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Abstract

Purpose: Dynamic nuclear polarization is an emerging imaging method that allows non-invasive inves-
tigation of tissue metabolism. However, the relatively low metabolic spatial resolution that can be achieved
limits some applications, and improving this resolution could have important implications for the technique.

Method: We propose to enhance the 3D resolution of Carbon-13 Magnetic Resonance Imaging (13C-
MRI) using the structural information provided by Hydrogen-1 MRI (1H-MRI). The proposed approach
relies on variational regularization in 3D with a directional total variation regularizer, resulting in a convex
optimization problem which is robust with respect to the parameters and can efficiently be solved by many
standard optimization algorithms. Validation was carried out using an in silico phantom, an in vitro phantom
and in vivo data from four human volunteers.

Results: The clinical data used in this study was upsampled by a factor of 4 in-plane and by a factor
of 15 out-of-plane, thereby revealing occult information. A key finding is that 3D super-resolution shows
superior performance compared to several 2D super-resolution approaches: for example, for the in silico
data, the mean-squared-error was reduced by around 40 % and for all data produced increased anatomical
definition of the metabolic imaging.

Conclusion: The proposed approach generates images with enhanced anatomical resolution while largely
preserving the quantitative measurements of metabolism. Although the work requires clinical validation
against tissue measures of metabolism, it offers great potential in the field of 13C-MRI and could significantly
improve image quality in the future.

1 Introduction

Dynamic nuclear polarization is an emerging method to non-invasively probe tissue metabolism which has
recently been translated into patient imaging [1]. The method transiently increases the sensitivity of Carbon-13
Magnetic Resonance Imaging (13C-MRI) experiments by over 10,000-fold [2], which enables the metabolism of an
injected 13C-labelled precursor molecules to be investigated dynamically, for example observing the conversion of
hyperpolarized [1-13C]pyruvate to [1-13C]lactate in vivo in humans [3]. This reaction, catalyzed by the enzyme
lactate dehydrogenase (LDH) has many promising applications in oncology, where it can be used to characterize
tumors and assess response to therapy [4]. We have recently demonstrated its role in studying metabolism in
the healthy human brain following rapid transport of the [1-13C]pyruvate across the intact blood-brain barrier
[5], opening up the possibility of applying the technique in a range of neurological disorders where metabolism
is altered [6].

However, even with the large enhancement in sensitivity that can be achieved, the spatial resolution attained
is significantly lower than can be acquired with conventional proton MRI (1H-MRI) and also lower than the reso-
lution achievable with comparable clinical metabolic techniques such as Positron Emission Tomography (PET).
Although a bolus of up to 10 mmol of hyperpolarized labeled pyruvate is rapidly injected intravenously into
the patient, the tissue concentration is only ∼0.1 mM due to dilution in the vascular and extra-vascular spaces
[7], which is dwarfed in comparison to the endogenous concentration of hydrogen atoms in tissue. Given the
transient nature of the hyperpolarized signal, which decays with a time constant (T1) of ∼25-30 s in vivo, rapid
single-shot techniques for imaging the 13C signal are frequently employed to characterize the dynamic nature of
the signal. The resulting pixel dimensions are in the order of 1 cm in plane, with a slice thickness which is often
larger and compares unfavorably with the 1 mm isotropic resolution routinely achieved with conventional 1H-
MRI. This significant difference in image scale greatly limits the ability to discriminate small areas of metabolic
variability, and interpretation relies on co-registering the metabolic maps with the corresponding morphology
on the 1H-MRI. In the brain, differences in 13C-pyruvate metabolism have been demonstrated between and
within both gray and white matter, [5, 8]. However, the resolution of this metabolic heterogeneity is limited due
to partial volume effects when each image pixel contains signal from a mixture of cell and tissues. Therefore
we investigated whether mathematical techniques for 3D-super-resolution can help bridge this divide by using
structural information on the higher resolution 1H-MRI to enhance the lower resolution metabolic imaging.

