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Abstract

Hadrons containing heavy quarks, in particular b quarks, play an important role in high

energy physics. Measurements of their electroweak interactions are used to test the Stan-

dard Model and search for new physics. For the comparison of experimental results with

theoretical predictions, nonperturbative calculations of hadronic matrix elements within

the theory of quantum chromodymanics are required.

Such calculations can be performed from first principles by formulating QCD on a

Euclidean spacetime grid and computing the path integral numerically. Including b quarks

in lattice QCD calculations requires special techniques as the lattice spacing in present

computations usually can not be chosen fine enough to resolve their Compton wavelength.

In this work, improved nonrelativistic lattice actions for heavy quarks are used to

perform calculations of the bottom hadron mass spectrum and of form factors for heavy-

to-light decays. In heavy-to-light decays, additional complications arise at high recoil,

when the momentum of the light meson reaches a magnitude comparable to the cutoff

imposed by the lattice. Discretisation errors at high recoil can be reduced by working in

a frame of reference where the heavy and light mesons move in opposite directions. Using

a formalism referred to as moving nonrelativistic QCD (mNRQCD), the nonrelativistic

expansion for the heavy quark can be performed around a state with an arbitrary velocity.

This dissertation begins with a review of the fundamentals of lattice QCD. Then,

the construction of effective Lagrangians for heavy quarks in the continuum and on the

lattice is discussed in detail. A highly improved lattice mNRQCD action is derived and

its effectiveness is demonstrated by nonperturbative tests involving both heavy-heavy and

heavy-light mesons at several frame velocities.

This mNRQCD action is then used in combination with a staggered action for the

light quarks to calculate hadronic matrix elements relevant for rare B decays, including

B → K∗γ and B → K``. A major contribution to the uncertainty of the results also

comes from statistical errors. The effectiveness of random-wall sources to reduce these

errors is studied.

As another application of a nonrelativistic heavy quark action, the spectrum of bot-

tomonium is calculated and masses of several bottom baryons are predicted. In these

computations, the light quarks are implemented with a domain wall action.
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Chapter 1

Introduction

The existence of a third generation of quarks was predicted by Kobayashi and Maskawa

in 1973 to explain the phenomenon of CP violation [1]. Their prediction was confirmed

by the discovery of the Υ meson [2], a bound state of a bottom quark and its antiquark,

in 1977 at Fermilab.

The Υ(4S) resonance can decay through the strong interaction into pairs of B mesons,

which were first observed at the electron-positron storage ring CESR in 1983 [3]. B mesons

allow the study of weak interactions of the b quark, and thereby provide some of the most

stringent tests of the Standard Model of elementary particle physics.

A wealth of experimental results for decays and mixing processes of B mesons has

been obtained, most recently by the experiments BaBar at SLAC and Belle at KEK.

World-averages of heavy-hadron properties can be found in [4].

In many cases, the experimental results for exclusive decays, where a definite final

state is considered, are more precise than those for inclusive decays. The comparison of

theory and experiment for exclusive processes requires knowledge of the structure of the

hadrons, described by decay constants and form factors. These quantities are governed by

the non-perturbative dynamics of the strong interaction at low energies.

The theory of the strong interactions is quantum chromodynamics (QCD). Nonper-

turbative calculations in QCD can be performed from first principles by formulating the

theory on a Euclidean spacetime grid [5] and computing the path integral numerically.

With several improvements in the lattice actions and numerical algorithms, and with the

enormous growth in available computer power, lattice QCD now allows accurate predic-

tions of many hadronic properties. One major step towards this success was the inclusion

of vacuum polarisation effects from the light quarks [6]. Reviews of recent progress in

lattice QCD with dynamical quarks can be found in [7, 8].
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A lattice with side length L and lattice spacing a can accommodate physics at energy

scales between approximately 1/L and 1/a. To minimise finite-volume effects, it is required

that mπL� 1, where mπ is the mass of the lightest propagating particle in the theory, the

pion. With the limited resources available, it is usually not possible to achieve mb a � 1

at the same time. In other words, the lattices are not fine enough to accurately resolve

the Compton wavelength of the b quark.

For this reason, special techniques are required when the b quark is to be included in

lattice QCD calculations. One possibility is the non-relativistic treatment of the b quark,

which is based on the observation that fluctuations in the b-quark’s momentum are of order

ΛQCD � mb in heavy-light hadrons and mbvorb. � mb in bottomonium. Here, ΛQCD is

the intrinsic scale of QCD, which governs the dynamics of the light degrees of freedom

(light quarks and gluons) in a heavy-light hadron, and vorb. is the internal speed of the b

quarks inside bottomonium (v2
orb. ≈ 0.1).

One particular nonrelativistic technique for b quarks is lattice NRQCD [9, 10], which

can be applied to both heavy-heavy and heavy-light systems. Lattice NRQCD has been

used in [11] to calculate form factors for the decay B → π`ν. The form factors are func-

tions of q2 = (p − p′)2, where p and p′ are the four-momenta of the B meson and pion,

respectively. In [11], the B meson was taken to be at rest in the lattice frame. The momen-

tum p′ of the pion in the lattice calculation is limited by the requirement that |p′|a� 1,

which means that only the low-recoil region (large q2) is accessible. However, experimental

data cover the entire range of recoil momenta [12, 13, 14]. The problem is more severe

for the radiative decay B → K∗γ [15, 16, 17, 18], which has q2 = 0, corresponding to

|p′| close to MB/2 in the B rest frame. This decay is rare because it proceeds through

a loop-suppressed flavour-changing neutral-current b → s transition, which also makes

it very sensitive to possible contributions from physics beyond the Standard Model. In

contrast to B → π`ν, for rare three-body decays like B → K`+`− and B → K∗`+`− the

shape of the form factors is not known well from experiment, and lattice QCD calculations

for a wide range of q2 are desirable.

For a given q2, the momentum p′ of the final meson and hence discretisation errors

can be reduced by giving the B meson a non-zero momentum in the direction opposite to

p′. To substantially reduce |p′|, the momentum of the B meson has to be very large, so

that NRQCD would no longer be able to describe the b quark inside it due to relativistic

and lattice spacing errors. However, fluctuations of the momentum of the heavy quark

inside the B meson are much smaller than the momentum of the meson itself. Therefore, to

reduce errors, instead of discretising the momentum of the b quark itself, one can discretise
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its fluctuations inside the moving B meson. The formalism which achieves this is known

as lattice moving NRQCD (mNRQCD). In mNRQCD, the nonrelativistic expansion is

performed around a state where the heavy quark is moving with a velocity v, the frame

velocity.

The idea of mNRQCD goes back to [19] and was developed further in [20, 21, 22].

Numerical tests of mNRQCD with a simple O(1/mb) action and with quenched gauge

field configurations (i.e. without dynamical quarks) were reported in [22, 23, 24, 25]. In

this dissertation I extend this work as follows:

• I independently derive a moving NRQCD action of order O(1/m2
b , v

4
orb.). My deriva-

tion gives a result that differs slightly from the one reported in [21, 22, 23].

• I perform a wide range of numerical tests of the full O(1/m2
b , v

4
orb.) lattice mNRQCD

action in realistic lattice QCD with 2+1 flavours of light dynamical quarks. The

accuracy through order v4
orb. is crucial as I use calculations with bottomonium mesons

to determine renormalisation parameters nonperturbatively.

I then apply moving NRQCD to the calculation of form factors for semileptonic and

radiative B decays:

• I compute the heavy-light three-point and two-point correlation functions necessary

to extract all semileptonic and radiative B/Bs decay form factors, using the full

O(1/m2
b , v

4
orb.) lattice mNRQCD action for the b quark and an improved staggered

action for the light quarks.

• I test a “random-wall source” method for the reduction of statistical errors.

• I analyse the data and obtain preliminary results for form factors describing B → K

and B → K∗ decays.

In this dissertation I also present my work on a second project, the calculation of the heavy-

hadron spectrum in lattice QCD with dynamical domain wall fermions. Here I implement

the b quark with standard lattice NRQCD. The domain wall fermion action [26, 27, 28]

used here for the light quarks has an approximate chiral symmetry that becomes exact,

even at finite lattice spacing, when the extent of an auxiliary fifth dimension is taken to

infinity. My work on the heavy-hadron spectrum includes the following:

• I first calculate the spectrum of the bottomonium system, including radial/orbital

excitations and spin-dependent energy splittings. These calculations serve as tests

of the lattice methods and also allow precise determinations of the lattice scale.
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• I then calculate the masses of B/Bs mesons, singly-bottom baryons and doubly-

bottom baryons, using a domain-wall action for the light valence quarks. I also

perform the first lattice QCD calculation of the mass of the Ωbbb baryon. Currently,

bottom baryons are the focus of intense experimental studies at the Tevatron, and

further discoveries are possible with the Large Hadron Collider. Therefore, lattice

QCD predictions of their masses are highly desirable.

This dissertation is organised as follows. In Chapter 2, I give an introduction to the the-

oretical foundations of lattice QCD, including the fascinating topic of chiral symmetry

on the lattice. At the end of this chapter, I briefly review relativistic lattice methods for

heavy quarks. Chapter 3 contains derivations of effective Lagrangians for heavy quarks

in the continuum and a discussion of the power-counting. In particular, I derive the

O(1/m2
b , v

4
orb.) mNRQCD Lagrangian and show how the Euclidean actions for quarks and

antiquarks are related to each other. Two different approaches exist for the lattice discreti-

sation of nonrelativistic heavy-quark Lagrangians. The first, known as lattice HQET, is

only applicable to hadrons containing a single heavy quark, but has the advantage that the

continuum limit can be taken. It is discussed briefly in Chapter 4. The second approach,

lattice (moving) NRQCD, is applicable to systems containing any number of heavy quarks.

In Chapter 5, I construct a highly improved lattice discretisation of the full O(1/m2
b , v

4
orb.)

moving NRQCD action. I also discuss the mNRQCD energy shift and the renormalisation

of the external momentum. I then report on my nonperturbative tests of lattice moving

NRQCD in Chapter 6. These tests include the calculation of renormalisation parameters,

meson energy splittings and decay constants at several frame velocities. Chapter 7 is an

interlude; it contains my work on the calculation of the heavy-hadron spectrum. I return

to the subject of moving NRQCD in Chapter 8, which deals with the calculation of form

factors for rare B decays. There, I briefly review the physics of electroweak decays of B

mesons, define the form factors and show how they can be extracted from Euclidean cor-

relation functions. I discuss the necessary operator matching of the heavy-light currents

and estimate the optimal choice for the frame velocity as a function of q2. I then give

the details of the calculation of the two-point and three-point functions and compare nu-

merical results obtained with random-wall sources and point sources. I examine different

fitting strategies and present preliminary results for the form factors. Chapter 9 contains

the conclusions and an outlook to future work.



Chapter 2

Lattice QCD

In this chapter, the fundamentals of lattice QCD will be reviewed. I used the textbooks

[29, 30, 31, 32, 33, 34] in preparing this chapter; additional references will be given where

appropriate.

Lattice QCD is based on the nonperturbative regularisation of the Euclidean path

integral obtained by defining the fields only on the points or links of a spacetime grid.

This corresponds to a momentum cutoff of the order of the inverse lattice spacing, without

any reference to perturbation theory. Furthermore, as we will see in Sec. 2.3, exact gauge

invariance can be implemented in a beautiful way on the lattice [5].

It turns out that the lattice discretisation of fermions is more involved than for gauge

fields, due to the so-called doubling problem. This is related to chiral symmetry and the

axial anomaly. Section 2.4 is devoted to this rich topic.

When considering a lattice of finite volume, the path integral turns into an ordinary

multidimensional integral, which, thanks to the Euclidean weighting factor e−SE and the

positivity of SE , becomes calculable numerically by Monte-Carlo methods.

As usual for interacting quantum field theories, to obtain physical results, renormal-

isation is required. This will be discussed briefly in Sec. 2.6. In practice, the number of

lattice points is limited by the available computing resources, and one has to make careful

choices for the lattice spacings, volumes, and quark masses. Usually, extrapolations in all

these parameters are required to extract physical results, and these extrapolations can be

guided by predictions from effective field theories, as reviewed in Sec. 2.7.

Finally, in Sec. 2.8 I briefly discuss relativistic lattice methods for heavy quarks.
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2.1 Euclidean path integral

As the Euclidean path integral is the starting point for lattice QCD, we will discuss it

in some detail in the following sections. We begin with a derivation of the Euclidean

path integral for a scalar field in Sec. 2.1.1, starting from the canonical formalism. This

clearly exposes the relation to the operators on the Hilbert space, gives us a prescription

for obtaining the Euclidean action, and shows how a non-zero temperature is introduced.

Remarks on fermions and gauge fields will be made in Secs. 2.1.2 and 2.1.3.

2.1.1 Real scalar field

We consider a real scalar field φ(t,x) with Minkowski space action

S =
∫

dt d3x L with L =
1
2
(∂tφ)2 − 1

2
(∇φ)2 − 1

2
m2φ2 − V (φ), (2.1)

where V (φ) is a polynomial. The conjugate momentum field is then Π = ∂L/∂(∂tφ) = ∂tφ,

and the Hamilton functional becomes

H =
∫

d3xH with H =
1
2
Π2 +

1
2

(∇φ)2 +
1
2
M2φ2 + V (φ) . (2.2)

We denote the Heisenberg field operators associated with φ, Π by Φ and Π, respectively.

These satisfy the canonical commutation relations [Φ(0,x),Π(0,y)] = i δ3(x − y). We

also introduce zero-time “position space” and “momentum space” eigenstates |ϕ〉, |π〉,
satisfying

Φ(0,x)|ϕ〉 = ϕ(x)|ϕ〉, Π(0,x)|π〉 = π(x)|π〉. (2.3)

Note that their scalar product is 〈ϕ|π〉 = exp
{
i
∫

d3x ϕ(x)π(x)
}
.

The Hamilton operator H is obtained by replacing the classical fields φ, Π in (2.2) by

the corresponding field operators. We are interested in the quantum-mechanical transition

amplitude between two field eigenstates, 〈ϕ′|e−i t H|ϕ〉. The transition to Euclidean space

is obtained by inserting t = −iτ with τ > 0. To derive the path integral representation

for the Euclidean matrix element 〈ϕ′|e−τ H|ϕ〉, we split the Euclidean time interval τ into

N pieces of length a = τ/N , and insert complete sets of position space and momentum

space eigenstates after each step:

〈ϕ′|e−τH|ϕ〉 =
∫ N−1∏

k=1

d[ϕk]
∫ N∏

l=1

d[πl]
2π

× 〈ϕ′|e−aH|πN 〉〈πN |ϕN−1〉〈ϕN−1|e−aH|πN−1〉 · · · 〈π1|ϕ〉. (2.4)
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Next, note that for a→ 0, we have

〈ϕk|e−aH|πk〉 =
a→0

(1− aH[ϕk, πk]) 〈ϕk|πk〉

=
a→0

exp
{
−a
∫

d3x
[
H(ϕk, πk)− i

ϕk πk
a

]}
. (2.5)

Thus, for N →∞, Eq. (2.4) becomes

〈ϕ′|e−τH|ϕ〉 = lim
N→∞

∫ N−1∏
k=1

d[ϕk]
∫ N∏

l=1

d[πl]
2π

× exp

−a
N∑
j=1

∫
d3x

[
H(ϕj , πj)− i

πj(ϕj − ϕj−1)
a

] (2.6)

with ϕ0 = ϕ and ϕN = ϕ′. The limit N → ∞ replaces the sum in (2.6) by an integral

over [0, τ ] and we can write

〈ϕ′|e−τH|ϕ〉 =
∫
D[ΠE ]

∫ ϕ′

ϕ
D[φE ] exp

{
−
∫ τ

0
dτ ′
∫

d3x
[
H(φE ,ΠE)− iΠE ∂τ ′φE

]}
. (2.7)

The functional integrals
∫
D[ΠE ]

∫
D[φE ] in (2.7) are over Euclidean fields ΠE(τ ′,x) and

φE(τ ′,x), subject to the boundary conditions φE(0,x) = ϕ(x) and φE(τ,x) = ϕ′(x). The

integral over ΠE is Gaussian and can be performed explicitly by completing the square.

This gives1

〈ϕ′|e−τ H|ϕ〉 =
∫ ϕ′

ϕ
D[φE ] e−SE [φE ] (2.8)

with the Euclidean action

SE [φE ] =
∫

dτ
∫

d3x

[
1
2
(∂τφE)2 +

1
2
(∇φE)2 +

1
2
m2φ2

E + V (φE)
]
. (2.9)

By comparing (2.1) and (2.9), we find that the Euclidean action SE [φE ] can be obtained

from the Minkowski space action S[φ] in the following formal way: first, replace φ(t,x) by

φE(τ,x). Subsequently, replace every remaining t by −iτ , so that the integration measure

and derivatives become dt→ (−i)dτ, ∂t → i∂τ . Finally, multiply the action by (−i).
Having derived Eq. (2.8), the next step is to obtain a path integral representation

for correlation functions. For simplicity we only consider the two-point function; the

generalisation to higher correlation functions is straightforward.

1In (2.8) we have absorbed the constant factor from the Π-integration by redefining the inte-

gration measure D[φE ].
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Let |0〉 be the vacuum state. For τ > 0, the Euclidean two-point function (Schwinger

function) is

C(τ,x) = 〈0| eτH Φ(0,x) e−τH Φ(0,0) |0〉. (2.10)

First, note that C(τ,x) may be written as

C(τ,x) = lim
Lτ→∞

Tr
[
e−LτH eτH Φ(0,x) e−τH Φ(0,0)

]
Tr [e−LτH]

. (2.11)

To show (2.11), we use an orthonormal basis of energy eigenstates |n〉:

C(τ,x) = lim
Lτ→∞

∑
n,m〈n|e−LτH|m〉〈m| eτH Φ(0,x) e−τH Φ(0,0)|n〉∑

n〈n|e−LτH|n〉
. (2.12)

Provided that the theory has a mass gap, in the limit Lτ → ∞ only the lowest-energy

state |0〉 remains, and the factor of 〈0|e−LτH|0〉 cancels.

We may also evaluate the traces in (2.11) using field eigenstates:

C(τ,x) = lim
Lτ→∞

∫
d[ϕ] 〈ϕ| e−(Lτ−τ)H Φ(0,x) e−τH Φ(0,0) |ϕ〉∫

d[ϕ] 〈ϕ| e−LτH |ϕ〉

= lim
Lτ→∞

∫
d[ϕ]

∫
d[ϕ′] 〈ϕ| e−(Lτ−τ)H |ϕ′〉ϕ′(x)〈ϕ′| e−τH |ϕ〉ϕ(0)∫

d[ϕ] 〈ϕ| e−LτH |ϕ〉
. (2.13)

Finally, using Eq. (2.8) to express the matrix elements in (2.13) as path integrals, we

obtain

C(τ,x) =
〈
φE(τ,x) φE(0,0)

〉
≡ lim

Lτ→∞

∫
D[φE ] φE(τ,x) φE(0,0) e−SE [φE ]∫

D[φE ] e−SE [φE ]
(2.14)

where the functional integral is over the Euclidean field φE with the periodic boundary

conditions φE(Lτ ,x) = φE(0,x). The generalisation of the above derivation to n-point

correlation functions is straightforward.

Note that for finite Lτ , Eq. (2.11) is a thermal expectation value of the operator

eτH Φ(0,x) e−τH Φ(0,0) at the temperature 1/Lτ . Thus, for the Euclidean path integral

with periodic boundary conditions in the time direction a finite temporal extent corre-

sponds to a non-zero temperature 1/Lτ . The limit Lτ →∞ is a zero-temperature limit.

2.1.2 Dirac field

The Minkowski space action for a Dirac field with mass m is

S =
∫

dt d3x Ψ(iγ̂µ∂µ −m) Ψ (2.15)
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with {γ̂µ, γ̂ν} = 2 gµν . Note that iΨγ̂0 is the conjugate momentum field for Ψ, and the

Hamilton functional reads

H =
∫

d3x Ψ
(
−iγ̂j∂j +m

)
Ψ. (2.16)

Because the field operators Ψ, Ψ obey the canonical anticommutation relations{
Ψα(0,x), Ψβ(0,y)

}
= γ̂0

αβ δ
3(x− y), (2.17)

the fields in the fermionic path integral have to be Grassmann-algebra-valued. The parti-

tion function can be written as a Berezin integral

Tr
[
e−LτH

]
=
∫
D[ΨE ,ΨE ] e−SE [ΨE ,ΨE ] (2.18)

over Euclidean Grassmann-valued fields with the antiperiodic boundary conditions

ΨE(0,x) = −ΨE(Lτ ,x),

ΨE(0,x) = −ΨE(Lτ ,x). (2.19)

The Euclidean action in (2.18) is

SE [ΨE ,ΨE ] =
∫

dτ
∫

d3x ΨE

[
γ̂0∂τ − iγ̂j∂j +m

]
ΨE . (2.20)

Eq. (2.20) suggests the definition of Euclidean gamma matrices γ0 ≡ γ̂0, γj ≡ −iγ̂j which

satisfy {γµ, γν} = 2 δµν . Euclidean correlation functions can be computed from2

〈
Ψ(x1)...Ψ(xn) Ψ(y1)...Ψ(yn)

〉
= lim

Lτ→∞

∫
D[Ψ,Ψ] Ψ(x1)...Ψ(xn) Ψ(y1)...Ψ(yn) e−S[Ψ,Ψ]∫

D[Ψ,Ψ] e−S[Ψ,Ψ]
. (2.21)

Writing the Euclidean action as

S[Ψ,Ψ] =
∫

d4x

∫
d4y

∑
α,β

Ψα(x)Kα β(x, y) Ψβ(y), (2.22)

where the kernel K satisfies the correct boundary conditions, one obtains the following

results from the rules of Grassmann integration:∫
D[Ψ,Ψ] e−S[Ψ,Ψ] = detK (2.23)

2In the following, we drop the subscript E
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and

〈
Ψα1(x1)...Ψαn(xn) Ψβ1(y1)...Ψβn(yn)

〉
= (−1)n(n−1)/2

∑
P∈Sn

(−1)σ(P )K−1
α1 βP (1)

(
x1, yP (1)

)
... K−1

αn βP (n)

(
xn, yP (n)

)
(2.24)

whereK−1 denotes the inverse matrix ofK with respect to both position and Dirac indices.

2.1.3 Gauge fields

Consider Nc copies of the Dirac field with Lagrangian (2.15). The resulting theory has a

global symmetry

Ψa(x) 7→ Gab Ψb(x), Ψa(x) 7→ Ψb(x)G
†
ba. (2.25)

with G ∈ SU(Nc). In the following we shall not write out the indices a, b, ... explicitly.

The symmetry (2.25) can be promoted to a local gauge symmetry with position-dependent

G(x),

Ψ(x) 7→ G(x)Ψ(x), Ψ(x) 7→ Ψ(x)G†(x), (2.26)

through replacing the derivative ∂µΨ(x) in the Lagrangian by

DµΨ(x) ≡ ∂µΨ(x) + igAµ(x)Ψ(x). (2.27)

The covariant derivative (2.27) contains a new field iAµ(x) ∈ su(Nn) that changes under

gauge transformations in the following way:

Aµ(x) 7→ G(x)Aµ(x)G†(x) +
i

g
[∂µG(x)]G†(x). (2.28)

The transformation law (2.28) ensures that DµΨ transforms in the same way as Ψ. To

obtain the complete theory, the following kinetic term for the gauge field is added to the

action (in Minkowski space):

SYM = −1
2

∫
d4x Tr [FµνFµν ] , (2.29)

where

Fµν ≡
1
ig

[Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (2.30)

For a gauge theory, the derivation of the path integral is more complicated since the

fields are only determined up to gauge transformations. The definition of a Hamiltonian

and canonical quantisation require gauge fixing. However, in the nonperturbative lattice
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formulation of the path integral the integration over redundant degrees of freedom does

not cause problems. We shall therefore not derive the path integral in the continuum, but

rather define it directly on the lattice in Sec. 2.3.

Note that the Euclidean action can be obtained from the Minkowski space action in

the same way as described in Sec. 2.1.1, except that because ∂t becomes i∂τ one also needs

to replace A0 by iAE0 in order to achieve consistency with the gauge transformation law

(2.28). The Euclidean action is

SE =
∫

d4xE

[
ΨE(xE)(γµDµ +m)ΨE(xE) +

1
2
Tr [Fµν(xE)Fµν(xE)]

]
. (2.31)

2.2 Extracting observables from Euclidean correlation func-

tions

When Euclidean correlation functions are calculated numerically in lattice field theory, it

is usually not possible to perform an analytic continuation back to Minkowski space. Thus,

one has to extract results for physical observables directly from Euclidean correlators.

The energy spectrum of the theory can be extracted straightforwardly from two-point

functions, as can already be seen from Eq. (2.12). Consider a set of Euclidean fields Oi
associated with the Minkowski space operators Oi. Using the Heisenberg equations of

motion and H|0〉 = P|0〉 = 0 we have for τ > 0 and Lτ = ∞

Cij(τ,p) ≡
∫

d3x 〈Oi(τ,x)O†j(0)〉 e−ip·x

=
∫

d3x 〈0|Oi(0)e−Hτ+iP·xO†j(0)|0〉 e−ip·x. (2.32)

Now, let |X〉 denote an eigenstate of H with zero momentum, and let |Xk〉 denote the

boost of |X〉 to momentum k. Then we have the completeness relation

I = |0〉〈0|+
∑
X

∫
d3k

(2π)3
1

2E(Xk)
|Xk〉〈Xk|, (2.33)

where
∑

X denotes the sum/integration over all zero-momentum eigenstates (except the
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vacuum) of H. Inserting (2.33) into (2.32), we get3

Cij(τ,p) =
∑
X

∫
d3k

(2π)3
1

2E(Xk)

∫
d3x 〈0|Oi(0)|Xk〉〈Xk|O†j(0)|0〉e−E(Xk)τe−i(p−k)·x

=
∑
X

∫
d3k

1
2E(Xk)

〈0|Oi(0)|Xk〉〈Xk|O†j(0)|0〉e−E(Xk)τδ3(p− k)

=
∑
X

1
2E(Xp)

〈0|Oi(0)|Xp〉 〈0|Oj(0)|Xp〉∗ e−E(Xp)τ . (2.34)

Thus, the energies of the states |Xp〉 with non-zero overlap 〈0|Oi(0)|Xp〉 can be extracted

from a multi-exponential fit to (2.34). For large τ , the lowest-energy state with a non-zero

overlap dominates, and a single-exponential fit will be sufficient to obtain its energy.

From such a fit, one also obtains the amplitudes 〈0|Oi(0)|Xp〉. Consider the case of

QCD, with O1 = Jµ5 = uγ̂µγ̂5d and O2 = uγ̂5d. Then the lowest-energy state contributing

to (2.34) is a charged pion at momentum p and we obtain

〈0| u(0)γ̂µγ̂5d(0) |π−(p)〉 = −ifπ pµ. (2.35)

Thus, the pion decay constant fπ, which is relevant for the leptonic decay π → `ν, can be

extracted. Similarly, from Euclidean three-point correlation functions, one can straight-

forwardly extract form factors for electroweak decays with a single hadron in both the

initial and final state, such as B → π`ν. This will be explained in Sec. 8.4.

In contrast, hadron-hadron scattering processes can not be calculated directly from

Euclidean correlation functions in infinite volume, except at kinematic thresholds [35].

There is a way around this: by studying the volume-dependence of multi-particle energy

levels in a finite box one can compute elastic scattering phase shifts [36, 37].

2.3 Gauge fields and naive fermions on the lattice

We will now discretise the theory with action (2.31) on a hypercubic lattice with points

x = an, n ∈ Z4. Since we will work exclusively with the Euclidean theory, we drop the

subscript “E” in the following.

Let us consider the Dirac action without the gauge field first. The derivative ∂µΨ must

be replaced by a difference quotient4:

1
2a

[Ψ(x+ aµ̂)−Ψ(x− aµ̂)] , (2.36)

3We assume 〈0|Oi|0〉 = 0. Otherwise, take the connected 2-point function.
4The symmetric difference is chosen to give a Hermitian Hamiltonian
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where µ̂ denotes the unit-vector in µ-direction. Expression (2.36) is not covariant under

gauge transformations, since Ψ(x+ aµ̂) and Ψ(x− aµ̂) transform differently under (2.26).

Thus, the fields must be parallel-transported to the same lattice point x first. The covariant

derivative may be written as

∆(±)
µ Ψ(x) ≡ 1

2a
[Uµ(x)Ψ(x+ aµ̂)− U−µ(x)Ψ(x− aµ̂)] , (2.37)

where Uµ(x), U−µ(x) ∈ SU(Nc) and U−µ(x) = U †µ(x − aµ̂). These link variables must

transform under gauge transformations as

Uµ(x) 7→ G(x)Uµ(x)G†(x+ aµ̂) (2.38)

in order to guarantee the exact gauge invariance of the lattice Dirac action

Slat.
F [Ψ,Ψ, U ] = a4

∑
x∈aZ4

Ψ(x)
[
γµ∆(±)

µ +m
]
Ψ(x). (2.39)

When defining Alat.
µ by

Uµ(x) = exp
(
iagAlat.

µ (x)
)

= 1+ iagAlat.
µ (x) +O(a2), (2.40)

we see that for sufficiently smooth fields in the limit a→ 0 the lattice expressions approach

the continuum expressions,

lim
a→0

∆(±)
µ Ψ(x) = DµΨ(x),

lim
a→0

Alat.
µ (x) = Aµ(x), (2.41)

and the gauge transformation law for the link variables, (2.38), becomes equivalent to

(2.28).

What is still missing is a lattice discretisation of the kinetic term for the gauge field.

For this, a lattice definition of the gauge field strength tensor is needed. Mathematically

speaking, the field strength is the curvature associated with the gauge connection. Thus, it

can be obtained from parallel transport around a small closed loop. The smallest possible

loop on the lattice is the plaquette

Uµν(x) ≡ Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x). (2.42)

Inserting (2.40), we find

Uµν(x) = 1+ iga2Fµν(x) +O(a3). (2.43)
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Thus, a possible choice for the lattice field strength would be

i

ga2
(1− Uµν(x)). (2.44)

Since the continuum Fµν is Hermitian, one may also choose the Hermitian conjugate of

(2.44) to represent Fµν . To obtain a real and positive lattice action, the natural choice is

to take the product of (2.44) and its Hermitian conjugate as the lattice discretisation of

FµνFµν in the action:

Slat.
G [U ] = a4

∑
x∈aZ4

∑
µ,ν

1
2

Tr

{
i

ga2

(
1− Uµν(x)

) [ i

ga2

(
1− Uµν(x)

)]†}

=
∑
x∈aZ4

∑
µ,ν

1
2g2

Tr
[
2 · 1− Uµν(x)− U †µν(x)

]
= β

∑
x∈aZ4

∑
µ<ν

[
1− 1

Nc
Re Tr Uµν(x)

]
(2.45)

with β = 2Nc/g
2. Eq. (2.45) is the plaquette action, as introduced by Wilson in [5]. For

smooth fields, the deviation to the continuum action (2.31) is of order O(a2).

The total lattice action Slat.[Ψ,Ψ, U ] for the Dirac field coupled to the gauge field is

of course the sum of (2.39) and (2.45). The path integral for an observable O[Ψ,Ψ, U ]

depending on the fermion and gauge fields is then defined as

〈O〉 =
∫
D[U ]

∫
D[Ψ,Ψ] O[Ψ,Ψ, U ] e−S

lat.[Ψ,Ψ,U ]∫
D[U ]

∫
D[Ψ,Ψ] e−Slat.[Ψ,Ψ,U ]

, (2.46)

where
∫
D[Ψ,Ψ] stands for the Grassmann integrations over all colour/spin components

of Ψ and Ψ at all lattice points, and
∫
D[U ] =

∫ ∏
x

∏
µ dUµ(x) denotes the integrations

over all link variables Uµ(x) with the Haar measure. The group-multiplication invariance

of the latter leads to the gauge invariance of the path integral. In local coordinates {ωa}
on SU(Nc) the Haar measure is given by

dU = C
√

detA
N2

c−1∏
a=1

dωa, (2.47)

where C is a normalisation factor so that
∫

dU = 1, and A is the metric on SU(Nc),

Aab = −2 Tr
[
(U−1∂aU)(U−1∂bU)

]
= 2 Tr

[
∂aU ∂bU

†]. (2.48)

(From [30]). The fermion measure D[Ψ,Ψ] is gauge-invariant because det G(x) = 1 for

gauge transformations G(x) ∈ SU(Nc).
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Using the results (2.23) and (2.24), the Grassmann integrations can be performed

explicitly. This gives

〈O〉 =

∫
D[U ] O

[
K−1[U ], U

]
det (K[U ]) e−S

lat.
G [U ]∫

D[U ] det (K[U ]) e−S
lat.
G [U ]

(2.49)

where K is the kernel of the lattice Dirac action. For the naive action (2.39), the kernel

is

K(x, x′) =
3∑

µ=0

1
2a

γµ
[
Uµ(x)δx′, x+aµ̂ − U−µ(x)δx′, x−aµ̂

]
+m δx′, x. (2.50)

On a finite lattice, (2.49) is an ordinary multidimensional integral over real numbers (local

coordinates on SU(Nc)), and can be calculated numerically by Monte-Carlo methods, as

explained in Sec. 2.5.

2.4 More about lattice fermions

2.4.1 Naive fermions

The lattice fermion action defined in (2.39) is called the naive fermion action, for rea-

sons that will become clear when considering the resulting free (= without gauge fields)

propagator in momentum space:

K−1(p) =
[
iγµ sin(a pµ)/a+m

]−1

=
−iγµ sin(a pµ)/a+m∑3
µ=0 sin2(a pµ)/a2 +m2

. (2.51)

Note that the lattice momentum p is restricted to the periodic Brillouin zone, which is a

4-dimensional torus, with −π < apµ ≤ π. The sine functions in (2.51) vanish at the 16

points p(1) = (0, 0, 0, 0), p(2) = (π, 0, 0, 0)/a, ... p(16) = (π, π, π, π)/a of the Brillouin zone,

and for momenta close to these points one can expand them in a Taylor series to obtain

the continuum limit a→ 0. Writing p = p(n) + k (modulo 2π/a), this gives

K−1(p(n) + k) =
−iγ(n)

µ kµ +m

k2 +m2
+O(a) (2.52)

with

γ(n)
µ = γµ cos(a p(n)

µ ) = ±γµ. (2.53)

For a → 0, (2.52) has a pole at k0 = i
√

k2 +m2, and hence (2.51) has 16 such poles in

the continuum limit. The matrices γ(n)
µ in (2.53) can be written as

γ(n)
µ = S†(n)γµS(n) (2.54)
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with unitary S(n), see [31]. The transformation

Ψ′(n)(x) = e−ip
(n)·xS(n)Ψ(x), Ψ′(n)(x) = Ψ(x)S†(n)e

ip(n)·x (2.55)

brings the action for the n-th doubler to its standard form.

The interpretation of the doublers as corresponding to individual Dirac fields called

tastes can be made more explicit by transforming to a spin-taste basis, as will be explained

in Sec. 2.4.3. It turns out that the fermion doubling is related to chiral symmetry. This is

discussed in Sec. (2.4.4).

2.4.2 Wilson fermions

One way to remove the 15 unwanted doublers is to modify the lattice action by a term

that gives them infinite “mass” in the continuum limit, so that they decouple from the

theory. Wilson suggested the following action:

SW
F [Ψ,Ψ, U ] = a4

∑
x∈aZ4

Ψ(x)
[
γµ∆(±)

µ − 1
2
a∆(+)

µ ∆(−)
µ +m

]
Ψ(x), (2.56)

so that

KW (x, x′) = −
3∑

µ=0

1
2a
[
(1− γµ)Uµ(x)δx′, x+aµ̂ + (1 + γµ)U−µ(x)δx′, x−aµ̂

]
+
(
m+

4
a

)
δx′, x.

(2.57)

This gives the free propagator

K−1
W (p) =

−iγµ sin(a pµ)/a+ m̃(a, p)∑3
µ=0 sin2(a pµ)/a2 + m̃2(a, p)

, (2.58)

with m̃(a, p) = m + 2
a

∑3
µ=0 sin2(apµ/2). The behaviour near p = 0 is unaltered but

the doublers disappear. However, the new term in the action explicitly breaks the chiral

symmetry that one would have for m = 0. This results in an additive mass renormalisation

and more severe complications related to operator mixing.

2.4.3 Staggered fermions

Starting from the naive fermion action (2.39), we perform a unitary transformation Ψ(x) =

Ω(x)Ψ′(x), Ψ(a) = Ψ′(x)Ω†(x) with5

Ω(x) = γx0
0 γx1

1 γx2
2 γx3

3 . (2.59)

5From now on, we use lattice units with a = 1.
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Then, using

Ω†(x)γµΩ(x+ µ̂) = (−1)x0+...+xµ−1︸ ︷︷ ︸
≡ηµ(x)

1, (2.60)

the action becomes

SF =
∑
x∈Z4

Ψ′(x)
[
ηµ(x)∆(±)

µ +m
]
Ψ′(x). (2.61)

This is now diagonal in spin-space, and we see that the four components of Ψ′ interact

independently and equally.

The staggered fermion action is then constructed by keeping only one of the compo-

nents of Ψ′, e.g. the first, Ψ′1. The physical content of the resulting action can be analysed

by grouping the values of the one-component field Ψ′1 from the 16 corners of each hyper-

cube of the lattice into a new field Qαβ , living on a lattice with the double lattice spacing.

Let us consider the free case without gauge fields for simplicity. The coordinates of the

original lattice can be written as x = 2y+ ρ with y ∈ Z4 and ρµ = 0, 1. Then, one defines

Qαβ(y) =
1
8

∑
ρ

Ωαβ(ρ)Ψ′1(2y + ρ), Qαβ(y) =
1
8

∑
ρ

Ψ′1(2y + ρ)Ω†αβ(ρ). (2.62)

The index α is the spinor index, while the index β turns out to label the tastes. Re-

introducing the lattice spacing, the action becomes

Sstag.
F = (2a)4

∑
y ∈ 2aZ4

3∑
µ=0

Q(y)
[
(γµ ⊗ 1)∆(±)

µ + a(γ5 ⊗ γTµ γ
T
5 )∆(−)

µ ∆(+)
µ

]
Q(y)

+ (2a)4
∑

y ∈ 2aZ4

mQ(y)
[
1⊗ 1

]
Q(y), (2.63)

where the notation is “spin ⊗ taste” and derivatives are now understood with the double

lattice spacing:

∆(+)
µ Q =

1
2a

[Q(y + 2aµ̂)−Q(y)] etc. (2.64)

In the new basis, (2.63) gives the following propagator (with b = 2a):

K−1
stag.(p) =

1
b

∑3
µ=0

[
−i(γµ ⊗ 1) sin(b pµ) + (γ5 ⊗ γTµ γ

T
5 ) sin2 b pµ

2

]
+m1⊗ 1∑3

µ=0
4
b2

sin2 b pµ

2 +m2
. (2.65)

Since the lattice spacing forQαβ is b = 2a, the momenta are restricted to−π/b < pµ ≤ π/b,

and the sine function in the denominator vanishes only at p = 0. In the continuum limit,

(2.65) reduces to the correct propagator describing four Dirac fields of the same mass.

At non-zero lattice spacing, the term a(γ5 ⊗ γTµ γ
T
5 )∆(−)

µ ∆(+)
µ in (2.63) breaks the taste

symmetry.



18 CHAPTER 2. LATTICE QCD

As we have seen at the beginning of this section, a naive fermion field is equivalent to

be four identical copies of staggered fermion fields. Thus, the above calculations also show

that the naive action corresponds to 16 tastes in the continuum limit.

Rooted staggered fermions

In the continuum limit, the staggered fermion action describes four identical copies of a

Dirac field, which means that the corresponding fermion operator can be written as

K = ( /D +m)⊗ 14×4, (2.66)

where /D is the continuum Dirac operator. This was shown in the previous section for

the free case without gauge fields. The path integral for a continuum theory with action

(2.66) contains the determinant

det
[
( /D +m)⊗ 14×4

]
=
[
det( /D +m)

]4
. (2.67)

The determinant is responsible for the loops of virtual fermions, i.e. the sea quarks in

QCD. Hence, for such a continuum theory, one can reduce the number of sea quarks to

one by taking the positive 4-th root of the fermion determinant in the path integral6:

det( /D +m) =
(
det
[
( /D +m)⊗ 14×4

])1/4
. (2.68)

For rooted staggered fermions, the same procedure is done at non-zero lattice spacing. At

non-zero lattice spacing, the taste-symmetry is broken and the resulting theory is non-

local [38]. However, there is evidence that the continuum limit is still correct [39, 40, 41].

It is crucial to take this limit before the chiral limit, so that the taste splittings always

remain smaller than the Goldstone pion mass.

The use of rooted staggered fermions has been criticised in particular by M. Creutz

[42, 43, 44], and this criticism has been refuted in [45, 46, 47, 48].

2.4.4 Fermion doubling and chiral symmetry

The naive fermion action (2.39), which suffers from doubling, has a U(1) chiral symmetry

at m = 0,

Ψ′ = eiαγ5Ψ, Ψ′ = Ψeiαγ5 . (2.69)

Equivalently, the naive lattice fermion matrix (2.50) with m = 0 satisfies {K, γ5} = 0. On

the other hand, in the Wilson action (2.56), the fermion doublers are removed by including

the operator 1
2a∆

(+)
µ ∆(−)

µ , which breaks the chiral symmetry.

6the determinant is positive for m > 0, since
{
/D, γ5

}
= 0 and /D is anti-Hermitian
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An important observation can be made about the chirality of the doublers. Starting

from the naive lattice action, let us try to restrict the theory to, say, the left-handed

components

ΨL(x) = 1
2(1− γ5)Ψ, ΨL(x) = Ψ1

2(1 + γ5). (2.70)

Due to the chiral symmetry, the left-handed components are not coupled to the right-

handed components, and so we can set the latter to zero. However, for half of the tastes,

the transformation (2.55) which was used to obtain the correct form of the action, changes

the handedness:

S(n)
1
2(1 + γ5)S

†
(n) = 1

2(1± γ5) (2.71)

with a minus sign for 8 of the 16 tastes. Thus, by doing the projection (2.70) one obtains

a theory of 8 left-handed and 8 right-handed fermions.

The number of doublers in the naive action, 24 = 16, is due to the hypercubic sym-

metry. Wilczek [49] suggested the following action that breaks hypercubic symmetry at

non-zero lattice spacing

K(p) = i
3∑
j=1

γj
1
a

sin(a pj) + iγ0

1
a

sin(a p0) + λ

3∑
j=1

1
a

sin2
(

1
2a pj

) . (2.72)

This is chirally symmetric and has zeros only at p = (0, 0, 0, 0) and p = (π/a, 0, 0, 0).

By doing the projection (2.70) one obtains a theory of a single left-handed and a single

right-handed fermion, i.e. a theory with the degrees of freedom of a single Dirac fermion7.

In [50], actions of the general form K(x, y) =
∑3

µ=0 γµ Fµ(x, y) that satisfy translation

invariance (i.e. F (x, y) = F (x − y)), Hermiticity (i.e. F ∗(z) = F (−z)), and |z|4F (z) → 0

for |z| → ∞, are considered. These properties imply that the Fourier transform Fµ(p) is a

continuous real vector field on the Brillouin zone, which is a 4-dimensional torus T 4. The

Poincaré-Hopf theorem states that for a compact manifold the sum of the indices at the

zeros of Fµ is equal to the Euler characteristic of the manifold, which is zero for T 4. This

implies that there is always an equal number of left-handed and right-handed fermions.

Very general proofs of the existence of an equal number of left-handed and right-handed

fermions were given by Nielsen and Ninomiya in [51, 52, 53].

