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Abstract 

General cognitive ability, sometimes referred to as intelligence, is associated with educational 

attainment throughout childhood. Most studies that have explored the neural correlates of 

intelligence in childhood focus on individual brain regions. This analytical approach is designed 

to identify restricted sets of voxels that overlap across participants. By contrast, we explored the 

relationship between white matter connectome organization, intelligence, and education. In both 

a sample of typically-developing children (N=63) and a sample of struggling learners (N=139), 

the white matter connectome efficiency was strongly associated with intelligence and 

educational attainment. Further, intelligence partially mediated the relationship between 

connectome efficiency and educational attainment. In contrast, a canonical voxel-wise analysis 

failed to identify any significant relationships. The results emphasize the importance of 

distributed brain network properties for cognitive or educational ability in childhood. Our 

findings are interpreted in the context of a developmental theory, which emphasizes the 

interaction between different subsystems over developmental time.  
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Introduction 

The ability to reason and solve novel problems is a key human ability, necessary for adapting 

and learning from a dynamically changing environment. There is a long and rich history of 

philosophical and scientific exploration of the nature of human intelligence. Indeed, there are 

many valid ways of defining intelligence. In psychology, intelligence has emerged as a core 

construct (Deary 2012) and understanding individual differences in intelligence has become a 

central focus across many subfields, including cognitive neuroscience and developmental 

psychology. In many cases, this has a very practical application - intelligence appears to play a 

key role in important real-world outcomes, notably school progress (Deary et al. 2007). 

Intelligence correlates highly with children‟s educational attainment (0.4-0.7, Mackintosh et al. 

2011). 

One popular way to measure intelligence is as the shared variance across multiple cognitive 

tasks that tap different aspects of cognition such as fluid reasoning, executive function, 

processing speed, short-term and working memory, and spatial reasoning. A highly replicated 

finding is that performance across tasks loads onto a general intelligence factor (g) (Spearman 

1904) that can be further fractionated into variance associated with specific domains, e.g. verbal 

vs spatial ability. In this framework, intelligence is conceptualized as a multi-component system 

that describes individual variation in the ability to reason, solve problems, and think 

abstractly (Gottfredson 1997). While the relative ranking of individuals on this measure remains 

remarkably stable over the lifespan (Deary et al. 2000), absolute differences are amplified over 

the course of child and adolescent development (McArdle et al. 2002). A strong possibility is 

that small initial differences in one aspect of intelligence support increases in other 

aspects (Ferrer and McArdle 2004; Ferrer et al. 2007). Accordingly, differences in cognitive 

ability may contribute to better educational attainment. 

 

Studies on the neural basis of intelligence have shifted from an emphasis on a small number of 

brain regions to investigations of whole-brain properties. This has in part been driven by new 

developments in analysis and conceptualization of brain structure and function. Traditional 

analyses have been focused on detecting local differences that result from brain insults or 

plasticity and were well aligned with classic localist theories that link such insults or 

growths/prominences to selective impairments in cognitive function (e.g. Luria, 1966; Wernicke 

1874). Studies that employed voxel-wise approaches implicated the dorsolateral prefrontal 

cortex, anterior cingulate cortex, parietal lobe, and medial temporal cortex as the loci of 

intelligence (Duncan et al., 2000; Jung & Haier, 2007). In contrast, recent parallel theories in 

neurocognitive development and network neuroscience have emphasized the role of interactions 

among distributed brain regions (Bassett & Sporns, 2017; Colom et al., 2010; Johnson et al. 

2011). According to this view, cognitive capacity emerges from the contributions of distributed 

brain regions that function together as an integrated network (Barbey, 2018). Recent advances 

that capitalize on graph theory, a branch of mathematics concerned with the study of complex 

systems with interacting elements, indicate that organizational principles of the whole-brain 

network are strongly linked to general intelligence. In network analysis, the brain is described as 
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a set of nodes, typically brain regions, that are linked through edges that either present white 

matter connections or statistical associations between brain signals (Rubinov and Sporns 2010). 

A consistent finding is that functional and structural brain networks with higher global 

efficiency, i.e. networks with shorter connections between any pair of nodes in the network, are 

associated with higher scores on assessments of general intelligence in both children and 

adults (Santarnecchi et al. 2017; Pineda-Pardo et al. 2016; Kim et al. 2016; van den Heuvel et al. 

2009).  

Despite these recent advances in methods for exploring principles of brain organization, these are 

rarely applied to developmental populations. The vast majority of studies employ methods reliant 

upon voxel overlap and mass univariate comparisons. This can give the impression that focal 

differences in brain structure are associated with particular cognitive differences in childhood, 

and that cognitive difficulties stem from restricted lesion-like effects. However, as noted above, a 

strong conclusion from developmental theory is that cognitive difficulties that emerge over time 

are unlikely to be the result of lesion-like effects, but instead should reflect an emergent property 

of a dynamic system comprised of interacting subcomponents, with difficulties cascading 

through the system, or being partially compensated for elsewhere. It is difficult to identify these 

kinds of effects with traditional univariate tests. 