Super-resolution methods have been applied to a range of medical imaging techniques such as PET [9, 10, 11],
diffusion-weighted MRI [12], spectroscopic imaging [13, 14], 23Na-MRI [15], 19F-MRI [16], T1/T2weighted MRI
[17, 18, 19, 20], fMRI [21] and recently also to 13C-MRI [22, 23, 24] which is the setting of this paper. Several
approaches have been taken to enhance the resolution of 1H-MRI including in the k-space dimension (e.g.
[18, 19, 21]) as well as in the image space (e.g [17, 20]). Image space-based approaches are usually easier to
implement and computationally more efficient. Here we apply an image-based super-resolution approach in
the setting of a low-resolution metabolic image (termed data) and a high-resolution anatomical image (termed
guide), with a new image being computed which has the contrast of the data and the spatial resolution of the
guide, see also figure 1. Image super-resolution is often undertaken using variational regularization, i.e. by
solving

min
x
‖Sx− y‖2 + αR(x) , (1)
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Figure 1: Concept of the approach taken in the paper: Use 3D structural information of 1H-MRI (guide)
to improve the resolution of 13C-MRI (data). In this figure and in subsequent figures, we visualize three
dimensional data by displaying three slices in the axial, sagittal and coronal orientations (from top to bottom).

Figure 2: Data used in the proposed method: Instead of taking a single 1H-MRI slice to upsample the
13C-MRI data, we propose using a stack of slices covering the whole 13C-MRI field-of-view.

where S models the loss in resolution moving from high to low and R encapsulates possible a priori information
about the super-resolved image, such as being similar to the guide. The regularization parameter α allows
to trade-off these two terms, thus reconstructing images which explain the data but also resemble the prior
information to a certain extent. For an overview of the state-of-the-art in variational regularization with
structural guidance, see [25].

In this paper we investigate the use of super-resolution of 13C-MRI with the aid of a 1H-MRI guide, thereby
potentially overcoming the current limitations of 13C-MRI, see figure 1 for a graphical illustration of this idea.
We show that the commonly used two-dimensional approach is not sufficient to reconstruct biologically well-
defined images and an extension to three spatial dimensions is needed; see figure 2 for an illustration. By
using variational regularization in 3D with a directional total variation regularizer, we show that the enhanced
images have a significant improvement in resolution compared to the original unprocessed data and compare
favorably to other previously applied super-resolution approaches. This is the first time that a planar image
is super-resolved using volumetric information, which not only unlocks the potential of 13C-MRI but a similar
approach will be beneficial to many other imaging modalities where spatial resolution is the limiting factor.

2 Theory

2.1 Inverse Problem

We approach the problem of super-resolution as an inverse problem where we aim to solve a linear equation

Sx = y (2)

where x is the high-resolution image to be reconstructed, y is the measured data and S models the loss in
resolution. For the proposed approach x ∈ RM×N×K is three-dimensional and y ∈ Rm×n two-dimensional. For
simplicity, let M = N = sm = sn for a fixed super-resolution factor s ∈ N. Then the used resolution model S
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Figure 3: Visual representation of the vector field used in dTV. Left: 1H-MRI of volunteer to be used
as the guide. Right: modulus of vector field ξ ∈ RM×N×K×3 (7) with η = 10−1 shown as a three-dimensional
RGB color image. Here the colors red, green and blue correspond to the mediolateral, anteroposterior and
superoinferior directions, respectively.

can be defined via

(Sx)i,j =

K∑
k=1

s−1∑
a=0

s−1∑
b=0

xi+a,j+b,k (3)

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Since S has a large kernel, a priori information, e.g. via variational
regularization (1) must be included to solve the inverse problem (2). Here we approach this by including a
priori structural guide information into the regularizer R.

2.2 Structure-Guided Regularization

A popular regularizer for variational regularization (1) is the total variation which can be defined as

TV(x) =
∑
β

‖(∇x)β‖ (4)

where ∇x ∈ RM×N×K×3 is a finite-difference approximation of the gradient of x, see [26] for formulas in 2D
which are easy to extend to 3D and β = (β1, β2, β3) ∈ N3 is a multi-index. While the total variation has many
benefits such as preserving edges, it is impossible to include structural a priori information from a guide in its
native formulation (4) and a generalized formulation is required.

