
 

Rising Temperatures, Falling Ratings:  

The Effect of Climate Change on Sovereign Creditworthiness* 

 

Patrycja Klusakab, Matthew Agarwalabc†, Matt Burked,  

Moritz Kraemeref, and Kamiar Mohaddesg 

a University of East Anglia, UK 
b Bennett Institute for Public Policy, University of Cambridge, UK 

c Centre for Social and Economic Research on the Global Environment, UEA, UK 
d  Sheffield Business School, Sheffield Hallam University, UK,  

e Centre for Sustainable Finance, SOAS, UK & f Goethe-University, Frankfurt, Germany 
g  Judge Business School & King’s College, University of Cambridge, UK 

 

January 20, 2023 

 

Abstract 

Enthusiasm for ‘greening the financial system’ is welcome, but a fundamental challenge 

remains: financial decision makers lack the necessary information. It is not enough to know 

that climate change is bad. Markets need credible, digestible information on how climate 

change translates into material risks. To bridge the gap between climate science and real-world 

financial indicators, we simulate the effect of climate change on sovereign credit ratings for 

109 countries, creating the world’s first climate-adjusted sovereign credit rating. Under various 

warming scenarios, we find evidence of climate-induced sovereign downgrades as early as 

2030, increasing in intensity and across more countries over the century. We find strong 

evidence that stringent climate policy consistent with limiting warming to below 2°C, 

honouring the Paris Climate Agreement, and following RCP 2.6 could nearly eliminate the 

effect of climate change on ratings. In contrast, under higher emissions scenarios (i.e., RCP 

8.5), 59 sovereigns experience climate-induced downgrades by 2030, with an average 

reduction of 0.68 notches, rising to 81 sovereigns facing an average downgrade of 2.18 notches 

by 2100. We calculate the effect of climate-induced sovereign downgrades on the cost of 

corporate and sovereign debt. Across the sample, climate change could increase the annual 

interest payments on sovereign debt by US$ 45-67 billion under RCP 2.6, rising to US$ 135-

203 billion under RCP 8.5. The additional cost to corporates is US$ 10-17 billion under RCP 

2.6, and US$ 35-61 billion under RCP 8.5.    

Keywords: Sovereign credit rating, climate change, counterfactual analysis, climate-economy 

models, corporate debt, sovereign debt.
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1. Introduction 

Climate change is “the biggest market failure the world has seen” (Stern 2008), with wide-

ranging implications for stability – financial, economic, political, social, and environmental. 

Leading climate-economy models estimate economic losses from climate change of between 

2% and 22% of gross world product by 2100 (Burke et al., 2015; Dell et al., 2014; Kahn et al, 

2021). Beyond impacts on aggregate output, the environmental, social and policy consequences 

of climate change will directly impact firms, investors, and regulators. Possible transmission 

pathways include physical damages from extreme weather events, consumer movements 

(including boycotts, protests, in reputational risks), transition risks (e.g., from regulations and 

asset stranding), and litigation risks (e.g., lawsuits over environmental damages). Dietz et al. 

(2016) estimate that the ‘climate value at risk’ of global financial assets amounts to US $2.5 

trillion. Financial markets face growing pressure to factor these climate impacts into decision 

making and to mobilise capital in pursuit of a Just Transition towards a low carbon future 

(Fiedler et al., 2021). Whilst enthusiasm for ‘greening the financial system’ is welcome, a 

fundamental challenge remains: investors and businesses lack the necessary information.  

To green the financial system, it is not enough to know that climate change is bad. Firms, 

investors, financial institutions, and regulators need scientifically credible information on how 

climate change translates into material financial risks, how to price those risks, and how to 

manage them. Growing demand for climate risk disclosures comes from private investors, 

activist shareholders, universal owners, public regulators, treasuries and central banks 

(Deutsche Bundesbank 2019). Investor-led demand for climate risk disclosures has sparked a 

rapid expansion of the Environmental, Social, and Governance (ESG) ratings market, with 

approximately $30 trillion, or one-third of all professionally managed assets now subject to 

ESG criteria (Bloomberg 2021; Howard-Grenville 2021). Regulator-led demand for climate 

disclosures includes the development of the Task Force on Climate-related Financial 

Disclosures (TCFD) to improve risk assessments, support better informed capital allocation 

decisions, and improve short-, medium-, and long-term strategic planning (TCFD 2017). 

Globally, more than 1,340 companies with a market capitalization of $12.6 trillion and 

financial institutions responsible for assets of $150 trillion have expressed support for the 

TCFD (TCFD 2020). 
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However, the credibility and usefulness of existing climate disclosures is mixed (Mathiesen 

2018; Siew 2015). A chief concern is the lack of scientific foundations in climate risk 

disclosures. Climate models typically operate at the global or national scale, and assess changes 

in temperature and precipitation over decades or centuries. Translating these projections into 

material risk assessments on the spatial and temporal scale needed for business and investment 

decisions remains a challenge (Fielder et al., 2021). Further limitations include a narrow focus 

on firm behaviour to the exclusion of systemic and macroeconomic context and the 

incomparability of disclosures across firms and ESG ratings methods (Fiedler et al., 2021; 

Mathiesen 2018). The result is an overall failure to translate climate science into credible 

metrics for conveying risks to financial decision makers.  

We contribute to closing the gap between climate science and real-world financial indicators. 

Specifically, we simulate the effect of climate change on sovereign credit ratings for 109 

countries under three different warming scenarios, reporting results for the years 2030, 2050, 

2070, and 2100. Figure 1 outlines our four-step process for integrating climate economics into 

sovereign credit assessments and calculating associated changes in the cost of public and 

corporate debt. First, we develop a random forest machine learning model to predict sovereign 

credit ratings, training it on macroeconomic indicators and sovereign ratings issued by S&P 

(2015-2020) to maximise its predictive accuracy. Step 2 adjusts the macroeconomic input data 

to reflect climate impacts under three future warming scenarios, drawing from cutting-edge 

climate economics (Kahn et al., 2021) and S&P’s own analysis of how environmental change 

might affect ratings factors (S&P 2015a,b). In Step 3, we feed the climate-adjusted 

macroeconomic input data into the model created in Step 1, producing the world’s first climate-

adjusted sovereign credit ratings. Step 4 calculates the effect of sovereign downgrades on the 

cost of public and corporate debt (Gande and Parsley 2005; Afonso et al., 2012; Almeida et al., 

2017). Our goal is to remain as close as possible to climate science, economics, and real-world 

practice in the field of sovereign credit ratings. To the best of our knowledge, we are the first 

to simulate the effect of future climate change on sovereign credit ratings, and our approach 

enables us to evaluate these impacts under various policy and warming scenarios.1 

 

1 S&P (2015a,b) represent the first investigations into the effect of extreme weather and natural disasters on 

ratings. However, they only include direct damage to property and infrastructure resulting from 1-in-250 year 

natural disastsers. For an extended review of literature see Appendix A. 
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Figure 1 Bridging the gap between climate science and financial indicators 

  

Figure 1 describes a four-step process for integrating climate economics into sovereign credit ratings and cost of 

debt calculations. Step 1 trains a random forest model on macroeconomic input data and sovereign ratings issued 

by S&P 2015-2020. Macro variables are selected from S&P’s ratings method (S&P 2017). Step 2 adjusts the 

macroeconomic input data for climate change, using Kahn et al. (2021) and S&P (2015a,b). Step 3 feeds climate-

adjusted input data into the prediction model generated in Step 1. Step 4 calculates climate-adjusted ratings and 

associated impacts on the cost of public and corporate debt. 

We focus on sovereign ratings for several reasons. First, they are readily interpretable and 

familiar indicators creditworthiness, already used by investors, portfolio managers, financial 

institutions and regulators in a range of decision contexts. For instance, ratings are ‘hardwired’ 

into decisions over which securities investors can hold (e.g., institutional investors may be 

committed by their charter not to hold debt below a certain rating (Fuchs and Gehring 2017)). 

Similarly, under Basel II rules, ratings directly affect the capital requirements2 of banks and 

insurance companies (Almeida et al., 2017). Moreover, approximately US$ 66 trillion3, global 

sovereign debt accounts for a large share of total assets under management (PRI 2019). As 

measures of the creditworthiness of this debt, sovereign ratings act as ‘gatekeepers’ to global 

markets, significantly influencing the cost and allocation of capital across countries (Cornaggia 

et al., 2017). Climate change can affect sovereign creditworthiness through multiple channels, 

including the destruction of physical and natural capital, fiscal ramifications of extreme events 

as well as adaptation and mitigation investments, reduced productivity, and political instability 

(Volz et al., 2020; Agarwala et al., 2021).  

Sovereign downgrades increase the cost of both public and private debt, influencing overall 

economic performance (Chen et al., 2016). If climate change reduces sovereign 

creditworthiness, there could be indirect impacts on other asset classes. One potential 

 

2 Basel II ‘hardwires’ ratings into the capital requirements imposed on banks and insurance companies holding 

specific sovereigns or firms. The rating bins on sovereign claims and their corresponding risk weights are as 

follows: AAA to AA− (0%), A+ to A− (20%), BBB+ to BBB− (50%), BB+ to B− (100%), and below B− (150%) 

(Almeida et al., 2017). 
3 Global sovereign debt has expanded significantly during the Covid-19 pandemic, but this pre-dates the present 

analysis.  

Train AI 
prediction 
model on 

historical ratings

Adjust input 
data for climate 

change

Feed adjusted 
data to the 
prediction 

model

Calculate 
climate-adjusted 
ratings and cost 

of debt
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mechanism is the ‘sovereign ceiling effect,’4 whereby sovereign ratings implicitly place an 

upper bound on ratings in other asset classes (Adelino and Ferrera 2016; Almeida et al., 2017; 

Borensztein et al., 2013). A second and closely related mechanism is the observed ‘sovereign 

spill-over effect’, whereby sovereign downgrades are quickly followed by downgrades in other 

asset classes (Augustin et al., 2018; Baum et al., 2016; Gennaioli et al., 2014). Because both 

the ceiling and spillover effects are more pronounced for firms and financial institutions whose 

ratings are closest to the sovereign’s, any climate-induced downgrades are likely to have a 

greater impact on the highest rated firms.  

A further motivation for focusing on sovereign ratings is the observation that climate change 

does not just affect firms individually, it affects countries and economies systemically. Narrow, 

firm-level assessments that ignore broader climate impacts are necessarily incomplete. For 

instance, Kling et al. (2021) show that climate vulnerability increases the cost of corporate debt 

both directly due to impacts on the firm, and indirectly, due to a weaker macroeconomic 

environment.  Combined, the sovereign ceiling, spillovers, size of the sovereign bond market, 

and the indiscriminate nature of climate change means no corporate climate risk assessment is 

complete without also considering the effect climate on sovereigns. Finally, because sovereign 

ratings impact bond yields (i.e., the cost of public borrowing), understanding how they might 

be affected by climate change is central to long-term fiscal sustainability. 