The fermion doubling is also related to the axial anomaly. In the continuum theory

of a massless Dirac field coupled to a gauge field, the axial current JµA = Ψγµγ5Ψ is no

longer conserved after quantisation:

〈 ∂µJµA(x) 〉 =
g2

16π2
εµνρλ

〈
Tr[Fµν(x)F ρλ(x)]

〉
. (2.73)

7However, breaking hypercubic invariance leads to other complications.
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As Fujikawa has shown [54], this can be explained by the non-invariance of the fermion

path integral measure, when properly regulated in a gauge-invariant way, under the trans-

formation (2.69). However, on the lattice the fermion measure is in fact invariant under

(2.69) due to Tr γ5 = 0. The naive lattice action (2.39) at m = 0 is also invariant, and

hence with naive fermions the lattice axial current

J
µ (lat.)
A =

1
2

[
Ψ(x)Uµ(x)γµγ5Ψ(x+ µ̂) + Ψ(x+ µ̂)γµγ5U

†
µ(x)Ψ(x)

]
(2.74)

is still exactly conserved in the quantum theory: 〈∆(−)
µ J

µ (lat.)
A 〉 = 0. This can be viewed

as a cancellation between the contributions to the axial anomaly from the left-handed and

right-handed doublers [55]. Note that in the spin-taste basis introduced in Sec. 2.4.3, the

transformation (2.69) reads

Q 7→ eiα(γ5⊗γ5)Q, Q 7→ Qeiα(γ5⊗γ5), (2.75)

and it is therefore identified as a taste-non-singlet symmetry. The taste-singlet axial

transformation generated by γ5 ⊗ 1 is not an exact symmetry of the action at non-zero

lattice spacing, and the associated current is in fact anomalous [56, 57].

For Wilson fermions, the action is not invariant under (2.69) due to the Wilson term.

In this case the current (2.74) has the correct anomaly [55].

2.4.5 The Ginsparg-Wilson relation

In the last section we have established the following: on the lattice, the path integral

measure is invariant under the transformation (2.69). With the naive lattice action, which

is also invariant under (2.69), unphysical fermion doublers appear, turning this transfor-

mation into a non-singlet symmetry which therefore is non-anomalous.

On the other hand, the Wilson action is not invariant under (2.69), so that the doublers

disappear and the axial anomaly is generated. However, for a theory with multiple physical

quark flavours, the Wilson term also breaks all non-singlet chiral symmetries, which makes

renormalisation of the lattice theory very difficult.

There is, however, a more continuum-like way of generating the axial anomaly on the

lattice, which avoids doublers but leaves the non-singlet chiral symmetries for multiple

physical flavours intact. In this approach, the definition of the chiral transformation is

modified for non-zero lattice spacing, but reduces to the usual form for a → 0. The

simplest definition of the infinitesimal transformation reads [58]

δΨ = iαγ5

(
1− a

2r0
K

)
Ψ, δΨ = iαΨ

(
1− a

2r0
K

)
γ5, (2.76)
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where K is the lattice Dirac operator. Flavour non-singlet transformations can be defined

by including a flavour-group generator. The action is invariant under (2.76) if K satisfies

the relation

{γ5, K} =
a

r0
K γ5 K. (2.77)

Eq. (2.77) had already been derived by Ginsparg and Wilson [59] as the remnant of

continuum chiral symmetry obtained after a blocking transformation. Explicit solutions

for K will be given in Secs. 2.4.6 and 2.4.7. By multiplying (2.77) from both the left and

right with K−1 we find the following relation for the propagator K−1:{
γ5, K

−1(x, x′)
}

=
a

r0
γ5 δx, x′ , (2.78)

that is, the propagator is chirally invariant in the usual sense at all non-zero distances.

It turns out that the path integral measure transforms under the flavour-singlet chiral

rotation (2.76) in precisely the right way to generate the axial anomaly [58]. As it should

be, the measure is invariant under flavour-non-singlet transformations.

Starting from a lattice Dirac operator K satisfying the Ginsparg-Wilson relation, a

mass m can be introduced in the following way:

K(m) =
(

1− am

2r0

)
K +m. (2.79)

2.4.6 Overlap fermions

An explicit example of a lattice Dirac operator satisfying (2.77) is the overlap operator

[60, 61, 62]

K =
r0
a

[1 + γ5 sgn(H)] (2.80)

where the simplest choice is H = γ5 KW with the Wilson fermion operator (2.57) with

negative mass −r0/a. In (2.80), the function sgn(H) is the matrix sign function: for

Hermitian H, one has sgn(H) = H/
√
H2. In numerical simulations, the sign function is

implemented by some iterative approximation.

2.4.7 Domain wall fermions

Chiral fermions in 4 dimensions can also be obtained as zero-modes localised at domain

walls in 5-dimensional theories. Following [63], let us consider the 5-dimensional continuum

Dirac equation with a position-dependent mass term,[
/D + γ5∂s +M(s)

]
Ψ(x, s) = 0, (2.81)
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where s is the 5-th coordinate, /D is the 4-dimensional massless Dirac operator and

M(s) =

{
+M, s > 0

−M, s < 0
(M > 0). (2.82)

Since (2.81) is separable, we can write Ψ(x, s) as a linear combination of products of the

form8

Ψ(x, s) =
∑
n

[fn(s)PR + gn(s)PL]ψn(x), (2.83)

where PR/L = 1
2(1± γ5) and

[∂s +M(s)] fn(s) = µn gn(s),

[−∂s +M(s)] gn(s) = µn fn(s),

/D ψn(x) = −µn ψn(x). (2.84)

The functions f0 and g0 with eigenvalue µ = 0 have the form

f0(s) = F e−
R s
0M(s′) ds′ = F e−M |s|,

g0(s) = G e+
R s
0M(s′) ds′ = G e+M |s|, (2.85)

with constants F and G. Since g0(s) is not normalisable for G 6= 0, we must have G = 0.

Thus, the massless mode is right-handed (for M < 0, a left-handed mode is obtained).

One expects that all other eigenvalues are of order |µn| & O(M), and so the low-energy

effective theory consists of a 4-dimensional right-handed massless fermion.

For a compact fifth dimension with periodic boundary conditions (and hence with

a kink and an anti-kink in M(s)), in the absence of gauge fields one finds a massless

left-handed mode localised at one of the domain walls and a massless right-handed mode

localised at the other domain wall. However, interactions with gauge fields lead to a

coupling of the left-handed and right-handed modes and hence a breaking of exact chirality

and the appearance of a residual mass. This coupling vanishes as the length of the fifth

dimension is taken to infinity, and exact chirality is restored.

The appearance of chiral modes bound to domain walls can be used to construct chiral

lattice fermion actions [26]. A domain wall action commonly used in current simulations

was introduced in [27] and [28]. In lattice units, it is given by

SDW =
∑
x

Ls∑
s=1

Ψ(x, s)

[
Ψ(x, s)− PLΨ(x, s+1)− PRΨ(x, s−1) +

∑
x′

KW (x, x′)Ψ(x′, s)

]
(2.86)

8This may also include integration over a continuous part of the spectrum.



2.5. Numerical calculations 23

where KW is the Wilson fermion operator (2.57) with negative mass −M5 = −r0 and the

gauge fields in KW are independent of the 5-th coordinate s. The 5-dimensional fermion

fields are subject to the boundary conditions

PL Ψ(x, Ls + 1) = −mPL Ψ(x, 1),

PR Ψ(x, 0) = −mPR Ψ(x, Ls). (2.87)

The Dirac mass turns out to be proportional to m. Left-handed and right-handed four-

dimensional fermion fields can be defined as

qL(x) = ΨL(x, 1), qR(x) = ΨR(x, Ls),

qL(x) = ΨL(x, 1), qR(x) = ΨR(x, Ls), (2.88)

where ΨL/R = PL/RΨ and ΨL/R = ΨPR/L. For m = 0 and in the limit Ls → ∞ the

left-handed and right-handed fields decouple completely.

Note that in order to cancel the contributions from the heavy fermion modes in the

bulk, one has to introduce additional 5-dimensional bosonic pseudofermion fields (also

referred to as Pauli-Villar fields) in the partition function. A commonly used choice for

their kernel is [64]

KPV = KDW

∣∣∣
m=1

, (2.89)

where KDW is the 5-dimensional domain wall operator defined by (2.86, 2.87). Performing

the Gaussian integrals over the fermion and pseudofermion fields in the partition function,

one obtains a factor of
detKDW

detKPV
. (2.90)

As shown in [65], this ratio of determinants can be written as a single determinant of a

4-dimensional truncated overlap operator that becomes an exact overlap operator in the

limit Ls →∞.

At finite Ls, a small residual chiral symmetry breaking remains. See Ref. [66] for a

detailed discussion of the choice of Ls in practical simulations.

2.5 Numerical calculations

Numerical calculations in lattice QCD usually start from Eq. (2.49), where the Grassmann

integrals over the fermion fields have been performed explicitly. A set of gauge field

configurations {U1, U2, ..., UN} is created via a Markov process such that for large N this
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set is distributed with the probability density

p[Ui] ∝
(∏

f

detKf [Ui]
)
e−SG[Ui], (2.91)

where Kf are the lattice fermion actions for the various flavours of dynamical quarks9.

The expectation value of an observable O is then approximated as the ensemble-average

〈O〉 ≈ 1
N

N∑
i=1

O
[{
K−1
f [Ui]

}
, Ui

]
. (2.92)

For this to make sense, the product of the fermion determinants in (2.91) must be positive.

This is satisfied e.g. for Ginsparg-Wilson fermions. More generally, when a fermion action

satisfies γ5-Hermiticity, it follows that the corresponding determinant is real:

(detK)∗ = detK† = det(γ5Kγ5) = detK. (2.93)

Then, if mass-degenerate pairs of flavours are used, (2.91) will be positive. In many

numerical calculations, the u- and d- quarks are taken to have equal mass.

With rooted staggered fermions (see Sec. 2.4.3), one can take
[
det K†K|ee

]1/4 for each

flavour, where the subscript “ee” denotes the restriction of the matrix K†K to the even

sublattice (K†K is block-diagonal in terms of even and odd sites).

The algorithms used to update the gauge fields according to the distribution (2.91)

usually require the repeated (iterative) solution of equations like K G = S, which makes

the inclusion of dynamical fermions computationally expensive.

2.6 Renormalisation and continuum limit

The asymptotic freedom of QCD (for a sufficiently small number of flavours) implies that

the continuum limit of lattice QCD corresponds to the limit where the bare gauge coupling

is taken to zero.

In numerical computations, one chooses a value for the bare gauge coupling and then

“measures” the corresponding lattice spacing. This is done by computing some physical

quantity (in lattice units) and comparing the result to the experimental value. The bare

quark masses can be set by requiring that the lattice results for a few “input” hadron

masses agree with experiment (this may not be directly feasible; see Sec. 2.7.2).

9For heavy flavours, depending on the problem considered it can be a good approximation to

neglect the effects of pair creation and set the corresponding determinant to 1.
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When reducing the lattice spacing, the number of lattice sites in each direction has to be

increased accordingly to keep the physical box size fixed. One also has to take the infinite

volume limit, by doing the calculations with several physical box sizes. Extrapolations

in the lattice spacing, the volume and the quark masses can be performed with the help

of effective field theories [67]; this will be discussed in Sec. 2.7. It is also possible to

reduce cutoff effects at non-zero lattice spacing by including additional higher-dimension

operators to the lattice action (cf. Sec. 2.7.1).

While hadron masses can be obtained directly from the exponential decay of correlation

functions, the values of matrix elements of certain operators require further renormalisa-

tion. They may depend on the scale and renormalisation scheme, and it may be necessary

to convert the results to a continuum scheme like MS in order to make contact with ex-

periment. The same applies for the definition of the renormalised gauge coupling and

renormalised quark masses.

In general, the renormalisation is simplified when symmetries are preserved exactly by

the regulator. As an example, for flavour- and chirally symmetric lattice actions, one finds

ZV = ZA = 1 for the conserved vector- and axial vector currents.

One method to relate lattice and continuum schemes is lattice perturbation theory,

which has the advantage that analytic results can be obtained. The mismatch between

the lattice and the continuum theories lies in the ultraviolet where the coupling is small, so

that perturbation theory may be a good approximation. However, a systematic uncertainty

due to neglected higher-order terms and nonperturbative effects remains.

Methods for nonperturbative renormalisation include the regularisation-independent

(RI) scheme [68] and the Schrödinger functional method. Applications of the Schrödinger

functional method include the renormalisation of the gauge coupling [69, 70] and quark

masses [71], as well as the matching of heavy-quark effective theory (see Sec. 4) to QCD

[72].

2.7 Lattice artefacts and effective field theories

2.7.1 Non-zero lattice spacing effects

Errors due to a non-zero lattice spacing can be analysed be means of the Symanzik effective

field theory, where the lattice theory is modelled by a continuum theory with Lagrangian

LSym = LQCD + LI , (2.94)
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where LI describes the lattice artefacts. It contains all higher-order local operators Oi
that are not forbidden by the symmetries of the lattice action,

LI =
∑
i

adimOi−4 ci Oi, (2.95)

with dimensionless short-distance coefficients ci depending on the couplings in the lattice

action and the renormalisation scale. Using this framework, one can predict the functional

dependence of lattice results on a, allowing a controlled continuum extrapolation. Note

that for the fermionic part of the action, the possible operators of dimension 5, like the

Wilson term (2.56), break chiral symmetry. Thus, if the lattice action has an exact

chiral symmetry, these dimension-five operators will be forbidden in the Symanzik effective

Lagrangian, so that chiral actions can not have O(a) errors.

Using the Symanzik effective theory, one can not only analyse non-zero lattice spacing

errors, but can also reduce them by adjusting the couplings in the lattice action so that

some of the coefficients ci in (2.95) get smaller or vanish. This requires the inclusion of

the corresponding higher-order operators in the lattice action.10 As the CPU time needed

to generate statistically independent gauge configurations with a fixed physical volume

grows like a−(4+z), where z > 0 accounts for critical slowing down,11 it can be much more

cost-effective to use Symanzik-improvement rather than reduce a [76].

Consider for instance a lattice derivative operator

∆(±)
µ =

exp(aDµ)− exp(−aDµ)
2a

= Dµ +
a2

6
(Dµ)3 +

a4

120
(Dµ)5 + ... (2.96)

For smooth fields, the order a2 error in (2.96) can be removed by taking the improved

derivative

∆̃(±)
µ = ∆(±)

µ − a2

6
∆(+)
µ ∆(±)

µ ∆(−)
µ (2.97)

instead. However, at one-loop level, (2.97) still leads to O(αsa2) errors due to radiative

corrections. These errors can be reduced by adjusting the coefficient in (2.97), but it is

difficult to find the correct value. A simple method of reducing radiative corrections is

tadpole improvement [77], which is based on the following observation. In lattice pertur-

bation theory, the gauge link Uµ(x) is given in terms of the vector potential Alat
µ as an

expansion in powers of a:

Uµ(x) = 1 + iagAlat
µ (x) +

1
2
(iag)2

[
Alat
µ (x)

]2
+ ... (2.98)

10For off-shell quantities, also the interpolating fields in correlation functions must be improved.
11Critical slowing down is particularly severe for topological modes, where the autocorrelation

time grows rapidly [73], possibly exponentially [74, 75], when a is reduced.
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Consider the expectation value

u0 =
1
Nc

〈Tr Uµ〉 , (2.99)

(the mean link) defined in Landau gauge. At tree-level, u0 = 1, and the one-loop result is

still close to 1, while the nonperturbative result for u0 is significantly smaller. It turns out

that higher-order terms in the expansion (2.98) are actually not suppressed by powers of

a, since the contractions of Alat
µ with itself (leading to “tadpole” diagrams) produce UV-

divergences proportional to the same power of 1/a. The large tadpole renormalisations

in lattice operators can be taken care of through rescaling the links by a factor of 1/u0,

where u0 can be measured nonperturbatively.

Finally, note that for heavy quarks (am ? 1) the usual Symanzik effective theory

breaks down. Following [67], we consider operators like
∑

µ(−γµDµ)n (these describe

deviations from Lorentz/Euclidean invariance). The time derivative is of the order of the

heavy-quark mass,

an(−γ0D0)nΨ ∼ (am)nΨ, (2.100)

and hence powers of a are accompanied by powers of m, spoiling the convergence of the

expansion. The physical interpretation is that the lattice can not resolve the Compton

wavelength of heavy quarks when the grid is too coarse. Hence, the standard relativistic

fermion actions develop large discretisation errors for am ? 1. The discussion of relativistic

heavy quarks in lattice QCD will be continued in Sec. 2.8.

2.7.2 Unphysical quark masses

The CPU time in dynamical lattice QCD calculations also grows like some inverse power

of the light quark mass, as the condition number of the fermion matrix is proportional

to (amq)−1. In addition, lighter quark masses require larger volumes to keep finite-size

effects under control (see Sec. 2.7.3). Thus, most present computations are done at larger-

than-physical u- and d- quark masses, and extrapolations are required.

For many observables, the functional form of the dependence on the light quark masses

can be predicted using chiral perturbation theory (χPT); see e.g. [78, 79] for an introduc-

tion. In QCD with Nf massless quarks, the SU(Nf )L×SU(Nf )R chiral flavour symmetry

turns out to be spontaneously broken to SU(Nf )V by a non-zero vacuum expectation value

〈qfRq
f ′

L 〉 = vδff
′
. Fluctuations in the vacuum expectation value along the broken symmetry

directions, which do not change the potential energy, correspond to dim[SU(Nf )] = N2
f −1

massless Goldstone bosons (pions). One can introduce an effective SU(Nf )-valued field
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Σ(x) = exp(2iΦ/f) (with traceless and Hermitian Φ) for them, with Lagrangian

LχPT =
f2

8
Tr(∂µΣ∂µΣ†) + higher order terms. (2.101)

Since the operators in the chiral effective Lagrangian contain derivatives, the contributions

from higher-order operators and from loops are suppressed by factors of p2/f2. This gives

the theory its predictive power.

In nature, the u-, d- and possibly s- quark masses are small enough so that one has an

approximate SU(3)L × SU(3)R symmetry. For Nf = 3, the field Φ can be parametrised

as

Φ =


π0/

√
2 + η/

√
6 π+ K+

π− −π0/
√

2 + η/
√

6 K0

K− K̄0 −2η/
√

6

 . (2.102)

To lowest order, non-zero quark masses can be included in the chiral Lagrangian through

the term

−f
2

4
B0Tr

[
Mq(Σ + Σ†)

]
, (2.103)

where B0 is a new low-energy coefficient and Mq = diag(mu,md,ms). Expanding Σ =

exp(2iΦ/f) around Φ = 0, Eq. (2.103) then gives a trivial constant term and, to quadratic

order,

B0Tr
[
MqΦ2

]
= B0

[
(mu +md)π+π− + (mu +ms)K+K− + (md +ms)K0K̄0

+ 1
6(4ms +md +mu) η η + 1√

3
(mu −md) η π0 + 1

2(mu +md)π0π0
]
,

(2.104)

from which we can read off the leading-order masses of the 8 pseudo-Goldstone bosons,

m2
π± = B0(mu +md), etc. (2.105)

This is a first prediction from χPT. Calculations to order p4 (this includes one-loop cor-

rections) have been performed in [80]. At order p4, there are new low-energy coeffi-

cients and the results for masses, decay constants etc. include logarithms of the form
m2

PS
(4πf)2

ln(m2
PS/µ

2) where mPS is the mass of a Goldstone boson12. Like the chiral logs,

the low-energy-coefficients also depend on the scale µ, so that the overall scale-dependence

is cancelled.
12When dimensional regularisation is used, no power-law divergences appear. When a momen-

tum cutoff (or a lattice) is used as a regulator, the power-law divergences can still be absorbed

into the couplings of the given order.
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With many lattice actions, chiral symmetry is broken explicitly by lattice artefacts, so

that there will be additive terms in (2.105) that do not vanish for mq = 0. The effects of

non-zero lattice spacing can be systematically included in the χPT Lagrangian.

Note that it is also possible to study the interactions of (pseudo-)Goldstone bosons

with heavy particles (e.g. baryons) in χPT, as long as the momenta of the Goldstone

bosons involved are small compared to the scale of chiral symmetry breaking.

2.7.3 Finite-volume effects

As we have seen in Sec. 2.1.1, a finite temporal box size Lτ (with the correct boundary

conditions) corresponds to a non-zero temperature. If one is interested in zero-temperature

physics, one typically chooses Lτ about 2 - 4 times bigger than the spatial extent L. The

dominant finite-volume errors then arise from the finite spatial size.

In a simplistic picture, a single hadron in a periodic box much larger than the hadron

itself interacts with the infinite set of its mirror images. The interaction proceeds through

the exchange of the lightest excitations, the pions (in computations with dynamical quarks),

and so we expect the effect to be suppressed by e−mπL.

Finite-volume effects can be studied systematically in chiral perturbation theory, us-

ing the same chiral Lagrangian as in infinite volume but performing the effective-theory

calculations in the finite box [81, 82]. The pion propagator then has to satisfy the periodic

boundary conditions, and can be written as an infinite sum over shifted infinite-volume

propagators.

As already mentioned in Sec. 2.2, the effects of finite volume can also be expressed

in terms of scattering parameters, and can in turn be used to compute these parameters

[36, 37].

2.8 Relativistic heavy quarks on the lattice

As seen in section 2.7.1, the usual relativistic lattice actions develop large discretisation

errors when am ? 1. A possible remedy would be to simply reduce the lattice spacing a.

For the charm quark, which hasmc(µ = mc) = 1.27+0.07
−0.11 GeV in the MS scheme [83], this is

already feasible today, in particular with the help of Symanzik improvement. An example

is the Highly Improved Staggered Quark (HISQ) action [84], which allows calculations up

to about am ∼ 0.5. In [85], the HISQ action has been used to make precision calculations

of the D and Ds leptonic decay constants. With this approach, the same action can be
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used for the charm quarks and the light quarks, and a partially conserved current can be

employed to calculate the decay constants.

In [86], the application of the HISQ action to bottom quarks is explored. The b quark

mass is mb(µ = mb) = 4.20+0.17
−0.07 GeV [83]. The MILC collaboration [87] have generated

gauge configurations with lattice spacings in the range from a ≈ 0.18 fm (a−1 ≈ 1.1

GeV) to a ≈ 0.045 fm (a−1 ≈ 4.4 GeV). Even with HISQ, this is still not fine enough to

accommodate the b quark, and extrapolations in mb are required which lead to additional

systematic errors. Given that autocorrelation times grow dramatically as a is reduced

[75, 73], it appears that in the near future fine enough lattices with low pion masses and

large volumes will not be available.

One option for the inclusion of relativistic b quarks in lattice QCD is to use anisotropic

lattices, choosing the temporal lattice spacing at much finer than the spatial lattice spacing

as so that atm� 1 [88, 89]. From Eq. (2.100) one might expect that for heavy-light mesons

at rest the errors only appear as powers of atm. However, it turns out that errors governed

by asm can still appear [90]. See also [91] for a more recent paper.

Alternatively, one can work with isotropic lattices, but tune the couplings of the tem-

poral and spatial terms in the heavy-quark action separately so that the dispersion relation

for the heavy quark is corrected [92]. This is known as the “Fermilab method”. Additional

higher-dimension operators need to be included in order to achieve good accuracy. The

kernel for the simplest action has the form

KFNAL(x, x′) = δx′, x − κt

[
(1− γ0)U0(x)δx′, x+0̂ + (1 + γ0)U−0(x)δx′, x−0̂

]
− κs

3∑
j=1

[
(rs − γj)Uj(x)δx′, x+ĵ + (rs + γj)U−j(x)δx′, x−ĵ

]
+ 2 cE κt [γ0, γj ]Ej(x) δx′, x + cB κs εjkl[γj , γk]Bl(x) δx′, x

(2.106)

where for convenience the fields are normalised such that the coefficient of the first

Kronecker-delta is 1. In (2.106), Ej and Bj are the chromoelectric and chromomagnetic

components of a lattice discretisation of Fµν . The bare mass is am0 = 1/(2κt)− 1− 3rsζ

with ζ = κs/κt. The parameters rs, ζ, cE , cB must be tuned as functions of am0. Note

that for rs = ζ = 1, cE = cB = 0, the Fermilab action reduces to the standard Wilson

action.



Chapter 3

Effective Lagrangians for heavy

quarks

Effective theories for heavy quarks are based on the separation of scales |k| � m, where

m is the mass of the heavy quark and |k| is the typical magnitude of the spatial momenta

relevant for the system, defined in the rest frame of the hadron containing the heavy

quark(s). One important consequence of this separation of scales is that the effects of

heavy-quark pair production can be neglected or described by local effective operators.

The power counting will be discussed in more detail in Sec. 3.2. It turns out to be different

for hadrons containing more than one and hadrons containing only one heavy quark.

Heavy-quark effective theories can be used to analyse the behaviour of Wilson-like

lattice fermion actions in the large-mass limit [93, 94, 95]. Alternatively, one can directly

use a discretisation of a nonrelativistic effective Lagrangian to describe heavy quarks on

the lattice. The latter method is used in this dissertation.

In this chapter, I shall review the derivation of the standard heavy-quark effective

Lagrangians in the continuum. I will then perform an independent derivation of a “moving

nonrelativistic QCD” (mNRQCD) Lagrangian, obtaining a new result slightly different

from that reported previously in the literature. Two approaches to the lattice discretisation

of heavy-quark effective theories will then be discussed in Chapters 4 and 5.

One way to derive an effective Lagrangian is to write down all local operators com-

patible with the symmetries and required for the physical system under consideration.

The short-distance coefficients of the operators are adjusted so that the effective theory

and QCD give the same results for on-shell physical observables to the given order. This

approach is applied to heavy quarkonia in [9, 10] and goes back to [96]. If performed cor-



32 CHAPTER 3. EFFECTIVE LAGRANGIANS FOR HEAVY QUARKS

rectly, it has the advantage that no operators are missed out, but the method is technically

not so straightforward.

Another derivation of a continuum effective Lagrangian, appropriate to heavy-light

systems, is to “integrate out” the antiquark components of the theory in the path integral

approach [97]. This is usually done at tree-level only, and a matching to full QCD is

performed afterwards.

Here I will use the method of the Foldy-Wouthuysen-Tani (FWT) transformation,

following [98], where the effective Lagrangian is obtained via a field transformation. This

is a systematic procedure, which gives all operators bilinear in the heavy-quark fields

together with their tree-level coefficients. By construction, it also gives the tree-level

relation between the heavy quark fields in QCD and the ones in the effective Lagrangian.

3.1 Foldy-Wouthuysen-Tani transformation

In this section we derive a classical (tree-level) continuum effective Lagrangian for heavy

quarks order by order in 1/m via the Foldy-Wouthuysen-Tani (FWT) transformation,

which decouples the particle- and antiparticle components in the Dirac Lagrangian to a

given order1. The particle/antiparticle projectors are

P± =
1
2
(1± γ̂0), (3.1)

and hence the transformation should remove all terms from the Lagrangian that do not

commute with γ̂0. In the following, we work in Minkowski space. Writing the Dirac

Lagrange density as

L = Ψ(−m+ iγ̂0D0 + iγ̂jDj)Ψ, (3.2)

we see that we must aim to cancel the iγ̂jDj term. To this end, we introduce the field

redefinition

Ψ = exp
(

1
2m

iγ̂jDj

)
Ψ(1),

Ψ = Ψ(1) exp
(

1
2m

iγ̂jDj

)
= Ψ(1) exp

(
− 1

2m
iγ̂j
←
Dj

)
, (3.3)

1The expansion parameter 1/m is purely formal at this stage. It turns out that for heavy-light

hadrons, the expansion really is in ΛQCD/m (cf. Sec. 3.2), and consequently the FWT method is

particularly convenient for these. The method is also correct for heavy-heavy mesons, but there

the power counting is different.
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which does indeed cancel iγ̂jDj , but also results in an infinite set of additional terms with

higher powers of 1/m. In terms of the new field Ψ(1), the Lagrangian reads

L = Ψ(1)(−m+ iγ̂0D0)Ψ(1) +
∞∑
n=1

1
mn

Ψ(1) O(1)n Ψ(1). (3.4)

The new terms O(1)n (n ≥ 1) still contain pieces with odd powers of spatial gamma

matrices and thus do not commute with γ̂0. The order 1/m term is given by

O(1)1 = −1
2
DjD

j − ig

8
[γ̂µ, γ̂ν ]Fµν

= −1
2
DjD

j − ig

8
[γ̂j , γ̂k]Fjk︸ ︷︷ ︸

=OC
(1)1

− ig
2
γ̂j γ̂0Fj0︸ ︷︷ ︸

=OA
(1)1

. (3.5)

Here, we wrote O(1)1 = OC(1)1 + OA(1)1, with
[
OC(1)1 , γ̂

0
]

= 0 and
{
OA(1)1 , γ̂

0
}

= 0. The

anticommuting part OA(1)1 can now be cancelled by a second field redefinition, similar to

(3.3),

Ψ(1) = exp
(

1
2m2

OA(1)1

)
Ψ(2),

Ψ(1) = Ψ(2) exp
(

1
2m2

OA(1)1

)
, (3.6)

which results in

L = Ψ(2)(−m+ iγ̂0D0)Ψ(2) +
∞∑
n=1

1
mn

Ψ(2) O(2)n Ψ(2) (3.7)

with

OC(2)1 = OC(1)1,

OA(2)1 = 0,

OC(2)2 = −g
8
γ̂0

(
Dad
j Fj0 −

1
2
[γ̂j , γ̂k] {Dj , Fk0}

)
,

OA(2)2 = − i
3
γ̂j γ̂kγ̂lDjDkDl −

g

4
γ̂j [D0, Fj0]. (3.8)

Next, to cancel OA(2)2, we write

Ψ(2) = exp
(

1
2m3

OA(2)2

)
Ψ(3),

Ψ(2) = Ψ(3) exp
(

1
2m3

OA(2)2

)
. (3.9)
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The Lagrangian becomes

L = Ψ(3)(−m+ iγ̂0D0)Ψ(3) +
∞∑
n=1

1
mn

Ψ(3) O(3)n Ψ(3) (3.10)

with

OC(3)1 = OC(2)1,

OA(3)1 = 0,

OC(3)2 = OC(2)2,

OA(3)2 = 0. (3.11)

Clearly, this procedure can be repeated to remove the γ̂0-anticommuting terms to arbitrar-

ily high but finite order in 1/m. Note that no additional time derivatives are introduced.

We will only keep the terms up to order 1/m2 now.

As these terms commute with γ̂0 and there are no time derivatives other than iγ̂0D0,

we can now remove the mass term2 from the Lagrangian by redefining

Ψ(3) = exp
(
−imx0γ̂0

)
Ψ̃,

Ψ(3) = Ψ̃ exp
(
imx0γ̂0

)
. (3.12)

The resulting Lagrangian is

L = Ψ̃
[
iγ̂0D0 −

1
2m

DjD
j − ig

8m
[γ̂j , γ̂k]Fjk

− g

8m2
γ̂0

(
Dad
j Fj0 −

1
2
[γ̂j , γ̂k] {Dj , Fk0}

)]
Ψ̃ + O(1/m3). (3.13)

Using [γ̂j , γ̂k] = −2iεjklΣl with

Σj ≡

(
σj 0

0 σj

)
, (3.14)

and defining the chromoelectric and chromomagnetic components of the gluon field strength

tensor as Ej = F0j and Bj = −1
2εjklFkl , we obtain

L = Ψ̃
[
iγ̂0D0 +

D2

2m
+

g

2m
Σ·B +

g

8m2
γ̂0
(
Dad ·E + iΣ · (D×E−E×D)

)]
Ψ̃

+ O(1/m3). (3.15)

2This step is not really necessary, since the mass term only corresponds to a trivial shift in the

energy. In fact, a mass term is generated as a counterterm through renormalisation.
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For later reference, we also summarise the field transformation:

Ψ(x) = TFWT e
−imx0γ̂0

Ψ̃(x) (3.16)

with

TFWT = exp
[

1
2m

(iγ̂ ·D)
]

× exp
[

1
2m2

(
− ig

2
γ̂0γ̂ ·E

)]
× exp

[
1

2m3

(
g

4
γ̂ · (Dad

0 E) +
1
3

(iγ̂ ·D)3
)]

×
[
1 +O(1/m4)

]
. (3.17)

Next, introducing two-component fields ψ and ξ as

Ψ̃ =

(
ψ

ξ

)
, Ψ̃ =

(
ψ†, −ξ†

)
, (3.18)

we find that the Lagrangian (3.15) can be written as

L = ψ†
[
iD0 +

D2

2m
+

g

2m
σ ·B +

g

8m2

(
Dad ·E + iσ · (D×E−E×D)

)]
ψ

+ ξ†
[
iD0 −

D2

2m
− g

2m
σ ·B +

g

8m2

(
Dad ·E + iσ · (D×E−E×D)

)]
ξ

+ O(1/m3). (3.19)

As desired, the quark field ψ and the antiquark field ξ are separated. In our conventions,

the field operator related to ψ annihilates a quark, whereas the field operator related to ξ

creates an antiquark. Note that the antiquark action Sξ =
∫
Lξ d4x can be obtained from

the quark action Sψ =
∫
Lψ d4x by making the following replacements:

ψ 7→ (ξ†)T ,

ψ† 7→ (ξ)T ,

iAµ 7→ (iAµ)
∗ = − (Aµ)

T ,

iEj 7→ (iEj)
∗ = − (Ej)

T ,

iBj 7→ (iBj)
∗ = − (Bj)

T ,

iσj 7→
(
iσj
)∗ = −

(
σj
)T
, (3.20)

where T denotes the transpose (in colour and/or spin space) and ∗ complex conjugation,

i.e. the antiquark field transforms under the complex conjugate representations in colour



36 CHAPTER 3. EFFECTIVE LAGRANGIANS FOR HEAVY QUARKS

and spin space. To see this, integrate by parts and take the transpose of the entire action

(the latter also introduces an overall minus sign, since the Grassmann-valued fields ξ and

ξ† are interchanged).

It is important to make the following remark: In the quantum field theory functional

integral, one integrates over arbitrary non-smooth fields. However, the FWT transforma-

tions e.g. contain derivative operators acting on these fields. Of course, the path integral

is only defined with an ultraviolet regulator such as the lattice, but one can not expect

that the field transformations commute with the UV regularisation and renormalisation.

The form of the local operators obtained through the FWT transformation is still correct,

but after (lattice) regularisation their coefficients must be renormalised away from their

tree-level values to take into account the short-distance (UV) effects.

The derivation given here also misses out operators which are not bilinear in the heavy-

quark fields, like four-fermion operators of the form

ψ† ξ ξ† ψ. (3.21)

In perturbation theory, these operators arise at 1-loop level and therefore have coefficients

suppressed by an additional factor of α2
s [10]. Hence, these operators are far less important

than the bilinear operators, and can be neglected here.

3.2 Power counting and heavy-quark symmetries

3.2.1 Heavy-light hadrons

For mesons and baryons containing only a single heavy quark, the light degrees of freedom

are governed by the nonperturbative gluon dynamics and are thus characterised by the

scale ΛQCD. It follows that the typical momentum transfer between the heavy quark and

the light degrees of freedom is also of order ΛQCD. Thus, if the hadron is at rest, the

covariant derivative acting on the effective heavy-quark field is of order

|D0| ∼ |D| ∼ ΛQCD. (3.22)

The gluon gauge potential is also determined by the light degrees of freedom, and hence,

in a smooth gauge,

|gA0| ∼ |gA| ∼ ΛQCD (3.23)

and

|g E| ∼ Λ2
QCD, |g B| ∼ Λ2

QCD. (3.24)



3.2. Power counting and heavy-quark symmetries 37

By simple dimensional analysis it follows that for a heavy-light hadron at rest a term in

the Lagrangian that comes with 1/mn will be suppressed by a factor of(
ΛQCD

m

)n
(3.25)

relative to the leading term. Consequently, (3.19) is accurate up to corrections of order

(ΛQCD/m)3. In the static limit

m→∞ (3.26)

the effective Lagrangian (3.19) therefore reduces to

L = ψ† iD0 ψ, (3.27)

(here we have set ξ = 0) and the heavy quark only acts as a static colour source. It is now

obvious that the physics of the heavy-light hadron in this limit does not depend on the

flavour or the spin of the heavy quark. This leads to the heavy-quark flavour symmetry

and the heavy-quark spin symmetry [99, 97], which are broken by corrections proportional

to ΛQCD/m (the flavour symmetry breaking is proportional to ΛQCD/m1 − ΛQCD/m2 for

two heavy-light hadrons with heavy quark masses m1 and m2).

3.2.2 Heavy-heavy mesons

The situation is different for heavy-heavy mesons (quarkonia). Naively speaking, the

heavy quark and antiquark orbit around their centre of mass with some velocity vorb.. For

bottomonium one has v2
orb. ≈ 0.1 and for charmonium v2

orb. ≈ 0.3 [9]. These estimates are

obtained by assuming that the average kinetic energy is of the order of the 2S−1S energy

splitting; the values for v2
orb. calculated in this way are consistent with predictions from

potential models.

The spatial momentum and the kinetic energy of the orbital motion are of order

|k| ∼ m vorb., Ekin ∼ m v2
orb.. (3.28)

It follows that the spatial covariant derivative acting on the heavy-quark field is of size

|D| ∼ m vorb.. (3.29)

At the short distances relevant for quarkonium, the quark-antiquark potential is similar

to the Coulomb potential. Thus, the kinetic energy is of the same order of magnitude as

the potential energy, and so we have (in Coulomb gauge)

|g A0| ∼ |D0| ∼ Ekin ∼ m v2
orb.. (3.30)
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Using the Yang-Mills equations, one can then show [10] that the vector potential is of

order

|gA| ∼ m v3
orb., (3.31)

and hence

|g E| ∼ m2v3
orb., |g B| ∼ m2v4

orb.. (3.32)

We now see that the individual terms in the effective Lagrangian are suppressed by various

powers of the internal velocity vorb., and this is the correct expansion parameter. All terms

in (3.15) are of order v4
orb. or lower powers of vorb., but one term of order v4

orb. is missing.

By expanding the expression for the relativistic kinetic energy in powers of the momentum

k,

Ekin =
√

k2 +m2 −m

=
k2

2m
− k4

8m3
+

k6

16m5
− ... (3.33)

we see that we must include the term

Lkin,m−3 = Ψ̃
D4

8m3
Ψ̃ (3.34)

into the Lagrangian to obtain accuracy to order v4
orb.. For more details of the heavy-heavy

power counting, see [10].

3.3 Generalisation to a moving frame of reference

The effective Lagrangian obtained in section 3.1 can be used to describe a heavy quark

with small spatial momentum k, that is |k| � m. Note that the total 4-momentum pµ

can be written in terms of the residual momentum kµ as

pµ = m uµ + kµ (3.35)

with the trivial 4-velocity u = (1, 0, 0, 0). We will now work in a Lorentz-boosted frame

of reference moving with an arbitrary velocity v so that u = (γ, γv) with γ = 1/
√

1− v2.

Under the coordinate transformation

x′µ = Λµνx
ν , (3.36)

the original Dirac field in (3.2) transforms as follows:

Ψ′(x′) = S(Λ)Ψ(x), (3.37)
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where S(Λ) is the Dirac-spinor representation of Λ. Writing Ψ(x) in terms of the effective

field Ψ̃(x) using (3.16), we get

Ψ′(x′) = S(Λ) exp
(

1
2m

iγ̂jDj

)
... exp

(
−imx0γ̂0

)
Ψ̃(x), (3.38)

where the ellipsis indicates the higher-order parts of the FWT transformation. Using

S(Λ) γ̂µ = (Λ−1)µν γ̂
ν S(Λ), (3.39)

the matrix S(Λ) in (3.38) can be moved to the right:

Ψ′(x′) = exp
(

1
2m

i(Λ−1)j µγ̂
µDj

)
... exp

(
−imx0(Λ−1)0 ν γ̂

ν
)
S(Λ) Ψ̃(x). (3.40)

Next, we define a new field

Ψ̃′(x′) ≡ S(Λ) Ψ̃(x), (3.41)

and express (3.40) in terms of the coordinates x′. This finally gives

Ψ′(x′) = exp
(

1
2m

i(Λ−1)j µγ̂
µΛν jD

′
ν

)
... exp

(
−imΛ0

λx
′λ(Λ−1)0 ργ̂

ρ
)

Ψ̃′(x′)

= exp
(

1
2m

i( /D′ − /u u ·D′)
)
... exp

(
−im u · x′ /u

)
Ψ̃′(x′), (3.42)

where /u ≡ uµγ̂
µ. In terms of the new field Ψ̃′(x′), the effective Lagrangian (3.13) reads,

through order 1/m,

L = Ψ̃
(
iγ̂0D0 −

1
2m

DjD
j − ig

8m
[γ̂j , γ̂k]Fjk

)
Ψ̃

= Ψ̃′ S(Λ)
(
iγ̂0Λµ0D

′
µ −

1
2m

ΛµjΛ
j
νD
′
µD
′ν − ig

8m
[γ̂j , γ̂k]ΛµjΛ

ν
kF
′
µν

)
S−1(Λ) Ψ̃′

= Ψ̃′
(
i /u u ·D′ −

D′2⊥
2m

− 1
4m

[γ̂µ, γ̂ν ]D
′µ
⊥D

′ν
⊥

)
Ψ̃′

= Ψ̃′
(
i /u u ·D′ −

/D
′2
⊥

2m

)
Ψ̃′. (3.43)

Here we have used the notation

D′µ⊥ ≡ D′µ − uµ u ·D′. (3.44)

To separate the particle- and antiparticle components in (3.43), we now have to use the

boosted projectors

P
(u)
± = S(Λ) P± S−1(Λ) =

1± /u

2
. (3.45)
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Defining Ψ̃′± ≡ P
(u)
± Ψ̃′, we obtain

L = Ψ̃′+

(
+i u ·D′ −

/D
′2
⊥

2m

)
Ψ̃′+ + Ψ̃′−

(
−i u ·D′ −

/D
′2
⊥

2m

)
Ψ̃′− + O(1/m). (3.46)

The part with Ψ̃′+ in (3.46) is the standard continuum HQET (heavy-quark effective

theory) Lagrangian for a non-zero frame velocity [97].

3.4 Moving NRQCD Lagrangian

As a consequence of the Lorentz boost, the terms in the Lagrangian (3.43) commute

with /u′ rather than γ0 and the spatial derivatives are now accompanied by temporal

derivatives. For applications in lattice QCD, it is more convenient to introduce a different

form of the boosted Lagrangian that retains commutativity with γ0 and does not contain

time derivatives in the 1/m correction terms [19, 20]. This formalism is called Moving

nonrelativistic QCD (mNRQCD).

The commutativity with γ0 can be restored by simply removing the factor S(Λ) in the

definition of the field Ψ̃′, Eq. (3.41), so that

Ψ̃′(x′) ≡ Ψ̃(x). (3.47)

The relation between Ψ′ and Ψ̃′ then reads

Ψ′(x′) = S(Λ) exp
(

1
2m

iγjΛµjD
′
µ

)
... exp

(
−im u · x′ γ0

)
Ψ̃′(x′), (3.48)

and the Lagrangian becomes

L = Ψ̃′
[
iγ0u ·D′ + (u ·D′)2 −D′2

2m
− ig

8m
[γj , γk]Λρ jΛ

σ
kF
′
ρσ

− g

8m2
γ0

(
Λν jΛ

ρ
ju
σ(D′adν F ′ρσ)−

1
2
[γj , γk]Λν jΛ

ρ
ku

σ
{
D′ν , F

′
ρσ

})]
Ψ̃′

+ O(1/m3). (3.49)

Since we will work exclusively in the x′ frame from now on, it is convenient to rename the

coordinates such that

x′ → x

x → x′. (3.50)
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This means that in (3.49) we rename Ψ̃′ → Ψ̃, Ψ̃′ → Ψ̃, D′µ → Dµ, F ′µν → Fµν . With the

new notation and after some additional algebraic steps we have

L = Ψ̃
[
iγ̂0u ·D +

(u ·D)2 −D2

2m
+

g

2m
Σ ·B′

+
g

8m2
γ̂0
(
Dad
µ uνF

µν + iεjklΣjΛµk
{
Dµ, E

′
l

})]
Ψ̃

+ O(1/m3). (3.51)

Here, we wrote B′j = −1
2εjklΛ

µ
kΛ

ν
lFµν and E′j = Λµju

νFµν where convenient to simplify

the notation. In terms of the fields Bj and Ej , these relations read

B′ = γ

(
B− v ×E− γ

1 + γ
v (v ·B)

)
,

E′ = γ

(
E + v ×B− γ

1 + γ
v (v ·E)

)
. (3.52)

We now need to eliminate the time derivatives in the operators of order 1/m and 1/m2 in

(3.51). This can be done via further field redefinitions [19, 22].