The mathematical modelling of structural guide information has significantly advanced over the last decade
(see [25] for an overview). Most successful approaches are based on the idea that two images x and v are
structurally similar if they have co-linear (or parallel) gradients, i.e. for any location β with non-vanishing
gradients, there exists a λ ∈ R such that

(∇x)β = λ(∇v)β . (5)

Many regularizers can encode such information, e.g. total nuclear variation, joint total variation, see [25]
for more information. A simple yet powerful way to include such structural information is the directional total
variation [19], defined as

dTV(x) =
∑
β

‖Dβ(∇x)β‖ (6)

with Dβ = I − γξβξTβ ∈ R3×3 and

ξβ =
(∇v)β√

‖(∇v)β‖2 + η2
∈ R3 . (7)

It is important to note that the directional total variation does not depend directly on the intensities of the
guide v but rather the location and direction of its edges via ξ, see figure 3. Both γ and η can be tuned to
maximize performance but γ = 0.9995 and η = 10−2 maxβ ‖(∇v)β‖ have been shown to be good default options
for many applications, cf. e.g. [19, 27].
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Figure 4: Visualization of some of the data sets used in this study. The data shown here from top to
bottom is: pyruvate for the in silico data and lactate for both the in vitro and in vivo data. The alignment of
the data y and the guide v is visualized as a three-dimensional RGB image by taking v as the red channel and
a scaled version of ST y as the blue channel.

2.3 Algorithm

Problem (1) can be written as

min
x
f(Ax) + g(x) (8)

for f, g which are proper, convex and lower-semicontinuous (but not necessarily smooth) and a matrix A.
When f or g are nonsmooth (e.g. R = dTV), then (8) used to be a challenging problem, but there are many
algorithms to solve it nowadays, see [28] for an overview. We use a popular algorithm called Primal-Dual Hybrid
Gradient (PDHG) which is also known in the literature as the Chambolle–Pock algorithm [26]. To solve (1)
with directional total variation, we choose g ≡ 0, A = (S;D), f(u1, u2) = ‖u1 − y‖2 + α‖u2‖1, which can be
easily implemented in Operator Discretization Library (ODL) [29]. The python code and data will be made
available upon acceptance of the paper.

3 Methods

We validate the proposed approach and compare it to its two-dimensional variant on one in silico phantom, an
in vitro phantom and in vivo data from four human volunteers, see figure 4 for a graphical overview of the data.
Local ethical approval was obtained for the acquisition of human data (NRES Committee East of England,
Cambridge South, REC number 15/EE/0255).

3.1 Data Sets

3.1.1 In Vitro Phantom

Phantom experiments were similar to those previously published in [30]. Imaging phantoms consisted of 15 ml
Falcon tubes filled to 14 ml with 5-times concentrated phosphate buffered saline at pH 7.2 and containing
the coenzyme NADH at 4.4 mM (Sigma-Aldrich, UK). L-lactate dehydrogenase from rabbit muscle was added
in quantities of 0, 40 and 80 U (Sigma-Aldrich, UK). 1 ml of hyperpolarized pyruvate solution was added to
each tube immediately before imaging to give a final pyruvate concentration of ∼4 mM. Tubes were mixed by
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inversion and inserted into a 1H/13C quadrature coil (GE Coils, Aurora, Ohio, USA), immediately followed by
a 3:12 min IDEAL spiral chemical shift imaging (CSI) acquisition [31] (40 mm axial slice, TR = 500 ms, flip
angle = 5°, FOV = 80 mm, 40 × 40 points and 4 s time resolution). Structural gradient echo 1H images were
obtained at the same location following the dynamic experiment (10 mm thick, 10 mm gap, 256× 128, FOV =
120 mm, TR = 5.7 ms, TE = 1.7 ms, flip angle = 30°).

3.1.2 Human Experiments

Brain data were previously published in [5]. Four subjects were investigated using a 3 T MR system (MR750,
GE Healthcare, Waukesha WI), with a dual-tuned 1H/13C quadrature head coil (Rapid Biomedical, Rimpar
Germany). Carbon images were acquired using IDEAL spiral imaging (flip angle = 15°, FOV = 240 mm, 40×40
points, slice thickness = 30 mm, gap 3 mm) every 4 s from 10 to 70 s after the start of injection of 0.4 mL/kg of
∼250 mM hyperpolarized pyruvate solution at 5 mL/s into the brachial vein. Anatomic T1-weighted hydrogen
images were acquired using a 3D inversion prepared gradient echo sequence (inversion time = 450 ms, FOV =
240 mm, TR = 8.6 ms, TE = 3.3 ms, flip angle = 12°, spatial resolution = 0.9 mm × 0.9 mm × 1 mm).

3.1.3 In Silico Phantom

We validate the accuracy of the proposed approach on one simulated data set which is based on the segmentation
(see paragraph below) of a T1-weighted 1H-MRI of one of the volunteers. Based on its segmentation we assign
an intensity of 9.4 to gray matter and 2.4 to white matter. The intensity in each compartment is multiplied by
a sinosoidal wave to simulate the inhomogeneity observed in the real data. White Gaussian noise is added to
the simulated data.