One concern is the time horizon over which climate change might affect sovereign debt markets 

(Monasterolo 2020; Agarwala et al., 2021). Whilst climate dynamics mean many of the worst 

effects of warming will accrue long in the future, debt markets may price in these effects earlier. 

Indeed, a series of seminal papers has provided the initial empirical evidence that climate 

change is already increasing sovereign borrowing costs, especially for climate-vulnerable 

countries (Buhr et al., 2018; Kling et al., 2018; Battiston and Monasterolo 2019; Beirne et al., 

2021; Zenios 2021). Calculating the impact of climate risk on bond yields for 46 countries from 

1996 to 2016, Buhr et al. (2018) find that climate related vulnerability increased the cost of 

debt of developing countries by 117 basis points, which translates into USD 40 billion in 

 

4 For example, following a sovereign downgrade of Italy on the 28th April 2020, Fitch downgraded four Italian 

banks: UniCredit S.p.A.'s, Intesa Sanpaolo's (IntesaSP), Mediobanca S.p.A.'s , and Unione di Banche Italiane 

S.p.A.'s (UBI) (Fitch 2020). Similarly, Moody’s downgraded 58 sub-sovereign entities after UK's sovereign action 

16th October 2020 (Moody’s 2020).  
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additional interest payments on government debt over the past 10 years. Climate may also 

affect other classes of public debt. Painter (2020) investigates how exposure to sea level rise 

affects yields for US municipalities, finding that a one percent increase in climate risk leads to 

an increase in cost of capital by 23.4 basis points, or an average rise in annualized issuance 

costs of $1.7 million for the average county.  

Our results document three key findings. First, we show that under various warming scenarios, 

climate change could induce sovereign downgrades as early as 2030, with larger downgrades 

across more countries to 2100. For instance, in absence of climate policies (i.e., RCP 8.55 

scenario), 59 sovereigns experience downgrades of approximately 0.68 notches by 2030, rising 

to 81 sovereigns facing a downgrade of 2.18 notches by 2100. Second, our data strongly 

suggests that stringent climate policy consistent with the Paris Climate Agreement will result 

in minimal changes to the current ratings profile. We find that the average rating reduction 

between 2030-2100 remains unchanged when we subject the mean change between periods to 

tests of statistical significance.. The additional costs to sovereign debt – best interpreted as 

increases in annual interest payments due to climate-induced sovereign downgrades – in our 

sample is US$ 45–67 billion under RCP 2.6, rising to US$ 135–203 billion under RCP 8.5. The 

additional costs to corporates reach US$ 9.9–17.3 billion under RCP 2.6, and US$ 35–61 

billion under RCP 8.5. This suggests that in the absence of climate mitigation and adaptation 

policies, climate change can ultimately degrade long-run fiscal sustainability and increase 

public and corporate borrowing costs.6 We find qualitatively similar results using three 

independent macroeconometric climate-economy models: Kahn et al. (2021), Kalkuhl and 

Wenz (2020), and Burke et al. (2015)7. Results are robust to changing the time series of ratings 

used to train the prediction model, restricting the model to only those sovereigns with 

investment grade ratings, and varying assumptions about the degree of temperature volatility 

within the baseline climate-economic model.  

 

5 RCPs are Representative Concentration Pathways and describe different potential scenarios of future emissions 

trends. RCP 2.6 is the ‘stringent climate policy’ scenario and is most consistent with limiting warming to below 

2°C. RCP 8.5 is the high emissions scenario and is more consistent with a 4.5°C warming world. See extended 

literature review, Appendix A. 
6 A full consideration of the net effect of adaptation and mitigation investments on creditworthiness would need 

to incorporate the fiscal implications of such policies. This is beyond the scope of the current analysis, but remains 

an important avenue for future research. 
7 Results for Kalkuhl and Wenz (2020) and Burke et al. (2015) are available upon request. 
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These results are of interest to finance ministries and central banks, regulators (e.g., ESMA and 

the SEC), banks, insurers, and institutional investors. Climate-induced sovereign downgrades 

provide a direct and immediate financial incentive for sovereigns to pursue climate-smart 

investments, (e.g., boosting resilience and adaptive capacity) to improve their current rating 

and reduce the cost of borrowing. The research is timely, as governments seek to balance fiscal 

stimulus following the Covid-19 pandemic against the need to manage the public finances in 

the long run. That public investment in low-carbon climate resilient infrastructure presents an 

attractive long-run growth opportunity is firmly established (Hepburn et al., 2020; Zenghelis 

et al., 2020). Our results add further support by demonstrating that limiting warming to 2°C or 

less would improve fiscal positions through two channels: (i) reducing the cost of corporate 

debt, thereby enhancing competitiveness, and (ii) reducing future interest rates on sovereign 

debt, thereby maintaining fiscal operating space and reducing future tax burdens.  

Our results are of central importance to the regulation of CRAs and development of ESG 

standards. Although the European Securities and Markets Authority (ESMA, which regulates 

credit ratings agencies (CRAs) in Europe) has called for greater transparency and disclosure 

around ESG factors they have refrained from introducing formal requirements (ESMA 2019). 

Existing climate disclosures and ESG ratings remain largely voluntary and are not standardised. 

CRAs recognise that climate and environmental factors “could have significant implications 

for sovereign ratings in the decades to come… [although they] pose a negligible direct risk to 

sovereign ratings in advanced economies for now, on average, ratings on many emerging 

sovereigns (specifically those in the Caribbean or Southeast Asia) will likely come under 

significant additional pressure” (S&P 2018). One potential obstacle is a lack of credible 

methods for assessing the impact of climate on creditworthiness (Buhr et al., 2018). Our 

research represents a first step in providing such a method.  

The remainder of this paper is as follows. Section 2 describes data and methodology. Section 

3 provides empirical results of climate-adjusted sovereign credit ratings. Section 4 discusses 

additional cost sovereign and corporate borrowing due to climate-induced downgrades. Finally, 

Section 5 offers some concluding remarks. 
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2. Data and methodology  

2.1. Rating data 

Our sample consists of 644 annual long-term foreign-currency sovereign ratings for 109 

countries, issued by S&P between 2015 and 2020, obtained from S&P Ratings Direct 

database.8 Alphabetical ratings are translated into a 20-notch9 scale widely used in the literature 

(Correa et al., 2014; see Appendix Table B.1). Although several agencies issue sovereign 

ratings, we use S&P’s because they have the widest country coverage over the assessment 

period and their ratings actions have the strongest own-country stock market impact (Almeida 

et al., 2017; Brooks et al., 2004; Kaminsky and Schmukler 2002). Figure 2 describes the 

distribution of ratings in 2015 and 2020, and Table 1 describes ratings actions (upgrades or 

downgrades) issued by S&P over the period. Table 1 shows a relatively balanced distribution 

of positive and negative rating actions and that the vast majority have a magnitude of 1-notch. 

The average rating across the sample is 11.14, or BBB-, which is the lowest investment grade 

rating.  

Figure 2 Distribution of sovereign ratings 2015 and 2020 

Figure 2 depicts the distribution of annual long-term foreign-currency sovereign ratings for 109 countries, issued 

by S&P between 2015 (gray) and 2020 (orange). A score of 20 refers to AAA. 

 

8 In sensitivity checks we trained the prediction model on 1,590 annual long-term foreign-currency sovereign 

ratings from 2004 – 2020. However, predictive accuracy was highest for the 2015 – 2020 period as the ratings 

effects of the 2008 financial crisis and the 2009 European sovereign debt crisis had largely dissipated. 
9 Following standard notation, 20 corresponds to AAA, or prime high grade; 11 corresponds to BBB-, and is the 

lowest investment-grade rating.  



 

8 

 

Table 1 Sovereign credit rating actions 2015 - 2020 

Entire sample   

Countries   109  

Average numerical rating   11.14  %   

Positive events   55  52.88  

Upgrade by 1 notch   49  47.12  

Upgrade by 2 notches  3  2.88  

Upgrade by > 2 notches  3  2.88  

Negative events   49  47.12  

Downgrade by 1 notch  37  35.58  

Downgrade by 2 notches  9  8.65  

Downgrade by > 2 notches  3  2.88  

Total no of events   104  100  

Notes: Table 1 presents summary statistics of S&P’s rating actions based on annual sovereign ratings translated 

into a 20-notch scale from Jan 2015-Jan 2020. Rating actions refer to upgrades or downgrades.  

 

2.2. Macroeconomic data 

Sovereign credit ratings incorporate a wide range of objective macroeconomic data and 

subjective assessments by ratings agencies. Although the science, economics, and politics of 

climate change are widely studied, we do not have a reliable source of information on how 

climate change will impact every variable included in the sovereign ratings methodology.10 

Variable selection in our model is based on several factors: relevance for predicting ratings, 

the availability and quality of scientific evidence describing how they respond to climate 

change, and country coverage. This approach avoids overfitting and ensures our model inputs 

remain as close as possible to the underlying climate science and economic models. Our 

baseline climate-economy model (Kahn et al., 2021) provides estimates of climate-adjusted 

real GDP growth rates and levels up to 2100.  

Table 2 presents cross-sectional descriptive statistics of the six macroeconomic variables used 

in our analysis. Data comes from S&P Ratings Direct Sovereign Risk Indicators (SRIs). 

Countries in the sample display a wide range of income levels, growth rates, and 

macroeconomic performance indicators. 

  

 

 

 

10 For example, De Moor et al. (2018) and Ozturk et al. (2016) employ 23 and 16 variables to predict ratings. See 

the literature review in Appendix A. 
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Table 2 Summary statistics 
 

Variable Mean St. Dev. Min Max 

Log GDP per capita (log US $) 9.10 1.30 6.03 11.70 

Real GDP Growth 3.08 2.63 -9.77 25.16 

Government performance variables     

Net General Government Debt/GDP 36.50 64.81 -489.79 172.82 

Narrow Net External Debt/CARs 61.22 124.92 -708.18 461.29 

Current Account Balance/GDP -1.50 7.49 -63.50 33.44 

General Government Balance/GDP -2.59 3.80 -21.05 21.57 

Notes: Table 2 presents summary statistics for the natural logarithm of nominal GDP per capita in US $ (Log GDP 

per capita US$), the annual nominal growth rate (GDP Growth), net general government debt/GDP, narrow net 

external debt/current account receipts (CARs), current account balance/GDP, and general government 

balance/GDP. Data from 2015 - 2020. 

 

Our commitment to climate-science underpinnings entails a trade-off: we are unable to include 

some important determinants of ratings such as political stability and government transparency 

because we do not have credible science-based descriptions of how they vary with climate. 

Including them in the model improves predictive capacity in step one, as per De Moor et al. 

(2018) and Ozturk et al. (2016). However, because we cannot adjust them for climate change, 

in step two the prediction model simply anchors to these (artificially) non-varying indicators. 

