood, also known as the observation error, by C¢e. From Eq. (5.23) and (5.24),
it follows that the filtered distribution P(xy | y1., 0, f) is normal (Eq. (5.16)). Secondly, the
operator G (Eq. (5.4)) in the prediction step (Eq. (5.15)) is assumed to be linear in the state
vector x. The result is the well-known Kalman filter [130, 131]:

Theorem 5.3 (Kalman filter). The update step in the Kalman filter gives:

X~ N (Y8 (5.25)
v =+ (HChy) [Cee tHCYHT] ™ (w—ty!) (5.26)
Ciny = Clyy — (HCy) ! [Cec +HClyHT | - (Hchy) . (5.27)

where the superscript f denotes ‘forecast’ (everything pertaining to the prediction), and the

superscript a denotes ‘analysis’ (everything pertaining to the update).

If the reduced-order model is nonlinear, the prediction of the covariance matrix C@W
for the Kalman filter is approximated in different ways. In the extended Kalman filter, the
predicted covariance matrix C{;W is computed by linearizing the operator G [132, Chapter 6].
In strongly nonlinear dynamical systems, the predictions are found to be poor [114, Chap-
ter 3]. Higher-order extended Kalman filters are available [133]. Nevertheless, drawbacks
include their significant storage requirements, which increase exponentially with the order of
approximation. An alternative is the ensemble Kalman filter [134, 135]. Instead of a mean v
and a covariance matrix Cyy, a distribution is represented by a sample (w/)1< j<n- During

the prediction step, the ensemble members W/ evolve in time independently. Before the
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update step, the statistics are recovered from the sample as follows:

\P:<W1_W -y, l,,n_@ , (5.28)

1
1‘I"PT ) (5.29)

n
V%%ZW » Cyy ™ —
The sample covariance matrix Cyy involves division by n — 1 instead of n in order to avoid a
sample bias.

Various implementations of the ensemble Kalman filter exist, which differ in the update
step. In the straightforward implementation of the ensemble Kalman filter [134], every
ensemble member is individually updated (Eq. (5.26)). Note that the observations have to be
randomly perturbed in order to guarantee a statistically consistent analysis scheme [135]. In
order to avoid the introduction of randomly generated numbers, the square-root filter is used
here [136]. The square-root filter belongs to a larger family of ensemble Kalman filters called
ensemble-transform Kalman filters [137, 138]. Unlike the straightforward implementation
of the ensemble Kalman filter, the mean and the deviations of the ensemble members are
updated. This requires the singular value decomposition of a symmetric, positive, semi-
definite matrix (VEVT, where V is orthonormal and ¥ diagonal), but no spurious errors due

to the random perturbation of the observations are introduced.

Theorem 5.4 (Square-root filter). The update step in the square-root filter gives:

(W) =9 +(¥); , (5.30)
vi=v +¥ (H‘Pf)T [(n—l)CgerH‘Pf (H\Pf)T]l (ve—H¥)

T 77!
il [E—5pvT VZVT:<H\Pf) [(n—l)cge+H‘Pf(H‘I'f)] HY

where E is the identity matrix.

Following Eq. (5.23) and (5.24), the Bayesian smoother becomes the Rauch-Tung-
Striebel (RTS) smoother, also known as the Kalman smoother [128, Chapter 8]. The smoothed
distribution P(x; | y1:x, 6, f) becomes a normal distribution 4" (y*, Cy,,,) with mean y* and
covariance matrix Cy,,. In order to again avoid the shortcomings of assuming linearity, an

ensemble Kalman smoother is presented here.

Theorem 5.5 (Rauch-Tung-Striebel smoother). The backward loop in the RTS smoother has

the following recursion:

X~ N (W,Cly) (5.31)
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v =yl ((C{/W)kilGCﬁ/wy [‘lll}g—i—l - Wl{—kl} , (5.32)
Co=Con— ()i 16650) " [(Chns — Condena] (1Ch); 16650
(5.33)

Theorem 5.6 (Ensemble Kalman smoother). The backward loop in the ensemble Kalman

smoother has the following recursion:
(W) = (W) + D5 | (W)~ WD (534)

where the superscript plus denotes the pseudoinverse of the rectangular matrix ¥ [108,
Chapter 4].

5.3 Filter divergence

The Kalman filter and smoother address the task of state estimation, i.e. filtering and smooth-
ing the true state from partial and noisy observations (Table 5.2). As discussed in Chapter 1.3,
the uncertainty in model predictions is attributed to two sources, namely parametric and
structural uncertainty. In analogy to Chapter 3.3, we relax the structure of the governing
equations in two steps: (i) state augmentation and (ii) stochastic processes.

In a first step, the state vector is augmented by the model parameters so that they become

subject to the same statistical inference (Fig. 5.2):

fk:@k) | ﬂf@):(f(x(r),e)) | 5@“):(6(@91,9“)) 539
'k k—1

%= GE ) =%+ [ FGED) (5.36)

k-1
The tasks in combined state and parameter estimation are given in Table 5.3. The filtered
and smoothed distributions in the model parameters 6y, P(6; | y1.«,f) and P(6 | yi.x, f)
respectively, are retrieved by marginalizing the state vectors x; from the augmented state
vectors x; (Corollary A.1). Note that the model parameters 6; are now time-dependent as
the system traverses different regimes in state space. This turns the strongly constrained
parameter estimation into a weakly constrained combined state and parameter estimation
[114, Chapter 5]. Thus, the results of marginalizing the probability distributions in combined
state and parameter estimation (Table 5.3) are not strictly equivalent to the solutions of

parameter estimation (Table 5.1).
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Fig. 5.2 Graphical model of time-dependent reduced-order model in combined state and
parameter estimation. Unlike in state estimation, the model parameters 0 are lumped with
the state vector x into an augmented state vector x (Fig. 5.1).

Table 5.3 Conditional probability distributions in combined state and parameter estimation.

task PDF description

filtering P(x, 0k | y1:k,f) | Given all observations from the past
and now, what is our belief in the cur-
rent state and set of parameters?
smoothing P(x, 0k | y1:x,f) | Given all observations from the past,
the future and now, what is our belief in
the current state and set of parameters?

Following augmentation, combined state and parameter estimation is stable in the sense
that the model parameters converge to a set of values without any further regularization
(Definition 3.1). Firstly, the uncertainty after the update step as measured by the covariance
matrix Cy,, 1s strictly lower than the uncertainty after the prediction step as measured by
the covariance matrix C{;,l,,. For example, it follows from Eq. (5.27) that the uncertainty of a

fully observed one-dimensional state vector x; € R is given by

cl
a _ pf vy S
Cee + Cyy
Without loss of generality, the marginal uncertainty in the model parameters 8 as measured
by the trace of their covariance matrix Cgg in combined state and parameter estimation is

monotonically decreasing:

r((Ce)i-1) =tr((Cho)) > u((Cho)y) - (5.38)
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In particular, the trace of the covariance matrix bounds the variance of each model parameter.
Secondly, the confidence in the model predictions increasingly outweighs the confidence in
the observations. For example, it follows from Eq. (5.26) that the filtered estimate y* of a
fully observed one-dimensional state vector x; € R is given by

S
C C
pi= "y Ty (5.39)
ng + CWW ng + wa

For C{,w — 0, the observations y; hold less and less weight.

As the series of filtered estimates converges, this raises the question whether the model
parameters converge to a meaningful set of values. Note that the uncertainty Cy,,, after the
update step, unlike the filtered estimate y“, improves regardless of the actual fit between the
model predictions W/ and the observations y;. This assumes that the reduced-order model is
valid over the entire regime (Eq. (5.2)). Otherwise, the reduced-order model becomes biased
in its predictions and underestimates the uncertainty in its predictions. This shortcoming of
stochastic filtering and smoothing is also known as filter divergence [139].

In a second step, we further relax the augmented governing equations (Eq. (5.36)). For
the lack of better knowledge, we statistically model the unknown dynamics of the model

parameters as a Wiener process (Chapter 2.2):

~ X1+ JiE f(x(r),0)ds

X=G%-1)= B+ Blte— i) : (5.41)

where f(¢) denotes Brownian motion as a function of time. The result is an increase in
uncertainty in the model predictions. In turn, this leads to a more balanced appraisal of
model predictions and observations in the update step (Eq. (5.26)). Figuratively speaking,
the injection of Brownian motion leads to a memory loss: White noise accumulates and
erodes over time the confidence in the model parameters 6;_;, which are based on past
observations y;-;. When the observation y; becomes available, the Kalman filter is biased

3 Note that we deliberately do not formulate the natural generalization of a time-dependent reduced-order
model (Eq. (3.47)):

()

where y(¢) represents white noise. While the left-hand side is an ordinary differential equation, the right-hand
side is nowhere continuous. Existence and uniqueness of solutions in the classical sense are not straightforward,
and require mathematical tools such as Itd or Stratonovich integrals [101, Chapter 4]. A rigorous treatment
based on the theory of stochastic integration is beyond the scope of this discussion [105]. Instead, we consider
Brownian motion as a series of steps B(fx — 1) = B(tx) — B(tx—1) in a random walk.

ﬁéﬂm»=@“”“),am~wmm , (5.40)
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towards the observation y at the expense of the model prediction y/ and hence the past
observations y; .

In practice, structural uncertainty is statistically modeled by covariance inflation [114,
Chapter 15]. In additive covariance inflation, stochastic noise is injected after the prediction
step and before the update step [140]. The strength of the stochastic noise of course depends
on the time interval between successive observations. In analogy to Brownian motion for ex-
ample, the step size in a random walk scales with the square-root of time (Definition 2.16). In
multiplicative covariance inflation, the covariance matrix C%, of the model prediction is mul-
tiplied by a factor (14 p)? [112]. In the square-root filter for example, this is accomplished
by replacing W/ with (1+ p)¥/ (Theorem 5.4). Optimization of the hyperparameter p
requires a trade-off: On the one hand, large p mitigates filter divergence such that model
predictions and the observations stay consistent. On the other hand, overly large p artificially
distorts the confidence in the model predictions to the point that the uncertainty quantification
becomes worthless. Furthermore, there are adaptive schemes for model selection, which are
beyond the scope of this discussion [114, Chapter 15].

In conclusion, we consider time-dependent reduced-order models in Part III that are
Markov chains. The theory of stochastic filtering and smoothing provides us with flexible
algorithms for state and parameter estimation, ranging from the Bayesian filter, which is in
theory the ideal stochastic filter, to the ensemble Kalman filter, which is computationally
tractable for high-dimensional sample spaces at the expense of introducing statistical assump-
tions. Nevertheless, it is not a matter of course that any sample space is compatible with
our statistical assumptions, i.e. least-squares residuals and normal distributions. In the next
chapter, we encounter such a reduced-order model that allows for various sample spaces
subject to different statistics, and provide an in-depth discussion on the construction of an

appropriate data assimilation framework.



Chapter 6

Level-set data assimilation framework

In this chapter, the ensemble Kalman filter is combined with a narrow-band level-set method
and a fast-marching method to form a computationally efficient level-set data assimilation
framework. In analogy to the distinction between front-tracking and front-capturing methods
in describing the motion of an interface, data can also be assimilated according to various
paradigms. For the various paradigms, it is not a priori clear which will yield superior
results. For this reason, the theory and the derivations behind our level-set data assimilation
framework are worked out in detail.

This chapter is structured as follows: In Chapter 6.1, various formulations for the laws of
motion are discussed, including the Hamilton-Jacobi equation. It is shown that the solutions
to the Hamilton-Jacobi equation, the so-called generating functions, form a natural sample
space for data assimilation. In Chapter 6.2, level-set methods are combined with the ensemble
Kalman filter and the ensemble Kalman smoother, and thus become accessible to Bayesian
inference. In Chapters 6.3 and 6.4, the level-set data assimilation framework based on the
Hamilton-Jacobi equation is verified on the basis of one-dimensional and two-dimensional
examples, respectively. In the following chapters, the level-set data assimilation framework

is demonstrated on the nonlinear dynamics of a ducted premixed flame.

Relevant publications:

* Yu/Juniper/Magri: Combined state and parameter estimation in level-set methods.

Journal of Computational Physics, 2019.
Supplementary material:
* Chapter6/Level-set methods.ipynb (Git, Binder).

* Chapter6/Eikonal field.ipynb (Git, Binder).
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6.1 Level-set methods

A number of problems in computational physics involve the motion of interfaces, e.g.
semiconductor manufacturing, multi-phase flows, crystal growth, groundwater flow, computer
vision, grid generation and seismology [141]. In general, there are two approaches to
calculating the motion of an interface [142]: In front-tracking methods, the interface is
parametrized and discretized so that one follows the motion of the whole interface by
tracking a sufficient number of points on the interface. In front-capturing methods, the
interface is embedded into a function defined over the whole domain. One example of
front-capturing methods are the so-called level-set methods, where the interface is embedded
into a strictly monotonic function [143]. Both front-tracking and front-capturing methods
have well-understood advantages, and hybrid methods exist to mitigate their respective
disadvantages [144]. Nevertheless, it is worth mentioning that level-set methods provide
a natural formulation for calculating the motion of an interface [141]: Level-set methods
deal well with non-smooth features such as corners and cusps as well as topological merging
and break-up. Furthermore, level-set methods are easily extended from two to three and
higher dimensions. For more information on level-set methods, the reader is referred to many
excellent expositions in the literature [145, 146, 141, 144, 142].

Despite the elegance of explaining physical phenomena by the motion of interfaces and
calculating the motion of the interfaces by level-set methods, one has to remain aware that
the assumption that manifolds are infinitely thin is often an asymptotic assumption. This
is particularly true in fluid mechanics, which is governed by conservation laws [147]. One
example is the kinematics of premixed flames [14, Chapter 2]: Depending on the combustion
regime, it may be assumed that a thin reactive-diffusive layer separates the burnt and unburnt
gases. While the laminar flame speed, at which the premixed flame propagates from the burnt
into the unburnt region, is a well-defined thermo-chemical property of the fuel-air mixture in
a one-dimensional flow, it more generally depends on the balance between heat conduction
and mass diffusion, whose effects vary with flame stretch and curvature. Moreover, the
turbulent flame speed scales differently depending on the interactions between turbulence and
combustion length scales. Finally, level-set methods do not conserve mass, neither locally
nor globally [148]. This is particularly problematic in the presence of large density gradients
and in closed flows. Hybrid methods, which combine both front tracking and capturing, exist
to mitigate this shortcoming [144]. Nevertheless, ad-hoc corrections only improve level-set
methods at the expense of increased model complexity.