3.1.4 Preprocessing

Images of pyruvate and lactate were summed over the time series. Human 1H-MRI images were segmented into
gray matter, white matter and CSF using FAST (FMRIB Software Library, Oxford, UK). The 40 U and 80 U
tubes in the in vitro 1H-MRI image were segmented using manually defined thresholds. 1H-MRI images were
first smoothed by a Gaussian filter of standard deviation 0.25 pixel and then resampled to FOV = 80 mm ×
80 mm × 40 mm, resolution = 0.5 mm × 0.5 mm × 10 mm for the in vitro phantom and to FOV = 240 mm ×
240 mm × 30 mm, resolution = 1.5 mm × 1.5 mm × 2 mm for the in vivo data. For visualization, the aspect
ratios in all figures are in accordance to their physical dimensions except for the phantom experiments where
the vertical axis has been reduced by a factor of 4.

4 Results

4.1 Comparison of methods

We compare reconstructions with dTV of 13C-MRI data to a high-spatial resolution using either a slice (2D) or
a volume (3D) of 1H-MRI. We also compare the proposed approach with [22]. Results for the in silico phantom
are shown in figure 5. The regularization parameter α has been tuned for each method separately to minimize
the mean-squared-error (MSE)

MSE(x, x∗) =
‖x− x∗‖2

MNK max(x∗)
, x ∈ RM×N×K . (9)

The results in the top row show that a 3D reconstruction with dTV leads to anatomically better defined images
compared to other approaches. In addition, the difference images in the bottom row show that the quantification
is also clearly improved. Measured in terms of MSE the improvement of a 3D reconstruction with dTV compared
to a 2D reconstruction with dTV and to [22] is 40 % and 37 %, respectively. Further results on in vivo data is
shown in figure 6 which give a similar impression as the in silico results. It can be noted that residuals (Sx−y)
which visually mostly contain noise can only be observed for 2D-dTV for α = 5 · 10−3 as well as for 3D-dTV for
α = 5 · 10−3 and α = 5 · 10−2. This may indicate that dTV, particularly in 3D, is less in conflict with the data
term and better describes the underlying anatomy. Based on these findings, we choose the largest regularization
parameter which still explains the data sufficiently well which is also called Morozov’s discrepancy principle,
see e.g. [32]. Thus, in what follows the regularization parameter for 3D-dTV has been chosen as α = 5 · 10−2

for all experiments.
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Figure 5: Comparison of methods showing pyruvate signal within an in silico phantom. Comparing the
approach used in [22] with dTV in 2D and 3D, it can be observed that the latter leads to a better recovery of the
contrast and clearer anatomical structures. Moreover, the mean-squared-error (MSE) for 3D-dTV is 37% and
40% lower compared to [22] and 2D-dTV, respectively. The anatomical assumptions in [22] can be visualized
by selecting a very large regularization parameter α where gradients of the super-resolved hyperpolarized image
are forced to be equal to the guide image.

4.2 Qualitative Evaluation

Qualitative results of the proposed approach of the in vitro phantom and the in vivo data can be found in
figures 7 and 8. The super-resolved in vitro phantom images demonstrate well-defined edges which are consistent
with the physical boundaries of the phantoms used in the study. Importantly, the high-resolution images have
preserved the same contrast and signal variation as the 13C-MRI data. This is confirmed by the metabolic ratio
image which further highlights that the metabolic information is not being distorted.

The four cases demonstrating the in vivo results in figure 7 also show improved resolution compared to the
original data, with improved differentiation between white and gray matter. Overall, the contrast and regional
differences are largely preserved between the original data and the super-resolved images. However, consistent
spatial variations remain, such as the higher signal on the ratio images in the frontal white matter, and focal
areas of high lactate and pyruvate in gray matter in the occipital and temporal lobes. These geographical
differences are often more clearly apparent on the super-resolved imaging.

Line plots across the brains (figure 8) demonstrate the expected left-right symmetry and show that intensity
variations between gray and white matter and CSF are preserved in the super-resolution data. Tissue boundaries
are neither discontinuous nor excessively smoothed. These results provide evidence that regional variations in
metabolism can be more clearly ascertained during super-resolution but the contrast between areas is preserved.

