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Abstract: Due to exposure to the driving rain, water ingress can cause faults in electrical joints,
junctions and distribution points in broadband lines. Over time, faulting behaviour may grow
in magnitude eroding the electrical capability of these lines causing degradation of broadband
service. Developing effective data-driven models for broadband line prognostics remains a
challenge due to the limited failure data availability in the telecommunications industry. In
order to address this problem, we present a technique for generating failure data that realistically
reflect the behaviour of degrading broadband lines. To this end, we use the conditional generative
adversarial network and more importantly, we control and direct the failure data generation
process using expert knowledge on the water ingress failure cause. The proposed technique is
evaluated using a real-world case study involving the time-to-failure prediction of two types of
broadband lines in a south-west city in England. The prognostics performance is measured
using the Kappa statistic and F-score. Benchmark performance is obtained using Random
Oversampling, Synthetic Minority Oversampling and Adaptive Synthesis which can be used
to oversample failure data by duplicating existing failure data or randomly generating data.
Among these techniques, Random Oversampling achieved the best prognostics performance. It
is shown that the proposed technique outperforms Random Oversampling technique by a large
margin. More specifically, it increased the prognostics performance by 33% (Kappa statistic)
and 25% (F-score) for Asymmetric Digital Subscriber Lines, and 17% (Kappa statistic) and 13%
(F-score) for Very High Bitrate Digital Subscriber Lines compared to the Random Oversampling
technique.

Keywords: Broadband line prognostics, Expert knowledge, Failure causes, Generative
modelling, Limited failure data, Telecommunications equipment prognostics, Water ingress

1. INTRODUCTION

Broadband lines provide a signalling method for trans-
porting multiple signals through coaxial cables, twisted
pair and optical fibre transmission mediums. One of their
main applications in the telecommunications industry is
high-speed internet (Sundaresan et al., 2011). Although
the number of consumers who adopt broadband inter-
net delivered completely over optical fibre is increasing,
many broadband lines continue to be served in part by
metallic paths (i.e. paired wires). Paired wires serving
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each consumer pass through a variety of underground and
overhead electrical junctions and joints, and typically end
at distribution points (DPs) located at the top of telegraph
poles. DPs subsequently connect to the consumer premises
via a drop wire to provide broadband service.

Water ingress is a dominant cause of a variety of faults
(e.g. corrosion and electrical shorts) in overhead electrical
junctions, joints and DPs in broadband lines due to their
exposure to the driving rain (Tencer and Moss, 2002).
As this can be a gradual process, faulting behaviour may
grow in magnitude eroding the electrical capability of a
broadband line causing degradation of broadband service
(Tencer and Moss, 2002). This degradation may result
in the consumer experiencing dropping connection, poor
speed or the complete failure of broadband service (i.e.
broadband line failure).



The objective of this paper is to present a technique
for predicting the time-to-failure (TTF) of telecommuni-
cations broadband lines under the conditions of limited
failure data availability. Predicting the TTF of broadband
lines with minimal uncertainty would enable telecommuni-
cations service providers to identify line degradation and
failure before consumers experience them. Consequently,
the appropriate proactive interventions can be undertaken
to prevent unplanned downtime of broadband service,
and hence reduce consumer dissatisfaction whilst reducing
maintenance costs.

Data-driven prognostics have become popular for elec-
tronic equipment prognostics since they can estimate prog-
nostics model parameters from degradation patterns con-
tained within condition monitoring and/or event data re-
lating to past failures (Wang et al., 2020). However, the
long-lasting problem with data-driven prognostics is that
they rely on large amounts of historical failure data to
estimate model parameters effectively (Wang et al., 2020).
Nevertheless, historical failure data are limited due to
two major reasons: (i) over-protective maintenance and
replacement regimes; (ii) highly reliable equipment (Wang
et al., 2020). This causes failures to be rare, and leads to
the problem of limited failure data availability for data-
driven prognostics of broadband lines which causes prog-
nostics predictions to be associated with high uncertainty
(Louzada et al., 2019). Thus, telecommunications service
providers are affected by unsatisfied consumers due to
unplanned downtime of broadband service and additional
costs due to under maintenance, over maintenance and
false alarms.