It is convenient to write the Lagrangian (3.51) in the following form,

L = γ Ψ̃
[
O0 +

1
γm

O1 +
1

(γm)2
O2

]
Ψ̃ +O(1/m3), (3.53)

with

O0 = iγ̂0(D0 + v ·D),

O1 =
1
2
(
(u ·D)2 −D2

)
+
g

2
Σ ·B′,

O2 =
g

8
γ γ̂0

(
Dad
µ uνF

µν + iεjklΣjΛµk
{
Dµ, E

′
l

})
. (3.54)

We start by removing the time derivatives in O1. To see how this can be done, we note

that any field redefinition of the form

Ψ̃ = exp
(

1
γm

U

)
Ψ̃(1),

Ψ̃ = Ψ̃(1) exp
(

1
γm

U

)
, (3.55)

will result in

L = γ Ψ̃(1)

[
O0 +

1
γm

O(1)1 +
1

(γm)2
O(1)2

]
Ψ̃(1) +O(1/m3), (3.56)
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with the new operators

O(1)1 = O1 + {U, O0} ,

O(1)2 = O2 + {U, O1}+ UO0U +
1
2
{
U2, O0

}
. (3.57)

Thus, we need to write O1 = O(1)1 − {U, O0} with some operator U such that O(1)1 does

not contain time derivatives. This is indeed possible,

O1 =
1
2
[
γ2D2

0 + γ2 {D0, v ·D}+ γ2(v ·D)2 −D2
0 + D2

]
+
g

2
Σ ·B′

=
1
2
[
D2 − (v ·D)2

]
+
g

2
Σ ·B′︸ ︷︷ ︸

≡ O(1)1

+
1
2
[
(γ2 − 1)D2

0 + γ2 {D0, v ·D}+ (γ2 + 1)(v ·D)2
]

︸ ︷︷ ︸
= − {U, O0}

, (3.58)

and we can now read off the operator U :

U =
i

4
γ̂0
[
(γ2 − 1)D0 + (γ2 + 1)v ·D

]
. (3.59)

The next step is to remove the time derivatives (other than the adjoint time derivative,

which acts on the gluon field strength only) in the new operator O(1)2, given in (3.57).

Similarly to before, we use a field redefinition

Ψ̃(1) = exp
(

1
(γm)2

V

)
Ψ̃(2),

Ψ̃(1) = Ψ̃(2) exp
(

1
(γm)2

V

)
, (3.60)

now with an extra power of 1/(γm), so that the lower order terms are unaffected. The

transformation (3.60) results in

L = γ Ψ̃(2)

[
O0 +

1
γm

O(2)1 +
1

(γm)2
O(2)2

]
Ψ̃(2) +O(1/m3) (3.61)

with

O(2)1 = O(1)1,

O(2)2 = O(1)2 + {V, O0} . (3.62)

We need to write O(1)2 = O(2)2 − {V, O0} with some operator V such that O(2)2 does not

contain time derivatives. We will treat the terms in O(1)2 (Eq. (3.57)) individually. Note
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that the last term, −
{
−1

2U
2, O0

}
, is already in the desired form. The time-derivative in

the original O2, defined in (3.54), can be treated as follows:

ig

8
γ γ̂0εjklΣjΛ0

k

{
D0, E

′
l

}
= − ig

8
γ γ̂0εjklΣjΛ0

k

{
v ·D, E′l

}
−
{
−g

8
γ εjklΣjΛ0

kE
′
l, O0

}
. (3.63)

Next, using

U =
1
4
(γ2 − 1)O0 +

i

2
γ̂0 v ·D (3.64)

we obtain

UO0U =
1
2
{
U2, O0

}
+

1
2

[U, [O0, U ]]

=
1
2
{
U2, O0

}
+

1
2

[
U,

[
O0,

1
4
(γ2 − 1)O0 +

i

2
γ̂0 v ·D

]]
=

1
2
{
U2, O0

}
+

1
2

[
U,

[
iγ̂0(D0 + v ·D),

i

2
γ̂0 v ·D

]]
=

1
2
{
U2, O0

}
− 1

4
[U, [D0,v ·D]]

=
1
2
{
U2, O0

}
− i

16
[
γ̂0
(
(γ2 − 1)D0 + (γ2 + 1)v ·D

)
, igv ·E

]
= −

{
−1

2
U2, O0

}
+

g

16
γ̂0
(
(γ2 − 1)Dad

0 + (γ2 + 1)v ·Dad
)

(v ·E) (3.65)

and

{U, O1} =
{

1
4
(γ2 − 1)O0 +

i

2
γ̂0 v ·D, O1

}
=

{
i

2
γ̂0 v ·D, O1

}
−
{
−1

4
(γ2 − 1)O1, O0

}
=

{
i

2
γ̂0 v ·D, O(1)1

}
−
{
i

2
γ̂0 v ·D, {U, O0}

}
−
{
−1

4
(γ2 − 1)O1, O0

}
=

{
i

2
γ̂0 v ·D, O(1)1

}
+
[
U,

[
i

2
γ̂0 v ·D, O0

]]
−
{{

i

2
γ̂0 v ·D, U

}
− 1

4
(γ2 − 1)O1, O0

}
. (3.66)

Let us now consider the nested commutator in (3.66):[
U,

[
i

2
γ̂0 v ·D, O0

]]
=

[
U,

[
i

2
γ̂0 v ·D, iγ̂0D0

]]
=

[
i

4
γ̂0
(
(γ2 − 1)D0 + (γ2 + 1)v ·D

)
,
ig

2
v ·E

]
= −g

8
γ̂0
(
(γ2 − 1)Dad

0 + (γ2 + 1)v ·Dad
)

(v ·E) . (3.67)
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The adjoint time derivative Dad
0 E acts only on the chromoelectric field and can be kept.

We conclude from (3.57), (3.63), (3.65) and (3.66) that

V = −g
8
γ εjklΣjΛ0

kE
′
l +
{
i

2
γ̂0 v ·D, U

}
− 1

4
(γ2 − 1)O1 − U2 (3.68)

and

O(2)2 =
g

8
γ γ̂0

(
Dad
µ uνF

µν + iεjklΣjΛmk
{
Dm, E

′
l

}
− iεjklΣjΛ0

k

{
v ·D, E′l

})
− g

16
γ̂0
(
(γ2 − 1)Dad

0 + (γ2 + 1)v ·Dad
)

(v ·E)

+
i

4
γ̂0
{
v ·D, D2 − (v ·D)2 + gΣ ·B′

}
=

g

8
γ2γ̂0

(
Dad ·E− v · (Dad ×B)

)
+
ig

8
γγ̂0Σ ·

(
D×E′ −E′ ×D

)
− igγ2

8(1 + γ)
γ̂0
{
v ·D, Σ · (v ×E′)

}
+
i

4
γ̂0
({

v ·D, D2
}
− 2(v ·D)3

)
+
ig

4
γ̂0
{
v ·D, Σ ·B′

}
+

(2− v2)gγ2

16
γ̂0
(
Dad

0 − v ·Dad
)

(v ·E) . (3.69)

We have now achieved the goal of removing the time derivatives through O(1/m2). Finally,

we rescale the fields

Ψ̃(2) =
1
√
γ

Ψv,

Ψ̃(2) =
1
√
γ

Ψv, (3.70)

to remove the factor of γ in front of L. We arrive at the following result for the tree-level

moving NRQCD Lagrangian in Minkowski space:

L = Ψv

[
iγ̂0D0 + iγ̂0v ·D +

D2 − (v ·D)2

2γm
+

g

2γm
Σ ·B′

+
i

4γ2m2
γ̂0
({

v ·D, D2
}
− 2(v ·D)3

)
+

g

8m2
γ̂0
(
Dad ·E− v · (Dad ×B)

)
+

ig

8γm2
γ̂0 Σ ·

(
D×E′ −E′ ×D

)
− ig

8(γ + 1)m2
γ̂0
{
v ·D, Σ · (v ×E′)

}
+

(2− v2)g
16m2

γ̂0
(
Dad

0 − v ·Dad
)

(v ·E) +
ig

4γ2m2
γ̂0
{
v ·D, Σ ·B′

} ]
Ψv

+ O(1/m3). (3.71)

As before, all terms commute with γ̂0. We can therefore introduce 2-component fields

ψv(x) and ξv(x),

Ψv =

(
ψv

ξv

)
, Ψv =

(
ψ†v, −ξ†v

)
, (3.72)
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to explicitly separate the Lagrangian into the quark and antiquark pieces (terms that

do not contain a factor of γ̂0 in (3.71) appear with the opposite sign in the antiquark

Lagrangian):

L = ψ†v

[
iD0 + iv ·D +

D2 − (v ·D)2

2γm
+

g

2γm
σ ·B′

+
i

4γ2m2

({
v ·D, D2

}
− 2(v ·D)3

)
+

g

8m2

(
Dad ·E− v · (Dad ×B)

)
+

ig

8γm2
σ ·
(
D×E′ −E′ ×D

)
− ig

8(γ + 1)m2

{
v ·D, σ · (v ×E′)

}
+

(2− v2)g
16m2

(
Dad

0 − v ·Dad
)

(v ·E) +
ig

4γ2m2

{
v ·D, σ ·B′

} ]
ψv

+ ξ†v

[
iD0 + iv ·D− D2 − (v ·D)2

2γm
− g

2γm
σ ·B′

+
i

4γ2m2

({
v ·D, D2

}
− 2(v ·D)3

)
+

g

8m2

(
Dad ·E− v · (Dad ×B)

)
+

ig

8γm2
σ ·
(
D×E′ −E′ ×D

)
− ig

8(γ + 1)m2

{
v ·D, σ · (v ×E′)

}
+

(2− v2)g
16m2

(
Dad

0 − v ·Dad
)

(v ·E) +
ig

4γ2m2

{
v ·D, σ ·B′

} ]
ξv

+ O(1/m3). (3.73)

A moving NRQCD Lagrangian of this order had already been presented in [22, 21, 23],

but my result (3.71, 3.73), which is published in [100], is slightly different.

For later reference, I now summarise the tree-level relation between the full QCD field

Ψ(x) and the 4-component moving NRQCD field (3.72). We have

Ψ(x) = S(Λ) TFWT e−im u·x γ̂0
ADt

1
√
γ

Ψv (3.74)

(and correspondingly for Ψ) where TFWT is the FWT transformation (3.17) expressed in

the new frame of reference,

TFWT = exp

(
iγ̂jΛµjDµ

2m

)
exp

(
igγ̂ ·E′γ̂0

(2m)2

)
× ... , (3.75)

and ADt
removes the unwanted time derivatives in the Lagrangian,

ADt
= exp

(
U

γm

)
exp

(
V

(γm)2

)
× ... . (3.76)

The operators U and V in (3.76) were defined in Eqs. (3.59) and (3.68), respectively.
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3.4.1 O(1/m3) relativistic correction in moving NRQCD

As explained in section 3.2.2, for heavy-heavy mesons one needs to include an additional

O(1/m3) term in order to achieve accuracy to order O(v4
orb.). Instead of performing all

the field redefinitions to this order, we again obtain this term by expanding the kinetic

energy expression in powers of the residual momentum k,

Ekin =
√

(γmv + k)2 +m2 − γm

= v · k +
1

2γm
(
k2 − (v · k)2

)
+

1
4γ2m2

(
−{v · k, k2}+ 2(v · k)3

)
+

1
8γ3m3

(
−k4 + 3

{
k2, (v · k)2

}
− 5(v · k)4

)
+ ... (3.77)

Here, we ordered the terms with products of (v · k) and k2 in form of anticommutators,

since we are now going to replace k by the operator −iD, and the anticommutator-ordering

is what one would have obtained from field redefinitions. Indeed, we get the same results

up to O(1/m2) and the following O(1/m3) term:

Lkin,m−3 = −Ψv
1

8γ3m3

(
−D4 + 3

{
D2, (v ·D)2

}
− 5(v ·D)4

)
Ψv. (3.78)

Note that for heavy-heavy mesons the power counting in mNRQCD is modified when the

frame velocity is close to the speed of light (i.e. |v| → 1 in our units). The details are given

in [100]. For the moderate velocities used in the numerical calculations in the following

chapters this effect is negligible.

3.5 Euclidean mNRQCD Lagrangian

The Euclidean moving NRQCD Lagrangian can be obtained by following the general

procedure discussed in Sec. 2.1. It is also convenient to define the relation between the

3-dimensional chromoelectric field E and the 4-dimensional field strength tensor Fµν with

a different sign in Euclidean space, i.e.

Ej = −F0j . (3.79)

With this definition, Eq. (3.52) turns into the symmetric form

B′ = γ

(
B + iv ×E− γ

1 + γ
v (v ·B)

)
,

E′ = γ

(
E + iv ×B− γ

1 + γ
v (v ·E)

)
. (3.80)
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The Euclidean Lagrangian, to which we now also include the O(1/m3) relativistic correc-

tion term (3.78), reads

L = ψ†v

[
D0 − iv ·D− D2 − (v ·D)2

2γm
− g

2γm
σ ·B′

− i

4γ2m2

({
v ·D, D2

}
− 2(v ·D)3

)
+

g

8m2

(
iDad ·E + v · (Dad ×B)

)
− g

8γm2
σ ·
(
D×E′ −E′ ×D

)
+

g

8(γ + 1)m2

{
v ·D, σ · (v ×E′)

}
− (2− v2)g

16m2

(
Dad

0 + iv ·Dad
)

(v ·E)− ig

4γ2m2

{
v ·D, σ ·B′

}
− 1

8γ3m3

(
D4 − 3

{
D2, (v ·D)2

}
+ 5(v ·D)4

)]
ψv

+ ξ†v

[
D0 − iv ·D +

D2 − (v ·D)2

2γm
+

g

2γm
σ ·B′

− i

4γ2m2

({
v ·D, D2

}
− 2(v ·D)3

)
+

g

8m2

(
iDad ·E + v · (Dad ×B)

)
− g

8γm2
σ ·
(
D×E′ −E′ ×D

)
+

g

8(γ + 1)m2

{
v ·D, σ · (v ×E′)

}
− (2− v2)g

16m2

(
Dad

0 + iv ·Dad
)

(v ·E)− ig

4γ2m2

{
v ·D, σ ·B′

}
+

1
8γ3m3

(
D4 − 3

{
D2, (v ·D)2

}
+ 5(v ·D)4

)]
ξv

+ O(1/m3). (3.81)

Naturally, the field redefinition (3.74) also needs to be continued to imaginary time. This

must be done independently for Ψ and Ψ.

Note that, as in (3.20), the antiquark action can be obtained from the quark action

through the replacements

ψv 7→ (ξ†v)
T ,

ψ†v 7→ (ξv)T ,

iAµ 7→ (iAµ)
∗ ,

iEj 7→ (iEj)
∗ ,

iBj 7→ (iBj)
∗ ,

iσj 7→
(
iσj
)∗
. (3.82)
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Remarkably, in Euclidean space there is also a much simpler prescription:

replace ψv 7→ (ξ†v)
T ,

ψ†v 7→ (ξv)
T ,

v 7→ (−v),

and take the complex conjugate of the whole action kernel. (3.83)

To see that the new prescription (3.83) is equivalent to (3.82), it is convenient to insert

factors of −(i2) = 1 into the Euclidean Lagrangian where appropriate such that it is

written explicitly in terms of the anti-Hermitian quantities iAµ, iE, iB and iσ. Then one

sees that (3.82) is equivalent to taking the complex conjugate of the whole action kernel,

apart from the remaining factors of i. Now, the crucial point is that precisely those terms

with additional factors of i come with an odd power of v. Thus, changing also the sign of

the velocity makes the new prescription work.

3.5.1 Euclidean quark and antiquark Green functions in mNRQCD

As shown in the previous section, in Euclidean space the antiquark action kernel equals

the complex conjugate of the quark action kernel with the opposite boost velocity,

Sψv =
∫

d4x

∫
d4x′

[
ψ†v(x)

]
cs

[
K(+v)(x, x′)

]
cs c′s′

[
ψv(x′)

]
c′s′
, (3.84)

Sξv =
∫

d4x

∫
d4x′

[
ξv(x)

]
cs

[
K(−v)(x, x′)∗

]
cs c′s′

[
ξ†v(x

′)
]
c′s′

=
∫

d4x

∫
d4x′

[
ξv(x′)

]
c′s′

[
K(−v)(x′, x)∗

]
c′s′ cs

[
ξ†v(x)

]
cs

=
∫

d4x

∫
d4x′

[
ξ†v(x)

]
cs

[
−K(−v)(x′, x)∗

]
c′s′ cs

[
ξv(x′)

]
c′s′
. (3.85)

Here, we explicitly introduced the colour and spin indices c, c′, s, s′. We define the quark

and antiquark Green functions as

G
(+v)
ψv

(x, x′) = 〈 ψv(x) ψ†v(x′) 〉,

G
(+v)
ξv

(x, x′) = 〈 ξv(x) ξ†v(x′) 〉. (3.86)

From the relation between the actions Sψv and Sξv it follows that[
G

(+v)
ξv

(x, x′)
]
cs c′s′

= −
[
G

(−v)
ψv

(x′, x)∗
]
c′s′ cs

= −
[
G

(−v)
ψv

(x′, x)†
]
cs c′s′

, (3.87)

that is, the Euclidean antiquark Green function can be obtained from the Euclidean quark

Green function with the opposite boost velocity.



Chapter 4

Lattice HQET

Recall from Sec. 3.2.1 that for hadrons containing only a single heavy quark of mass m

the contributions from the operators with factors of 1/mp are suppressed by (ΛQCD/m)p.

The leading-order Euclidean Lagrangian in the rest frame is simply

L(0)
ψ = ψ†D0 ψ. (4.1)

Eichten and Hill [101] suggested a simple lattice discretisation of (4.1), referred to as

lattice heavy-quark effective theory (LHQET). In LHQET, higher-order corrections to

(4.1) are treated as insertions in correlation function, so that the resulting theory may be

renormalisable. Even though LHQET is not used for the calculations in this dissertation,

we will discuss it briefly in this chapter. It will be instructive to compare it to lattice

nonrelativistic QCD, which will be introduced in Chapter 5.

4.1 Relativistic corrections as operator insertions

We first discuss the continuum theory, working to order 1/m and setting v = 0 for sim-

plicity. The effective Lagrangian has the form

Lψ = δm L(−1)
ψ + L(0)

ψ +
1
m
L(1)
ψ (4.2)

where L(−1)
ψ = ψ†ψ is a mass counterterm, L(0)

ψ is given by (4.1), and L(1)
ψ reads

L(1)
ψ = ψ†

[
−1

2
D2 − g

2
σ ·B

]
ψ. (4.3)

Let us denote by SQCD the relativistic QCD action including the gluons Aµ and the light

quarks Ψ, Ψ. The full path integral with action S = SQCD +
∫

d4xLψ for the expectation
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value of some observable O is

〈O〉 =
1
Z

∫
D[A,Ψ,Ψ, ψ, ψ†] O exp

(
−SQCD − δm S

(−1)
ψ − S

(0)
ψ − 1

mS
(1)
ψ

)
. (4.4)

However, in HQET one does not work with (4.4), but rather expands the exponential to

the given order in 1/m:

exp (−SQCD − Sψ) ≈ exp
(
−SQCD − δm S

(−1)
ψ − S

(0)
ψ

) (
1− 1

mS
(1)
ψ

)
. (4.5)

Thus, one effectively calculates the expectation value〈(
1− 1

mS
(1)
ψ

)
O
〉(0)

=
1
Z

∫
D[A,Ψ,Ψ, ψ, ψ†]

(
1− 1

mS
(1)
ψ

)
O

× exp
(
−SQCD − δm S

(−1)
ψ − S

(0)
ψ

)
, (4.6)

where the action used in the path integral is

SQCD + δm

∫
d4x ψ†ψ +

∫
d4x ψ†D0 ψ. (4.7)

Since this action contains all possible operators of dimension ≤ 4 compatible with the

symmetries, and no higher-order operators, it is renormalisable according to Weinberg’s

power-counting theorem [102]. The question then is whether the composite operators

in
(
1− 1

mS
(1)
ψ

)
O can be renormalised. It is shown in [103] that the renormalisation of a

composite operator requires as counterterms only operators of the same or lower dimension.

When all these are included, the theory is formally renormalisable. It has been pointed

out in [104] that the renormalisation must be performed nonperturbatively. This shows

up in power-law divergences when using a momentum cut-off or the lattice regularisation,

but is also true when using dimensional regularisation where apparently no power-law

divergences exist.

In lattice HQET, nonperturbative renormalisation can be performed using Schrödinger

functional methods; see e.g. [72].

4.2 Continuum HQET Green functions

In the following, we consider the continuum HQET propagator to order 1/m on a given

background gauge-field. For x = (τ,x), x′ = (τ ′,x′) and τ > τ ′, we have, according to

Eq. (4.6),

G
(1)
ψ (x, x′) =

1
Zψ

∫
D[ψ,ψ†] ψ(x)

{
1 +

∫
d4x′′ ψ†(x′′)

[
D2

2m
+
g σ ·B

2m

]
x′′
ψ(x′′)

}
ψ†(x′)

× exp
{
−
∫

d4y ψ†(y) (D0 + δm) ψ(y)
}
. (4.8)
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Let us now perform the functional integral over the heavy-quark fields ψ,ψ†. This gives

G
(1)
ψ (x, x′) = Gψ(τ,x, τ ′,x′)

+
∫ τ

τ ′
dτ ′′
∫

d3x′′Gψ(τ,x, τ ′′,x′′)
[
D2

2m
+
g σ ·B

2m

]
τ ′′,x′′

Gψ(x′′, τ ′′, τ ′,x′),

(4.9)

where Gψ denotes the propagator according to the action
∫

d4x ψ†(x) (D0 + δm) ψ(x).

Now the question arises what boundary conditions to use. In Minkowski space, the field

operator related to ψ† creates heavy quarks and the field operator related to ψ annihilates

heavy quarks. It follows that for ψ the time-ordered Green function equals the retarded

Green function. In order for Wick rotation to give the correct result, one must also take

the retarded Green function in Euclidean space, i.e. consider forward propagation. The

propagator Gψ satisfies the initial condition

Gψ(τ = τ ′,x, τ ′,x′) = δ3(x− x′) (4.10)

and for τ > τ ′ we have

(D0 + δm)Gψ(τ,x, τ ′,x′) = 0, (4.11)

or

∂τGψ(τ,x, τ ′,x′) = −
[
ig A0(τ,x) + δm

]
Gψ(τ,x, τ ′,x′). (4.12)

The solution of this differential equation is

Gψ(τ,x, τ ′,x′) = e−δm(τ−τ ′)δ3(x− x′) U(x′, τ, τ ′), (4.13)

where U(x′, τ, τ ′) the time-ordered exponential of −ig A0 along the line with constant x′:

U(x′, τ, τ ′) = T exp
(
−ig

∫ τ

τ ′
A0(τ ′′,x′) dτ ′′

)
. (4.14)

Eq. (4.14) is the parallel transporter along the straight line from (τ ′,x′) to (τ,x′). By

inserting the solution (4.13) into Eq. (4.9), we finally obtain the following result for the

heavy quark propagator with the 1/m correction:

G
(1)
ψ (x, x′) = e−δm(τ−τ ′)δ3(x− x′) U(x′, τ, τ ′)

+ e−δm(τ−τ ′)
∫ τ

τ ′
dτ ′′ U(x, τ, τ ′′)

[
D2

2m
+
g σ ·B

2m

]
τ ′′,x

δ3(x− x′) U(x′, τ ′′, τ ′).

(4.15)
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4.3 Lattice discretisation

The simplest lattice discretisation of the action
(
δm S

(−1)
ψ + S

(0)
ψ

)
is, in lattice units,∑

x

ψ†(x)
[
(1 + δm)ψ(x)− U †0(x− 0̂)ψ(x− 0̂)

]
. (4.16)

The corresponding propagator is

Gψ(x, x′) = δx, x′(1 + δm)−(τ−τ ′+1)Ulat(x′, τ, τ ′), (4.17)

where Ulat(x′, τ, τ ′) is given by

Ulat(x′, τ, τ ′) =
τ−τ ′−1∏
n=0

U †0(x′ + n0̂). (4.18)

The lattice expression for the propagator with the 1/m correction analogous to (4.15) is

then

G
(1)
ψ (x, x′) = (1 + δm)−(τ−τ ′+1)

×

{
δx, x′ Ulat(x′, τ, τ ′)

+
τ∑

τ ′′=τ ′

Ulat(x, τ, τ ′′)
[
D2

lat

2m
+
g σ ·Blat

2m

]
τ,x′′

δx, x′ Ulat(x′, τ ′′, τ ′)

}
,

(4.19)

where D2
lat and Blat are lattice discretisations of D2 and B (examples are given in Sec. A.2).

Of course the operators need to be multiplied by renormalisation factors.

4.4 Signal-to-noise ratio

The simple form of the static action (4.16) leads to a rather bad signal-to-noise ratio

in heavy-light correlation functions, exponentially falling as the continuum limit is taken.

This has been explained in [105]. In general, the statistical variance in a two-point function

C(τ) = 〈Φ(τ)Φ†(0)〉 (4.20)

is given by

σ2(τ) = 〈[Φ(τ)Φ†(0)][Φ(τ)Φ†(0)]†〉 − |〈Φ(τ)Φ†(0)〉|2. (4.21)
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Now, if Φ is an interpolating field for a heavy-light meson, then for large τ we have in the

static theory

C(τ)|static ∝ e−E
st
Qq̄τ , (4.22)

where Est
Qq̄ is the energy of the heavy-light ground state, which is dominated by a linearly

divergent contribution from the static propagator, Est ∝ g2/a.

On the other hand, it turns out that in the variance correlator (4.21) the contributions

from the two static propagators cancel each other and hence

σ2(τ)|static ∝ e−mπτ . (4.23)

It follows that the signal-to noise ratio is

C(τ)
σ(τ)

∣∣∣∣∣
static

∝ e
−

“
Est

Qq̄−
1
2mπ

”
τ
. (4.24)

This decays rapidly with τ . In contrast, when lattice NRQCD (see Chapter 5) is used,

the heavy quarks in σ2(τ) form a QQ̄ (quarkonium) bound state, so that

C(τ)
σ(τ)

∣∣∣∣∣
NRQCD

∝ e
−

“
EQq̄−

1
2 (EQQ̄+mπ)

”
τ
. (4.25)

The signal-to-noise ratio (4.25) still decays exponentially with τ , but with a much smaller

exponent [106].

Note that the signal-to-noise ratio in lattice HQET can be improved significantly by

replacing the gauge link U †0(x − 0̂) in (4.16) with a “smeared” link that depends also on

the neighbouring gauge links [107].
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Chapter 5

Lattice moving NRQCD

In this chapter I will explain how the moving NRQCD Lagrangian (3.81) can be formulated

on the lattice such that the resulting theory works for both heavy-heavy and heavy-light

hadrons. The method is analogous to non-moving lattice NRQCD, which has been formu-

lated in [9, 10] and used with great success in recent dynamical lattice QCD calculations

[108, 109, 11, 110].

According to the power-counting rules derived in Sec. 3.2.2, for heavy-heavy mesons

the lowest-order moving NRQCD Lagrangian is

L(0) = ψ†v

[
D0 − iv ·D− D2 − (v ·D)2

2γm

]
ψv+ξ†v

[
D0 − iv ·D +

D2 − (v ·D)2

2γm

]
ξv. (5.1)

The operators
(
D2− (v ·D)2

)
/(2γm) and

(
D0− iv ·D

)
are both of order O(v2

orb.). Thus,

the operator
(
D2 − (v · D)2

)
/(2γm) can not be treated as an operator insertion like

in lattice HQET (cf. Chapter 4), but must be kept in the exponential e−S in the path

integral. As this operator has dimension 5, the resulting theory will be nonrenormalisable

in the standard sense, and power-law divergences occur. However, this does not cause any

problems as long as one works with a sufficiently low cutoff, like a sufficiently coarse lattice.

In terms of the lattice spacing a, one must have ma > 1, the opposite of the condition for

relativistic heavy quarks on the lattice (cf. Sec. 2.8). The contributions from higher-order

operators are then suppressed according to the power-counting rules. Instead of taking

the continuum limit, discretisation errors can be reduced using Symanzik improvement.

In lattice moving NRQCD, a lattice version of the full action (3.81) is used in the path

integral, in contrast to lattice HQET where only the static action is used. For this reason,

lattice mNRQCD can be applied to both heavy-heavy and heavy-light hadrons, and with

the action (3.81) it will be accurate to order O(v4
orb.) for heavy quarkonium mesons and

O(Λ2
QCD/m

2) for hadrons containing only a single heavy quark.
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5.1 Continuum evolution equation

As in Chapter 4, we start by considering the continuum Green function on a given back-

ground gauge-field Aµ. Since the antiquark Green function can be obtained from the quark

Green function using Eq. (3.87), we consider only the quark field ψv(x) in what follows.

Recall from Eq. (3.81) that the Euclidean Lagrangian for ψv has the form

Lψv = ψ†v (D0 +H)ψv. (5.2)

As explained above, the full action is used in the weight factor e−S in the path integral.

Therefore, the Green function is the inverse of the full heavy-quark action kernel, i.e.

(D0 +H)Gψv(x, x
′) = δ4(x− x′), (5.3)

with x = (τ,x) and x′ = (τ ′,x′). As already discussed in 4.1 one must take the retarded

Green function in Euclidean space:

Gψv(τ,x, τ
′,x′) = 0 for τ < τ ′, (5.4)

and for τ = τ ′

Gψv(τ = τ ′,x, τ ′,x′) = δ3(x− x′). (5.5)

For τ > τ ′, Eq. (5.3) becomes

(D0 +H)Gψv(τ,x, τ
′,x′) = 0, (5.6)

or

∂0 Gψv(τ,x, τ
′,x′) = −(H + ig A0)Gψv(τ,x, τ

′,x′). (5.7)

Since H does not contain time derivatives acting on ψv, we can integrate this differential

equation, so that for τ2 > τ1 > τ ′

Gψv(τ2,x, τ
′,x′) = Gψv(τ1,x, , τ

′,x′)−
∫ τ2

τ1

(H + ig A0)Gψv(τ,x, τ
′,x′) dτ. (5.8)

The solution of (5.8) can be written as a Euclidean-time-ordered exponential function,

Gψv(τ2,x, τ
′,x′) = T exp

(
−
∫ τ2

τ1

(H + ig A0) dτ
)
Gψv(τ1,x, τ

′,x′). (5.9)
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5.2 Lattice evolution equation

On the lattice, the quark Green function evolution Eq. (5.9) is conveniently approximated

by

Gψv(τ,x, τ
′,x′) =

(
1− δH|τ

2

)(
1− H0|τ

2n

)n
U †0(τ − 1,x)

×
(

1− H0|τ−1

2n

)n(
1− δH|τ−1

2

)
Gψv(τ − 1,x, τ ′,x′), (5.10)

which corresponds to the lattice action

Sψv =
∑
x,τ

ψ†v(τ,x)
[
ψv(τ,x)−

(
1− δH|τ

2

)(
1− H0|τ

2n

)n
U †0(τ − 1,x)

×
(

1− H0|τ−1

2n

)(
1− δH|τ−1

2

)n
ψv(τ − 1,x)

]
. (5.11)

Here, H0 contains the leading-order kinetic terms and δH contains all higher-order oper-

ators including Symanzik improvement terms. The leading evolution due to H0 from one

lattice time slice to the next is effectively divided into 2n smaller steps to avoid instabilities

from high-momentum modes [10].

The time-reversal symmetric split into H0 and δH (albeit with the opposite ordering)

was introduced in [10] for non-moving NRQCD. In the following, lattice versions of H0

and δH are constructed for the full moving NRQCD action (3.81), satisfying the following

requirements:

• for v = 0, the action reduces to the standard lattice NRQCD action currently in use

by the HPQCD collaboration (see e.g. [111]).

• the same order of Symanzik improvement as in the standard HPQCD lattice NRQCD

action is retained at non-zero velocity.

Lattice versions of earlier moving NRQCD actions were presented or used in [19, 21, 22,

112, 23, 24, 25, 113]; the following lattice formulation is the result of work done by myself

and Eike Müller and is published in [100].

The lattice H0 and δH are defined as

H0 = −iv ·∆± − ∆(2) −∆(2)
v

2γm
, (5.12)
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δH = − g

2γm
σ ·B̃′

− i

4γ2m2

({
∆(2), v ·∆±

}
− 2∆(3)

v

)
+

g

8m2

(
i(∆± · Ẽ− Ẽ ·∆±) + v · (∆ad × B̃)

)
− g

8γm2
σ ·
(
∆̃± × Ẽ′ − Ẽ′ × ∆̃±

)
+

g

8(γ + 1)m2

{
v · ∆̃±, σ · (v × Ẽ′)

}
−(2− v2)g

16m2

(
∆ad

0 + iv ·∆ad
)(

v · Ẽ
)

− ig

4γ2m2

{
v · ∆̃±, σ · B̃′

}
− 1

8γ3m3

((
∆(2)

)2
− 3

{
∆(2), ∆(2)

v

}
+ 5∆(4)

v

)

+ δHcorr . (5.13)

The lattice derivative operators and field strength are defined in Appendix A.2. The “∼”

is used to denote Symanzik-improved quantities; the boosted fields Ẽ′ and B̃′ are related

to the fields Ẽ and B̃ in the lattice frame through Eq. 3.80.

Note that in the continuum the Leibniz rule Dad ·E = D ·E−E ·D holds. In order to

get agreement with the standard HPQCD lattice NRQCD action at v = 0, the right-hand

side of this expression is discretised on the lattice. However, the other adjoint derivatives

in the action, which enter only at v 6= 0, are discretised as lattice adjoint derivatives

(defined in Eq. (A.14)). This is more efficient and for the term Dad
0 (v ·E) it is crucial

since it avoids a time derivative acting on the quark field.

Note that in the static limit (m → ∞) one has H0 = −iv · ∆±. The symmetric

derivative ∆± is used to ensure Hermiticity of the Hamiltonian. It does however lead

to doublers, as we have seen for the naive lattice Dirac action in Sec. 2.4. With a finite

mass, these doublers are shifted to higher energy due to the second-order derivatives in

H0. However, the second-order derivatives are suppressed by a factor of 1/(2γm) and

hence γm must not be too large.

The terms in δHcorr provide the spatial and temporal lattice spacing improvement for

the leading evolution due to H0. We perform tree-level Symanzik improvement to order

O(a2,k4), as explained in the next section. This means that the we expect the leading

errors to be of order O(αsa2).
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5.2.1 Symanzik improvement

An O(a2,k4)-improved version of H0 is given by

H̃0 = −iv · ∆̃± − ∆̃(2) − ∆̃(2)
v

2γm
(5.14)

with the improved derivatives defined in Eq. (A.13) in Appendix A.2. However, we do not

simply replace H0 by H̃0. Let us first consider the time derivative in the lattice action.

Improving it in the standard way would introduce next-to-nearest neighbour couplings,

preventing the use of an evolution equation like (5.10). Instead, we try to find an operator

H̃?
0 such that (explicitly re-introducing the lattice spacing a)

(
1− aH̃?

0

2n

)n
= exp

(
−a

2
H̃0

)
, (5.15)

which yields a more continuum-like behaviour [10]. We obtain

aH̃?
0 = 2n

[
1− exp

(
−aH̃0

2n

)]
. (5.16)

One could now replace H0 → H̃?
0 in the lattice action. However, for consistency with

previous work, we choose to put all correction terms into δH. We consider the operator

on the right-hand side of the temporal link in the lattice action (5.11); the operator acting

in the time slice at time τ − a. Then δHcorr, the lattice spacing improvement term in

(5.13), is defined by

(
1− aH̃?

0

2n

)n
=
(

1− aH0

2n

)n(
1− a δHcorr

2

)
. (5.17)

This gives

a δHcorr = 2

[
1−

(
1− aH0

2n

)−n(
1− aH̃?

0

2n

)n ]

= 2

[
1−

(
1− aH0

2n

)−n
exp

(
−aH̃0

2

) ]
, (5.18)
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and, expanding in powers of a,

a δHcorr = a(H̃0 −H0)

+
a2

4n

(
−(1 + n)H2

0 − nH̃2
0 + 2nH0H̃0

)
+

a3

24n2

(
−(2 + 3n+ n2)H3

0 + (3n+ 3n2)H2
0 H̃0 − 3n2H0H̃

2
0 + n2H̃3

0

)
+

a4

192n3

(
−(6 + 11n+ 6n2 + n3)H4

0 + (8n+ 12n2 + 4n3)H3
0 H̃0

−(6n2 + 6n3)H2
0 H̃

2
0 + 4n3H0H̃

3
0 − n3H̃4

0

)
+O(a5) . (5.19)

The term C ≡ H̃0 −H0 is of order |k|3, while H0 is of order |k|. Neglecting all operators

of order |k|5 and higher, we obtain

a δHcorr = a C − a2

4n
(
H2

0 + n[C, H0]
)
− a3H3

0

12n2
− (2 + n)a4H4

0

64n3
. (5.20)

Had we considered the operators on the left-hand side of the temporal link in the lattice

action (5.11) instead, the ordering of H0 and H̃0 would be interchanged, and this would

change the sign of the commutator [C, H0] in (5.20), thereby cancelling the term in the

lattice action up to operators of order |k|5 and higher. We therefore remove this term on

both sides.

Let us go back to lattice units now. Writing H0 = A+B with

A = −iv ·∆±,

B = −∆(2) −∆(2)
v

2γm
, (5.21)

we obtain

δHcorr = H̃0 −H0 −
1
4n
(
A2 + {A , B}+B2

)
− 1

12n2

(
A3 +

{
A2 , B

}
+ABA

)
− (2 + n)

64n3
A4. (5.22)

For performance reasons, we replace some 3rd- and 4th-order derivatives in (5.22) by more



5.3. Renormalisation 61

local expressions (the resulting change is of order |k|5 or higher):

(v ·∆±)3 → ∆(3)
v ,{

v ·∆±, ∆(2)
v

}
→ 2∆(3)

v ,

(v ·∆±)4 → ∆(4)
v ,

(∆(2)
v )2 → ∆(4)

v ,{
(v ·∆±)2 , ∆(2)

}
→

{
∆(2)
v , ∆(2)

}
,{

(v ·∆±)2 , ∆(2)
v

}
→ 2∆(4)

v ,

(v ·∆±)∆(2)
v (v ·∆±) → ∆(4)

v ,

(v ·∆±)∆(2)(v ·∆±) → 1
2(v ·∆−)∆(2)(v ·∆+)

+ 1
2(v ·∆+)∆(2)(v ·∆−) . (5.23)

This finally gives

δHcorr = H̃0 −H0

− 1
4n

[
− (v·∆±)2 +

{
iv·∆±, ∆(2)

}
− 2i∆(3)

v

2γm

+
(∆(2))2 −

{
∆(2), ∆(2)

v

}
+ ∆(4)

v

4γ2m2

]

− 1
12n2

[
i∆(3)

v +

{
∆(2), ∆(2)

v

}
− 3∆(4)

v

2γm

+
(v·∆−)∆(2)(v·∆+) + (v·∆+)∆(2)(v·∆−)

4γm

]

−(2 + n)
64n3

∆(4)
v . (5.24)

The result (5.24) can of course be simplified further but I show it in this form for clarity.

Also, most operators in δHcorr are already in the Hamiltonian. Note that for v = 0, the

correction term (5.24) reduces to the standard NRQCD improvement terms as in [111],

δHcorr

∣∣∣
v=0

=
1

24m

3∑
j=1

∆+
j ∆−j ∆+

j ∆−j −
(
∆(2)

)2
16n m2

. (5.25)

5.3 Renormalisation

In principle, all terms in the lattice moving NRQCD action must be multiplied by indi-

vidual renormalisation coefficients ci, to be determined by matching the effective theory

to continuum QCD.
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Nonperturbative adjustment of all coefficients is forbiddingly complicated due to the

large number of couplings which have to be tuned simultaneously. A simple yet powerful

method of including the biggest part of the radiative corrections is tadpole improvement,

which was introduced in Sec. 2.7.1. In the present calculations, I use the tree-level values

for the couplings, ci = 1, but perform tadpole improvement.

With this choice, the remaining free parameters in the action are the heavy-quark mass

and the boost velocity. The bare heavy-quark mass can easily be adjusted nonperturba-

tively so that the lattice result for a quarkonium mass matches the experimental value.

Along with the heavy-quark mass, the boost velocity determines the size of the external

momentum. We will discuss this in more detail in Sec. 5.3.2.

When lattice moving NRQCD is used to compute matrix elements of certain currents,

these currents must also be matched to continuum QCD. This will be discussed in Sec. 8.5

of Chapter 8.

5.3.1 Tadpole improvement

As explained in Sec. 2.7.1, tadpole improvement is achieved by dividing the gauge links

Uµ(x) in the lattice action by u0, the mean link in Landau gauge. Before that, any

factors of U †µ(x)Uµ(x) = 1 should be cancelled. However, expanding out the whole action

(5.11) in terms of products of U ’s would be too expensive for numerical calculations, and

therefore link-pair cancellations are only taken into account separately within H0 and δH.

Also, no extra cancellations are made when derivative operators act on field strengths

in δH. These conventions are consistent with the ones in the standard HPQCD lattice

(non-moving) NRQCD action. Note that the majority of the link pair cancellations is

still correctly accounted for. In appendix D of [100] it is shown that the difference to full

cancellation is negligible.

5.3.2 Energy shift and external momentum renormalisation

The factor of e−im u·x γ̂0
in the moving NRQCD field redefinition (3.74) corresponds to a

shift in the 4-momentum of a heavy quark by P = mu = (γm, γmv). However, the shifts

in energy and momentum will get renormalised.

Consider a hadron containing nQ heavy quarks (here we also count antiquarks posi-

tively). On the lattice, an interpolating field for the hadron is constructed from ψv and

ξv (see Chapter 6). This field is given a momentum k by inserting a phase eik·x. The
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physical momentum of the hadron is then

p = nQ Zp P + k with P = γmv, (5.26)

where

Zp = ZγZmZv (5.27)

is the renormalisation of the bare external momentum P. Here and in the following

we assume that v points in one of the axis directions, so that only its magnitude is

renormalised. Note that Zγ and Zv are not independent renormalisation constants; they

are related through γ = 1/
√

1− v2.

The full (physical) energy of the hadron is given by

E = Ev(k) + nQ Cv, (5.28)

where Ev(k) is the energy obtained from the large-τ behaviour of the hadron two-point

function and Cv is the renormalised energy shift

Cv = ZmZγγm+ E0. (5.29)

All renormalisation parameters introduced up to here can be written in terms of the three

independent quantities Zm, Zv, E0. At tree-level, one has Zm = Zv = 1 and E0 = 0.

The combinations Zp and Cv can be determined nonperturbatively from the dispersion

relation of a hadron. Given expression (5.26) for the full (physical) momentum, we expect

that, up to lattice artifacts,

E =
√

p2 +M2
kin

=
√

(nQ Zp P + k)2 +M2
kin , (5.30)

whereMkin is the kinetic mass of the hadron. Using (5.30) one can extract Cv, Zp andMkin

from the energies at various non-zero lattice momenta in combination with the energy at

k = 0:

Cv =
k2
⊥ −

[
E2
v(k⊥)− E2

v(0)
]

2 nQ [Ev(k⊥)− Ev(0)]
, (5.31)

Zp =
E2
v(k‖)− E2

v(−k‖) + 2 nQ Cv
[
Ev(k‖)− Ev(−k‖)

]
4 nQ k‖ ·P

, (5.32)

Mkin =
√

(Ev(k) + nQ Cv)2 − (nQ Zp P + k)2. (5.33)

Here, k‖ (k⊥) is a lattice momentum parallel (perpendicular) to v. Equations (5.31) and

(5.32) were first derived in [22].