4.3 Quantitative Evaluation

The proposed method is evaluated quantitatively in figure 9 for the in vitro and in vivo data. Summary statistics
for in vivo data are shown in figure 10 and all individual data is shown in the supplementary material. Regions
of gray matter (GM) and white matter (WM) in vivo are defined as all pixels/voxels (for 2D and 3D data
respectively) where the fuzzy segmentation exceeds 70%. For the low-resolution in vivo data this means that
statistics are computed using 60-130 pixels and for the high resolution reconstruction around 35k-59k voxels.
In addition, we show a quantitative analysis of the high-resolution reconstruction using the low-resolution in
order to highlight the effect of the segmentation on the conclusions. The box plots show the median (bold
line), the 25% and 75% quantile (boxes) and 10% and 90% quantile (whiskers). For the in vitro phantom data,
both the medians and distributions of pixel values were well maintained in the super-resolution images. In
agreement with expectation, the metabolic ratio was approximately twice as high in the tube containing double
the enzyme concentration. These results confirm that the super-resolved data has not significantly altered the
quantitative measures of metabolism as demonstrated by comparing these in vitro measurements against the
gold standard enzyme concentration. The quantitative values for lactate and pyruvate signal as well as the
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Figure 6: Comparison of methods showing lactate signal from the in vivo data. Similar observations
as for the in silico data can be made. dTV using a 3D guide image leads to accurate discrimination of many
normal brain structures, particularly in the sagittal and coronal planes, without inflation of the residual error
in comparison to the other two approaches. Moreover, for large regularization parameters the method used in
[22] may invert contrast between white and gray matter.

(a) in vitro (b) in vivo example

Figure 7: Qualitative evaluation. In both subfigures, the top row shows 13C-MRI data of the metabolites
lactate (lac) and pyruvate (pyr), as well as their normalized ratio. The bottom row shows super-resolved images
for both metabolites and their ratio using the 1H-MRI image as a guide.
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Figure 8: Qualitative evaluation: line profiles of images in figure 7. A profile in vitro through the
tubes containing 0 U and 40 U of enzyme shows reduction of the spikes at the phantom edges caused by partial
volume, while maintaining intensities within the tubes, when the super-resolution algorithm is applied. In the
in vivo example, the patterns of intensity variation between tissues are maintained, without either excessively
smooth or abrupt borders between them.

ratiometric measurements were also largely preserved in vivo. However, there was a tendency towards a slight
reduction in the differences between gray and white matter in the estimations of pyruvate and lactate following
super-resolution which require future evaluation in larger studies. It can be seen that this effect is partially
explained by the better segmentation which can be used for the high-resolution reconstruction. This observation
is likely to reflect the inclusion of a larger percentages of pixels in the super-resolved data arising from areas
of mixed tissue in the original data. Furthermore, this effect varied between cases and was most marked for
the fourth in vivo dataset, see supplementary material. As shown in figure 10, the ratio of mean intensities
in gray and white matter is reduced by super-resolution for lactate and pyruvate but the tissue distribution of
their normalized ratios is unchanged. Similar to figure 9 this observation can largely be explained by the better
segmentation of the high-resolution reconstruction.

4.4 Computional Speed

The proposed algorithm is very computational efficient. For the three dimensional reconstructions, it took
about 0.08 s per iteration on a MacBook Pro (2.3 GHz Dual-Core Intel Core i5, 16 GB RAM) with the overall
algorithm needing about 1,000 iterations, i.e. 80 s. The two dimensional reconstructions only take 0.01 s per
iteration for a similar amount of iterations.

5 Discussion

Hyperpolarized 13C-MRI is an emerging technique for probing tissue metabolism in real-time. Despite the
advantages of the method, overcoming low spatial resolution is one of the challenges for applying the technique
more widely. The typical resolution of hyperpolarised 13C-MRI is insufficient to accurately discriminate many
normal anatomical brain structures that can be identified on other MRI sequences or modalities such as CT and
PET. Examples within the normal brain include the boundary between gray and white matter, the shape of the
ventricles and sulci, and the location of the deep gray matter nuclei. Identification of small pathological lesions
is also clinically important but difficult at low resolution. Improved spatial resolution could have implications
for many aspects of clinical imaging: for example, identifying small inflammatory plaques in multiple sclerosis
or small brain metastases not visible at lower resolution could have prognostic significance and could influence
treatment decisions. Accurate measurements of lesion size are important for assessing treatment response and
super-resolution approaches could be used to assess the effects of chemotherapy or radiotherapy. In the field of
metabolic imaging, new methods for improving resolution on PET are now used routinely on many scanners
[33, 34]. This paper demonstrates the potential of using 3D super-resolution techniques to enhance low resolution
metabolic imaging with in silico, in vitro, and in vivo datasets.