The current study explored the relationships between whole-brain white matter network 

organization, general intelligence, and educational attainment in mid-childhood. We focus on 

two cohorts of children, one typically developing, recruited from mainstream education, and a 

second group of struggling learners referred by professionals in children‟s specialist services. 

These samples cover a wide range of cognitive performance in development to provide a broad 

insight into the brain substrates supporting intelligence across average and below-average 

performance. We focused on white matter because white matter maturation is an important 

aspect of post-natal brain development with a prolonged trajectory extending into the third 

decade of life (Lebel et al. 2008), and it has previously been linked to individual differences in 

cognition (Clayden et al. 2011). Our hypothesis is that graph theoretical measures of global brain 

organization will be strongly associated with children‟s general cognitive ability, and that this 

ability will mediate links between brain organization and educational attainment. Furthermore, 

we predict this that these relationships will not be revealed by a more traditional neuroimaging 

approach, reliant on voxel overlap across children.  

Participants and Methods 

Participants 

Attention and Cognition in Education (ACE): This sample was collected for a study 

investigating the neural, cognitive, and environmental markers of risk and resilience in children. 

Children between 7 and 12 years attending mainstream school in the UK, with normal or 

corrected-to-normal vision or hearing, and no history of brain injury were recruited via local 

schools and through advertisement in public places (childcare and community centres, libraries). 

Participating families were invited to the MRC Cognition and Brain Sciences Unit (MRC CBU) 

for a 2-hour assessment, which included the assessments reported here, and structural MRI 

scanning. Participants received monetary compensation for taking part in the study. This study 
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was approved by the Psychology Research Ethics Committee at the University of Cambridge 

(Reference: Pre.2015.11). Parents provided written informed consent and children verbal assent. 

A total of 89 children participated in the study. Twenty-six children were excluded because of 

low-quality MRI data (29%, see below for quality control criteria). The final sample consisted of 

63 children (34 male, Age: mean=9.93, std=1.538, range=6-12). 

 

Centre for Attention, Learning, and Memory (CALM):  For this study, children aged 

between 5 and 18 years were recruited on the basis of ongoing problems in attention, learning, 

language and memory, as identified by professionals working in schools or specialist children‟s 

services in the community. Following an initial referral, the CALM staff contacted referrers to 

discuss the nature of the child‟s problems. If difficulties in one or more area of attention, 

learning, language or memory were indicated by the referrer, the family were invited to the 

CALM clinic at the MRC CBU in Cambridge for a 3-hour assessment. This assessment included 

the assessments reported here. Exclusion criteria for referrals were significant or severe known 

problems in vision or hearing that were not corrected or having a native language other than 

English. Written parental consent was obtained and children provided verbal assent. Families 

were also invited to participate in MRI scanning on a separate visit. Participation in the MRI part 

of the study was optional and required separate parental consent and child assent. Contra-

indications for MRI were metal implants, claustrophobia, or distress during a practice session 

with a realistic mock MRI scanner. This study was approved by the local NHS research ethics 

committee (Reference: 13/EE/0157). Of the full CALM sample, 197 children who participated in 

neuroimaging and had complete data on all assessments were included for the current analysis. 

Nine older children at the tail of the age distribution were excluded to focus on a narrower age 

range. A further 49 participants were excluded because of low-quality neuroimaging data (see 

below for criteria). The final sample for the analysis consisted of 139 children (90 male, Age: 

mean=9.35, std=1.683, range=5-13).  The sample included a high proportion of boys as is 

frequently the case in sample recruited for difficulties in school (Russell et al., 2014).  

 

Assessments of cognition and educational attainment 

Procedure:  All children for whom we had cognitive data were tested on a one-to-one basis with 

a trained researcher in a dedicated child-friendly testing room at the MRC CBU. The battery 

included a wide range of standardized assessments of cognition and educational attainment. 

Regular breaks were included throughout the session. Testing was split into two sessions for 

children who struggled to complete the assessments in one sitting. Measures relating to cognitive 

performance across different domains were included in this analysis. Tasks that were based on 

reaction times were not included in this analysis due to their different psychometric properties 

compared to the included tasks that were based on performance measures.  

 

Fluid reasoning:  Fluid intelligence was assessed on the Reasoning task of the Wechsler 

Abbreviated Scale of Intelligence, 2nd edition (Wechsler 2011). Both children in the CALM and 

ACE sample completed this assessment. 
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Working Memory: The Digit Recall, Backward Digit Recall, Dot Matrix, and Mr X task of the 

Automatic Working Memory Assessment (AWMA) (Alloway et al. 2008) were administered 

individually. In Digit Recall, children repeat sequences of single-digit numbers presented in an 

audio format. In Backward Digit Recall, children repeat the sequence in backwards order. These 

tasks were selected to engage verbal short-term and working memory, respectively. For the Dot 

Matrix task, the child was shown the position of a red dot for 2 seconds in a series of four by four 

matrices and had to recall this position by tapping the squares on the computer screen. In the Mr 

X task, the child retains spatial locations whilst performing interleaved mental rotation decisions. 