Despite the potential quantitative shortcomings in describing the kinematics of a premixed
flame as the motion of an interface, it has been shown that this model successfully explains
the linear and nonlinear dynamics observed in thermoacoustic instabilities of ducted premixed
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flames, which are relevant to the design of combustion chambers in jet and rocket engines
[53, 39, 57, 62]. The discrepancies which arise when comparing to more faithful simulations
or experiments are usually attributed to the unpredictable nature of turbulent flow or to
uncertainties in the model and its parameters. Thus, it is relevant to assess the ability of a
qualitative, physics-informed model to make quantitative, time-accurate predictions. The
aim of this chapter is to develop a data-driven, statistically rigorous framework for state and
parameter estimation in models using level-set methods, which has not been done before,
and to apply it to oscillating flames in the following chapters (Chapters 7-9).

Inference over interfaces based on level-set methods has been performed, e.g. in the
context of shape optimization, either by directly taking the functional derivative of the
objective functional with respect to the level-set function [149, 150], or, equivalently, by
embedding the level-set method into shape calculus [151-153]. As an alternative to these
variational approaches, our framework for state and parameter estimation is based on data
assimilation [114]. Data assimilation finds the statistically optimal combination of model
predictions and observations. It combines concepts from control theory, probability theory
and dynamic programming [101, 132, 154]. The data assimilation technique used here is the
ensemble Kalman filter [134, 135]. In the ensemble Kalman filter, a Monte-Carlo approach is
used to represent the necessary statistics at every timestep, which makes it a computationally
efficient technique in terms of storage requirements and horizontal scalability. Compared
to other data assimilation techniques based on the Kalman filter, e.g. the extended Kalman
filter [133, 155], the ensemble Kalman filter is found to be particularly robust with respect to
larger nonlinearities [ 114, Chapter 4]. This is relevant for level-set methods, due to strongly
nonlinear events such as cusp formation, topological merging and break-up. A practical
advantage of the ensemble Kalman filter is its non-intrusive implementation with little effort
required for its parallelization. The ensemble Kalman filter has been successfully applied to
a number of problems in fluid mechanics: turbulent near-wall flow [156]; transonic flows
around airfoils and wings [157]; viscous flow around a cylinder [158]; model uncertainties
in Reynolds-averaged Navier-Stokes (RANS) equations [159]; vortex models of separated
flow [160]; and extinction and reignition dynamics in turbulent non-premixed combustion
[161]. Relevant applications of data assimilation to level-set methods outside fluid mechanics
include wildfire spread [162—166] and pollution on the surface of oceans and lakes [167, 168].

When data assimilation is applied to the motion of an interface, the question arises as
to what constitutes its sample space. Refining the distinction between front-tracking and
front-capturing methods, there are, at least, three principle ways to view the motion of an
interface [141, 144]:
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Geometric view. The interface is parametrized and discretized so that one follows the
motion of the whole interface by solving the laws of motion for a sufficient number of

points on the interface.

Set-theoretic view. A characteristic function is defined over the whole domain. The char-
acteristic function assumes one of two values, depending on whether the point at the
location in question is inside or outside the region enclosed by the interface.

Analytic view (also known as ‘‘analysis view’’ [144]). A level-set function is defined over
the whole domain. The interface is reconstructed by identifying the position of a

particular level set.

Beyond the description of motion, these three views also pertain to the assimilation of
data. In fact, all three views have been employed in earlier level-set data assimilation
frameworks: While using a level-set method when solving for the motion of the interface,
ROUCHOUX ET AL. take each entry in the innovation vector y; — H l//f (Eq. (5.25)) as the
distance between one point on the predicted interface and one point on the observed interface
[169]. This framework corresponds to the geometric view. GAO ET AL. compute y; and y/
in the innovation vector from a progress variable [170]. The progress variable assumes
values between zero and one, with most intermediate values assumed near the interface.
This framework is an approximation of the set-theoretic view. MORENO AND AANONSEN
compute the observation y; and the model prediction y/ from a level-set function [171].
This framework corresponds to the analytic view, and comes closest to the level-set data
assimilation framework presented here. The motion of an interface depends on the values of
the level-set function in the immediate environment of the interface, whereas the values of
the level-set function are not unique away from the interface. Our level-set data assimilation
framework (i) introduces an additional constraint in agreement with the analytic view, (ii)
validates the choice of the constraint for two analytical test cases in one and two dimensions
respectively, and (iii) addresses shortcomings in the aforementioned frameworks.

In order to construct the sample space, the derivation of the level-set method is revisited
in this section. The centerpiece of this derivation is the Hamilton-Jacobi equation. In theory,
the level-set method is alternatively derived as the transport of a passive scalar quantity [14,
Chapter 2]. Although the value of the level-set function is well defined at the interface, the
choice of values for the level-set function away from the interface is in general not unique,
and would require an ad-hoc constraint. It is demonstrated how the necessary constraint
to the Hamilton-Jacobi equation naturally follows from the choice of phase space. Finally,
it is shown that the solutions to the Hamilton-Jacobi equation, the so-called generating

functions, form the appropriate sample space for data assimilation. Two complementary



6.1 Level-set methods 109

level-set algorithms are combined to solve the Hamilton-Jacobi equation computationally
efficiently: the narrow-band method [172] and the fast-marching method [173]. Along with
the ensemble Kalman filter (Theorem 5.4), the three algorithms form the backbone of our
level-set data assimilation framework.

The laws of motion of an interface shall be given by

% =u(r) , (6.1)
where r is the position of one point on the interface, and u is the velocity. In Hamiltonian
mechanics, motion is described in phase space using generalized coordinates and momenta
[174, Chapter 3]. With interfaces in mind, a natural choice for the phase space is to use the
position r as generalized coordinates and the normal vector n as generalized momenta.

For the Hamilton-Jacobi equation, the generating function G(r,t) shall satisfy the follow-

ing properties:
* The initial interface r(0) is given by a level set G(r(0),0) = const.
» The moving interface r(¢) is identified as the level set G(r(z),7) = G(r(0),0).

* Huygens’ principle [174, Chapter 9] states that VG = n. Given the choice of phase
space, this is a necessary relationship between the generating function and the general-

ized coordinates and momenta.

The first two properties are present in every front-capturing method [14, Chapter 2]. The third
property, Huygens’ principle, follows from Hamiltonian mechanics (Appendix B). Physically
speaking, every point on the interface is interpreted as the source of a wave. As the waves
propagate through the domain, they connect each point on the interface to every other point
in the domain. Geometrically speaking, Huygens’ principle gives an eikonal field [175].

It remains to show how the generating function translates into a level-set method. The
Lagrangian £ (r,,t) is given by (Lemma B.1)

Z(r(t)a’;(t)ﬁ)zo ) (6.2)
subjectto  G(r(t),t) —G(r(0),0) =0 (6.3)
and n(t)-n(t)—1=0 . (6.4)

The Hamiltonian J#(r,n,t), subject to the same constraints as the Lagrangian .Z(r,7,t)
(Eq. (6.3), (6.4)), is given by (Lemma B.2)

H(r(t),n(t),t) =u(r(t))-n(t) . (6.5)



110 Level-set data assimilation framework

Finally, the Hamilton-Jacobi equation is given by (Theorem B.1)

G

E—Fu(r(t))-n(t)zo . (66)
The solution to the Hamilton-Jacobi equation, the generating function G(r,t), is defined
over the whole domain. As such, it represents the state of the interface in the sample space.
Eq. (6.6) is solved near the interface. Away from the interface, the generating function is
constrained by (Eq. (6.4))

VGl =1 . (6.7)

Eq. (6.7) is an eikonal equation [175]. The solutions to this eikonal equation are signed
distance functions.

6.2 Data assimilation framework

Our level-set data assimilation framework combines three algorithms: (i) the narrow-band
method to solve the Hamilton-Jacobi equation near the interface [172], (ii) the fast-marching
method to extend the eikonal field from the narrow band to the whole domain [173], and (iii)
the ensemble Kalman filter and smoother to assimilate data [114].

The narrow-band method forms the backbone of the level-set data assimilation framework
[172]. It solves the Hamilton-Jacobi equation (Eq. 6.6) in a narrow band near the interface.
Using a narrow band reduces the computational cost by one order of magnitude compared to
finding the generating function over the whole domain [176]. In a numerical simulation, the
spatial resolution shall be denoted by Ax and the temporal resolution by A¢. The temporal
resolution has to satisfy the Courant-Friedrich-Lewy condition uAr < Ax at every point on
the interface [172]. The narrow-band method consists of the following steps (Algorithm 6.1):

Initialize. Before the first timestep, the signed distance field has to be known in a sufficiently
wide neighborhood of the initial interface. It may be obtained from either a previously

computed generating function or exact knowledge of the position of the initial interface.

Localize. At the timestep k, a band

" = {r: G(r,;) < yAx} (6.8)
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is formed, where 7 is a constant chosen according to the width of the narrow band. A

second, enveloping band
N*={r:G(r+7,1) < yAx, 3|/| < Ax} (6.9)

is formed. It follows from the Courant-Friedrich-Lewy condition that the band N*
contains the band T**! formed at the next timestep k + 1.

Advance. The generating function over the band N is evolved by one timestep. Note that
the solution G¥*1(r) is not the generating function at the next timestep k+ 1. While the
position of the interface correctly coincides with the level set of the solution G¥*1(r),
Huygens’ principle is no longer satisfied [177].

Reinitialize. The following Hamilton-Jacobi equation is solved over the band N* until steady
state is reached [177]:
G

WJrs,gn((v;(r,f))(\Vé\—l) =0 (6.10)

G(r,0) =G (r) . (6.11)

The steady-state solution G(r,7 — o) gives the generating function G(r, 1, 1) over the
band N* at the timestep k 4 1. Note that this Hamilton-Jacobi equation is a numerical
continuation of the eikonal equation (Eq. (6.7)), where I denotes a pseudo-time [46,
Chapter 8].

Algorithm 6.1 Narrow-band level-set method.

Initialize interface.

for 0 <k < Kdo

Localize narrow band. > Narrow band (Eq. (6.8), (6.9)).

Advance generating function. > Hamilton-Jacobi equation (Eq. (6.6)).

Reinitialize generating function. > Eikonal equation (Eq. (6.7), (6.10), (6.11)).
end for

When observations are available, the prediction step is followed by an update step (Algo-
rithm 6.2). Like the prediction step, the update step involves localization and reinitialization
so that the narrow band follows the position of the interface. Instead of the advancement step,

there is an extension step and an assimilation step:
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Extend. While a narrow band is sufficient to capture the motion of an interface, data
assimilation has to be performed in one sample space for all interfaces. In a numerical
simulation, the state vector comprises the values of the generating function at every
grid point. The fast-marching method extends the generating function from the narrow
band to the whole domain, thus returning a well-defined state vector in sample space.
The complexity of the fast-marching method is &' (m?log(m)) in two dimensions
or 0'(mlog(m)) in three dimensions, where m denotes the number of grid points in
one dimension [173]. While the generating function over the whole domain is relatively
expensive to compute, the fast-marching method is only called when observations are
available. If combined with the narrow-band method (complexity & (m) or &(m?)
[172]), this level-set method becomes affordable overall.

Assimilate. The ensemble Kalman filter (Theorem 5.4) and/or smoother (Theorem 5.6) are
applied. The assimilation step is followed by a localization step and a reinitialization

step in order to prepare the narrow band for the next prediction step.

Algorithm 6.2 Level-set data assimilation framework with filtering.

Initialize interface.

for 0 <k < Kdo
// Prediction step (Theorem 5.1).
Localize narrow band. > Narrow band (Eq. (6.8), (6.9)).
Advance generating function. > Hamilton-Jacobi equation (Eq. (6.6)).
Reinitialize generating function. > Eikonal equation (Eq. (6.7), (6.10), (6.11)).
// Update step (Theorem 5.1).
Localize narrow band. > Narrow band (Eq. (6.8), (6.9)).
Extend narrow band. > Fast-marching method [173].
Assimilate observations. > Ensemble Kalman filter (Theorem 5.4).
Localize narrow band. > Narrow band (Eq. (6.8), (6.9)).
Reinitialize generating function. > Eikonal equation (Eq. (6.7), (6.10), (6.11)).
end for

Combining the building blocks of the level-set method and data assimilation gives the
level-set filtering and smoothing frameworks (Algorithms 6.2, 6.3). In the following sections,
the update step in the level-set filtering framework is verified using two analytical test cases:
In a one-dimensional test case, the level-set filtering framework, which represents the analytic
view of data assimilation, is contrasted with the geometric and set-theoretic views of data

assimilation. It is shown that the analytic view of data assimilation works correctly, which
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sets the stage for its generalization to higher dimensions. Afterwards, the level-set filtering

framework is applied to a two-dimensional test case, and the effect of the observations on the

shape of the interface is discussed. It is shown how various parameters such as the number

of observations and the observation error may affect the performance of the level-set data

assimilation framework.

Algorithm 6.3 Level-set data assimilation framework with filtering and smoothing.

Initialize interface.

// Forward loop (Theorem 5.2).
for 0 <k < Kdo

// Prediction step (Theorem 5.1).

Localize narrow band.
Advance generating function.

Reinitialize generating function.

/I Update step (Theorem 5.1).
Localize narrow band.
Extend narrow band.
Assimilate observations.
Localize narrow band.

Reinitialize generating function.

end for

/I Backward loop (Theorem 5.2).
for K > k>0do
Localize narrow band.
Extend narrow band.
Assimilate observations.
Localize narrow band.

Reinitialize generating function.

end for

> Narrow band (Eq. (6.8), (6.9)).

> Hamilton-Jacobi equation (Eq. (6.6)).
> Eikonal equation (Eq. (6.7), (6.10), (6.11)).

> Narrow band (Eq. (6.8), (6.9)).
> Fast-marching method [173].

> Ensemble Kalman filter (Theorem 5.4).

> Narrow band (Eq. (6.8), (6.9)).

> Eikonal equation (Eq. (6.7), (6.10), (6.11)).

> Narrow band (Eq. (6.8), (6.9)).
> Fast-marching method [173].