In Ranasinghe et al. (2019), we presented a methodology
for generating failure data that realistically reflect the
behaviour of degrading equipment (i.e. real-valued failure
data) for prognostics under the conditions of limited
failure data availability. It allows training datasets used
for data-driven prognostics to be augmented so that an
increased number of failure data samples is available
for prognostics modelling. The methodology generates
real-valued failure data by controlling and directing the
failure data generation process using auxiliary information
pertaining to the failure mode that needs predicting.
More specifically, the noise being added to the newly
generated failure data samples is conditioned on auxiliary
information to prevent different modes of data being
generated. Auxiliary information is additional information
that adds value to the understanding of failure dynamics
of the equipment of interest (e.g. equipment similarity
information, expert knowledge on failure causes and failure
modes and quality of equipment use). However, the current
version of the methodology only provides a way to utilise
equipment similarity information as auxiliary information.
Hence, the use of other kinds of auxiliary information to
generate real-valued failure data remains to be exploited.

In this paper, we present a technique for predicting the
TTF of telecommunications broadband lines under the
conditions of limited failure data availability. To this end,
we extend the aforementioned methodology so that ex-
pert knowledge on broadband line failure causes (e.g.
water ingress into electrical junctions, joints and DPs)
can be used to generate real-valued broadband line fail-
ure data. Whilst we discuss all the aspects of the pro-

posed technique (i.e. broadband line data preprocessing,
approach to the TTF prediction of broadband lines and
real-valued broadband line failure data generation), the
key contributions of this paper are as follows: (i) empirical
results obtained using existing oversampling techniques
for broadband line prognostics under the conditions of
limited failure data availability; (ii) extension to the real-
valued failure data generation methodology which allows
utilising expert knowledge on broadband line failure causes
to control and direct the failure data generation process;
(iii) empirical results which show that the proposed tech-
nique increases prognostics performance by a large margin
compared to existing oversampling techniques.

Following the problem formulation presented in our pre-
vious paper (see Ranasinghe et al. (2019)), this paper
commences by introducing historical datasets used in this
work for prognostics modelling and the process followed
for data preprocessing (Sec. 2). The approach to the TTF
prediction of broadband lines and benchmark prognostics
performance obtained using existing oversampling tech-
niques are presented in Sec. 3. The extension to the real-
valued failure data generation methodology is presented in
Sec. 4. The results which show the improved prognostics
performance are discussed in Sec. 5. The paper is con-
cluded in Sec. 6.

2. DATA PREPROCESSING

Broadband lines provide internet using two line modes:
Asymmetric Digital Subscriber Line (ADSL) and Very
High Bitrate Digital Subscriber Line (VDSL). Their key
difference is the download and upload speeds of internet
service (Sundaresan et al., 2011). ADSL provides a maxi-
mum of 8 and 1 Megabits per second (Mbps) download
and upload speeds respectively. VDSL is an improved
version of ADSL and it provides 52 and 16 Mbps download
and upload speeds respectively. We used time series data
sampled from ADSLs and VDSLs that had a broadband
connection failure due to faults in electrical junctions,
joints and DPs. These data are sampled from real-world
consumer broadband lines in a south-west city in England.
Historically, broadband connection failures occurred in
this area are due to faulting behaviour that is strongly
correlated with extreme driving rain.

A flowchart of the process followed for preprocessing ADSL
and VDSL datasets is shown in Fig. 1. First, low variance
features are removed due to their low predictive power.
Then datasets converted into run-to-failure datasets by
removing the parts of time series belong to the time before
the start of equipment degradation and after the failure.

(1) Remove low variance 
features from the datasets.

(2) Convert datasets into 
labelled run-to-failure 

datasets.

(3) Split run-to-failure 
datasets into training, 

validation and test sets.