These tasks were selected to engage visual short-term and working memory, respectively. These 

assessments were the same in the CALM and ACE sample.  

 

Educational attainment: For the ACE sample, tasks from the non-computerized version of the 

Woodcock-Johnson Test of Achievement, 4th edition (WJ-IV) were administered (Woodcock-

Johnson IV Test of Achievement 2014).  „Letter-Word Identification‟ required the reading of 

letters initially, with the later stages requiring full word reading. „Passage Comprehension‟ 

required children to comprehend the semantic context of simple phrases initially (e.g. „the cat sat 

on the mat‟, with the children shown a set of pictures), and choose the missing word for longer 

phrases and passages in later stages of the test. Both assessments employed “discontinue rules” 

to identify the child‟s upper limit of ability. A final literacy test was „Reading Fluency‟. Children 

were given a set of simple sentences (e.g. „the sky is green‟) and asked to indicate whether they 

were true or false. Each child had 3 minutes to complete as many sentences as possible. Writing 

abilities were assessed using the „Spelling‟ subtest. For this test, children were read words and 

contextual sentences and had to write them down in a booklet. We also included three subtests 

that measured mathematics ability. The first was „Calculation‟ and simply required children to 

perform sums of increasing difficulty. The second measure of mathematics ability was „Maths 

Fluency‟. Children were presented with relatively simple calculations in written form and asked 

to calculate the answers. They were given 3 minutes to do as many as possible.  

 

For the CALM sample, spelling, reading, and maths measures were taken from the Wechsler 

Individual Achievement Test (WIAT, Wechsler, 2001). For the spelling assessment, children had 

to write words starting with simple phonetic words and progressing towards more difficult words 

with irregular spelling. For the spelling assessment, children were read words along with 

example sentences and had to write the words in an example booklet. For the reading 

assessments, children read words starting from short, phonetic words and progressing towards 

rarer, polysyllabic words. For the math assessment, children had to solve math problems starting 

with simple retrieval of numeric facts and progressing towards more difficult multi-stage 

calculations. Correct responses were scored and the assessment was terminated following the 

rules of the assessment manual.  
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Table 1 Scores normalized according to the mean and standard deviation of the normative 
sample. The statistics tested if the observed values differed from the age-expected values with  
a mean of 0. 

Sample Measure mean std t p

CALM
Matrix 

Reasoning
-0.6 0.94 -7.93 <0.001

Digit Recall -0.5 1.16 -5.04 <0.001

Dot Matrix -0.5 0.96 -6.02 <0.001

Backward Digit

Recall
-0.6 0.79 -8.87 <0.001

Mr X -0.2 0.92 -2.8 0.006

ACE
Matrix 

Reasoning
0 0.89 0.03 0.978

Digit Recall 0.31 0.8 3.12 0.003

Dot Matrix 0.42 0.94 3.58 0.001

Backward Digit

Recall
0.29 0.99 2.34 0.022

Mr X 0.47 1.05 3.56 0.001

CALM Spelling -1.2 0.89 -15.6 <0.001

Reading -1 1.18 -9.64 <0.001

Maths -1.1 1.14 -10.9 <0.001

ACE
Letter-Word 

Identification
0.66 0.8 6.52 <0.001

Spelling 0.5 1.04 3.84 <0.001

Passage 

Comprehensio

n

-0.1 0.78 -0.99 0.326

Reading 

Fluency
0.29 1.07 2.14 0.036

Calculation 0.26 1.09 1.86 0.067

Math Fluency -0.4 0.85 -3.61 0.001  

Magnetic resonance imaging 

MRI protocol: Magnetic resonance imaging data were acquired at the MRC CBU, Cambridge 

U.K. All scans were obtained on the Siemens 3 T Tim Trio system (Siemens Healthcare, 

Erlangen, Germany), using a 32-channel quadrature head coil. For ACE, the imaging protocol 

consisted of two sequences: T1-weighted MRI and a diffusion-weighted sequence. For CALM, 

the imaging protocol included an additional resting-state functional MRI (rs-fMRI) sequence. 

T1-weighted volume scans were acquired using a whole brain coverage 3D Magnetisation 

Prepared Rapid Acquisition Gradient Echo (MP-RAGE) sequence acquired using 1mm isometric 

image resolution. Echo time was 2.98ms, and repetition time was 2250ms. Diffusion scans were 

acquired using echo-planar diffusion-weighted images with a set of 60 non-collinear directions, 

using a weighting factor of b=1000s*mm
-2

, interleaved with a T2-weighted (b=0) volume. 
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Whole brain coverage was obtained with 60 contiguous axial slices and isometric image 

resolution of 2mm. Echo time was 90ms and repetition time was 8400ms. 