> Ensemble Kalman smoother (Theorem 5.6).

> Narrow band (Eq. (6.8), (6.9)).

> Eikonal equation (Eq. (6.7), (6.10), (6.11)).

6.3 One-dimensional test case

The predicted and observed positions x and y of an interface in one dimension are respectively

given by (Fig. 6.1)

x~ N Uy, Cyy)

Cyy =0.64 (6.12)
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y =X JV(“Q,ng) y ‘LLg - 1 5 ng - 0.36 . (6.13)

In one dimension, an interface reduces to a point. The normal vector on the interface is unique
up to its orientation. Geometric data assimilation using the Kalman filter (Theorem 5.3)

reduces to optimal interpolation of the positions ty and e (Eq. (5.26)):

Cyy
= iy + —11,) =0.64 6.14
Myt e e (He — 1) (6.14)
The filtered position x is closer to the observation than to the prediction in accordance with
the variances Cyy and Cee (Fig. 6.1, left).
For set-theoretic data assimilation, the characteristic function ¥ is assumed to be bounded
by +1 with the interface at y = O:

-1 x<c
X(x)=50 x=c , c~AN(Uy,Cyy) . (6.15)
1 xX>c

The characteristic function ) follows a Bernoulli distribution, which is the appropriate
probability distribution for a random variable with two possible outcomes, at every location x
[99, Chapter 6]:

Px(x)=1)=® a > ) 6.16

(x(x) ) ( T ( )
_—_1 _—1_¢ > 9 6.1

P(x(x) ) ( T » (6.17)

where @ denotes the cumulative density function of the normal distribution. The characteristic
function y does not follow a normal distribution whereas the Kalman filter requires the
mean ¥ and the covariance function €y :

_ — Ly
7(x) = 2@ (x ) 1, 6.18)
Vv Cyy

min(xy,x2) — ty max (xy,x2) — Hy
e ,x):4<1>< ) (1-@( . (6.19)
e W Cyy
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Note that the mean J is not a characteristic function. Set-theoretic data assimilation using

the Kalman filter (Theorem 5.3) gives

2(x) =2 <i/_?“7"’) -1
) ) ) -

49 (1.25min(x, 1)) (1 — P (1.25max(x,1)))
29 (1.25x) — 1 - 1 +4®(1.25) (1 — @ (1.25))

(20 (1.25)— 1)
(6.21)

The interface is localized at x ~ 0.139 (Fig. 6.1, middle). The filtered position x is closer to
the prediction than to the observation although the prediction variance Cyy, is larger than the
observation variance Cg¢. Note that the filtered position x is independent of the variance Cge.

For analytic data assimilation, the predicted and observed positions x and y are viewed as
points on the level sets of the predicted and observed generating functions respectively. It

follows from Eq. (6.12) that the predicted generating function is given by

The mean G and the covariance function 65¢ are given by

G(x)=x—Hy , Ccclx1,x2)=Cyy . (6.23)

Analytic data assimilation using the Kalman filter (Theorem 5.3) on the generating function

results in

C
G(x) = x— fy — F""éw(ug—uw):x—om . (6.24)

The filtered position x is given by the zero-level set of the filtered generating function G
(Eq. (6.24)), which is identical to the result from geometric data assimilation (Fig. 6.1, right).

In summary, geometric, set-theoretic and analytic data assimilation are compared. Set-
theoretic data assimilation gives implausible results in one dimension, and is thus discarded
from any further consideration. Geometric and analytic data assimilation give consistent
results in one dimension. Nevertheless, the generalization of geometric data assimilation to
higher dimensions is not straightforward because it requires a one-to-one correspondence

between the predicted interface and the observations. In the next test case, the generalization
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of analytic data assimilation, as the most feasible framework, to higher dimensions is

preferentially investigated.
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(a) geometric view (b) set-theoretic view (c) analytic view

Fig. 6.1 Data assimilation from geometric (left), set-theoretic (middle) and analytic
view (right). The blue square at x = 0 marks the predicted position of the interface. The red
circle at x = 1 marks the observed position of the interface. The grey, dash-dotted lines give
the coordinates of the filtered position of the interface. In one dimension, data assimilation
from the geometric view (left) reduces to optimal interpolation of the x coordinates, weighted
by Cyy and Cge respectively. The geometric solution may be considered the most intuitive
one. In the middle figure, the Kalman filter is applied to the characteristic function y (blue
line). The set-theoretic solution (dashed line) localizes the interface at x ~ 0.139, significantly
differently from the geometric solution. This shows that oft-used physical quantities, which
exhibit behavior similar to a characteristic function in the vicinity of the interface of interest,
are not suitable for data assimilation. In the right figure, the Kalman filter is applied to the
generating function G (blue line). The analytic solution (dashed line) localizes the interface

at x = 0.64, identically to the geometric solution.
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6.4 Two-dimensional test case

The distance field S of a corner in (xo,yo) is given by

X —XQ r<e<nm
S(x,¥3%0,Y0) = § ¥y — Yo ~Z<g<1 (6.25)
—/(x=x0)>+(y—»)* <6<

For prediction, the coordinates of the corner (xo,yo) are taken to be statistically independent
and normally distributed:

Xo~ N(0,1) , yo~ N (0,1) . (6.26)

A sketch of the corner and its median distance field S(x,y;0,0) are given in Fig. 6.2.

10
' 12
[ (z,9)
| 5
| 6
|
0 0
"
—6
(z0,%0) 12

Fig. 6.2 Sketch of a corner (left) and its median distance field S(x,y;0,0) (right). The walls
of the corner (left, dashed line), which are represented by the zero-level set in analytic data
assimilation, are parallel to the positive x and y axes and share their orientations (right). The
points with 0 < 6 < 7 are defined to have positive distance.

For analytic data assimilation, the predicted position x is again viewed as the level set
of a predicted generating function. It follows from Eq. (6.25) and (6.26) that the predicted

generating function is given by

G(.Xf,y) ~ JV(E(X,Y)’CGG(XI7)’1,X2y)’2)) ) (627)
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where the mean G and the covariance function Cgg are given by

G(x,y) = Exg 3 [S](x, ) (6.28)
:/_Oo _OOS(Xay;ﬁyn)P(oné,yo:n)dédn ) (6.29)
C66(x1,51,%2,52) = Exgyo [(S — Exg 3o [S]) X (S — Eng 3o [S)] (x1,¥1,%2,¥2) (6.30)

= B0 [S % ST (01,312, 2) = B [S] (61, 71) Eo o [S) (2, 32) + (6:31)
:/; /_ S(x17yl’é’n)S('x27y2’€7n)p(x0:§7y0:n)dgdn

- Exmyo [S] (x1 7yl)Exo,YO [S] (XZa)’Z) ) (6.32)

where [, y, denotes the expected value over the random variables xo and yo, and the
‘x” symbol denotes the Cartesian product of two random variables. The mean G and the
covariance function Cgg are computed from Eq. (6.29) and (6.32) using Gauss-Hermite
quadrature [178, Chapter 5]. Alternatively, the mean and the variance function can be

computed from the following one-dimensional integrals on the unit circle:

/4 3m/2
ErlS] (x,3) = / L con(0)(0)a0-+ [ sin(0)g(0)0 - | s0)d0 . (633
) B T 5 5 371:/2
Exy [S7] (x,) —/ﬂ/4cos(6) h(6 d9+/ﬂ/zsm (8)°h(6 d6+/ (6)dé
(6.34)
The auxiliary functions g and 4 are given by
g(8)=ow)[(V+1)POV) +ve(v)] (6.35)
n(0) = o(w) [(V*+2) e(v) + (3v+v?) (V)] (6.36)

where ¢ and ® denote the probability density function and cumulative distribution function

of the normal distribution. The natural coordinates (v,w) are given by
v=uxcos(0)+ysin(6) (6.37)

w=xsin(0) —ycos(0) . (6.38)

The mean and the standard deviation of the predicted generating function are shown in
Fig. 6.3. Artefacts from the interaction between the nonlinearity of distance fields and the

assumption of normal distributions are visible: The mean of the predicted generating function
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(Fig. 6.3, left) is rounded in the corner whereas distance fields are supposed to have right
angles (Fig. 6.2). The standard deviation of the predicted generating function (Fig. 6.3,
right) assumes non-unity values along 8 = 45° although the coordinates of the corner are
statistically independent and normally distributed (Eq. (6.26)). The effects of the artefacts in

the predicted generating function are now examined in various observation scenarios.

10 1.000
12 0.975
. 5 0.950
0.925
Q 4
~
0 0 o 0.900
0.875
-6
_5 0.850
1o 0.825
~10 0.800
~10 —5 0 5 10

-10 -5 0 5 10

(=]

Fig. 6.3 Mean (left) and standard deviation (right) of predicted generating function. The
zero-level set in the mean is marked by a dashed line. Away from 6 = 45°, the mean of
the generating function comes close to its median (Fig. 6.2, right). Note that the distance
field S (Eq. (6.25)) is smooth but not differentiable on 6 = 45°. This explains why the right
angles observed in the median are not preserved but are rounded in the mean. At the origin,

the right angle is thus offset by ﬁ% + %\/% ~ 0.5954. Away from the origin, the right

angles are asymptotically offset by \/LE ~2 (0.5642. The same can be observed in the standard

deviation. Away from 6 = 45°, the standard deviation is close to unity, which is identical

to the standard deviation in the coordinates of the corner (Eq. (6.26)). At the origin, the

standard deviation assumes a value of \/ % — 2 35— —L_ ~0.8581. Away from the origin,

4v2
the standard deviation asymptotically assumes a value of /1 — % ~ (.8256.

Unlike the one-dimensional example, where one point fully characterizes an interface,
observations in two (and higher) dimensions vary in resolution, ranging from the position of
one point on the interface to a full sampling of the interface. In either case, the observations y;
vanish according to the definition of a level set (Chapter 6.1). Eq. (5.26) simplifies to

v =y — (Hc%,) ! [cge +HC£,,,HT] - Hy' . (6.39)
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The measurement operator H is defined by

y/(r)
Hy/ = | : (6.40)
v/ (rm)
where rq, ..., 1, are the positions of the m observed points on the interface.

In Fig. 6.4, the influence of one observation depending on its location is investigated. It is
evident that one observation is insufficient to represent a corner. Nevertheless, analytic data
assimilation gives qualitatively meaningful results in that the observation shifts the vertical
and horizontal edges proportionally depending on the location of the observation. This is
fundamentally different from geometric data assimilation (Fig. 6.1, left), where every point on
the interface is required to correspond to an observation. This makes the presented (analytic)
level-set data assimilation framework fully front-capturing (rather than front-tracking), both
with respect to the description of the motion of the interface and the assimilation of data. As
the number of observation points increases, the right angle in the corner is retrieved (Fig. 6.5).

(a) (_275) (b) (_572) (C) (_57_2) (d) <_57_5)

Fig. 6.4 Means of filtered generating functions for one observation of the interface at various
locations. The observed location is marked by a cross. Its coordinates are specified in each
caption. The zero-level set is marked by a dashed line. Without loss of generality, the
observation error is set to zero. (a) The observation is located significantly closer to the
vertical than the horizontal edge of the predicted generating function (Fig. 6.3, left). Hence,
the observation is primarily associated with points on the vertical edge. Data assimilation
thus mainly shifts the points on the vertical edge while the vertex and the horizontal edge
remain largely unaffected. (b) As the location of the observation moves downwards, the
observation gets more strongly associated with the vertex of the corner while the horizontal
edge remains largely unaffected. (c) As the location of the observation crosses the x-axis,
data assimilation also shifts the points on the horizontal edge. (d) As the location of the
observation reaches the diagonal, data assimilation equally affects the vertical and horizontal
axes of the corner.
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(a) 3 observations. (b) 7 observations.  (c) 15 observations.  (d) 31 observations.

Fig. 6.5 Means of filtered generating functions for multiple observations of the interface at
various resolutions. The observed locations are marked by crosses and the zero-level sets
by dashed lines. The observations are equidistantly spaced between (—3,3) and (3,—3) via
(—3,—3). The number of observations is specified in each caption. For better readability, the
observations are not marked in (b)-(d). Without loss of generality, the observation error is set
to zero. From (a) to (d), as the number of the observation increases, the observations give
a clearer image of the observed corner. Hence, the zero-level set of the filtered generating
function more closely resembles a corner.

It is worth pointing out the probabilistic nature of the presented level-set data assimilation
framework. Similar to soft clustering [99, Chapter 20], the points on the predicted interface
are not associated with distinct observations but with all observations to varying degrees. If
we consider y* to be a function of l//f , C%,,, Vi, Cee and H (Eq. (5.26)), the sensitivity to
data is given by

‘;T"': - (HC@V,)T [Cee +HCly 1| b (6.41)
where the columns represent the sensitivities to individual observations. The shift in the zero-
level set (Fig. 6.5) is the superposition of the contributions due to the individual observations.
For example, while the points on the vertical edge far away from the vertex are mainly
affected by the uppermost observation (Fig. 6.6a), the other observations have a vanishing
effect on them as well (Fig. 6.6b-d). Nevertheless, the shape deformations are more localized
compared to Fig. 6.4. While Eq. (6.41) does not formally depend on the observations yy, it
includes information about the number and the locations of the observations signified by
the measurement operator H. Note that each observation of interest leaves the values of the
generating function at the other observation locations intact.

In summary, analytic data assimilation is applied to a prototypical two-dimensional shape,
a corner. Within the level-set data assimilation framework, the differences between distance
fields, predicted generating functions and filtered generating functions are illustrated. In
particular, the effects of the number of observation points and their locations are studied.

In the next chapter, our level-set data assimilation framework is applied to a more realistic
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(a) (*3a3) (b) (*3) 1) (C) (*37*1) (d) (733*3)

Fig. 6.6 Means of filtered generating functions due to individual observations. The observed
locations are marked by crosses and the zero-level sets by dashed lines. The observations
are equidistantly spaced between (—3,3) and (3,—3) via (—3,—3). The location of the
observation of interest is specified in each caption. Without loss of generality, the observation
error is set to zero.

experiment. In general, the predicted generating function is taken as a composition of
straight sections, which exhibit the behavior discussed for the one-dimensional test case,
and strongly curved sections insufficiently resolved by the observations, which exhibit the
behavior discussed for the two-dimensional test case. The theoretical insights from this

section are referenced throughout the next chapter.