(4) Impute missing data in 
training set using time 

interpolation.
(5) Normalise features.

(6) Reduce dimensionality 
using principal component 

analysis.

Fig. 1. Flowchart of the data preprocessing process.

The TTF of broadband lines is predicted using the fixed
time window approach which requires labelling pre-failure



time series into segments (also see Fink et al. (2015)). In
this study, run-to-failure data are segmented into 5 time
windows and each of them has a fixed length of 1 day.
Thus, the segments are 1 day before the failure, 2 days
before the failure, 3 days before the failure, 4 days before
the failure and 5 days before the failure. Then all the data
samples are labelled with the corresponding time window
identity. That is, data samples belong to 1 day before the
failure segment is labelled with 1, data samples belong
to 2 days before the failure segment is labelled with 2,
data samples belong to 3 days before the failure segment
is labelled with 3 and so on.

The labelled run-to-failure datasets are then split into
training, validation and test sets containing 60%, 20% and
20% of the data samples contained in the original datasets
respectively. The training set is used to train prognostics
models, the validation set is used for hyperparameter
tuning and the test set is used to evaluate prognostics
models on previously unseen data. Missing data in the
training ADSL and VDSL sets are imputed using time
interpolation.

Prior to performing principal component analysis (PCA),
the data are normalised in order to transform all the
features into a comparable scale. PCA is then used to
reduce the dimensionality of datasets from 25 features to
7 principal components (PCs). The reduction of feature
space allows predictive models to improve their learning
rates and reduce computation costs. The cumulative ex-
plained variance ratio obtained by the first 7 PCs for ADSL
dataset is 66% and for VDSL dataset is 77%. These PCA
transformed datasets are used to develop and evaluate
prognostics models in the next section.

3. PROGNOSTICS MODELLING

In this section, the approach to the TTF prediction of
broadband lines is presented first. Prognostics perfor-
mance evaluation methods and benchmark prognostics
performance used to evaluate the proposed technique are
discussed next.

3.1 Time-to-failure Prediction of Broadband Lines

The TTF prediction of broadband lines is modelled as a
multi-class classification problem as follows: given a data
sample x ∈ X and labels y ∈ Y (i.e. 1 to 5 labels
created for pre-failure time series segments in the previous
section), calculate the conditional probability Pr(y | x).
The label with the highest Pr(y | x) is the estimated label
y′ for the data sample x. Thus, the time series segment
indicated by y′ is the TTF failure of the broadband line.
For example, if the segment indicated by the estimated
label y′ is 3, then the TTF is 3 days.

We developed multi-class classifiers using the follow-
ing predictive algorithms: random forest (RF), k-nearest
neighbour (kNN), decision tree (DT), support vector ma-
chine (SVM) with radial basis function kernel, adaptive
boosting (Adaboost), multi-layer perceptron (MLP) and
Naive Bayes (NB).

3.2 Evaluation Methods

The prognostics performance produced by classifier-based
prognostics models is measured using the F-score and
Cohen’s Kappa statistic. F-score is the weighted harmonic
mean of precision and recall normalised between 0 (i.e.
worst value) and 1 (i.e. best value). However, F-score can
be affected by statistical fluke (Powers, 2015). Hence, when
measuring prognostics performance we also employ the
Kappa statistic. It can be used as a statistical method for
identifying whether a classifier simply guesses at random
(Powers, 2015). Kappa statistic is always less than or
equal to 1. Values of 0 or less indicate a poor classifier
and conversely, 1 indicates a classifier that does not guess
at random. A widely accepted schema for the Kappa
statistic is shown in table 1 (Landis and Koch, 1977). The
null hypothesis (H0) used in this schema is: the classifier
performance is not due to random chance. Thus, when
measuring prognostics performance for each prognostics
model, we first observe the value of Kappa statistic to
identify whether the classifier performance is affected by
statistical fluke. If the classifier performance is not affected
by statistical fluke (i.e. Kappa statistic is in almost perfect
agreement with H0), we use the F-score of the classifier to
quantify the prognostics performance.