  

MRI quality control: Participant movement may significantly affect the quality of MRI data 

and may bias statistical comparisons. Several steps were taken to ensure good MRI data quality 

and minimize potential biases of participant movement. First, children were instructed to lie still 

and were trained to do so in a realistic mock scanner prior to the actual scan. Second, all T1-

weighted images and FA maps were visually inspected by a trained researcher (J.B.) to remove 

low-quality scans. Further, the quality of the diffusion-weighted imaging (dwi) data were 

assessed by calculating the displacement between subsequent volumes in the sequence. Scans 

that showed a displacement of >3mm within the diffusion-weighted sequence were excluded. 

Further, we used the maximum displacement across the sequence as a nuisance regressor for all 

included participants.  

 

White-matter connectome construction 

The white-matter connectome reconstruction followed the general procedure of estimating the 

most probably white matter connections for each individual, and then obtaining measures of 

fractional anisotropy (FA) between regions (see Bathelt et al. 2017). The details of the procedure 

are described in the following paragraphs (see Figure 1 for an overview). 

For the analysis, MRI scans were converted from the native DICOM to compressed NIfTI-1 

format using the dcm2nii tool. Subsequently, a brain mask was derived from the b0-weighted 

volume of the diffusion-weighted sequence and the entire sequence was submitted for correction 

for participant movement and eddy current distortions through FSL‟s eddy tool. Next, non-local 

means de-noising (Coupe 2008) was applied using the Diffusion Imaging in Python (DiPy) v0.11 

package (Garyfallidis 2014) to boost the signal-to-noise ratio. The diffusion tensor model was 

fitted to the pre-processed images to derive maps of fractional anisotropy (FA) using dtifit from 

the FMRIB Software Library (FSL) v.5.0.6 (Behrens 2003). A spherical constrained 

deconvolution (CSD) model (Tournier 2008) was fitted to the 60-gradient-direction diffusion-

weighted images using a maximum harmonic order of 8 using DiPy. Next, probabilistic whole-

brain tractography was performed based on the CSD model with 8 seeds in any voxel with a 

General FA value higher than 0.1. The step size was set to 0.5 and the maximum number of 

crossing fibres per voxel to 2. 

For ROI definition, T1-weighted images were preprocessed by adjusting the field of view using 

FSL‟s robustfov, non-local means denoising in DiPy, deriving a robust brain mask using the 

brain extraction algorithm of the Advanced Normalization Tools (ANTs) v1.9 (Avants 2009), 

and submitting the images to recon-all pipeline in FreeSurfer v5.3 

(http://surfer.nmr.mgh.harvard.edu). Regions of interests (ROIs) were based on the Desikan-

Killiany parcellation of the MNI template (Desikan 2006) with 34 cortical ROIs per hemisphere 

and 17 subcortical ROIs (brain stem, and bilateral cerebellum, thalamus, caudate, putamen, 

pallidum, hippocampus, amygdala, nucleus accumbens). The surface parcellation of the cortex 

was transformed to a volume using the aparc2aseg tool in FreeSurfer. Further, the cortical 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

parcellation was expanded by 2mm into the subcortical white matter using in-house software. In 

order to move the parcellation into diffusion space, a transformation based on the T1-weighted 

volume and the b0-weighted image of the diffusion sequence was calculated using FreeSurfer‟s 

bbregister and applied to volume parcellation. To construct the connectivity matrix, the number 

of streamlines intersecting both ROIs was estimated and transformed into a density map for each 

pairwise combination of ROIs. A symmetric intersection was used, i.e. streamlines starting and 

ending in each ROI were averaged. 

 

 

 

Figure 1: Overview of processing steps to derive the FA-weighted white matter connectome 
from diffusion- and T1-weighted neuroimaging data.  

 

Graph theory 

The current analysis focused on local and global efficiency (Ej, EG) because this metric has been 

found to relate closely to measures of intelligence in previous studies (Kim et al., 2016; Pineda-

Pardo et al., 2016).  We calculated local and global efficiency for weighted undirected networks 

as described by Rubinov & Sporns 2010. The shortest path length between two nodes i and j in a 

weighted network is defined as    
                  where   is a map from weight to 

length and    
  is the shortest weighted path between i and j. The weighted global efficiency (EG) 

is defined as the average of local efficiencies (Ej):  
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      with N as the set of all nodes in the network and n the number of 

nodes.  

 

Spurious connections in streamline tractography are a common problem in structural connectome 

studies (Zalesky et al. 2016). Typically, a threshold is applied to remove false positive 

streamlines. However, the choice of this cut-off is largely arbitrary. To remove the effect of 

setting any particular threshold, a range of density thresholds (0.3 to 0.9) was applied and the 

area under the curve for each graph metric was compared in subsequent analyses (van Wijk, 

Stam, and Daffertshofer 2010). 