My nonperturbative results for Cv, Zp, and Mkin for the full action (3.81) will be

presented in Chapter 6.
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5.3.3 Reparametrisation invariance

The renormalisation parameter Zp is expected to be close to 1 due to an approximate

reparametrisation invariance [22], a symmetry that is exact in continuum HQET [97].

The HQET Lagrangian was derived in Sec. 3.3. Denoting the field Ψ̃+ used there by Qu,

we have1

L = Qu

(
i u ·D −

/D
2
⊥

2m

)
Qu

= Qu

(
i u ·D −

D2
⊥

2m
− ig

8m
[γ̂µ, γ̂ν ]Fµν

)
Qu. (5.34)

The Lagrangian (5.34) is invariant under the transformation

u 7→ u+ ε,

Qu 7→ ei m ε·x
(

1 +
/ε

2

)
Qu,

Qu 7→ e−i m ε·x Qu

(
1 +

/ε

2

)
, (5.35)

where ε is an infinitesimal change in the 4-velocity, satisfying ε · u = 0 so that u2 = 1

is preserved. The symmetry (5.35) requires the coefficient of the operator −D2
⊥/(2m) to

be 1. Absorbing an overall wave function renormalisation into the fields Qu, Qu, there

can be no radiative correction to this coefficient provided that the regulator respects

reparametrisation invariance.

In moving NRQCD, time and space are not treated on an equal basis, and the trun-

cation of the action at a given order in 1/m or vorb. breaks reparametrisation invariance

[100]. However, when only selected terms are included the continuum Lagrangian may

still possess an exact symmetry. This is the case for the incomplete Lagrangian

L = ψ†v

(
iD0 + iv ·D +

D2

2γm

)
ψv, (5.36)

which is invariant under

v 7→ v + ε,

ψv 7→ e−iγmε·x ψv,

ψ†v 7→ eiγmε·x ψ†v, (5.37)

with infinitesimal ε satisfying ε · v = 0. The symmetry (5.37) implies that the two terms

iv ·D and D2/(2γm) in (5.36) must renormalise by the same factor, so that Zp = 1.

1No ⊥ labels are needed in the [γ̂µ, γ̂ν ]Fµν term, since Quu
µ[γ̂µ, γ̂ν ]Qu = 0.
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The operator −(v ·D)2/(2γm), which was omitted in (5.36), breaks the reparametri-

sation invariance. An additional breaking in lattice moving NRQCD arises from lattice

artefacts. The remaining approximate symmetry still guarantees that Zp is close to 1 for

moderate boost velocities, as is confirmed by my nonperturbative calculations (Chapter

6) and by perturbation theory.

5.3.4 Perturbation theory

The heavy-quark renormalisation parameters Zψ (the wave function renormalisation), Zm,

Zv, E0, and the corresponding Zp and Cv have also been calculated in automated one-

loop lattice perturbation theory. There, one computes the inverse heavy-quark propagator

G−1(k) = G−1
0 (k) − Σ(k), where G0(k) is the tree-level propagator and Σ(k) is the self-

energy at one-loop order. The renormalisation parameters can then be extracted from

the expansion of Σ(k) in powers of the momentum; the details can be found in [100].

Results for a simple action at order 1/m have been obtained in [112]; these calculations

have been extended to an action similar to (5.12, 5.13) by Lew Khomskii [113]. New

calculations for exactly the action (5.12, 5.13) have then been performed by Eike Müller

[114] and are published in [100]. I will compare the perturbative results for Cv and Zp to

my nonperturbative results in Sec. 6.3 of Chapter 6.

Perturbation theory is thought to be a reasonably good approximation as the momenta

giving the dominant contributions to the radiative corrections are of the order π/a, and the

running coupling αs is small at this scale. Note that this requires ma > 1 and ΛQCDa� 1

simultaneously. In order to obtain a good convergence, tadpole improvement is crucial

[77].

Perturbative calculations of the couplings ci in the action are also underway. So far,

results have been obtained for the coefficients of the 4-th-order derivative operators at

v = 0 [115, 116].

5.3.5 High-β methods

Lattice perturbation theory for highly improved actions is already hard at one-loop level

due to the extremely complicated Feynman rules, and automated methods are used to

derive them (see e.g. [117]). Two-loop calculations for the full lattice moving NRQCD

action seem to be out of reach currently.

An alternative approach has been introduced in [118]. There, nonperturbative Monte-

Carlo simulations are performed at very weak coupling (high β = 2Nc/g
2) and in Coulomb
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gauge. Results for a short-distance observable are computed at several values of β and

then fitted by a polynomial in αs = g2/(4π). The fit results then give the perturbative

coefficients, provided that non-perturbative effects are negligible. The linear term can be

constrained by the 1-loop perturbative result, which stabilises the fit. Certain nonper-

turbative finite-volume effects can be suppressed by using twisted boundary conditions

[119].

As the inclusion of dynamical fermions is computationally very expensive, most high-

β calculations are done in the quenched limit, i.e. in pure gauge theory. However, at

order α2
s only a handful of diagrams contain fermion loops and these may be accessible

in perturbation theory. The contribution from these diagrams can be combined with the

gluonic two-loop coefficient from the high-β simulation to give the full two-loop result.

High-β simulations have been carried out for a simple O(1/m) lattice moving NRQCD

action in [25] and further calculations are currently underway [116].

5.4 Signal-to-noise ratio

The signal-to-noise ratio for correlation functions involving heavy quarks implemented

with lattice mNRQCD can be estimated using the same general methods as in Sec. 4.4.

Note that for a hadronic correlation function at arbitrary lattice momentum k and

boost velocity v the variance correlator always contains contributions from hadrons at

rest (k = 0, v = 0). For example, for a B meson two-point function in moving NRQCD

one obtains

C(τ)
σ(τ)

∝ e
−

“
EQq̄(p)−1

2 [EQQ̄(0)+mπ]
”
τ
, (5.38)

where

p = k + Zpγmv. (5.39)

Thus, the noise is expected to grow exponentially as the boost velocity is increased at a

fixed k. I do indeed see this behaviour in my numerical calculations (cf. Chapter 6). Note

that this is not a disadvantage of moving NRQCD compared to standard NRQCD. The

amount of noise depends on p; for a comparable momentum in non-moving NRQCD one

gets a similar amount of noise (and higher discretisation and relativistic errors).



Chapter 6

Nonperturbative tests of moving

NRQCD

In this chapter, I report on a range of nonperturbative tests of the full lattice moving

NRQCD action (5.12, 5.13) that I performed by computing heavy-heavy (bottomonium)

and heavy-light (Bs) two-point functions in dynamical 2+1 flavour lattice QCD. These

tests include the calculation of renormalisation parameters, decay constants and energy

splittings at several values for the boost velocity. Lattice units are used throughout this

chapter.

Previous nonperturbative tests of mNRQCD for a simple O(1/m) action and with

quenched gauge field configurations (i.e. without dynamical quarks) were reported in [22,

23, 24, 25].

6.1 Tests with bottomonium

6.1.1 Calculation of the two-point functions

We begin by constructing “smeared” interpolating fields for quarkonium. To demonstrate

the effect of the moving NRQCD field redefinition, we start the construction with the

QCD fields Ψ, Ψ. A meson with momentum p can be obtained from

OΓ(τ,p) =
1√
V

∑
x,y

Ψ(τ,x)Γ(x− y)Ψ(τ,y)e−ip
x+y

2 (6.1)

where Γ(r) is a Dirac-matrix-valued smearing function, and V = L3 is the spatial volume.

I do not include gauge links in Γ(r); instead I work with gauge configurations fixed to
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Name Γ(r)

ηb(1S) exp[−|r|/rs] γ̂5

ηb(2S) [1− |r|/(2rs)] exp[−|r|/(2rs)] γ̂5

Υ(1S) exp[−|r|/rs] γ̂j

Υ(2S) [1− |r|/(2rs)] exp[−|r|/(2rs)] γ̂j

χb1(1P ) exp[−|r|/(2rs)] (r× γ̂)j/rs

Table 6.1: The bottomonium states and corresponding smearing functions used in the

nonperturbative tests of moving NRQCD. More details on bottomonium can be found in

Sec. 7.1 of Chapter 7.

Coulomb gauge1. The bottomonium states and corresponding functions Γ(r) used here

are listed in Table 6.1. In addition to these, we also consider the local function

Γ(r) = δr,0 γ̂5γ̂
0, (6.2)

which corresponds to the temporal axial current

J0
5 (x) = Ψ(x) γ̂5γ̂

0 Ψ(x). (6.3)

The lowest state above the vacuum that couples to (6.3) is also the ηb(1S) meson.

We now express Ψ and Ψ through the Euclidean version of the tree-level moving

NRQCD field redefinition (3.74). To lowest order we have

Ψ(x) =
1
√
γ
S(Λ) e−iγm(−iτ−v·x)γ̂0

Ψv(x),

Ψ(x) =
1
√
γ

Ψv(x) eiγm(−iτ−v·x)γ̂0
S(Λ). (6.4)

Note that for calculations of the spectrum no higher-order terms or radiative corrections

are needed in the field redefinition; it suffices that the state of interest has a non-vanishing

overlap with the interpolating field.

Let us, for example, consider the Υ states with polarisation j = 1, 2, 3. We allow

different radial smearing at source and sink, so that Γsc(r) = γ̂j fsc(r) and Γsk(r) =

1On the lattice, Coulomb gauge is obtained by minimising the functional F [U ] =

−
∑

x

∑3
j=1 Tr

[
Uj(x) + U†

j (x)
]

through gauge transformations (2.38) of the link variables Uj .
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γ̂j fsk(r). Using

S(Λ) γ̂j S(Λ) = Λj µγ̂
µ, (6.5)

we obtain

OΓsk
(τ,p)O†Γsc

(τ ′,p) =
1
V

1
γ2
e−2γm(τ−τ ′)

∑
x,y,x′,y′

e−ik
x+y

2 fsk(x− y)eik
x′+y′

2 fsc(x′ − y′)

× Λj lΛ
j
mξ
†
v(τ,x)σlψv(τ,y)ψ†v(τ

′,y′)σmξv(τ ′,x′) + ... (6.6)

(no summation over j here) where the ellipsis denotes terms that do not contribute to

the connected meson correlator for τ > τ ′. In Eq. (6.6) we have k = p − 2γmv. This

is the tree-level mNRQCD momentum shift, as expected. On the lattice the momentum

k rather than p has a definite value; kj = 2π nj/L where L is the spatial extent of the

lattice. The full momentum p will be given by (5.26) with nQ = 2.

According to Eqs. (2.24)and (2.92), the expectation value of (6.6) can be obtained as

〈OΓsk
O†Γsc

〉 =
1
N

∑
U

1
V

1
γ2
e−2γm(τ−τ ′)

∑
x,y,x′,y′

e−ik
x+y

2 fsk(x− y)eik
x′+y′

2 fsc(x′ − y′)

× Λj lΛ
j
mTr

(
σl
[
G

(+v)
ψv

(τ,y, τ ′,y′)
]
σm
[
G

(−v)
ψv

(τ,x, τ ′,x′)
]†)

,

(6.7)

where we average over N gauge configurations U . The trace is in (6.7) is over colour and

spin indices. We have also used Eq. (3.87) to express the antiquark green function G(+v)
ξv

in terms of the quark green function G(−v)
ψv

with the opposite boost velocity.

The summations over all quark and antiquark source locations would render the lat-

tice computation too expensive. Therefore, using translation invariance, we remove the

summation over the antiquark source location x′, and correspondingly remove the factor

of 1/V .

Note that the mNRQCD field redefinition also introduced the factor of e−2γm(τ−τ ′)

in the two-point function, which corresponds to the tree-level energy shift. In the later

analysis, only energy differences will be measured, and so we remove this trivial factor.

Hence, the quantity

C(Γsk,Γsc,k, τ, τ ′) =
1
N

∑
U

1
γ2

∑
x,y

e−ik
x+y

2 fsk(x− y)

× Λj lΛ
j
m Tr

(
σl
[
G̃

(+v)
ψv

(τ,y, τ ′,x′)
]
σm
[
G

(−v)
ψv

(τ,x, τ ′,x′)
]†)
(6.8)
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with

G̃
(+v)
ψv

(τ,y, τ ′,x′) =
∑
y′

eik
x′+y′

2 fsc(x′ − y′)G(+v)
ψv

(τ,y, τ ′,y′) (6.9)

is computed on the lattice. The convoluted Green function (6.9) can be computed effi-

ciently by using the function

eik
x′+y′

2 fsc(x′ − y′) (6.10)

as the initial condition in the mNRQCD evolution Eq. (5.10). The momentum-dependent

phase factor exp(ik · (x′ + y′)/2) at the source improves the overlap with the momentum

considered. I used this factor in my computations; however, note that since there is no

sum over x′, one may also omit this factor to allow the calculation of correlators with

different momenta from the same source.

To maintain the periodic boundary conditions, I set f(r) to zero for |r| > Rs with

some cut-off radius Rs smaller than half the length of the lattice.

I performed the computations using 400 MILC gauge configurations (fixed to Coulomb

gauge) of size 203 × 64 with 2+1 flavors of rooted staggered light quarks, at β = 6.76

[120, 121, 87]. The light quark masses were mu = md = 0.007 and ms = 0.05 (in the

MILC convention for lattice masses). The Goldstone pion mass is about 300 MeV, and

the pion taste splittings range from (mπA −mπ5) ≈ 110 MeV to (mπI −mπ5) ≈ 240 MeV

[121].

The Landau gauge mean link, used for tadpole improvement in the mNRQCD action,

was u0 = 0.836. The inverse lattice spacing of these “coarse” MILC configurations is

known to be approximately 1.6 GeV [108].

The bare heavy quark mass was set to m = 2.8, which gave the correct Υ kinetic

masses using non-moving NRQCD [108]. The boost velocity v was always pointing in the

x-direction. The stability parameter was set to n = 2.

In order to increase statistics, on each gauge configuration I computed between 16 and

120 correlators with different origins (x′, τ ′) spread over the lattice. These origins were

also shifted randomly to reduce autocorrelations. The smearing parameter rs (see Table

6.1) was set to 1 for the S wave states and 0.5 for the P wave states.

6.1.2 Fitting of the two-point functions

In accordance with Eq. (2.34), I fitted the two-point correlators C(Γsk,Γsc,k, τ, τ ′) for a

given momentum k by a function of the form
nexp−1∑
n=0

An(Γsk)A∗n(Γsc) e−Ev,n(τ−τ ′), (6.11)
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where Ev,n is the (shifted) energy of n-th state and An(Γ) is, up to the normalisation

factor of
√

2En, the (real) amplitude for this state to be created by the operator with

smearing function Γ(r). For the excited states (n > 0) I actually used the quantities

∆Ev,n ≡ Ev,n+1 − Ev,n,

Bn(Γ) ≡ An(Γ)/A0(Γ) (6.12)

as parameters in the fit. In general, a matrix of correlators with different smearings at

source and sink was fitted simultaneously. The Bayesian method from [122] was used to

stabilise the fits. The number of exponentials nexp in (6.11) was increased until the fit

results for the states of interest (the ground state, or the first few low-lying states) become

independent of nexp. More details on the fitting are given in Appendix C.

6.1.3 Kinetic mass, energy shift and external momentum renormalisa-

tion

Results for the ηb(1S) kinetic mass Mkin and the renormalisation parameters Zp, Cv,

calculated with Eqs. (5.33), (5.32), and (5.31), are shown in Table 6.2. The energies were

obtained from 6-exponential fits to 2 × 2 matrix correlators with the ηb(1S) smearing

(cf. Table 6.1) and the local operator given by (6.2). Sample fits at v = 0 and v = 0.6 are

shown in Fig. 6.1.

For the calculation of Cv using (5.31), I averaged the results over the 4 different

perpendicular lattice momenta

k⊥ ∈
{

2π
L

(0,±1, 0),
2π
L

(0, 0,±1)
}
. (6.13)

The momentum parallel to the boost velocity in (5.32) was chosen to be k‖ = 2π
L (1, 0, 0),

and in (5.33), for the measurement of Mkin, I used k = 0.

In order to fully take into account correlations in the energies at different momenta, I

used the bootstrap method. This is described in Appendix C.

Because the lattice is of finite extent, L = 20 in this case, the estimates for Cv and

Zp are affected by the choice of momenta in (5.31) and (5.32) since the formulae are

accurate only in the limit that the momenta are infinitesimal. Note that the uncertainty

due to using non-infinitesimal momenta will decrease for larger lattices for which smaller

momenta are available.

To estimate the size of the resulting systematic error I also performed the calculations
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Figure 6.1: Fits to ηb matrix correlators (local and 1S smearing) at k = 0 and v = 0

(upper panel), |v| = 0.6 (lower panel). The fits have nexp = 6 and τmin = 1. At non-zero

momentum p = k + 2Zpγmv the noise in the two-point function increases exponentially

with the Euclidean time. For |v| = 0.6, the errors for the points beyond τ ∼ 8 are so large

that these points do not give any useful information and hence are not shown here.
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|k⊥| = |k‖| = 2π/L |k⊥| = |k‖| = 4π/L

|v| Zp Mkin Cv/(γm) Zp Mkin Cv/(γm)

0 — 5.974(48) 1.0182(86) — 5.979(37) 1.0190(65)

0.2 1.008(19) 5.95(10) 1.015(18) 1.009(12) 5.969(62) 1.017(11)

0.4 0.9953(78) 5.931(44) 1.0084(77) 0.9830(65) 5.954(40) 1.0101(70)

0.6 0.898(27) 6.22(18) 1.010(28 ) 0.843(27) 6.37(15) 1.011(21)

Table 6.2: Nonperturbative results (using the ηb(1S)) for Mkin, Zp, Cv.

with the larger momenta

k⊥ ∈
{

2π
L

(0,±2, 0),
2π
L

(0, 0,±2)
}
, k‖ =

2π
L

(2, 0, 0). (6.14)

For Cv, the results from |k⊥| = 2π/L agree with those obtained from |k⊥| = 4π/L

within statistical errors, indicating that the systematic error is small and does not increase

significantly when increasing the momentum perpendicular to v in the measurement. For

the measurement of Zp at |v| = 0.6 I find a 6% (2σ) change in Zp when going from

|k‖| = 2π/L to |k‖| = 4π/L. At |v| = 0.4 and smaller boost velocities the results are

equal within statistical errors. For the kinetic mass, which depends on both Cv and Zp,

I again find agreement within statistical errors between the results from the two different

momenta for all boost velocities considered. At small velocities, I find that both Zp and

Cv/(γm) are close to their tree-level value of 1, demonstrating that the renormalisations

are small.

6.1.4 Decay constant

Moving NRQCD is designed for the calculation of form factors (see Chapter 8). Thus, it

is important to perform tests not only for spectral quantities but also for decay constants.

For the ηb(1S) meson, I calculated the decay constant f defined by

〈0|Jµ5 (0)|ηb(1S),p〉 = if pµ. (6.15)

For simplicity, I only considered the temporal component. Following the discussion in

Sec. 2.2, the matrix element (6.15) can be computed from the 2 × 2 matrix correlators

already used in Sec. 6.1.3. These include the local operator given by (6.2), which corre-

sponds to the lowest-order tree-level axial current. With the notation from Sec. 6.1.2, we
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define

A ≡ A0(Γ)
∣∣∣
Γ(r)=δr,0 γ̂5γ̂0

. (6.16)

Then, according to Eq. (2.34) we have

A2 =
1

2E
|〈0|Jµ5 (0)|ηb(1S),p〉|2 =

1
2E

f2E2, (6.17)

and hence

f =
2A
E
, (6.18)

where E is the physical energy of the ηb(1S) meson. Using Eq. (5.28) with nQ = 2, we

finally obtain

f = A

√
2

Ev(k) + 2 Cv
. (6.19)

For the energy shift Cv in (6.19), I used Eq. (5.31) with |k⊥| = 2π/L.

The momentum of the meson is given by p = 2Zpγmv + k. The decay constant is a

Lorentz scalar and should ideally be independent of the value of p used to compute it.

In the following I compare two methods of reaching large |p|. First, at v = 0, i.e. with

standard NRQCD, I computed the decay constant at large non-zero lattice momentum k;

the results are shown in Table 6.3. Second, I computed the decay constant with k = 0

and three different boost velocities v; the results are shown in Table 6.4. In this case the

uncertainty in Zp (determined nonperturbatively from Eq. (5.32)) leads to an uncertainty

in the meson momentum.

A plot of the decay constant against the total momentum (with Zp from (5.32) with

|k‖| = 2π/L) for the two methods is shown in Fig. 6.2. With NRQCD we see a strong

dependence on p due to both relativistic and discretisation errors. With moving NRQCD

the p-dependence is very small, giving evidence that the formalism works very well. Small

deviations from the constant behaviour are still expected here, since only the leading-order

current was used; i.e. TFWT and ADt
were set to unity in (3.74) for this calculation.
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|p|L/(2π) |p| f

0 0 0.4724(23)

1 0.31416 0.4731(23)

2 0.62832 0.4755(24)

3 0.94248 0.4772(43)

4 1.25664 0.4835(77)

5 1.57080 0.4971(78)

6 1.88496 0.5209(46)

7 2.19911 0.5527(44)

8 2.51327 0.6006(45)

9 2.82743 0.6740(49)

10 3.14159 0.715(29)

Table 6.3: ηb(1S) decay constant with standard NRQCD (i.e. v = 0) computed with

several values of meson momentum |p| by varying |k|.

|v| |p| f

0 0 0.4724(23)

0.2 1.152(22) 0.4739(38)

0.4 2.433(19) 0.4810(36)

0.6 3.77(11) 0.499(11)

Table 6.4: ηb(1S) decay constant with mNRQCD at k = 0 computed with several values

of meson momentum |p| by varying |v|.
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Figure 6.2: Heavy-heavy decay constant in NRQCD and mNRQCD for different values

of the meson’s momentum, |p|/(2π/L) = 0 . . . 10 (NRQCD) and p = Zp 2γmv for |v| =

0.2, 0.4, 0.6 (mNRQCD). The horizontal line indicates the value at p = 0.
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|v| ∆Ev(0)
∆Ev(0)
∆E0(0)

0.0 0.3334(68) 1

0.2 0.329(10) 0.986(37)

0.4 0.320(15) 0.958(48)

0.6 0.20(11) 0.59(33)

Table 6.5: Υ(2S)−Υ(1S) energy splitting as a function of the boost velocity.

|v| ∆Ev(0)
∆Ev(0)
∆E0(0)

0.0 0.2703(89) 1

0.2 0.264(12) 0.976(56)

0.4 0.270(23) 0.998(91)

0.6 0.227(57) 0.84(21)

Table 6.6: χb1(1P )−Υ(1S) energy splitting as a function of the boost velocity.

6.1.5 Energy splittings

I also studied the velocity-dependence of various energy splittings between the bottomo-

nium states listed in Table 6.1. For the Υ and ηb states, I used 6-exponential 2× 2 matrix

fits with the 1S and 2S smearings; for the χb1 states a 6-exponential single-correlator fit

with the 1P smearing at both source and sink was used. The results for the Υ(2S)−Υ(1S),

χb1(1P ) − Υ(1S) and Υ(1S) − ηb(1S) splittings are listed in Tables 6.5, 6.6 and 6.7, re-

spectively.

Note that the energy splittings are not Lorentz scalars. Using (5.30), we expect that

the splitting between two states A and B at zero lattice momentum is given by

∆Ev(0)|v ≡ EAv (0)− EBv (0) =
√

(2Zpγmv)2 + (MA
kin)

2

−
√

(2Zpγmv)2 + (MB
kin)

2. (6.20)

If we set Zp = 1 and expand the splitting at velocity v relative to v = 0 in powers of the
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|v| ∆Ev(0)|v
∆Ev(0)|v
∆Ev(0)|0

0.0 0.031469(98) 1

0.2 0.03039(20) 0.9656(71)

0.4 0.02837(85) 0.901(27)

0.6 0.0281(28) 0.894(88)

Table 6.7: Υ(1S)− ηb(1S) energy splitting as a function of the boost velocity.

0 0.2 0.4 0.6
v

0

0.5

1

1.5

∆E
v  /

  ∆
E

0

Υ(2S) − Υ(1S)
χb1(1P) − Υ(1S)

Υ(1S) − ηb(1S)

1 − 0.5v
 2

Figure 6.3: Bottomonium energy splittings relative to v = 0 as a function of the boost

velocity. Points are offset horizontally for legibility. The data agree with an estimate for

the leading v2 dependence (see text).
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|v| ∆Ev(0)|1 ∆Ev(0)|2 ∆Ev(0)|3

0 −0.000009(63) −0.000039(68) 0.000053(73)

0.2 −0.00012(26) −0.00005(28) 0.00017(30)

0.4 −0.00046(56) 0.00055(62) −0.00010(57)

0.6 −0.0176(96) 0.0107(62) 0.0069(75)

Table 6.8: Dependence of the Υ(1S) energy on the polarisation direction. ∆Ev(0)|j is the

difference between Ev(0)|j and the polarisation-averaged energy.

boost velocity, we obtain

∆Ev(0)|v
∆Ev(0)|0

= 1−
(

2m2

MA
kin M

B
kin

)
︸ ︷︷ ︸

≈0.5

v2 +O(v4), (6.21)

that is, we expect a quadratic decrease like 1 − 0.5|v|2. The numerical results, shown in

Fig. 6.3, are consistent with this estimate as desired.

Finally, for the Υ(1S) meson, I studied the dependence of the energy on the po-

larisation direction. If moving NRQCD works well, then there should be no difference

for polarisations parallel and perpendicular to the boost velocity. In Table 6.8 I show

the difference between the energy with definite polarisation direction, Ev(0)|j and the

polarisation-direction-averaged energy 1
3(Ev(0)|1 + Ev(0)|2 + Ev(0)|3). No significant de-

pendence on the polarisation direction can be seen (except maybe at |v| = 0.6, where a

1.8σ deviation in the energies was found).

6.2 Tests with Bs mesons

The results given in Sec. 6.1 show that lattice mNRQCD works very well as far as bot-

tomonium is concerned. From bottomonium correlators one can extract mNRQCD renor-

malisation parameters with high precision.

The main application of mNRQCD is the calculation of heavy-light form factors, and

it is therefore important to perform tests of mNRQCD also for heavy-light mesons. In the

following, I report on such tests involving Bs mesons.
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6.2.1 Calculation of the two-point functions

Starting with the standard Dirac fields, we construct interpolating fields for the Bs and

B∗s mesons with momentum p from

OΓ(τ,p) =
1√
V

∑
x,y

Ψl(τ,x)Γ(x− y)ΨH(τ,y)e−ip·y , (6.22)

where Ψl is the Dirac spinor for the valence strange quark and ΨH is the Dirac spinor

for the b quark. I used Γ(r) = γ̂5 f(r) for the Bs pseudoscalar meson, Γ(r) = γ̂j f(r)

with j = 1, 2, 3 for the B∗s vector meson and Γ(r) = γ̂5γ̂0 f(r) for the computation of the

decay constant fBs . I compute 2×2 matrix correlators with Gaussian and local smearing,

f(r) = e−|r|
2/r2s and f(r) = δr,0.

In terms of the standard Dirac propagators, the two-point function reads

〈OΓsk
(τ,p)O†Γsc

(τ ′,p)〉 =
1
N

∑
U

1
V

∑
x,y,x′,y′

× Tr
[

Γsk(x− y)Gl
(
x′, x

)
Γ†sc(x

′ − y′)GH
(
y, y′

) ]
× e−ip·yeip·y

′
, (6.23)

with x = (τ,x), y = (τ,y), x′ = (τ ′,x′), y′ = (τ ′,y′). The tree-level leading-order

mNRQCD field redefinition (6.4) leads to the following expression for the b propagator:

GH
(
y, y′

)
= θ(τ − τ ′)

1
γ
e−γm(τ−τ ′)+iγmv·(y−y′) S(Λ)

(
Gψv(y, y

′) 0

0 0

)
S(Λ)

−θ(τ ′ − τ)
1
γ
e+γm(τ−τ ′)−iγmv·(y−y′) S(Λ)

(
0 0

0 Gξv(y, y
′)

)
S(Λ).

(6.24)

For the light quark, I used the ASQTAD (order a2, tadpole improved) staggered fermion

action [123, 124, 125]. The 4-component naive light quark propagator [111] can be obtained

from the 1-component staggered propagator Gχ(x′, x) via

Gl(x′, x) = Gχ(x′, x) Ω(x′)Ω†(x) (6.25)

with Ω(x) as defined in Eq. (2.59),

Ω(x) = (γ0)x0(γ1)x1(γ2)x2(γ3)x3

= (γ̂0)x0(−iγ̂1)x1(−iγ̂2)x2(−iγ̂3)x3 . (6.26)
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We also employ γ̂5-Hermiticity

Gl(x′, x) = γ̂5G†l (x, x
′)γ̂5, (6.27)

to interchange the points x and x′ for the light quark propagator. As before, we remove

the factor of e−γm(τ−τ ′) and the summation over x′.

In the case where Γsk and Γsc contain the same Dirac matrix, we arrive at the following

expression (for τ > τ ′):

C(Γsk,Γsc,k, τ, τ ′) =
1
N

∑
U

1
γ

∑
x,y

fsk(x− y)e−ik·yη(x, x′)

× Tr

[
G†χ(x, x

′) S(Λ)Ω(x′)Ω†(x)S(Λ)

(
G̃ψv(y, x

′) 0

0 0

)]
,

(6.28)

with k = p− γmv and

G̃ψv(y, x
′) =

∑
y′

f(x′ − y′)eik·y
′
Gψv(y, y

′). (6.29)

The phase factor η(x, x′) in (6.28) depends on the Dirac matrix in Γsk and Γsc. It is given

by

η(x, x′) =


1 for γ̂5,

(−1)x
′
j−xj for γ̂j ,

(−1)
P

j(xj+x
′
j) for γ̂5γ̂0.

(6.30)

As before, I set f(r) to zero for |r| > Rs with some cut-off radius Rs smaller than half the

length of the lattice.

I performed the heavy-light simulations with the same gauge configurations as the

heavy-heavy simulations described in Sec. 6.1), using the same heavy-quark action and

parameters. Again, the boost velocity was always pointing in x-direction. The valence

strange quark mass for the Bs and B∗s mesons was set to 0.040. I used four staggered

propagators with source times τ ′ = 0, 16, 32, 48 for each gauge configuration. I computed

both forward- and backward-propagating meson correlators to increase statistics. The

smearing parameter rs was set to 2.5.

6.2.2 Fitting

The staggered/naive light quark action used here suffers from the doubling problem. As

shown in [111] for non-moving NRQCD, the spatial doublers do not contribute to the

heavy-light correlators2. However, the temporal doubler leads to a coupling to additional
2 This remains true with moving NRQCD for moderate values of γm; see the remarks in Sec. 5.2
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|v| Zp Mkin Cv/(γm)

0 3.37(15) 1.002(52)

0.2 1.05(15) 3.72(47) 1.13(16)

0.4 1.05(18) 3.66(68) 1.10(23)

Table 6.9: Bs results for Mkin, Zp, Cv.

opposite-parity states, which manifest themselves as oscillating exponentials in the correla-

tors. I therefore fitted the heavy-light correlators C(Γsk,Γsc,k, τ, τ ′) for a given momentum

k with a function of the form

nexp−1∑
n=0

An(Γsk)A∗n(Γsc)e−Ev,n(τ−τ ′)+(−1)τ−τ
′+1

enexp−1∑
n=0

Ãn(Γsk)Ã∗n(Γsc)e−
eEv,n(τ−τ ′), (6.31)

where the parameters denoted with a “∼” correspond to the opposite-parity states.

6.2.3 Kinetic mass, energy shift and external momentum renormalisa-

tion

Results for the Bs kinetic mass Mkin and the renormalisation parameters Zp, Cv computed

with Eqs. (5.33), (5.32), (5.31) for nQ = 1 are shown in Table 6.9. The energies and

the amplitude required for the calculation of the decay constant were obtained from 8-

exponential (4 of which are oscillating) fits to 2× 2 matrix correlators with the Gaussian

smearing and the local axial current. Examples of fits to these correlators at v = 0 and

|v| = 0.4 are shown in Fig. 6.4. These also demonstrate the worsening of the signal-

to-noise ratio as the boost velocity increases, in accordance with Eq. (5.38) (for the Bs
mesons considered here, one has to replace mπ in (5.38) by mss̄).

For the calculation of Cv, I again averaged the results over the 4 different lattice

momenta perpendicular to v

k⊥ =
2π
L

(0,±1, 0),
2π
L

(0, 0,±1), (6.32)

and the momentum parallel to the boost velocity required for the determination of Zp was

chosen to be k‖ = 2π
L (1, 0, 0).

As expected, the statistical errors are larger than for the heavy-heavy mesons. In ad-

dition to the generally worse signal-to-noise ratio for heavy-light mesons, a much smaller



6.2. Tests with Bs mesons 83

0 5 10 15 20 25

time

1e-08

1e-06

0.0001

0.01

1

100
va

lu
e 

of
 c

or
re

la
to

r
local - local
smeared - local
local - smeared
smeared - smeared

0 5 10 15 20 25

time

1e-08

1e-06

0.0001

0.01

1

100

va
lu

e 
of

 c
or

re
la

to
r

local - local
smeared - local
local - smeared
smeared - smeared

Figure 6.4: Fits to Bs matrix correlators (local and Gaussian smearing) at k = 0 and

v = 0 (upper panel), |v| = 0.4 (lower panel). The fits have nexp = ñexp = 4 and τmin = 2.

The noise in the two-point function increases exponentially with the Euclidean time as

expected.
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|v| |p| fBs

0 0 0.1626(27)

0.2 0.576(11) 0.1608(52)

0.4 1.2163(96) 0.1634(94)

0.6 1.885(57) 0.174(17)

Table 6.10: Bs decay constant (unrenormalised, and in lattice units) with mNRQCD at

k = 0. The total momentum p is computed using the nonperturbative result for Zp from

the ηb(1S) dispersion relation.

number of origins (four) per gauge configuration was used to save computer time (the com-

putation of light-quark propagators is more expensive than the computation of mNRQCD

propagators). The results for Zp and Cv agree with those obtained using heavy-heavy

mesons in section 6.1.3.

6.2.4 Decay constant

The Bs decay constant is defined by

〈0|Jµ5 (0)|Bs,p〉 = ifBs p
µ, (6.33)

where Jµ5 (0) = s(0)γ̂µγ̂5b(0). I computed fBs in a similar way as the ηb decay constant in

Sec. 6.1.4, using the temporal component of the current. As there is only one heavy quark

here, the equation analogous to (6.19) reads

fBs = A

√
2

Ev(k) + Cv
. (6.34)

Here I used Cv determined from the ηb(1S) dispersion relation since this is more precise

than the result from the Bs dispersion relation.

The results for the decay constant fBs at k = 0 and |v| = 0, 0.2, 0.4, 0.6 are listed

in Table 6.10 and plotted against the total momentum in Fig. 6.5. I find that the decay

constant is independent of the boost velocity within statistical errors, which demonstrates

that the combination of moving NRQCD and ASQTAD works well at these values of v. I

could not obtain reliable fits at large k and v = 0, and therefore do not show results with

non-moving NRQCD here.
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Figure 6.5: The Bs decay constant at k = 0 and |v| = 0, 0.2, 0.4, 0.6 plotted against the

total momentum p = Zpγmv + k. The horizontal line indicates the value at v = 0.

6.2.5 Energy splittings

I also computed the B∗s − Bs energy splitting as a function of |v|; the results are shown

in Table 6.11. The statistical errors are so large that no definite statement can be made

about the velocity dependence.

|v| ∆Ev(0)
∆Ev(0)
∆E0(0)

0.0 0.0261(35) 1

0.2 0.0262(65) 1.00(28)

0.4 0.0310(80) 1.18(34)

Table 6.11: B∗s −Bs energy splitting as a function of the boost velocity.
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6.3 Comparison of nonperturbative and perturbative re-

sults

In the following I compare my nonperturbative results for Zp (the renormalisation of the

external momentum) and Cv (the energy shift) given in Secs. 6.1.3 and 6.2.3 to predictions

from one-loop lattice perturbation theory [114, 100].

The perturbative results have the form

Zp = 1 + αs δZp, Cv = 1 + αs δCv, (6.35)

where δZp and δCv depend on the form of the heavy-quark and gluon actions as well as

the heavy-quark mass and the boost velocity. Results for δZp and δCv for the setup used

here (full moving NRQCD action (5.12, 5.13) with m = 2.8, n = 2, Lüscher-Weisz gluon

action) can be found in [114, 100].

To make use of (6.35), a numerical value of the strong coupling constant αs is needed.

In [114, 100], the strong coupling constant was defined in the potential scheme [77], and the

momentum scale q? was calculated with the Brodsky-Lepage-Mackenzie procedure [126]

for each quantity and each value of v. The q? values range approximately between 0.5/a

and 3/a. The coarse MILC configurations used here have a−1 ≈1.6 GeV [108]. Using the

running of the strong coupling constant αV (q) [127] this gives, for example, αV (2/a) ≈ 0.3.

Figures 6.6 and 6.7, which are taken from [100], show the perturbative and nonper-

turbative results for Zp and Cv. Nonperturbative results from both bottomonium and Bs
two-point functions are shown, with a slight horizontal offset for legibility. The uncer-

tainties shown on the data points for the perturbative results are purely statistical due to

the stochastic integration over the loop momentum. The error band on the perturbative

results is obtained by varying the scale in the range [q?/2, 2q?].

The heavy-light results have error bars so large that they agree with the perturbative

predictions. In the following, I focus on the statistically much more precise heavy-heavy

results. For Zp, these agree with the perturbative predictions at |v| = 0.2 and |v| = 0.4,

while there is a deviation at |v| = 0.6. For Cv/(γm), the (small) correction to the tree-

level result Cv/(γm) = 1 is in fact found to have the opposite sign for the nonperturbative

results compared to the perturbative results at all values of v.

This indicates that there may be sizable higher-loop or nonperturbative contributions.

To investigate the two-loop contribution, high-β simulations (cf. Sec. 5.3.5) are currently

being performed [116].
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Figure 6.6: Comparison of nonperturbative and perturbative results for the external mo-

mentum renormalisation factor Zp. (Plot by Eike Müller [114], my nonperturbative data.)
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Figure 6.7: Comparison of nonperturbative and perturbative results for the energy shift

Cv, relative to the tree-level value γm. (Plot by Eike Müller [114], my nonperturbative

data.)
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Chapter 7

Heavy-hadron spectroscopy

Before coming to the main application of lattice moving NRQCD, the calculation of B

decay form factors in Chapter 8, I will report in the following on a different project: the

calculation of masses and excited-state energies of hadrons containing b quarks. Here,

the hadrons considered are at rest, and so I use the standard non-moving lattice NRQCD

action which is obtained from the action described in Chapter 5 by setting v = 0.

The calculations described in the following make use of gauge field configurations gen-

erated by the RBC and UKQCD collaborations [128]. These configurations were created

with the renormalisation-group improved Iwasaki gluon action [129, 130] and 2+1 flavours

of light quarks described by a domain wall action (see Sec. 2.4.7).

The first part of this chapter (Sec. 7.1) is about bottomonium, i.e. the bound states of

bottom quark-antiquark pairs. This work is published in my paper [131]. The spectrum of

bottomonium is known very well from experiment [83], as can be seen in the level scheme

shown in Fig. 7.1. There are many narrow states and the energy splittings show little

dependence on the light quark masses once these are light enough. Thus, the calculation

of the bottomonium spectrum is an excellent way of testing the lattice methods used. It

also allows independent determinations of the lattice spacing of the RBC/UKQCD gauge

field ensembles.

The second part of this chapter (Sec. 7.2) then describes mass-calculations of b-

flavoured hadrons, using the domain wall action for the light valence quarks. This is still

work in progress; I published my preliminary results in the proceedings of the Lattice 2009

conference [132]. The hadrons considered include B mesons, singly- and doubly-bottom

baryons, and for the first time also the triply-bottom baryon Ωbbb. There is currently con-

siderable interest in mass predictions for b-flavoured baryons. A few singly-bottom baryons

have been found so far, and more results are expected from the Large Hadron Collider
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Figure 7.1: Level scheme of bb states, from the Particle Data Group [83]
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aml mπ [MeV] u0L MD range (step) nconf

0.005 330 0.8439 915 - 8665 (25) 311

0.01 420 0.8439 1475 - 8525 (25) 283

0.02 560 0.8433 1800 - 3600 (25) 73

0.03 670 0.8428 1275 - 3050 (25) 72

Table 7.1: The ensembles of RBC/UKQCD gauge configurations used for my calculation

of the bottomonium spectrum.

at CERN. Most recently, the Ωb baryon was discovered at Fermilab. There are now two

incompatible results for its mass, obtained by the D/0 [133] and CDF [134] collaborations.

Lattice QCD can contribute to resolve this discrepancy.

7.1 Bottomonium

7.1.1 Lattice details

The details of the domain wall fermion and Iwasaki gauge actions adopted by the RBC

and UKQCD collaborations are given in [135]. For the calculation of the bottomonium

spectrum I used the gauge configurations of size 243 × 64 as described in [128]. The

size of the fifth dimension in the domain wall action is Ls = 16, leading to a residual

mass of amres = 0.00315(2) [128]. The strange quark mass is ams = 0.04 and there are

ensembles with four different values for the degenerate light (up and down) quark mass

aml corresponding to pion masses in the range from ≈ 330 MeV to ≈ 670 MeV, as shown

in Table 7.1.

I started the “measurements” at the same molecular dynamics (MD) time as in [128]

to ensure complete thermalisation. Note however that the aml = 0.005 and aml = 0.01

ensembles have since been extended and I included the additional configurations. I per-

formed the measurements every 25 steps of MD time. This is approximately two times

the integrated autocorrelation time found in [128] for the 12th time slice of the pion cor-

relator on the aml = 0.005 ensemble. I confirmed that this separation gives sufficiently

independent measurements for the observables calculated here by doing a binning analysis.

As discussed in Chapter 5, the lattice NRQCD action is tadpole-improved, using the

mean link in Landau gauge u0L. I measured u0L for the different ensembles by transforming

subsets of configurations to Landau gauge (using the Chroma software [136]); the results

are listed in Table 7.1.
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Name L S J P C RPC Γ(r)

ηb(nS) 0 0 0 − + A−+
1 φnS(r)

Υ(nS) 0 1 1 − − T−−1 φnS(r) σj

hb(nP ) 1 0 1 + − T+−
1 φnP (r) rj/rs

χb0(nP ) 1 1 0 + + A++
1 φnP (r) (r · σ)/rs

χb1(nP ) 1 1 1 + + T++
1 φnP (r) (r× σ)j/rs

χb2(nP ) 1 1 2 + + T++
2 φnP (r) (rjσk + rkσj)/rs

ηb(nD) 2 0 2 − + T−+
2 φnD(r) rjrk/r2s

Υ2(nD) 2 1 2 − − E−− φnD(r) (rjrkσl − rkrlσj)/r2s

Table 7.2: The smearing functions Γ(r) (with j 6= k, l 6= k) and the corresponding

irreducible representations of the octahedral group.

7.1.2 Calculation of the two-point functions

In Sec. 6.1.1 the computation of bottomonium two-point functions was discussed for mov-

ing NRQCD. Here, I use non-moving NRQCD, which is just a special case. The two-point

functions are computed as

C(Γsk,Γsc,k, τ, τ ′) =
1
N

∑
U

∑
x,y

Tr
[
G†ψ(τ,x, τ ′,x′) Γ†sk(x− y) G̃sc(τ,y, τ ′,x′)

]
e−ik

x+y
2

(7.1)

where τ > τ ′ and

G̃sc(τ,y, τ ′,x′) =
∑
y′

Gψ(τ,y, τ ′,y′) Γsc(x′ − y′) eik
x′+y′

2 . (7.2)

In Eqs. (7.1) and (7.2), the functions Γsc/sk are the smearing functions at source and sink,

respectively, which are now expressed directly in the non-relativistic spinor basis, i.e. they

are (2 × 2)-matrix-valued in spinor space. The gauge field configurations were fixed to

Coulomb gauge using Chroma [136]. In Table 7.2 the bottomonium states considered here

are listed, together with their continuum quantum numbers, smearing functions Γ(r) and

representations of the octahedral group [137].