Indeed, the anchor effect can be sufficient to dominate all other economic indicators. There is 

no credible basis for assuming that political stability is in fact climate-invariant, or that growth 

and debt related factors will cease to drive ratings. As such, we are restricted to pursuing the 

greatest possible predictive accuracy using only the variables that we can credibly adjust for 

climate change. The method is readily extendable when empirical measures of how climate 

change will impact political stability become available. 

2.3. Methods 

We construct a sovereign ratings prediction model based on S&P’s sovereign ratings and the 6 

ratings factors defined in Table 2 over the period of 2015-2020. This reflects a relatively stable 

period, though for completeness, we also trained the prediction model on data from 2004 – 

2020. Out-of-sample tests indicated that predictive accuracy was highest for the 2015 – 2020 

period as the ratings effects of the 2008 financial crisis and the 2009 European sovereign debt 

crisis had largely dissipated.  

Once the initial model has been trained on the 2015-2020 data, we use it to predict sovereign 

credit rating outcomes under various climate scenarios. This is achieved by adjusting the 
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model’s six ratings factors for future climate impacts. Climate-adjusted GDP and GDP growth 

rates are taken directly from Kahn et al. (2021). Due to the nature of macroeconometric climate 

models, our results focus primarily on economic losses arising from physical impacts of climate 

change. That is, we do not capture transition or litigation risks, including the possibility of 

climate refugees, civil unrest, or political instability. However, our approach can be readily 

extended to incorporate these impacts when credible quantitative estimates are available. As 

such, our results may be considered lower-bound estimates of the effect of climate change on 

sovereign ratings. 

Beyond GDP, sovereign ratings include a range of government performance indicators 

including net general government debt/GDP, narrow net external debt/current account receipts, 

current account balance/GDP, and general government balance/GDP. To construct climate-

adjusted versions of the four government performance variables in our model, we make use of 

S&P’s assessment of the impact of GDP losses on these variables. S&P (2015b) demonstrate 

GDP losses associated with various climate-related disasters and their associated impacts on 

government performance indicators. We plot their results and construct 3rd order polynomial 

models to describe S&P’s estimated relationships disaster-driven GDP losses and each of the 

government performance variables. We then input our climate-adjusted GDP data (Kahn et al., 

2021) into these polynomials to derive climate-adjusted government performance indicators 

for each warming scenario.  

Finally, we feed all six of the newly created climate-adjusted macroeconomic indicators to our 

prediction model to simulate the effect of climate on ratings. For comparability with the 

literature and to demonstrate the effect of strict climate policies that are consistent with meeting 

the Paris Agreement, we present results under four warming scenarios: RCP 2.6, RCP 8.5, and 

both of these, but allowing the variability of temperature around its long-run average to rise 

with temperature. 

2.3.1. Reconstructing sovereign credit ratings  

Our sovereign ratings prediction model is constructed using supervised machine learning 

methodologies recently applied in this literature (Ozturk et al. 2016; De Moor et al., 2018; 

Breiman 2001). This approach offers high precision due to its data mining ability, curbs the 

need for strong assumptions about functional relationships and distributional properties 

(normality), limits potential biases and automates the processes (Bennell et al., 2006; Markellos 
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et al., 2016; Li et al., 2020). Earlier approaches to modelling credit ratings relied on parametric 

estimations such as ordered response models or OLS (see for example, Cantor and Packer 1996; 

Afonso et al., 2009; 2011; Baghai et al., 2016). Modelling sovereign credit ratings 

parametrically involves overcoming three natural features of the data. First, sovereign credit 

ratings are ordinal, and often not normally distributed. There are often discontinuities and a 

jump effect surrounding the breakpoint between investment and non-investment grade. Second, 

there are a range of non-linear relationships sovereign credit ratings have with predictors. 

Third, in our case we attempt to model these outcomes in a panel dataset. Incorporating a 

parametric model which accounts for these features fails to provide a sufficiently high enough 

out-of-sample accuracy to justify reliable forecasting with climate adjusted variables. 

Motivated by these issues, researchers have considered non-parametric approaches to 

modelling sovereign ratings. Methodological implementations are varied, which include the 

application of artificial neural networks (Bennell et al., 2006; Fioramanti 2008; Markellos et 

al., 2016), decision trees (Markellos et al., 2016), random forests (Ozturk et al., 2016; De Moor 

et al., 2018) and support vector machines (Van Gestel et al., 2007). The central benefits 

associated with these approaches are twofold. First, nonparametric approaches are much better 

at handling non-linear outcomes in the data (Markellos et al., 2016). Second, these approaches 

can often provide a superior fit (De Moor 2018).11,12 Random forest algorithms are good at 

dealing with imbalanced panels and are robust to outliers (Chen et al., 2004; Hastie et al., 2009). 

In addition, it is suspected that sovereign credit ratings are subject to certain thresholds in 

various country level predictors, such as GDP per capita (S&P 2017). Therefore, using 

methodologies that are capable of handling non-linearities and qualitative data are essential. 

Random forest models are a subset of classification algorithms. To understand how these apply 

in our model, we first consider a selection of sovereigns whose creditworthiness is either 

investment grade or speculative grade. The goal is to classify, or ‘split’ these entities based on 

 

11 This relates not only to replicating existing ratings but also predicting future ratings and defaults. 
12 One note of caution is that AI based models do not produce interpretable coefficients and therefore one cannot 

use these methods to derive sovereign rating determinants and their respective significance (Ozturk et al., 2016; 

De Moor et al., 2018). This is not problematic in our study as we are not trying to find the respective importance 

of variables in the model, this issue has been studied in the previous literature (Cantor and Packer 1996; Afonso 

et al., 2009; 2011; Baghai et al., 2016). 
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their underlying features. Our model incorporates 6 features – the explanatory variables 

described in Table 2. 

The first step in the prediction model entails selecting the feature (variable) that provides the 

“best” split of the data, where ‘best’ entails minimising the error. For instance, assume a 

threshold value of, say GDP per capita existed, above which all sovereigns are investment 

grade and below which there are only speculative grade sovereigns, then this feature would 

provide a split with minimal error. As the number of entities that cross these lines grow, so 

does the error. This split takes place at the first node (see Figure 3). 

Figure 3 The random forest classification process 

 

Figure 3 depicts a simplified version the random forest classification process used to predict sovereign credit 

ratings. For each country, 2,000 trees are constructed, each with 6 nodes. The simplified figure illustrates 4 

potential outcomes, though our model contains 20, one for each rung on the 20-notch ratings ladder. 

 

Once data has proceeded through the first split, they each proceed onto their respective next 

node. The same process repeats itself by which another variable is selected which provides the 

next best split with the least amount of error. The process of splitting is designed to draw clear 

boundaries between entities with varying levels of creditworthiness, based upon the values of 

their features. In our model, we extend this simplified process to 20 different classifications of 

creditworthiness. Furthermore, the above simplification describes this process only for a single 

tree. We extend this process to 2000 trees. This process enables the production of a large 

number of thresholds against which we can test new predictions. The actual model being 

estimated are these threshold or boundary effects where we can draw distinct lines between the 

rating categories. This enables several key advantages. First, each tree is modelled upon 

variations of the initial baseline data. This produces predictions from uncorrelated models, 

from which we take the average. Secondly, this reduces the common problem of overfitting 
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ultimately resulting in a more accurate out-of-sample prediction. A random forest algorithm 

enables the tree to select from only a random subset of features. The underlying intuition is that 

the prediction made by a forest is an average of the decision made by each tree, and as a 

consequence is much more reliable and robust as a collection.  

Machine learning methods are increasingly popular in the sovereign ratings literature and have 

been employed to model the impact of the informal economy (Markellos et al., 2016), predict 

sovereign debt crises (Fioramanti 2008), provide accurate predictions of credit ratings (Bennell, 

2006; De Moor et al., 2018; Ozturk et al., 2016; Van Gestel et al., 2006) and explain variance 

in ESG ratings (Berg et al., 2019). In applications of rating prediction, research reports an 

improvement of accuracy of approximately 30% above parametric approaches (De Moor et al., 

2018; Ozturk et al., 2016).  

2.3.2. Random forest estimation, variable importance, and partial plots 

This section describes how the variables in our model contribute to the ratings estimation.  

Figure 4 shows the ceterus paribus partial effect of each variable on the sovereign rating.  The 

first graph in Figure 4 (top-left) demonstrates that as ln GDP per capita (US$) increases, the 

sovereign meets the threshold criteria for increasing rating scores. Furthermore, it demonstrates 

that ln GDP per capita has non-linear effects on ratings. For instance, at the low end of the 

rating scale, ln GDP per capita (US$) can continue to decrease with no resulting impact on the 

rating. At this end of the scale, other variables may be more important for predicting ratings. 

GDP growth (top-right) has its greatest impact over a much smaller range than per capita GDP 

and is non-linear. Increases in the growth rate are beneficial in pushing the sovereign further 

into the investment grade ratings. However, beyond a certain point this effect is lost almost 

entirely. One explanation may be that unusually high growth rates could be associated with 

post-shock rebounds, in which case the lingering effects of the shock may dominate the rating. 

The remaining graphs illustrate the relationships for the government performance indicators. 
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Figure 4 Marginal effects of credit rating determinants in random forest model 

  

Figure 4 depicts the marginal effect of ln GDP per capita, GDP growth rate, Net General Government Debt/GDP, 

General Government Balance/GDP, Narrow Net External Debt/CARs, and Current Account Balance/GDP on 

sovereign ratings. These graphs communicate the ceteris paribus relationship between the variable in the x-axis 

and the credit rating. These graphs also communicate the relative importance of the variable in the x-axis in 

determining the credit rating, as represented by the scale in the y-axis.  

 

Figure 5 demonstrates the relative contribution each variable makes to predicting ratings in our 

model. Formally, it describes the percentage decrease in R2 that would occur if each individual 

variables were replaced with random values. The loss in accuracy (percentage reduction in R2) 

during this procedure gauges the importance of each variable for predicting ratings. The clear 
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primary driver of predictive capacity is ln GDP per capita, followed by debt measures, 

government balances, and the growth rate of GDP.  

Figure 5 Relative contribution of each variable to ratings prediction. 

 

Figure 5 indicates the relative importance of variables in the model. Formally, it depicts the percentage reduction 

in R2 that would occur if each variable were replaced by random values. The sample refers to 639 ratings across 

109 countries from 2015 – 2020.  

Figure 5 should be interpreted as an illustrative measure of the relative importance of each 

variable for predicting ratings across the entire sample. However, whilst the illustrative 

hierarchy depicted here holds across the sample, in practice it can be expected to vary across 

countries. 

