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Abstract. We compute the abelianisations of the mapping class groups of
the manifolds W 2n

g = g(Sn × Sn) for n ≥ 3 and g ≥ 5. The answer is a direct

sum of two parts. The first part arises from the action of the mapping class

group on the middle homology, and takes values in the abelianisation of the
automorphism group of the middle homology. The second part arises from

bordism classes of mapping cylinders and takes values in the quotient of the

stable homotopy groups of spheres by a certain subgroup which in many cases
agrees with the image of the stable J-homomorphism. We relate its calculation

to a purely homotopy theoretic problem.

1. Introduction

Let W 2n
g = g(Sn × Sn) denote the g-fold connected sum and choose a fixed

closed disc D2n ⊂ W 2n
g . Let Diff+(W 2n

g ) be the topological group of orientation

preserving diffeomorphisms of W 2n
g , and Diff(W 2n

g , D2n) be the subgroup of those
diffeomorphisms which fix an open neighbourhood of the disc. Define the mapping
class groups

Γng,1 = π0(Diff(W 2n
g , D2n)) Γng = π0(Diff+(W 2n

g )).

There is a homomorphism γ : Γng,1 → Γng , which simply forgets that diffeomorphisms
fix a disc. We will construct two abelian quotients of these groups, one coming
from arithmetic properties of the intersection form of W 2n

g , and one coming from
a cobordism theoretic construction. Together, these will give the abelianisation of
either group.

Construction 1.1. Recall that Wall [Wal62] has constructed for each (n − 1)-
connected 2n-manifold W a certain quadratic form QW , which we shall describe
later, whose underlying bilinear form is the intersection form on Hn(W ;Z). Diffeo-
morphisms of the manifold act by automorphisms of this quadratic form, so there
is a group homomorphism

f̂ : Γng −→ Aut(QW 2n
g

),

from which we can construct the map f : Γng → H1(Aut(QW 2n
g

)) to an abelian

group. We will also write f̂ for the composition f̂ ◦ γ : Γng,1 → Γng → Aut(QW 2n
g

),

and similarly with f .

Construction 1.2. Let ϕ ∈ Diff(W 2n
g , D2n) be a diffeomorphism of W 2n

g which is

the identity on a fixed disc D2n ⊂W 2n
g . We may form the mapping torus

Tϕ = W 2n
g × [0, 1]/(x, 0) ∼ (ϕ(x), 1),

which is a (2n+1)-dimensional manifold fibering over S1, and contains an embedded
D2n×S1 given by the disc fixed by ϕ. The (n−1)-connected manifold obtained by
surgery along this embedded D2n × S1 shall be denoted T ′φ. This construction is

2010 Mathematics Subject Classification. 55N22, 57R15, 55P47, 55Q10, 57S05.

1



2 SØREN GALATIUS AND OSCAR RANDAL-WILLIAMS

often called an open book. By obstruction theory, a map τ : T ′φ → BO classifying

its stable normal bundle admits a lift ` : T ′φ → BO〈n〉, unique up to homotopy,

where BO〈n〉 → BO denotes the n-connected cover. The pair (T ′ϕ, `) represents an

element of Ω
〈n〉
2n+1, the cobordism theory associated to the map BO〈n〉 → BO, and

one easily verifies that the function

t : Γng,1 −→ Ω
〈n〉
2n+1

ϕ 7−→ [T ′ϕ, `]

is a group homomorphism.

Our main theorem, proved in Sections 3–5 below, is that these two homomor-
phisms combine to give the maximal abelian quotient of the group Γng,1.

Theorem 1.3. For all n and g (except we require g ≥ 2 if n = 2) the map

t⊕ f : Γng,1 −→ Ω
〈n〉
2n+1 ⊕H1(Aut(QW 2n

g
))

is surjective, and for n 6= 2 and g ≥ 5 it is the abelianisation. Furthermore, in this
range

H1(Aut(QW 2n
g

)) ∼=


(Z/2)2 n even

0 n = 1, 3 or 7

Z/4 otherwise.

We obtain the following table describing H1(Γng,1;Z) for small n, using known

calculations of Ω
〈3〉
∗ = ΩSpin

∗ and Ω
〈7〉
∗ = ΩString

∗ (see [Mil63, p. 201] for the former
and [Gia71] for the latter).

Table 1. Abelianisations of Γng,1 for g ≥ 5.

n 1 2 3 4 5 6 7
H1(Γng,1;Z) 0 (Z/2)2⊕? 0 (Z/2)4 Z/4 (Z/2)2 ⊕ Z/3 Z/2

In Section 7 we compare our work with that of Kreck [Kre79], who has described
the groups Γng,1 up to extension problems. Using Theorem 1.3 we are able to resolve
these extension problems when n = 6 or n ≡ 5 mod 8, and hence give a complete
description of these mapping class groups.

1.1. The cobordism groups Ω
〈n〉
2n+1. In light of Theorem 1.3, it is of interest to

describe the cobordism group Ω
〈n〉
2n+1 in terms of more familiar objects. There is a

homomorphism

ρ : Ωfr
2n+1 −→ Ω

〈n〉
2n+1

from framed cobordism obtained by simply remembering that a stably tangentially
framed manifold in particular has a BO〈n〉-structure. The cobordism theoretic
interpretation of the J-homomorphism

J : π2n+1(SO) −→ πs2n+1 = Ωfr
2n+1

is that it sends a map f : S2n+1 → SO to the stably framed manifold obtained by
taking the (2n+1)-sphere with its usual—bounding—stable framing, and changing
the framing using f . The resulting stable framing need not extend over D2n+2,
but the BO〈n〉-structure does always extend (as the map BO〈n〉 → BO is n-co-
connected), so ρ ◦ J is trivial. Thus there is an induced map

ρ′ : Coker(J)2n+1 −→ Ω
〈n〉
2n+1.

It follows from work of Stolz that this map is an isomorphism in many cases.
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Theorem 1.4 (Stolz). The map ρ′ is surjective, and is an isomorphism if either

(i) n+ 1 ≡ 2 mod 8 and n+ 1 ≥ 18,
(ii) n+ 1 ≡ 1 mod 8 and n+ 1 ≥ 113,

(iii) n+ 1 6≡ 0, 1, 2, 4 mod 8.

In the cases not covered by this theorem, the kernel of ρ′ is at most Z/2 if
n+1 ≡ 1, 2 mod 8, and cyclic if n+1 ≡ 0 mod 4. We give more detailed information
in Section 6.

1.2. Closed manifolds. We can also use Theorem 1.3 to calculate the abeliani-
sation of the mapping class group Γng , of orientation preserving diffeomorphisms of

the closed manifolds W 2n
g , because of the following result of Kreck.

Lemma 1.5 (Kreck). The map γ : Γng,1 → Γng is an isomorphism for n ≥ 3.

Proof. The homotopy fiber sequences

Fr+(W 2n
g ) −→ BDiff(W 2n

g , D2n) −→ BDiff+(W 2n
g )

and
SO(2n) −→ Fr+(W 2n

g ) −→W 2n
g

induce long exact sequence in homotopy groups, from which it is easy to see that
Γng,1 → Γng is surjective with kernel either trivial or Z/2, as long as n ≥ 3.