As can be seen in Table 7.2, all representations are chosen to be different, so that no

mixing is expected here. As in [108], the radial functions φnS(r), φnP (r) and φnD(r) for
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State φ(r)

1S exp[−|r|/rs]

2S [1− |r|/(2rs)] exp[−|r|/(2rs)]

3S
[
1− 2|r|/(3rs) + 2|r|2/(27r2s)

]
exp[−|r|/(3rs)]

1P exp[−|r|/(2rs)]

2P [1− |r|/(6rs)] exp[−|r|/(3rs)]

1D exp[−|r|/(3rs)]

Table 7.3: The radial functions φ(r)

the n-th radially excited S-wave (L = 0), P -wave (L = 1) and D-wave (L = 2) states are

taken from the corresponding hydrogen atom wave functions and are given in Table 7.3.

The same lattice representations are used at source and sink but the radial smearing

functions are allowed to be different. I set the smearing parameters rs (in lattice units) to

1.0 (1S), 0.8 (2S), 0.6 (3S), 0.5 (1P ), 0.4 (2P ) and 0.5 (1D), respectively.

As in Sec. 6.1.1, I set the smearing functions to zero outside a ball with radius R smaller

than half the spatial lattice dimension, so that the wrapping around the lattice boundaries

does not cause any problems. Since the smearing functions decay exponentially with the

separation between quark and antiquark, R can be chosen such that the important features

remain. To ensure symmetry, the same cut-off radius must be taken at source and sink.

In order to increase statistics, I averaged the correlators (7.1) over eight different spatial

origins x′ located at the corners of a cube with side length L/2 = 12. In addition, I used

four different source time slices τ ′ with an equal spacing of 16, so that there are 32 origins

per configuration in total. Furthermore, I shifted the locations of the origins on the lattice

randomly from configuration to configuration in order to decrease autocorrelations.

7.1.3 Data analysis

After choosing a set of smearing functions Γ(r) with equal lattice representations but

different radial functions (e.g. 1S, 2S and 3S), I computed the square matrix of correlators

obtained by taking all combinations for source and sink.

As in Sec. 6.1.2, I fitted the matrix of correlators C(Γsk,Γsc,k, τ − τ ′) simultaneously

by a function of the form (6.11). Here I took the logarithms of the energy splittings as
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Figure 7.2: Fit of a 3×3 matrix of correlators with the {Υ(1S), Υ(2S), Υ(3S)} smearings.

Note that both axes have a linear scale. The fit has nexp = 10 and τmin = 1.

the fit parameters to ensure the correct ordering of the states.

As before, I used the Bayesian method described in Sec. C.3, where the number of

exponentials in the fit is increased until the results for the low-lying states stabilise. This

is demonstrated for a 3× 3 matrix correlator in the Υ channel in Fig. C.1. A plot of the

corresponding fit with nexp = 10 is shown in Fig. 7.2.

I also tested for the presence of autocorrelations in the measurements using the binning

method (cf. Sec. C.5). In most cases I did not find significant autocorrelations, but for

some quantities the error estimates were slightly corrected upwards. The details can be

found in my paper [131].

7.1.4 Tuning of the b quark mass

The bare b quark mass, which is a free parameter in the NRQCD action, was tuned non-

perturbatively. I adjusted it such that the kinetic mass of the ηb(1S) meson as calculated

on the lattice matches the experimental value of 9.389(5) GeV [138]. The tuning was done

on the most chiral (aml = 0.005) ensemble of gauge configurations.

I computed the kinetic mass from

Mkin =
k2 − [E(k)− E(0)]2

2 [E(k)− E(0)]
, (7.3)
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amb aMkin(ηb)
Υ(2S)−Υ(1S)

splitting

2.30 4.988(12) 0.3258(47)

2.45 5.281(13) 0.3242(46)

2.60 5.575(13) 0.3231(54)

Table 7.4: Results for the tuning of the bare b quark mass in lattice units. Errors are

statistical/fitting only.

where I used the smallest possible lattice momentum a|k| = 1 · 2π/L. As shown in the

next section, the kinetic mass is very stable and shows no significant dependence on k

even for much larger momenta. In order to increase statistics I averaged the results over

the different possibilities for the direction of k.

The comparison with experiment of course requires the knowledge of the lattice spac-

ing, which I determined as the ratio of the experimentally measured Υ(2S)−Υ(1S) mass

splitting, 0.56296(40) GeV [83], to the dimensionless lattice result. This will be discussed

in more detail in Sec. 7.1.6.

The lattice results for aMkin and the Υ(2S) − Υ(1S) splitting at the three different

bare quark masses amb = 2.30, 2.45 and 2.60 are shown in Table 7.4. As can be seen,

the Υ(2S)−Υ(1S) splitting is very insensitive to the value of the b quark mass. It is also

expected to have much smaller lattice discretisation errors than the 1P − 1S splitting as

discussed in the next section.

I found that in the range considered here, the dependence of the kinetic mass on the

bare heavy quark mass is described very well by the linear relation

aMkin = A+B · amb. (7.4)

A plot of aMkin as a function of amb is shown in Fig. 7.3. I performed fits of Eq. (7.4)

with the parameters A and B on 500 bootstrap samples for the kinetic masses at amb =

2.30, 2.45 and 2.60. The resulting average fit parameters are

A = 0.489(25),

B = 1.956(11). (7.5)

To obtain a first result for the lattice spacing of the aml = 0.005 ensemble, I used the

Υ(2S) − Υ(1S) mass splitting at amb = 2.45, giving a−1 = 1.736(25) GeV (the error is
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Figure 7.3: The kinetic mass of the ηb(1S) meson plotted against the bare heavy quark

mass. Errors are statistical/fitting only. The line shows the average over the bootstrap

ensemble of linear fit results.

statistical/fitting only). Of course the b quark mass was not yet tuned, but given the

relative independence of the Υ(2S)−Υ(1S) splitting on mb, the value of amb = 2.45 was

sufficiently close to the physical value. The final results for the lattice spacing obtained

with the correct b quark mass will be presented in Sec. 7.1.6.

Using the preliminary result for a−1, it follows that the ηb(1S) mass in lattice units

must be tuned to be aMkin = 5.407(77). Inserting this into (7.4) and solving for amb gives

amb = 2.514(36). (7.6)

The error quoted here is statistical/fitting only and is dominated by the uncertainty in

the lattice result for the Υ(2S)−Υ(1S) splitting.

I actually performed all remaining calculations for bottomonium with amb = 2.536.

This was an earlier result and the fits have been improved slightly since then. However it

is still inside the range of the new value (7.6).

For amb = 2.536 the results were aMkin = 5.449(13) and a−1 = 1.740(25) GeV. This

gives Mkin = 9.48(14) GeV which is compatible with the experimental result of 9.389(5)

GeV, confirming the successful tuning of the heavy quark mass.
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n2 aMkin(ηb) aC c2

1 5.450(17) 2.5913(84) -

2 5.450(17) 2.5912(85) 1.00003(85)

3 5.450(18) 2.5911(92) 1.0001(16)

4 5.461(22) 2.597(11) 0.9981(21)

5 5.457(20) 2.595(10) 0.9987(24)

6 5.452(20) 2.592(10) 0.9997(27)

8 5.454(22) 2.593(11) 0.9993(35)

9 5.447(20) 2.590(10) 1.0005(35)

12 5.445(21) 2.589(11) 1.0009(42)

Table 7.5: Kinetic mass, NRQCD energy shift and the square of the “speed of light”

for various lattice momenta k = n · 2π/L, calculated on the aml = 0.005 ensemble with

amb = 2.536.

7.1.5 Speed of light

In order to examine how well the lattice data approximates the relativistic continuum

dispersion relation, I computed the kinetic mass of the ηb(1S) meson, defined by (7.3),

also for larger lattice momenta k = n · 2π/L up to n2 = 12. For these calculations, I used

the local smearing function Γ(r) = δr,0 at source and sink so that multiple lattice momenta

can be obtained with little computational cost. For each value of n2, I averaged the results

over the possible directions of the vector n, and all components of n were chosen to be

less than or equal to 2.

The results are given in Table 7.5, where also the NRQCD energy shift, calculated as

C =
Mkin(k)− E(0)

2
, (7.7)

and for n2 > 1 the square of the “speed of light”

c2 ≡
[E(k)− E(0) +Mkin,1]

2 −M2
kin,1

k2
(7.8)

are shown. In Eq. (7.8), Mkin,1 denotes the kinetic mass calculated with n2 = 1. In

the units used here, one should have c2 = 1. Deviations of c2 from 1 can be caused by

discretisation errors in the NRQCD, gluon and sea quark actions and also by missing

higher order relativistic corrections in the NRQCD action. The NRQCD action is highly

improved at tree level, and so the most significant errors one expects here are those caused

by missing radiative corrections.
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As can be seen in the table, in the momentum range considered here the kinetic

mass shows no significant dependence on k within the small statistical/fitting errors.

Correspondingly, c2 remains compatible with 1, with statistical/fitting errors less than

0.5%, indicating that the effect of the errors mentioned above is small.

Analogous calculations for the Υ(1S) meson have been performed in [108] with the

same NRQCD action but with the Lüscher-Weisz gluon and the ASQTAD sea quark

action. There, the deviation of c2 from 1 in the same momentum range was also found to

be compatible with 1 within statistical errors of less than 1%.

7.1.6 Radial/orbital energy splittings and the lattice spacing

The lattice results for the various radial and orbital energy splittings are listed in Table

7.6. Systematic errors are known to be smallest for the spin-averaged masses, defined as

〈M〉 =
∑

J(2J + 1)MJ∑
J(2J + 1)

. (7.9)

However, in most cases not all of the states entering Eq. (7.9) are known from experiment.

For the 1S, 2S and 3S masses in this section I consider the J = 1 states (Υ) instead of the

spin-averages. Note that the J = 0 S-wave states (ηb) enter the spin-averaged masses only

with a weight of 1/4, and so the influence of systematic errors in the hyperfine splittings

is negligible here. For the 1P and 2P masses, I use the spin-averages over the χb triplet

(J = 0, 1, 2) states. The only experimentally known D-wave state [139] is Υ2(1D) with

J = 2, and therefore I consider this state here.

In terms of the NRQCD power counting (cf. Sec. 3.2.2), radial and orbital energy

splittings are of order O(v2
orb.), where vorb. is the internal speed of the b quarks inside the

heavy-heavy meson. Recall that for bottomonium one has v2
orb. ≈ 0.1. The lattice NRQCD

action in use includes all relativistic corrections of order O(v4
orb.) (at tree-level), and hence

the missing relativistic corrections are of order O(v6
orb.). Naively this leads to relativistic

errors for the radial and orbital splittings of O(v4
orb.) = 1%. However, as discussed in [108],

for energy splittings one has to consider the difference between the expectation values of

the missing operators for the two states. This leads to a reduction of the relativistic errors

for the 2S − 1S splitting to about 0.5%.

Additional systematic errors for the NRQCD action are due to discretisation errors and

missing radiative corrections (beyond tadpole improvement). Estimates of these errors for

the 2S − 1S and 1P − 1S splittings are given in Table 7.7. They are taken to be equal to

the estimates obtained in [108] for exactly the same lattice NRQCD action on the “coarse”

MILC gauge configurations, which have a lattice spacing (a−1 ≈ 1.6 GeV) very similar to
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aml = 0.005 aml = 0.01 aml = 0.02 aml = 0.03

Υ(2S)−Υ(1S) 0.3236(46) 0.3270(73) 0.330(18) 0.327(23)

Υ(3S)−Υ(1S) 0.517(21) 0.537(23) - -

〈χb(1P )〉 −Υ(1S) 0.2589(30) 0.2572(22) 0.2628(57) 0.2613(61)

〈χb(2P )〉 −Υ(1S) 0.478(30) 0.502(26) 0.511(39) 0.516(37)

〈χb(2P )〉 − 〈χb(1P )〉 0.219(29) 0.245(24) 0.248(35) 0.255(33)

Υ2(1D)−Υ(1S) 0.4080(46) 0.4194(42) 0.417(12) 0.426(12)

Table 7.6: Results for the radial and orbital energy splittings in lattice units. Errors are

statistical/fitting only.

2S − 1S 1P − 1S

relativistic 0.5% 1.0%

radiative 0.5% 1.7%

discretisation 0.8% 3.2%

total 1.1% 3.8%

Table 7.7: Estimates of the systematic errors due to the lattice NRQCD action for the

2S − 1S radial and 1P − 1S orbital splittings [108].
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aml = 0.005 aml = 0.01 aml = 0.02 aml = 0.03

a−1
2S−1S (GeV) 1.740(25)(19) 1.722(38)(19) 1.708(92)(19) 1.72(12)(2)

a−1
1P−1S (GeV) 1.698(19)(65) 1.709(15)(65) 1.673(36)(64) 1.682(40)(64)

Table 7.8: Results for the inverse lattice spacing obtained from the Υ(2S) − Υ(1S) and

〈χb(1P )〉 − Υ(1S) splittings. The first error given is statistical/fitting and the second

is an estimate of the systematic errors (relativistic, radiative and discretisation) due to

the NRQCD action. Systematic errors due to the gluon and sea quark actions are not

included.

the ensembles considered here. The reader is referred to [108] and [140] for the details.

As can be seen in the table, systematic errors are much smaller for the 2S − 1S splitting

compared to the 1P − 1S splitting. This is due to the smaller difference in the wave

functions for the 2S and 1S states. The 2S − 1S splitting thus allows a more reliable

determination of the lattice spacing.

Note that there are also discretisation errors due to the gluon and sea quark actions.

These are difficult to quantify at this stage as only data from one lattice spacing are

available. Gauge configurations with a smaller lattice spacing are currently being gen-

erated by the RBC and UKQCD collaborations so that a more systematic analysis will

become possible in the future. In [128], a preliminary error estimate of (aΛQCD)2 ≈ 4%

for the calculations of light hadron properties on the current ensembles was given. The

calculations for bottomonium are different in that the domain wall action only enters via

the sea quarks. The Iwasaki gluon action [129, 130] is renormalisation-group-improved

and is therefore expected to have a better scaling behaviour than the unimproved Wilson

action. However, this depends on the observable considered; see e.g. [141] for a scaling

study of the critical temperature and glueball masses. The stability of the “speed of light”

demonstrated in Sec. 7.1.5 provides some evidence for the smallness of the effect of gluon

discretisation errors for bottomonium.

For reference, the discretisation errors in the 2S − 1S and 1P − 1S splittings on the

coarse MILC lattices due to the Lüscher-Weisz gluon action were estimated in [108] to be

0.5% and 1.7%, respectively. These errors are proportional to the difference in the square

of the wave function at the origin, which is smaller between the 2S and 1S states.

My results for the inverse lattice spacings of the four ensembles from both the Υ(2S)−
Υ(1S) and the 〈χb(1P )〉 − Υ(1S) splittings are listed in Table 7.8. For the most chiral

ensemble the 2S − 1S splitting gives a−1 = 1.740(25)stat(19)syst GeV. No significant de-
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Figure 7.4: Radial and orbital energy splittings compared to the experimental results

(indicated by lines). Errors are statistical/fitting only and include the uncertainty in the

determination of the lattice spacing. The 1S and 2S masses, for which no error bars are

shown, are not predictions of the lattice calculation as these states are used to determine

the lattice scale and the overall energy shift.

pendence on the sea quark mass can be seen within the statistical errors, and therefore I

did not attempt an extrapolation. For comparison, the RBC and UKQCD collaborations

have obtained a−1 = 1.729(28)stat in the chiral limit, using the Ω− baryon mass [128].

This is consistent with my results obtained here.

Next, I used the lattice spacing determinations from the 2S − 1S splitting to convert

the other radial and orbital splittings from Table 7.6 to physical units. The results are

plotted in Fig. 7.4. Note that I used the individual results for the lattice spacings of the

different ensembles.

Overall, good agreement with experiment is seen, as in [108]. The dependence on the

light sea quark mass is found to be weak. This is expected since the typical gluon momenta

inside the bottomonium are much larger than all the values for the light quark masses

used here. However, note that large deviations between lattice results and experiment

were previously seen in quenched simulations (nf = 0), so the inclusion of 2+1 flavors of

dynamical light quarks is in fact very important. A comparison between quenched and

unquenched results can be found in [6].
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aml = 0.005 aml = 0.01 aml = 0.02 aml = 0.03

Υ(1S)− ηb(1S) 0.03017(14) 0.03033(16) 0.03102(36) 0.03145(38)

Υ(2S)− ηb(2S) 0.0137(30) 0.0120(48) 0.013(12) 0.018(16)

χb0(1P )− 〈χb(1P )〉 −0.0207(20) −0.0206(18) −0.0231(36) −0.0175(70)

χb1(1P )− 〈χb(1P )〉 −0.0049(14) −0.0027(19) −0.0059(22) −0.0049(41)

χb2(1P )− 〈χb(1P )〉 0.0071(11) 0.0058(12) 0.0082(17) 0.0064(29)

hb(1P )− 〈χb(1P )〉 −0.0026(18) −0.0002(21) −0.0014(27) −0.0058(42)

χb1(1P )− χb0(1P ) 0.0158(18) 0.0176(25) 0.0173(40) 0.0126(77)

χb2(1P )− χb1(1P ) 0.0120(23) 0.0088(31) 0.0137(38) 0.0113(68)

hb(1P )− χb1(1P ) 0.0023(16) 0.0027(16) 0.0044(35) −0.0009(61)

Υ2(1D)− ηb(1D) 0.0011(21) −0.0012(18) −0.0086(70) −0.0050(61)

Table 7.9: Spin-dependent energy splittings in lattice units. Errors are statistical/fitting

only. Large systematic errors are expected as discussed in the text.

7.1.7 Spin-dependent energy splittings

The spin-dependent energy splittings in bottomonium, i.e. the fine and hyperfine structure,

are of order O(v4
orb.) and hence any sub-leading corrections are missing in the NRQCD

action used here. Therefore, the relativistic errors in these splittings are expected to

be of order O(v2
orb.) ≈ 10%. The spin-dependent energy splittings also receive radiative

corrections of order O(αs), the strong coupling constant at the scale set by the lattice

spacing. This may in principle lead to further systematic errors of the order of 20%,

although the tadpole improvement used here (see Sec. 2.7.1) reduces the problem. Finally,

discretisation errors are also expected to be larger than for the radial and orbital splittings,

especially for the S-wave hyperfine splitting as discussed below.

My results for the spin-dependent energy splittings in lattice units are summarised in

Table 7.9, where the errors given are statistical/fitting only.

S-wave hyperfine structure

Figure 7.5 shows a plot of the Υ(1S)−ηb(1S) and Υ(2S)−ηb(2S) energy splittings, where

I used the previous lattice spacing determinations from the 2S − 1S splittings to convert

to physical units.

The errors shown are statistical/fitting only but include the uncertainty in the de-

termination of the lattice spacing. The latter in fact enters with a factor of 2 here, as
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Figure 7.5: S-wave hyperfine splittings (energies relative to the Υ(1S) and Υ(2S) states,

respectively) compared to experiment. Errors are statistical/fitting only and include the

uncertainty in the determination of the lattice spacing, which enters with a factor of 2.

Large systematic errors are expected as discussed in the text.

discussed in [140], due to the resulting uncertainty in the physical heavy quark mass (the

hyperfine splitting is approximately proportional to the inverse of that mass). The sta-

tistical error in the 1S hyperfine splitting is then dominated by far by this uncertainty,

while the 2S hyperfine splitting has an intrinsically higher statistical error as the state is

radially excited.

The Υ(1S)− ηb(1S) splitting has recently been measured by the BaBar collaboration

[138], who found 71.4+2.3
−3.1(stat) ± 2.7(syst) MeV. This value is indicated in Fig. 7.5. The

lattice result in physical units for the aml = 0.005 ensemble is 52.5±1.5(stat) MeV, which

is too small by about 25%, in line with the large systematic errors expected. Similarly

to the radial and orbital splittings, little dependence on the light sea quark mass is seen,

which is expected for the same reason as discussed there.

Note that in [108] and [140] a significant dependence on the lattice spacing was found,

with the result increasing toward finer lattices, indicating that a substantial part of the

deviation is due to discretisation errors. The hyperfine splitting is indeed expected to be

sensitive to very short distances, as the spin-spin interaction potentials in simple models

contain a delta function at the origin (see e.g. [142]).
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Figure 7.6: P-wave spin splittings (energies relative to the spin-average of the χb(1P )

states) compared to experiment. Errors are statistical/fitting only and include the uncer-

tainty in the determination of the lattice spacing. Large systematic errors are expected as

discussed in the text.

Finally, note that in [143], where a relativistic heavy-quark action was used, the

Υ(1S) − ηb(1S) splitting on the same RBC/UKQCD gauge configurations was found to

be only 23.7± 3.7(stat) MeV. My result obtained with lattice NRQCD is much closer to

the experimental value.

P -wave spin-dependent splittings

A plot of the 1P spin-dependent splittings, converted to physical units using the previous

2S − 1S lattice spacing results, is given in Fig. 7.6.

I show the energy differences of the χb0(1P ), χb1(1P ), χb2(1P ) and hb(1P ) states to

the spin-average of the triplet 〈χb(1P )〉. The experimental results [83] for the triplet states

are also indicated in the plot; the hb states have not yet been observed.

The lattice results are found to be in relatively good agreement with experiment, even

within the purely statistical/fitting errors shown in the plot (those include the uncertainty

in the lattice spacing). This indicates that discretisation errors may be smaller than for

the S-wave hyperfine splittings. Note that in simple potential models the wave function

at the origin is zero (cf. the smearing functions in Table 7.2) and hence the P -wave spin



7.2. Bottom hadrons 105

splittings are expected to be not as sensitive to very short distances as the S-wave hyperfine

splittings.

My result for the experimentally unknown hb(1P ) − 〈χb(1P )〉 splitting on the aml =

0.005 ensemble is −4.5 ± 3.1 MeV, where the error quoted is statistical/fitting only and

includes the uncertainty from the determination of the lattice spacing.

D-wave spin-dependent splittings

Here, I only calculated the Υ2(1D)− ηb(1D) splitting, using the E−− and T−+
2 represen-

tations as these two states do not mix and can be computed from the same heavy-quark

propagators.

My lattice results for the different ensembles are listed in Table 7.9. On the aml = 0.005

ensemble, I find the splitting in physical units to be 1.8±3.7 MeV where the error given is

statistical/fitting only and includes the uncertainty from the determination of the lattice

spacing. No experimental results are available.

7.2 Bottom hadrons

The results of the previous section demonstrate that the combination of lattice NRQCD

for the b quarks and the Iwasaki gluon / domain wall sea quark actions works well at this

lattice spacing. The next step is the calculation of heavy-light hadron masses on the same

gauge field configurations, using the domain wall action for the light valence quarks. Here,

the good chiral properties of the domain wall action will be very useful.

Presently, singly-bottom baryons are the focus of intense experimental and theoretical

study. The Λb is the first b-baryon discovered [144], followed more recently by the Σb and

Σ∗b [145] and the Ξb [146, 147]. As already mentioned at the beginning of this chapter,

there are two incompatible results for the mass of the most recent discovery, the Ωb baryon

[133, 134]. No baryons with more than one b quark have been observed so far, but they

may be discovered at the Large Hadron Collider.

A number of unquenched lattice calculations of bottom baryon masses have been done

recently [148, 149, 150, 151, 152]. It is important to perform independent determinations

of the same quantities with different lattice formulations in order to test universality, and

the combination of NRQCD heavy- and domain wall light quarks has not been used by

others. Compared to the static heavy-quark action, which was used in [149, 151, 152],

NRQCD has the advantage that it is not restricted to systems containing only a single
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b quark. Also, heavy-light spin splittings which would vanish in the static limit can be

calculated.

7.2.1 Quark propagators

For the calculation of heavy-light meson and baryon masses, I reuse the u/d and s valence

quark domain wall propagators that were computed (using Chroma [136]) and saved during

the static-light calculation in [151].

These light-quark propagators have gauge-invariant Gaussian-smeared sources, where

APE-smeared gauge links [153, 154] were used in constructing the source. For each of

these propagators I also compute a second propagator by smearing the sink in the same

way as the source1.

All calculations are done in the exact isospin limit mu = md ≡ ml. So far, I performed

the spectrum calculations only with the propagators on the aml = 0.005, ams = 0.04

ensemble, with valence quark masses equal to the sea quark masses. These quark masses

correspond to pion and kaon masses of about 330 and 580 MeV, respectively. Note that

not only the u/d quark mass but also the strange quark mass is too large; the physical

point corresponds to ams ≈ 0.034 [128].

I compute NRQCD bottom quark propagators for point sources (a Kronecker-delta in

position-, colour- and spin space) and Gaussian-smeared sources (without link smearing).

A Gaussian-smeared source is obtained by applying the operator(
1 +

σ

nS
∆(2)

)nS

(7.10)

to a point source. In (7.10), ∆(2) is the covariant lattice Laplacian defined in (A.12). I used

nS = 10 steps of smearing and set the width to σ = 1.0. I also computed sink-smeared

b-quark propagators, obtained by applying the operator (7.10) at the sink. The b-quark

mass is set to amb = 2.514, as obtained in Sec. 7.1.4.

In order to increase statistics, I compute hadron correlators directed both forward and

backward in time. The four-component NRQCD b-quark propagator in the nonrelativistic

Dirac gamma matrix-basis is given by

G(x, x′) = θ(τ − τ ′)

(
Gψ(x, x′) 0

0 0

)
− θ(τ ′ − τ)

(
0 0

0 Gξ(x, x′)

)
. (7.11)

Here, Gψ and Gξ may include the smearing operator (7.10) at source/and or sink.

1The Chroma input XML file for this procedure was provided by W. Detmold.
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Note that the light-quark propagators generated by the Chroma software are stored in

a chiral gamma matrix basis (the “DeGrand-Rossi” basis). Before combining them with

(7.11) to form hadron correlation functions, I convert the light-quark propagators to the

nonrelativistic Dirac gamma matrix basis (A.3) by means of a similarity transformation.

In the following, I shall denote the generic light-quark field (in the nonrelativistic Dirac

basis) by q and the bottom-quark field by

Q =

(
ψ

ξ

)
. (7.12)

7.2.2 B mesons

I use interpolating fields of the form q γ5 Q for the pseudoscalar B/Bs mesons and q γj Q

for the vector mesons B∗/B∗s . These fields may include the smearing types discussed in

Sec. 7.2.1.

Since all light-quark propagators Gq have a smeared source, there are two possibilities

for the meson source, which I denote as (L,s) and (S,s). Here, the capital letter denotes a

local (L) or smeared (S) source for the heavy quark; the lower-case letter similarly denotes

the source type for the light quark. At the sink, there are the four possibilities (L,s),

(S,s), (L,l), (S,l).

Thus, I perform (2 × 4)-matrix fits of the form (6.11), with four sets of amplitude

parameters corresponding to the smearings (L,s), (S,s), (L,l), (S,l). An example of

such a fit for the B meson is shown in Fig. 7.7. There, I also show an “effective-energy”

plot, where the effective-energy function is defined as

Eeff(τ + 1/2) = ln
(

C(τ)
C(τ + 1)

)
(7.13)

for a correlator C(τ). For large Euclidean time separation τ , this approaches the (un-

physical, i.e. shifted) ground-state energy. As can be seen in the figure, the various types

of smearing all behave similarly. Recall that no completely un-smeared correlators are

included here; these would behave very differently (with more contamination from excited

states).

My results for the hyperfine splittings in the B mesons are listed in Table 7.10. For

the conversion to physical units I used the result for the lattice spacing from Table 7.8.

The predicted hyperfine splittings agree well with the experimental values.

To compute the full hadron masses in a way that leads to only weak dependence on

the bare b quark mass, one can use the experimental value for the mass of e.g. the Υ(1S)
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a∆M

lattice

∆M (MeV)

lattice

∆M (MeV)

experiment

B∗ −B 0.0277(49) 48(9) 45.78(35)

B∗s −Bs 0.0280(21) 49(4) 46.1(1.5)

Table 7.10: Spin splittings in B mesons for aml = 0.005, ams = 0.04. Errors are statisti-

cal/fitting only. Experimental values from [83].

meson as an input parameter in the following way,

M = Elat. +
nb
2
(
MΥ

exp. − EΥ
lat.

)
, (7.14)

where nb denotes the number of b quarks in the hadron (nb = 1 for the B mesons considered

here) and Elat. denotes the energy in the lattice calculation.

The results for the full B meson masses computed using (7.14) are plotted together

with the experimental values in Fig. 7.8. As expected for the unphysical light-quark

masses aml = 0.005, ams = 0.04, the lattice results are found to be slightly above the

experimental results. Chiral extrapolations to the physical quark masses will be performed

in the future.

7.2.3 Singly-bottom baryons

For baryons containing a single b-quark and two light quarks q, q′, I use interpolating

fields of the form

OΓ q q′
α = εabc (CΓ)βγ qaβ q

′b
γ Q

c
α , (7.15)

where a, b, ... are colour indices running from 1 to 3 and α, β, ... are spinor indices running

from 1 to 4. In (7.15), C = γ0γ2 is the Euclidean charge-conjugation matrix and Γ is a

Dirac matrix that determines the total spin of the light degrees of freedom: Γ = γ5 for

Sl = 0 and Γ = γj for Sl = 1. The total spin of the light degrees of freedom becomes a

conserved quantum number in the static limit mb →∞.

Note that (Cγ5)T = −Cγ5 and (Cγj)T = Cγj . This implies

OΓ q′ q
α =

{
−OΓ q q′

α for Γ = γ5,

OΓ q q′
α for Γ = γj ,

(7.16)

and hence for q = q′ one must have Γ = γj and Sl = 1.

The singly-bottom baryons in the isospin limit and their interpolating operators are

listed in Table 7.11. Note that the operators with Γ = γj have an overlap with both the



7.2. Bottom hadrons 109

0 5 10 15 20

time

1e-09

1e-06

0.001

co
rr

el
at

or

(L,s)-(L,s)
(S,s)-(L,s)
(L,l)-(L,s)
(S,l)-(L,s)
(L,s)-(S,s)
(S,s)-(S,s)
(L,l)-(S,s)
(S,l)-(S,s)

0 5 10 15 20

time

0

0.2

0.4

0.6

0.8

1

1.2

ef
fe

ct
iv

e 
en

er
gy

(L,s)-(L,s)
(S,s)-(L,s)
(L,l)-(L,s)
(S,l)-(L,s)
(L,s)-(S,s)
(S,s)-(S,s)
(L,l)-(S,s)
(S,l)-(S,s)

Figure 7.7: Fit to a 2×4 matrix of correlators for the B meson, with nexp = 6 and τmin = 3.

The upper panel shows the correlator data and the fit functions. The lower panel shows

an effective-energy plot with the ground-state fit result.
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Figure 7.8: Masses of B mesons for aml = 0.005, ams = 0.04. The lines indicate the

experimental values [83].

Hadron(s) JP Sl Operator

Λb 1
2

+ 0 εabc (Cγ5)βγ qaβ q
′b
γ Q

c
α

Σb, Σ∗b
1
2

+
, 3

2

+ 1 εabc (Cγj)βγ qaβ q
′b
γ Q

c
α

Ξb 1
2

+ 0 εabc (Cγ5)βγ qaβ s
b
γ Q

c
α

Ξ′b, Ξ∗b
1
2

+
, 3

2

+ 1 εabc (Cγj)βγ qaβ s
b
γ Q

c
α

Ωb, Ω∗b
1
2

+
, 3

2

+ 1 εabc (Cγj)βγ saβ s
b
γ Q

c
α

Table 7.11: Interpolating fields for baryons containing a single b quark. Sl denotes the

total spin of the light degrees of freedom, which becomes a conserved quantum number

for mb →∞.
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J = 3
2 and J = 1

2 states. For the correlator Cjk(τ) with Γ = γj at the source and Γ = γk

at the sink one has at zero momentum and large τ > 0

Cjk(τ) = Z2
3/2 e

−E3/2 τ 1
2(1 + γ0)(δjk − 1

3γjγk) + Z2
1 e
−E1/2 τ 1

2(1 + γ0)1
3γjγk (7.17)

(see [155]). The J = 3
2 and J = 1

2 contributions can be disentangled by multiplying with

the projectors (δij − 1
3γiγj) and 1

3γiγj , respectively:

(δij − 1
3γiγj) Cjk(τ) = Z2

3/2 e
−E3/2 τ 1

2(1 + γ0)(δik − 1
3γiγk),

1
3γiγj Cjk(τ) = Z2

1 e
−E1/2 τ 1

2(1 + γ0)1
3γiγk. (7.18)

Note that for τ < 0, one has 1
2(1− γ0) instead of 1

2(1 + γ0) in (7.18).

For the singly-bottom baryons, I use the same type of smearing on both light quarks.

Thus, the baryon operators are classified in terms of their smearing in the same way as

the B meson operators in Sec. 7.2.2. Again, I perform (2× 4)-matrix fits. An example of

such a fit for the Λb baryon is shown in Fig. 7.9.

Table 7.12 lists the results for the heavy-light spin splittings. An experimental value

is known only for Σ∗b − Σb; my lattice result agrees with this but the statistical errors

are rather large. It is planned to increase statistics in the future by computing more

domain-wall propagators.

Results for the mass differences of the J = 1
2 singly-bottom baryons to the B/Bs/Λb

hadrons are listed in Table 7.13. To compute the absolute baryon masses, I compare two

different methods: (I) using the Υ(1S) mass via Eq. 7.14 with nb = 1 and (II) using the

B mass via

M = Esim. + nb
(
MB

exp. − EBsim.
)

(7.19)

with nb = 1. The results are plotted in Fig. 7.9. The hadron masses at the present unphys-

ically large values for the light quark masses tend to be slightly above the experimental

results. Taking into account the overall picture, my lattice result for the Ωb mass appears

to favour the CDF measurement [134] over the D/0 measurement [133]. Definitive conclu-

sions can only be made after chiral extrapolation, and, eventually, after the inclusion of

different lattice spacings and volumes (finite-volume effects are also known to increase the

energy).

Note that the Υ mass shows little dependence on the sea quark masses, while the B

has a light valence quark. Thus, (7.14) and (7.19) lead to very different chiral behaviour

of M , which likely explains the discrepancies between the two methods seen at the present

quark masses.
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Figure 7.9: Fit to a 2 × 4 matrix of correlators for the Λb baryon, with nexp = 6 and

τmin = 3. The upper panel shows the correlator data and the fit functions. The lower

panel shows an effective-energy plot with the ground-state fit result.
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a∆M

lattice

∆M (MeV)

lattice

∆M (MeV)

experiment

Σ∗b − Σb 0.014(14) 25(25) 21.2(2.0)

Ξ∗b − Ξ′b 0.0105(94) 18(16) −
Ω∗b − Ωb 0.0108(59) 19(10) −

Table 7.12: Heavy-light spin splittings in singly-bottom baryons for aml = 0.005, ams =

0.04. Errors are statistical/fitting only. The experimental value for Σ∗b − Σb is from [83].

a∆M

lattice

∆M (GeV)

lattice

∆M (GeV)

experiment

Λb −B 0.235(20) 0.408(36) 0.3410(16)

Σb −B 0.350(17) 0.608(31) 0.5286(27)

Ξb −B 0.320(14) 0.556(25) 0.5132(30)

Ξ′b −B 0.407(10) 0.708(21) −
Ωb −B 0.4589(79) 0.798(18) 0.7752(69)

Λb −Bs 0.190(21) 0.330(36) 0.2539(17)

Σb −Bs 0.305(17) 0.530(31) 0.4415(28)

Ξb −Bs 0.275(14) 0.478(25) 0.4261(31)

Ξ′b −Bs 0.362(10) 0.630(20) −
Ωb −Bs 0.4141(68) 0.720(16) 0.6881(69)

Σb − Λb 0.115(23) 0.200(40) 0.1876(31)

Ξb − Λb 0.085(15) 0.148(27) 0.1722(34)

Ξ′b − Λb 0.172(22) 0.300(38) −
Ωb − Λb 0.224(21) 0.390(37) 0.4342(71)

Table 7.13: Mass differences of the J = 1
2 singly-bottom baryons to the B/Bs/Λb for

aml = 0.005, ams = 0.04. Errors are statistical/fitting only. Experimental values from

[83] and [134].
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Figure 7.10: Masses of singly-bottom baryons for aml = 0.005, ams = 0.04. The lines

indicate the experimental values [83, 133, 134]. The D/0 result [133] for the Ωb mass is

indicated in black; the CDF result [134] in red.
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Hadrons JP SQQ Operator

Ξbb, Ξ∗bb
1
2

+
, 3

2

+ 1 εabc (Cγj)βγ Qaβ Q
b
γ q

c
α

Ωbb, Ω∗bb
1
2

+
, 3

2

+ 1 εabc (Cγj)βγ Qaβ Q
b
γ s

c
α

Table 7.14: Interpolating fields for baryons containing two b quarks. SQQ denotes the

total spin of the heavy quarks.

a∆M

lattice

∆M (MeV)

lattice

∆M (MeV)

experiment

Ξ∗bb − Ξbb 0.0140(75) 24(14) −
Ω∗bb − Ωbb 0.0219(54) 38(9) −

Table 7.15: Heavy-light spin splittings in doubly-bottom baryons for aml = 0.005, ams =

0.04. Errors are statistical/fitting only.

7.2.4 Doubly-bottom baryons

For the doubly-bottom baryons, the role of the light and heavy quarks in (7.15) is inter-

changed. The interpolating fields for the doubly-bottom baryons are listed in Table 7.14.

As for the singly-bottom baryons, I use the spin projection (7.18) to separate the J = 1
2

and J = 3
2 states. The energy splittings between these are listed in Table 7.15.

I also use the same smearing for both heavy quarks. A (2 × 4)-matrix fit for the Ωbb

is shown in Fig. 7.11. As can be seen in the effective-energy plot, there is now a more

significant difference between the correlators with and without smearing for the heavy

quarks. This is expected, as the two heavy quarks can be excited in a similar way as in

bottomonium.

Again, I use both methods (7.14) and (7.19) to compute the absolute hadron masses.

The results are shown in Fig. 7.12. Here, the differences between the two methods (7.14)

and (7.19) for the unphysical quark masses are enhanced since nb = 2.
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Figure 7.11: Fit to a 2 × 4 matrix of correlators for the Ωbb baryon, with nexp = 6 and

τmin = 3. The upper panel shows the correlator data and the fit functions. The lower

panel shows an effective-energy plot with the ground-state fit result.
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Figure 7.12: Masses of doubly-bottom baryons for aml = 0.005, ams = 0.04.

7.2.5 The Ωbbb baryon

For the Ωbbb baryon, I use interpolating operators of the form

εabc (Cγj)βγ Qaβ Q
b
γ Q

c
α. (7.20)

The only physical state is the one with J = 3
2 .

As the Ωbbb baryon does not contain light valence quarks, the dependence on the

light sea quark masses is expected to be weak once these are light enough, similarly to

bottomonium. Thus, Eq. (7.14) is the better method for computing the absolute mass of

the Ωbbb, and no chiral extrapolation is required.

Also, since NRQCD is computationally cheap, one can go to very high statistics with

little cost. A plot of a (2× 2)-matrix correlator from about 105 NRQCD propagators on

the aml = 0.005, ams = 0.04 ensemble is shown in Fig. 7.13. As can be seen, the signal is

very good. The (unphysical) energy obtained from the fit is

aEΩbbb
= 0.5527(12). (7.21)

I also computed a high-statistics Υ correlator from the same propagators. Fitting it gives

aEΥ(1S) = 0.29786(20). (7.22)
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Figure 7.13: Fit to a 2 × 2 matrix of correlators for the Ωbbb baryon, with nexp = 6 and

τmin = 3. The upper panel shows the correlator data and the fit functions. The lower

panel shows an effective-energy plot with the ground-state fit result.
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Reference Method MΩbbb
(GeV)

This work lattice QCD 14.3748(33)

[156] bag model 14.30

[157] variational method 14.37(08)

[158] bag model 14.276

[159] relativistic quark model 14.569

[160] sum rules 13.28(10)

Table 7.16: Comparison of my lattice QCD result for the Ωbbb mass to various results

from continuum models. The error on my lattice result is statistical/fitting only. See the

references given in the table for the details of the errors quoted for the continuum results.

Using the bootstrap method to properly take into account correlations between the Ωbbb

and the Υ energies, Eq. (7.14) then leads to

MΩbbb
= 14.3748(33) GeV, (7.23)

where the error is statistical only and includes the uncertainty in the lattice spacing (the

latter was taken from Table 7.8). To my knowledge, this is the first lattice QCD calculation

of the Ωbbb mass.

The Ωbbb mass has been estimated before using various continuum methods. In Table

7.16 I compare my result to these estimates. I find excellent agreement with the value from

the variational method given in [157]. The other results are also close, with the notable

exception of [160], where QCD sum rules were used.

The production of the Ωbbb at hadron colliders has been studied in [161, 162]. For the

LHC at
√
s = 14 TeV, the integrated cross section for direct fragmentation production

b→ Ωbbb was estimated to be about 8 pb.
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Chapter 8

Rare B decays

The tests described in Chapter 6 demonstrate the good properties of moving NRQCD. In

the following I show how mNRQCD can be applied to the calculation of form factors for

B decays and present numerical results.

The interactions with W and Z bosons as well as top quarks are effects at very short

distances and can be described by an effective weak Hamiltonian. This method is intro-

duced in Sec. 8.1, where the “tree-level” decay B → π`ν and the rare decay B → K∗γ

are considered as examples. The phenomenology of rare decays is rather complex and a

complete discussion is beyond the scope of this work. Certain long-distance contributions

to rare B decays, which are mentioned in Sec. 8.2, can not be calculated directly in lattice

QCD. However, one can choose regions of q2 where these effects are suppressed. The dom-

inant contributions to the semileptonic and radiative decays then come from operators

whose matrix elements can be computed directly in lattice QCD.

These matrix elements are conveniently parametrised in terms of Lorentz-invariant

functions called form factors. After giving the definitions of the complete set of B semilep-

tonic form factors in Sec. 8.3, I show how they can be extracted from Euclidean correlation

functions in Sec. 8.4.

For the lattice calculation, the heavy-light current in the weak Hamiltonian has to

be expressed in terms of the lattice quark fields. This requires the inclusion of several

operators multiplied by appropriate matching factors, as discussed in Sec. 8.5.

For a given q2, the boost velocity v in the moving NRQCD action should be chosen

such that discretisation errors are minimised. Estimates of the optimal choice for v are

shown in Sec. 8.6. Independently of discretisation errors, the heavy-quark effective field

theory description of the decay becomes less accurate at low q2, when the momentum

transfer is no longer small compared to mb. This is discussed in Sec. 8.7.
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I then describe in detail the calculation of the two-point and three-point functions with

mNRQCD heavy- and staggered light quarks in Sec. 8.8. All constructions are performed

for both point- and random-wall sources. The aim of the random-wall source method is

to reduce statistical errors. I show in extensive numerical studies to what extent this is

possible for the calculation of heavy-to-light decays. Particular emphasis is placed on the

analysis of different fitting methods.

Finally, after briefly demonstrating in Sec. 8.9 the contributions of the various operators

in the heavy-light current, I present some preliminary form factor results in Sec. 8.10.