Chapter 7
Twin experiment

The so-called G-equation model is a reduced-order model to study the flame dynamics which
lead to heat release rate perturbations [53, 39]. The premixed flame is modeled as an interface
captured by a level set. The velocity of a point in the level set is the sum of the flame speed,
which is normal to the interface and points towards the unburnt gas, and the underlying flow
field. The underlying flow field includes both hydrodynamic and acoustic contributions. The
G-equation model is used to compute flame transfer functions (FTF) or flame describing
functions (FDF), which give the heat release perturbation to a given velocity perturbation.
Coupled with linear acoustics models, the G-equation model has been very successful in
qualitatively characterizing the linear and nonlinear dynamics of self-excited thermoacoustic
oscillations [57, 62, 179, 56].

We demonstrate our level-set data assimilation framework by performing twin experi-
ments for the G-equation model applied to a ducted premixed Bunsen flame under acoustic
forcing. In our twin experiments, both the model predictions and the observations come from
G-equation simulations, but with different sets of parameters [180, Chapter 9]. This leads to
uncertainties in the parameters and, as a result, in the states. In the absence of uncertainties in
the reduced-order model, the twin experiment is an important benchmark in the quantitative
assessment of a data assimilation framework because it becomes possible to compare filtered
and smoothed solutions to a reference solution at all times [180, Chapter 8].

Relevant publications:

* Yu/Juniper/Magri: Combined state and parameter estimation in level-set methods.

Journal of Computational Physics, 2019.
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7.1 Set-up of the reference simulation

The G-equation is given by [14, Chapter 2]

aa—(:-l—[u(r,t)—sLn] -VG=0 , (7.1)
where the underlying flow field is denoted by u(r,7) and the laminar flame speed by s.. For
VG| = 1, the G-equation is formally equivalent to the Hamilton-Jacobi equation (Eq. 6.6).
The underlying flow field u(r,7) is a superposition of the steady, inviscid flow field U and the
time-dependent perturbation velocity field ' (r,7). In the reduced-order model of u'(r, 1), the
perturbation has an amplitude €U, and travels downstream at the phase speed U /K, where K
and € are model parameters [181]. In the axisymmetric case, the cylindrical components of
the perturbation velocity field are given by

iy, TkpeUssin(kz — ot)
W(nt)=uy | = 0 : (7.2)
u, eU cos(kz — wt)

where the wavenumber k and the angular frequency @ satisfy the dispersion relation w(k) =
Uk/K. The perturbation velocity field u/(r,1) is, mathematically speaking, divergence-free,
and, physically speaking, satisfies the continuity equation.

In Fig. 7.1, a sketch of the ducted premixed flame is shown. The ducted premixed
flame is forced at an angular frequency of 277.78rad/s. Table 7.1 shows the measurements
of the burner and the tube. The G-equation is numerically solved using the narrow-band
level-set method with distance reinitialization [172, 177]: The computational domain is
discretized using a weighted essentially non-oscillatory (WENO) scheme in space and a
total-variation diminishing (TVD) version of the Runge-Kutta scheme in time, which give
up to fifth-order accuracy in space and third-order accuracy in time [182—184]. At the base
of the flame, a rotating boundary condition is used [61]. The G-equation solver has been
verified in a number of studies [55, 57, 62, 52, 56]. These studies showed that the G-equation
reproduces the dynamics of premixed flames only qualitatively, not quantitatively. With our
level-set data assimilation framework, significant improvements on quantitative predictions
are achieved. In axial and radial coordinates, a uniform 401 x 401 Cartesian grid is used,
which corresponds to 30 um x 180 um grid cells. An advection Courant-Friedrich-Lewy
(CFL) number of 0.02 is chosen, which corresponds to a timestep of 3.6 us or approximately
6,283 timesteps over one period.
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Fig. 7.1 Sketch of the ducted premixed flame without perturbations (left). The superposition
of the underlying flow field and the propagation of the premixed flame into the unburnt gas
gives velocity vectors, which are locally tangential to the flame surface (right).

Table 7.1 G-equation parameters for the reference simulation.

parameter parameter value
T 6mm burner radius
Ty 12mm tube radius
U 1.0m/s base-flow speed
SL 0.164m/s flame speed
(0] 277.78rad/s | angular frequency of forcing
K 1.0 model parameter
€ 0.1 model parameter

Snapshots of the reference solution to the G-equation for the ducted premixed flame are

shown in Fig. 7.2. The flame is attached to the burner lip, where the perturbations form and

travel to the tip. When the perturbations are sufficiently large, a fuel-air pocket pinches off.

In our reduced-order model, the perturbations are mainly governed by two non-dimensional

parameters K and €, which govern phase speed and amplitude respectively [181]. In practice,

neither parameter is accurately known a priori, which is a major source of uncertainty.
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]

Fig. 7.2 Snapshots of G-equation simulation over one period of harmonic forcing. The
fuel-air mixture leaves the burner at the bottom of each frame. The infinitely thin flame
surface separates the burnt gas (red) from the unburnt gas (blue). Each snapshot from left to
right is distanced by a quarter of the forcing period.

7.2 Combined state and parameter estimation

Three variations of the twin experiment are performed:

Monte-Carlo simulation. An ensemble of 32 G-equation simulations is performed. Each
simulation has a different set of parameters K and €. They are independently sampled
from a normal distribution with a standard deviation of 20 %.

State estimation. In addition to the procedure described for the Monte-Carlo simulation,
the ensemble Kalman filter (Theorem 5.4) is applied every 1,000 timesteps to update
the discretized generating function G while leaving each set of parameters K and €
unaltered. The observations are extracted from the reference solution (Chapter 7.1):
The measurement operator H is an indicator matrix which identifies all grid points in
the reference solution adjacent to its zero-level set. All aforementioned grid points
are treated as observations of the flame surface. As such, all entries in the observation
vector yy are set to 0. The observation error o is set to 60 pm, which corresponds to

the width of two grid cells.

Combined state and parameter estimation. In addition to the procedure described for the
state estimation, the discretized generating function G is augmented by appending the
parameters K and € to the state vector (Eq. (5.35), (5.36)). Thus, both the state and the
parameters are updated whenever data in the form of observations from the reference

solution 18 assimilated.
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In each variation of the twin experiment, the k-th entry in the state vector y is marginally

distributed according to
Ykl ~ A (PIK], Cyylk, k]) (7.3)

The mean Y[k and the variance Cyy [k, k] are computed from Eq. (5.29). Explicitly, the
likelihood for the flame surface to be found at the location of the k-th entry is given by

I vk’ )
k| = —————=exp| ————:— 7.4
Pl =7 SrCyylkk] T < 2Cyy (kK] (7-4)
Alternatively, the logarithm of the normalized likelihood is given by [102, Chapter 2]
Juld ) Vik?
log| —= | =———— . (7.5)
: <p k)~ 2y kK

In Fig. 7.3, the logarithm of the normalized likelihood is shown for the three variations of
the twin experiment. Its zero-level set gives the maximum-likelihood location of the flame
surface. The more negative the value at a location is, the less likely the flame surface is to
be found there. In Fig. 7.3a, the logarithm of the normalized likelihood is shown for the
Monto-Carlo simulation. As the perturbation travels from the base of the flame to the tip, the
high-likelihood region for the location of the flame surface spreads out. The high-likelihood
region is largest when fuel-air pockets pinch off, which represents maximal uncertainty.
In Fig. 7.3b, the logarithm of the normalized likelihood is shown for the twin experiment
with state estimation. A qualitative comparison to Fig. 7.3a shows that the high-likelihood
region for the location of the flame surface is significantly tighter. While the high-likelihood
region still grows as the perturbation travels, the regular assimilation of data suppresses it
to the vicinity of the observed flame surface. In Fig. 7.3c, the logarithm of the normalized
likelihood is shown for the twin experiment with combined state and parameter estimation.
After few data assimilation cycles, the state-augmented ensemble Kalman filter has learnt
the parameters K and € almost exactly. Knowledge of the parameters enables highly precise
predictions of the location of the flame surface, even during pinch-off events. Unlike in
Fig. 7.3a and b, no growth in the high-likelihood region is qualitatively discernable.

A global, more quantitative measure for the uncertainty in the location of the flame
surface is the root mean square (RMS) error, which is defined as the square-root of the trace

of the covariance matrix of the ensemble (Eq. (5.29)):

n—1

l n
RMS error = \/ Y (vi-9) (v;-9) . (7.6)
j=1
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t = 10,000 t=11,500 t = 13,000 t = 14,500

(a) Monte-Carlo simulation.

(b) State estimation.

(c) Combined state and parameter estimation.

Fig. 7.3 Snapshots of the logarithm of the normalized likelihood (Eq. (7.5)) over one period
for the three variations of the twin experiment respectively. The observations (black) are
extracted from a reference solution to the G-equation (Fig. 7.2). High-likelihood (yellow)
and low-likelihood (green) regions are shown. Each snapshot from left to right is distanced
by a quarter of the forcing period.
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In Fig. 7.4, the RMS error is plotted over time for the three variations of the twin experiment
from ¢ = O for eight cycles. The RMS error is initially zero in all three twin experiments
because all members in each ensemble share the same initial condition. In the Monte-Carlo
simulation (Fig. 7.4, blue line), the RMS error subsequently grows until it reaches a high-
uncertainty plateau. Momentary spikes in the uncertainty occur approximately every 6,000
timesteps, and coincide with the pinch-off events observed in the reference solution (Fig. 7.2).
With state estimation (Fig. 7.4, orange line), the assimilation of data regularly suppresses
the uncertainty as qualitatively observed in Fig. 7.3b. As a result, the predictions of the
location of the flame surface significantly improve. With combined state and parameter
estimation (Fig. 7.4, green line), the predictions further improve. Beginning with the first
instance of data assimilation at timestep 1,000, the uncertainty steadily decreases until it
reaches a low-uncertainty plateau after approximately 10,000 timesteps. At this point, the
state-augmented ensemble Kalman filter has optimally calibrated the parameters, and the
state has reached a statistically stationary state!. The assessment based on the RMS error is
supported by an analysis of the bias, which is plotted in Fig. 7.5 and defined as the difference
between the mean prediction and the observations (Eq. (6.39)):

bias = \/ (HY) (HY) . (7.7)

Note that both the unknown parameters and the observation noise contribute to the bias.
Hence, the bias is particularly useful as a quantitative measure in twin experiments, where
the reference solution and thus the observation error are exactly known.

To gain insight into the effect of combined state and parameter estimation, it is instructive
to analyze the probability distributions in the parameters. In Fig. 7.6, the marginal distri-
butions in the normalized residuals of K and € are shown, signified by their means and
three-sigma confidence levels at every timestep. By timestep 15,000, no improvement is
visible in either the estimates of the means or the uncertainties, which matches the evolution
of the RMS error (Fig. 7.4). While both K and € quickly converge to the values used in
the reference simulation (Table 7.1), the low uncertainty in K compared to € reflects the
physical significance of this parameter: The nonlinear dynamics of a premixed flame are
highly sensitive to the timings of pinch-off events [29], which in turn depend on the phase
speed at which perturbations travel along with the flame. In our reduced-order model based
on the G-equation, the phase speed is regulated by the parameter K, which makes it highly ob-

servable even in the presence of observation noise. Similar to sensitivity analysis [32, 76, 70],

I Note that the state only reaches statistical stationarity because observation noise and numerical errors are
always present.
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Fig. 7.4 Logarithmic plot of root mean square (RMS) error over 50,000 timesteps for the
Monte-Carlo simulation (blue line) as well as the twin experiments with state estimation
(orange line) and combined state and parameter estimation (green line). 6,283 timesteps
correspond to one period of harmonic forcing. Data is assimilated every 1,000 timesteps.
The black rectangle marks the time window depicted in Fig. 7.3.
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Fig. 7.5 Logarithmic plot of bias over 50,000 timesteps for the Monte-Carlo simulation (blue
line) as well as the twin experiments with state estimation (orange line) and combined state
and parameter estimation (green line). 6,283 timesteps correspond to one period of harmonic
forcing. Data is assimilated every 1,000 timesteps. The black rectangle marks the time
window depicted in Fig. 7.3.
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Fig. 7.6 Logarithmic plots of normalized residuals of K (left) and € (right) over 20,000
timesteps for combined state and parameter estimation; linear scales for normalized likeli-
hoods between +10~2. The marginal distributions in K and € are represented by their means
(crosses) and three-sigma confidence levels (error bars).

this physical insight is gained from the inspection of the uncertainties, which here exceed the
residuals between the means and the set of reference values by several orders of magnitude.

Finally, combined state and parameter estimation using the ensemble Kalman smoother is
performed (Theorem 5.6). In Fig. 7.6, the marginal distributions in the normalized residuals
of K and € are shown for both the ensemble Kalman filter and smoother. The effect of the
ensemble Kalman filter has already been described in Fig. 7.6. In the forward-backward
implementation, the ensemble Kalman smoother takes the last solution of the ensemble
Kalman filter and works itself backwards in time (Theorem 5.2). In terms of information
theory, the ensemble Kalman smoother takes at every timestep k all observations, from
the past, present and future, into account compared to the ensemble Kalman filter, which
only takes the past and the present into account. Statistically speaking, the smoothed
distributions are more strictly conditioned than the filtered distributions, over y.x compared
to y1.x (Table 5.3). This surplus in information is evident in the form of lower error bars
not just towards the end of the combined state and parameter estimation, but extending
all the way to the very first instances of data assimilation. The evaluation of Eq. 5.6 does
not rely on the solution of the governing equations, but instead relies on the predicted and
filtered distributions in storage. The ensemble Kalman smoother is thus a computationally
inexpensive tool to quantify the uncertainties especially at the beginning of the simulation,
where little retrospective data is available. In analogy to direct-adjoint looping [50, 185],
combined state and parameter estimation based on filtering and smoothing can be used to

obtain otherwise inevitably ad-hoc initial conditions and parameters.



134 Twin experiment

T T T T
0 10,000 20,000 30,000 40,000 50,000
timestep

|
O
_10+0 T T T T
0 10,000 20,000 30,000 40,000 50,000
timestep
— ensemble Kalman filter ensemble Kalman smoother

Fig. 7.7 Logarithmic plots of normalized residuals of K (top) and € (bottom) over 50,000
timesteps for combined state and parameter estimation using the ensemble Kalman filter
(blue cross) and the ensemble Kalman smoother (orange square); linear scales for normalized
likelihoods between £1072.

