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In December 2019, a novel coronavirus disease (COVID-19), 
caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), was first reported in Wuhan, China, and has 
since spread to more than 212 countries, causing more than 
10 million confirmed cases and 500,000 deaths worldwide by 
30 June 2020 (1). Recent studies suggest that several 
demographic and social factors can influence the 
transmission of COVID-19, including age and gender-related 
difference in infection risk (2–4), reduced risk of infection as 
a result of intensive non-pharmaceutical interventions (NPIs) 
(e.g., isolation, social distancing) (5–7), and abrupt changes in 
social mixing patterns because of lockdowns and 
confinement (8–10). Serial interval, defined as the duration 
between the symptom onset time of infector and that of the 
infectee, is an essential metric for estimating many other key 
epidemiological parameters (e.g., reproduction number, 
generation time, and attack rate), which are in turn used to 
predict disease trends and healthcare demands (11). In early 
studies before availability of specific data on COVID-19, the 
serial interval distribution of COVID-19 was assumed to be 
similar to that of Severe Acute Respiratory Syndrome or 
Middle East Respiratory Syndrome, with a mean >8 days (12, 
13). Once specific data became available on COVID-19 
transmission pairs, several studies have examined the serial 
interval distribution of COVID-19 in different locations, with 

estimates of the mean serial interval varying from 3.1 days to 
7.5 days (6, 14–21). All these studies assumed that the timing 
of transmission events can be described by a single stable 
distribution of serial intervals at different stage of an 
epidemic. 

In fact, the serial interval depends on the incubation pe-
riod and the profile of infectiousness after infection as well 
as the variation in contact structure of the population (as ex-
plained in fig. S1) (22). The incubation period describes the 
biological process of disease progression and tends to follow 
a more similar distribution from one location to another, 
with minor differences resulting from social or cultural dif-
ferences in how symptoms are perceived or reported. How-
ever, the profile of infectiousness over time can vary because 
of human behavior. Changes in contact patterns and the use 
of public health measures can reshape the timing of infection 
events by limiting successful contacts overall (e.g., social dis-
tancing) or after illness onset (e.g., case isolation). Interven-
tions, such as the isolation of confirmed and suspected cases, 
suspension of intra- and inter-city travel, and different forms 
of social distancing were widely implemented in different 
Chinese cities. This provides an opportunity to study the tem-
poral changes in the serial interval distribution and its asso-
ciation with NPIs. Here, we show that variation in the serial 
interval can occur and has important implications for the 

Serial interval of SARS-CoV-2 was shortened over time by 
nonpharmaceutical interventions 
Sheikh Taslim Ali1*, Lin Wang2,3*, Eric H. Y. Lau1*, Xiao-Ke Xu4, Zhanwei Du5, Ye Wu6,7, Gabriel M. Leung1, 
Benjamin J. Cowling1† 
1WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong 
Kong Special Administrative Region, China. 2Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. 3Mathematical Modelling of Infectious Diseases 
Unit, Institut Pasteur, UMR2000, CNRS, Paris 75015, France. 4College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China. 
5Department of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA. 6School of Journalism and Communication, Beijing Normal University, Beijing 
100875, China. 7Computational Communication Research Center, Beijing Normal University, Zhuhai 519087, China. 

*These authors contributed equally to this work. 

†Corresponding author. Email: bcowling@hku.hk 

Studies of novel coronavirus disease (COVID-19) have reported varying estimates of epidemiological 
parameters including serial interval distributions, i.e., the time between illness onset in successive cases in 
a transmission chain, and reproduction numbers. By compiling a line-list database of transmission pairs in 
mainland China, we show that mean serial intervals of COVID-19 have shortened substantially from 7.8 days 
to 2.6 days within a month (January 9 to February 13, 2020). This change is driven by enhanced non-
pharmaceutical interventions, in particular case isolation. We also show that using real-time estimation of 
serial intervals allowing for variation over time, provides more accurate estimates of reproduction numbers 
than using conventionally fixed serial interval distributions. These findings could improve assessment of 
transmission dynamics, forecasting future incidence, and estimating the impact of control measures. 

http://www.sciencemag.org/


First release: 21 July 2020  www.sciencemag.org  (Page numbers not final at time of first release) 2 
 

assessment of transmission dynamics and the impact of con-
trol measures. 