8.1 Weak Decays of B Mesons in the Standard Model

8.1.1 Electroweak interactions of quarks

The Lagrange density for the interactions between the quarks and the electroweak gauge

bosons W±, Z and A in the Standard Model has the following form (see e.g. [163, 164]):

Lq.,e.w. = − g2

2
√

2

(
JµWµ + Jµ†W †µ

)
− g2 sin θW Jµe.m.A

e.m.
µ − g2

2 cos θW
Jµn.Zµ , (8.1)

with the charged weak current

Jµ =
(
u c t

)
γ̂µ(1− γ̂5) V


d

s

b

 , (8.2)

the electromagnetic current,

Jµe.m. = −1
3
(
d s b

)
γ̂µ


d

s

b

+
2
3
(
u c t

)
γ̂µ


u

c

t

 , (8.3)

and the weak neutral current

Jµn. = −1
2
(
d s b

)
γ̂µ
(

1− γ̂5 −
4
3

sin2 θW

) 
d

s

b



+
1
2
(
u c t

)
γ̂µ
(

1− γ̂5 −
8
3

sin2 θW

) 
u

c

t

 . (8.4)
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In the charged weak current (8.2), the Cabibbo-Kobayashi-Maskawa matrix

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (8.5)

gives rise to a mixing between the quark flavours. In the Standard Model, V is unitary,

V † V = 1. After absorbing unobservable phase factors into the definition of the quark

fields, 4 free real parameters remain in V . These are three mixing angles and one CP-

violating phase. It is known from experiments that V is close to unity; see [83] for the

currently known values of the CKM matrix elements and their uncertainties.

Note that the electromagnetic and weak neutral currents (8.3), (8.4) do not change the

quark flavour, and therefore transitions within up-type or within down-type quarks like

b→ s do not appear at tree-level.

8.1.2 Effective weak Hamiltonians

When describing weak decays of hadrons, it is very useful to separate the short-distance

weak interactions from the non-perturbative long-distance dynamics of the hadrons. The

heavy W and Z bosons as well as the top quark can be integrated out of the theory, and

their effects are then described by new local operators On involving the lighter degrees of

freedom. The resulting effective Hamiltonian has the general structure

Heff =
4GF√

2

∑
n

V n
CKM Cn(µ)On, (8.6)

where Cn(µ) are the scale- and renormalisation scheme dependent short-distance coeffi-

cients (Wilson coefficients), and V n
CKM stands for the product of CKM matrix elements

involved in the weak interactions which yield the effective operator On.

The general method to derive the effective Hamiltonian is the operator product ex-

pansion. In addition, one must use renormalisation-group methods to evolve the Wilson

coefficients from the scale µ ∼ mW to the scale appropriate to the process under consid-

eration, e.g. µ = mb for B decays. For the details, see for example [165, 166].

The operator product expansion can be done in perturbation theory, since asymptotic

freedom implies that the QCD coupling is weak at µ ∼ mW . The non-perturbative

aspect of the hadron decay then appears in the calculation of the low-energy QCD matrix

element 〈On〉µ, and this is what can be done on the lattice. Note that the scale- and

scheme dependence of this matrix element is cancelled by the corresponding dependence

of the Wilson coefficients Cn(µ), provided that the same renormalisation scheme and scale
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is used for both calculations. This means that the lattice results must be converted to the

continuum scheme by an appropriate matching calculation (cf. Sec. 8.5).

8.1.3 The decay B → π`ν

We will now consider the semileptonic decay B → π`ν, from which the magnitude of

the CKM matrix element Vub can be determined. Recent experimental results have been

published in [12, 13, 14].

The effective Hamiltonian for b → u e− ν̄e results from the Feynman diagrams shown

in Fig. 8.1.

Figure 8.1: Tree-level Feynman diagram contributing to b→ u e− ν̄e

Integrating out the W boson gives the well-known current-current interaction

Heff = Vub
GF√

2
C(µ) uγ̂µ(1− γ̂5)b eγ̂µ(1− γ̂5)νe (8.7)

where GF =
√

2g2
2/(8m

2
W ), and up to small loop corrections one has C(µ) = 1. Since the

mesons in the initial and final state are both pseudoscalars, only the vector current uγ̂µb

contributes to the hadronic matrix element. The latter can be parametrised by two form

factors f+ and f−, or equivalently f+ and f0, as follows:

〈π(p′)| uγ̂µb |B(p)〉 = f+(q2)
[
pµ + p′µ

]
+ f−(q2) qµ

= f+(q2)
[
pµ + p′µ −

M2
B −M2

π

q2
qµ
]

+ f0(q2)
M2
B −M2

π

q2
qµ,

(8.8)

with q ≡ p− p′. Neglecting the lepton masses, the differential decay rate is given by [167]

dΓ
dq2

=
G2
F |Vub|2

192π3M3
B

[
(M2

B +M2
π − q2)2 − 4M2

BM
2
π

]3/2
|f+(q2)|2. (8.9)

Hence, to determine |Vub| from the exclusive measurement of this decay rate, the non-

perturbative hadronic matrix element 〈π(p′)| uγ̂µb |B(p)〉 must be calculated. Two recent

unquenched lattice QCD calculations are [11] and [168]. Both works make use of the

ASQTAD action for the light quarks. For the b quark, lattice NRQCD was used in [11],

while the Fermilab action (cf. Sec. 2.8) was used in [168].
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8.1.4 The decay B → K∗γ

Among the rare decays, the decay B → K∗γ (first observed by the CLEO collaboration

[15]) is the one with the most precise experimental results available [17, 16, 18]. As a

loop-mediated flavour-changing neutral current process it is suppressed in the Standard

Model, and therefore very sensitive to possible new physics contributions (see for example

[169, 170, 171, 172, 173, 174, 175, 176]).

Figure 8.2: Example of a one-loop diagram contributing to O7

The effective weak Hamiltonian relevant to this radiative decay can be written in the

following form,

Heff = −VtbV ∗ts
4GF√

2

8∑
n=1

Cn(µ)On, (8.10)

where O1, ..., O6 are 4-quark operators, O7 is an electromagnetic and O8 is a chromomag-

netic dipole operator [177]. The CKM-matrix dependence has been factored out globally,

neglecting Vub ∼ 0 and using unitarity to replace VcbV ∗cs by −VtbV ∗ts.
The dominant short-distance contribution to B → K∗γ is due to the electromagnetic

dipole operator

O7 =
e

16π2
mb JµνF

µν
(e.m.) with Jµν = s̄σµν

1 + γ̂5

2
b, (8.11)

where σµν = i
2 [γ̂µ, γ̂ν ]. An example of a one-loop Feynman diagram contributing to O7 is

shown in 8.2.

As derived in Sec. B.1, the hadronic matrix element of the tensor current Jµν in O7

can be parametrised as follows:

qν〈K∗(p′, ε)|Jµν |B(p)〉 = 2 T1(q2) εµνρσ ε∗ν pρ p′σ

+i T2(q2)
[
ε∗µ (M2

B −M2
K∗)− (ε∗ · q)(p+ p′)µ

]
+i T3(q2) (ε∗ · q)

[
qµ −

q2

M2
B −M2

K∗
(p+ p′)µ

]
(8.12)
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where q = p−p′ and ε is the polarisation vector of the K∗ meson. For the physical on-shell

photon, one has q2 = 0. Note that T1(0) = T2(0).

In Sec. B.2 I give a derivation of the decay rate, with the result

Γ(B → K∗γ) =
α G2

F

8π4
C7(µ)2|VtbV ∗ts|2m2

bM
3
B

(
1−

M2
K∗

M2
B

)3

|T1(0)|2. (8.13)

Here, the contributions from the operators other than O7 are neglected. These contribu-

tions will be discussed in Sec. 8.2.

So far, there are no unquenched lattice QCD calculations of the form factors for B →
K∗γ by other groups. Quenched calculations can be found [178, 179, 180, 181, 182, 183,

184]. In these works, the b quark was implemented with Wilson-like actions, so that mb

had to be unphysically small. The form factors were then extrapolated in mb to the

physical value. The precise form of the functional dependence on mb is unknown, which

leads to an additional systematic uncertainty.

8.2 More about b → s decays

Including also s `+`− final states, the effective Hamiltonian for b→ s transitions has the

form

Heff = −VtbV ∗ts
4GF√

2

10∑
n=1

Cn(µ)On (8.14)

with

O1 = (c̄bL γ̂
µ baL) (s̄aL γ̂µ c

b
L),

O2 = (c̄aL γ̂
µ baL) (s̄bL γ̂µ c

b
L),

O3 = (s̄aL γ̂
µ baL)

∑
q(q̄

b
L γ̂µ q

b
L),

O4 = (s̄aL γ̂
µ bbL)

∑
q(q̄

b
L γ̂µ q

a
L),

O5 = (s̄aL γ̂
µ baL)

∑
q(q̄

b
R γ̂µ q

b
R),

O6 = (s̄aL γ̂
µ bbL)

∑
q(q̄

b
R γ̂µ q

a
R),

O7 =
e

16π2
mb s̄

a
L σµν b

a
R F

µν
(e.m.),

O8 =
g

16π2
mb s̄

a
L σµν F

µν
ab b

b
R,

O9 =
e2

16π2
(s̄aL γ̂

µ baL)
∑

`(¯̀γ̂µ `),

O10 =
e2

16π2
(s̄aL γ̂

µ baL)
∑

`(¯̀γ̂µγ̂5 `). (8.15)
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Figure 8.3: Example of a Feynman diagram contributing to O2.

(see e.g. [177, 165, 185, 166]). Here,
∑

q denotes a sum over the quark flavours u, d, c, s, b

and
∑

` denotes a sum over the lepton flavours e, µ, τ . The indices a, b are colour indices

and are summed over from 1 to 3. Under renormalisation-group running from µ = mW

down to µ = mb, the operators mix and their coefficients change significantly.

The operator O7 was already discussed in Sec. 8.1.4. The operators O9 and O10 give

additional short-distance contributions for b→ s`+`−; they arise from box diagrams (with

two W boson propagators) and penguin diagrams (with a photon or Z decaying to the

lepton pair).

At leading order, the operator O2 is generated by the Feynman diagram shown in

Fig. 8.3, so that at this order C2(mW ) = 1. The operator O1, where the colour structure

is changed, is generated from this by QCD corrections and is thus loop-suppressed. In

principle, there are also operators analogous to O1 and O2, with the replacement c 7→ u.

However, since Vub ≈ 0 is neglected here, these are not included. For the same reason, we

also neglect weak annihilation in B± → K(∗)± decays.

The hadronic matrix elements of O2 can be sizable when the c̄c pair forms charmonium

resonances (see Figs. 8.4 and 8.5). This is a non-local effect and can not be calculated

directly on the lattice. The dominant resonances are the J/ψ(1S) and ψ(2S); their squared

masses are 9.591 GeV2 and 13.587 GeV2, respectively [83]. Thus, one should keep q2 away

from these values when comparing the theoretical results with experimental data. For

B → K∗γ, one has q2 = 0, which is far away from the resonances. The remaining effect

for B → K∗γ is small [186]. For B → K(∗)`` decays, one can work at large q2 (close to

q2max), which is also far away from the resonances, so that the long-distance effects are also

under control [187]. The lattice calculation works best at large q2 anyway.

The operators O3 ... O6 have very small Wilson coefficients and can be neglected. The

chromomagnetic tensor operator O8 may also lead to non-local contributions like the one

shown in Fig. 8.6. The contributions from O8 to B → K∗γ were estimated in [188] and
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Figure 8.4: Long-distance contribution from charmonium resonances via O2.

Figure 8.5: Effect of charmonium resonances on the differential decay rate (schematically).

Figure 8.6: Example for a spectator-quark contribution to B → K∗γ due to O8.
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found to be suppressed relative to O7 by a factor of (C8/C7)ΛQCD/MB ≈ 0.05. See also

[189] for a discussion of O8 for B → K∗`+`− decays.

Finally, note that the K∗ meson decays through the strong interaction into a pseu-

doscalar kaon and a pion. The width of the K∗ is about 50 MeV [83]. For the unphysically

large u- and d-quark masses used in the initial lattice calculations, the K∗ is stable. How-

ever, extrapolations to the physical quark masses will be complicated by threshold effects.

8.3 General definition of semileptonic form factors

As discussed in the previous section, the short-distance contributions for B → K∗γ and

B → K(∗)`` decays are due to the operators O7, O9 and O10. The hadronic matrix

elements of the bilinear heavy-light quark currents contained in these operators can be

parametrised by Lorentz-invariant form factors as follows (see e.g. [190]):

〈P (p′)|q̄γ̂µb|B(p)〉 = f+(q2)
[
pµ + p′µ −

M2
B −M2

P

q2
qµ
]

+f0(q2)
M2
B −M2

P

q2
qµ, (8.16)

qν〈P (p′)|q̄σµνb|B(p)〉 =
ifT (q2)

MB +MP

[
q2(pµ + p′µ)− (M2

B −m2
P )qµ

]
, (8.17)

〈V (p′, ε)|q̄γ̂µb|B(p)〉 =
2iV (q2)
MB +MV

εµνρσε∗ν p
′
ρpσ, (8.18)

〈V (p′, ε)|q̄γ̂µγ̂5b|B(p)〉 = 2MVA0(q2)
ε∗ · q
q2

qµ

+(MB +MV )A1(q2)
[
ε∗µ − ε∗ · q

q2
qµ
]

−A2(q2)
ε∗ · q

MB +MV

[
pµ + p′µ −

M2
B −M2

V

q2
qµ
]
, (8.19)

qν〈V (p′, ε)|q̄σµνb|B(p)〉 = 4 T1(q2)εµρκσε∗ρpκp′σ, (8.20)

qν〈V (p′, ε)|q̄σµν γ̂5b|B(p)〉 = 2iT2(q2)
[
ε∗µ(M

2
B −M2

V )− (ε∗ · q)(p+ p′)µ
]

+ 2iT3(q2)(ε∗ · q)
[
qµ −

q2

M2
B −M2

V

(p+ p′)µ

]
. (8.21)

A derivation of (8.20) and (8.21) is given in Sec. B.1.

8.4 Extraction of form factors from correlation functions

The matrix element 〈F (p′)|J |B(p)〉, where F denotes the final pseudoscalar (P ) or vector

(V ) meson, and J ∼ q̄ ΓJ b is the heavy-light quark current in the effective electroweak
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operator, can be extracted from the combination of the Euclidean 3-point function

CFJB(p′, p, x0, y0, z0) =
∑
y

∑
z

〈
ΦF (x) J(y) Φ†B(z)

〉
e−ip

′·(x−y)e−ip·(y−z) (8.22)

with the Euclidean two-point functions

CBB(p, x0, y0) =
∑
x

〈
ΦB(x) Φ†B(y)

〉
e−ip·(x−y), (8.23)

CFF (p′, x0, y0) =
∑
x

〈
ΦF (x) Φ†F (y)

〉
e−ip

′·(x−y). (8.24)

Here, ΦB ∼ q̄′γ̂5b and ΦF ∼ q̄′γ̂5q (F = P ), ΦF ∼ q̄′γ̂jq (F = V ).

In the following we write τ = |x0− y0| and T = |x0− z0|. As in Sec. 2.2, one can show

by inserting complete sets of states that at large τ , T , and T − τ , the correlation functions

become

CFJB(p′, p, τ, T ) → A(FJB)e−EF τ e−EB(T−τ), (8.25)

CFF (p, τ) → A(FF ) e−EF τ , (8.26)

CBB(p, τ) → A(BB) e−EBτ , (8.27)

where

A(FJB) =


√
ZV

2EV

√
ZB

2EB

∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| J |B(p)〉, F = V,

√
ZP

2EP

√
ZB

2EB
〈P
(
p′
)
| J |B(p)〉, F = P

(8.28)

A(BB) =
ZB
2EB

, (8.29)

A(FF ) =


∑
s

ZV
2EV

ε∗j (p
′, s)εj(p′, s), F = V (no sum over j),

ZP
2EP

, F = P.

(8.30)

Thus, the matrix elements 〈P (p′)|J |B(p)〉 and
∑

s εj(p
′, s) 〈V (p′, ε(p′, s)) |J |B(p)〉 can be

extracted from (8.28), once the factors ZB, ZF have been extracted from the two-point

functions (the energies EB, EF can be obtained from either the two-point or three-point

functions). Note that in Eqs. (8.28) and (8.29), EB denotes the full, physical energy of the

B meson; this is not equal to the energy obtained from the exponential decay in (8.25) or

(8.27) when an effective theory like mNRQCD is used for the b quark.

In the next sections I discuss briefly how the form factors can be extracted from the

matrix elements. I will only consider the case where all momenta point in x1-direction.
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Then, only certain combinations of operator indices and final state polarisations give non-

zero contributions (were appropriate, after contraction with qν . There are 21 combinations

in total (modulo the antisymmetry of σµν). They are listed in Table 8.1 together with the

form factors to which they contribute.

8.4.1 The form factors f0 and f+

First, at p = q = 0, we have from Eq. (8.16)

〈P (p′)|q̄γ̂0b|B̄(p)〉 = f0(q2max) [MB +MP ] , (8.31)

and hence

f0(q2max) =
〈P (p′)|q̄γ̂0b|B̄(p)〉

MB +MP
. (8.32)

For non-zero momentum transfer, we define r ≡ (q1, q0, 0, 0), so that r · q = 0. Then,

rµ〈P (p′)|q̄γ̂µb|B̄(p)〉 = f+(q2) r · (p+ p′). (8.33)

Hence, if q1 6= 0, the form factor f+(q2) can be calculated in the following way,

f+(q2) =
q1〈P (p′)|q̄γ̂0b|B̄(p)〉 − q0〈P (p′)|q̄γ̂1b|B̄(p)〉

q1(p0 + p′0)− q0(p1 + p′1)
. (8.34)

Once f+(q2) has been extracted, we obtain f0(q2) from Eq. (8.16) with µ = 0:

〈P (p′)|q̄γ̂0b|B̄(p)〉 = f+(q2)
[
p0 + p′0 −

M2
B −M2

P

q2
(p0 − p′0)

]
+ f0(q2)

M2
B −M2

P

q2
(p0− p′0).

(8.35)

This gives

f0(q2) =
〈P (p′)|q̄γ̂0b|B̄(p)〉 − f+(q2)

[
p0 + p′0 − M2

B−M
2
P

q2
(p0 − p′0)

]
M2

B−M
2
P

q2
(p0 − p′0)

, (8.36)

where p0 = EB, p′0 = EF .

8.4.2 The form factor fT

For momenta pointing in 1-direction, it is clear from Eq. (8.17) that only the matrix

element with σ10 = −σ01 is non-zero. Thus, we obtain

fT (q2) = −i(MB +MP )
(p0 − p′0)〈P (p′)|q̄σ10b|B̄(p)

q2(p1 + p′1)− (M2
B −m2

P )(p1 − p′1)
. (8.37)
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Gamma matrix in ΦF Gamma matrix in J </= Form factor(s)

γ̂5 γ̂0 < f+, f0

γ̂5 γ̂1 < f+, f0

γ̂5 σ01 = fT

γ̂2 γ̂3 = V

γ̂3 γ̂2 = V

γ̂0 γ̂0γ̂5 < A0, A1, A2

γ̂0 γ̂1γ̂5 < A0, A1, A2

γ̂1 γ̂0γ̂5 < A0, A1, A2

γ̂1 γ̂1γ̂5 < A0, A1, A2

γ̂2 γ̂2γ̂5 < A1

γ̂3 γ̂3γ̂5 < A1

γ̂3 σ02 < T1

γ̂2 σ03 < T1

γ̂3 σ12 < T1

γ̂2 σ13 < T1

γ̂2 σ02γ̂5 = T2

γ̂2 σ12γ̂5 = T2

γ̂3 σ03γ̂5 = T2

γ̂3 σ13γ̂5 = T2

γ̂0 σ01γ̂5 = T2, T3

γ̂1 σ01γ̂5 = T2, T3

Table 8.1: Operators required for form factor calculations with momenta in 1-direction.

The table also shows whether the real (<) or imaginary (=) part of the three-point function

is needed.
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8.4.3 The form factor V

Using the following spin sum for massive vector mesons,

3∑
s=1

εµ(p′, s)ε∗ν(p
′, s) =

(
gµν −

p′µp
′
ν

M2
V

)
, (8.38)

we obtain from Eq. (8.18)

∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| q̄γ̂µb |B̄(p)〉 =

2i V (q2)
MB +MV

εµνρσ
∑
s

εj(p′, s)ε∗ν(p
′, s) p′ρpσ

=
2i V (q2)
MB +MV

εµνρσ
(
gjν −

p′jp
′
ν

M2
V

)
p′ρpσ. (8.39)

If we now set µ = 2, we get

∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| q̄γ̂2b |B̄(p)〉 =

2i V (q2)
MB +MV

gj3 (p′0p1 − p′1p0), (8.40)

and we see that we need to set j = 3 in the three-point function. On the other hand, for

µ = 3, we need to set j = 2 in the three-point function. One can average over these two

cases to increase statistics.

8.4.4 The form factors A0, A1 and A2

Setting µ = 2 in (8.19), the only remaining contribution is from A1. Using (8.38), we get

∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| q̄γ̂2γ̂5b |B̄(p)〉 = (MB +MV )A1(q2)

∑
s

εj(p′, s)ε∗2(p′, s)

= (MB +MV )A1(q2)δ 2
j (8.41)

and we see that we can extract A1(q2) if we set j = 2 in the three-point function. For

µ = 3, we need to set j = 3 in the three-point function.

Next, using the vector r orthogonal to q, as before r = (q1, q0, 0, 0), we obtain
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rµ
∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| q̄γ̂µγ̂5b |B̄(p)〉

= (MB +MV )A1(q2)
∑
s

εj(p′, s)ε∗µ(p
′, s) rµ

− A2(q2)
MB +MV

r · (p+ p′)
∑
s

εj(p′, s)ε∗ν(p
′, s) qν

= (MB +MV )A1(q2)
(
gjµ −

p′jp
′
µ

M2
V

)
rµ

− A2(q2)
MB +MV

r · (p+ p′)
(
gjν −

p′jp
′
ν

M2
V

)
qν

= (MB +MV )A1(q2)
(
rj −

p′ · r
M2
V

p′j

)
− A2(q2)
MB +MV

r · (p+ p′)
(
qj −

p′ · q
M2
V

p′j

)
.

For momenta pointing in 1-direction, this is non-zero only for j = 1. Since A1(q2) is known

from (8.41), we can now extract A2(q2).

Finally, A0(q2) can be extracted by looking at the matrix element for µ = 0 or µ = 1

and subtracting the now known contributions from A1 and A2.

8.4.5 The form factors T1, T2 and T3

We first consider T1. Using the spin sum (8.38), we obtain from Eq. (8.20)

qν
∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| q̄σµνb |B̄(p)〉 = 4 T1(q2)εµρκσ

3∑
s=1

εj(p′, s)ε∗ρ(p′, s)pκp′σ

= 4 T1(q2)εµρκσ

(
δ ρ
j −

p′jp
′ρ

M2
V

)
pκp′σ.

(8.42)

For µ = 2, Eq. (8.42) becomes∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| q̄(q0σ20 + q1σ21)b |B̄(p)〉 = 4 T1(q2)δ 3

j (p0p′1 − p1p′0), (8.43)

and we see that we need to set j = 3 in the three-point function to extract T1. (for µ = 3,

set j = 2).

Next, in order to extract T2, we set µ = 2 (or µ = 3) in Eq. (8.21), such that there is no
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contribution from T3. This gives∑
s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| q̄(q0σ20 + q1σ21)γ̂5b |B̄(p)〉

= 2i T2(q2)(M2
B −M2

V )
3∑
s=1

εj(p′, s)ε∗2(p
′, s)

= 2i T2(q2)(M2
B −M2

V ) gj2, (8.44)

and we see that we need to set j = 2 in the three-point function (or j = 3 for µ = 3).

Finally, T3(q2) can be extracted by setting µ = 0 or µ = 1 and subtracting off the now

known contributions from T1 and T2.

8.5 Matching of heavy-light currents

To compute the three-point function (8.22) on the lattice, the continuum QCD current

J = q̄ ΓJ b must be replaced by a lattice version. Since we use moving NRQCD for the

b quark, we can use the field redefinition (3.74) to express the QCD field in terms of the

mNRQCD field.

Depending on the time-ordering in the correlation function, we need either the upper-

or lower-component mNRQCD fields for the heavy quark:

Ψ(+)
v =

(
ψv

0

)
, Ψ(−)

v =

(
0

ξv

)
. (8.45)

The tree-level current then is

J =
1
√
γ
q̄ ΓJ S(Λ) TFWT ADt

Ψ(±)
v , (8.46)

where, to order 1/m,

TFWT = 1 +
iγ̂jΛµjDµ

2m
, (8.47)

ADt
= 1 +

i

4γm
γ̂0
[
(γ2 − 1)D0 + (γ2 + 1)v ·D

]
. (8.48)

In (8.46), we have removed the factor of e−im u·x γ̂0
in the field redefinition, which corre-

sponds to the tree-level shift in the four-momentum1

1At first sight, this procedure seems invalid since there are derivative operators on the left-hand
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Next, in order to simplify Eq. (8.53) further, we use the relation

S(Λ) γ̂j S(Λ) = (Λ−1)j ν γ̂
ν (8.49)

to commute the spinorial boost matrix through TFWT:

S(Λ) TFWT =

(
1 +

iΛµj(Λ
−1)j ν γ̂νDµ

2m

)
S(Λ)

=

(
1 +

i
[
δµν − Λµ0(Λ

−1)0 ν
]
γ̂νDµ

2m

)
S(Λ)

=
(

1 +
i [δµν − uµuν ] γ̂νDµ

2m

)
S(Λ). (8.50)

Note that γ̂0 Ψ(±)
v = ±Ψ(±)

v . Thus, we get

J =
1
√
γ
q̄ ΓJ

(
1 +

i
[
/D − /u (u ·D)

]
2m

± i

4γm
[
(γ2 − 1)D0 + (γ2 + 1)v ·D

])
S(Λ) Ψ(±)

v .

(8.51)

This still contains time derivatives, which is inconvenient for the lattice computation. To

eliminate these, we use the leading-order equations of motion

D0 Ψv = −v ·D Ψv (8.52)

and obtain

J =
1
√
γ
q̄ ΓJ Ψ(±)

v +
1
√
γ
q̄ ΓJ

(
−iγ̂0v ·D + iγ̂ ·D

2m
± iv ·D

2γm

)
S(Λ) Ψ(±)

v

=
1
√
γ
q̄ ΓJ Ψ(±)

v +
1

2m
√
γ
q̄ ΓJ

(
−iγ̂0v + iγ̂ ± iv/γ

)
·D S(Λ) Ψ(±)

v . (8.53)

On the lattice, the continuum covariant derivative D has to be replaced by a discrete

version ∆. I use the symmetric derivative defined in (A.11).

As before, I use the ASQTAD action for the light quark q. This means that the field

q has to be expressed in terms of the staggered field χq.

side of the factor e−im u·x γ̂0
. However, this factor can in fact be moved to the left of TFWT ADt

without further changes, for the following reason:

Let us go back to the non-moving case. Equation (3.16) contains a factor of e−imx0γ̂0
. Using

γ̂0 Ψ̃(±) = ±Ψ̃(±), we can replace this by the c-number e±imx0
.

Now, since the FWT transformation in the non-moving case does not contain time derivatives,

the phase e±imx0
can be moved to the left of TFWT without any other change.

By doing the transition to non-zero velocity after this step, it follows that the factor e−im u·x γ̂0

can be moved to the left of TFWT ADt
also in the case v 6= 0.
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Eq. (8.53) does not yet include any radiative corrections. Calculations of radiative

corrections to the currents in mNRQCD have been performed by Eike Müller [114, 116]

and previously (for a slightly different action) by Lew Khomskii [113].

Due to the complexity of these calculations, radiative corrections have been computed

so far only for the first term in (8.53). The second term in (8.53) is suppressed by ΛQCD/mb

and can be included at tree-level (however, one has to define subtracted operators as will

be discussed later).

To see the effect of radiative corrections to the first term, note that the spinorial boost

is given explicitly by

S(Λ) = S+(Λ) =
1√

2(1 + γ)

[
(1 + γ)1− γ v · γ̂ γ̂0

]
. (8.54)

As can be seen, (8.54) contains a sum of two different Dirac structures; these will mix

under renormalisation. Thus, at order O(αs), one also needs to consider the combination

with the opposite sign:

S−(Λ) ≡ 1√
2(1 + γ)

[
(1 + γ)1+ γ v · γ̂ γ̂0

]
.

The lattice current through order O(αs) then reads

J (0) lat = (1 + αs c+) J (0)
+ + αs c− J

(0)
− , (8.55)

with

J
(0)
+ =

1
√
γ
q̄ Γ S+(Λ) Ψ(±)

v , J
(0)
− =

1
√
γ
q̄ Γ S−(Λ) Ψ(±)

v .

The matching coefficients c± in (8.55) are obtained by requiring that the matrix elements

in the lattice theory and in the continuum (MS scheme) are equal to order αs.

Results for the matching coefficients for the vector (Γ = γ̂µ) and tensor (Γ = σµν)

currents are shown in Figs. 8.7 and 8.8. These were obtained using automated tadpole-

improved one-loop lattice perturbation theory by Eike Müller [114, 116]. Here, the bare b

quark mass was set to amb = 2.8 and the boost-velocity is pointing in 1-direction. In the

figures, the different Lorentz indices of Γ are indicated as 0 (temporal), ‖ (parallel to v)

and ⊥ (perpendicular to v).

We would also like to include the tree-level O(ΛQCD/mb) correction

J
(1)
+ =

1
mb

1
√
γ
q̄ Γ

(−iγ̂0v + iγ̂ ± iv/γ) ·∆
2

S+(Λ) Ψ(±)
v (8.56)

to the lattice current. However, this operator mixes with the lower-dimension operators

J
(0)
± . As discussed in [191, 192, 11], one should use subtracted higher-order operators.

This requires the perturbative calculation of the mixing coefficients.
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Figure 8.7: Matching coefficients for the vector current, computed by Eike Müller [114,

116].
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Figure 8.8: Matching coefficients for the tensor current, computed by Eike Müller [114,

116]. The renormalisation scale is µ = mb.
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I have already computed the non-perturbative matrix elements of (8.56), so that I can

include them in the form factor results once the necessary mixing coefficients have been

calculated.

8.6 Reference frame choice

With moving NRQCD, a non-zero frame velocity is introduced with the objective of re-

ducing discretisation errors. The discretisation errors are determined by the momenta

carried by the quarks (and gluons) and are typically proportional to (a × momentum)2

where a is the lattice spacing. For the b quark described by lattice mNRQCD, the relevant

momentum in this relation is the residual momentum (see Sec. 3.3).

If the B meson is at rest, the residual momentum of the b quark has a distribution

with a width of the order ΛQCD (see Sec. 3.2.1) and the residual energy has a distribution

with width of the order Λ2
QCD/(2mb) � ΛQCD. Note that momentum conservation implies

that the spatial momentum of the light quark in the B meson (the “spectator quark”) has

a distribution with a width of the same order.

For a B meson moving with velocity v, the momentum distribution is boosted to

approximately γΛQCD. Let us now consider a decay B(p) → F (p′) where F denotes the

light meson in the final state and the 4-momenta are

p = (γMB, γMBv),

p′ = (
√
M2
F + |p′|2, p′),

where v is antiparallel to p′. For a given value of q2 = (p − p′)2, we shall determine the

optimal velocity of the B meson which minimises discretisation errors. The full lattice

mNRQCD action derived in Sec. 5 has no tree-level O(a2k2)-errors, but has O(αsa2k2)

errors due to radiative corrections. The same is true for highly improved light quark

actions such as the ASQTAD action [123, 124, 125] (which I use in this work), or the

HISQ action [84].

Thus, the increase in discretisation errors for the quarks in the B meson due to the

boost of the momentum distribution when going from zero velocity (γ = 1) to a non-zero

velocity v is proportional to

γ2Λ2
QCD − Λ2

QCD. (8.57)

Assuming that the quarks in the light meson share the momentum equally, each carrying

momentum of order p′/2, we expect that the increase in discretisation errors for the light
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Figure 8.9: Estimate of optimal velocity, minimising discretisation errors, for B → F form

factors (see text) as a function of q2 for the π, K and K∗ light mesons.

meson when going from zero momentum to p′ is proportional to

(
1
2 |p
′|
)2
. (8.58)

The total error is the sum of these terms with some coefficients that we presume are of

order unity. Investigation with various reasonable choices of coefficients shows that the

minimum total error is obtained when the terms (8.57) and (8.58) are approximately equal.

The velocity for which these two terms are equal is plotted as a function of q2 in Figure 8.9

for F = π, F = K and F = K∗. I find that at maximum recoil (q2 = 0) a velocity of

|v| ≈ 0.7 would minimise discretisation errors. Of course this is only a very crude estimate,

and the optimal velocity depends on the details of the lattice computation.

8.7 Heavy-quark expansion of the current

Even in continuum mNRQCD systematic errors for heavy-to-light decays increase when

going to lower q2, since the convergence of the heavy-quark expansion for the current

mediating the decay (cf. Sec. 8.5) gets worse. The heavy-quark expansion requires that all
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Figure 8.10: The ratio |p′(0)|/MB as a function of q2 for the π, K and K∗ light mesons.

momentum scales for the light degrees of freedom are small compared to the mass of the

heavy quark, which is approximately equal to the mass of the B meson, MB. In the low-

recoil regime, the only relevant scale is ΛQCD � MB, but for large recoil the momentum

of the light meson in the B rest frame is large.

The light meson energy in the B rest frame can be written in a Lorentz-invariant way

as

EF (0) =
p · p′

MB
=
M2
B +M2

F − q2

2MB
. (8.59)

The light meson momentum in this frame is then |p′(0)| =
√
E2
F (0) −M2

F . In Fig. 8.10, I

plot the ratio |p′(0)|/MB as a function of q2 for for the π, K and K∗ light mesons. This

ratio becomes almost 0.5 at q2 = 0, which has to be compared to ΛQCD/MB ≈ 0.1 in the

low-recoil limit.
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8.8 Two-point and three-point functions with random-wall

sources

In the following sections I give more details about the lattice techniques that I use to

calculate the correlation functions (8.22), (8.23), (8.24), and present numerical results.

In particular, I investigate the use of stochastic sources (random-wall sources), which

provide an approximation to the all-to-all correlators and can therefore potentially reduce

statistical errors. For the B → π`ν semileptonic decay in standard NRQCD (i.e. with the

B meson at rest), random-wall sources have been tested in Ref. [193]. I now generalise

this to include vector-meson final states and moving NRQCD, and also work at smaller

light-quark masses (closer to the physical point).

I performed the numerical calculations described in the following sections using the

same 400 “coarse” MILC gauge configurations as in Sec. 6. As before, I used the full

O(1/m2
b) mNRQCD action with amb = 2.8 and n = 2 for the b quarks, and the ASQTAD

action with amu = amd = 0.007 and ams = 0.04 for the light valence quarks.

Four source locations per gauge configuration were used, leading to a total of 1600

measurements. The light-quark propagators and light-meson correlators with random-

wall sources were generated by Zhaofeng Liu using the MILC code (see http://physics.

utah.edu/~detar/milc.html). I also thank Zhaofeng Liu for numerous discussions about

the fitting of the data. Lattice units are used in the remainder of this section.

8.8.1 Light meson two-point functions

For flavour-non-singlet light pseudoscalar mesons with 3-momentum p′, the two-point

function (with naive quarks) from a point source located at x is given by2

C55(τ = |y0 − x0|,p′) =
1
16

∑
y

Tr
[
γ̂5Gq(y, x)γ̂5Gq′(x, y)

]
e−ip

′·(y−x)

=
1
16

∑
y

Tr
[
Gq(y, x)G

†
q′(y, x)

]
e−ip

′·(y−x)

=
1
16

∑
y

Tr
[
Gχq(y, x) Ω†(x)Ω(x)︸ ︷︷ ︸

=1

G†χq′
(y, x) Ω†(y)Ω(y)︸ ︷︷ ︸

=1

]
e−ip

′·(y−x)

=
1
4

∑
y

Tr
[
Gχq(y, x)G

†
χq′

(y, x)
]
e−ip

′·(y−x). (8.60)

2All definitions of correlation functions and propagators in this and in the following sections are

understood to be on a single background gauge-field configuration. To obtain the full expectation

value, an average over the gauge configurations needs to be performed.

http://physics.utah.edu/~detar/milc.html
http://physics.utah.edu/~detar/milc.html
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The factor of 1/16 has been included to obtain the correct normalisation for a single taste.

To increase statistics, we would like to average (8.60) over all points x, i.e. perform

the sum 1
L3

∑
x. We shall refer to the two-point function obtained in this way as the exact

all-to-all two-point function.

The data from different source points are of course correlated with a correlation length

of 1/mπ, so one would expect a reduction in the statistical errors by a factor proportional

to
√
m3
πL

3.

Note that for every point x, the lattice Dirac equation would need to be solved again,

so the sum 1
L3

∑
x would increase the total computational cost by a factor of L3. This is

forbiddingly expensive. One solution is to only include a few points separated by about

1/mπ.

Another possibility is to compute a stochastic estimator of the exact all-to-all meson

two-point function, referred to in the following as the random-wall two-point function.

Stochastic methods have first been used to estimate all-to all quark propagators (see for

example [194]) and later also for meson correlation functions (using the “one-end trick”

[195]).

We define

G̃pχq
(y, x0,p′) =

∑
x

Gχq(y, x) ξ
p(x) eip

′·x, (8.61)

where ξp(x) is a vector in colour space (colour index not shown explicitly), with every

colour component at every spatial site an independent Z2 × Z2 random number. The

index p (not to be confused with the momentum) labels different random samples on a

given configuration; additionally it is understood that new random numbers are used on

every gauge configuration. The noise fields satisfy

1
nZ

nZ∑
p=1

ξp∗c (x)ξpd(z) ≈ δcdδx z, (8.62)

where nZ is the number of random samples (this relation becomes exact in the limit

nZ → ∞). Therefore, an approximation to the all-to-all pseudoscalar two-point function

can be obtained as follows:

C55,RW(τ,p′) =
1

4L3

1
nZ

nZ∑
p=1

∑
y

G̃pχq′
(y, x0,0)∗ · G̃pχq

(y, x0,p′)e−ip
′·y

≈ 1
4L3

∑
y,z,x

G∗χq′
(y, z)ab Gχq(y, x)ac δbc δx z e

ip·xe−ip
′·y

︸ ︷︷ ︸
=

1
4L3

∑
x,y

Tr
[
Gχq(y, x)G

†
χq′

(y, x)
]
e−ip

′·(y−x)

. (8.63)
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In practice, a small number nZ is sufficient; for the pseudoscalar meson two-point function

even nZ = 1 is sufficient to improve the signal compared to point sources.

However, note that for each non-zero value of the momentum p′, new inversions are

required. This is not the case for the point source correlator, where arbitrary momenta

can be computed without additional inversions.

For a flavour-non-singlet vector meson with interpolating field Φj = q̄′γ̂jq, the point-

source two-point function is given by

Cjj(τ,p′) =
1
16

∑
y

Tr
[
γ̂jGq(y, x)γ̂j γ̂5G

†
q′(y, x)γ̂5

]
e−ip

′·(y−x)

=
1
4

∑
y

Tr
[
Gχq(y, x)G

†
χq′

(y, x)
]
(−1)xj+yje−ip

′·(y−x), (8.64)

where the phase factor of (−1)xj+yj comes from the relation Ω†(x)γ̂5γ̂jΩ(x) = (−1)xj γ̂5γ̂j .

To obtain the random-wall correlator in this case, a factor of (−1)xj is added to the

stochastic source for the zero-momentum quark propagator; we define

G̃pχq′
(y, x0, j) =

∑
x

Gχq′ (y, x) ξ
p(x) (−1)xj . (8.65)

This means that additional inversions are required for the different polarisations j = 1, 2, 3.

The random-wall correlator is then

Cjj,RW(τ,p′) =
1

4L3

1
nZ

nZ∑
p=1

∑
y

G̃pχq′
(y, x0, j)∗ · G̃pχq

(y, x0,p′)(−1)yje−ip
′·y. (8.66)

Colour dilution

Dilution methods were originally introduced for all-to-all (quark) propagators, where they

can lead to a significant reduction in statistical errors [196].

Here we use colour dilution in combination with the one-end trick for the meson cor-

relation functions. With colour dilution, a Kronecker delta in colour space is introduced

in the stochastic source, i.e. ξpa(z) is changed to δa,a0ξ
p(z) for each source colour a0, where

ξp(z) does not have a colour index. Then for each colour a0 one needs to perform a

separate inversion and in Eqs. (8.63, 8.66) a sum over source colour has to be added.

In the following, I shall denote the random-wall source in combination with colour

dilution by “RWcd”. All numerical results for the random-wall correlators shown here

were obtained with the colour dilution method.
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Figure 8.11: Relative errors in the K meson two-point functions at p′ = 0.

Numerical results: K-meson two-point functions

Comparisons of the relative errors in the K meson two-point functions from point sources

and RWcd sources are shown in Fig. 8.11 (for p′ = 0) and Fig. 8.12 (for p′ = 2π/L ·
(−2, 0, 0)). As can be seen in the figures3, the errors are significantly smaller for the

RWcd source

At zero momentum, the CPU time used here for the two methods was the same; how-

ever, recall that for the random-wall source for each non-zero momentum new propagators

have to be computed with the phase eip
′·x inserted at the source.

I fit the kaon two-point functions with a function of the form

C( τ,p′) =
nexp−1∑
n=0

A2
n

[
e−Enτ + e−En(Lτ−τ)

]
+ (−1)τ+1

enexp−1∑
n=0

Ã2
n

[
e−

eEnτ + e−
eEn(Lτ−τ)

]
,

(8.67)

where the oscillating terms are required by the naive/staggered light-quark action. To

3Note that in contrast to the NRQCD heavy-meson correlation functions encountered so far,

the light-meson correlation functions are periodic in τ with a period of Lτ = 64, the temporal

extent of the lattice. This is due to the use of a relativistic action for the light quarks, which leads

to propagation both forward and backward in time across the lattice boundaries.
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Figure 8.12: Relative errors in the K meson two-point functions at p′ = 2π/L · (−2, 0, 0).

ensure the correct ordering of the states, I actually use the logarithms of the energy

differences, ln(En−En−1), ln(Ẽn−Ẽn−1) as the fit parameters. Also, I write the amplitudes

of the excited states (n > 0) as An = BnA0, Ãn = B̃n Ã0, and use the relative amplitudes

Bn, B̃n as the fit parameters.

Examples of Bayesian fits (cf. Sec. C.3) to the kaon two-point functions are shown

in Fig. 8.13 (for p′ = 0) and Fig. 8.14 (for p′ = 2π/L · (−2, 0, 0)). Note that at zero

momentum, the oscillating contributions are not detectable and one can set ñexp = 0. At

non-zero momentum, I always set ñexp = nexp.

I chose the priors for the relative amplitudes Bn to be 1 with a width of 2, and the

priors for the logarithms of the energy splittings to be (−1) with a width of 1. The fit

results from the ground-state energy and amplitude for range of values for nexp are listed

in Tables 8.3, 8.5, and 8.7. All fits are performed in the range τ = τmin ... (Lτ − τmin) with

τmin = 2. As can be seen in the tables, the results are stable for nexp & 5. I computed the

central values and errors given here using bootstrap, but they agree with those obtained

directly from the fit.

For comparison, I also show the results from unconstrained fits with nexp = 1 in Tables

8.2, 8.4, and 8.6 for a range of τmin. Here, one has to choose τmin sufficiently large so that
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the contributions from the excited states are negligible. However, the statistical uncer-

tainty of the fit results increases with τmin (especially at non-zero momentum). Usually,

one increases τmin until the change in the ground-state fit results becomes smaller than

the statistical errors. This is satisfied for τmin & 10.

At zero momentum, I find that the error for the ground-state amplitude from the

RWcd correlator is about 4 times smaller than the error from the point source correlator.

For the ground-state energy, the improvement factor is only about 1.5. Note that for

the point-source correlator, the central values for the ground-state amplitude obtained

from Bayesian and unconstrained fits differ by about 2 standard deviations. Additionally,

the central values for the ground-state amplitude differ between the two types of sources

(RWcd and point), most significantly in the Bayesian fits (3.3 standard deviations). This

is despite the apparent stability observed individually for the two methods4.

I find that the improvement in the ground-state fit results from the RWcd source

increases with the momentum. At p′ = 2π/L · (−2, 0, 0), the improvement factors are

about 7 for both the ground-state amplitude and energy. This is somewhat surprising,

given Figs. 8.11 and 8.12 for the relative errors in the correlation functions. However, note

that the fits take into account correlations between the data points at different τ , which

can be significant. Note that an increase with momentum in the improvement factor for

the light pseudoscalar mesons was also observed in [193] (with Bayesian fitting).