Kreck proves that the kernel is in fact trivial: Combine the discussion at the
bottom of page 657 of [Kre79] with the fact that the manifolds W 2n

g bound the

parallelisable manifolds \g(Sn ×Dn+1), so the element ΣW 2n
g

is trivial by Lemma

3b of that paper. �

1.3. Perfection. Recall that a group is called perfect if it is equal to its derived
subgroup, or equivalently if its abelianisation is trivial. Table 1 shows that Γng,1
(or Γng , by Lemma 1.5) is perfect for n = 1 or n = 3 and g ≥ 5, but the fact that

H1(Aut(QW 2n
g

)) is trivial only for n = 1, 3, 7 and the fact that Ω
〈7〉
15 6= 0 means that

these are the only examples.

Corollary 1.6. For g ≥ 5, the groups Γng,1 and Γng are perfect if and only if n is 1
or 3.

If we denote by W̊ 2n
g,1 the complement of the chosen disc D2n in W 2n

g , then

the group Diff(W 2n
g , D2n) is isomorphic to Diffc(W̊

2n
g,1), the group of compactly

supported diffeomorphisms of W̊ 2n
g,1. Thurston [Thu74] has proved that for any

manifold M without boundary the identity component Diffc(M)δ0, considered as
a discrete group, is perfect (in fact, it is simple). Thus the extension of discrete
groups

1 −→ Diffc(W̊
2n
g,1)δ0 −→ Diff(W 2n

g , D2n)δ −→ Γng,1 −→ 1

shows that the discrete group Diff(W 2n
g , D2n)δ is perfect if and only Γng,1 is, and

more generally that the abelianisation of the discrete group Diff(W 2n
g , D2n)δ is

also described by Theorem 1.3. Similarly, the abelianisation of the discrete group
Diff+(W 2n

g )δ is also described by Theorem 1.3. See [Nar14] for more information

about the homology of Diff(W 2n
g , D2n)δ.
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2. Wall’s quadratic form

The fibration Sn → BO(n)→ BO(n+ 1) gives a long exact sequence on homo-
topy groups

· · · −→ πn+1(BO(n+ 1))
∂−→ Z τ−→ πn(BO(n))

s−→ πn(BO(n+ 1)) −→ 0,

and we let Λn = Im(∂) ⊂ Z. The map τ sends 1 to the map which classifies the
tangent bundle of the n-sphere, so Λn is trivial if n is even, Z if n = 1, 3 or 7, and
2Z otherwise, by the Hopf invariant 1 theorem. The data ((−1)n,Λn) is a form
parameter in the sense of Bak [Bak69, Bak81].

Suppose that n ≥ 4, and let W be an (n − 1)-connected 2n-manifold which
is stably parallelisable. We will describe how to associate to it a non-degenerate
quadratic form QW having form parameter ((−1)n,Λn), following Wall [Wal62].
The Z-module

πn(W ) ∼= Hn(W ;Z)

has a (−1)n-symmetric bilinear form

λ : Hn(W ;Z)⊗Hn(W ;Z) −→ Z

given by the intersection form, which is non-degenerate by Poincaré duality. If
x = [f ] ∈ πn(W ), then by a theorem of Haefliger [Hae61] as n ≥ 4 we may
represent it uniquely up to isotopy by an embedding f : Sn ↪→ W , which has an
n-dimensional normal bundle which is stable trivial. This represents an element

α(x) ∈ Z/Λn = Ker
(
πn(BO(n))

s→ πn(BO(n+ 1)
)
,

and Wall has shown that this satisfies

(i) α(a · x) = a2 · α(x), for a ∈ Z,
(ii) α(x+ y) = α(x) + α(y) + λ(x, y), where λ(x, y) is reduced modulo Λn.

Thus the data (πn(W ), λ, α) is a quadratic form with form parameter ((−1)n,Λn).

Remark 2.1. This construction above does not quite work for n ≤ 3, as Haefliger’s
theorem does not apply, but we can proceed anyway. When n = 1 or 3 we have
Z/Λn = {0} and so a quadratic form with parameter (−1,Λn) should be a module
with skew-symmetric bilinear form. We take Hn(Wg;Z) with its intersection form.

When n = 2 we have Z/Λ2 = Z and so a quadratic form with parameter (1,Λ2)
should be an even symmetric bilinear form. The intersection form on H2(Wg;Z) is
even, so we can take this.

By construction, it is clear that if ϕ : W0 → W1 is a diffeomorphism then ϕ∗ :
Hn(W0;Z) → Hn(W1;Z) is a morphism of quadratic forms. The most elementary
quadratic form is the hyperbolic form

H =

(
Z2 with basis e, f ;

(
0 1

(−1)n 0

)
;α(e) = α(f) = 0

)
.

The manifold W 2n
g = g(Sn × Sn) has associated quadratic form H⊕g, the direct

sum of g copies of the hyperbolic form, and so we have a homomorphism

f̂ : Γng −→ Aut(H⊕g).

Kreck [Kre79] has shown that this map is surjective for n ≥ 3, Wall [Wal64] has
shown it is surjective for n = 2 as long as g ≥ 5, and it is well-known to be surjective
for n = 1 and all g. We obtain an abelian quotient

(2.1) f : Γng −→ H1(Aut(H⊕g);Z).
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Proposition 2.2. There are isomorphisms

H1(Aut(H⊕g);Z) ∼=


(Z/2)2 n even

0 n = 1, 3 or 7

Z/4 otherwise.

as long as g ≥ 5.

Proof. By Charney’s stability theorem [Cha87] for the homology of automorphism
groups of quadratic forms over a PID, the group H1(Aut(H⊕g);Z) is independent of
g as long as g ≥ 5. In fact, the statement in [Cha87] claims this only for g ≥ 6, but
using the slightly improved connectivity for the necessary poset / simplicial complex
which is established in [GRW14a, Theorem 3.2] this can be improved to g ≥ 5 (the
poset HUg = HU(H⊕g) of [Cha87] is the face poset of the simplicial complex
Ka(H⊕g) of [GRW14a], so they have homeomorphic geometric realisations).

If n is even, then Aut(H⊕g) = Og,g(Z) is the indefinite orthogonal group over
the integers. This is a subgroup of Og,g(R), which has maximal compact subgroup
Og(R) × Og(R); the determinants of these two factors provides a surjective ho-
momorphism a : Og,g(Z) → (Z/2)2. In [GHS09, Theorem 1.7] it is shown that a

certain index 4 normal subgroup S̃O
+

g,g(Z) of Og,g(Z), for the definition of which
we refer to that paper, has trivial abelianisation. Thus the homomorphism a is the
abelianisation.

If n = 1, 3 or 7 then a quadratic form with parameter (−1,Λn) is nothing but an
antisymmetric bilinear form, so Aut(H⊕g) = Sp2g(Z) is the symplectic group over
the integers. This is well-known to have trivial abelianisation, as long as g ≥ 3.

For the remaining odd n, Aut(H⊕g) = Spq2g(Z) ⊂ Sp2g(Z) is the subgroup of

those symplectic matrices which stabilise the quadratic form α(ei) = α(fi) = 0.
The abelianisation of this group has been computed in [JM90, Theorem 1.1] to be
Z/4 as long as g ≥ 3. �

Remark 2.3. The argument above can be used to strengthen the “only if” part of
Corollary 1.6: for n 6= 1, 3, the mapping class groups are not perfect for any g ≥ 1.