Finally, to demonstrate how each variable in the model contributes to predicted ratings, Figure 

6 offers a variable-by-variable breakdown for the G7 plus China. The figure sheds light on how 

the model predicts ratings for each country. We begin by trying to predict Canada’s rating. In 

the absence of additional information, the first best guess is that Canada’s rating is the average 

predicted rating across the sample, or 11.155. The next row incorporates an additional piece of 

information: ln GDP per capita. Because per capita GDP in Canada is relatively high, and 

because this is typically associated with higher ratings, including ln GDP per capita increases 

the predicted rating by + 5.428 notches to 16.583. In contrast, this step has the opposite effect 

for China, reflecting the relatively low per capita income. Returning to Canada and 

incorporating each of the subsequent variables, the predicted rating incrementally improves to 

19.672. Figure 6 reiterates the fact that each variable may have different relative contributions 

to the predicted ratings of individual countries. 
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Figure 6 Predicting ratings in the G7 + China 
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Figure 6 depicts how each variable affects the model’s prediction of sovereign ratings for the G7 + China. In the 

absence of additional information, the initial best estimate of any sovereign’s rating is simply the predicted sample 

average rating (11.155). Additional information shifts the predicted rating up or down. The direction and relative 

importance of each variable in predicting the rating varies across countries. 

3. Empirical results 

3.1. Step 1: Reconstructing ratings 

Table 3 demonstrates our model’s ability to predict existing sovereign ratings (i.e., before we 

incorporate climate change). Rows 2-5 indicate the deviation (in notches) between ratings 

issued by S&P and our predictions, starting with N=0 (exact match) to N=3 (our model is off 

by three notches). Columns 3-5 indicate increasingly restrictive slices of the data, starting with 

the whole sample in column 3, and providing results for out of sample tests (using 80% of the 

data to predict the remaining 20%) for all countries in column 4, and for only those countries 

with investment grade ratings in column 5. 

Table 3 Predictive accuracy of our ratings prediction model 

  Whole sample Out of sample 

80/20% split 

Investment grade 

only. Out of sample 

80/20% 

% predicted 

within n notches 

N = 0 68.01 34.26 45.45 

N = 1 96.43 79.63 87.27 

N = 2 99.84 94.44 94.55 

N = 3 - 98.15 - 

Observations 644 536 / 108 270 / 55 

Countries 109 109 / 108 60 / 55 

Notes: Table 3 presents the results of the predictive capacity for our benchmark random forest model. Columns 

3-5 show the percentage accuracy of our model corresponding to the number of notches in Column 2. Columns 

3, 4 and 5 present the results for the whole sample, out of sample and investment grade only respectively. Data 

sample covers S&P ratings issued 2015-2020. 

Our benchmark model (column 4) yields exact matches between predicted and observed ratings 

34.26% of the time, increasing to over 90% accuracy within two notches. The literature 

indicates that eliminating countries that have recently defaulted can improve predictive 

accuracy. To test this, column 5 restricts the analysis to only those countries with investment 

grade ratings. Although we see a minor increase in exact matches, we see a loss of accuracy 

within two notches in out of sample tests. One potential reason is that focusing only on 

investment grade sovereigns reduces the sample for training the model by nearly half. A further 

concern is that vulnerability to climate change may be correlated with low sovereign ratings, 
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for instance if developing countries rely more heavily on climate-sensitive industries such as 

agriculture, have less climate resilient infrastructure (e.g., poor road quality or flood defences), 

and have lower quality governance and institutions. Eliminating these countries from the 

sample would make our results less representative. As such, we include all 109 countries in the 

sample and is trained on S&P’s ratings issued between 2015 and 2020.    

Figure 7 presents graphical interpretations of the out-of-sample accuracy of sovereign rating 

predictions given in Table 3 (column 4). The solid line depicts perfect matches between 

estimated and observed ratings. Each observation is accompanied by the predicted rating (dot) 

and its error. Out-of-sample predictions yield exact matches for up to 34.26% of the data and 

are within 2 notches over 90% of the time. Standard errors are produced using the jackknife 

methodology summarised in Wager et al. (2014). The errors in this model are derived from the 

uncertainty in the random forest estimation. Each of the 2,000 trees we estimate in our random 

forest model produce an outcome. The size of whiskers for each observation in Figure 7 below 

depict the range of ratings predicted for that particular outcome in each tree. Figure 8 depicts 

the geographical spread of the model’s out-of-sample accuracy. The key observation is that 

high predictive accuracy does not appear to be concentrated in any particular region, climate, 

size, development status, or political system. Exact matches appear for countries as diverse as 

Brazil, Finland, Uganda, Germany, Honduras, and Mongolia. Most of the G20 countries are 

predicted within one notch. Argentina, Colombia, Ecuador and Iraq are the least well predicted 

by our model, which may be expected due to the history of debt crises, defaults, civil unrest, 

war, and government instability in these countries. Because we do not have credible 

quantitative data on the effect of climate change on these governance indicators, they are not 

included in our ratings prediction model. 



 

19 

 

Figure 7 Out of sample accuracy of our ratings prediction model 

 

Figure 7 depicts out-of-sample predictive accuracy of our ratings prediction model. The thick black line represents 

a perfect match between the observed rating in 2020 (x-axis) and the model’s prediction (y-axis). Error bars 

represent the range of ratings predicted for that outcome in each tree. 

Figure 8 Out of sample predictive accuracy of our sovereign ratings model  

 

Figure 8 depicts out-of-sample predictive accuracy of our ratings prediction model. There is strong predictive 

accuracy across most of the world, including countries of varying size, latitude, coastal extent, political system, 

economic structure, and population. Some countries are not rated by S&P and so cannot be predicted. 
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3.2. Step 2 Adjusting input data for climate change 

Step two in our process entails adjusting the macroeconomic input data used to train the ratings 

prediction model for future scenarios of climate change. We consider four scenarios in total: 

RCP 2.6, RCP 8.5, RCP 2.6 with increased temperature volatility, and RCP 8.5 with increased 

temperature volatility. Details on these scenarios are provided in Appendix A, but RCP 2.6 can 

broadly be considered consistent with the Paris Climate Agreement and limiting warming to 

2C. RCP 8.5 is a high emissions, high warming scenario that broadly corresponds to warming 

of around 4.5C by 2100.  

Country-specific climate-adjusted GDP and GDP growth rates are taken from Kahn et al. 

(2021), who develop a stochastic growth model that links deviations of country-specific climate 

variables (temperature and precipitation) from their historical norms to real output per capita 

growth. Using data between 1960 and 2014 and 174 countries, they find that persistent 

deviations of temperature from time-varying and country-specific historical thresholds (i.e., the 

historical norm) reduces per capita output growth, amounting to around 7% reduction in gross 

world product by 2100 in the absence of mitigation policies (with the global losses being 

significantly higher at 13% if the country-specific variability of climate conditions were to rise 

commensurate to temperature increases).  We also report results using two alternative climate-

economy models in Appendix C (Burke et al., 2015; Kalkuhl and Wenz 2020). Climate-

adjusted GDP enters into our model in two ways: directly, as GDP and its growth rate comprise 

two of the six variables, and indirectly, as climate-adjusted GDP is used to adjust the four 

government balance variables.13 To derive climate-adjusted government performance 

indicators, we extrapolate statistical models based on data from S&P (2015b). S&P produce 

estimates of the effect of various climate and natural disasters on our set of government balance 

indicators. For instance, using the scenario of a 1 in 250 – year earthquake, they estimate the 

damage caused, impacts on GDP per capita. They repeat this analysis for tropical cyclones, 

 

13 An alternative approach could entail training a random forest model on simulations of what ratings and 

macroeconomic indicators might look like in 2100, and to use that model to conduct counterfactual analyses of 

climate impacts. Instead, we train our model on 2015-2020 data and incorporate projections of climate-driven 

GDP losses from Kahn et al. (2021). We prefer our approach because (i) it enables us to train the ratings prediction 

model on observed rather than simulated data, and (ii) where simulations are required, they are required for 2 of 

6 rather than 6 of 6 variables, and these are available in the peer-reviewed literature. In effect, this means we 

combine future GDP shortfalls with current ratings data and macroeconomic indicators, which we adjust for 

climate change as per Kahn et al. (2021), a suite of alternative climate economy models (see Appendix C), and 

S&P (2015a,b).  
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floods and winter storms. To make use of this data, we combine the tables in S&P (2015b) and 

assume homogeneity across the various events.  

Figure 9 illustrates the process. Data points combine values from tables in S&P (2015b) 

describing the relationship between disaster-induced losses in per capita GDP and the log of 

each government performance indicator. To adjust these variables for climate change, we need 

a function describing the data in Figure 9. To derive this function, we first fit a linear model 

(red line), followed by polynomials of increasing order until ANOVA tests indicate no further 

significance is achieved. Using the coefficients from the best fit polynomial, we apply GDP 

losses determined by the climate-economy model to derive climate-adjusted indicators for each 

country.  
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Figure 9 Fitting models of the effect of GDP loss on government performance variables 

  

Figure 9 depicts the process for adjusting the government performance variables for future climate change. S&P’s 

(2015) estimates of the spillover effects of natural disasters on per capita GDP onto other ratings factors are plotted 

(dots). To describe the distribution, polynomials of increasing order are fitted until no better fit can be found. 

These functions are then used to adjust each government performance indicator for the GDP losses under each 

warming scenario. 
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This approach is a simplification, as more sophisticated models of the effects of each type of 

disaster on GDP may be available. However, we believe this is justified for two reasons. First, 

in this step we are not interested in the effect of disasters on GDP, but rather the effect of the 

change in GDP on e.g. net general government debt. Our measure of the effect of climate on 

GDP comes directly from Kahn et al. (2021). Second, this approach provides practitioner 

evidence on the expected relationship between GDP losses and these macro indicators, keeping 

our approach as close as possible to real-world practice in CRAs. Finally, the approach enables 

us to continue to rely on the same direct links between climate science and climate economics 

that we use for adjusting GDP and its growth rate. 

3.3. Step 3 Climate adjusted sovereign ratings: baseline model 

We next present the results from our baseline model14 under two warming scenarios (RCP 2.6 

and RCP 8.5) for the years 2030, 2050, 2070, and 2100.15 All results presented here rely on the 

same macroeconometric climate model from Kahn et al. (2021). Note that we present results 

using central estimates. Whilst it would be ideal to consider the full uncertainty space, we aim 

to replicate the applied methodologies of rating agencies as faithfully as possible.16 This 

includes the treatment of risk and uncertainty. Any rating is by definition characterised by risk 

and uncertainty, because it opines on the likelihood of a hypothetical event in the future (a 

default on financial obligations). Rating agencies aim to assess those risks by applying a clearly 

defined methodology, which includes a substantial amount of discretion. After having weighed 

all the risks and uncertainties, however, the agencies will express their opinion through a single 

alphanumeric rating. No market-relevant agency would produce an output that fully reflects 

the variability of potential outcomes through, for example, a fan chart assessing various 

probabilities of rating outcomes. Specifically, when assessing the potential impact of climate 

change on sovereign creditworthiness, the result was expressed in a simple number of notches 

of rating changes, focusing exclusively on the base case of climate change estimates (S&P 

2015a,b). For decades, markets have expected from agencies a simple, one-dimensional 

shorthand for default risk. Accordingly, this is exactly what the agencies deliver. We replicate 

this common practice in order to make our results more relevant and easily accessible for 

 

14 109 countries, using ratings from 2015 to 2020, 6-variables, Kahn et al. (2021) for the climate-economy model. 
15 Figures for 2050, 2070, 2100 are available upon request. 
16 We believe we are well placed to comment on this, as one of our authors was S&P’s Global Sovereign Chief 

Rating Officer and was co-author of the S&P (2015a,b) studies. 
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investors and regulators. Just as the rating agencies, we do not negate the uncertainty 

surrounding such point-estimates, but align our results with capital market practice. 