We compiled a database of 1,407 COVID-19 transmission 
pairs, in which symptom onset dates and social relationships 
were available for both the infector and infectee of 677 trans-
mission pairs (see table S1 for entire database (23) and sup-
plementary materials). Household and non-household 
transmissions were identified from the information on social 
relationships (e.g., familial members of the same household, 
non-household relatives, colleagues, classmates, friends, and 
other face-to-face contacts). The data were reconstructed 
from the publicly available reports of 9,120 confirmed 
COVID-19 cases reported by 27 provincial and 264 urban 
health commissions in China outside Hubei province. Data 
from Hubei province were excluded because there was less 
reliable information on chains of transmission during the 
widespread community circulation of COVID-19, whereas 
outside Hubei province it was more straightforward to link 
connected cases and derive serial intervals. We focused on 
677 transmission pairs with infectors having developed symp-
toms from January 9 through February 13, 2020. This 36-day 
period covers a series of key interventions related to the 
evolving epidemiology and transmission dynamics of COVID-
19 in mainland China (24–26). 

We first calculated the number of transmission pairs in 
our database by the onset dates of infectors (fig. S3). Since 
many infectors (339) developed symptoms during January 
23–29, 2020, we defined this 1-week period as the peak-week, 
the previous 14-day period (January 9–22, 2020) as the pre-
peak period, and the following 15-day period (January 30 – 
February 13, 2020) as the post-peak period. We computed the 
serial interval as the number of days between the symptom 
onset dates of the infector and the infectee for each transmis-
sion pair. Empirical serial interval distributions for transmis-
sion pairs counting from symptom onsets of the infectors 
during each period indicate that the serial intervals short-
ened over time (Fig. 1A). 

We estimated the serial interval distribution during each 
non-overlapping period by fitting a normal distribution to 
the corresponding serial intervals data (supplementary mate-
rials). Analysis of all 677 transmission pairs revealed that the 
serial interval distribution had a mean of 5.1 (95% credibility 
interval, CrI: 4.7, 5.5) days and standard deviation of 5.3 (95% 
CrI: 5.0, 5.6) days (table S2) overall, consistent with other re-
cent studies (16, 21, 27). However, fitting to data of non-over-
lapping periods of time revealed considerable variation in 
serial interval distributions (Fig. 1B). Prior to the peak, the 
mean and standard deviation of serial intervals were esti-
mated to be 7.8 (7.0, 8.6) days and 5.2 (4.7, 5.9) days. During 
the peak, the mean and standard deviation reduced to 5.1 
(4.6, 5.7) days and 5.0 (4.6, 5.4) days, respectively. After the 
peak, these estimates further shortened to 2.6 (1.9, 3.2) days 

and 4.6 (4.2, 5.1) days, respectively (table S2). 
Next, we examined the real-time change in serial intervals 

by using a series of running time windows with fixed length 
of 10, 14 or 18 days (fig. S10). In contrast to the use of a con-
stant distribution of serial intervals, our analysis suggests 
that serial intervals were gradually shortened over the study 
period (Fig. 2A), which is robust to alternative specifications 
of time windows (fig. S10). By fitting the transmission pairs 
data for each running time-window by Markov Chain Monte 
Carlo (MCMC) (Fig. 2A and table S3), we estimated that dur-
ing the first 14-day period (January 9 – 22, 2020) the serial 
intervals were longer on average (mean: 7.8 (95% CrI: 7.0, 8.6) 
days, and standard deviation (sd): 5.2 (95% CrI: 4.7, 5.9) 
days), whereas during the last 14 days (January 30 – February 
13, 2020) the serial intervals were much shorter on average 
(mean: 2.2 (1.5, 2.9) days, and sd: 4.6 (4.1, 5.1) days). Notably, 
the mean serial intervals shortened by more than threefold 
over the 36-day period. 