For n = 7 this is in fact the case for g ≥ 0, as the generator of Ω
〈7〉
15 = Z/2 can

be hit by a diffeomorphism supported inside a disc. For n 6= 7 we argue as follows.
The matrix

(−1 0
0 −1

)
defines an element of Aut(H) for all n, and is easily seen to

be realised by an element of Γn1,1. For n even this maps to a non-trivial element of

(Z/2)2, and for n odd apart from 1, 3, 7, it follows from the formula [JM90, p. 147]
that it maps to the order-two element of Z/4.

3. Low-dimensional cases

The cases n < 3 of Theorem 1.3 require special treatment, so let us dispense
with them first. We will then focus on the generic case n ≥ 3.

3.1. n = 1. The relevant bordism group is Ω
〈1〉
3 , third oriented bordism, which is

well-known to be zero. Thus the first part of Theorem 1.3 states that Γ1
g,1 surjects

onto the trivial group, which is certainly true, and the second part states that the
abelianisation of Γ1

g,1 is zero as long as g ≥ 5. This is [Pow78, Theorem 1] (which
in fact only requires g ≥ 3).

3.2. n = 2. The relevant bordism group is Ω
〈2〉
5 , fifth Spin bordism, which is zero

by the results of [Mil63, p. 201]. Thus in this case Theorem 1.3 just says that the
map f : Γ2

g,1 → H1(Aut(QW 4
g
)) is surjective for g ≥ 2. But the homomorphism

f̂ : Γ2
g,1 → Aut(QW 4

g
) is already surjective in this case, by [Wal64, Theorem 2].

Though we do not require it for our results, Kreck [Kre79, Theorem 1] has shown
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that for g ≥ 2 the kernel of the surjective map Γ2
g → Aut(QW 4

g
) is precisely the

subgroup of those diffeomorphisms pseudoisotopic to the identity.

4. Nontriviality of the mapping torus construction

Using the stabilisation maps we have a homomorphism

d : Γn0,1 −→ Γng,1

for any g, and the group Γn0,1—the mapping class group of the sphere relative to a
disc—is isomorphic to the group Θ2n+1 of exotic (2n+ 1)-spheres via the clutching
construction.

Lemma 4.1.

(i) The image of Θ2n+1 in Γng,1 is central.

(ii) The composition Θ2n+1
d→ Γng,1

t→ Ω
〈n〉
2n+1 is surjective, so in particular t is

surjective.

(iii) The composition Θ2n+1
d→ Γng,1

f̂→ Aut(H⊕g) is trivial.

Proof. Let f be a diffeomorphism of Wg fixing a neighbourhood U of D2n, and g
be a diffeomorphism supported in a disc disjoint from the marked one. Then g is
isotopic to a diffeomorphism g′ supported in U but still disjoint from D2n, and now
g′ commutes with f . Thus Im(d) ⊂ Γng,1 is central.

The map t◦d sends an exotic (2n+1)-sphere to its BO〈n〉-bordism class (such an
exotic sphere has a canonical BO〈n〉-structure by virtue of being highly-connected),
so we must show that any (2n + 1)-dimensional manifold with BO〈n〉-structure
(W, `W ) is cobordant to a n-connected manifold (as it is then 2n-connected by
Poincaré duality).

This follows from the methods of Kervaire and Milnor, specifically [KM63, The-
orem 6.6]. They work with manifolds which are stably parallelisable, but this is
only used in two ways: to show that homotopy classes of dimension ∗ ≤ n can
be represented by framed embeddings, and to show that the trace of the surgery
is stably parallelisable. A BO〈n〉-structure still allows one to represent homotopy
classes of dimension ∗ ≤ n by framed embeddings, and a BO〈n〉-structure can be
induced on the trace of the surgery, too.

Finally, a mapping class in the image of d is supported in a small disc, and so

acts trivially on the homology of Wg, so f̂ ◦ d is trivial. �

This lemma has the following implication regarding the kernel of the mapping
torus construction t.

Corollary 4.2. The kernel of the homomorphism t : H1(Γng,1)→ Ω
〈n〉
2n+1 has cardi-

nality at least 4 if n 6= 1, 3 or 7 and g ≥ 5.

Proof. Consider the commutative diagram

Θ2n+1

d

�� (( ((

Ker(t)

&&

� � // H1(Γng,1)
t

// //

����

f

(( ((

Ω
〈n〉
2n+1

H1(Γng,1)/Θ2n+1
// // H1(Aut(H⊕g))
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where the middle row is exact. Diagram chasing shows that the dashed arrow is
surjective, and so Ker(t) → H1(Γng,1) → H1(Aut(H⊕g)) is surjective. The target
has cardinality 4 in these cases by Proposition 2.2. �

5. A refinement of the mapping torus construction

From now on we suppose that n ≥ 3. The proof of the remainder of Theorem 1.3
uses two more involved theorems proved recently by the authors, which concern not
the mapping class groups but the entire diffeomorphism groups of the manifolds
W 2n
g . There are continuous homomorphisms

Diff(W 2n
g , D2n) −→ Diff(W 2n

g+1, D
2n)

given by connect-sum with W 2n
1 inside the marked disc, and extending diffeomor-

phisms by the identity. In [GRW14a, Theorem 1.2] we showed that for n ≥ 3 the
maps on classifying spaces

BDiff(W 2n
g , D2n) −→ BDiff(W 2n

g+1, D
2n)

induce homology isomorphisms in degrees 2∗ ≤ g−3. In particular, as long as g ≥ 5
they induce isomorphisms on first homology. The map H1(BDiff(W 2n

g , D2n);Z)→
H1(Γng,1;Z) is also an isomorphism, which shows that the stabilisation map

H1(Γng,1;Z) −→ H1(Γng+1,1;Z)

is an isomorphism for g ≥ 5.
Secondly, we showed how to identify the stable homology, that is, the homol-

ogy of hocolimg→∞BDiff(W 2n
g , D2n), as follows. Let θn : BO(2n)〈n〉 → BO(2n)

denote the n-connected cover, and θ∗nγ2n denote the pullback of the tautological
2n-dimensional vector bundle. Write MTθn for the Thom spectrum of the virtual
bundle −θ∗nγ2n → BO(2n)〈n〉. Parametrised Pontrjagin–Thom theory provides
maps

αg : BDiff(W 2n
g , D2n) −→ Ω∞0 MTθn

which assemble to a map α∞ : hocolimg→∞BDiff(W 2n
g , D2n) → Ω∞0 MTθn which

we show in [GRW14b, Theorem 1.1] induces an isomorphism on homology as long
as n ≥ 3. Given these two theorems, we are reduced to calculating H1(Ω∞0 MTθn).

Recall that MTθn = Th(−θ∗nγ2n → BO(2n)〈n〉). Let us write MO〈n〉 for the
Thom spectrum1 of the tautological bundle over BO〈n〉, so the stabilisation map
induces a spectrum map

s : MTθn −→ Σ−2nMO〈n〉.

Lemma 5.1. The composition

H1(Γng,1)
∼←− H1(BDiff(W 2n

g , D2n))
αg−→ H1(Ω∞0 MTθn) ∼= π1(MTθn)

s∗−→ Ω
〈n〉
2n+1

agrees with the mapping torus construction t.