Table 1. Schema for Cohen’s Kappa statistic
(Landis and Koch, 1977)

Kappa statistic range Strength of agreement with H0

Less than 0 Poor (i.e. due to random chance)
0 to 0.2 Slight
0.21 to 0.4 Fair
0.41 to 0.6 Moderate
0.61 to 0.8 Substantial
0.81 to 1 Almost perfect

3.3 Benchmark Prognostics Performance

The proposed technique for predicting the TTF of broad-
band lines under the conditions of limited failure data
availability is evaluated against the following benchmarks:

Benchmark 1: Performance obtained when prognostics
models are trained on the original training dataset
(i.e. the training dataset that is not augmented) and
evaluated on the test dataset.

Benchmark 2: Performance obtained when prognostics
models are trained on the training dataset that is
augmented using existing oversampling techniques and
evaluated on the test dataset.

Fig. 2 shows the Kappa statistic, confusion matrixes and
F-scores obtained by prognostics models for Benchmark 1.
It can be observed that the RF classifier-based prognostics
model has obtained the best Kappa statistic value for
ADSL (0.62) and VDSL (0.77) datasets. This means
there is substantial agreement that the prognostics model
performance (i.e. F-scores obtained by the classifier) is not
due to random chance. The F-scores are 0.7 and 0.81 for
ADSL and VDSL datasets respectively.

Fig. 3 shows the Kappa statistic, confusion matrixes and
F-scores obtained by prognostics models for Benchmark
2. In contrast to Benchmark 1, training datasets are now
augmented using the following oversampling techniques:



Benchmark	1:	prognostics	performance	without	data	generation

▪ CONNECTION	failures	-	Kappa	[-1,1*]
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(a) Kappa statistic of all prognostics models for
ADSL and VDSL.

Benchmark	1:	prognostics	performance	without	data	generation

▪ CONNECTION	failures	-	Kappa	[-1,1*]	and	F1	[0,1*]

‣Kappa	schema:	

<	0	-	no	agreement	(random	chance)	

0-0.20	-	slight	agreement	

0.21-0.40	-	fair	agreement	

0.41-0.60	-	moderate	agreement	

0.61-0.80	-	substantial	agreement	

0.81-1	-	almost	perfect	agreement

(b) Confusion matrix, Kappa statistic and F-score
of best prognostics model for ADSL (left) and
VDSL (right).

Fig. 2. Performance obtained for Benchmark 1.

Random Oversampling, Synthetic Minority Oversampling
Technique (SMOTE) and Adaptive Synthesis (ADASYN).
The kNN classifier-based prognostics model and Random
Oversampling technique have obtained the best Kappa
statistic value for ADSL (0.67) and VDSL (0.78) datasets.
However, this is a marginal increase in Kappa statistic
compared to Benchmark 1 (i.e. 8% increase for ADSL and
1% increase for VDSL). Hence, the Kappa statistic is still
in substantial agreement with the prognostics model per-
formance. The F-scores are also only marginally improved
compared to the Benchmark 1 (i.e. 4% increase for ADSL
and 1% increase for VDSL). This marginal increase in
prognostics performance is since Random Oversampling,
SMOTE and ADASYN either duplicate existing failure
data or randomly generate data (Weiss, 2004). Therefore,
they do not introduce new and realistic failure data sam-
ples to augment training datasets (Weiss, 2004). Hence,
the fundamental problem of limited failure data availabil-
ity is not addressed sufficiently.

It can be concluded that Benchmark 1 and 2 failed to
obtain almost perfect agreement for the Kappa statistic.
Hence, there is low confidence in F-scores produced by
prognostics models. In the following section, we show
that the proposed technique enables increasing confidence
in prognostics model performance by obtaining almost
perfect agreement for the Kappa statistic. Moreover, it
enables improving F-scores by a large margin compared
to the benchmarks.