The transmission pair data also contains information for 
age, sex, household, and isolation delay (i.e., time duration 
from symptom onset to isolation) for most infectors. This al-
lows a granular stratification. Using either non-overlapping 
or running time windows for data stratified by each of these 
factors, we find the same pattern of shorter serial intervals 
over time (Figs. 1B and 2A and tables S2 and S3). Therefore, 
we termed this changing serial interval the “effective serial 
interval”, which accounts for temporal changes caused by its 
potential driving factors. Notably, the length of effective se-
rial intervals is positively associated with the length of isola-
tion delay (Fig. 2A; figs. S5, S6, and S9; and tables S3 and S4), 
accounting for the decreasing isolation delay over time (fig. 
S2). Therefore, early isolation (shorter than the median isola-
tion delay) translates into shorter serial intervals (mean: 3.3 
(2.7, 3.8) days, and sd: 4.5 (4.1, 4.9) days), and delayed isola-
tion (longer than the median isolation delay) is associated 
with a longer serial interval (mean: 6.8 (6.2, 7.3) days, and sd: 
5.3 (4.9, 5.7) days) (table S2). Stratification by age, gender or 
household shows no clear difference in serial interval esti-
mates. Our findings are robust to using alterative distribu-
tions (e.g., Gumbel distribution) for model fitting (fig. S11) 
and the infector-based approach (fig. S14). 

Our probabilistic, individual-based simulated and regres-
sion models confirm that serial intervals are positively asso-
ciated with isolation delay (section 5, supplementary 
materials). We found that the serial interval become shorter 
based on how faster the infectors are isolated, regardless of 
when an infector starts to be infectious before illness onset 
(fig. S5). In an individual-based simulation model with a 
mean generation time of 7.8 days, the simulated mean serial 
intervals reduces from ~8.0 to ~1.2 days when the isolation 
delay reduces from 10 to 0 days. We found up to 51.5% of the 
variability in daily empirical serial interval can be explained 
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by isolation delay through regression model and further im-
proved by other NPI factors, explaining additional 15.6% to 
16.7% of the variability (table S5). 

In practice, the time varying serial interval may affect the 
estimation of epidemic parameters including the transmissi-
bility. The real-time transmissibility of an infectious disease 
is often characterized by the instantaneous reproduction 
number (Rt), which is defined as the expected number of sec-
ondary infections caused by an infector on day t. The patho-
gen spreads when Rt > 1 and is under control when Rt < 1. To 
examine the effect of serial intervals on Rt, we first obtained 
the daily number of cases based on the onset dates of infec-
tors and infectees among the 1,407 transmission pairs (Fig. 2, 
B to D). By applying the statistical method developed by Cori 
et al. (28), we estimated Rt for each day between January 20 
and February 13, 2020. We noticed substantial differences in 
estimates of Rt between using a single stable serial interval 
distribution and time-varying effective serial interval distri-
butions. The magnitude of this difference is more prominent 
during the pre-peak and post-peak periods compared to that 
of during the peak week when Rt ≈ 1 (Fig. 2, B to D). 