 

Statistical analysis 

Dimensionality reduction: Exploratory Factor Analysis (EFA) was carried out to reduce the 

dimensionality of the cognitive assessment and educational attainment data. First, we normalized 

the raw scores to a mean of 0 and unit standard deviation (z-score) and checked the normed data 

for univariate (>3 standard deviations above the mean) and multivariate outliers (Mahalanobis 

distance). No outliers were detected for the cognitive or educational attainment data in the ACE 

nor the CALM sample. Next, we calculated bivariate Pearson correlations between the cognitive 

and educational attainment scores and carried out exploratory factor analysis (EFA) using 

the psych v1.7.8 package under R 3.4.3 using the maximum likelihood implementation. The 

number of factors was estimated via parallel analysis that compared the scree plot of the 

observed data to a bootstrapped sample of 10,0000 permutations (Franklin et al., 1995). The 

optimal solution was indicated as the highest number of factors that had an eigenvalue above the 

eigenvalue obtained for scrambled data. The factor score was calculated for this solution. 

Subsequently, we regressed the linear and quadratic effects of age and the effect of gender from 

the factor scores.  

 

Regression analysis: Regression analyses were carried out using the scientific python (SciPy) 

v0.18.1 and statsmodels v0.6.1 packages for Python. Visualizations were created using 

the matplotlib v1.5.1 package for Python. The mediation analyses were performed using 

the lavaan package v0.5 in R (Rosseel 2012).  
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Table 2 Results of simple regression between outcome variables and nuisance variables. 
Significant effects at p<0.05 are highlighted in bold print. 

β p β p β p

ACE Age -0.24 0.031 -0.28 0.009 -0.08 0.496

Age2
0.26 0.016 0.29 0.007 -0.23 0.032

brain vol. 0.07 0.542 0.13 0.228 0.14 0.216

sex -0.05 0.819 -0.1 0.653 0.86 <0.001

motion 0.22 0.041 0.05 0.645 -0.24 0.028

CALM Age 0.57 <0.001 0.62 <0.001 0.2 0.017

Age2
0.01 0.882 0.04 0.527 -0.02 0.81

brain vol. 0.02 0.856 -0.16 0.059 0.33 <0.001

sex 0.21 0.251 0.01 0.967 0.57 0.001

motion -0.11 0.2 -0.12 0.154 -0.06 0.504

cogn. ed. EG

 
 

Comparison analysis with tract-based spatial statistics 

To contrast the structural connectome approach with more commonly used voxelwise statistical 

analysis, FA maps were processed using tract-based spatial statistics (TBSS) as implemented in 

FSL v5.0.9. (see Smith et al. 2006 for detailed description of TBSS). In short, FA maps were 

moved to common space via affine and non-linear transformations using FSL tools. A common 

template based on a large developmental sample constructed using advanced normalization tools 

(ANTs) v1.9 (Avants 2011) was used as the registration target (NKI Rockland Enhanced 

Sample, Nooner et al., 2012). Next, the mean FA image was created and thinned to create a mean 

FA skeleton which represents the centers of all tracts common to the group. Each subject‟s 

aligned FA data was then projected onto this skeleton. 

For statistical comparison, the positive and negative association between FA values and 

cognitive or educational attainment factor scores was evaluated controlling for the effect of age, 

sex, movement, and intracranial volume in a generalized linear model (GLM). The model also 

contained an intercept term. Inflation of error rates due to multiple comparison across voxels was 

controlled using cluster-free threshold enhancement as implemented in FSL randomise (Winkler 

2014). 

 

Results 

Factor analysis of cognitive and educational attainment measures  

We applied exploratory factor analysis (EFA) to investigate the factor structure of cognitive and 

educational attainment assessments in a maximum likelihood procedure. Parallel analysis that 

compared the original data to a bootstrap sample of 10,000 random permutations favoured a one-
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factor solution for the cognitive and the attainment measures in both samples (see scree plots in 

Figure 2). Fit indices indicated that the one-factor model provided a good account of the 

cognitive and educational attainment data (RMSR<0.08, RMSEA<0.2, Tucker-Lewis 

index>0.95, see Table 3) with the exception of the educational assessment data in the ACE 

sample where the Tucker-Lewis index was below the recommended cut-off. A solution with two 

factors only marginally improved the Tucker-Lewis index (0.834 for 2 factors compared to 0.826 

for 1 factor) and lead to worse root-mean-squared error indices (RMSR: 0.08, RMSEA: 0.202). 

The correlation matrix (see Figure 2) suggested that the educational assessments in the ACE 

sample could represent two factors related to reading/spelling and maths respectively. However, 

with only two assessments, the arithmetic factor may not have been adequately represented to 

fully capture the unique variance associated with maths performance. Given that parallel analysis 

and the other fit indices suggested a one-factor solution for the educational attainment data in the 

ACE sample, we opted to retain this solution for further analysis.    