4Note that (inadvertently) different temporal boundary conditions for the light-quark propa-

gators were used for the two types of sources (periodic for the point source, antiperiodic for the

RWcd source). However, we expect the difference caused by this to be suppressed by e−mπLτ . For

the quark masses in use, mπLτ ≈ 12 so that e−mπLτ ≈ 6 · 10−6. Thus, it is unlikely that this can

explain the difference seen.
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Figure 8.13: Bayesian fit of the K meson two-point function (RWcd source) at p′ = 0.

The fit has τmin = 2 and nexp = 10, ñexp = 0.
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Figure 8.14: Bayesian fit of the K meson two-point function (RWcd source) at p′ =

2π/L · (−2, 0, 0). The fit has τmin = 2 and nexp = ñexp = 10.
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point source RWcd source

τmin E A χ2/d.o.f. E A χ2/d.o.f.

6 0.33989(23) 0.2759(18) 2.59 0.34030(15) 0.27980(32) 4.66

7 0.33951(23) 0.2753(19) 1.41 0.33979(16) 0.27869(34) 2.24

8 0.33931(23) 0.2745(19) 0.89 0.33949(16) 0.27783(36) 1.34

9 0.33924(24) 0.2745(19) 0.82 0.33935(17) 0.27733(38) 1.04

10 0.33924(24) 0.2745(19) 0.83 0.33926(17) 0.27705(41) 1.01

11 0.33914(25) 0.2744(19) 0.79 0.33922(18) 0.27688(44) 1.00

12 0.33910(25) 0.2742(19) 0.79 0.33923(19) 0.27692(48) 1.05

Table 8.2: Results from unconstrained fits to the K meson two-point function at p′ = 0.

All fits have nexp = 1, ñexp = 0. Central values and errors directly from fit.

point source RWcd source

nexp E A E A

4 0.33900(27) 0.2702(20) 0.33919(19) 0.27669(47)

5 0.33898(28) 0.2701(21) 0.33918(19) 0.27667(48)

6 0.33898(27) 0.2701(20) 0.33918(19) 0.27668(50)

7 0.33898(29) 0.2701(21) 0.33918(19) 0.27668(47)

8 0.33897(29) 0.2700(21) 0.33918(19) 0.27666(48)

9 0.33898(28) 0.2701(20) 0.33918(19) 0.27666(48)

10 0.33897(28) 0.2700(21) 0.33918(19) 0.27665(50)

Table 8.3: Results from Bayesian fits to the K meson two-point function at p′ = 0. All

fits have τmin = 2 and ñexp = 0. Central values and errors from bootstrap.
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point source RWcd source

τmin E A χ2/d.o.f. E A χ2/d.o.f.

6 0.4690(13) 0.2421(19) 2.18 0.46866(51) 0.24758(48) 3.63

7 0.4642(15) 0.2362(22) 1.43 0.46531(60) 0.24340(63) 1.71

8 0.4626(15) 0.2347(22) 1.34 0.46396(65) 0.24155(71) 0.99

9 0.4625(17) 0.2346(24) 1.38 0.46304(75) 0.24019(90) 0.90

10 0.4602(19) 0.2307(28) 1.21 0.46263(85) 0.2395(11) 0.90

11 0.4601(21) 0.2305(32) 1.33 0.46177(99) 0.2381(14) 0.87

12 0.4599(23) 0.2302(37) 1.22 0.4619(11) 0.2384(17) 0.91

Table 8.4: Results from unconstrained fits to the K meson two-point function at p′ =

2π/L · (−1, 0, 0). All fits have nexp = ñexp = 1. Central values and errors directly from fit.

point source RWcd source

nexp = ñexp E A E A

4 0.4571(37) 0.2206(68) 0.4617(10) 0.2374(17)

5 0.4570(40) 0.2200(75) 0.4615(12) 0.2369(19)

6 0.4570(41) 0.2201(81) 0.4616(11) 0.2372(17)

7 0.4569(42) 0.2197(80) 0.4615(11) 0.2368(17)

8 0.4571(42) 0.2202(78) 0.4616(11) 0.2371(18)

9 0.4571(42) 0.2201(80) 0.4616(11) 0.2373(18)

10 0.4569(43) 0.2195(86) 0.4615(11) 0.2369(19)

Table 8.5: Results from Bayesian fits to the K meson two-point function at p′ = 2π/L ·
(−1, 0, 0). All fits have τmin = 2. Central values and errors from bootstrap.
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point source RWcd source

τmin E A χ2/d.o.f. E A χ2/d.o.f.

6 0.732(14) 0.219(10) 1.10 0.7261(42) 0.2159(28) 1.10

7 0.693(21) 0.186(16) 1.01 0.7125(64) 0.2043(49) 0.97

8 0.722(40) 0.214(40) 1.02 0.716(10) 0.2081(90) 0.98

9 0.728(66) 0.221(78) 1.06 0.721(14) 0.213(14) 0.98

10 − − − 0.726(22) 0.219(25) 1.00

Table 8.6: Results from unconstrained fits to the K meson two-point function at p′ =

2π/L · (−2, 0, 0). All fits have nexp = ñexp = 1. Central values and errors directly from fit.

point source RWcd source

nexp = ñexp E A E A

4 0.682(23) 0.172(23) 0.7150(47) 0.2021(39)

5 0.677(30) 0.166(33) 0.7134(47) 0.2005(39)

6 0.677(32) 0.166(30) 0.7130(50) 0.2002(41)

7 0.676(32) 0.165(33) 0.7126(49) 0.1999(39)

8 0.676(32) 0.165(32) 0.7123(50) 0.1996(41)

9 0.674(34) 0.164(34) 0.7120(48) 0.1994(40)

10 0.677(29) 0.166(29) 0.7125(50) 0.1998(41)

Table 8.7: Results from Bayesian fits to the K meson two-point function at p′ = 2π/L ·
(−2, 0, 0). All fits have τmin = 2. Central values and errors from bootstrap.
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Numerical results: K∗-meson two-point functions

Comparisons of the relative errors in the K∗ meson two-point functions from point sources

and RWcd sources are shown in Fig. 8.15 (for p′ = 0) and Fig. 8.16 (for p′ = 2π/L ·
(−1, 0, 0)). Note that the results are averaged over the polarisation directions j = 1, 2, 3

(for p′ = 0) and j = 2, 3 (for p′ = 2π/L · (−1, 0, 0)). Recall that all polarisation direc-

tions (and momenta) can be obtained from the same point-source propagators, while new

random-wall propagators are required for every polarisation direction (and momentum).

Thus, at zero momentum, the CPU time used to compute the RWcd two-point function

was four times larger for the RWcd source compared to the point source. Despite the

additional CPU time, the improvement at zero momentum is smaller than that for the

pseudoscalar kaon.

Bayesian fits of the K∗ correlators using the function (8.67) with nexp = ñexp = 10 are

shown in Fig. 8.17 (for p′ = 0) and Fig. 8.17 (for p′ = 2π/L · (−1, 0, 0)). Note that in

contrast to the K meson, the oscillations are strong even at p′ = 0. The priors for the

energy splittings and the relative excited-state amplitudes were set to the same values as

in Sec. 8.8.1.

The results for the ground-state amplitude and energy from Bayesian fits with various

values of nexp and τmin = 1 are listed in Tables 8.9 and 8.11. In addition, results from

unconstrained fits with nexp = ñexp = 1 for a range of τmin are shown in Tables 8.8 and

8.10.

From the Bayesian fits, at zero momentum I find improvement factors of about 1.5

in the ground-state amplitude and about 1.5 in the ground-state energy. At p′ = 2π/L ·
(−1, 0, 0), these factors are about 2.5 and 4, respectively. For the Bayesian fits I used

bootstrap to compute the central values and errors. The errors directly from the fit (not

shown) tend to be larger (for the non-Bayesian fit, they agree with the bootstrap errors).

I found that the bootstrap results are more stable under changes of the prior widths than

the results directly from the fit.
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Figure 8.15: Relative errors in the K∗ meson two-point functions at p′ = 0.
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Figure 8.16: Relative errors in the K∗ meson two-point functions at p′ = 2π/L · (−1, 0, 0).
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Figure 8.17: Bayesian fit of the K∗ meson two-point function (RWcd source) at p′ = 0.

The fit has τmin = 1 and nexp = ñexp = 10.

0 10 20 30 40 50 60

time

1e-12

1e-09

1e-06

0.001

1

co
rr

el
at

or

K* meson, p=1·2π/L

Figure 8.18: Bayesian fit of the K∗ meson two-point function (RWcd source) at p′ =

2π/L · (−1, 0, 0). The fit has τmin = 1 and nexp = ñexp = 10.
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point source RWcd source

τmin E A χ2/d.o.f. E A χ2/d.o.f.

4 0.7091(47) 0.1217(14) 2.13 0.7183(19) 0.12476(53) 10.30

5 0.6675(65) 0.1060(21) 0.85 0.6689(28) 0.10703(88) 2.65

6 0.6508(80) 0.0992(28) 0.69 0.6504(34) 0.0998(11) 1.38

7 0.648(11) 0.0983(43) 0.70 0.6328(51) 0.0926(18) 1.02

8 0.655(15) 0.1017(68) 0.71 0.6244(63) 0.0890(24) 0.87

9 0.652(23) 0.100(11) 0.84 0.6183(88) 0.0862(36) 0.86

10 0.649(27) 0.098(14) 0.72 0.617(12) 0.0856(52) 0.91

Table 8.8: Results from unconstrained fits to the K∗ meson two-point function at p′ = 0.

All fits have nexp = ñexp = 1. Central values and errors directly from fit.

point source RWcd source

nexp = ñexp E A E A

4 0.638(10) 0.0924(39) 0.641(11) 0.0950(42)

5 0.636(10) 0.0912(41) 0.6257(67) 0.0887(29)

6 0.635(10) 0.0903(42) 0.6253(68) 0.0886(30)

7 0.634(10) 0.0899(39) 0.6246(76) 0.0882(35)

8 0.633(11) 0.0895(45) 0.6248(66) 0.0883(27)

9 0.633(10) 0.0894(38) 0.6249(58) 0.0886(23)

10 0.633(10) 0.0892(40) 0.6252(55) 0.0889(20)

Table 8.9: Results from Bayesian fits to the K∗ meson two-point function at p′ = 0. All

fits have τmin = 1. Central values and errors from bootstrap.
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point source RWcd source

τmin E A χ2/d.o.f. E A χ2/d.o.f.

4 0.8114(78) 0.1272(23) 1.99 0.8132(34) 0.12855(98) 3.15

5 0.765(11) 0.1098(34) 1.56 0.7685(54) 0.1126(17) 1.56

6 0.716(13) 0.0913(41) 1.14 0.7367(75) 0.1005(25) 1.08

7 0.728(20) 0.0962(75) 1.14 0.729(11) 0.0974(42) 1.08

8 0.723(31) 0.094(12) 1.18 0.699(15) 0.0850(55) 0.99

9 0.676(43) 0.074(16) 1.18 0.686(23) 0.0795(85) 1.01

10 0.712(68) 0.091(33) 1.18 0.669(30) 0.072(11) 1.03

Table 8.10: Results from unconstrained fits to the K∗ meson two-point function at p′ =

2π/L · (−1, 0, 0). All fits have nexp = ñexp = 1. Central values and errors directly from fit.

point source RWcd source

nexp = ñexp E A E A

4 0.703(21) 0.0846(72) 0.7220(11) 0.0931(35)

5 0.700(21) 0.0827(77) 0.7070(83) 0.0879(27)

6 0.699(19) 0.0824(69) 0.7060(80) 0.0877(25)

7 0.697(20) 0.0818(72) 0.7045(85) 0.0869(27)

8 0.696(20) 0.0814(71) 0.7049(83) 0.0872(24)

9 0.695(22) 0.0810(76) 0.7052(82) 0.0872(25)

10 0.697(21) 0.0816(74) 0.7055(84) 0.0873(24)

Table 8.11: Results from Bayesian fits to the K∗ meson two-point function at p′ = 2π/L ·
(−1, 0, 0). All fits have τmin = 1. Central values and errors from bootstrap.
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8.8.2 Heavy-light meson two-point functions

For B mesons, the point-source correlator (without smearing) is

CB(τ,k) =
∑
y

Tr
[
G†q′(y, x)Gb(y, x)

]
e−ip·(y−x)

=
1
γ

∑
y

Tr

[
G†χq′

(y, x) Ω†(y) S(Λ)

(
Gψv(y, x) 0

0 0

)
S(Λ) Ω(x)

]
e−ik·(y−x),

(8.68)

for τ = y0 − x0 > 0. Here we have used Eq. (6.24) to express Gb(y, x) in terms of the

moving-NRQCD propagator.

In order to obtain the random-wall correlator, we define

G̃pH(y, x0,k) =
∑
x

(
Gψv(y, x) 0

0 0

)
S(Λ) eik·x Ω(x) ξp(x). (8.69)

We then combine this with the zero-momentum random-wall light-quark propagator from

the same ξp to obtain the B meson random-wall correlator:

CB,RW(τ,k) =
1
γ

1
L3

1
nZ

nZ∑
p=1

∑
y

G̃pχq′
(y, x0,0)∗ · tr

[
Ω†(y)S(Λ)G̃pH(y, x0,k)

]
e−ik·y. (8.70)

In (8.70), “tr” denotes a trace over spinor indices only.

I also compute correlators with gauge-invariant Gaussian smearing for the heavy quark

at the source and/or sink. The smearing is performed via the operator(
1 +

σ

nS
∆(2)

)nS

, (8.71)

where ∆(2) is a covariant lattice Laplacian and σ, nS are the smearing parameters. The

operator (8.71) is inserted in Eq. (8.69) to the left of Ω(x) ξp(x) (for source smearing)

and/or to the left of Gψv(y, x) (for sink smearing).

Numerical results: B meson two-point functions

Figures 8.19 and 8.20 show comparisons of the relative errors (RWcd source vs point

source) in the B meson two-point functions (without smearing) at k = 0, v = 0 and at

k = 0, v = (0.4, 0, 0). As can be seen in the figures, the improvement depends strongly

on the separation τ between source and sink, and becomes small at large τ .

I performed fits to (2× 1)-matrix correlators with smeared sources and both local and

smeared sinks using a function of the form (6.31) with nexp = ñexp. As for the light-meson
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two-point functions, here I also used the logarithms of the energy splittings and the relative

amplitudes for the excited states as the fit parameters. I set the priors for the former to

(−1) with a width of 1 and for the latter to 0.5 with a width of 2.

Plots of Bayesian fits with τmin = 2 and nexp = ñexp = 10 are shown in Figs. 8.21 and

8.22. For the Bayesian fits of the B meson correlators, I show results both directly from

the fit and from bootstrap in Tables 8.14, 8.15, 8.16, and 8.17.

At v = 0, the errors from the Bayesian fits are larger for the RWcd source compared

to the point source, while the errors from the unconstrained fits are slightly smaller for

the RWcd source.

At v = (0.4, 0, 0), the situation is very different, albeit strongly dependent on the data-

analysis method used. With Bayesian fitting and error estimates from bootstrap, I find

improvement factors of about 3 for the ground-state energy and about 2 for the ground-

state amplitude from the RWcd source. However, from the same fits I see no improvement

when considering the errors directly from the fits.

With unconstrained fits, where I see agreement between the direct and the bootstrap

results, no significant improvement is observed for the RWcd source compared to the point

source, neither at v = 0 nor at v = (0.4, 0, 0).
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Figure 8.19: Relative errors in the B meson two-point functions (without smearing) at

k = 0, v = 0.
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Figure 8.20: Relative errors in the B meson two-point functions (without smearing) at

k = 0, v = (0.4, 0, 0).
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Figure 8.21: Bayesian fit of the B meson (2×1)-matrix correlator (RWcd source) at k = 0,

v = 0. The fit has τmin = 2 and nexp = ñexp = 10.
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Figure 8.22: Bayesian fit of the B meson (2×1)-matrix correlator (RWcd source) at k = 0,

v = (0.4, 0, 0). The fit has τmin = 2 and nexp = ñexp = 10.
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point source RWcd source

τmin E A χ2/d.o.f. E A χ2/d.o.f.

4 0.5776(18) 0.2386(12) 17.70 0.58702(98) 0.24617(58) 64.20

5 0.5603(21) 0.2242(15) 9.58 0.5565(14) 0.22229(90) 17.90

6 0.5396(26) 0.2068(19) 1.87 0.5430(18) 0.2095(13) 3.93

7 0.5426(32) 0.2092(26) 1.33 0.5315(24) 0.1990(19) 1.98

8 0.5362(41) 0.2022(36) 1.11 0.5292(31) 0.1963(27) 1.42

9 0.5260(53) 0.1911(49) 0.87 0.5223(42) 0.1891(40) 1.34

10 0.5243(67) 0.1890(68) 0.90 0.5184(54) 0.1842(53) 0.87

11 0.5308(84) 0.1975(96) 0.85 0.5152(75) 0.1802(79) 0.87

12 0.528(10) 0.193(13) 0.67 0.517(10) 0.183(12) 0.91

Table 8.12: Results from unconstrained fits to the B meson (2 × 1)-matrix correlator at

k = 0, v = (0.0, 0, 0). All fits have nexp = ñexp = 1. The local amplitude A is shown.

Central values and errors directly from fit.

point source RWcd source

τmin E A χ2/d.o.f. E A χ2/d.o.f.

4 0.5436(37) 0.2398(22) 4.69 0.5382(20) 0.2390(12) 9.28

5 0.5261(52) 0.2258(35) 4.30 0.5163(33) 0.2215(22) 7.11

6 0.5031(76) 0.2029(53) 1.09 0.5082(53) 0.2094(38) 0.96

7 0.499(11) 0.2001(88) 1.13 0.4994(87) 0.2019(68) 0.96

8 0.500(18) 0.199(16) 1.15 0.511(15) 0.212(14) 0.95

Table 8.13: Results from unconstrained fits to the B meson (2 × 1)-matrix correlator at

k = 0, v = (0.4, 0, 0). All fits have nexp = ñexp = 1. The local amplitude A is shown.

Central values and errors directly from fit.
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point source RWcd source

nexp = ñexp E A E A

4 0.5248(56) 0.1890(60) 0.512(11) 0.174(16)

5 0.5253(55) 0.1897(58) 0.512(11) 0.174(16)

6 0.5260(57) 0.1902(61) 0.513(10) 0.175(14)

7 0.5256(58) 0.1897(63) 0.513(10) 0.175(14)

8 0.5258(59) 0.1899(64) 0.5145(89) 0.178(12)

9 0.5259(58) 0.1900(63) 0.5136(96) 0.177(13)

10 0.5259(59) 0.1900(64) 0.5149(87) 0.178(11)

Table 8.14: Results from Bayesian fits to the B meson (2× 1)-matrix correlator at k = 0,

v = 0. All fits have τmin = 2. The local amplitude A is shown. Central values and errors

directly from fit.

point source RWcd source

nexp = ñexp E A E A

4 0.5245(55) 0.1866(72) 0.5113(90) 0.171(13)

5 0.5243(59) 0.1860(78) 0.5112(88) 0.172(12)

6 0.5251(55) 0.1876(71) 0.5117(77) 0.173(11)

7 0.5243(61) 0.1857(90) 0.5110(88) 0.171(12)

8 0.5248(55) 0.1867(75) 0.5107(88) 0.171(13)

9 0.5245(61) 0.1865(85) 0.5101(94) 0.170(14)

10 0.5248(58) 0.1871(74) 0.5109(72) 0.170(14)

Table 8.15: Results from Bayesian fits to the B meson (2× 1)-matrix correlator at k = 0,

v = 0. All fits have τmin = 2. The local amplitude A is shown. Central values and errors

from bootstrap.
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point source RWcd source

nexp = ñexp E A E A

4 0.491(13) 0.187(12) 0.498(10) 0.1955(95)

5 0.4918(99) 0.1883(82) 0.498(10) 0.1954(98)

6 0.4918(99) 0.1883(83) 0.498(11) 0.1954(99)

7 0.491(14) 0.187(12) 0.511(12) 0.196(12)

8 0.4919(99) 0.1883(83) 0.498(12) 0.196(12)

9 0.491(14) 0.187(12) 0.498(12) 0.196(12)

10 0.491(14) 0.187(12) 0.498(12) 0.196(12)

Table 8.16: Results from Bayesian fits to the B meson (2× 1)-matrix correlator at k = 0,

v = (0.4, 0, 0). All fits have τmin = 2. The local amplitude A is shown. Central values and

errors directly from fit.

point source RWcd source

nexp = ñexp E A E A

4 0.482(20) 0.193(11) 0.4966(72) 0.1943(66)

5 0.480(24) 0.195(14) 0.4971(77) 0.1949(66)

6 0.479(24) 0.197(16) 0.4974(73) 0.1951(69)

7 0.480(24) 0.196(14) 0.4973(78) 0.1955(74)

8 0.480(24) 0.197(15) 0.4973(76) 0.1955(74)

9 0.481(23) 0.195(14) 0.4973(78) 0.1957(76)

10 0.478(27) 0.195(16) 0.4973(81) 0.1949(74)

Table 8.17: Results from Bayesian fits to the B meson (2× 1)-matrix correlator at k = 0,

v = (0.4, 0, 0). All fits have τmin = 2. The local amplitude A is shown. Central values and

errors from bootstrap.
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Figure 8.23: Contractions for the three-point functions with point sources.

8.8.3 Heavy-light meson three-point functions

In terms of the standard Dirac propagators, the point-source three-point function at τ =

|x0 − y0|, T = |x0 − z0| is given by

CFJB(τ, T, p, p′) =
∑
y,z

e−ip
′·xe−i(p−p′)·yeip·z Tr

[
ΓF Gq(x, y) ΓJ Gb(y, z) γ̂5 Gq′(z, x)

]
,

(8.72)

where ΓF = γ̂5 for F = P and ΓF = γ̂j for F = V . See Fig. 8.23 for a diagram showing

the contractions. In (8.72) we used the simple form of the heavy-light current J = q̄ ΓJb.

When replacing the b quark propagator by the lattice mNRQCD propagator, the current

has to be replaced by the lattice current derived in Sec. 8.5. It is convenient to compute

and fit the three-point functions for the various terms in the lattice current individually.

Inserting the lattice current, the three-point function becomes

CFJB(τ, T, k, p′) =
1
γ

∑
y,z

e−ip
′·xe−i(k−p′)·yeik·z Tr

[
G†χq

(y, x) F (x) Ω†(y) γ̂5

× J

(
Gψv(y, z) 0

0 0

)
S(Λ) γ̂5 Ω(z)Gχq′ (z, x)

]
(8.73)

(for x0 > y0 > z0). In (8.73), we have F (x) = 1 for a pseudoscalar meson in the final

state and F (x) = (−1)xj γ̂j for a vector meson in the final state. The symbol J in (8.73)

denotes the gamma matrix / derivative operator content of the heavy-light current:

J ∈
{

ΓS+(Λ), ΓS−(Λ), Γ (−iγ̂0v + iγ̂ ± iv/γ) ·∆(±)S+(Λ)
}
. (8.74)

The three-point function (8.73) can be computed by using the spectator-quark (q′) prop-

agator as a source for the heavy-quark propagator, so that only the sum over y remains
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Figure 8.24: Contractions for the three-point functions with random-wall sources.

when the contractions are performed. This is the sequential-source method. More pre-

cisely, one needs to compute moving-NRQCD propagators from the following source at

the time slice z0,

eik·z S(Λ) γ̂5 Ω(z)Gχq′ (z, x), (8.75)

evolving them to the sink time-slice y0. In contrast, both light-quark propagators are

computed from the same point source at x.

For smeared three-point functions, I insert the operator (7.10) in the source (8.75), to

the left of Ω(z)Gχq′ (z, x).

With the method described here, the point-source three-point functions for arbitrary

current operators J , arbitrary polarisations (which enter as F (x)) and arbitrary final-

state momenta p′ can be obtained with little computational cost, since no new propagators

need to be computed when changing any of these.

The situation is somewhat different for the random-wall three-point functions. To

obtain these, we now define the sequential-source heavy-quark random-wall propagator:

G̃pH(y, z0, x0,k,p′) =
∑
z

(
Gψv(y, z) 0

0 0

)
S(Λ) γ̂5 e

ik·z Ω(z) G̃pχq′
(z, x0,−p′). (8.76)

See Fig. 8.24 for a diagram illustrating the method. In (8.76), the spectator-quark random-

wall propagator G̃pχq′ (z, x0,−p′) is defined as in (8.61).

For a pseudoscalar meson in the final state, the random-wall three-point correlator is

then given by

C5JB, RW(τ, T, k, p′) =
1
γ

1
L3

1
nZ

nZ∑
p=1

∑
y

e−i(k−p′)·y

× G̃pχq
(y, x0,0)∗ · tr

[
Ω†(y) γ̂5 J G̃pH(y, z0, x0,k,p′)

]
.

(8.77)
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In (8.77), the quantity G̃pχq(y, x0,0) is defined as in (8.61) for p′ = 0.

Similarly, for a vector meson in the final state, the random-wall three-point correlator

is

CjJB, RW(τ, T, k, p′) =
1
γ

1
L3

1
nZ

nZ∑
p=1

∑
y

e−i(k−p′)·y

× G̃pχq
(y, x0, j)∗ · tr

[
γ̂j γ̂5 Ω†(y) γ̂5 J G̃pH(y, z0, x0,k,p′)

]
,

(8.78)

where the quantity G̃pχq(y, x0, j) is defined as in (8.65).

For smeared three-point functions, I insert the operator (7.10) in the equation for the

sequential-source heavy-quark propagator (8.76), to the left of Ω(z) G̃pχq′ (z, x0,−p′). As

can be seen from Eqs. (8.77) and (8.78), with the random-wall method, the number of

heavy-quark propagators required is proportional to (#k)× (#p′). The number of light-

quark propagators required is proportional to (#p′)+(#j). Here, “#” stands for “number

different values used”.

Simultaneous fitting of two-point and three-point functions

I fit the three-point correlators with functions of the form

CFJB(τ, T, k, p′) =
n

(F )
exp−1∑
n′=0

n
(B)
exp−1∑
n=0

A
(ee)
n′ n e

−E(F )

n′ τ e−E
(B)
n (T−τ)

+ (−1)τ
en(F )
exp−1∑
n′=0

n
(B)
exp−1∑
n=0

A
(oe)
n′ n e

− eE(F )

n′ τ e−E
(B)
n (T−τ)

+ (−1)T−τ
n

(F )
exp−1∑
n′=0

en(B)
exp−1∑
n=0

A
(eo)
n′ n e

−E(F )

n′ τ e−
eE(B)

n (T−τ)

+ (−1)T
en(F )
exp−1∑
n′=0

en(B)
exp−1∑
n=0

A
(oo)
n′ n e

− eE(F )

n′ τ e−
eE(B)

n (T−τ), (8.79)

again using the logarithms of the energy splittings and the relative amplitudes as the fit

parameters for the excited states. In (8.79), the labels “e” and “o” on the amplitude

parameters stand for “even” and “odd”, respectively.

I find that the results for the form factors are most accurate when the B(k,v) → F (p′)

three-point functions are fitted simultaneously with B(k,v) and F (p′) two-point functions,

sharing the energy parameters E(B)
n , Ẽ(B)

n , E(F )
n′ , and Ẽ(F )

n′ .

Furthermore, I include additional three-point functions to improve the fit as follows:
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• ForB(k,v) → K(p′) at non-zero p′, I also include the three-point functionB(k,v) →
K(0) in the fit, sharing the energy parameters E(B)

n and Ẽ(B)
n .

• For B(k,v) → K∗(p′) at any p′, I also include the three-point function B(k,v) →
K(0) in the fit, sharing the energy parameters E(B)

n and Ẽ(B)
n .

In both cases, the B(k,v) → K(0) three-point function has a much better signal and

strongly constrains the B-meson energy and amplitude in the simultaneous fit. As demon-

strated in the next section, the results for EB andAB are up to about 5 times more accurate

compared to equivalent fits of the B-meson two-point function alone.

Numerical results: B → K three-point functions

So far, I have only analysed the three-point functions without smearing.

Comparisons (RWcd source vs point source) of the relative errors in the B → K

three-point functions with the operator J = γ̂0S+(Λ) are shown in Fig. 8.25 (for v = 0,

k = 0,p′ = 0) and Fig. 8.26 (for v = (0.4, 0, 0), k = 0,p′ = 2π/L · (−1, 0, 0)). In both

figures, the three-point functions are evaluated at T = 12. The improvement from the

RWcd source is found to decrease with increasing momentum transfer; it is also found to

decrease when increasing T .

For the B → K three-point functions, I performed unconstrained fits including a wide

range of T , setting n(B)
exp = ñ

(B)
exp = n

(K)
exp = 1 and ñ

(K)
exp = 0 (for p′ = 0) or ñ(K)

exp = 1 (for

p′ 6= 0). The fitting ranges for τ are chosen such that contaminations from excited states

are negligible.

In Fig. 8.27 I show a fit of the B → K three-point function with J = γ̂0S+(Λ) at zero

recoil, i.e. v = 0, k = 0,p′ = 0. This is the case with the best signal-to-noise ratio. The

fit was performed simultaneously with the K-meson two-point function and the (2 × 1)-

matrix B-meson two-point function. I chose the following fitting ranges: T = 18 ... 26

and τ = 6 ... (T − 12) in the three-point function; τ = 12 ...32 in the B-meson two-point

function and τ = 10 ... 54 in the K-meson two-point function. To confirm that for these

fitting ranges the contaminations from excited states are negligible, I varied the values for

τ
(B 2pt)
min , τ (K 2pt)

min , τ (B 3pt)
min and τ

(K 3pt)
min in the fit. The latter two specify the range of τ in

the three-point function, which is

τ = τ
(K 3pt)
min ...

[
T − τ

(B 3pt)
min

]
. (8.80)

The fit results for the non-oscillating states are shown in Table 8.18 (for the point-source

data) and Table 8.19 (for the RWcd-source data).
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Note in particular that the results for the B-meson energy and amplitude with the

simultaneous fits are about 5 times more accurate than the results from fits to the B

meson two-point function alone (with the same τmin). The results from unconstrained fits

to the two-point functions with τmin = 12 (see Table 8.12) are

point source : EB = 0.528(10), AB = 0.193(13),

RWcd source : EB = 0.517(10), AB = 0.183(12).
(8.81)

When the fit is performed simultaneously with the B → K three-point function at zero

recoil (also setting τ (B 3pt)
min = 12) and the K-meson two-point function, the results are

point source : EB = 0.5177(27), AB = 0.1822(35),

RWcd source : EB = 0.5158(19), AB = 0.1803(26).
(8.82)

The results for the three-point amplitude are

point source : AKJB = 0.0747(24),

RWcd source : AKJB = 0.0761(17).
(8.83)

The improvement factor in the statistical error of AKJB (RWcd source compared to point

source) is about 1.4. The findings for the other operators J are similar.

Figure 8.28 shows a fit of the B → K three-point function with J = γ̂0S+(Λ) at

v = (0.4, 0, 0), k = 0,p′ = 2π/L · (−1, 0, 0). This corresponds to the lowest value in q2

(the highest recoil) considered here. As can be seen in the plot, the signal-to noise ratio

is much smaller than at zero recoil. The fit shown here is simultaneous with the B → K

three-point function at v = (0.4, 0, 0), k = 0,p′ = 0, the K meson two-point functions

at both p′ = 2π/L · (−1, 0, 0) and p′ = 2π/L · (0, 0, 0), as well as the (2 × 1)-matrix

two-point function for the B meson at v = (0.4, 0, 0), k = 0. The fitting ranges are

τ
(B 2pt)
min = τ

(B 3pt)
min = 10, τ (K 2pt)

min = 10, τ (K 3pt)
min = 6.

The fit results for several fitting ranges are shown in Table 8.20 (for the point-source

data) and Table 8.21 (for the RWcd-source data). As can be seen in the tables, the results

are not as stable under changes of the fitting ranges as at zero recoil, and the results for

the three-point amplitudes from the point- and RWcd sources with the same fitting ranges

do not quite agree. It is planned for the future to perform Bayesian fits, which might be

more stable.
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Figure 8.25: Relative errors in the B → K three-point function with J = γ̂0S+(Λ) at

v = 0, k = 0,p′ = 0.
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Figure 8.26: Relative errors in the B → K three-point function with J = γ̂0S+(Λ) at

v = (0.4, 0, 0), k = 0,p′ = 2π/L · (−1, 0, 0).
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Figure 8.27: Unconstrained fit of the B → K three-point function with J = γ̂0S+(Λ) at

v = 0, k = 0,p′ = 0. The numbers of exponentials are n(B)
exp = ñ

(B)
exp = n

(K)
exp = 1, ñ(K)

exp = 0.

The fitting range is T = 18 ... 26 and τ = 6 ... (T − 12). The fit is simultaneous with the

B and K two-point functions. The data shown are from the RWcd source. The fit has

χ2/d.o.f. = 0.92.
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Figure 8.28: Unconstrained fit of the B → K three-point function with J = γ̂0S+(Λ)

at v = (0.4, 0, 0), k = 0,p′ = 2π/L · (−1, 0, 0). The numbers of exponentials are n(B)
exp =

ñ
(B)
exp = n

(K)
exp = ñ

(K)
exp = 1. The fitting range is T = 16 ... 20 and τ = 6 ... (T − 10).

The fit is simultaneous with the B and K two-point functions and with the B → K

three-point function at p′ = 0. The data shown are from the RWcd source. The fit has

χ2/d.o.f. = 1.04.
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A
R

E
B

D
E

C
A

Y
S

τ
(B 2pt)
min τ

(B 3pt)
min τ

(K 2pt)
min τ

(K 3pt)
min AKJB EK AK EB AB χ2/d.o.f.

12 12 10 10 0.0747(37) 0.33926(24) 0.2739(18) 0.5164(40) 0.1807(47) 0.88

12 12 10 8 0.0754(28) 0.33930(24) 0.2726(18) 0.5181(31) 0.1828(39) 1.00

12 12 10 6 0.0747(24) 0.33935(24) 0.2723(17) 0.5177(27) 0.1822(35) 0.94

12 12 10 4 0.0747(22) 0.33945(23) 0.2719(17) 0.5180(24) 0.1824(32) 0.97

12 12 10 2 0.0734(20) 0.33956(22) 0.2716(16) 0.5165(22) 0.1807(29) 0.95

12 12 10 10 0.0747(37) 0.33926(24) 0.2739(18) 0.5164(40) 0.1807(47) 0.88

12 12 9 9 0.0725(31) 0.33927(23) 0.2737(18) 0.5141(35) 0.1785(42) 0.85

12 12 8 8 0.0755(28) 0.33938(23) 0.2726(17) 0.5184(31) 0.1836(39) 1.03

12 12 7 7 0.0750(25) 0.33961(22) 0.2732(17) 0.5177(28) 0.1839(36) 1.22

12 12 10 6 0.0747(24) 0.33935(24) 0.2723(17) 0.5177(27) 0.1822(35) 0.94

11 11 10 6 0.0720(16) 0.33942(23) 0.2721(17) 0.5146(19) 0.1797(24) 1.00

10 10 10 6 0.0709(12) 0.33952(23) 0.2710(17) 0.5140(14) 0.1787(18) 1.06

12 12 10 6 0.0747(24) 0.33935(24) 0.2723(17) 0.5177(27) 0.1822(35) 0.94

12 11 10 6 0.0720(16) 0.33940(23) 0.2723(17) 0.5145(19) 0.1784(28) 0.96

12 10 10 6 0.0711(13) 0.33951(23) 0.2711(17) 0.5141(14) 0.1778(23) 1.04

12 12 10 6 0.0747(24) 0.33935(24) 0.2723(17) 0.5177(27) 0.1822(35) 0.94

11 12 10 6 0.0747(24) 0.33937(24) 0.2722(17) 0.5178(27) 0.1834(32) 0.98

10 12 10 6 0.0740(23) 0.33935(24) 0.2722(17) 0.5170(25) 0.1817(27) 0.98

9 12 10 6 0.0747(23) 0.33936(24) 0.2721(17) 0.5181(25) 0.1847(25) 1.04

8 12 10 6 0.0793(20) 0.33942(23) 0.2722(17) 0.5233(21) 0.1912(18) 1.14

Table 8.18: Results from unconstrained simultaneous fits of the B → K three-point function with J = γ̂0S+(Λ) at v = 0,

k = 0,p′ = 0. Data from point source. n(B)
exp = ñ

(B)
exp = n

(K)
exp = 1, ñ(K)

exp = 0. Central values and errors directly from fit.
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τ
(B 2pt)
min τ

(B 3pt)
min τ

(K 2pt)
min τ

(K 3pt)
min AKJB EK AK EB AB χ2/d.o.f.

12 12 10 10 0.0764(28) 0.33922(17) 0.27701(41) 0.5163(31) 0.1808(37) 0.96

12 12 10 8 0.0764(21) 0.33919(17) 0.27695(40) 0.5161(23) 0.1806(29) 0.94

12 12 10 6 0.0761(17) 0.33921(17) 0.27698(40) 0.5158(19) 0.1803(26) 0.92

12 12 10 4 0.0756(14) 0.33922(17) 0.27693(40) 0.5151(17) 0.1790(23) 0.99

12 12 10 2 0.0750(13) 0.33923(17) 0.27697(39) 0.5141(15) 0.1774(21) 1.18

12 12 10 10 0.0764(28) 0.33922(17) 0.27701(41) 0.5163(31) 0.1808(37) 0.96

12 12 9 9 0.0769(24) 0.33930(16) 0.27728(38) 0.5167(26) 0.1814(32) 0.93

12 12 8 8 0.0772(21) 0.33941(16) 0.27772(35) 0.5168(23) 0.1813(29) 1.09

12 12 7 7 0.0772(19) 0.33972(15) 0.27863(33) 0.5165(21) 0.1813(27) 1.49

12 12 10 6 0.0761(17) 0.33921(17) 0.27698(40) 0.5158(19) 0.1803(26) 0.92

11 11 10 6 0.0752(11) 0.33920(17) 0.27700(40) 0.5149(14) 0.1799(17) 0.92

10 10 10 6 0.07328(71) 0.33917(17) 0.27697(39) 0.5126(10) 0.1783(12) 1.07

12 12 10 6 0.0761(17) 0.33921(17) 0.27698(40) 0.5158(19) 0.1803(26) 0.92

12 11 10 6 0.0751(11) 0.33920(17) 0.27700(40) 0.5147(14) 0.1791(21) 0.93

12 10 10 6 0.07307(72) 0.33917(17) 0.27695(39) 0.5123(10) 0.1761(17) 1.07

12 12 10 6 0.0761(17) 0.33921(17) 0.27698(40) 0.5158(19) 0.1803(26) 0.92

11 12 10 6 0.0763(17) 0.33921(17) 0.27698(40) 0.5161(19) 0.1812(22) 0.91

10 12 10 6 0.0764(16) 0.33920(17) 0.27698(40) 0.5161(18) 0.1818(18) 0.92

9 12 10 6 0.0771(16) 0.33917(17) 0.27683(40) 0.5171(18) 0.1852(17) 1.24

8 12 10 6 0.0786(14) 0.33918(17) 0.27686(40) 0.5188(15) 0.1874(13) 1.25

Table 8.19: Results from unconstrained simultaneous fits of the B → K three-point function with J = γ̂0S+(Λ) at v = 0,

k = 0,p′ = 0. Data from RWcd source. n(B)
exp = ñ

(B)
exp = n

(K)
exp = 1, ñ(K)

exp = 0. Central values and errors directly from fit.
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A
R

E
B

D
E

C
A
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τ
(B 2pt)
min τ

(B 3pt)
min τ

(K 2pt)
min τ

(K 3pt)
min AKJB EK AK EB AB χ2/d.o.f.

10 10 10 6 0.0280(34) 0.4607(16) 0.2279(24) 0.466(11) 0.169(10) 1.16

10 10 10 5 0.0292(30) 0.4599(16) 0.2272(23) 0.4713(95) 0.1741(94) 1.14

10 10 10 4 0.0317(27) 0.4597(16) 0.2261(23) 0.4775(82) 0.1767(86) 1.21

11 11 10 6 0.0303(78) 0.4602(16) 0.2279(24) 0.470(21) 0.181(22) 1.07

10 10 10 6 0.0280(34) 0.4607(16) 0.2279(24) 0.466(11) 0.169(10) 1.16

9 9 10 6 0.0339(21) 0.4604(16) 0.2277(24) 0.4778(63) 0.1794(59) 1.18

10 11 10 6 0.0310(81) 0.4603(16) 0.2280(24) 0.472(21) 0.175(21) 1.08

10 10 10 6 0.0280(34) 0.4607(16) 0.2279(24) 0.466(11) 0.169(10) 1.16

10 9 10 6 0.0328(21) 0.4606(16) 0.2278(24) 0.4745(65) 0.1758(76) 1.16

11 10 10 6 0.0321(42) 0.4605(16) 0.2277(24) 0.479(12) 0.190(15) 1.18

10 10 10 6 0.0280(34) 0.4607(16) 0.2279(24) 0.466(11) 0.169(10) 1.16

9 10 10 6 0.0281(35) 0.4605(16) 0.2278(24) 0.467(11) 0.1693(99) 1.17

Table 8.20: Results from unconstrained simultaneous fits of the B → K three-point function with J = γ̂0S+(Λ) at v = (0.4, 0, 0),

k = 0,p′ = 2π/L · (−1, 0, 0). Data from point source. n(B)
exp = ñ

(B)
exp = n

(K)
exp = ñ

(K)
exp = 1. Central values and errors directly from fit.
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τ
(B 2pt)
min τ

(B 3pt)
min τ

(K 2pt)
min τ

(K 3pt)
min AKJB EK AK EB AB χ2/d.o.f.

10 10 10 6 0.0395(36) 0.46280(79) 0.2395(10) 0.4849(84) 0.1799(82) 1.09

10 10 10 5 0.0402(31) 0.46289(79) 0.2396(10) 0.4856(72) 0.1807(73) 1.07

10 10 10 4 0.0387(26) 0.46291(78) 0.2397(10) 0.4807(63) 0.1768(65) 1.11

11 11 10 6 0.050(11) 0.46280(79) 0.2395(10) 0.503(18) 0.211(23) 1.06

10 10 10 6 0.0395(36) 0.46280(79) 0.2395(10) 0.4849(84) 0.1799(82) 1.09

9 9 10 6 0.0384(18) 0.46270(79) 0.2393(10) 0.4783(45) 0.1832(42) 1.13

10 11 10 6 0.050(11) 0.46278(79) 0.2395(10) 0.503(18) 0.210(21) 1.05

10 10 10 6 0.0395(36) 0.46280(79) 0.2395(10) 0.4849(84) 0.1799(82) 1.09

10 9 10 6 0.0371(18) 0.46276(79) 0.2395(10) 0.4750(46) 0.1720(53) 1.09

11 10 10 6 0.0394(38) 0.46281(79) 0.2395(10) 0.4845(89) 0.181(11) 1.10

10 10 10 6 0.0395(36) 0.46280(79) 0.2395(10) 0.4849(84) 0.1799(82) 1.09

9 10 10 6 0.0395(36) 0.46273(79) 0.2394(10) 0.4853(84) 0.1898(80) 1.15

Table 8.21: Results from unconstrained simultaneous fits of the B → K three-point function with J = γ̂0S+(Λ) at v = (0.4, 0, 0),

k = 0,p′ = 2π/L · (−1, 0, 0). Data from RWcd source. n(B)
exp = ñ

(B)
exp = n

(K)
exp = ñ

(K)
exp = 1. Central values and errors directly from fit.
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Numerical results: B → K∗ three-point functions

The relative errors in the B → K∗ three-point functions with J = σ0j γ̂5S
+(Λ) from

the RWcd and point sources are shown in Fig. 8.29 (at zero recoil) and Fig. 8.30 (at

v = (0.4, 0, 0), k = 0,p′ = 2π/L · (−1, 0, 0)). The improvement from the RWcd source is

small (and gets even smaller at larger T ), despite the higher computational cost.