7.3 Hyperparametric study

In a first hyperparametric study, the observation error O is varied to investigate the effect of
observation noise on the level-set data assimilation framework. In Chapter 7.2, it has been
established that combined state and parameter estimation eventually leads to a statistically
stationary state. In Fig. 7.8, the same RMS error is plotted over time for different observation
errors Og. This reveals that the sustained low uncertainties are epistemic in nature [67]: Every
reduction in the observation error o¢ by one order of magnitude reduces the RMS error by
one order of magnitude. It is clear that the observation error poses a lower epistemic bound
on how low the uncertainty can be reduced by combined state and parameter estimation.

In Fig. 7.9, the marginal distributions in the normalized residuals of K and € are plotted
over time for the different observation errors. The means of the residuals quickly vanish for
all three observation errors 0. For the lower observation errors, the error bars increasingly
fail to contain the zero residual. Considering that three sigmas correspond to a confidence of
99.7 % under the assumption of normal distributions (Chapter 5.2), the frequency at which
the error bars fail leads to the conclusion that the level-set data assimilation framework
underpredicts the uncertainties for low observation errors. This is in agreement with the

theoretical analysis of the level-set data assimilation framework for the two-dimensional
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Fig. 7.8 Logarithmic plot of root mean square (RMS) error over 50,000 timesteps for
combined state and parameter estimation with different observation errors (0 = 60 um blue
line, 6 = 6 um orange line, oz = 0.6 um green line).
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Fig. 7.9 Logarithmic plots of normalized residuals of K (left) and € (right) over 20,000
timesteps for combined state and parameter estimation with different observation errors
(0 = 60 um blue cross, 6z = 6 um orange square, oz = 0.6 um green circle); linear scales
for normalized likelihoods between +1074.

test case (Chapter 6.4): Although the individual simulations predict the formation of sharp
cusps as the perturbations travel on the respective flame surfaces, the cusps are rounded in
the mean of the ensemble (Fig. 6.3, left). Furthermore, the observable sharpness of a cusp
depends on the local number of observations of points on the flame surface. A decrease in the
observation error o, without an increase in the number of observations amounts to a relative
decrease in the resolution of the observed cusp (Fig. 6.5). Therefore, the local values of the
eikonal fields of the individual simulations significantly deviate from normal distributions
(Fig. 6.3, right), which leads to incorrect distributions and uncertainties.

In a second hyperparametric study, subsamples of the observation points are used to
investigate the effect of the number of observations on the level-set data asssimilation

framework. Furthermore, this serves to illustrate the superiority of our analytic view over
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Fig. 7.10 Logarithmic plot of root mean square (RMS) error over 50,000 timesteps for
combined state and parameter estimation with different subsamples of observation points
(100 % blue line, 10 % orange line, 2 % green line).

the geometric view in data assimilation (Chapter 6.1): In the geometric view, the observed
interface must be parametric or at least as highly resolved as the grid used in the level-set
method to allow the optimal interpolation of a sufficiently large number of points on the
predicted interfaces. This restriction does not exist in the analytic view. Hence, we study the
effect of dispersed observation points on the level-set data assimilation framework.

In Fig. 7.10, the RMS error is plotted over time for different randomly sampled subsets
of the observation points. In Chapter 7.2, it has been established that combined state and
parameter estimation eventually leads to a statistically stationary state after approximately
10,000 timesteps. With 10 % of the observation points, it takes more than 30,000 timesteps
to reach a comparable low-uncertainty plateau. With 2 % of the observation points, the RMS
error is still decreasing after 50,000 timesteps while repeatedly failing to correctly predict
the pinch-off events for the whole ensemble.

In Fig. 7.11, the marginal distributions in the normalized residuals of K and € are plotted
over time for the different subsamples. While the means of the residuals quickly vanish
for all three subsamples, the confidence levels for the incomplete subsamples improve less
rapidly than for the original sample of observation points. This is in agreement with the
theoretical analysis of the level-set data assimilation framework for the two-dimensional
test case (Chapter 6.4): In particular for the 2 %-subsample, certain features in the observed
interfaces remain underresolved at the individual timesteps (Fig. 6.4). Nevertheless, the
ensemble at a timestep k representing the filtered probability distribution P(xg, 0 | yi.«, f)
(Table 5.3) reflects the knowledge of the observations at all previous timesteps due to the
Markov property of the reduced-order model (Chapter 5.1). In theory, the lack of resolution
in the observations is compensated by more instances of data assimilation to accumulate the
same amount of information. The result is a similar statistically stationary state reached at a

later time.
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Fig. 7.11 Logarithmic plots of normalized residuals of K (left) and € (right) over 20,000
timesteps for combined state and parameter estimation with different subsamples of ob-
servation points (100 % blue cross, 10 % orange square, 2 % green circle); linear scales for
normalized likelihoods between £1072.






Chapter 8
Simulation of a ducted premixed flame

In the previous chapter, we performed a so-called twin experiment, where the assimilated data
is generated by the same reduced-order model that is used for predictions. In this chapter, we
take a high-fidelity simulation, and assimilate data from this numerical experiment. The high-
fidelity simulation involves a number of physical effects not covered by the reduced-order
G-equation model, e.g. finite-rate kinetics and heat transfer, which affect the flame speed, and
heat loss to the burner wall, which affects flame attachment, flash-back and lift-off. Although
the high-fidelity simulation is not yet a real experiment, it comes significantly closer to
reality than the twin experiment, and poses a more realistic challenge to the G-equation and
our level-set data assimilation framework. The results were produced in collaboration with
PROF. MATTHIAS THME’S research group at Stanford university as part of the CENTER FOR
TURBULENCE RESEARCH summer program in 2018. The high-fidelity simulations were
performed by DR. THOMAS JARAVEL.

Relevant publications:

* Yu et al.: Physics-informed data-driven prediction of premixed flame dynamics with
data assimilation. Center for Turbulence Research Summer Program, 2018.

* Yu et al.: Data Assimilation and Optimal Calibration in Nonlinear Models of Flame
Dynamics. ASME Turbo Expo, 2019.

* Yu et al.: Data Assimilation and Optimal Calibration in Nonlinear Models of Flame
Dynamics. Journal of Engineering for Gas Turbines and Power, 2019.
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8.1 Set-up of the numerical experiment

In the form of a numerical experiment, the assimilated data is extracted from a direct numer-
ical simulation (DNS) of a ducted premixed flame. The simulation is performed with the
finite-volume solver CharLESX (Cascade Technologies), solving the compressible reacting
Navier-Stokes equations. For convective fluxes, a hybrid scheme is applied, consisting of
a fourth-order central scheme and a second-order essentially non-oscillatory scheme [186],
which minimizes the numerical dissipation [187].

The computational domain is three-dimensional (Fig. 8.1). Because of the axisymmetry
of the configuration, only a quarter of the full geometry with two symmetry boundary planes
is considered. The domain is 0.12m long, and extends two diameters upstream into the
burner to allow for potential flash back of the flame. It also includes a coflow of fresh air.
This models the flow of fresh air that would arise in a vertical duct due to buoyancy effects.
The stretched grid comprises 500,000 hexahedral elements with characteristic element sizes
ranging from 0.15mm in the flame region to 3mm at the outlet.

; Isothermal wall

]
!
E .
& L
Coflow

Isothermal wall Sponge layer

b Flame region

‘sj’;).\ ‘N
Main Peg .
Inlet

Fig. 8.1 Computational domain, computational grid and boundary conditions of direct
numerical simulation (DNS). This schematic was provided by DR. THOMAS JARAVEL.

At the main inlet, a parabolic velocity profile is imposed in space along with temper-
ature and species composition corresponding to the ethylene-methane-air mixture given
in Table 8.1. For pulsed cases, a sinusoidal velocity amplitude is imposed in time. The
coflow speed is precribed based on a one-dimensional analysis, inspired by the experimental
configuration of a vertical Rijke tube [119]. The choice of the coflow speed does not affect
the flame dynamics in a qualitative manner. Lateral and injection walls are modeled with
isothermal no-slip boundary conditions with an imposed temperature 7 = 300K to correctly

reproduce the flame stabilization. At the outlet of the domain, a constant pressure boundary is
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used to impose atmospheric pressure conditions, along with a sponge layer region to suppress

reflected acoustic waves.

Table 8.1 Base-flow (top) and forcing (bottom) parameters for high-fidelity reacting-flow
simulation at burner and coflow inlet.

Parameter Burner inlet Coflow inlet
Diameter [mm)] 12 25
Mass-flow rate [g/s] 0.199 0.784
Temperature [K] 300 300

Mass fraction methane [-] 0.0237 -
Mass fraction ethylene [-] 0.0673 -

Mass fraction air [-] 0.909 1.0
Forcing amplitude [m/s] 0.141 -
Forcing frequency [Hz] 200 -

The reduced chemical mechanism includes 15 species and 5 quasi-steady state species,
which correctly predicts laminar flame speed and auto-ignition delay for the target operating
conditions [188]. In the solver, the chemical source terms are evaluated using finite-rate
kinetics with a semi-implicit Rosenbrock-Krylov scheme [189, 190]. From one-dimensional
laminar computations, it was verified a priori that the grid resolution in the flame region
(0.15mm) is sufficient to correctly resolve the thermal thickness of the flame (0.4 mm).

In Fig. 8.2, snapshots of the DNS are shown. The flame is attached to the burner lip on
the edge of flashing back. The DNS displays the same qualitative behavior as the G-equation
as perturbations are observed to travel from the base to the tip of the flame. For the given
simulation set-up, no pinched-off fuel-air pockets are observed in the DNS.

Fig. 8.2 Ethylene mass fractions in direct numerical simulation (DNS) over one period. The
fuel-air mixture leaves the burner at the bottom. The flame surface separates the burnt (blue)
from the unburnt (red) gas.
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8.2 G-equation model

The kinematic description of a surface is given by its laws of motion [14, Chapter 2]:

dx
—=u—s.n 8.1

& L (8.1)
where x is the position of one point on the surface, and n is the normal vector at this point.
The velocity u is the velocity field of the underlying medium, and st is the speed of the
surface relative to the underlying medium. In general, s;, depends on geometrical properties
of the surface, e.g. on the local curvature via the Markstein length .# . The laws of motion

are consistent with the following Hamilton-Jacobi equation (Chapter 6.1):

G
§+(u~n—sL):O , (8.2)
subjectto  G(x(z),t) —G(x(0),0) =0 (8.3)
and VG-VG—-1=0 . (8.4)

In combustion, Eq. (8.2) is also known as the G-equation [14, Chapter 2]. The normal
vector n depends on the computation of partial derivatives in space, which makes Eq. (8.2)
a partial differential equation. Eq. (8.3) and (8.4) are constraints, which make the solution
to the G-equation unique away from the surface. For the upstream velocity forcing of
the premixed flame, the radial and axial components of the underlying velocity field are
prescribed as follows [181]:

_ TfKre, B g
Uy = U cos <27rf (t U )) , (8.5)
u, =U +eg4sin (an (t—%)) , (8.6)

where the base-flow speed is denoted by U, the frequency by f and the forcing amplitude
by e,;. Eq. (8.5) and (8.6) are related to each other through the continuity equation. The
non-dimensional parameter K is defined as the ratio between the base-flow speed and the
perturbation phase speed. Hence, the perturbation phase speed is given by U /K and the wave
number by 27K /U. The solution G(x,t) to the Hamilton-Jacobi equation is the so-called
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generating function [174, Chapter 9]. The solution x(¢) to Eq. (8.3) gives the location of the
surface at every time ¢.

There are several consequences to solving the Hamilton-Jacobi equation (Eq. (8.2)-(8.4))
instead of the laws of motion (Eq. (8.1)). Firstly, the laws of motion require a parametrization
of the surface [143]. The quality of the parametrization quickly deteriorates when the metric
on the surface or its topology changes. The Hamilton-Jacobi equation avoids these issues by
embedding the surface as a level set of the generating function, which is defined over the
entire domain. Secondly, the Hamilton-Jacobi equation is in theory solved over the entire
domain even though surfaces are one-codimensional (i.e. surfaces have one less dimension
than the volume they inhabit) [176]. This is more computationally expensive but has the
advantage that surfaces can be identified by their generating functions as vectors in state
space. The choice of generating functions is highly relevant as they have to live within a
sample space suitable for data assimilation.

The G-equation is numerically solved using a computationally inexpensive narrow-band
level-set method [172]: The computational domain is discretized using a weighted essentially
non-oscillatory (WENO) scheme and a total-variation diminishing (TVD) version of the
Runge-Kutta scheme [182—184]. This gives third-order accuracy in time and up to fifth-order
accuracy in space. Cusps and pinched-off fuel-air pockets are reliably captured. At the base
of the flame, a rotating boundary condition is used [61]. The G-equation solver has been
verified and validated in a number of studies [55, 57, 62, 52, 56]. Distance reinitialization in
the narrow band is performed using a continuation method [177]. The generating function is
reconstructed from the solution to the G-equation using a fast-marching method [173].

In the following, axisymmetric ducted premixed flames are considered. In axial and
radial coordinates, a uniform 400 x 400 Cartesian grid is used. Example solutions of the
G-equation for the ducted premixed flame are shown in Fig. 8.3. The flame is attached to
the burner lip, while the perturbations are convected from the base of the flame to the tip. If
the perturbations are sufficiently large, a fuel-air pocket pinches off. In our reduced-order
model, the perturbations are mainly governed by two non-dimensional parameters [181]:
(1) the parameter K, which governs the perturbation phase speed; and (ii) the parameter e,
which governs the amplitude of the response of the flame surface to acoustic excitation. Both
parameters enter the G-equation via the underlying velocity field u. Neither parameter is

accurately known a priori, which is a major source of uncertainty.
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Fig. 8.3 Solutions of G-equation over one period of harmonic forcing of velocity at flame
base. The fuel-air mixture leaves the burner at the bottom of each frame. The infinitely thin
flame surface separates the burnt (red) from the unburnt (blue) gas.