Regarding the factor loading, Dot Matrix and Backward Digit Recall had the highest loading on 

the cognitive factor in the ACE sample, while Matrix Reasoning and Backward Digit Recall had 

the highest loading in the CALM sample (see Table 3). However, all cognitive assessment 

showed a high loading on the cognitive factor across both samples. For the educational 

attainment factor, reading and spelling measures showed a higher loading on the educational 

factor across both samples in line with their greater representation in the assessment tasks 

compared to the maths assessments (see Table 3).  

 

Figure 2: Exploratory factor analysis (EFA) of cognitive (a,c) and educational attainment 
measures (b,d) in the ACE (a,b) and CALM sample (c,d). The left panel of each plot shows a 
matrix of correlations between measures for each factor. The right panel shows the 
eigenvalues for each principal component (red) compared to scrambled data (grey). 
Abbreviations: MR=matrix reasoning, DR=Digit Recall, DM=Dot Matrix, BD=Backward Digit 
Recall, MX=Mr. X, SP=Spelling, RE=Reading, MA=Maths.  
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Table 3 Results of the Exploratory factor analysis (EFA) of cognitive and educational 
assessment data in the ACE and CALM sample. The table shows the standardized loading of 
each scale on a common factor. The confidence interval was based on a bootstrap sample with 
1,000 permutations. Fit indicates for each solution are shown: var explained=variance 
explained, RMSR: standardized root-mean squared residual, RMSEA: root-mean squared error 
of approximation, Tucker-Lewis=Tucker-Lewis normed fit index.  

ACE

loading 5% 95% fit indices

Matrix Reasoning 0.62 0.42 0.85 var explained 0.39

Digit Recall 0.53 0.29 0.8 RMSR 0.06

Dot Matrix 0.69 0.48 0.88 RMSEA 0.058

Backward Digit Recall 0.71 0.53 0.87 Tucker-Lewis 0.973

Mr X 0.55 0.34 0.77

Letter-Word 0.83 0.73 0.92 var explained 0.71

Spelling 0.83 0.72 0.93 RMSR 0.04

Passage Comprehension 0.83 0.73 0.94 RMSEA 0.198

Reading Fluency 0.81 0.71 0.9 Tucker-Lewis 0.834

Calculation 0.64 0.45 0.8

Math Fluency 0.62 0.43 0.79

CALM

loading 5% 95%

Matrix Reasoning 0.75 0.65 0.85 var explained 0.48

Digit Recall 0.62 0.49 0.75 RMSR 0.04

Dot Matrix 0.66 0.54 0.78 RMSEA 0.059

Backward Digit Recall 0.82 0.73 0.91 Tucker-Lewis 0.979

Mr X 0.59 0.46 0.72

Spelling 0.93 0.86 0.98 var explained 0.74

Reading 0.91 0.85 0.96 RMSR <0.01

Maths 0.74 0.65 0.83 RMSEA <0.001

Tucker-Lewis >0.999

 

 

Relationship between global efficiency, cognitive factor scores, and educational 
attainment scores 

Regression analysis indicated that cognitive factor scores were a strong predictor of educational 

attainment factor scores (ACE: F(1,61)=35.24, R
2
=0.37, β=0.61, p<0.001; CALM: 

F(1,137)=75.75, R
2
=0.36, β=0.61, p<0.001) that explained over 35% of variance in educational 
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attainment scores. EG was also strongly related to cognitive factor scores in the ACE and CALM 

sample (ACE: F(1,61)=8.23, R
2
=0.119, β=0.345,  p=0.006; CALM: F(1,137)=17.61,  R2=0.114, 

β=0.338, p<0.001). Further, EG was also related to educational attainment scores in both sample 

(ACE: F(1,61)=9.914, R
2
=0.141, β=0.374, p=0.003; CALM: F(1,137)=12.02, R

2
=0.08, 

β=0.284, p=0.001).  

Next, we investigated the relationships between all variables in a mediation model. The results 

indicated that cognitive factor scores were mediating the relationship between EG and 

educational attainment scores in both samples (see Figure 3). The results indicated that the 

relationship between EG and learning was partially mediated by indirect effect via cognition. 
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Figure 3: A) Visualization of the group-average connectome in the ACE sample b) Group-
average connectome in the CALM sample. C) Regression of factor scores for educational 
attainment, cognition, and global efficiency of the white matter network and mediation 
relationships for the ACE sample. The shaded area in the regression results shows the 5-
95%ile confidence interval based on bootstrap sample with 500 permutations. D) Regression 
and mediation results in the CALM sample. Legend: β: direct effect,  β’: indirect 
effect,  ***p<0.001, **p<0.01, *p<0.05  

 

Regional associations 

To identify brain regions that were most closely associated with cognitive and educational 

attainment outcomes, we assessed the strength of the linear association between local efficiency 