Panels A and B of Figure 10 present simulated, climate-adjusted sovereign ratings under RCP 

8.5 and RCP 2.6 for the year 2030 respectively. As in Figure 4, the horizontal axis indicates 

current ratings by S&P and the thick black line represents exact matches between current and 

predicted ratings. Here, however, our predicted ratings are inclusive of climate change under 

RCP 8.5, with the dotted line indicating best fit. The results indicate that climate-induced 

sovereign downgrades may be expected within the next decade and are most likely to impact 

the highest rated countries.  

Figure 10 Climate-adjusted ratings: 2030 (RCP 8.5 versus RCP 2.6) 

 

Figure 10 depicts climate-adjusted predicted ratings under RCP 8.5 (Panel A) and RCP 2.6 (Panel B) by 2030. 

The thick black line indicates there is no difference between the actual rating observed in 2020 (x-axis) and the 

predicted rating (y-axis). Under RCP 2.6, only minor downgrades can be expected and these are concentrated 

among the highest rated sovereigns. Under RCP 8.5, downgrades are far greater, observed along a greater range 

of ratings, but are still most pronounced at the top end of the rating scale. Standard errors are produced using the 

jackknife methodology summarised in Wager et al. (2014) and are derived from the uncertainty in the random 

forest estimation. 

The concentration of downgrades at the top end of the ratings scale may appear 

counterintuitive, given that wealthier countries tend to have more diversified economies with 

greater capacity to respond to shocks. It may be expected that poorer countries (and therefore 

lower-rated sovereigns) are relatively more exposed and less able to respond to climate shocks. 

However, the underlying climate-economic model (Kahn et al., 2021) anticipates economic 

losses for countries at all development levels. For interpreting our results, it is important to 

remember that not all notches are created equal: a downgrade from AAA to AA+ reflects 
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smaller reduction in creditworthiness than a downgrade from investment grade to speculative 

grade, or a rating downgrade within the range of speculative ratings. Ultimately, the nature of 

ratings changes is that top-rated sovereigns have further to fall and even small increases in 

default probability can trigger downgrades. At the lower end of the ratings scale, much larger 

increases in default probability are needed to drive downgrades. This nonlinear relationship 

between rating and default frequency is demonstrated by the agencies’ annual rating default 

and transition studies (S&P 2020; Hadzi-Vaskov and Ricci, 2019). Moreover, our results 

demonstrate the effect of climate change on sovereign ratings, not on national economies. The 

fact that AAA rated countries may suffer worse downgrades than B rated ones does not imply 

that these wealthy countries will also suffer worse economic damages from climate change. 

Our result is consistent with the nature of sovereign ratings, which provide information about 

both the ability and willingness of sovereigns to service their debt. Countries with low ratings 

often already face a range of political, economic, and social challenges that indicate a low 

ability or willingness (or both) to service debt. Whilst we expect climate to have severe 

consequences for low-income countries, this may not further affect the rating if the country is 

already considered a high credit risk.  

Finding downgrades just 10 years into the future is significant, as a common critique of the use 

of climate science in developing climate-finance metrics is that the timescales are 

incompatible: climate impacts accrue in the distant future, whereas financial decisions take 

place over a much shorter period. Our findings indicate that climate could impact ratings within 

the standard 10-year ratings horizon. 

Figure 10, Panel B presents results for the same simulation under RCP 2.6. Although some 

downgrades are still predicted at the top end of the scale, these are fewer in number and 

intensity than under RCP 8.5. This demonstrates the potential for stringent climate policy to 

reduce the downward effect of climate change on sovereign ratings within the next decade.  

Figure 11 presents the best fit lines for our climate-adjusted ratings under RCP 8.5 and 2.6, 

respectively, for 2030, 2050, 2070, and 2100 (Panels A and B). Axes and the bold lines are 

interpreted in the usual way. Data points indicate current observed and predicted ratings, 

excluding climate change. Figure 10, Panel A demonstrates climate-induced sovereign 

downgrades of increasing magnitude and across more countries as we look further into the 

future under RCP 8.5. Again, downgrades are largest at the top end of the ratings scale, but we 
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begin to see impacts across the full range of investment grade sovereigns. In contrast, Panel B 

indicates that stringent climate policies consistent with RCP 2.6 continue to protect against 

substantial climate downgrades over the assessment period.17 T-tests indicate that ratings 

predicted over any period to 2100 under RCP 2.6 are not statistically significantly different 

from each other or from current ratings predicted without climate change.  

Figure 11 Climate-adjusted ratings to 2100 (RCP 8.5 versus 2.6) 

 
Figure 11 depicts climate-adjusted predicted ratings under RCP 8.5 (Panel A) and RCP 2.6 (Panel B) by 2030, 

2050, 2070, and 2100. The thick black line indicates there is no difference between the actual rating observed in 

2020 (x-axis) and the predicted rating (y-axis). Under RCP 2.6, only minor downgrades can be expected and these 

are concentrated among the highest rated sovereigns. Under RCP 8.5, downgrades are far greater, observed along 

a greater range of ratings, increase in intensity over time, but are still most pronounced at the top end of the rating 

scale. 

 

Figures 12-13 depict the magnitude and geographical distribution of sovereign ratings changes 

predicted by our model by 2100 under RCP 2.6 and RCP 8.5, respectively. Under RCP 2.6, 58 

sovereigns experience downward pressure on ratings by 2030, with an average reduction of 

0.57 notches. The number of downgraded sovereigns increases marginally to 62 by 2100, with 

the intensity of the downgrade virtually unchanged when subjected to T-tests. Countries mostly 

affected by the downgrades are Chile and India with 7.11 and 3.73 notches respectively. 

Amongst other sovereigns we see Philippines, Indonesia and New Zealand in the range 2.29 to 

3.60 notches. This suggests that limiting warming to well below 2°C could greatly reduce the 

effect of climate change on sovereign ratings.   

 

17 The tight bunching of best fit lines for 2030, 2050, 2070, and 2100 under RCP 2.6 around the bold line makes 

the time series difficult to discern graphically. T-tests confirm that they are not statistically significantly different 

from each other. 
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In contrast, under RCP 8.5, 59 sovereigns experience climate-induced downgrades by 2030, 

with an average reduction of 0.68 notches, rising to 81 sovereigns facing an average downgrade 

of 2.18 notches by 2100. The most affected nations include Chile, China, Slovakia, Malaysia, 

Mexico, India  and Peru all exceeding 5 notches downgrades. The least affected by downgrades 

are Ukraine, Cyprus and Finland with results under 0.15 notches. 

 Figure 12 Global climate-induced sovereign ratings changes (2100, RCP 2.6) 

 

Figure 12 depicts climate-induced sovereign downgrades by 2100 under RCP 2.6. Under this scenario, 62 

sovereigns face downgrades by 2100, with an average ratings loss of 0.94 notches on the 20-notch scale. Chile 

and India face the largest downgrades: 7.11 and 3.73 notches, respectively. Note that downward pressure on 

ratings is widespread across latitude, income level, economic structure, and political systems. 
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Figure 13 Global climate-induced sovereign ratings changes (2100, RCP 8.5) 

  

Figure 13 depicts climate-induced sovereign downgrades by 2100 under RCP 8.5. Under this scenario, 81 

sovereigns face downgrades by 2100, with an average ratings loss of 2.18 notches on the 20-notch scale. Chile 

and China face the largest downgrades: 7.43 and 6.53 notches, respectively. Note that downward pressure on 

ratings is widespread across latitude, income level, economic structure, and political systems. 

 

Combined, the maps indicate a now familiar story: stringent climate policy under RCP 2.6 and 

largely consistent with the Paris Climate Agreement is associated with only minor downgrades 

across most of the world.18 In both figures, some countries – Argentina, Iraq, and Ecuador – 

appear to receive upgrades. This highlights an inconvenient limitation, driven by the lack of 

credible assessments of how climate change will affect political instability. Ultimately, what 

these results show is that based purely on the variables included in the model, we would expect 

these countries to have a higher rating than they do, and this holds true even after we 

incorporate climate-driven economic losses. ‘Off-model,’ we know why this is the case: ratings 

in these countries are driven by default history, war, and corruption – none of which are 

included in our model. This is why the out-of-sample tests indicate poor predictive accuracy 

for these economies (see Figure 8). The interpretation is not that climate change will improve 

 

18 Note that while this paper is a first attempt to bridge the gap between climate science and real-world financial 

indicators, considerable advances and investment in climate modelling, as well as in co-operation between the 

climate modelling and economic communities, are needed if we are to develop the capacity to understand the 

effects of climate change (including transition risks) more reliably on country-level economic output and at a more 

granular level. There is significant research potential in such collaborative work for both economics and science. 
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their ratings, but that in these countries off-model factors such as default history and political 

instability remain primary drivers of ratings. 

 

3.4. Increased temperature variability 

Our baseline model relies on Kahn et al. (2021) to describe the impacts of warming on real 

GDP and GDP growth rates. They explicitly model changes in the distribution of weather 

patterns; that is not only averages of climate variables that the climate-macro literature focuses 

on but also their variability. Therefore, this model enables us to incorporate varying degrees of 

temperature volatility within the overall warming trend. Put simply, we can choose whether 

warming is characterized by high and low temperatures that cluster tightly around their 30-year 

moving averages, or whether they deviate with increasing volatility as temperature rises.  

Lower volatility could reduce shocks and means adaptation costs can be spread over time. 

Higher volatility may require more upfront investments and lead to asset stranding. Beyond 

rises in the average, rises in the volatility of temperature are increasingly recognised as 

economically important. For instance, Kotz et al. (2021) find that increased temperature 

volatility reduces economic growth “independent of and in addition to changes in annual 

average temperature.”  

To incorporate the effects of increased temperature volatility in our model, we allow 

temperature increases to affect the variability of temperature shocks commensurately, or in 

other words we keep the coefficient of variation unchanged. Specifically, we generate a new 

set of input data describing a different climate scenario – one that entails not only warming 

temperatures, but also increasing temperature volatility – to feed into the same ratings 

prediction model described in Sections 2.3 and 3.1. On average, this new scenario increases 

the costs of climate change by 80% globally under RCP 8.5, with the size of these income 

effects varying across countries depending on the pace with which temperatures increase and 

historical variability of climate conditions in each country. Ultimately, the exercise 

demonstrates that the model can be readily extended to incorporate additional climate scenarios 

as scientific and economic evidence improves. 