8.3 Combined state and parameter estimation

For the model predictions, an ensemble of twenty-four G-equations is solved. The same
initial condition is used for the whole ensemble, but a different set of parameters K and e, is
chosen for each simulation. They are sampled from two independent normal distributions
with 20 % standard deviation respectively. The covariance matrix Cg, is a diagonal matrix,
i.e. the experimental errors o are assumed to be statistically independent. The simulation
parameters are given in Table 8.2. In Fig. 8.4, the logarithm of the normalized likelihood
is shown for the forward problem and the inverse problems, the latter involving either state
estimation or combined state and parameter estimation. As in Fig. 7.3, data assimilation
significantly improves the ability of the reduced-order G-equation model to capture the
motion of the flame surface. In a qualitative comparison, it can be seen that the high-
likelihood region from state estimation (Fig. 8.4b) is a better envelope to the flame surface
observed in the DNS than the unfiltered stochastic process (Fig. 8.4a). Combined state and
parameter estimation (Fig. 8.4c) provides an even narrower envelope, which is testament
to the reduced uncertainty. This assessment is quantitatively confirmed by the RMS error
shown in Fig. 8.5. While state estimation does not appreciably reduce the RMS error, it
provides a dynamic, truly a-posteriori estimate of the uncertainty that is rigorously based
on Bayesian statistics. On the contrary, the RMS error of the unfiltered stochastic process
only gives an a-priori estimate of the uncertainty based on an educated initial guess for the
possible ranges of values for the parameters. In Fig. 8.6, the values of K and e, with their
error bars are plotted over time for combined state and parameter estimation. After a burn-in
phase of approximately 4,000 timesteps, the parameters are optimally calibrated to values
which are in agreement with the experimental observations. This is reflected in Fig. 8.5 by

the low-uncertainty plateau, which is only interrupted by the moments when perturbations
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reach the tip of the flame and neutralize. The outlier around timestep 3,500, where combined
state and parameter estimation performs worse in terms of RMS error than the unfiltered
stochastic process and state estimation, is explained by the formation of a pinched-off fuel-air
pocket that is not observed in the DNS.

Table 8.2 Parameter values for G-equation simulations and assimilation of data from high-
fidelity simulation.

Parameter | DNS assimilation
U 1.41m/s
SL 0.329m/s
M 0.02m
eq 0.5m/s
K 0.214

Finally, we build on our understanding of the state and parameter uncertainties to attempt
model uncertainty quantification. Unlike optimization-based approaches, Bayesian statistics
do not focus on the minimization of one cost functional but revolve around probability
distributions. As such, they can be analyzed using histograms. In Fig. 8.7, two histograms,
which are representative of the twin experiment (Chapter 7) and the assimilation of DNS
data, are respectively shown. In the twin experiment (Fig. 8.7a), most observation points
are located in the high-likelihood region. The likelihood of finding the flame surface in
the low-likelihood region decays exponentially. When assimilating DNS data (Fig. 8.7b),
the histogram has a heavy tail. While the likelihood of finding the flame surface in the
high-likelihood region decays quickly, the likelihood of finding the flame surface in the
low-likelihood region does not vanish, reminiscent of a power-law distribution. The deviation
from an exponentially decaying distribution, a piece of information detected by our Bayesian
approach but absent from an optimization-based approach, signifies the presence of model
errors [191]. Such a deviation informs us of the inherent limitations of this reduced-order
model, even when optimally calibrated. Model errors can only be decreased by adding
complexity, i.e., more physics, to the reduced-order model assumptions. Further analysis
reveals that experimental observations located in low-likelihood regions are predominantly
found at the base of the flame, in particular when the flame is on the edge of flashing back.
It is well known that the dynamics at the base of a premixed flame are crucial to the flame
dynamics [192]. Although the motion of the flame surface is accurately captured towards the
tip of the flame, level-set methods, which do not obey conservation laws, cannot model heat
transfer between the flame and the burner lip or the momentum transfer in the wake region

behind the burner lip. This shows how model uncertainty, which is traditionally the type of
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(c) Combined state and parameter estimation.

Fig. 8.4 Snapshots of the logarithm of the normalized likelihood over one period for (a) the
forward problem and the inverse problems with either (b) state estimation or (c) combined
state and parameter estimation, respectively. For the data assimilation, the experimental
observations are extracted from a DNS (black line). High-likelihood (yellow) and low-
likelihood (green) regions are shown. Each snapshot from left to right is distanced by one
fifth of the forcing period.

uncertainty that is the most difficult to quantify, can be detected by Bayesian statistics to

inspire more predictive models.
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Fig. 8.5 Root mean square (RMS) error over time for the forward problem (blue line) and the
inverse problems with either state estimation (orange dash) or combined state and parameter
estimation (green dash-dot). One forcing period corresponds to 2,000 timesteps. Data is
available every 200 timesteps.
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Fig. 8.6 Three-sigma error bars for K (left) and e, (right) in combined state and parameter
estimation. The convergence of the parameters shows that the reduced-order flame model is
optimally calibrated.
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Fig. 8.7 Histograms of experimental observations over logarithm of normalized likelihood
for (a) twin experiment and (b) assimilation of DNS data. High-likelihood bins are located
on the left of each histogram, low-likelihood bins on the right.






Chapter 9
Experiment of a ducted premixed flame

We continue the analysis of Chapters 7 and 8, and apply our level-set data assimilation
framework to experimental images of a ducted premixed flame. Compared to the twin
and numerical experiments, this set-up of the ducted premixed flame is significantly more
challenging. For example, while the heat loss to the burner wall is not covered by the reduced-
order G-equation, we at least know in the numerical experiment that the thermal boundary
condition is isothermal. In the current set-up, the heat loss to the burner wall becomes a
problem of conjugate heat transfer, for which no analytical solution exists. Furthermore,
certain information about the flow field such as the mean speed of the buoyancy-driven
coflow air and the velocity profiles in the downstream mixing layer are inaccessible, and
have to be inferred. The experiments were set up by PROF. MATTHEW JUNIPER on a rig
built by DR. LARRY LI. The acquisition was performed by USHNISH SENGUPTA.

The structure of this chapter follows the procedures in Chapters 7 and 8: After a brief
description of the experimental set-up (Chapter 9.1), we derive our reduced-order G-equation
model (Chapter 9.2). Firstly, we provide an ansatz for the base flow, which is more complex
than for the twin and numerical experiments, and compare the base flow parameters to
CANTERA simulations. Secondly, we perform an asymptotic analysis of the flame response
in order to anticipate the results of parameter estimation for different forcing frequencies.
Finally, we discuss combined state and parameter estimation, and provide qualitative and
quantitative visualizations of the outcome (Chapter 9.3).

Statistically rigorous uncertainty quantification is a relatively novel area of research. This

chapter ties together all challenges as well as the solutions developed in Part III:

* High-dimensional sample spaces, 1.e. high resolution of the flame surface coupled with

correlations in space and time. (Chapter 5)
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* Construction of an appropriate sample space for comparing level sets (viz. flame

interfaces) and quantifying uncertainties. (Chapter 6)

* Imperfections of real data, which hinder the reconstruction of observed flame interfaces.
(Chapters 7, 8, 9)

Relevant publications:

* Yu/Juniper/Magri: A data-driven kinematic model of a ducted premixed flame. Interna-

tional Symposium on Combustion, 2020 (accepted).

9.1 Experimental set-up

A schematic view of the experimental set-up is given in Fig. 9.1. The core of the experiment
consists of a Bunsen burner inside a tube. The Bunsen burner consists of a straight metal
pipe with an inner diameter of 10mm. A tube with an integrated glass window for optical
access acts as a cylindrical enclosure to shield the flame from gusts. Experiments are carried
out with a premixed methane-ethene-air mixture with laminar flow rates set to 0.9, 0.25 and
8 normal liters per minute. The composition of the mixture is controlled with BRONKHORST
EL-FLOW mass flow controllers (MFC). A loudspeaker, driven by an amplified sinusoidal
signal, is mounted upstream of the Bunsen burner for acoustic forcing. The flame dynamics
are recorded with a PHANTOM V4.2 CMOS camera with a glass lens at a resolution of
1,280 x 800 pixels and a frame rate of 2,800 frames/s. The resolution is sufficiently fine to

resolve the flame surface (Fig. 9.2a).

1 flame
camera glass
window

‘ MEC |

|

enclosure

7

methane } 4 MFC

/ function
generator
loudspeaker
ethene }4 MEFC| | |
I— amplifier

Fig. 9.1 Experimental set-up. This schematic was provided by USHNISH SENGUPTA.
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Fig. 9.2 Experimental, computational and statistical visualisations of premixed flame at
reduced aspect ratios. (a): Experimental image of acoustic forcing at 200 Hz. Perturbations
of the flame surface form at the base and travel to the tip. If the amplitude of the perturbation
is large enough, a fuel-air pocket pinches off. (b): Experimental image after postprocessing.
Pixels associated with the flame surface are colored yellow. (c): Snapshot of G-equation
simulation for K = 0.5 and € = 0.36. The zero-level set (white) separates the burnt (red)
from the unburnt (blue) region. (d): Snapshot of log-normalized likelihood for initial guess of
K =0.5and € = 0.2 with 10 % standard deviation in each. Highly likely positions of the flame
surface are shown in yellow; less likely positions in green. (e): Snapshot of log-normalized
likelihood after combined state and parameter estimation. The model parameters K and €
are optimally calibrated such that they reproduce the propagation of perturbations along the
flame surface as well as the formation of pinched-off fuel-air pockets. The spread of the
high-likelihood locations (yellow) resembles the precision of the edge detection (b). The
computational and statistical results of panels (c,d,e) are thoroughly explained in Chapters 9.2
and 9.3.

In order to perform data assimilation, we extract the coordinates of the pixels associated
with the flame surface, which is identified by its natural luminescence in the visible range
in the experimental images (Fig. 9.2a). A number of edge and ridge detection algorithms
are readily available from SCIKIT-IMAGE [193], all of which give comparable results. In
Fig. 9.2b, the result of applying the Sobel filter is shown.

9.2 G-equation model

The evolution of a premixed flame is modeled here by the kinematics of a surface. The

position of the flame surface is captured by the zero-level set of a continuous scalar variable G.
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It is governed by the G-equation [14, Chapter 2]:

%—?—I—(u—sLn)-VG:O : 9.1

where u is the underlying flow field, s is the laminar flame speed, and » is the unit normal
vector. The underlying flow field u is the superposition of a base flow U (Chapter 9.2.1) and

a velocity perturbation u’ (Chapter 9.2.2). The laminar flame speed is
sL=st(1—x) (9.2)

where sg denotes the adiabatic flame speed. The Markstein length .# makes the flame speed
a function of the local curvature k. The normal vector n and the curvature K are given in

terms of G:
VG

n=-—— |,
VG|

Fig. 9.3 shows a schematic of this reduced-order model.

K=-V-n . (9.3)

tube

Fig. 9.3 Reduced-order model of the ducted premixed flame (left). In the absence of velocity
perturbations, there is a kinematic balance between the base flow and the flame surface, e.g.
at the burner lip (right).

The G-equation is numerically solved using a narrow-band level-set method with dis-
tance reinitialization. The computational domain is discretized using a fifth-order, weighted
essentially non-oscillatory (WENO) scheme in space and a third-order, total variation dimin-
ishing (TVD) Runge-Kutta scheme in time. At the burner lip, a rotating boundary condition

is used [61]. For details on the G-equation solver, the reader is referred to [194].
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9.2.1 Base flow

For a time-independent base flow u = U, the G-equation (Eq. (9.1)) becomes
Un—s)(1—k#)=0 . (9.4)

For an axisymmetric burner, we parametrize the zero-level set, i.e. the flame surface, by

setting its height /4 above the burner outlet as a function of the radius r:
G(r,z=h(r))=0 , 0<r<R . 9.5)

The normal vector n and the curvature k (Eq. (9.3)) in terms of 4 are

B 1 —H(r)

W (r) H(r)
K= 15 05
[+ ()2 r[L+ 1 ()]
Substituting Eq. 9.6 and 9.7 into Eq. (9.4) gives a one-dimensional boundary value problem
with 4'(0) =0 and h(R) = 0.
For simplicity, we assume that the base flow U is only a function of the radius r, but not of

9.7)

the height 4. While the conditions at the burner outlet are theoretically known to be those of a
Poiseuille-type pipe flow for a given mass flow rate, we introduce two additional parameters
to account for the imperfections of this reduced-order model. Firstly, the velocity profile
deviates from that of a Poiseuille flow towards a uniform flow the further we move away
from the burner outlet [195, Chapter 5]. Secondly, we observe that, as the base-flow speed
vanishes near the burner wall due to the no-slip condition, the flame speed also decreases
due to heat loss to the burner wall [192], which is not properly modeled by the constant
adiabatic flame speed sg (Eq. (9.2)). Hence, we introduce two additional parameters to the
reduced-order model of the base flow: The aspect ratio B gives the ratio between the flame

length and the burner radius in a uniform flow without curvature effects:

=\ 2
(S%) =B*+1 (9.8)

L
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where U denotes the mean flow speed. The shape parameter « linearly determines the

velocity profile such that the mass flow rate is conserved:
U r\2
Loltall-2 (—) : 9.9
o =1+ { F: } 9.9)

where o = 0 corresponds to a uniform flow, and & = 1 corresponds to a Poiseuille flow. In
summary, the base-flow model has three parameters B¢ (‘base flow’): the shape parameter «,
the aspect ratio 8 and the Markstein length .#. Note that 8 replaces the parameter sg /U
due to Eq. (9.8).