(Ej) and factor scores in the ACE and CALM sample (see Figure 4). For cognitive factor scores, 

the association with Ej was strongest for the left banks of the superior temporal sulcus (β=0.24), 

left medial occipital cortex (β=0.23), and right caudal middle frontal cortex (β=0.23) in the ACE 

sample, and with the left middle temporal (β=0.21), transverse temporal (β=0.18), superior 

temporal (β=0.17), superior parietal (β=0.17), and anterior cingulate cortex (β=0.14), and the 

right lateral orbitofrontal (β=0.17), superior temporal (β=0.15), caudal middle frontal cortex 

(β=0.14) in the CALM sample (Figure 4 A). For educational attainment scores, the association 

with Ej was strongest for the left banks of the superior temporal sulcus (β=0.33), lingual gyrus 

(β=0.27), and  middle frontal gyrus (β=0.25) in the ACE sample, and for the left lateral occipital 

(β=0.21), superior temporal (β=0.19), middle temporal (β=0.14), inferior temporal (β=0.19), 

transverse temporal (β=0.15), fusiform (β=0.17), and superior parietal cortex (β=0.15), and the 

right temporal pole (β=0.16) and superior parietal cortex (β=0.15) in the CALM sample (see 

Figure 4 B).  

Since larger brain region have a higher chance for intersections with white matter streamlines 

which may confound the results (Itturia-Medina, 2009; Heuvel, 2013, Hagmann, 2008), we 

included the grey matter volume of regions as a control variable in additional analysis. For the 

ACE sample, the association between the cognitive factor and the left banks of the superior 

temporal sulcus and left medical occipital sulcus remained after this correction (see Figure 4 C), 

while the association with the right caudal middle frontal cortex was attenuated. The association 

with the learning factor changed in the ACE sample when volume differences between regions 

were corrected (Figure 4 D). With volume correction, the learning factor was associated with the 

left medial and lateral occipital cortex. The CALM sample showed a similar pattern of results. 

The association between temporal and parietal regions with the cognitive factor was still 

observed when correcting for grey matter volume, while associations with middle frontal areas 

(left caudal middle frontal, right lateral orbitofrontal cortex) disappeared (Figure 4 C). Further, 

the associations between the learning factor and Ej in the CALM sample were sparser but 

showed similar involvement of the left temporal areas and the left medial cingulate cortex. 

Similar to the ACE results, an additional involvement of the lateral occipital cortex was indicated 

when correcting for grey matter volume in the CALM sample (Figure 4 D).    
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Figure 4: Regression coefficients for the regional associations between local efficiency (Ej) and 
the cognitive factor scores (A, C) and the learning factor scores (B, D) in the ACE and CALM 
sample. The top panel shows native associations and the bottom panel shows associations 
corrected for the grey matter volume of each region.  

 
Voxel-wise associations with cognition and educational attainment 

We performed an alternative analysis to evaluate the association between voxel-wise FA and 

cognitive and educational attainment scores. There were no statistically significant positive or 

negative associations at pcorrected<0.05 nor at pcorrected<0.1 (see Figure 5).  

 

Figure 5: Results of voxel-wise analysis using tract-based spatial statistics (TBSS). There were 
no significant positive or negative associations between voxel FA values and cognitive or 
educational attainment measures in the ACE or CALM sample (pcorrected>0.1). Only maps of 
positive associations are shown.  
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Discussion 

The current study investigated the relationship between cognitive ability, educational attainment, 

and the global and local efficiency of the white matter connectome. Global efficiency of the 

white matter connectome was strongly associated with children‟s cognitive and educational 

ability -  higher global efficiency was related to better general intelligence, both in a sample of 

children with age-expected ability and a sample of struggling learners.  

 

In a first step, we derived factors for cognition and learning in our two independent samples of 

typically-developing children and struggling learners. For cognitive measures, a single-factor 

solution was favoured for both samples that explained between 40 and 50% of the variance in 

cognitive scores and loaded roughly equally on measures on fluid reasoning and visuospatial and 

verbal short-term and working memory.  This factor is likely to reflect general intelligence (g) 

given the similarity of the current results with meta-analytic studies of this construct  (Carroll 

1993, Jensen 1998). However, four of the five measures used to derive the cognitive factor were 

short-term and working memory tasks. Intelligence and working memory are separate constructs 

that can be distinguished using factor analysis (Abreu 2010, Ackerman 2005), although typically 

using factor rotation or confirmatory factor analysis to tease the factors apart and with high 

correlations between the factor (0.85 according to Oberauer et al. 2005). The single-factor 

solution in the current study may be skewed towards a higher contribution of working memory 

and may only partially reflect contributions of a separate fluid intelligence construct. However, 

general intelligence may also be regarded as a hierarchical structure with an overarching shared 

variance between all cognitive measures that can be subdivided into separate domains, including 

short-term and working memory (Carroll 1993).  This may explain the roughly equal 

contributions of Matrix Reasoning and the short-term and working memory tasks for the first 

unrotated principal component in the current analysis.  