4. GENERATING REAL-VALUED BROADBAND
LINE FAILURE DATA

The methodology for generating real-valued failure data
consists of three phases (see Fig. 4). A detailed description
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(c) Confusion matrix, Kappa statistic and F-score of best
prognostics model for ADSL (left) and VDSL (right).

Fig. 3. Performance obtained for Benchmark 2.

of these phases is provided in Ranasinghe et al. (2019).
The limitation of the current version of the methodology is
that it only provides a way to utilise equipment similarity
information as auxiliary information. In this section, we
extend the methodology so that expert knowledge on
broadband line failure causes can be used as auxiliary
information, and hence generate real-valued failure data
for predicting the TTF of broadband lines under the
conditions of limited failure data availability.

The extension involves following the process outlined in
Fig. 5 for Phase 1 (i.e. identification and conversion of
auxiliary information). Phase 2 and 3 of the methodology
remain unchanged.



Phase 1: Identifying auxiliary information pertaining to the 
failure mode and converting into a form for integrating into 

the failure data generation process.

Phase 2: Estimating a generative model that captures the 
semantic features of the failure mode and evaluating the 

convergence during training. 

Phase 3: Generating real-valued failure data using the 
estimated generative model and assessing overfitting and 

evaluating prognostics performance.

Fig. 4. Diagram outlining the three phases of the method-
ology for generating real-valued failure data.

(1) Identify failure 
causes.

(2) Identify auxiliary 
information using 
expert knowledge.

(3) Validate 
auxiliary 

information.

(4) Identify critical 
thresholds of failure 

causes.

(5) Convert critical 
thresholds into vector 

representations.

Fig. 5. Diagram outlining the steps for identifying and
converting expert knowledge on failure causes.

(1) Identify failure causes: Fault tree analysis and his-
torical maintenance records are used to identify failure
causes of the failure modes that need predicting (i.e. cor-
rosion and electrical shorts in electrical joints, junctions
and DPs). We identified that water ingress is a dominant
failure cause of broadband line connection failures.

(2) Identify auxiliary information using expert knowledge
on failure causes: To reiterate, the data used in this
study are sampled from broadband lines in a south-
west city in England. Once water ingress is identified
as a dominant failure cause, expert knowledge acquired
from maintenance engineers is used to identify auxiliary
information related to the failure cause. Maintenance
engineers provided two pieces of auxiliary information
based on their experience on historical broadband line
failures occurred in the south-west city in England: (i)
an increase in broadband line failures is expected when
it is raining; (ii) an increase in broadband line failures
is expected when it is raining and when prevailing winds
are easterly. This is since anecdotally, engineering practice
favoured placing overhead joints and DPs on the east side
of telegraph poles as prevailing winds (and consequently
driving rain) are typically westerly or south-westerly.

(3) Validate auxiliary information: When observing the
number of failures occurred during different weather con-
ditions (i.e. rain, drizzle, clouds and clear), it was iden-
tified that 84% of failures were occurring when it was
raining for the majority of the week that the failure has
occurred. In order to conduct a more robust experiment,
auxiliary information identified from expert knowledge is
validated using statistical hypothesis testing. To this end,
we used historical maintenance records and weather re-
ports (obtained from the OpenWeatherMap API). Whilst
the former provides the date and time of failures, the latter
provides rainfall levels and direction of wind when it was
raining.

Two statistical hypothesis tests are developed using the
following null hypotheses: (i) there is an increase in broad-
band line failures when it is raining ; (ii) there is an in-
crease in broadband line failures when it is raining and
when prevailing winds are easterly. The objective of sta-
tistical tests is to identify whether the corresponding null
hypothesis can be rejected. For the first test, probability
values (p-value) of 0.92 (for ADSL) and 0.9 (for VDSLs)
are obtained. This means, there is weak evidence against
the null hypothesis, thus it is retained. For the second
test, p-values of 0.03 (for ADSL) and 0.01 (for VDSL) are
obtained. This means, there is strong evidence against the
null hypothesis, thus it can be rejected.