The in vitro phantom presented here showed the power of the method to qualitatively enhance the original
data while importantly maintaining the quantitative differences between the known varying enzyme concentra-
tions in the three tubes. The in vivo data from healthy volunteers also confirmed the very significant qualitative
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Figure 9: Quantitative evaluation. Statistics for lactate, pyruvate, and their normalized ratio are computed
for regions of interest: 40 U and 80 U tubes for in vitro data and gray matter (GM) and white matter (WM) for
an in vivo example. The plots indicate that the quantification is largely preserved through the super-resolution
procedure. We highlight the influence of the segmentation by applying the low-resolution (LR) segmentation
(seg) to the high-resolution (HR) reconstruction.

Figure 10: Summary statistics of in vivo data. The three subfigures show the ratio of mean intensities in
gray and white matter. Each individual dot represents the value for one of the four volunteers and the black line
their mean. We highlight the influence of the segmentation by applying the low-resolution (LR) segmentation
(seg) to the high-resolution (HR) reconstruction.
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improvement in the super-resolved images allowing anatomical regions to be more clearly discerned, such as
gray matter and the ventricles. In contrast to the in vitro data, the in vivo data showed some differences in
the quantitative measurements derived from gray and white matter following super-resolution, and this effect
was variable across the four volunteers. However, unlike the phantom data, there was no gold standard to
compare against and the super-resolved imaging may be more accurately representing the metabolism in these
geographically distinct regions, as they may be less susceptible to partial volume effects compared to the larger
voxels in the original data. In several of the subjects (e.g. in figure 6), extra-cerebral metabolite signal was
seen, which could have arisen from the overlying muscle and skin. The signal was too weak and inconsistent to
fully characterize and may be artifactual. However, if the signal could be enhanced, with for example higher
flip angles, the origin of this could be further explored in future studies and super-resolution may be able to
better delineate these features. Applying this technique to future in vivo datasets where tissue samples are
available, will allow these results to be validated against a gold standard measure of metabolism. Furthermore,
super-resolved data could be used to facilitate automated segmentation of tumors or other pathological processes
using the enhanced resolution that this provides, in addition to the multidimensionality of the 13C-MRI data
[35].

The proposed approach depends on a couple of parameters which can be tuned for maximal performance.
The most important parameters are the regularization parameter α and the two parameters for the directional
total variation η and γ. Despite this, the results in this paper were achieved with minimal tuning of α and the
default values for both other parameters. Once tuned, the regularization parameter can be kept constant for
similar data sets (e.g. for all of the in vivo data in this paper) and still achieve very good performance.

Fluid-suppressed T1-weighted images were chosen as the input in this study due to the excellent contrast
provided between gray matter, white matter, and CSF, but the method could similarly be applied to a range of
other MRI-based contrast approaches. One interesting possibility would be the injection of gadolinium-based
contrast agents, to identify the blood vessels and to better characterize the vascular pool of metabolite signal.
Strong signals from pyruvate and lactate are apparent in the sagittal sinus, but smaller vessels which are less
well visualized in the absence of gadolinium may also have a profound effect on the measured signal, most
notably pyruvate in the feeding arteries. We did not inject a contrast agent in this study of healthy controls,
but these agents are frequently used in studies of patients with tumors, multiple sclerosis, or other brain lesions,
so future super-resolution studies could consider the use of contrast-enhanced imaging.

The proposed framework heavily relies on the spatial alignment of the data and the guide. The required
accuracy will certainly depend on the upsampling factor and further work is needed to quantify this precisely.
The proposed mathematical model can be extended to estimate the resolution degradation in terms of a point-
spread-function / convolution kernel [27] and to include registration [36], both at the expense of making the
optimization non-convex and therefore requiring different and computationally more expensive algorithms.

The proposed approach may be further improved by performing the super-resolution directly based on the
k-space data, thereby avoiding any potential loss of information by the inversion and other postprocessing.
Similar approaches are common in other imaging modalities such as PET [11, 9, 10]. This could potentially be
significant if combined with compressed sensing [37] for the 13C-MRI data and to handle noisier data sets, see
also paragraph below.