For a given set of parameters, we solve the boundary value problem (Eq. (9.4)-(9.7)) by
using a finite-difference method and a Newton-Raphson solver [46, Chapter 5]. In iteration
step k, the residual R = R(h*) is computed by evaluating the left-hand side of Eq. (9.4)
at every grid point. The Jacobian J* = J(h*) is computed by applying the chain rule to
differentiate R with respect to #*. Updates are performed by repeatedly solving

JARF = RF  — P = pk ARk (9.10)

To infer the values of the parameters, we embed the boundary value problem into a

least-squares problem with a cost functional €&:

M
¢=Y [on—Lu(h(6:0)) | (9.11)
m=1

where Ly, is a suitable linear interpolation operator for the m-th measurement (7,,,z;,) of
the flame surface. This optimization problem is solved by line search [196, Chapter 3].
The sensitivity of the cost functional € to the parameters Oy is calculated using the adjoint
variable A [71, Chapter 2]:

JR Jd¢ de OR
TIR _0¢ _ T
oh " ah O dey " a6y

(9.12)

In Fig. 9.4, the results are shown for &« = 0.84, B = 15.1 and .# = 3mm. The base-flow
model agrees with the experiment. Furthermore, the base-flow model is confirmed using
CANTERA simulations [197], which provide 8 ~ 15.8, based on the calculated adiabatic
flame speed as well as the mass flow rate set in the experiment, and a flame thickness
of 1.2mm, the latter on the same order of magnitude as the inferred Markstein length, in
agreement with the theory [198, 199]. Finally, @ = 0.84 indicates a velocity profile close

to Poiseuille flow as expected. While our model with three parameters covers a variety of
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base flows, including the one presented, more complex base-flow models are equally feasible

without loss of generality regarding the data assimilation framework.
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Fig. 9.4 Edge detection (blue dots, left) and least-squares fit from base-flow model (orange
line, right). For comparison, the fourth-order polynomial fit z/R = a4(r/R)* 4 a3(r/R)* +
a>(r/R)?* — (a4 + a3z + ay) respecting the boundary conditions is shown (black dashed line,
both left and right). The base-flow model reproduces the flame surface observed in the
experimental images.

9.2.2 Flame response

For the forcing of the premixed flame, the radial and axial components of the velocity

perturbation u’ are [181]

“r _ml]]fKr cos (27rf (% —t)) , 9.13)

%zesin (27tf (%—t)) : (9.14)

where u, and u satisfy the continuity equation. The forcing has a frequency f and an
amplitude €U. The non-dimensional parameter K is the ratio between the mean flow speed
and the phase speed at which perturbations on the flame surface travel in the axial direction.
The model parameters 6 (‘flame response’) are K and €. In Fig. 9.2c, the result from a
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simulation based on our reduced-order model with parameters chosen to qualitatively match
Fig. 9.2a,b is shown.

In preparation for data assimilation (Chapter 9.3), the G-equation has to be synchronized
with the experimental images. This is not straightforward because we control the phase of
the velocity perturbations in the G-equation (Eq. (9.13), (9.14)), whereas the experimental
images only depict the flame surface without any velocity information. Therefore we derive
an analytical relationship between the velocity perturbations and the motion of the flame
surface at the base of the flame. As shown in Fig. 9.3 (right), the relationship between
the base flow (Eq. (9.9)) and the flame surface (Eq. (9.8)) at the burner lip (r = R, z = 0),

neglecting curvature effects, is

= ~ s ©.15)
ST kTuR T Bi—a) '

where the last approximation is justified for B = 15.1 > 1 as observed in the experiment.

The normal vector 7 is i

B(l-a)

We consider a small-amplitude perturbation ¥’ around the angle ¥ as a result of the corre-

(9.16)

n~1 , n,=

sponding velocity perturbation u’:
U -n=~—enfKRsin 2wft +AQ) (9.17)

where it is assumed that (7 fKRSB (1 — oc)/l_])2 > 1 and tan(A@) = T fKRB (1 — o) /U, which
is justified by the inferred values for the model parameters ¢ and the judicious choice of
frequencies f in Chapter 9.3. By observing the motion of the flame surface near the burner
lip, A@ is calibrated to synchronize the G-equation with the experimental images.

Before turning to the data-driven estimation of K and € in the next section, we sum-
marize the a-priori insights about the model parameters. Under the assumption that the
velocity perturbation felt at the base of the flame, i.e. ¥, only depends on the volume of the
loudspeaker, it follows from Eq. (9.17) that the amplitude, €, is inversely proportional to
the frequency, f. Consequently, Eq. (9.17) implies a low-pass filter for the flame response
[34]. The assumption that K only depends on the base flow, not the forcing frequency, is
expected to be true at small amplitudes due to linear stability analysis [200]. The behavior
at larger amplitudes can be investigated with the approach in this paper. While K ~ 1 is
reasonable for open flames in quiescent environments [35, 36], we additionally have to take

into account the entrainment due to the buoyancy-driven flow surrounding the burner as well
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as the confinement due to the enclosing tube. Hence we anticipate a frequency-independent

phase speed for the velocity perturbation with K < 1.

9.3 Combined state and parameter estimation

The Kalman filter provides a statistically optimal estimate y“ (‘analysis’) of the unknown
state  of a system from a model prediction W/ (‘forecast’) and experimental observations d
[114, Chapter 3]. The model prediction is mapped from its state space to the observation
space through a measurement operator H. The prediction uncertainties and the experimental
errors are represented by covariance matrices C{,W and Cgg, respectively.

The application of the Kalman filter to the proposed reduced-order model is challenging
for at least two reasons: Firstly, the G-equation is highly nonlinear, which is exemplified by
the occurrence of cusps and pinched-off fuel-air pockets. This complicates the treatment of
the time-dependent covariance matrix C{:,V,. Secondly, the proposed reduced-order model has
0(10°) degrees of freedom after discretization, which makes the computation and inversion
of covariance matrices computationally intractable. To make the analysis statistically and
computationally feasible, we instead generate an ensemble of N model predictions l[/l.f with
i=1,...,N. This variation of the Kalman filter, the ensemble Kalman filter, gives for y'

and its statistics (Theorem 5.3):

vl =yl + (HC%,,)T [Cee + HCYy H| - (a—Hyl) (9.18)
-:li : C :Li( — ) ( ._-)T (9.19)
V=yLVi o Cw=y LW w ) :

Finally, the question remains as to whether the (ensemble) Kalman filter preserves the
kinematic nature of our reduced-order model. The choice of a suitable sample space, i.e. the
construction of ¥ from G, is crucial and not straightforward. Hence, we adopt our level-set
data assimilation framework, which is based on the Hamilton-Jacobi formalism (Chapter 6).

In state estimation, the ensemble y; represents one realization from a probability dis-
tribution in Y with mean ¥ and covariance matrix Cyy. As such, the marginal probability
distribution in the k-th entry of y is given by the mean (k| and the variance Cyy [k, k].
Consequently, the likelihood of finding the flame surface at the location corresponding to the
k-th entry of y, regardless of the position of the flame surface elsewhere, is

(9.20)

_ 1 kP
Pl = \V/ 27Cyy [k, ] =P ( 2Cyylk, k])
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Alternatively, the log-normalized likelihood is given by

P\ Wk
fog (m)— Cpylkk] ©-2D

where log(p/po) = 0 identifies the most likely position of the flame surface. In Fig. 9.2d, the
log-normalized likelihood is visualized for an educated guess of K ~ 0.5 and € ~ 0.2 before
any data assimilation. The position of the flame surface becomes highly uncertain for just a
modest amount of standard deviation in the model parameters.

For combined state and parameter estimation, an augmented v is obtained by appending
the model parameters 6., i.e. K and €, to y, and applying the ensemble Kalman filter to
Y (Chapter 5.1). In Fig. 9.2¢, the results are shown for the same initial guess of K and € as in
Fig. 9.2d. In comparison, the identification of high-likelihood positions of the flame surface
has significantly improved after combined state and parameter estimation. In Fig. 9.5, the
joint probability distribution in K and € is visualized. It is computed by marginalizing y
from the probability distribution in Y. Although the means have the same order of magnitude,
the standard deviation in K is three times smaller. The parameter K is easier to infer because
the pinch-off timing strongly depends on K and is captured accurately by the proposed data
assimilation method. Moreover, K and € are only weakly correlated, which confirms their
distinct roles within the proposed reduced-order model.

05047 o
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Fig. 9.5 Sample of K and € and reconstructed probability distribution after combined state and
parameter estimation for f = 200Hz. The 1-, 2- and 3-0 (blue/orange/green, respectively)
confidence regions correspond to 39, 86 and 99 % probabilities of sampling a given set of
parameters, respectively.
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To assess the proposed reduced-order model over a range of operating conditions, com-
bined state and parameter estimation is performed for multiple frequencies (f = 200 —
400Hz). Due to the low-pass nature of premixed flames, low frequency forcing leads to
large fuel-air pockets, which form cusps and pinch off, while high frequency forcing leads
to small perturbations which travel downstream without cusps. The range of forcing fre-
quencies is chosen as to avoid flame blow-off at lower frequencies as well as vanishing
flame response at higher frequencies. An ensemble of 32 G-equation simulations with the
same initial condition is considered each time. The model parameters K and € are sampled
from independent normal distributions based around educated guesses of their values with
10 % standard deviation in each. At first, the G-equation simulations are solved without
data assimilation to make sure that the dynamics are consistent with the parameters and are
free of transient effects. After 10 periods of forcing, the postprocessed experimental images
(f = 2,800Hz, equivalent to 7 — 14 assimilations per cycle) are assimilated for 5 periods.
The covariance matrix Cge, Which represents the experimental errors, is a diagonal matrix
with 67 on its diagonal. The choice of 6 = 1 mm is based on the thickness of the detected
edges from postprocessing (Fig. 9.2b). In general, the precision of the experimental data
does not affect the accuracy of the ensemble in the long run but reduces the uncertainty
in the ensemble overall (Chapter 7.3). Finally, the G-equation simulations are solved for
another 5 periods to observe the performance with optimally calibrated model parameters
and without any data assimilation. The overall computational time is less than 40 minutes
for 20 periods on a cluster node with 1 processor per G-equation simulation. This includes
the very frequent output of solution files in order to study time series and statistics. This is
marginally longer than a single simulation of the G-equation as the ensemble Kalman filter is
parallel by design.

In Fig. 9.6, the root mean square (RMS) error,

(vi— ) (yi—9) (9.22)

=

1
RMS error = 4| ——
N-—-1

is plotted over time for combined state and parameter estimation at 200, 300 and 400 Hz.

i=1

Within 5 periods of forcing, the dynamics for the sampled sets of parameters fully form.
Between 10 and 15 periods, the ensemble Kalman filter gradually improves the estimates
by up to two orders of magnitude. After 15 periods, the dynamics adapt to the optimally
calibrated model parameters with low uncertainty. The remaining spurious oscillations are
the result of noise in the data. The reduction in RMS error corresponds to the characteristic
displacement due to data assimilation. 10 grid units equal 5 % of the flame length scale in
either direction.
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In Fig. 9.7, the optimally calibrated model parameters and their confidence intervals
are shown for f = 200 —400Hz. In agreement with theory, the model parameter K re-
mains nearly constant while the model parameter € decreases in inverse proportion to the
frequency f (Chapter 9.2.2). This highlights a favorable feature of physics-informed reduced-
order models: While the state of the system naturally varies with the operating conditions,
the model itself and its parametrization are purposefully designed to be universal, so either
widely constant or at least following a certain scaling. This is clearly the case for the model
parameters K and € in Fig. 9.7. Therefore, we expect the reduced-order model to interpolate
well despite a limited amount of data. The confidence intervals at the different frequencies
are of comparable height. In agreement with Fig. 9.5, the parameter K is significantly more

certain than the parameter €.
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Fig. 9.6 Root mean square (RMS) error for forcing at 200, 300 and 400 Hz (blue / orange /
green, respectively). Data assimilation (DA) takes place between 10 and 15 periods. The
grey window is representative of the period depicted in Fig. 9.8.

In Fig. 9.8, the outcome of combined state and parameter estimation is visualized for
forcing at 200, 300 and 400 Hz, respectively. The optimally calibrated reduced-order model
accurately captures the perturbations traveling along the flame surface as well as the fuel-air
pockets pinching off. While no individual G-equation simulation captures the motion of the
flame surface completely, the G-equation simulations as an ensemble form an envelope in
which the flame surface is fully contained, thus quantifying the uncertainty in the reduced-

order model. While the pinched-off fuel-air pockets are clearly detectable in the experimental
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Fig. 9.7 Optimally calibrated estimates and their uncertainties for K (red) and € (purple). The
10-0 (chosen for clearer visualisation) confidence intervals are computed by marginalizing
the corresponding joint probability distributions (Fig. 9.5). Every joint probability distribution
is reconstructed from an ensemble of 32 G-equation simulations, 96 simulations in total. The
dashed lines show the behavior estimated from theory (Chapter 9.2.2) for K (constant) and €
(inversely proportional to f).

images for 200 Hz, the pinched-off fuel-air pockets are smaller in size for higher frequencies
due to the low-pass nature of the flame response, and exist for shorter periods of time.
Although the light intensity is diminished towards the tip of the flame surface, which
complicates edge detection and observation in general, the optimally calibrated reduced-
order model correctly infers the precise flame dynamics (300 Hz, left/middle left) that lead
to the short-lived fuel-air pocket pinching off (300 Hz, middle right). As the perturbations
traveling along the flame surface decrease in magnitude, so does the signal-to-noise ratio.
Combined with the reduced relative frame rate at higher frequencies, the experimental images
are ambiguous as to whether a fuel-air pocket pinches off, or the tip of the flame surface only
retracts so rapidly because of the high local curvature (400 Hz, middle right). This ambiguity
is reflected in the ensemble of G-equation simulations, especially in the elevated uncertainty
towards the end of the assimilation window, where some exhibit pinched-off fuel-air pockets
with lifespans below the frame rate while others do not (Fig. 9.6).

In summary, the twin experiment as well as the simulated and experimental ducted pre-

mixed flames show that our level-set data assimilation framework is capable of assimilating
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Fig. 9.8 Snapshots of log-normalized likelihood (Eq. (9.21)) over one forcing period after
combined state and parameter estimation for 200, 300 and 400 Hz (top/middle/bottom row,
respectively). Highly likely positions of the flame surface are shown in yellow; less likely
positions in green. The flame surface as detected from experimental images is included
(black dots).

data into our reduced-order model. The two key aspects of the analysis are the following:
Firstly, the G-equation is a fully nonlinear model. This includes non-smooth features, e.g.
cusps on the flame surface, and discontinuities such as topological merging and break-up.
Unlike classical, sensitivity-based approaches designed under linear assumptions, this prob-
abilistic, ensemble-based approach successfully models the nonlinearities and delivers an
optimally calibrated reduced-order model. Secondly, the proposed level-set data assimilation
framework is based on Bayesian inference. As such, all estimates are equipped with statisti-
cally rigorous uncertainty quantification. This is highly relevant to the design of combustion
systems: In thermoacoustics, for example, slight errors in the model deduced from a single
burner could have a large impact on predictions in a different configuration, such as inside an
annular combustor [29, 70].