Compared to Panel B of Figure 11, Panel B of Figure 14 indicates that climate change will 

have a larger impact on sovereign ratings if temperature volatility rises, even under RCP 2.6. 

However, although the effect is marginally larger, it remains the case that stringent policies 
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consistent with RCP 2.6 will limit the effect of climate on sovereign ratings. In contrast, Figure 

14, Panel A demonstrates that increased temperature volatility leads to far more substantial 

climate-induced sovereign downgrades, sooner, and along a much wider range of the ratings 

scale. For further results see Appendix E. 

 

Figure 14 Climate-adjusted ratings with increased temperature volatility (RCP 8.5 versus 

2.6) 

 

Figure 14 introduces rising temperature volatility into climate-adjusted predicted ratings under RCP 8.5 (Panel A) 

and RCP 2.6 (Panel B) by 2030, 2050, 2070, and 2100. The thick black line indicates there is no difference 

between the actual rating observed in 2020 (x-axis) and the predicted rating (y-axis). Compared to Figure 11, the 

same trends hold, but are exacerbated. For further results see Appendix E. 

 

3.5 Alternative assumption on adaptation to climate change 

In this section we present alternative results depending on the assumption relating to the speed 

at which countries adapt to global warming. Kahn et al. (2021) consider deviations in 

temperature and precipitation from their long-term moving averages. They produce results 

based on a 20-, 30- and 40-year long-term moving average. Our baseline results described in 

Section 3.3 are produced using the 30-year moving average. In this section we present our 

baseline model with the assumptions of a 20- and 40-year moving average. We consider this 

an appropriate test of the error bound within the underlying climate model. This way we can 

observe the variation in the estimates while changing the assumptions on the input.19 Figure 15 

and 16 below represent the results based on a 20 and 40 year moving average respectively. 

 

19 We would like to thank an anonymous reviewer for the suggestion of this robustness check. 
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Figure 15 Climate-adjusted ratings with a 20 year moving average temperature trend (RCP 

8.5 versus 2.6) 

 

Figure 15 introduces a faster rate of climate adaptation (20-year moving average temperature trend) under RCP 

8.5 (Panel A) and RCP 2.6 (Panel B) by 2030, 2050, 2070, and 2100. The thick black line indicates there is no 

difference between the actual rating observed in 2020 (x-axis) and the predicted rating (y-axis).  

 

Figure 16 Climate-adjusted ratings with a 40 year moving average temperature trend (RCP 

8.5 versus 2.6)

 
Figure 16 introduces a slower rate of climate adaptation (40-year moving average temperature trend) under RCP 

8.5 (Panel A) and RCP 2.6 (Panel B) by 2030, 2050, 2070, and 2100. The thick black line indicates there is no 

difference between the actual rating observed in 2020 (x-axis) and the predicted rating (y-axis). 

 

As expected we observe that the downgrades based on a 40-year moving average are more 

severe than the baseline 30-year moving average, and that these result are more severe still than 

the 20-year moving average. Table 4 presents the data in the above figures for the G7+China. 

We show the estimated ratings on a moving average 20-year, 30-year, 40-year and 30-year 
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with additional temperature variability. Each of these outcomes are for the RCP 8.5 2100 

scenario.  

 

Table 4. Climate adjusted ratings to 2100 (RCP 8.5) 

Country Faster 

Adaptation  
Baseline  

Slower 

Adaptation  

Increased 

Volatility  

Canada 15.22 15.28 11.69 11.68 

China 11.44 9.80 9.17 9.51 

France 16.21 15.30 15.34 15.45 

Germany 19.31 19.22 18.76 18.41 

Italy 11.51 11.13 11.24 12.58 

Japan 13.88 13.44 10.67 9.38 

United Kingdom 16.21 14.88 14.43 14.73 

United States 14.30 14.32 12.87 11.89 

Notes: Table 4 shows the estimates sovereign credit ratings for the G7 + China in the RCP 8.5 (2100) scenario. 

Columns 2 to 5 show the estimated ratings for faster adaptation, baseline, slower adaptation and baseline with 

increased temperature variability respectively.  

4. Additional cost of sovereign and corporate borrowing due to climate-induced sovereign 

downgrades 

Previous research demonstrates that sovereign downgrades increase sovereign spreads (Afonso 

et al., 2012; Gande and Parsley 2005). Estimates of the effect of a 1-notch downgrade in 

sovereign rating on increases in yield spreads range from 0.08-0.112% (Afonso et al., 2012) to 

0.12% (Gande and Parsley 2005). Taking these as lower and upper bounds (respectively) 

enables us to calculate ranges for the increase in annual interest payments on public debt due 

to climate-induced sovereign downgrades. Table 5 reports these costs for the G7 plus China 

under RCP 2.6 scenario by 2100. Columns 2-3 present climate-induced sovereign downgrades 

(in notches) and total outstanding sovereign debt as of 2019. Columns 4-5 report lower and 

upper bound estimates of the additional cost of sovereign debt due to climate downgrades. 

Climate-induced sovereign downgrades could increase the cost of sovereign debt across our 

sample by US$ 44.66 billion to US$ 66.99 billion under RCP 2.6. These costs are more than 3 

times larger under RCP 8.5, with a lower-bound of US$ 135.24 billion and an upper-bound of 

US$ 202.86 billion (see Table 6).  
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Table 5. Additional cost of sovereign borrowing due to climate-induced sovereign 

downgrades (RCP 2.6, 2100) 

Sovereign 

Sovereign 

downgrade 

(notches) 

Outstanding 

sovereign debt   

($ bn) 

Cost of 

sovereign 

borrowing ($ 

bn) (lower 

bound) 

Cost of 

sovereign 

borrowing ($ 

bn) (upper 

bound) 

Canada 1.84 557.10 0.82 1.23 

China 1.80 2464.40 3.55 5.32 

France 0.27 2026.10 0.44 0.66 

Germany 0.48 1254.30 0.48 0.72 

Japan 1.42 10396.20 11.81 17.72 

United Kingdom 0.82 2710.70 1.78 2.67 

United States 1.25 16673.40 16.67 25.01 

G7 + China 1.13 36082.20 35.55 53.33 

Full sample total 0.94 44184.30 44.66 66.99 

Notes: Translating climate-induced sovereign downgrades into increased sovereign cost of borrowing by 2100 

under RCP 2.6 scenario for G7 plus China. Italy is not downgraded under this scenario. Full sample results for 55 

downgraded sovereigns available in Appendix D, Table D.1. Outstanding sovereign debt figures for 2019 obtained 

from S&P SRIs. Conversion between sovereign downgrades into yields for lower bound is based on Afonso et al. 

(2012) and for upper bound on Gande and Parsley (2005), whereby 1 notch sovereign downgrade increases 

sovereign bond spread by 0.08% and 0.12% respectively. Note that the increase in cost of debt at the lower and 

upper bound for the bottom row is taken as the sum of the lower and upper bound for each country, rather than 

calculated statically based on the mean downgrade and sum of outstanding debt. 
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Table 6. Additional cost of sovereign borrowing due to climate-induced sovereign 

downgrades (RCP 8.5, 2100) 

Sovereign 

Sovereign 

downgrade 

(notches) 

Outstanding 

sovereign debt   

($ bn) 

Cost of 

sovereign 

borrowing ($ 

bn) (lower 

bound) 

Cost of 

sovereign 

borrowing ($ 

bn) (upper 

bound) 

Canada 4.72 557.10 2.10 3.16 

China 6.53 2464.40 12.87 19.31 

France 2.70 2026.10 4.38 6.56 

Germany 0.78 1254.30 0.78 1.17 

Italy 0.53 2225.30 0.94 1.42 

Japan 2.56 10396.20 21.29 31.94 

United Kingdom 3.46 2710.70 7.50 11.25 

United States 4.68 16673.40 62.43 93.64 

G7 + China 3.25 38307.50 112.29 168.45 

Full sample total 2.18 48678.10 135.24 202.86 

Notes: Translating climate-induced sovereign downgrades into increased sovereign cost of borrowing by 2100 

under RCP 8.5 scenario for G7 plus China. Full sample results for 80 downgraded sovereigns available in 

Appendix D, Table D.2. Outstanding sovereign debt figures for 2019 obtained from S&P SRIs. Conversion 

between sovereign downgrades into yields for lower bound is based on Afonso et al. (2012) and for upper bound 

on Gande and Parsley (2005), whereby 1 notch sovereign downgrade increases sovereign bond spread by 0.08% 

and 0.12% respectively. Note that the increase in cost of debt at the lower and upper bound for the bottom row is 

taken as the sum of the lower and upper bound for each country, rather than calculated statically based on the 

mean downgrade and sum of outstanding debt. 

Translating sovereign rating changes into impacts on corporate cost of capital is more 

challenging, as no such direct translation exists in the literature. However, Almeida et al. (2017) 

quantify a sovereign spillover effect from sovereign to corporate ratings, whereby a one 

percentage point increase in sovereign yields increases corporate yields by a factor of 0.6-0.7. 

We follow a three-step procedure to calculate the effect of climate-induced sovereign ratings 

on the cost of corporate capital (see Tables 7 and 8 for RCP 2.6 and 8.5 respectively).20 First, 

we translate sovereign downgrades into sovereign yield spreads as described above and 

reported in Tables 5-6. Second, we multiply these values (0.08% versus 0.12%) by the 

magnitude of the spillover effect from sovereign to corporate yields identified in Almeida et 

al. (2017), treating 0.6 (0.7) as the lower (upper) bound.21 Finally, we calculate the resulting 

 

20 As before in these tables we report G7 countries plus China but results for the full sample are available in 

Appendix D, Tables D.1.-D.4. 
21 Authors estimate the effect around the investment versus speculative grade threshold. These results are for 

illustrative purposes only and should be considered with caution. We realise taking this measure and applying it 

to all corporate debt held by a sovereign is conservative since not all firms will be rated around that threshold. 
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costs of outstanding corporate debt in all countries in which we have data. Using data from the 

Bank of International Settlements (BIS), Table 7, column 3 reports outstanding corporate debt 

in US$ billion for the G7 + China as of June 2020. The availability of BIS data on corporate 

debt restricts our calculations to a sub-sample of 28 (34) countries under RCP 2.6 (8.5). 

Lower- and upper-bound estimates of increases in the cost of corporate debt due to climate-

induced sovereign downgrades are reported in columns 4-5. Under RCP 2.6, the lower (upper) 

bound estimates of the additional annual interest payments due to spillover of sovereign 

downgrades onto corporations will reach US$ 9.90 (17.33) billion by 2100 across all 28 

sovereigns for which BIS data is available. It is worth noting that this is the indirect effect of 

increased sovereign credit risk induced by climate change and passed onto corporates. These 

costs can be considered in addition to the direct effects of climate change on corporates (e.g., 

physical, transition, and litigation losses). The magnitude of the sovereign downgrades 

increases corporate interest outlays significantly (almost 4 times) under the RCP 8.5 scenario 

and exceeds 34.94 (61.15) $ billion for lower (upper) bound, respectively.  