The super-resolution of 13C-MRI using 1H-MRI has been undertaken using several different approaches [22,
23, 24]. Two publications have relied on segmented 1H-MR images [23, 24]. More broadly within MR spec-
troscopy, previous approaches have included combining the resolution of spectroscopic imaging with MRI using
a segmentation-based compartmental model [38, 39], as well as increasing the resolution of MR spectroscopic
imaging via a segmentation-based Markov random field [13, 14]. It has been shown for PET partial-volume-
correction [9] that relying on segmentation can decrease its robustness. In some of the previous approaches for
super-resolution in 13C-MRI, the authors assume that image gradients in 13C-MRI and 1H-MRI are identical
up to a user-defined global scaling, an assumption that is most likely not met in real world applications [22].
In addition, their method is intrinsically “two-dimensional” and cannot be extended to the setting where a
different number of slices are acquired for both modalities. Here we have demonstrated a direct comparison
between the proposed method and a previously published approach [22], see also figure 5. A key advantage of
the proposed technique is that it does not rely on segmented 1H-MRI and makes no unreasonable assumptions
of the signal being smooth or constant in predefined anatomical regions. Observed variations are maintained
both between and within gray and white matter in different lobes of the brain.

In this paper we studied a super-resolution approach focussing on the metabolites lactate and pyruvate
which have a relatively high signal-to-noise ratio compared to other metabolites such as bicarbonate, alanine,
and pyruvate hydrate. As is evident from figure 1, the noise distribution in the reconstructed magnitude image
suggests that it is intercorrelated rather than being independent and identically distributed via a Gaussian
distribution, which is assumed by the proposed model. Because of the relatively high SNR, this simple image
modelling did not significantly affect the reconstruction of lactate and pyruvate images. However, this simple
approach is likely to negatively affect image reconstruction as the signal-to-noise level drops. In order to apply
this method to metabolites with a much lower signal-to-noise ratio, high-resolution reconstruction based directly
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on k-space data is likely to be advantageous.
Many inverse problems are currently solved via deep neural networks, for example see [32] and references

therein. Translating these ideas is practically very challenging due to missing training data in many real world
scenarios. For example in this application, we are unable to acquire high-resolution 13C-MRI images needed for
the training of these algorithms due to the sensitivity problem as highlighted in the introduction.

6 Conclusion

We have demonstrated a method to increase the resolution of 13C-MRI by using a super-resolution algorithm
which makes use of an 1H-MRI image routinely acquired for anatomical co-registration. Our results on a range
of simulated, experimental and clinical data show that the proposed approach leads to biologically meaningful
images while largely preserving the quantitative measurements of metabolism. Although the work requires
clinical validation against tissue measures of metabolism, it offers great potential in the field of 13C-MRI and
could significantly improve image quality in the future.

Acknowledgment

We thank Dr Charlie Daniels and Dr James Grist for acquiring the in vitro and in vivo datasets.

References

[1] J. Kurhanewicz, D. B. Vigneron, J. H. Ardenkjaer-Larsen, J. A. Bankson, K. Brindle, C. H. Cunningham,
F. A. Gallagher, K. R. Keshari, A. Kjaer, C. Laustsen, D. A. Mankoff, M. E. Merritt, S. J. Nelson, J. M.
Pauly, P. Lee, S. Ronen, D. J. Tyler, S. S. Rajan, D. M. Spielman, L. Wald, X. Zhang, C. R. Malloy, and
R. Rizi, “Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology,” Neoplasia (United States),
vol. 21, no. 1, pp. 1–16, 2019.

[2] J. H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin,
M. Thaning, and K. Golman, “Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR,”
Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp.
10 158–10 163, 2003.

[3] S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Larson, A. L. Harzstark, M. Ferrone, M. Van Criekinge,
J. W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E. J. Small, P. Munster, V. K. Weinberg, J. H.
Ardenkjaer-Larsen, A. P. Chen, R. E. Hurd, L. I. Odegardstuen, F. J. Robb, J. Tropp, and J. A. Mur-
ray, “Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate,” Science
Translational Medicine, vol. 5, no. 198, 2013.

[4] F. Zaccagna, J. T. Grist, S. S. Deen, R. Woitek, L. M. Lechermann, M. A. McLean, B. Basu, and F. A. Gal-
lagher, “Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: A clinical tool for studying
tumour metabolism,” British Journal of Radiology, vol. 91, no. 1085, pp. 1–11, 2018.