Proof. Both apply the Pontryagin–Thom construction to the mapping torus. �

1Some authors denote the (n− 1)-connected cover of a space X by X〈n〉, and so write MO〈n〉
for the Thom spectrum associated to the (n− 1)-connected cover of BO. We emphasise that our
notation is different.
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5.1. A long exact sequence in stable homotopy. Let us write Fn for the
homotopy fibre of the spectrum map s. There is a commutative diagram

(5.1)

SO/SO(2n) //

��

BO(2n)〈n〉 //

��

BO(2n)

��

∗ // BO〈n〉 // BO,

where both squares are homotopy pullback. The left square induces a map of
homotopy cofibres Σ(SO/SO(2n)) → (BO〈n〉)/(BO(2n)〈n〉) which we see from
the Serre spectral sequence to be (3n + 1)-connected. The whole diagram maps
to BO, and may be Thomified. The map of cofibres, desuspended (2n + 1) times,
gives a map

Σ−2nSO/SO(2n) −→ Fn,

which is n-connected.
We may therefore rewrite the long exact sequence in stable homotopy for the

map s : MTθn → Σ−2nMO〈n〉 in the following way,

(5.2)

· · · s∗
// π2n+2(MO〈n〉)

∂∗

ss

πs2n+1(SO/SO(2n)) // π1(MTθn)
s∗
// π2n+1(MO〈n〉)

ss

πs2n(SO/SO(2n)) // π0(MTθn)
s∗
// π2n(MO〈n〉) // 0,

as SO/SO(2n) is (2n− 1)-connected, so πs2n−1(SO/SO(2n)) = 0. By this connec-
tivity property, the group πs2n+1(SO/SO(2n)) is in the range of the Freudenthal
suspension theorem as long as 2n+1 ≤ 2(2n−1) i.e. n ≥ 2, as is πs2n(SO/SO(2n)).
Thus to compute these groups we may as well compute the associated unsta-
ble homotopy groups of SO/SO(2n). As SO(2n + m) → SO is (2n + m − 1)-
connencted, the homotopy groups of SO/SO(2n) agree with those of the Stiefel
manifold V2n+m,m of m-frames in R2n+m in degrees ∗ ≤ 2n+m− 2.

Now Paechter [Pae56] has computed the homotopy groups of Stiefel manifolds
in a range of degrees, which along with the discussion above gives the following.

Lemma 5.2 (Paechter). For n ≥ 2, πs2n(SO/SO(2n)) ∼= Z, and πs2n+1(SO/SO(2n))
is isomorphic to Z/4 when n is odd and to (Z/2)2 when n is even.

It will not be quite enough for us to know these as abstract groups, we shall need
to know a little about their behaviour under the Hurewicz map.

Lemma 5.3. Suppose that n ≥ 2.

(i) The group H2n+1(SO/SO(2n);F2) is 1-dimensional, generated by a class
x2n+1 which maps under

∂∗ : H2n+1(SO/SO(2n);F2) −→ H2n+2(MO〈n〉;F2)

to w2n+2 · u, where u ∈ H0(MO〈n〉;F2) is the Thom class.
(ii) The Hurewicz map πs2n+1(SO/SO(2n)) → H2n+1(SO/SO(2n);F2) is surjec-

tive.
(iii) The pullback of the Euler class along SO/SO(2n) → BSO(2n) gives twice a

generator of H2n(SO/SO(2n);Z) ∼= Z.
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Proof. For (i), we consider the Serre spectral sequence for the fibre sequence

SO/SO(2n) −→ BSO(2n) −→ BSO.

The F2-cohomology of BSO is the polynomial algebra on the Stiefel–Whitney
classes wi ∈ Hi(BSO;F2) for i ≥ 2, and the F2-cohomology of BSO(2n) is the poly-
nomial algebra on the Stiefel–Whitney classes wi ∈ Hi(BSO;F2) for 2 ≤ i ≤ 2n.
Thus for each i ≥ 2n there must be a class

xi ∈ Hi(SO/SO(2n);F2)

which transgresses to wi+1, and H∗(SO/SO(2n);F2) is isomorphic as a vector space
to the exterior algebra on the classes xi. (This could also be computed using the
Eilenberg–Moore spectral sequence.) As we have assumed that n ≥ 2, it follows
that in degrees 2n ≤ i ≤ 2n+2 the ith cohomology of SO/SO(2n) is 1-dimensional
and is generated by xi.

The (3n+ 1)-connected map Σ(SO/SO(2n)) → (BO〈n〉)/(BO(2n)〈n〉) induces
an isomorphism Hi−1(SO/SO(2n)) ∼= Hi(BO〈n〉, BO(2n)〈n〉) when i ≤ 3n, under
which the transgression in the Serre spectral sequence for the fibre sequence

SO/SO(2n) −→ BO(2n)〈n〉 −→ BO〈n〉
may be identified with the connecting homomorphism in the long exact sequence for
homology of the pair (BO〈n〉, BO(2n)〈n〉). This long exact sequence is isomorphic,
via the Thom isomorphism, with the long exact sequence for the cofibre sequence

Fn −→MTθn −→ Σ−2nMO〈n〉.
Hence x2n+1 maps to w2n+2 · u under the connecting homomorphism.

For (ii), recall that the Hurewicz map for a (k − 1)-connected space with k ≥ 2
is an isomorphism in degree k and a surjection in degree (k + 1). Hence

(5.3) Z ∼= πs2n(SO/SO(2n)) −→ H2n(SO/SO(2n);Z)

is an isomorphism and

(5.4) πs2n+1(SO/SO(2n)) −→ H2n+1(SO/SO(2n);Z)

is a surjection. By (5.3) multiplication by 2 on H2n(SO/SO(2n);Z) is an injection:
it then follows from the Bockstein exact sequence that

H2n+1(SO/SO(2n);Z) −→ H2n+1(SO/SO(2n);F2)

is a surjection, which combined with (5.4) gives the result.
For (iii), observe that the map

S2n = SO(2n+ 1)/SO(2n) −→ SO/SO(2n)

is 2n-connected, so induces an injection on H2n(−;Z) (and both spaces have 2nth
cohomology Z). Now S2n → SO/SO(2n)→ BSO(2n) classifies the tangent bundle
of S2n, which has Euler number 2, so the pullback of the Euler class to SO/SO(2n)
is not divisible by more than 2; on the other hand, the Euler class reduces to w2n

modulo 2, which vanishes on SO/SO(2n). Hence it is divisible by precisely 2. �

We now analyse the long exact sequence (5.2) in low degrees.

Lemma 5.4. The map πs2n(SO/SO(2n))→ π0(MTθn) is injective.

Proof. Under the Thom isomorphism, the Euler class gives a map E : MTθn →
HZ, and the composition

Σ−2n(SO/SO(2n)) −→MTθn
E−→ HZ

is twice a generator of H2n(SO/SO(2n);Z) ∼= Z by Lemma 5.3 (iii). The claim
follows by taking π0 of this composition. �
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The long exact sequence (5.2) thus simplifies to

· · · −→ Ω
〈n〉
2n+2

∂∗−→ πs2n+1(SO/SO(2n)) −→ π1(MTθn)
s∗−→ Ω

〈n〉
2n+1 −→ 0,

and we recall that under the isomorphism

H1(Γng,1)
∼←− H1(BDiff(W 2n

g , D2n))
∼−→ H1(Ω∞0 MTθn) ∼= π1(MTθn)

the map s∗ coincides with the map t.