Table 7. Additional cost of corporate debt due to climate-induced sovereign downgrades 

(RCP 2.6, 2100) 

Sovereign 

Sovereign 

downgrade 

(notches) 

Outstanding 

corporate debt   

($ bn) 

Increase in cost 

of debt ($ bn) 

lower bound 

Increase in cost 

of debt ($ bn) 

upper bound 

Canada 1.84 515 0.45 0.80 

China 1.80 4061 3.51 6.14 

France 0.27 777 0.10 0.18 

Germany 0.48 241 0.06 0.10 

Japan 1.42 845 0.58 1.01 

United Kingdom 0.82 564 0.22 0.39 

United States 1.25 7126 4.28 7.48 

G7 + China 1.13 14129 9.20 16.10 

Total BIS 1.06 15531 9.90 17.33 

Notes: Translating climate-induced sovereign downgrades into increased corporate cost of debt by 2100 under RCP 2.6 

scenario. G7 plus China results presented here. Italy is not presented as it is not downgraded under this scenario. Data 

availability from BIS on corporate debt restricts our sample to 28 countries. Sub-sample results for the remaining 21 

sovereigns calculated using BIS database available in Appendix D, Table D.3. To calculate the value of corporate debt 

affected by sovereign downgrades we first convert the sovereign rating changes into sovereign yield which we then 

convert into corporate sovereign yield. To translate sovereign ratings into yields we use lower bond (0.08%) from 

Afonso et al. (2012) and higher bound (0.12%) from Gande and Parsley (2005). To then convert these into corporate 

spreads we use Almeida et al. (2017)’ conversions, with 0.6 for lower bound and 0.7 for higher bound. We multiply 

sovereign rating changes (see column 2) by an amount of outstanding debt at end-June 2020 (column 3) and 0.00048 

for a lower bound (0.08%*0.6) and 0.00084 (0.12%*0.7) for a upper bound respectively. Note that the increase in cost 

of debt at the lower and upper bound for the bottom row is taken as the sum of the lower and upper bound for 

each country, rather than calculated statically based on the mean downgrade and sum of outstanding debt. 
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Table 8 Additional cost of corporate debt due to climate-induced sovereign downgrades (RCP 

8.5, 2100) 

Sovereign 

Sovereign 

downgrade 

(notches) 

Outstanding 

corporate debt   

($ bn) 

Increase in cost 

of debt ($ bn) 

lower bound 

Increase in cost 

of debt ($ bn) 

higher bound 

Canada 4.72 515 1.17 2.04 

China 6.53 4061 12.73 22.28 

France 2.70 777 1.01 1.76 

Germany 0.78 241 0.09 0.16 

Italy 0.53 152 0.04 0.07 

Japan 2.56 845 1.04 1.82 

United Kingdom 3.46 564 0.94 1.64 

United States 4.68 7126 16.01 28.01 

G7 + China 3.25 14281 33.03 57.78 

Total BIS 2.66 15699 34.94 61.15 
Notes: Translating climate-induced sovereign downgrades into increased corporate cost of debt by 2100 under 

RCP 8.5 scenario. G7 plus China results presented here. Data availability from BIS on corporate debt restricts our 

sample to 34 countries. Sub-sample results for the remaining 26 sovereigns calculated using BIS database 

available in Appendix D, Table D.4. To calculate the value of corporate debt affected by sovereign downgrades 

we first convert the sovereign rating changes into sovereign yield which we then convert into corporate sovereign 

yield. To translate sovereign ratings into yields we use lower bond (0.08%) from Afonso et al. (2012) and higher 

bound (0.12%) from Gande and Parsley (2005). To then convert these into corporate spreads we use Almeida et 

al. (2017)’ conversions, with 0.6 for lower bound and 0.7 for higher bound. We multiply sovereign rating changes 

(see column 2) by an amount of outstanding debt at end-June 2020 (column 3) and 0.00048 for a lower bound 

(0.08%*0.6) and 0.00084 (0.12%*0.7) for a higher bound respectively. Note that the increase in cost of debt at 

the lower and upper bound for the bottom row is taken as the sum of the lower and upper bound for each country, 

rather than calculated statically based on the mean downgrade and sum of outstanding debt. 

The above calculations show that impacts of climate-induced sovereign downgrades on debt 

servicing costs are large in magnitude for both sovereigns and corporates. With maturities of 

debt products extending22 and meaningful economic implications of climate change drawing 

nearer, investors will progressively need more reliable credit opinions beyond the relatively 

short-term 5-10 years horizon23 offered by CRAs today. This research has set the foundations 

for such a longer-term view. Based on the methodology applied here, future research could 

focus on the development of ultra-long ratings that investors could consider when assessing 

long-dated sovereign credit exposures. Currently CRAs apply the same “long-term” rating to a 

2-year bond as they do to a 50-year or century-bond. This equalisation of risk is clearly 

implausible. A transparent and scientifically grounded truly long-term rating will help support 

 

22 For instance, governments issue ever-longer dated bonds as long as 100 years (e.g., Argentina, Austria, Belgium, 

Ireland). 
23 CRAs issue what they refer to as “long-term” ratings but the time horizon extends to no more than 5-10 years, 

which is a fraction of the length of some of the bonds now being sold, and a relatively short period compared to 

the process of climate change. 
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better investment decisions today, expose stranded assets earlier and create incentives for 

public policies and investments that contribute to containing and mitigating climate change. 

Such an instrument would therefore promote the global public good of climate protection and 

diminish the market failure that has created the climate crisis in the first place. Truly long-term 

credit views can help make climate risks visible within mainstream financial indicators, thus 

supporting investors to take decisions that are environmentally and financially sustainable for 

the long haul (Griffith-Jones and Kraemer 2021; Spiegel et al., 2022).24,25 

Our research has strong policy implications for CRAs’ regulators including ESMA and SEC. 

Significant changes due to climate change and aging societies are inevitable and sovereign 

credit ratings are not designed to reflect those ultra-long-term risks. Additionally, the “up to 

ten-year” horizon that CRAs pursue is not credible. Credit reports on sovereigns will include 

forecasts that typically only reach three years into the future, at most, and exceptionally to five. 

Regulators could therefore insist that CRAs document how they fulfil their current claim of a 

5 to 10-year time horizon. In a second step regulators should require CRAs to demonstrate how 

they intend to incorporate long-term challenges such as demographic or climate change. 

Regulators must begin to look at more fundamental credit issues that could over a longer period 

impact the functioning of the capital market and its stability. 

5. Concluding remarks 

This research contributes to bridging the gap between climate science and real-world financial 

indicators. Combining climate science with economics, machine learning, and practitioner 

expertise, we simulate the effect of climate change on sovereign creditworthiness, producing 

the world’s first climate-adjusted sovereign credit rating. The analysis is conducted using three 

distinct climate-economy models and yields qualitatively similar results under various 

warming scenarios. We document three key empirical findings. In contrast to much of the 

climate-economics literature, we find material impacts of climate change as early as 2030, with 

significantly deeper downgrades across more sovereigns as climate warms and temperature 

 

24 This will alleviate concerns raised by many in relation to climate service providers who “operate outside of the 

bounds of scientific merit” (Keenan 2019) and misuse climate models (Nissan et al., 2019).   
25 One important concern is whether predicting climate-induced downgrades in the future may increase the cost 

of debt today. This is particularly concerning for low-income countries where evidence suggests that climate-

related natural disasters are already hitting bond yields (Beirne et al., 2020; Buhr et al., 2018; Kling et al., 2018). 

If investors believed that e.g., India is not a climate-safe investment, the perverse result could be to starve India 

of the access to capital it needs to increase resilience. 
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volatility rises. Under RCP 8.5, the average sovereign downgrade could reach 2.48 notches, 

with several countries falling 5 notches or more on a 20-notch scale. Second, our findings 

suggest that stringent climate policy consistent with the Paris Agreement will result in minimal 

changes to sovereign creditworthiness. Finally, from policy perspective, our results support the 

idea that deferring green investments will increase costs of borrowing for sovereigns, which in 

line with the existing literature will translate into higher costs of corporate debt. The additional 

costs to sovereigns in our sample range from US$ 45 to 67 billion under RCP 2.6, and US$ 

135 to 203 billion under RCP 8.5. Corporates will experience additional costs of between US$ 

10 and 17 billion under RCP 2.6, and between US$ 35 and 61 billion under RCP 8.5.    

Perhaps most importantly, our approach demonstrates that it is possible to ‘do ESG’ without 

compromising scientific credibility. We show that existing climate science and economics are 

capable of supporting credible, decision-ready green finance indicators. 

Future research should consider alternative ways of conceptualising this problem. Predictions 

may also be established by focusing on the hazard rate for default and the relationship this may 

have with GDP losses. This may prove to be a more complex task as downgrades may 

historically be more closely associated with non-linear jumps in GDP losses as opposed to the 

steady declines (year to year) produced by climate models. 

This research is of interest to investors, sovereigns and CRAs alike. Governments issue ever-

longer dated bonds, of which life insurance companies and pension funds are eager buyers, 

thus enabling them to match their own long-term liabilities. Therefore, investors should 

consider the long-term creditworthiness of sovereign issuers. Currently there is no reliable 

yardstick for assessing sovereign creditworthiness beyond the current decade and this research 

fills this gap. Our study offers a first methodological approach to extend the long-term rating 

to an ultra-long-term reality. Based on the methodology applied here future research could 

focus on developing ultra-long ratings not only for sovereigns but also for other issuers 

including corporates. 
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Appendices 

Appendix A- Literature review 

Assessing the effect of climate change on sovereign ratings is an inherently interdisciplinary 

endeavour. We combine several strands of scientific and economic research with practitioner 

insights from the world of sovereign ratings. This section introduces key themes from climate 

economics, sovereign risk assessment, and machine learning that underpin our study.  

Climate-economy models 

Global integrated assessment models (IAMs) such as the DICE model for which Bill Nordhaus 

was awarded the 2018 Nobel Prize in Economics (for reviews, see Auffhammer 2018; Diaz 

and Moore 2017) typically operate at the global scale and are used to evaluate economic 

impacts of various warming scenarios or climate policies, or to calculate the social cost of 

carbon for use in social cost-benefit analyses (Stern 2008). Although they have been useful in 

organising economists’ thinking about climate-economic relationships, IAMs are notoriously 

sensitive to assumptions about discount rates, the shape and parameterisation of damage 

functions, the latency of greenhouse gases in the atmosphere, the degree of climate sensitivity, 

and the costs and efficacy of investments in mitigation and adaptation (Auffhammer 2018; Diaz 

and Moore 2017). Whilst some characterize such sensitivities as weaknesses (Pindyck 2013), 

others find their flexibility useful for integrating advances in economic theory and 

environmental science into climate policy (Bastien-Olvera and Moore 2020; Dietz and Stern 

2015).   