[5] J. T. Grist, M. A. McLean, F. Riemer, R. F. Schulte, S. S. Deen, F. Zaccagna, R. Woitek, C. J. Daniels,
J. D. Kaggie, T. Matyz, I. Patterson, R. Slough, A. B. Gill, A. Chhabra, R. Eichenberger, M. C. Laurent,
A. Comment, J. H. Gillard, A. J. Coles, D. J. Tyler, I. Wilkinson, B. Basu, D. J. Lomas, M. J. Graves,
K. M. Brindle, and F. A. Gallagher, “Quantifying normal human brain metabolism using hyperpolarized
[1– 13 C]pyruvate and magnetic resonance imaging,” NeuroImage, vol. 189, pp. 171–179, 2019.

[6] J. T. Grist, J. J. Miller, F. Zaccagna, M. A. McLean, F. Riemer, T. Matys, D. J. Tyler, C. Laustsen, A. J.
Coles, and F. A. Gallagher, “Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism
in health and neurological disease,” Journal of Cerebral Blood Flow and Metabolism, vol. 40, no. 6, pp.
1137–1147, 2020.

[7] R. Woitek and F. Gallagher, “The use of hyperpolarised 13C MRI in clinical body imaging to probe cancer
metabolism,” British Journal of Cancer, no. December 2020, 2020.

[8] C. Y. Lee, H. Soliman, B. J. Geraghty, A. P. Chen, K. A. Connelly, R. Endre, W. J. Perks, C. Heyn, S. E.
Black, and C. H. Cunningham, “Lactate topography of the human brain using hyperpolarized 13C-MRI,”
NeuroImage, vol. 204, no. August 2019, p. 116202, 2020.

[9] K. Vunckx et al., “Evaluation of Three MRI-based Anatomical Priors for Quantitative PET Brain Imaging,”
IEEE Transactions on Medical Imaging, vol. 31, no. 3, pp. 599–612, 2012.

12



[10] G. Schramm, M. Holler, A. Rezaei, K. Vunckx, F. Knoll, K. Bredies, F. Boada, and J. Nuyts, “Evaluation
of Parallel Level Sets and Bowsher’s Method as Segmentation-Free Anatomical Priors for Time-of-Flight
PET Reconstruction,” IEEE Transactions on Medical Imaging, vol. 37, no. 2, pp. 590–603, 2017.

[11] M. J. Ehrhardt, P. J. Markiewicz, M. Liljeroth, A. Barnes, V. Kolehmainen, J. Duncan, L. Pizarro,
D. Atkinson, B. F. Hutton, S. Ourselin, K. Thielemans, and S. R. Arridge, “PET Reconstruction with
an Anatomical MRI Prior using Parallel Level Sets,” IEEE Transactions on Medical Imaging, vol. 35,
no. 9, pp. 2189–2199, 2016.

[12] I. Teh, D. Mcclymont, E. Carruth, J. Omens, A. Mcculloch, and J. E. Schneider, “Improved compressed
sensing and super-resolution of cardiac diffusion MRI with structure-guided total variation,” Magnetic
Resonance in Medicine, vol. 84, pp. 1868–1880, 2020.

[13] J. P. Haldar, D. Hernando, S. K. Song, and Z. P. Liang, “Anatomically constrained reconstruction from
noisy data,” Magnetic Resonance in Medicine, vol. 59, no. 4, pp. 810–818, 2008.

[14] J. Kornak, K. Young, B. J. Soher, and A. A. Maudsley, “Bayesian κ-Space time reconstruction of MR
spectroscopic imaging for enhanced resolution,” IEEE Transactions on Medical Imaging, vol. 29, no. 7, pp.
1333–1350, 2010.

[15] C. Gnahm, M. Bock, P. Bachert, W. Semmler, N. G. Behl, and A. M. Nagel, “Iterative 3D projection
reconstruction of 23Na data with an 1H MRI constraint,” Magnetic Resonance in Medicine, vol. 71, no. 5,
pp. 1720–1732, 2014.

[16] A. J. Obert, M. Gutberlet, A. L. Kern, T. F. Kaireit, R. Grimm, F. Wacker, and J. Vogel-Claussen, “1H-
guided reconstruction of 19F gas MRI in COPD patients,” Magnetic Resonance in Medicine, vol. 84, pp.
1336–1346, 2020.
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