Lemma 5.5. If n 6= 3 or 7 then the map ∂∗ : Ω
〈n〉
2n+2 → πs2n+1(SO/SO(2n)) is zero.

Proof. By Corollary 4.2 the kernel of the map t, and hence s∗, has cardinality at

least 4, and so the kernel of s∗ : π1(MTθn)→ Ω
〈n〉
2n+1 also has cardinality at least 4.

On the other hand, the exact sequence and Lemma 5.2 shows that it has cardinality
at most 4, hence it has cardinality precisely 4, so ∂ is zero. �

Lemma 5.6. If n = 3 or 7 then ∂∗ : Ω
〈n〉
2n+2 → πs2n+1(SO/SO(2n)) is surjective

(so s∗ is injective).

Proof. Consider the diagram

π2n+2(MO〈n〉) ∂∗
//

h

��

πs2n+1(SO/SO(2n)) ∼= Z/4

h
����

H2n+2(MO〈n〉;F2) // H2n+1(SO/SO(2n);F2) ∼= Z/2,

where h denotes the Hurewicz map, and the surjectivity on the right is by Lemma
5.3 (ii). By Lemma 5.3 (i), the isomorphism H2n+1(SO/SO(2n);F2) ∼= Z/2 is given
by evaluating against the class x2n+1 ∈ H2n+1(SO/SO(2n);F2), which under ∂∗

corresponds to w2n+2 · u. Thus the composition ∂∗ ◦ h can be identified with the

functional Ω
〈n〉
2n+2 → Z/2 given by [W 2n+2] 7→ 〈[W ], w2n+2(TW )〉.

The manifolds [HP 2] ∈ Ω
〈3〉
8 and [OP 2] ∈ Ω

〈7〉
16 have Euler characteristic 3, so

non-trivial top Stiefel–Whitney class. Thus ∂∗ ◦ h = h ◦ ∂∗ is surjective in these
cases, but it follows that ∂∗ must then be surjective. �

5.2. Proof of Theorem 1.3. For the surjectivity part of the statement, we have
already explained how Kreck’s result ([Kre79]) implies the surjectivity of the ho-
momorphism f : Γng,1 → H1(Aut(QW 2n

g
)). To see surjectivity of t ⊕ f it suffices

to see that the restriction t|Ker(f) : Ker(f) → Ω
〈n〉
2n+1 is surjective, but that follows

from Lemma 4.1.
It remains to see that the induced map t⊕f : H1(Γng,1)→ Ω

〈n〉
2n+1⊕H1(Aut(QW 2n

g
))

is injective for n 6= 2 and g ≥ 5. For n = 3 or 7, the second summand vanishes, so
it suffices to prove that t is injective, which we did in Lemma 5.6. In the remaining
cases, Lemma 5.5 gives a short exact sequence fitting into the diagram

0 // πs2n+1(SO/SO(2n))

��

� � // π1(MTθn)
t
// // Ω
〈n〉
2n+1

// 0

H1(Aut(QWg
)) H1(Γng,1).

f
oooo

By the proof of Corollary 4.2, the map πs2n+1(SO/SO(2n))→ H1(Aut(QWg
)) is an

isomorphism, giving a splitting of the exact sequence in the top row of the diagram.
This proves Theorem 1.3 in these cases.
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6. A filtration of the sphere spectrum

In this section we shall describe and study a filtration of the sphere spectrum,
and a resulting filtration of the stable homotopy groups of spheres. This plays a

role in computing the cobordism groups Ω
〈n〉
2n+1 in terms of the stable homotopy

groups of spheres and the J-homomorphism.
Recall that BO〈n〉 → BO denotes the n-connected cover, and there is an asso-

ciated Thom spectrum MO〈n〉. Thus MO〈0〉 = MO, the spectrum representing
unoriented cobordism theory, MO〈1〉 = MSO, MO〈2〉 = MO〈3〉 = MSpin, etc.
There are maps

MO = MO〈0〉 ←−MO〈1〉 ←−MO〈2〉 ←−MO〈3〉 ←− · · ·

with inverse limit S, the sphere spectrum. We write ιn : S →MO〈n〉, and define
a filtration of the stable homotopy groups of spheres by

Fnπk(S) = Ker (πk(ιn) : πk(S)→ πk(MO〈n〉)) .

Let us write MO〈n〉 for the homotopy cofibre of S→MO〈n〉.

Lemma 6.1.

(i) Fnπk(S) = 0 for k < n.
(ii) Fnπk(S) contains the image of J : πk(O)→ πk(S) for k ≥ n.

(iii) Fnπk(S) is equal to the image of J : πk(O)→ πk(S) for 2n ≥ k ≥ n.

Proof. The spectrum MO〈n〉 is n-connected, and so πk(S)→ πk(MO〈n〉) is injec-
tive for k < n; this establishes (i).

In the cobordism-theoretic interpretation of the homotopy groups of spheres,
J(α : Sk → O) is given by the manifold Sk with the framing given by twisting the
standard (bounding) framing of Sk using α to obtain a new framing ξα.

Sk

��

ξα
// EO // BO〈n〉

��

Dk+1 // BO

While this framing cannot necessarily be extended to Dk+1, the associated BO〈n〉-
structure can be extended as long as k ≥ n, as the right-hand map is n-co-connected;
this establishes (ii).

Let (Mk, ξ) be a framed cobordism class representing an element of Fnπk(S),
so considered as a BO〈n〉-manifold M bounds a BO〈n〉-manifold W . Now k +
1 ≤ 2n + 1 so (similarly to the proof of Lemma 4.1) by the techniques of [KM63,
Theorems 5.5 and 6.6] we may perform surgery on the interior of W to obtain a new
BO〈n〉-manifold W ′ which is bk/2c-connected, with the same framed boundary M .
We may then find a handle structure on W ′ having no handles of index between
1 and bk/2c, and so W ′ \ Dk+1 is a BO〈n〉-cobordism from M to Sk which may
be obtained from M by attaching handles of index at most k − bk/2c ≤ n. As
EO → BO〈n〉 is n-connected, it follows that the framing ξ on M may be extended
to W ′ \Dk+1, and so (M, ξ) is framed cobordant to (Sk, ζ) for some framing ζ of
the sphere. But those cobordism classes represented by spheres with some framing
are precisely the image of the J-homomorphism; this establishes (iii). �

We wish to understand the group Ω
〈n〉
2n+1 = π2n+1(MO〈n〉), which is related to

Fnπ2n+1(S) and lies just outside of the range treated in Lemma 6.1 (iii). However,
the groups Fnπk(S) for k > 2n have been studied, though not quite expressed in
this form, by Stolz [Sto85]. Let us explain his technique.
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For n ≥ 2 the universal (virtual) bundle γ〈n〉 over BO〈n〉 is Spin, and so the
Thom spectrum MO〈n〉 has a KO-theory Thom class, λn. There is thus a KO-
theory class γ〈n〉·λn ∈ KO0(MO〈n〉), which we represent by a map αn : MO〈n〉 →
ko to the connective KO-theory spectrum. As the bundle γ〈n〉 ∈ KO0(BO〈n〉)
becomes trivial when restricted to a point, the class lifts to γ〈n〉 ∈ KO0(BO〈n〉, ∗),
and αn factors through a map α′n : MO〈n〉 → ko, and as MO〈n〉 is n-connected
this lifts further to a map

αn : MO〈n〉 −→ ko〈n〉.
Stolz defines A[n+1] to be the homotopy fibre of αn. Under the Thom isomorphism
we have

H∗(MO〈n〉) ∼= H∗(BO〈n〉, ∗) = H∗(Ω∞(ko〈n〉), ∗),
and using the known cohomology of BO〈n〉 and ko〈n〉 as modules over the Steenrod
algebra Stolz establishes the following.