The current study also finds a high correlation between academic attainment tasks aimed at 

assessing reading, writing, and arithmetic that were consistently observed in two independent 

samples and using different standardised assessments. Factor analysis also favoured a single 

factor solution for the learning assessments. Reading and maths have generally been regarded as 

separate domains with specific mechanisms being associated with learning in each domain. This 

is also reflected in categorisation of learning difficulties that emphasizes specific deficits is 

associated with reading (dyslexia) and maths (dyscalculia). However, recent studies show a high 

degree of overlap that indicates that performance in one domain is highly related to performance 

in another (Kovacs et al., 2007). Higher correlations within domains (reading/writing vs maths, 

especially in the ACE sample) indicate that the domains may be separable, e.g. through factor 

rotation, but the high correlation across all tasks suggests an overriding single factor that 

explains a large degree of variance. The single factor for learning may reflect similarities in the 

assessment, i.e. standardised assessment with similar materials and instructions by the same 

assessor, or may reflect a common source of variance that has a similar impact on academic 

attainment.  This common source of variance may stem from a common constraint through 

general intelligence as suggested by the close relationship between the cognitive and learning 

factors in the current analysis. In both samples, cognitive factor scores explained more than 35% 

of the variance in the learning factor. This finding fits in well with meta-analyses showing that 

fluid reasoning is closely related to school performance (Kuncel 2010, Lubinski 2009), 
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particularly when structured assessments are used to assess academic attainment (Duckworth 

2012).  

 

In a second step, we assessed the relationship between global efficiency (EG) of the white matter 

network with general intelligence and educational attainment factor scores. The results indicated 

that EG was related to general intelligence replicating findings in adults and children (Kim 2016, 

Haier 2004, Li 2009). This relationship was observed in a sample of children with scores within 

the typical range and a sample of struggling learners, which suggests that the relationship 

between global white matter organisation and general intelligence extends to the lower 

performance range. The analysis of regional associations showed different patterns for the 

CALM and the ACE sample. In the CALM sample, white matter connections of frontal, parietal, 

and temporal regions were most strongly associated with cognition and educational attainment, 

even when correcting for the effect of grey matter volume. These associations agree with 

previous studies in adults that reported associations between intelligence and structural imaging 

markers in the prefrontal cortex, parietal lobe, and medial temporal cortex (Jung & Haier, 2007; 

Deary, 2010). One possibility is that these regions play a key role in integrating whole-brain 

neuronal activity, acting as hubs (van den Heuvel et al. 2012). Regional associations in the ACE 

sample were sparse in comparison showing only associations with cognition and educational 

attainment in the superior temporal lobe, frontal gyrus, and occipital regions. Part of the sparsity 

may be attributable to the lower statistical power in the ACE sample due to the lower sample 

size. Alternatively, domain-specific processing, i.e. processing within the language system 

(frontal and temporal) and visual system (medial and lateral occipital), may constrain 

performance in the ACE compared to the CALM sample that displays a greater reliance on 

association areas (prefrontal and parietal associations). Such a shift from domain-general to 

domain-specific processing has been suggested across development (Johnson, 2011) and may 

reflect performance differences between the groups. The regional associations notwithstanding, 

the graph analytic results suggest that properties of the whole-brain white matter connectome are 

more closely related to general intelligence and educational attainment than white matter 

integrity of any particular white matter substrate. Inferior connectivity in any part of the network 

may be compensated for by better connectivity elsewhere (Fornito et al., 2015), which may 

explain the importance of whole-brain properties and lack of overlap across individuals in the 

voxel-wise TBSS analysis.  

It is important to bear in mind that the results of the current study come with some limitations. 

First, we used samples of children with typical performance and children referred for difficulties 

in school. It is not clear from the current analysis if associations between white matter network 

properties, intelligence, and educational attainment extend to superior performance. In addition, 

the analysis was based on pre-collected data with assessment protocols that are were not 

optimised to assess general intelligence. Better coverage of different aspects of cognition and 

learning, e.g. additional assessments of maths and non-verbal reasoning, would have provided a 

more adequate characterisation that would have better reflected general ability across domains. 

Further, both samples were cross-sectional, which precludes the analysis of age-related 

associations. Longitudinal data would allow us to explore how changes in structural 

connectomics are linked with improvements in educational attainment and cognitive ability. 

Another potential caveat concerns the methodology of the connectome construction in the 

current study. A multitude of methods for constructing structural connectomes from diffusion-



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

weighted data have been proposed with little validation of methods through histological 

comparisons (Qi et al., 2015). The methods employed in the current study were chosen to reflect 

recommended practices (Craddock et al., 2013), but their relationship to histological 

measurements remains to be validated.  

In conclusion, the results of the current analysis indicate that higher global efficiency of the 

white matter connectome is associated with better general intelligence and educational 

attainment in children and adolescents with performance in the age-expected and below age-

expected performance. These findings support views that emphasize the importance of 

distributed network for higher-level cognitive processes (Johnson, 2011; Barbey, 2018).  
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