To conclude, the increase in broadband line failures when
it is raining is identified as a valid piece of auxiliary infor-
mation. However, there is no strong evidence to support
the increase in broadband line failures when it is raining
and when prevailing winds are easterly.

(4) Identify critical thresholds: In this step, we identify
what thresholds of rainfall impact broadband line failures
the most. First, weather data are used to categorise rainfall
into the following thresholds: light rain, moderate rain,
shower rain and heavy rain. Then each failure is tagged
based on what threshold of rainfall occurred for the major-
ity of the week that the failure has occurred. Shower and
heavy rainfall thresholds produce the highest number of
failures per unit (i.e. per day) compared to light and mod-
erate rainfall thresholds. Thus, shower and heavy rainfall
thresholds are identified as critical thresholds of rainfall
causing water ingress into electrical joints, junctions and
DPs in broadband lines. These critical thresholds are then
integrated as auxiliary information into the failure data
generation process.

(5) Convert critical thresholds into vector representations:
In order to integrate auxiliary information into the failure
data generation process, we first convert it into an abstract
form. This allows broadband line-specific information to
be generalised to all the broadband lines that have failed
under the failure modes that need predicting. For instance,
if the rainfall in a particular location where a broadband
line is located at (during the degradation period of electri-
cal joints, junctions and DPs) is recorded as the rainfall at
the location where broadband line A,B and C located at in-
creased from moderate to shower rain, once converted into
the abstract form this information becomes some variable
X increases. Thus, specific terms such as broadband line
A,B and C, rainfall and numerical thresholds are ignored.
Then the abstracted information is converted into the sta-
tistical form by representing it as some continuous variable
C. The continuous variable C can be converted into a
distribution between some values y0 and y1. Finally, this
distribution can be represented as a vector Y containing
some values {y ∈ Y | y0 < y < y1, and y increases}.

As mentioned at the beginning of this section, Phase 2
and 3 of the methodology remain unchanged and directly
used to generate real-valued broadband line failure data
using the converted auxiliary information. We generated
10,000 ADSL and 10,000 VDSL real-valued failure data
samples and then augmented the original ADSL and VDSL
training datasets.



5. RESULTS AND DISCUSSION

The prognostics performance obtained when prognostics
models are trained on the augmented training datasets
and evaluated on the test datasets is shown in Fig. 6. The
RF-based prognostics model has obtained the best value
for the Kappa statistic for ADSL and VDSL. It can be
observed that the Kappa statistic for ADSL is increased
by 33% compared to the previous best performance (i.e.
kNN and Random Oversampling). The Kappa statistic for
VDSL is increased by 17% compared to the previous best
performance (i.e. kNN and Random Oversampling). This
means the proposed technique achieved the almost per-
fect agreement for the Kappa statistic by outperforming
Benchmark 2 by a large margin, and hence improved the
confidence in prognostics model performance.

As shown in Fig. 6, the confusion matrixes and F-scores
are also significantly improved. More specifically, F-score
of ADSL is increased by 25% compared to the previous
best performance (i.e. kNN and Random Oversampling)
and VDSL is increased by 13% compared to the previous
best performance (i.e. kNN and Random Oversampling).

6. CONCLUSION

In this paper, a technique for predicting the time-to-failure
of telecommunications broadband lines under the condi-
tions of limited failure data availability is presented. This
technique extends the methodology presented in our pre-
vious paper (Ranasinghe et al., 2019) so that real-valued
broadband line failure data can be generated using expert
knowledge on the water ingress failure cause. The impact
of the research presented in this paper is that the proposed
technique allows predicting real-world broadband line fail-
ures with minimal uncertainty when real broadband line
failure data are limited. This enables telecommunications
service providers to proactively undertake the appropriate
interventions to prevent unplanned downtime of broad-
band service, and hence reduce consumer dissatisfaction
whilst preventing costs due to over maintenance and false
alarms.
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Fig. 6. Performance obtained for real-valued failure data
generation.
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