Theorem 6.2 (Stolz [Sto85]). The spectrum A[n+ 1] is (2n+ 1)-connected, and

π2n+2(A[n+ 1]) =


Z n+ 1 ≡ 0, 4 mod 8

Z/2 n+ 1 ≡ 1, 2 mod 8

0 otherwise.

Let us write J : πk(O) → πk(S) for the J-homomorphism. For α ∈ πk(O),
J(α) is given by the stably framed manifold obtained by changing the bounding
framing on Sk using α. As explained in the proof of Lemma 6.1 (ii), the associated
BO〈n〉-structure extends canonically over Dk+1 as long as k ≥ n, which gives a
map

J : πk(O) −→ πk+1(MO〈n〉)
such that ∂ ◦ J = J . The composition

πk(O)
J−→ πk+1(MO〈n〉) αn−→ πk+1(ko〈n〉)

is an isomorphism (cf. [Sto85, Lemma 3.7]), and it follows from the commutative
diagram

π2n+2(MO〈n〉)

��

0 // π2n+2(A[n+ 1]) // π2n+2(MO〈n〉) αn
//

∂

��

π2n+2(ko〈n〉) // 0

π2n+1(S)

��

π2n+1(O)
J

oo

J

hh

π2n+1(MO〈n〉)

��

0

that there is an exact sequence

π2n+2(A[n+ 1])
σ−→ Coker(J)2n+1 −→ π2n+1(MO〈n〉) −→ 0.

Hence, given the description of π2n+2(A[n+ 1]) in Theorem 6.2, it follows that the
quotient Fnπ2n+1(S)/Im(J) is cyclic. Stolz finds various conditions under which
the quotient Fnπ2n+1(S)/Im(J) is in fact trivial, i.e. the map σ is zero.
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Theorem 6.3 (Stolz [Sto85]). If either

(i) n+ 1 ≡ 2 mod 8 and n+ 1 ≥ 18,
(ii) n+ 1 ≡ 1 mod 8 and n+ 1 ≥ 113,

(iii) n+ 1 6≡ 0, 1, 2, 4 mod 8,

then Fnπ2n+1(S) = Im(J)2n+1.
If n+1 = 4` then Fnπ2n+1(S)/Im(J) is generated by the exotic sphere Σ which is

the boundary of the manifold obtained by plumbing together two copies of the linear
4`-dimensional disc bundle over S4` having trivial Euler class and representing a
generator of π4`(BO) ∼= Z.

Proof. By [Sto85, Theorem B (i) and (ii)], in the case π2n+2(A[n+1]) = Z/2, these
map to zero in Coker(J)2n+1 under the conditions given in the statement of the
proposition.

It follows from [Sto85, Lemma 10.3] that when n + 1 = 4` a generator of Z =

π2n+2(A[n+ 1]) in π2n+2(MO〈n〉) is given by the class of the plumbing described
in the statement of the proposition. �

In the case n+1 = 4`, it seems to be a difficult problem to obtain any information
about the order, or indeed the nontriviality, of [Σ] ∈ Coker(J)8`−1. All calculations
we have attempted are consistent with the following conjecture.

Conjecture A. [Σ] = 0 ∈ Coker(J)8`−1.

This conjecture would imply that the map σ is zero in these cases too, and so

Ω
〈4`−1〉
8`−1

∼= Coker(J)8`−1. The most promising approach to this conjecture seems to
be as follows. By the discussion above, the map

Coker(J)2n+1 −→ π2n+1(MO〈n+ 1〉)
is an isomorphism, so Conjecture A is equivalent to

Conjecture B. The map π8`−1(MO〈4`〉)→ π8`−1(MO〈4`− 1〉) is injective.

For example, when ` = 1 this asks if ΩString
7 → ΩSpin

7 is injective, which it is as

both groups are zero. When ` = 2 this asks if Coker(J)15 → ΩString
15 is injective,

which it is as π15(MO〈8〉) = Coker(J)15 = Z/2, ΩString
15 = Z/2, and generators of

either group may be represented by an exotic sphere [KM63, Gia71].

Corollary 6.4. If n satisfies one of the conditions of Theorem 6.3 then the cobor-

dism group Ω
〈n〉
2n+1 occurring in Theorem 1.3 is isomorphic to Coker(J)2n+1.

7. Relation to the work of Kreck

Kreck has given [Kre79] a description of the mapping class groups of (n − 1)-
connected 2n-manifolds, up to two extension problems. Applied to our situation,
he gives extensions [Kre79, Proposition 3]

1 −→ Ing,1 −→ Γng,1
f̂−→ Aut(QW 2n

g
) −→ 1

and
1 −→ Θ2n+1 −→ Ing,1

χ−→ Hom(Hn(Wg), Sπn(SO(n))) −→ 1

where Sπn(SO(n)) = Im(πn(SO(n)) → πn(SO(n + 1))). These groups are given,
for n ≥ 3, by Table 2 (except that Sπ6(SO(6)) = 0).

Table 2. The groups Sπn(SO(n)), except that Sπ6(SO(6)) = 0.

nmod 8 0 1 2 3 4 5 6 7
Sπn(SO(n)) (Z/2)2 Z/2 Z/2 Z Z/2 0 Z/2 Z
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The map χ may be described as follows: to a diffeomorphism ϕ : W 2n
g,1 → W 2n

g,1

which acts as the identity on homology, and a class x ∈ Hn(W 2n
g ;Z) ∼= πn(W 2n

g,1)

represented by an embedding x : Sn ↪→ W 2n
g,1, the sphere ϕ ◦ x is isotopic to x

and so by the isotopy extension theorem we may suppose that ϕ ◦ x = x. Then
ε1⊕νx ∼= εn+1 and the differential Dϕ|x(Sn) gives an automorphism of this bundle,
corresponding to a map χ(ϕ)(x) : Sn → SO(n + 1). It can be checked that this
map lies in Sπn(SO(n)).

It is generally difficult to understand the structure of these extensions (for ex-
ample, whether they are non-trivial). To our knowledge the only case in which
complete information is known is Γ3

1, due to Krylov [Kry03]. Crowley [Cro11] has
also been able to solve the extension problem for

1 −→ Hom(Hn(Wg), Sπn(SO(n))) −→ Γng,1/Θ2n+1 −→ Aut(QW 2n
g

) −→ 1

for n = 3 and 7. An immediate consequence of our Theorem 1.3 is as follows.