The data assimilation framework was developed for level-set methods in general. As
such, it is readily generalizable to other flame shapes modeled by the G-equation. Therefore,
we plan to conduct combined state and parameter estimation for a wider array of operating
conditions. In addition to the range of frequencies, this includes forcing amplitudes, mass

flow rates, fuel-air compositions as well as different burner geometries eventually.



Part IV

Conclusions






Chapter 10
Thermoacoustics and inverse problems

In this chapter, we summarize the results of treating reduced-order models of flame dynamics
and thermoacoustic oscillations as inverse problems. Using probability theory as the lingua
franca of statistical inference, we draw connections to two related applications of the data-
driven methods developed in Parts II and III: (i) field inversion and machine learning for
improved predictions; and (ii) physics-informed reduced-order models as encoders and

decoders for increasingly large datasets.

10.1 Summary

The key concepts introduced in Part I are the reduced-order model and the inverse problem.
Our reduced-order models are hierarchical in structure, i.e. they represent graphical models,
and consist of three components: (i) the governing equations; (ii) the parameters within
the governing equations; and (iii) the state vector that solves the governing equations given
the parameters. In general, neither of the three is fully observable, and measurements are
subject to noise. The objective of the inverse problem is to infer knowledge about the state,
the parameters and the governing equations from observations. While we solve the inverse
problem in a probabilistic formulation, the choice of normal distributions is convenient but
not necessary. Normal distributions are convenient because they have representations in
calculus and linear algebra. In calculus, the inverse problem is treated as an optimization
problem, e.g. a least-squares regression, and is subject to gradient-based and adjoint methods.
In linear algebra, a centered multivariate normal distribution is fully characterized by its
covariance matrix, which is efficiently manipulated based on low-rank representations such
as eigendecompositions and the Woodbury formula. The salient feature of our probabilisitic
formulation is the introduction of random variables and stochastic processes. We formulate

and solve two types of inverse problems in thermoacoustics.
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In Part II, we focus on reduced-order models of implicit form with state vectors consisting
of a single complex scalar. With the stability of jet and rocket engines in mind, this type of
reduced-order model is not restricted to linear stability analysis or nonlinear eigenproblems.
Our solution to this inverse problem involves two steps: In a first step, we estimate the model
parameters using a Laplace approximation. Once the gradient and the Hessian of the state
vector with respect to the model parameters are known, the statistical inversion becomes a
straightforward application of Bayes’ rule. In a second step, we introduce Gaussian processes
for the model parameters. The simultaneous statistical inference of the model parameters
and the optimization of the hyperparameters of the Gaussian processes follow the evidence
framework and utilize the expectation-maximization algorithm as well as message passing.
The results are statistically rigorous uncertainty quantification of the model parameters and
predictions as well as comparisons regarding model sensitivity and complexity.

The highlight of our hierarchically structured statistical inference is the liberty to replace
components. In place of a Laplace approximation, it is possible to translate the statistics from
the observations to the model parameters using a Markov-chain Monte-Carlo (MCMC) simu-
lation, e.g. based on Metropolis-Hastings or Gibbs sampling [201, Chapter 4]. While MCMC
simulations are more computationally expensive than a Laplace approximation equipped
with adjoint methods for a large number of parameters, they are quickly implemented and not
restricted to normal distributions. In place of Gaussian processes, it is possible to perform the
nonparametric regression using any other supervised learning algorithm, e.g. support vector
machines or feed-forward neural networks [100, Chapters 5-7]. While the marginalization
property and automatic relevance determination (ARD) are useful features in Gaussian pro-
cesses, other supervised learning algorithms offer comparable features at more affordable
computational cost with respect to the number of observations.

In Part III, we focus on time-dependent reduced-order models with high-dimensional
state vectors and an emphasis on state and parameter estimation. In particular, we investigate
the G-equation with level-set methods. It is highly nonlinear with non-differentiable features
such as cusps and topological changes such as pinched-off fuel-air pockets. The main
component of our statistical inference framework is the ensemble Kalman filter with its
derivative-free formulation. The prediction step is performed in the form of a Monte-Carlo
simulation, and is as such parallel by design. The update step is executed as a series of
matrix-vector operations, and is as such computationally inexpensive.

The challenge lies in the choice of a sample space that respects the physics of the problem.
For our level-set data assimilation framework, the physics are given by the kinematics of
an interface. We invoke the Hamilton-Jacobi formalism because its generating functions

form such an appropriate sample space. Even then, there is no guarantee that the state
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vector after the update step still lies in the same sample space, which is why we perform a
distance reinitialization after the update step as well. Thus, the narrow-band method and
the fast-marching method complement the ensemble Kalman filter to form our level-set data
assimilation framework.

The challenge regarding the choice of sample space is not exclusive to data assimilation in
level-set methods. For example, CFD simulations are required to enforce their associated set
of conservation laws [202, Chapter 4]. For incompressible flow simulations, if the predictions
step relies on a projection method, it is possible to use the same Poisson equation after the
update step as well [203]. It shares the philosophy with our level-set data assimilation
framework of using the same predictor-corrector methodology in both prediction and update
steps [204]. It is worth mentioning that the sophistication regarding the choice of sample
space is not always necessary. For example, Lagrangian formulations such as front-tracking
methods and vortex methods allow for a straightforward application of the update step [160].
Another example are compressible flow simulations, where the straightforward application of
the update step apparently improves predictions despite the possible production of spurious

acoustics [161].

10.2 Outlook

The introduction of random variables and stochastic processes allows flexible yet rigorous
formulations of inverse problems tailored to the reduced-order models under investigation.
Most importantly, probability theory as the lingua franca of statistical inference promotes the
exchange of ideas between different fields. For instance, both Parts II and III utilize state
augmentation and weak constraints in order to facilitate parameter estimation. In Part II, we
extend these ideas into a nonlinear regression framework using Gaussian processes to predict
model parameters. In Part III, the emphasis is on combined state and parameter estimation for
high-dimensional systems, where the model parameters are stationary during the prediction
step (Eq. (5.35), (5.36)). This means that it is possible to adapt the machine learning ideas
from Part II for the high-dimensional systems in Part III.

Indeed, the much-discussed field inversion and machine learning (FIML) framework by
PARISH ET AL. is an independent attempt to couple a Bayesian regression with Gaussian
processes or neural networks [205, 206, 93]. While an in-depth treatment of the FIML
framework is beyond the scope of this discussion, we would like to point out a handful
of modifications in line with the evidence framework and the expectation-maximization
algorithm from Part II that promise principled improvements: Firstly, the a-priori estimation

of the prior variance is arguably the most computationally expensive step in the FIML
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framework. In the evidence framework, the prior variance is treated as a hyperparameter
and incrementally improved in the maximization step. Since the FIML framework already
relies on the availability of an adjoint solver, it is also possible to replace the repeated
sampling of the prior distribution with an optimization problem that, for example, involves
typicality as the quantity of interest [99, Chapter 4]. Secondly, the FIML framework is
mostly applied to fully developed flows whereas the emphasis of Part III is on dynamical
systems. The straightforward generalization of the FIML framework from the spatial setting
to the spatiotemporal setting would require a sample space spanning the flow fields over all
the timesteps. The theory of stochastic filtering and smoothing instead yields conditional
probability distributions at each timestep of a Markov chain. Furthermore, ensemble filters
and smoothers provide low-rank representations of prior and posterior covariance matrices,
which is potentially relevant for highly resolved simulations. Thirdly, the FIML framework
is mostly applied to well-posed problems that involve a single model parameter such as eddy
viscosity. The potentially ill-posed problem of a single quantity of interest with multiple
model parameters requires regularization as outlined in Part II. In the following step of
the FIML framework, where the functional relationship is established, the choice of input
features is up to the modeler.

The role of evidence-based model comparison is expected to play a more decisive role
in less academic and more practical test cases. In Part II, the evidence is used for model
selection: It answers the question as to which combination of base-flow and acoustics model
most plausibly explains the observed data and is expected to extrapolate well. Alternatively, it
is possible to use the evidence of each reduced-order model as a weight for model averaging
[207]. In applications where the physical mechanisms are not fully understood, model
averaging is expected to lead to more robust and less extreme predictions. This is an instance
of ensemble learning, of which an overview is beyond the scope of this discussion. Although
the evidence framework and the expectation-maximization algorithm are recognized as
principled approaches to statistical inference, it is worth mentioning that more ad-hoc
alternatives exist [208].

This work highlights the role that data can play in the future of combustion modeling
for thermoacoustics. It is increasingly impractical to store data, particularly as experiments
become automated [119] and numerical simulations become more detailed. Rather than store
the data itself, the techniques in this work optimally assimilate the data into the parameters of
a physics-informed reduced-order model. In Part III, combined state and parameter estimation
essentially compresses terabytes of flame images to a handful of model parameters with
remaining epistemic uncertainties. In Part I, Bayesian regression with Gaussian processes

fits reduced-order models to a wide range of operating conditions. While Gaussian processes
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scale unfavorably with the number of observations, their ARD feature identifies data points
whose knowledge does not significantly improves predictions, and whose dismissal leads to
further compression.

With data-driven reduced-order models using Bayesian regression or data assimilation,
rapid prototyping of combustion systems can feed into rapid calibration of their reduced-order
models and then into gradient-based design optimization. While it has been shown, e.g. in
the context of ignition and extinction, that large-eddy simulations become quantitatively
predictive when augmented with data [161], the reduced-order modeling of flame dynamics
in turbulent flows remains challenging. For these challenging situations, this work opens up
new possibilities for the development of reduced-order models that adaptively change any

time that data from experiments or simulations becomes available.
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Appendix A

Normal distributions

Definition A.1 (Normal distribution). For the mean pt € R" and the covariance matrix X €

R™" the probability density function of a normally distributed random variable X ~
A (u,X) is given by

= —;ex —1x— Ty Tx—

Lemma A.1 (Woodbury formula). For Aj; € RP*P, A, € RP*9, Ay € R1*P, Ay € RI¥9,
the following identity holds:

_ —1 _ _ _ —1 _
(Al —ARARA2)  =A] —A AR (AnA A —An)  AnAY . (A.2)

Theorem A.1 (Joint normal distribution). For a normally distributed random variable
X ~ AN (U,X) with

T,
u=[M)err | zo " T2 cprn (A3)
15 Yo X

where [y € R™ and py € R, as well as X171 € R™"™ L, € Rmx(n=m) ¥, e Rn—m)xm
Yo, € RU=mX(=m) " the probability density function P (X) of the joint probability distribution
is given by

PXi=x1,X0=x)=PX1=x1)P(X2=x | X1 =x1) , (A.4)

where both X| and X, are normally distributed random variables.
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Corollar A.1 (Marginal normal distribution). For a normally distributed random variable
X ~ A (u,X), the probability density function P(Xy) of the marginal probability distribution

is given by

1
P(Xi=x1)= —= (=) T —M)) : (A.5)

—F————€X
det(ZTCZ]l) p( 2

Corollar A.2 (Conditional normal distribution). For a normally distributed random variable
X ~ A (u,X), the probability density function P(X, | X1) of the conditional probability

distribution is given by

1 1
P(X; =x | X] =x1) = ———=—=0Xp <—§ (X2—H2\1)T22_|i (X2—.u21)) , (A.6)
det(zﬂ'Zz“)

where the conditional mean |1y, and the conditional covariance matrix ¥y|; are given by
Hojp = Ha + T2y (v —ay) (A7)

Lo =Zp— PSP ITD M (A.8)



Appendix B

Hamiltonian mechanics

Lemma B.1 (Lagrangian).
L(r(t),r(t),t) =0 . (B.1)

Proof. The generating function is formally the same as the action integral [174, Chapter 9].

Thus, the Lagrangian .Z(r, 7,t) is the total derivative of the generating function:

L(r(t),r(t),t) = %G(r(t),t) = %G(r(O),O) =0 . (B.2)
O

Lemma B.2 (Hamiltonian).
H(r(t),n(t),t) =u(r(t))-n(t) . (B.3)

Proof. A Legendre transform of the Lagrangian .Z(r, 7,t) gives the Hamiltonian .77 (r,n,t)
(Eq. (B.1)):

H(r(t),n(t),t) =i(t) -n(t)— L(r(t),i(t),t) (B.4)
=u(r(t)) -n(t) . (B.5)

It remains to be shown that #(r,n,t) is indeed a Hamiltonian. The constraints, Eq. (6.3)
and (6.4), are only functions in r and n respectively. Hence, a suitable choice of Lagrange
multipliers A, and A, gives

oA dr

_ = nh = = — , B.
3 u+An=u P (B.6)
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af:n-Vu+nx(V><u)+7Lr%—(: (B.7)
=n-Vu+nx(Vxu)—[n-(n-Vu)|n (B.8)

dn
=5 (B.9)

Eq. (B.6) follows from the laws of motion (Eq. (6.1)). Eq. (B.9) follows from tensor calculus:

dn on
o WVt | B.10
dr 8t+u 7 Han ( )

where U, is the Lagrange multiplier for the constraint imposed by Eq. (6.4). The gradient of
the total derivative of the generating function gives an expression for the partial derivative of

the normal vector (Lemma B.1):

dG dG an
V(E>:V(E+M-VG)=§+V(u-n)=0 . (B.11)

The dot product of the normal vector with the total derivative of the normal vector gives an
expression for the Lagrange multiplier p,:

dn 1d
dn on
n-azn-<g+u-Vn+,unn) (B.13)
SLLE YR YA (B.14)
=n-5-+5(u n-n)+Un-n .
This gives:
dn
= (u-n)+u-Vo+[n-V(u-n)n (B.16)
=—u-Von—n-Vu—ux(Vxn)—nx(Vxu)+u-Vo+|[(n-Vu)-nln (B.17)
+[(n-Vn)-uln
=-—n-Vu—nx(Vxu)+nn-(n-Vu)] . (B.18)

Note that V x n =0 because n = VG [107, Chapter 5]. This concludes the proof that 77 (r,n,t)
is a Hamiltonian. O]
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Theorem B.1 (Hamilton-Jacobi equation).

G
a5 +u(r(t)) -n(t)=0

Proof. The Hamilton-Jacobi equation is given by [174, Chapter 9]

G G

(B.19)

(B.20)
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adjoint sensitivity analysis, see sensitivity
analysis

additive covariance inflation, see covariance
inflation

adjoint equation, see sensitivity analysis

adjoint state, see reduced-order model

analytic view, see front-capturing method
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