We observed that the serial interval for COVID-19 in 
mainland China shortened more than threefold in the 36-
days between January 9 – February 13, 2020. This reduction 
was driven by intensive non-pharmaceutical interventions, 
particularly, reduction of the isolation delay period. Isolation 
of an infector one day earlier is expected to reduce the mean 
serial interval by 0.7 days. Thus, the serial interval was short-
ened by >3 days if infectors were rapidly isolated (Figs. 1B 
and 2A and tables S2 and S3). This is consistent with advo-
cating isolation of cases and quarantining contacts within a 
day from symptom onset, which has been estimated to reduce 
COVID-19 transmission by 60% (8). We have not identified 
any significant effects of gender or age of infectors, on serial 
interval, but the NPIs were found to be significant for the 
transmission in community rather than in households (table 
S5). Other studies (15, 20) have estimated that the transmis-
sibility of COVID-19 is greater at symptom onset. Although a 
short serial interval indicates that a substantial proportion of 
transmission events have occurred by the time symptoms are 
apparent (14), because of prolonged viral shedding (14, 29, 
30) case isolation is still likely to reduce further transmission. 
Changes in the serial interval can therefore indicate effective 
implementation of specific transmission reduction measures. 

Limitations of our work: First, possible recall bias on the 
onset of first symptoms in the line-list data; however, given 
the centralized pandemic response in mainland China, we ex-
pected that recall bias would not affect our main conclusions 
(figs. S12 and S13). Second, other factors may have influenced 
the reduction of effective serial intervals as we can only ex-
plain up to 72% of the variance in observed serial intervals. 
Finally, our current transmission pair data did not contain 

variables about potential exposure window of each case, 
which did not allow further inferences on the transmission 
potential. 

Our results indicate that caution is needed when attempt-
ing to generalize estimates of the serial interval distribution 
to other places or to other periods in the same place, for ex-
ample when estimating instantaneous reproductive numbers 
(Fig. 2, B to D). The real-time metric of effective serial inter-
vals indicates that transmission models also need to account 
for temporal variation in serial intervals as epidemic pro-
ceeds. Effective serial intervals may provide better measure-
ment of instantaneous transmissibility (Rt) because they 
include the effects of possible drivers of transmission, and 
would be helpful to policy makers because they offer real-
time information on the impact of public health measures. 
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Fig. 1. Serial intervals of SARS-CoV-2 substantially shortened over time in mainland China. (A) Empirical 
serial interval distributions. From top to bottom, transmission pairs were analyzed by selecting infectors who 
developed symptoms during January 9  ̶ 22, 2020 (pre-peak), January 23  ̶ 29, 2020 (peak-week), January 30  
̶ February 13, 2020 (post-peak), and January 9  ̶ February 13, 2020 (whole period), respectively. In each panel, 
vertical dashed lines in red and blue colors indicate the median and interquartile range (IQR). (B) Estimated 
serial interval distributions by fitting a normal distribution via MCMC. From top to bottom, each group of bars 
correspond to the transmission pairs with infectors who developed symptom during the pre-peak (162 pairs), 
peak-week (339 pairs), post-peak (176 pairs), and whole 36-day period, respectively. Colored dots and bars 
correspond to the transmission pairs within households (blue), outside households (yellow), with isolation delay 
shorter than the median isolation delay of each period (green), and with isolation delay longer than the median 
isolation delay of each period (orange), respectively. Dark-grey bars correspond to transmission pairs with no 
stratification. Dots and bars indicate the estimated median and IQR, respectively. 
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Fig. 2. Real-time effective serial intervals and instantaneous reproduction number Rt. (A) Estimated serial 
interval distribution for each 14-day running time window. Dark-grey color indicates fitting data with no 
stratification, whereas green (yellow) indicates fitting data with isolation delay shorter (longer) than the median 
isolation delay of each running time window. Dots and bars indicate the estimated median and IQR, respectively. 
(B to D) Daily estimates of Rt by using real-time effective serial interval distributions (as panel (A)) versus using 
a single fixed serial interval distribution. Red curves and light-pink shaded regions indicate the median and 95% 
CrI of daily Rt estimated using real-time effective serial interval distributions. Black dashed curves and light-grey 
shaded regions indicate the median and 95% CrI of daily Rt estimated using a single serial interval distribution 
fixed with (B) mean=7.1, sd=5.3 days, (C) mean=5.2, sd=4.7 days, and (D) mean=3.0, sd=4.1 days. 
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