Corollary 7.1. For g ≥ 5 the kernel of the composition Θ2n+1 → Γng,1 → Ω
〈n〉
2n+1

is generated by commutators of elements of Γng,1. In particular, this is true for the
subgroup bP2n+2 < Θ2n+1 < Γng,1. �

Our results can also be used to shed light on some of these extension problems,
especially for those n such that Sπn(SO(n)) = 0.

Theorem 7.2. The map

t× f̂ : Γ6
g,1 −→ Ω

〈6〉
13 ×Og,g(Z)

is an isomorphism, and Ω
〈6〉
13 = ΩString

13
∼= Z/3.

Proof. We have Sπ6(SO(6)) = 0, and so the two extensions reduce to

1 −→ Θ13 −→ Γ6
g,1

f̂−→ Og,g(Z) −→ 1.

The group bP14 is trivial ([KM63]) and so Θ13
∼= Cok(J)13, which is Z/3, and is

isomorphic to Ω
〈6〉
13 by Theorem 1.4. Thus Θ13 → Γ6

g,1
t→ Ω

〈6〉
13 is an isomorphism,

which shows that the extension is trivial. �

When n ≡ 5 mod 8, the other case in which Sπn(SO(n)) = 0, we also solve the
extension problem left open by Kreck.

Theorem 7.3. If n ≡ 5 mod 8 then there is a central extension

1 −→ bP2n+2 −→ Γng,1
t×f̂−→ Ω

〈n〉
2n+1 × Spq2g(Z) −→ 1,

where we write Spq2g(Z) ≤ Sp2g(Z) for the subgroup of those automorphisms of

the symplectic space Z2g which preserve the standard quadratic function. We have

Ω
〈n〉
2n+1

∼= Cok(J)2n+1, and if g ≥ 5 then the subgroup bP2n+2 ≤ Γng,1 is generated by
commutators.

Proof. We have Sπn(SO(n)) = 0 and so Kreck’s exact sequences reduce to

1 −→ Θ2n+1 −→ Γng,1
f̂−→ Spq2g(Z) −→ 1.

Furthermore, in this dimension the Kervaire–Milnor [KM63] exact sequence is

(7.1) 1 −→ bP2n+2 −→ Θ2n+1 −→ Coker(J)2n+1 −→ 1

and n + 1 ≡ 6 mod 8 so by Theorem 1.4 the map Cok(J)2n+1 → Ω
〈n〉
2n+1 is an

isomorphism. Thus the kernel of t× f̂ is precisely the subgroup bP2n+2 ≤ Θ2n+1 ≤
Γng,1. Furthermore, we know t × f̂ induces an isomorphism on abelianisations for
g ≥ 5, so bP2n+2 consists of commutators. �
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Finally, we determine the extension in Theorem 7.3. It can be pulled back to a
central extension

(7.2) 1 −→ bP2n+2 −→ E(g, n) −→ Spq2g(Z) −→ 1,

with E(g, n) = Ker(t : Γng,1 → Ω
〈n〉
2n+1). Brumfiel [Bru68, Bru69, Bru70] has con-

structed a splitting of (7.1) (at least for for n 6= 2k − 2, which is satisfied as we are
supposing that n ≡ 5 mod 8). Any splitting s : Cok(J)2n+1 → Θ2n+1 gives rise to
a composition

Cok(J)2n+1
s−→ Θ2n+1 −→ Γng,1

t−→ Ω
〈n〉
2n+1

which is an isomorphism. As Θ2n+1 lies in the centre of Γ2n
g,1, we obtain a splitting

(7.3) Γng,1
∼= E(g, n)× Cok(J)2n+1,

giving the following improvement to Corollary 7.1: For g ≥ 5 the subgroup bP2n+2 <
Θ2n+1 < Γng,1 is generated by commutators of elements from the subgroup E(g, n) <
Γng,1. Hence bP2n+2 vanishes in the abelianisation of E(g, n), and in fact we may

deduce that the group homomorphism E(g, n)→ Spq2g(Z) induces an isomorphism
of abelianisations. We shall use this fact to determine the class of the extension
(7.2) in Theorem 7.7 below.

Lemma 7.4. The homomorphism Z/4Z → Spq2g(Z) which sends the generator to
the matrix

Xg = diag

((
0 −1
1 0

)
,

(
1 0
0 1

)
, . . . ,

(
1 0
0 1

))
,

admits a lift to E(g, n).
For g ≥ 5 the resulting homomorphisms Z/4Z→ E(g, n)→ Spq2g(Z) both induce

isomorphisms in H1(−;Z) and hence in the torsion subgroups of H2(−;Z).

Proof. Using the standard embedding W 2n
1,0 = Sn×Sn ⊂ Rn+1×Rn+1 it is easy to

lift the matrix X1 to a diffeomorphism of W 2n
1,0, namely the restriction of the linear

map (x1, . . . , xn+1, y1, . . . , yn+1) 7→ (−y1, y2, . . . , yn+1, x1, . . . , xn+1). We obtain an
order-four element z′ ∈ Γn1,0, which by Lemma 1.5 lifts to an order-four element

z′′ ∈ Γn1,1 with f̂(z′′) = X1 ∈ Spq2(Z). This may be stabilised to an order-four

element z′′g ∈ Γng,1 with f̂(z′′g ) = Xg ∈ Spq2g(Z). The element z′′g may not lie in

the subgroup E(g, n) = Ker(t), but we may use the splitting (7.3) to project it to

an element zg ∈ E(g, n) with z4
g = 1. Since f̂(zg) = Xg ∈ Spq2g(Z) this gives the

required lift.
For the claim about H1(−;Z), we have already seen that E(g, n) → Spq2g(Z)

induces an isomorphism of abelianisations for g ≥ 5. For Z/4Z, it follows from the
formula in [JM90, p. 147] that the composition Z/4Z→ Spq2g(Z)→ H1(Spq2g(Z);Z)

is an isomorphism (this only requires g ≥ 3). �

By the second part of Lemma 7.4, the maps Z/4 → E(g, n) → Spq2g(Z) in-

duce isomorphisms on torsion subgroups of H2(−;Z), and hence give compatible
splittings

H2(Spq2g(Z);Z)
∼−→ H2(Z/4;Z)⊕Hom(H2(Spq2g(Z);Z),Z)

H2(E(g, n);Z)
∼−→ H2(Z/4;Z)⊕Hom(H2(E(g, n);Z),Z)

(7.4)

of the universal coefficient sequences.
The space BSpq2g(Z) carries a local coefficient system L = ESpq2g(Z)×Spq2g(Z)Z2g,

given by the tautological action of Spq2g(Z) on Z2g. As this group preserves the
standard symplectic form, there is a map ω : L ⊗ L → Z restricting to a non-
singular skew-symmetric form on each fibre.
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Lemma 7.5. For g ≥ 5 there is a unique class µ ∈ H2(Spq2g(Z);Z) with the
following properties.

(i) For any closed oriented surface S and map f : S → BSpq2g(Z), the signature
of the symmetric form

〈−,−〉 : H1(S; f∗L)⊗H1(S; f∗L)
∪−→ H2(S; f∗L ⊗ f∗L)

ω−→ H2(S;Z)
[S]−−→ Z

agrees with 8(f∗µ)[S].
(ii) µ is in the kernel of the map H2(Spq2g(Z);Z)→ H2(Z/4Z;Z), where Z/4Z→

Spq2g(Z) is the homomorphism from Lemma 7.4.