Here I performed simultaneous Bayesian fits with the range τ = 1 ... (T − 2) and

T = 14 ... 16 or T = 15 ... 16 in the the B → K∗ three-point functions, τ = 2 ... 32 in the

B-meson (2× 1)-matrix two-point function and τ = 1 ... 63 in the K∗ two-point function.

For all these correlators I used the same number of exponentials, n(B)
exp = ñ

(B)
exp = n

(K∗)
exp =

ñ
(K∗)
exp = nexp, varying nexp in the range 4 ... 10. I set the priors for the logarithms of the

energy splittings to (−1) with a width of 1, and the priors for the relative excited-state

amplitudes to 1 with a width of 2 (for the K∗) and 0.5 with a width of 2 (for the B

two-point function and for the B → K∗ three-point function).

As already mentioned in Sec. 8.8.3, I also included the B → K three-point function

(with J = γ̂0S+(Λ)) and the K two-point function for p′ = 0 in the fit in order to

improve the results for the B meson. For these correlators I used n(B)
exp = ñ

(B)
exp = n

(K)
exp = 1,

ñ
(K)
exp = 0 and the same fitting ranges as given in Sec. 8.8.3, so that the contamination

from excited states is negligible.

A plot of a fit to the B → K∗ three-point function with J = σj0γ̂5S
+(Λ) at v = 0,

k = 0,p′ = 0 is shown in Fig. 8.31. Fit results are given in Table 8.22 (point source data)

and Table 8.23 (RWcd source data). For the point source, I used T = 14 ... 16. For the

RWcd source, the range T = 15 ... 16 gave more reliable fits.

As can be seen in the tables, the errors in AK∗JB are comparable for the RWcd and

point source data, while the RWcd source gives more precise results for EK∗ and AK∗ ,

compared to the fits of the K∗ two-point function alone (cf. Sec. 8.8.1).

The findings for non-zero p′ and for the other operators J are similar.
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Figure 8.29: Relative errors in the B → K∗ three-point function with J = σ0j γ̂5S
+(Λ)

at v = 0, k = 0,p′ = 0.
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Figure 8.30: Relative errors in the B → K∗ three-point function with J = σ0j γ̂5S
+(Λ)

at v = (0.4, 0, 0), k = 0,p′ = 2π/L · (−1, 0, 0).
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Figure 8.31: Bayesian fit of the B → K∗ three-point function with J = σj0γ̂5S
+(Λ) at

v = 0, k = 0,p′ = 0. The fitting range is T = 14 ... 16 and τ = 1 ... (T − 2). The numbers

of exponentials are n(B)
exp = ñ

(B)
exp = n

(K∗)
exp = ñ

(K∗)
exp = 8. The fit is simultaneous with the B

and K∗ two-point functions and with the B → K three-point function and K two-point

function. The data shown are from the point source.
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nexp AK∗JB EK∗ AK∗ EB AB

4 0.01261(88) 0.6330(58) 0.0906(23) 0.5172(19) 0.1803(15)

5 0.0124(12) 0.6363(91) 0.0915(30) 0.5167(25) 0.1793(25)

6 0.0125(15) 0.6361(87) 0.0915(38) 0.5168(22) 0.1791(27)

7 0.0123(12) 0.6360(72) 0.0914(31) 0.5166(26) 0.1789(31)

8 0.0127(14) 0.6363(74) 0.0916(33) 0.5167(22) 0.1792(30)

9 0.0124(14) 0.6355(76) 0.0915(36) 0.5165(27) 0.1793(35)

10 0.0120(16) 0.6348(91) 0.0906(39) 0.5167(17) 0.1794(23)

Table 8.22: Results from simultaneous Bayesian fits of the B → K∗ three-point function

with J = σj0γ̂5S
+(Λ) at v = 0, k = 0,p′ = 0. The fitting range in the B → K∗

three-point function is T = 14 ... 16 and τ = 1 ... (T − 2). The numbers of exponentials are

n
(B)
exp = ñ

(B)
exp = n

(K∗)
exp = ñ

(K∗)
exp = nexp. Data from point source. Central values and errors

from bootstrap.

nexp AK∗JB EK∗ AK∗ EB AB

4 0.0164(20) 0.680(33) 0.1067(99) 0.5166(13) 0.18011(65)

5 0.01342(98) 0.6302(64) 0.0908(17) 0.5155(20) 0.1790(26)

6 0.01314(79) 0.6282(51) 0.0902(15) 0.5158(16) 0.1789(23)

7 0.01316(80) 0.6274(47) 0.0898(11) 0.5156(17) 0.1782(27)

8 0.01305(85) 0.6262(44) 0.0895(14) 0.5152(21) 0.1775(30)

9 0.0131(12) 0.6257(49) 0.0894(17) 0.5153(17) 0.1779(29)

10 0.0130(12) 0.6255(40) 0.0893(10) 0.5155(19) 0.1784(24)

Table 8.23: Results from simultaneous Bayesian fits of the B → K∗ three-point function

with J = σj0γ̂5S
+(Λ) at v = 0, k = 0,p′ = 0. The fitting range in the B → K∗

three-point function is T = 15 ... 16 and τ = 1 ... (T − 2). The numbers of exponentials are

n
(B)
exp = ñ

(B)
exp = n

(K∗)
exp = ñ

(K∗)
exp = nexp. Data from RWcd source. Central values and errors

from bootstrap.
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J AKJB(ΓJ = γ̂0) AKJB(ΓJ = γ̂1) AKJB(ΓJ = σ10)

Γ S+(Λ) 0.0280(34) 0.0063(11) 0.0218(25)

Γ S−(Λ) 0.0368(43) 0.0218(25) 0.0065(11)

i

2mb
γ̂ ·∆(±) Γ S+(Λ) −0.00177(26) 0.00177(31) −0.00148(29)

− i

2mb
γ̂0 v ·∆(±) Γ S+(Λ) −0.000084(55) 0.000139(59) 0.000189(57)

± i

2γmb
v ·∆(±) Γ S+(Λ) 0.000143(51) −0.000168(51) −0.000123(53)

Table 8.24: Fit results for the B → K ground-state amplitudes of the individual terms

in the heavy-light lattice vector and tensor currents. The boost velocity is v = (0.4, 0, 0)

and the momenta are k = 0, p′ = 2π/L · (−1, 0, 0). Data from the point source. Central

values and errors directly from fit.

8.9 Size of the 1/m corrections

The construction of the heavy-light lattice currents was discussed in Sec. 8.5. Now I give

examples for the contributions of the individual terms in the current at v = (0.4, 0, 0). I

consider the pseudoscalar kaon in the final state as the results are more precise compared

to the vector-meson.

Fit results for AKJB from the different operators J are shown in Table 8.24. Results

are given for ΓJ = γ̂0, ΓJ = γ̂1, and ΓJ = σ10.

It should be noted that the O(1/mb) corrections considered here are the unsubtracted

operators that mix with the lower-dimension operators. For the vector current in non-

moving NRQCD it was found in [11] that the matrix elements of the subtracted operators

are significantly smaller.

8.10 Preliminary form factor results

In the following I give some preliminary results for the form factors f0, f+, fT and T1, T2

obtained with the fitting methods described in Sec. 8.8. I computed the form factors from

the formulae in Sec. 8.4, using bootstrap to take into account the correlations between

the different quantities entering the formula. For the hadron masses and energies I also
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used the lattice results. I computed the full B-meson energies using the non-perturbative

results for the mNRQCD energy shift Cv obtained from the ηb dispersion relation (see

Sec. 6.1.3). I set Zp = 1, which is compatible with the result obtained in Sec. 6.1.3. For

the lattice spacing I used a−1 = 1.6 GeV [108]. The values of q2 given in the tables

correspond to the experimental values for the hadron masses.

All form factor results shown in the following include the one-loop radiative corrections

to the leading-order heavy-light currents, i.e. the lattice currents are given by (8.55). I

used the matching coefficients calculated by Eike Müller [114, 116] and set the value

of the strong coupling constant to αs = 0.3, which is approximately equal to αV (2/a)

(cf. Sec. 6.3).

8.10.1 The form factors f0, f+, and fT

The preliminary results for f0, f+, and fT for B → K are listed in Table 8.25 and plotted

against q2 in Figs. 8.32, 8.33. At |v| = 0.4 I added to the error estimates a systematic

uncertainty resulting from the choice of τ (B 3pt)
min , taken as the shift in the central value of

the form factor when τ (B 3pt)
min is changed by 1.

At zero recoil I find that the statistical error in f0 is smaller for the RWcd-source data

compared to the point-source data by a factor of about 1.4. At the largest recoil considered

here, corresponding to v = (0.4, 0, 0), k = 0,p′ = 2π/L · (−1, 0, 0), the estimated error for

the RWcd-source result is larger than that for the point-source data.

Overall, the central values of the results from the RWcd-source data tend to be above

those from the point-source data, sometimes outside the one-standard-deviation interval.

As already discussed in Sec. 8.8, the fit results are not very stable and systematic uncer-

tainties may be underestimated. It is planned to perform new Bayesian fits of the B → K

data in the future.

I find that the results for fT and f+ are very close to each other. Calculations using

light-cone sum-rules [197], albeit applicable only at low q2, give fT > f+ and show that

the difference between fT and f+ vanishes as the mass of the pseudoscalar meson in the

final state is taken to zero.

Unquenched lattice QCD results for f0 and f+ for B → π can be found in [11] and

[168]. For B → K, preliminary results for f0 and f+ computed using the Fermilab action

for the b quark can be found in [198]. No previous lattice results for fT are available.
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point source RWcd source

q2 (GeV2) f0 f+ fT f0 f+ fT

22.91 0.869(17) − − 0.889(12) − −
20.68 0.746(19) 1.951(78) 1.852(82) 0.780(15) 1.980(55) 1.858(61)

18.22 0.617(45) 1.21(12) 1.37(20) 0.715(61) 1.40(19) 1.58(29)

Table 8.25: Preliminary results for the form factors f0, f+, fT for B → K decays, obtained

from simultaneous unconstrained fits. The error estimates are statistical/fitting only.
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Figure 8.32: Preliminary results for the form factors f0, f+ for B → K decays, obtained

from simultaneous unconstrained fits. The left-most points have v = (0.4, 0, 0), k = 0 and

p′ = 2π/L · (−1, 0, 0). The error estimates are statistical/fitting only.
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Figure 8.33: Preliminary results for the form factor fT for B → K decays, obtained from

simultaneous unconstrained fits. The left-most points have v = (0.4, 0, 0), k = 0 and

p′ = 2π/L · (−1, 0, 0). The error estimates are statistical/fitting only.
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point source RWcd source

q2 (GeV2) T1 T2 T1 T2

19.25 − 0.285(26) − 0.305(19)

17.85 0.65(16) 0.246(38) 0.69(12) 0.272(50)

Table 8.26: Preliminary results for the form factors T1, T2 for B → K∗ decays, obtained

from simultaneous Bayesian fits with with T = 15, 16 (RWcd source), T = 14, 15, 16 (point

source). The error estimates are statistical/fitting only.

Reference Result

[179] T2(q2max) = 0.269+0.017
−0.009 ± 0.011

[182] T2(q2max) = 0.325± 0.033± 0.065

[183] T2(q2max) = 0.25± 0.02, 0.22± 0.02

[181] T2(q2max) = 0.25± 0.1

[184] T2(18.3 GeV2) = 0.38± 0.05+0.00
−0.03

Table 8.27: Quenched lattice results for T2 from the literature, obtained by extrapolation

in the heavy-quark mass. The two results cited from [183] correspond to two different

extrapolation methods. For [184], the result from the finest lattice spacing is shown. See

the original works for the meaning of the error estimates.

8.10.2 The form factors T1 and T2

Preliminary results for the form factors T1 and T2 for B → K∗ are listed in Table 8.26

and are plotted against q2 in Fig. 8.34. The points with the lower value of q2 have v = 0,

k = 0 and p′ = 2π/L · (−1, 0, 0). The data at significantly lower values of q2 are very

noisy and have not yet been analysed.

For T2(q2max) and T1 at the lower value of q2 the errors for the RWcd-source data are

smaller by a factor of about 1.3; however, recall that the computational cost for the RWcd

method is higher.

For comparison with the literature, Table 8.27 shows results for T2 at or near q2max from

quenched lattice calculations. All of these calculations were performed with Wilson-like

actions for the b quark with unphysically light values for mb, and were extrapolated in mb.
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Figure 8.34: Preliminary results for the form factors T1, T2 for B → K∗ decays, obtained

from simultaneous Bayesian fits with T = 15, 16 (RWcd source), T = 14, 15, 16 (point

source). The left-most points have v = 0, k = 0 and p′ = 2π/L · (−1, 0, 0). The error

estimates are statistical/fitting only.
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Chapter 9

Conclusions

Moving NRQCD is a method for the lattice computation of heavy-to-light form factors. It

enables the calculation in a reference frame where the momentum of the light hadron in the

final state is reduced, and thereby leads to a reduction of lattice discretisation errors. In

this dissertation, I have independently derived an O(1/m2
b , v

4
orb.) mNRQCD action in the

continuum, and performed nonperturbative tests of a lattice action with the same accuracy

for the first time. These tests confirm the reduction of systematic errors compared to non-

moving NRQCD (cf. Fig. 6.2). I have then carried out the first calculations of form factors

with mNRQCD. The computer programs I have written for this purpose will be used in

future large-scale computations. This work will allow further tests of the Standard Model

of elementary particles, and will help in searches for new physics.

In the course of this dissertation I have also performed calculations of the heavy-hadron

spectrum in lattice QCD with dynamical domain wall fermions, including the spectrum

of excited states in bottomonium and the ground-state masses of baryons containing one,

two, or three b quarks. Several of these heavy baryons have not yet been observed ex-

perimentally but might be discovered in the future at the Tevatron or the Large Hadron

Collider.

In the following I shall discuss some open issues and give directions for future work

related to the various parts of this dissertation.

9.1 Renormalisation of the lattice mNRQCD action

In Sec. 6.3 I compared my nonperturbative determinations of Zp (the renormalisation of

the external momentum) and Cv (the mNRQCD energy shift) to predictions from one-loop

lattice perturbation theory. In both cases I considered the deviations from the tree-level
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values. For Zp good agreement is seen between the perturbative and nonperturbative cor-

rections at moderate boost velocities. However, for Cv the full nonperturbative correction

was found to have a sign opposite to the sign of the one-loop correction. Note that this

does not impose any practical problems, as the corrections are both small and the non-

perturbative results for Cv and Zp can be used. Assuming that no mistakes were made in

either calculation, these findings do however demonstrate that one-loop perturbation the-

ory is somewhat limited. To go beyond one-loop perturbation theory one can use high-β

methods, as discussed in Sec. 5.3.5.

In the present calculations, all couplings in the lattice mNRQCD action are set to their

tree-level values, and tadpole-improvement is used to account for radiative corrections. As

demonstrated by the numerical results, this is already a good approximation. However, if

very high precision is to be achieved, eventually one has to go beyond this approximation.

9.2 Heavy-hadron spectroscopy

The heavy-light spectrum calculations described in Sec. 7.2 are not yet complete. Other

light-quark masses need to be included, and chiral extrapolations to the physical point need

to be performed. The statistical errors can be reduced by computing more propagators.

All calculations presented in Chapter 7 are only for one lattice spacing. A more

systematic analysis of discretisation errors will be performed once new ensembles of gauge

field configurations with a finer lattice spacing are made available by the RBC and UKQCD

collaborations.

Using NRQCD I have achieved high statistical accuracy for the Ωbbb baryon, similarly

to bottomonium. I am therefore planning to study excited states also for the Ωbbb. Given

how much insight into the strong interaction has been gained by analysing the spectrum

of bottomonium, it will be highly interesting to perform similar work for the Ωbbb, where

three heavy quarks form a colour singlet.

9.3 Calculation of form factors for B decays

In Chapter 8 I have developed and tested the methods necessary for the numerical cal-

culation of B decay form factors with lattice mNRQCD. Now, further computer time is

required to consider more points in q2, perform calculations with different light-quark

masses and also different lattice spacings. After more points in q2 have been included,

the q2-dependence of the form factors can be fitted by suitable models [199, 184]. In
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particular, for B → K∗γ the form factors need to be extrapolated to q2 = 0.

The statistical errors must be reduced further. I found that the reduction in statistical

errors when comparing the random-wall-source method to the point-source method is small

for the final form factor results. Due to the lower computational cost, the point-source

method may lead to more precise results than the random-wall-source method for the

same amount of computer time.

The fitting methods for the three-point functions have not yet been finalised and there

is still room for optimisations. In particular, the effect of using a “smeared” interpolating

field for the B meson in the three-point function has not yet been analysed, and Bayesian

fits need to be performed where only unconstrained fits have been done so far.

The contributions of the tree-level 1/mb corrections in the heavy-light currents have

not yet been included in the form factor results as the necessary mixing coefficients are

not yet known. A calculation of these coefficients would be useful. So far, the matching

calculation for the heavy-light currents was performed in one-loop lattice perturbation

theory. It would be desirable to go beyond this approximation, using for example high-β

methods.

The study of rare B decays is complicated by long-distance effects and, for B → K∗

transitions, by the instability of the K∗ under the strong interactions. These issues require

further investigation.
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Appendix A

Conventions

A.1 Notation

• I use units in which c = ~ = 1.

• Space-time coordinates: x = (t,x) = (x0, x1, x2, x3) in Minkowski space, x =

(τ,x) = (x0, x1, x2, x3) in Euclidean space

• Indices µ, ν, ... run from 0 to 3; indices j, k, ... run from 1 to 3.

• Indices appearing twice (and only twice) in a single term are summed over all allowed

values, except where otherwise stated.

• The Minkowski metric is (gµν) = diag(1,−1,−1,−1).

• The Lorentz boost of the coordinates is defined in terms of the 3-velocity v as:

Λ =

 γ γ vk

γ vj δjk + γ2

1+γ v
jvk

 , (A.1)

with γ = (1− v2)−1/2.

• Gamma matrices in Minkowski space are denoted with a hat, to distinguish them

from γ = (1− v2)−1/2. I use

γ̂0 =

(
σ0 0

0 −σ0

)
, γ̂j =

(
0 σj

−σj 0

)
,

γ̂5 = iγ̂0γ̂1γ̂2γ̂3 =

(
0 σ0

σ0 0

)
, (A.2)
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with the Pauli matrices σj . I define σ0 = 12×2. Note that in calculations with

moving NRQCD, the Minkowski space gamma matrices are also used in Euclidean

space for convenience.

• Euclidean gamma matrices are denoted without a hat:

γ0 = γ̂0 =

(
σ0 0

0 −σ0

)
, γj = −iγ̂j =

(
0 −iσj

iσj 0

)
,

γ5 = γ0γ1γ2γ3 = γ̂5 =

(
0 σ0

σ0 0

)
. (A.3)

• The spinorial Lorentz boost is defined in terms of the 3-velocity v as:

S(Λ) =
1√

2(1 + γ)

[
(1 + γ)1− γ v · γ̂ γ̂0

]
=

1√
2(1 + γ)

(
1 + γ γ σ · v
γ σ · v 1 + γ

)
.

(A.4)

• Feynman slash notation:

/u = uµγ̂µ. (A.5)

• Covariant derivatives and field strength tensor:

Dµ =
∂

∂xµ
+ igAµ, (A.6)

[Dµ, Dν ] = igFµν , (A.7)

DµFρσ = Dad
µ Fρσ + FρσDµ with Dad

µ Fρσ = (∂µFρσ) + ig[Aµ, Fρσ]. (A.8)

• Chromoelectric and chromomagnetic fields in Minkowski space:

Ek = F0k, Bj = −1
2
εjklFkl. (A.9)

• Chromoelectric and chromomagnetic fields in Euclidean space:

Ek = −F0k, Bj = −1
2
εjklFkl. (A.10)
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A.2 Lattice derivatives and field strength

In this section I give explicit expressions for the discretised derivatives I use in the lattice

action, Eqs. (5.12, 5.13). All expressions are constructed from the elementary forward,

backward and symmetric derivatives

∆+
µψ(x) = Uµ(x)ψ(x+ µ̂)− ψ(x),

∆−µψ(x) = ψ(x)− U−µ(x)ψ(x− µ̂),

∆±µψ(x) =
1
2

[Uµ(x)ψ(x+ µ̂)− U−µ(x)ψ(x− µ̂)] . (A.11)

For performance reasons, I construct higher-order operators to be maximally local by

balancing the occurrence of these three types. I also symmetrise the expressions.

• Unimproved derivatives:

∆(2) =
3∑
j=1

∆+
j ∆−j ,

∆(2)
v =

1
2

3∑
j,k=1

vjvk
(
∆+
j ∆−k + ∆−j ∆+

k

)
,

∆(3)
v =

1
2

3∑
j,k,l=1

vjvkvl
(
∆+
j ∆±k ∆−l + ∆−j ∆±k ∆+

l

)
,

∆(4)
v =

1
2

3∑
j,k,l,m=1

vjvkvlvm
(
∆+
j ∆−k ∆+

l ∆−m + ∆−j ∆+
k ∆−l ∆+

m

)
. (A.12)

• Improved derivatives:

∆̃±j = ∆±j −
1
6
∆+
j ∆±j ∆−j ,

∆̃(2) = ∆(2) − 1
12

3∑
j=1

∆+
j ∆−j ∆+

j ∆−j ,

∆̃(2)
v = ∆(2)

v +
1
4

3∑
j,k=1

vjvk∆+
j ∆−j ∆+

k ∆−k

− 1
12

3∑
j,k=1

vjvk
(
∆+
j ∆−j ∆+

j ∆−k + ∆−j ∆+
j ∆−j ∆+

k

+∆+
j ∆−k ∆+

k ∆−k + ∆−j ∆+
k ∆−k ∆+

k

)
. (A.13)
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• Unimproved adjoint derivative:

∆ad
µ F̃ρσ(x) =

1
2

[
Uµ(x)F̃ρσ(x+ µ̂)U †µ(x)− U−µ(x)F̃ρσ(x− µ̂)U †−µ(x)

]
. (A.14)

• Improved field strength tensor:

F̃µν(x) =
5
3
Fµν(x)

−1
6

(
Uµ(x)Fµν(x+ µ̂)U †µ(x) + U−µ(x)Fµν(x− µ̂)U †−µ(x)− (µ↔ ν)

)
,

(A.15)

where

Fµν(x) =
−i
2g

(
Ωµν(x)− Ω†µν(x)

)
,

Ωµν(x) = 1
4

∑
{(α,β)}µν

Uα(x)Uβ(x+ α̂)U-α(x+ α̂+ β̂)U-β(x+ β̂), (A.16)

with

{(α, β)}µν = {(µ, ν), (ν, -µ), (-µ, -ν), (-ν, µ)} for µ 6= ν . (A.17)



Appendix B

Form factors and decay rate for

B → K∗γ

B.1 Derivation of form factors

The invariant matrix element for the exclusive decay B → K∗γ is

M = −〈γ(q, r), K∗(p′, s) |Heff |B(p)〉, (B.1)

where r = 1, 2 denotes two possible photon polarisations and s = 1, 2, 3 denotes three

possible K∗ polarisations. The relevant part of the effective Hamiltonian is given by

(cf. Sec. 8.1.4)

Heff = −VtbV ∗ts
4GF√

2
C7(µ)

e

16π2
mb JµνF

µν
(e.m.) with Jµν = b̄σµν

1 + γ5

2
s, (B.2)

where C7(µ) is the Wilson coefficient at the renormalisation scale µ.

Upon contracting the external photon with Fµν(e.m.), we obtain

〈γ(q, r), K∗(p′, s) |JµνFµν(e.m.)|B(p)〉 = i
[
qµε∗ν(γ)(q, r)− qνε∗µ(γ)(q, r)

]
〈K∗(p′, s) |Jµν |B(p)〉

= 2i qµε∗ν(γ)(q, r) 〈K
∗(p′, s) |Jµν |B(p)〉, (B.3)

where ε(γ) = ε(γ)(q, r) is the polarisation vector of the photon. We shall now derive the

general structure of the matrix element 〈K∗(p′, s) |Jµν |B(p)〉. The operator Jµν contains

both a tensor and a pseudotensor part, and it is convenient to consider them separately.

Let us start with the tensor part of Jµν , so we need to look at

〈K∗(p′, ε) |b̄σµνs|B(p)〉, (B.4)
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where ε = ε(p′, s) now denotes the K∗ polarisation vector. Under parity and time reversal,

the states transform as follows:

P|B(p)〉 = −|B(pP )〉,

P|K∗(p′, ε)〉 = |K∗(p′P , εP )〉,

T|B(p)〉 = −|B(pT )〉,

T|K∗(p′, ε)〉 = |K∗(p′T , εT )〉 (B.5)

with pP = pT = (p0,−p) etc. Since QCD is invariant under these transformations, we

must have for i, j = 1, 2, 3

〈K∗(p′, ε) |b̄ σ0j s|B(p)〉 = +〈K∗(p′P , εP ) |b̄ σ0j s|B(pP )〉,

〈K∗(p′, ε) |b̄ σij s|B(p)〉 = −〈K∗(p′P , εP ) |b̄ σij s|B(pP )〉,

〈K∗(p′, ε) |b̄ σ0j s|B(p)〉∗ = +〈K∗(p′T , εT ) |b̄ σ0j s|B(pT )〉,

〈K∗(p′, ε) |b̄ σij s|B(p)〉∗ = −〈K∗(p′T , εT ) |b̄ σij s|B(pT )〉. (B.6)

Here, we have made a choice of phase.

There are three Lorentz-vectors available: the momenta p, p′ and the polarisation

vector ε = ε(p′, s). Since the K∗ meson is in the final state, ε must appear as its complex

conjugate. Let us use the basis vectors p+ ≡ p + p′, p− ≡ p − p′ and ε∗. From the

transformation law under parity, Eq. (B.6), it follows that there are three possible basis

pseudotensors:

εµνρσε
∗ρpσ+, εµνρσε

∗ρpσ− and εµνρσp
ρ
−p

σ
+. (B.7)

Each of them can come with a function of Lorentz-scalar quantities as a prefactor. We

can build the following basic Lorentz scalars:

p2
+, p2

−, ε∗2, p− · p+, ε∗ · p− and ε∗ · p+. (B.8)

However, since ε is a polarisation vector, we have ε2 = −1 and ε · p′ = 0. The latter

implies that both ε∗ ·p− and ε∗ ·p+ reduce to the single quantity ε∗ ·p. Furthermore, since

p2 = MB and p′2 = MK∗ , we have

p− · p+ = M2
B −M2

K∗ ,

p2
+ = M2

B +M2
K∗ + 2p · p′,

p2
− = M2

B +M2
K∗ − 2p · p′. (B.9)
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Hence, it suffices to consider functions of ε∗ · p and p2
− only. Another restriction is that

the matrix element must be linear in the polarisation vector ε∗. It follows that we can

write the matrix element in the form

〈K∗(p′, ε) |b̄σµνs|B(p)〉 = f+(p2
−)εµνρσε∗ρpσ+ + f−(p2

−)εµνρσε∗ρpσ−

+ g(p2
−)(ε∗ · p)εµνρσpρ−pσ+ , (B.10)

with unknown functions f+, f− and g. The transformation law under time reversal,

Eq. (B.6), implies that these functions are real.

Let us now consider the part of Jµν containing γ5. The identity

σµνγ5 =
i

2
εµνρσσ

ρσ (B.11)

allows us to relate the matrix element to (B.10):

〈K∗(p′, ε) |b̄ σµνγ5 s|B(p)〉 =
i

2
εµνρσ〈K∗(p′, ε) |b̄σρσs|B(p)〉

=
i

2
εµνρσ

[
f+(p2

−)ερσαβε∗αp+β + f−(p2
−)ερσαβε∗αp−β

+ g(p2
−)(ε∗ · p)ερσαβp−αp+β

]
. (B.12)

Using

εµνρσε
ρσαβ = −2

(
δαµδ

β
ν − δβµδ

α
ν

)
, (B.13)

Eq. (B.12) simplifies to

〈K∗(p′, ε) |b̄ σµνγ5 s|B(p)〉 = if+(p2
−)
[
ε∗νp+µ − ε∗µp+ν

]
+ if−(p2

−)
[
ε∗νp−µ − ε∗µp−ν

]
+ig(p2

−)(ε∗ · p)
[
p+νp−µ − p+µp−ν

]
. (B.14)

Next, recall that the full matrix element (B.3) contains a contraction with the photon

momentum q = p−. We have

qµ〈K∗(p′, ε) |b̄σµνs|B(p)〉 = f+(q2)εµνρσp
µ
−ε
∗ρpσ+

= 2 f+(q2)ενµρσε∗µpρp′σ (B.15)

and

qµ〈K∗(p′, ε) |b̄σµνγ5s|B(p)〉 = if+(q2)
[
ε∗ν(M

2
B −M2

K∗)− (ε∗ · q)(p+ p′)ν
]

+ if−(q2)
[
ε∗νq

2 − (ε∗ · q)qν
]

+ ig(q2)(ε∗ · q)
[
q2 (p+ p′)ν − (M2

B −M2
K∗)qν

]
.

(B.16)
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In order to disentangle (B.15) and (B.16), we now define the new form factors

T1(q2) = −1
2
f+(q2),

T2(q2) = −1
2

[
f+(q2) +

q2

M2
B −M2

K∗
f−(q2)

]
,

T3(q2) =
1
2
[
f−(q2) + (M2

B −M2
K∗)g(q2)

]
, (B.17)

so that

f+(q2) = −2 T1(q2),

f−(q2) =
2
[
T1(q2)− T2(q2)

]
(M2

B −M2
K∗)

q2
,

g(q2) =
2 T3(q2)

M2
B −M2

K∗
−

2
[
T1(q2)− T2(q2)

]
q2

. (B.18)

This results in

qµ〈K∗(p′, ε) |b̄σµνs|B(p)〉 = −4 T1(q2)ενµρσε∗µpρp′σ (B.19)

and

qµ〈K∗(p′, ε) |b̄σµνγ5s|B(p)〉 = −2iT2(q2)
[
ε∗ν(M

2
B −M2

K∗)− (ε∗ · q)(p+ p′)ν
]

−2iT3(q2)(ε∗ · q)
[
qν −

q2

M2
B −M2

K∗
(p+ p′)ν

]
,

(B.20)

so that the tensor- and pseudotensor contributions are now separated. Note that at the

physical point q2 = 0, the second line of (B.17) implies

T1(0) = T2(0). (B.21)

B.2 Calculation of decay rate

We shall now express the decay rate

dΓ =
1

2MB

d3p′

(2π)32EK∗

d3q

(2π)32Eγ

2∑
r=1

3∑
s=1

|M|2(2π)4δ(4)(p− p′ − q) (B.22)

in terms of the form factor at q2 = 0.
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Equation (B.3) becomes

〈γ(q, r), K∗(p′, s) |JµνFµν(e.m.)|B(p)〉 = i T1(0)
{
− 4 ενµρσε∗ν(q, r)ε∗µ(p′, s)pρp′σ

− 2iε∗(q, r) · ε∗(p′, s) (M2
B −M2

K∗)

+ 2i
[
ε∗(p′, s) · q

] [
ε∗(q, r) · (p+ p′)

] }
.

(B.23)

Working in the B rest frame and using momentum conservation, we have

p = (MB,0),

q = (|q|,q),

p′ = (MB − |q|,−q),

|q| =
M2
B −M2

K∗

2MB
. (B.24)

We can also set ε0(q, r) = 0, which implies

ε∗(q, r) · (p+ p′) = ε∗(q, r) · q = 0. (B.25)

Therefore, (B.23) reduces to

〈γ(q, r), K∗(p′, s) |JµνFµν(e.m.)|B(p)〉 = i T1(0)
[
4MB εjklε

∗j(q, r)ε∗k(p′, s)ql

+ 2iε∗(q, r) · ε∗(p′, s)(M2
B −M2

K∗)
]
.

(B.26)

The spin-summed absolute square of the amplitude becomes∑
r,s

|〈γ(q, r), K∗(p′, s) |JµνFµν(e.m.)|B(p)〉|2

= 16 |T1(0)|2M2
B

∑
r,s

εjklεmno ε
∗j(q, r)εm(q, r)ε∗k(p′, s)εn(p′, s)qlqo

+ 4 |T1(0)|2(M2
B −M2

K∗)2
∑
r,s

ε∗j(q, r)εk(q, r)ε∗j(p′, s)εk(p′, s)

= 16 |T1(0)|2M2
Bεjklεmno

(
δjm − qjqm

|q|2

)(
δkn +

qkqn

M2
K∗

)
qlqo

+ 4 |T1(0)|2(M2
B −M2

K∗)2
(
δjk − qjqk

|q|2

)(
δjk +

qjqk

M2
K∗

)
= 16 |T1(0)|2(M2

B −M2
K∗)2. (B.27)
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Finally, the total decay rate is

Γ =
1

2MB

∫
d3q

(2π)32|q|

× 1

(2π)32
√
M2
K∗ + |q|2

(2π)4δ
(
MB −

√
M2
K∗ + |q|2 − |q|

)∑
r,s

|M|2

=
1

2MB

∫
4π|q|2d|q|
(2π)22|q|

1

2
√
M2
K∗ + |q|2

δ

(
MB −

√
M2
K∗ + |q|2 − |q|

)∑
r,s

|M|2

=
1

2MB

4π|q|2

(2π)22|q|
1

2
√
M2
K∗ + |q|2

1 +
|q|√

M2
K∗ + |q|2

−1∑
r,s

|M|2
∣∣∣∣∣∣
|q|=

M2
B
−M2

K∗
2MB

=
M2
B −M2

K∗

16πM3
B

∑
r,s

|M|2

=
M2
B −M2

K∗

16πM3
B

∣∣∣∣VtbV ∗ts 4GF√2
C7(µ)

e

16π2
mb

∣∣∣∣2 16 |T1(0)|2(M2
B −M2

K∗)2

=
α G2

F

8π4
|C7(µ)|2|VtbV ∗ts|2m2

bM
3
B

(
1−

M2
K∗

M2
B

)3

|T1(0)|2. (B.28)



Appendix C

Data analysis methods

C.1 Correlated least-squares fitting

Suppose that we have real-valued “observables” yi where i = 1, 2, ... is a generic label; an

example will be given in Sec. C.2. In this notation, the total number of observables equals

the total number of degrees of freedom in the fit.

Suppose further that we have N statistically independent measurements (for example

data from N independent gauge field configurations) for all of these observables. We

denote a data point by yni , where n = 1 ... N . We define the average of the i-th observable

as

yi =
1
N

N∑
n=1

yni , (C.1)

and the data correlation matrix as

Cij =
1

N(N − 1)

N∑
n=1

(yni − yi)(ynj − yj). (C.2)

We would like to describe the data by smooth model functions fi(a) depending on P real-

values parameters a1, a2, ..., aP . The aim is to find those values of the parameters that

minimise the following χ2 function1:

χ2(a) =
∑
i,j

(C−1)ij
[
yi − fi(a)

][
yj − fj(a)

]
. (C.3)

1This definition, which contains C−1, requires the number of measurements N to be much larger

than the number of degrees of freedom, so that the data correlation matrix is well-determined and

invertible. If this is not the case, one can work with a pseudo-inverse of C instead, which is

computed using singular value decomposition.
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This is the standard least-squares fitting procedure for correlated data points [33, 34].

An efficient method for finding the minimum of (C.3) numerically is the Levenberg-

Marquardt algorithm [200, 201, 202]. A good fit should have χ2/dof ≈ 1, where “dof”

denotes the number of degrees of freedom.

Let a(0) = (a(0)
1 , a

(0)
2 , ..., a

(0)
P ) be the point in parameter space (we assume that it

exists and is unique) that minimises χ2(a). The error estimate for a parameter ap in the

quadratic approximation is then given by

ap = a(0)
p ±

√[
α−1(a(0))

]
p p
, (C.4)

(no sum over the repeated index p here) where the matrix αp q is defined as follows:

αp q(a) =
1
2
∂2χ2(a)
∂ap∂aq

. (C.5)

Note that in the definition (C.5), second derivatives of the functions fi are usually ne-

glected. The inverse of αp q is the parameter covariance matrix.

When evaluating some smooth function g(a) of the parameters, the error estimate in

the quadratic approximation is

g(a) = g(a(0))±

√√√√∑
p, q

[
α−1(a(0))

]
p q

∂g(a(0))
∂ap

∂g(a(0))
∂aq

. (C.6)

In this work, I refer to results and error estimates computed with (C.4) or (C.6) as “ob-

tained directly from the fit”, as opposed to results and error estimates from bootstrap (see

Sec. C.4).

C.2 Simultaneous fitting of multiple correlation functions

The general principle introduced in Sec. C.1 also allows simultaneous fits of multiple

correlation functions in lattice QCD. As an example, we consider a simultaneous fit of the

following model functions:

• a three-point function with model CFJB(T, τ) and data in the range T = 15, 16 and

τ = 6 ... (T − 6),

• a two-point function with model CFF (τ) and data in the range τ = 10 ... 54,

• a two-point function with model CBB(τ) and data in the range τ = 12 ... 32.
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The model functions CFJB(T, τ), CFF (τ), and CBB(τ) depend on a set of parameters,

here various energies and amplitudes. In this example, CFJB(T, τ) could share the en-

ergy parameters describing the state F and its excitations with the two-point function

CFF (τ), and CFJB(T, τ) could share the energy parameters describing the state B and its

excitations with the two-point function CBB(τ).

To perform the simultaneous fit we would use the following model functions fi in the

notation of Sec. C.1:

f1 = CFJB(T = 15, τ = 6),
...

f4 = CFJB(T = 15, τ = 9),

f5 = CFJB(T = 16, τ = 6),
...

f9 = CFJB(T = 16, τ = 10),

f10 = CFF (τ = 10),
...

f54 = CFF (τ = 54),

f55 = CBB(τ = 12),
...

f75 = CFF (τ = 32). (C.7)

The simultaneous fit in this example has 75 degrees of freedom.

C.3 Bayesian fitting

Bayesian (constrained) fitting of lattice QCD data has been introduced in [122, 203]. The

use of the Bayesian method is best illustrated for the fitting of a Euclidean two-point

function to extract energies and amplitudes. It is known from the theory (see Sec. 2.2)

that a two-point function has the form of an infinite sum of exponentials. For a matrix of

two-point functions with a (finite) set of operators labelled by Γ, we have

C(Γsk,Γsc, τ) =
∞∑
n=0

An(Γsk)A∗n(Γsc) e−En τ , (C.8)

where we assume that the energies are ordered so that En > En−1. We would like to

extract the amplitudes An(Γ) and energies En from a fit of (C.8) for a range of points
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τmin ≤ τ ≤ τmax. However, there is an infinite number of parameters but only a finite

number of data points. Therefore, when unconstrained fits are used, one has to truncate

the sum in (C.8) and keep only a finite number of exponentials: 0 ≤ n < nexp. Since the

contributions from higher excited states fall exponentially with τ , one has to choose τmin

large, so that the contributions from the states with n ≥ nexp are negligible. However,

when τmin is chosen too large, statistical errors in the fit results are too big; when τmin is

too small, the contributions from excited states introduce systematic errors in the results.

This behaviour can be seen for example in Table 8.10. The precise value one should choose

for τmin is not well-determined.

Ideally, we would like to include the data at small τ , since it is statistically very

precise. We would like to increase nexp until the systematic errors in the fits results for

the low-lying states are negligible. However, the fit becomes soon unstable when nexp is

increased. If the fit converges at all, one typically obtains unphysically large values for

the amplitudes at large n, such as 100 times the amplitude for the ground state, which

also destabilises the results for the low-lying states. From quark models it is expected

that the amplitudes of the excited states are smaller than or of a similar magnitude as the

ground-state amplitude.

The solution for this problem is to constrain the parameters to physically reasonable

ranges. This can be achieved through augmenting the χ2 function (C.3) by

χ2 → χ2 + χ2
prior (C.9)

with a Gaussian prior

χ2
prior =

∑
p

(ap − ãp)2

σ̃2
ap

. (C.10)

The term χ2
prior favours parameter values in the ranges ap = ãp ± σ̃ap ; the values for ãp

and σ̃ap are chosen based on prior knowledge.

In the following discussion of the prior choices {ãp, σ̃ap} we will distinguish between

parameters for low-lying and high-lying states. For example, the 3 × 3 matrix fit shown

in Fig. 7.2 contains operators optimised for the Υ(1S), Υ(2S) and Υ(3S) states. These

three states are referred to as low-lying for this fit, since their energies and amplitudes are

well-determined by the data. Higher excitations are referred to as high-lying.

I typically choose the prior widths for the parameters of the low-lying states to be

about 10 times larger than the resulting error estimates (C.4) from the fit. This ensures

that the influence of the priors on these parameters is negligible. I obtain initial guesses for

the central values from unconstrained fits including only a small number of exponentials
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Figure C.1: Bayesian fit results for a 3 × 3 matrix correlator with the

{Υ(1S), Υ(2S), Υ(3S)} smearings as a function of the number of exponentials. The values

of χ2 divided by the number of degrees of freedom are also shown.

at large Euclidean time.

For the fit shown in Fig. 7.2, I used the logarithms of the energy splittings ln ≡
ln(En+1 − En) and the relative amplitudes Bn(Γ) ≡ An(Γ)/A0(Γ) as the fit parameters

for n > 0. I set l̃n = −1.4 and σ̃ln = 1. This corresponds to energy splittings of about

400 MeV, with a prior uncertainty of about 100 percent. For the relative amplitudes I set

B̃n = 0 and σ̃Bn = 5.

With the Bayesian method, one can increase nexp arbitrarily without destabilising the

fit. One has to increase nexp until the results and error estimates for the low-lying states

of interest become independent of nexp. This is demonstrated in Fig. C.1.

C.4 Bootstrap method

Equation (C.6) provides a method for taking into account correlations when computing

quantities that depend on more than one parameter of a single fit. However, in many

cases one also needs to compute quantities that depend on parameters from multiple non-

simultaneous fits of data from the same gauge field configurations.

An alternative technique for taking into account correlations that is applicable in both
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cases is the statistical bootstrap method [33, 34]. Recall from Sec. C.1 that we considered

N independent measurements. A single bootstrap sample is obtained by picking N out of

these N measurements randomly (with allowed repetition). One generates a large number

of such bootstrap samples, and performs the fits as in Sec. C.1 for each of these bootstrap

samples.

The function of the fit parameters that one is interested in is then computed for the

fit results from each bootstrap sample. In this way, a distribution for the function is

obtained. One computes the average and takes the 68% width of the distribution as the

error estimate.

Note that the bootstrap method must be modified for Bayesian fitting [122] such that

not only the data sets are resampled randomly, but also the central values ãp of the priors

in (C.10) are drawn from Gaussian random distributions with widths σ̃ap for every fit.

C.5 Autocorrelations

The methods described above all require that the N measurements are statistically inde-

pendent. However, in lattice QCD the gauge field configurations are generated using a

Markov process with a non-zero autocorrelation time. In addition, when different measure-

ments are performed on a single gauge field configuration, these are also not completely

independent. In general, autocorrelations lead to underestimates of statistical errors. A

detailed discussion can be found in [34].

A simple method to reduce autocorrelations is the binning method. “Neighbouring”

measurements (in terms of Markov-chain time and/or position on a single gauge field

configuration) are grouped into bins of size B, and the average is computed for each bin.

The N/B bin-averages are then taken as the new measurements, which are statistically

more independent. The bin size B is increased until the error estimates become stable.



Acknowledgements

I would like to thank my supervisor Matt Wingate for his continued support and en-

couragement throughout this work. I thank all those who contributed through useful

discussions, including Christine Davies, Will Detmold, Alistair Hart, Ron Horgan, Lew

Khomskii, Andrew Lee, Peter Lepage, David Lin, Zhaofeng Liu, Eike Müller, Heechang

Na, Junko Shigemitsu and Laurent Storoni. I also thank the lecturers of the two summer

schools where I have learned so much: the school on “Lattice QCD and its applications”

in 2007 at the Institute for Nuclear Theory in Seattle, USA, and the school on “Modern

perspectives in lattice QCD: Quantum field theory and high performance computing” in
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