Proof. We first claim that the indicated symmetric form 〈−,−〉 is non-degenerate
(modulo torsion) and even, and hence (cf. [MH73, Ch. II Theorem 5.1]) has sig-
nature divisible by 8. It is non-degenerate modulo torsion because, under the
identification (f∗L)∨ ∼= f∗L given by ω, the adjoint to 〈−,−〉 is given by

H1(S; (f∗L)∨) −→ HomZ(H1(S; f∗L),Z) −→ HomZ(H1(S; f∗L),Z).

Here, the first map comes from the Universal Coefficient Theorem with local coef-
ficients (cf. [Spa66, p. 283]) and is an isomorphism modulo torsion, and the second
map is given by precomposing with the Poincaré duality isomorphism − ∩ [S] :
H1(S; f∗L)→ H1(S; f∗L).

To prove that it is even, we may reduce the form modulo 2 and show that
〈x, x〉 ≡ 0 mod 2 for any x ∈ H1(S; f∗L). In order to compute this, we choose a
triangulation S ≈ |K| and let ϕ ∈ C1(K; f∗L) be a simplicial cocycle, which assigns
to each 1-simplex [v0, v1] ∈ K a section ϕ[v0,v1] of the coefficient system f∗L over
[v0, v1]. Then by the Alexander–Whitney formula we have

ω(ϕ ∪ ϕ)([v0, v1, v2]) = ωv1(ϕ[v0,v1], ϕ[v1,v2]),

where ωv1(−,−) is the bilinear form on f∗L over the point v1, and so

〈ϕ,ϕ〉 ≡
∑

[v0,v1,v2]∈K

ωv1(ϕ[v0,v1], ϕ[v1,v2]) mod 2,

where the sum is taken over all 2-simplices of K (note that the choice of ordering of
the vertices of the 2-simplex does not affect this formula, as we are working modulo 2
and ωv1(a, a) = 0 by skew-symmetry). As ϕ is a cocycle we have ϕ[v0,v1] +ϕ[v1,v2] =
ϕ[v0,v2], and so using the quadratic refinement qv1(−) associated to the bilinear form
ωv1(−,−) reduced modulo 2 we obtain

qv1(ϕ[v0,v2]) = qv1(ϕ[v0,v1]) + qv1(ϕ[v1,v2]) + ωv1(ϕ[v0,v1], ϕ[v1,v2]) mod 2.

Hence

〈ϕ,ϕ〉 ≡
∑

[v0,v1,v2]∈K

qv1(ϕ[v0,v2]) + qv1(ϕ[v0,v1]) + qv1(ϕ[v1,v2]) mod 2,

but as each 1-simplex is the face of precisely two 2-simplices, this sum is zero. Hence
the form 〈−,−〉 is even as claimed, so has signature divisible by 8.

Now note that the signature of this form only depends on the oriented cobordism
class of f : S → BSpq2g(Z), or in other words on the homology class f∗([S]). Hence
there is a homomorphism

s = sign/8 : H2(Spq2g(Z);Z) −→ Z.

By the universal coefficient theorem, this proves the existence of a µ satisfying (i)
and determines it uniquely up to adding any torsion element. The splitting (7.4)
of H2(Spq2g(Z);Z) and (ii) uniquely determines the torsion summand. �
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Definition 7.6. Let Z→ Eg → Spq2g(Z) be the central extension classified by the

class µ. For d ∈ Z, let Z/dZ → Eg,d → Spq2g(Z) be the extension with Eg,d =

Eg/dZ, i.e. the extension classified by the image of µ in cohomology modulo d.

Theorem 7.7. Let n ≡ 5 mod 8 and g ≥ 5. The homomorphism E(g, n)→ Spq2g(Z)

obtained by restricting f̂ lifts to an isomorphism

(7.5)

E(g, n)
∼=
//

��

Eg,|bP2n+2|

��

Spq2g(Z) Spq2g(Z).

Proof. To produce a lift of f̂ , it will suffice to prove that the pullback of µ to
H2(E(g, n);Z) is divisible by |bP2n+2|. By the splittings (7.4) and the characteri-
sation of µ in Lemma 7.5, in order to do this it is enough to show that the map

H2(E(g, n);Z)
i∗−→ H2(Γg,1;Z)

f̂∗−→ H2(Spq2g(Z);Z)
sign−→ Z

is divisible by 8 · |bP2n+2|, where i : E(g, n)→ Γng,1 is the inclusion and the map sign
sends a second homology class to the signature of the symmetric form described in
Lemma 7.5 (i).

Firstly, by the splitting (7.3) and the Künneth theorem, the map i∗ is an iso-

morphism modulo torsion, so the divisibility of the map sign ◦ f̂∗ ◦ i∗ is the same

as that of sign ◦ f̂∗. Secondly, the composition

H2(BDiff∂(Wg,1);Z) −→ H2(Γg,1;Z)
f̂∗−→ H2(Spq2g(Z);Z)

sign−→ Z
has the first map surjective and sends a smooth bundle E → S with fibres Wg,1

and base a closed oriented surface to the signature of H1(S;Hn(Wg,1;Z)) and so
by [CHS57] to the signature of the total space E (with S ×D2n glued in to make

it a closed manifold). This total space defines a class in Ω
〈n〉
2n+2 = Ω

〈n+1〉
2n+2 , and is

thus cobordant to a closed smooth manifold which is framed away from a point.
By [MK60, p. 457] the signature of such a manifold is divisible by 8 · |bP2n+2|, as
required.

We have constructed the map E(g, n) → Eg,|bP2n+2| making the square (7.5)
commute, and it remains to prove that the induced map of kernels bP2n+2 →
Z/|bP2n+2| is an isomorphism. To see this, we consider the induced map of Serre
spectral sequences, and in particular the commutative square

H2(Spq2g(Z);Z) = E2
2,0

d2
// E2

0,1 = H1(bP2n+2;Z) = bP2n+2

��

H2(Spq2g(Z);Z) = E2
2,0

d2
// E2

0,1 = H1(Z/|bP2n+2|;Z) = Z/|bP2n+2|.

The lower horizontal map is identified with

H2(Spq2g(Z);Z)
s−→ Z −→ Z/|bP2n+2|

so is surjective if s = sign/8 is indivisible. In this case the right-hand vertical map
must also be surjective, and hence must be an isomorphism as both groups are
cyclic of the same order.

To show that s is indivisible, consider the maps

Sp2g(Z, 2) −→ Spq2g(Z) −→ Sp2g(Z)

from the level 2 congruence subgroup and to the full symplectic group. Meyer
has shown that the signature map sign : H2(Sp2g(Z);Z) = Z → Z, defined as in
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Lemma 7.5 (i), has image 4Z as long as g ≥ 3 [Mey73, Satz 2]. Putman has shown
that H2(Sp2g(Z, 2);Z)→ H2(Sp2g(Z);Z) has image 2Z [Put12, Theorem F] as long
as g ≥ 4. Thus the signature map restricted to the level 2 congruence subgroup
has image 8Z, so in particular it hits 8 ∈ Z for g ≥ 4, and so the signature map
restricted to Spq2g(Z) does too; hence s hits 1 ∈ Z. �
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