The primary limitation of IAMs for the current application – assessing the effect of climate on 

sovereign creditworthiness – is their high degree of spatial aggregation. Global analyses do not 

easily translate into country-level risk metrics.26 For instance, using DICE, Dietz et al. (2016) 

estimate the representative ‘climate value at risk’ of global financial assets to be US $2.5 

trillion, but do not comment on the distribution of value at risk across countries. While their 

results demonstrate that restricting warming to 2°C or less make financial sense for risk-neutral 

and institutional investors, DICE prevents them from making statements about sovereign risk. 

 

26 Even the regional version of DICE (called RICE), aggregates to eight regions (Nordhaus and Boyer 2000). 
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A new body of research is emerging that combines climate science with long-run 

macroeconometric analyses of relationships between temperature and GDP growth at the 

country-level (Burke et al., 2015; Dell et al., 2012, 2014; Kalkuhl and Wenz 2020; Kahn et al., 

2021). Such models are increasingly used to assess country-level impacts27 of climate change 

and identify country-specific social costs of carbon (Ricke et al., 2018). In an early 

contribution, Dell et al. (2012) constructed a 53-year, 125 country panel of weather and 

macroeconomic data to show that warming significantly reduces growth in poor countries by 

1.3 percentage points for each 1C increase in temperature, but that the results are not significant 

in rich countries. Relaxing Dell et al’s (2012) assumption of linearity, Burke et al. (2015) find 

more extreme and unequal values for the impacts of climate change, with substantial winners 

and losers from climate change, summing to a net 22.6% of gross world product by 2100. 

Whilst these models can produce estimates of the economic effects of climate change, their 

macro structure means they cannot comment on the mechanisms through which these impacts 

are found (Burke et al., 2015). In contrast, Kahn et al. (2021) develop a stochastic growth model 

that links deviations of country-specific climate variables (temperature and precipitation) from 

their historical norms to real output per capita growth. Using data between 1960 and 2014 and 

174 countries, they find that persistent deviations of temperature from time-varying and 

country-specific historical thresholds (i.e., the historical norm) reduces per capita output 

growth, amounting to around 7% reduction in gross world product by 2100 in the absence of 

mitigation policies (with the global losses being significantly higher at 13% if the country-

specific variability of climate conditions were to rise commensurate to temperature increases). 

Due to their ability to assess country-level climate impacts (and explicitly modelling changes 

in the distribution of weather patterns; that is not only averages of climate variables that the 

climate-macro literature focuses on but also their variability), our baseline model uses Kahn et 

al. (2021) to inform our assessment of the effects of climate change on sovereign ratings.  

To facilitate interpretation and comparability, climate modelling exercises refer to a common 

set of future scenarios called representative concentration pathways (RCPs). RCPs describe 

potential trajectories for the annual flow and overall stock of greenhouse gases (GHGs), 

 

27 Whilst this class of macroeconometric climate studies is able to assess country-level impacts, they are still 

subject to the limitations of the underlying climate science. For instance, if certain countries are not well 

represented in global climate models, for instance due to a lack of spatial resolution, then these issues carry over 

into the economic analyses. We are grateful to an anonymous referee for this insight. 
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aerosols, and chemically active gases in the atmosphere to 2100 (Moss et al., 2010). Each RCP 

is named according to its corresponding level of radiative forcing in 2100. For instance, RCP 

2.6 refers to a world of stringent climate policy that results in an end-of-century increase in 

radiative forcing of 2.6 Watts/m2 and corresponds to temperature rise well below 2°C, relative 

to pre-industrial conditions. In contrast, RCP 8.5 refers to an end-of century increase in 

radiative forcing (8.5 Watts/m2) and temperature of 5°C, relative to pre-industrial levels.  

In terms of policy, the Paris Climate Agreement pledged to limit average warming to ‘well 

below 2°C’ and corresponds most closely to RCP 2.6. In contrast, RCP 8.5 is described as the 

‘worst case’ high emissions scenario (Hausfather and Peters 2020; van Vuuren et al., 2011). 

For comparability with previous literature, we report results for warming scenarios under RCP 

2.6 and RCP 8.5. 

Climate change and sovereign credit risk 

To the best of our knowledge, there is no previous climate science-driven economic analysis 

of the impact of future climate change related to all types of climate weather events on 

sovereign ratings. The closest, papers are S&P (2015a,b) and Cevik and Jalles (2020). In S&P 

(2015b) authors convert the economic outcomes resulting from extreme weather conditions 

into simplified sovereign rating tool. Findings suggest amongst studied perils earthquakes are 

the most devastating natural hazard and will likely to put pressure on creditworthiness of 

sovereigns close to the “edges of Earth’s geological plates” such as Chile, Costa Rica, Japan, 

Panama Peru, Philippines, Taiwan. S&P (2015a) is based on sample of 38 sovereigns and 44 

natural catastrophe events arising due to two perils: tropical cyclones and floods. To quantify 

climate change impact for each sovereign, the authors simulate direct damage to property and 

infrastructure resulting from given disaster type. The benchmark severity is a natural disaster 

that would be expected to occur once in every 250 years using a probabilistic model 250 years 

being a standard benchmark in the reinsurance industry). Simulated impacts take a time horizon 

up to 2050, and suggest that the impact of climate change via natural disasters is more important 

for emerging and developing sovereigns than for the advanced economies. Our results vary 

significantly which might be driven the fact we apply climate-economy models which take 

account of all natural perils and study much larger sample of sovereigns around the globe. Our 

trajectories also differ significantly as we are able to predict the climate-adjuested ratings for 

the years up to 2100.  
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Offering a backward look rather a future simulation of sovereign ratings Cevik and Jalles 

(2020) use OLS and ordered response models to regress past sovereign ratings on climate 

vulnerability, resilience, and the usual macroeconomic indicators for a panel of 67 countries 

between 1995 and 2017. They find a positive statistically significant effect of climate resilience 

on ratings, but only mixed results for vulnerability. We advise caution in interpreting these 

results for several reasons. Many of the countries28 in their sample were not rated by CRAs 

until the mid-2000s and may not have many ratings events in the panel. Moreover, the effect 

of climate change over the period 1995 – 2017 is likely to be small compared to what is 

expected over the coming century. It could be difficult to identify climate-specific impacts on 

ratings in the past. More importantly, their approach only considers the effects of climate 

change on ratings through climate vulnerability and resilience, but ignores the effect of climate 

change on GDP per capita, GDP growth, or indeed any of the other macroeconomic variables 

in their model. Finally, we present a number of econometric and methodological challenges in 

the next section. 

Most of the literature on climate and sovereign risk focuses on bond yields rather than ratings 

(Beirne et al., 2021; Buhr et al., 2018; Capelle-Blancard et al., 2017; Cevik and Jalles 2022a,b; 

Crifo et al., 2015; Kling et al., 2018). An increasingly common finding is that high climate 

vulnerability and low resilience increases sovereign borrowing costs, especially for lower 

income countries (Beirne et al., 2021; Kling et al., 2018).  

 

  

 

28 For instance, Albania’s first ever rating was in 2010, Azerbaijan 2008, Bosnia 2008, Fiji 2006, Gabon 2007, 

Georgia 2005, Mozambique 2004, Nigeria 2006, Seychelles 2006. 
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Appendix B - Rating scale 

Table B.1. Converting S&P's sovereign ratings to a 20-notch numerical scale 

Long-term 

foreign currency 

issuer rating 

symbol 

Numerical rating 

 

Rating grade 

S&P          

AAA 20 
 

Prime high grade 
 

Investment grade 

AA+ 19   

High grade 
 

AA 18   
 

AA- 17   
 

A+ 16    
 

A 15   
Upper medium grade  

A- 14   
 

BBB+ 13   

Lower medium grade 
 

BBB 12   
 

BBB- 11     

BB+ 10   

Speculative 

  

Non-investment grade 

BB 9   
 

BB- 8   
 

B+ 7   

Highly speculative 
 

B 6   
 

B- 5   
 

CCC+ 4   

Substantial risks 
 

CCC 3   
 

CCC- 2   
 

CC 1   
Extremely speculative  

C 1   
 

D/SD 1   In default 
 

Notes: This table presents S&P alphabetical categories translated into 20-notch scale based on S&P’s Global 

Rating Definitions available from: 

https://www.standardandpoors.com/en_US/web/guest/article/-/view/sourceId/504352 

 

 

 

 

https://www.standardandpoors.com/en_US/web/guest/article/-/view/sourceId/504352
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Appendix C - Robustness to alternative climate-economy models and longer time series 

We employ several approaches to testing the robustness of our results. First, we extend the time 

series of ratings data used to train our ratings prediction model. Our baseline model is trained 

on 644 sovereign ratings issued by S&P between 2015 and 2020. This time series is chosen 

because it overlaps with data outputs (climate-adjusted GDP) from our climate-economy model 

(Kahn et al., 2021) and because ratings issued at any point within this timeframe are still within 

the standard ratings horizon of 5-10 years.29 However, most of the countries in our sample have 

ratings histories that pre-date our 2015 cut-off, meaning a longer time series is available.  

To test our model on a longer time series of sovereign ratings, we incorporated data on S&P’s 

sovereign ratings between 2004 and 2020. Tripling the timespan more than doubles our 

observations number from 644 in the baseline to 1590 in the extended sample. We train the 

same 6-variable model on the same 109 countries. Table C.1. compares predictive accuracy of 

our baseline model (columns 2-4) against our extended time series model (columns 5-7). 

Extending the ratings sample reduces exact matches between observed ratings and our 

predictions for in-sample, out of sample, and out of sample investment grade ratings. However, 

this is a random model and variation in predictive accuracy of this magnitude are observed 

across multiple runs of the model. Interestingly, extending the time series has opposite effects 

on the accuracy of out of sample tests when we run the model on the full set of 109 countries 

compared to restricting it to countries with investment grade ratings. Focusing on all 109 

countries (columns 2 and 5), we see a decrease in predictive accuracy across the board. In 

contrast, focusing only on those countries with investment grade ratings (columns 4 and 7), we 

see slight reduction in exact matches followed by improved accuracy within 1, 2, and 3 notches. 

 

 

 

 

 

29 At the time of writing. 
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Table C.1. Predictive accuracy with an extended time series 
 

Our results (2015 – 2020) Extended sample (2004 – 2020) 

Rating 

range 
Whole 

Sample 

Out of 

sample 

(80/20 split) 

Investment 

Grade Out 

of Sample 

(80/20) 

Whole 

Sample 

Out of 

sample 

(80/20 split) 

Investme

nt Grade 

Out of 

Sample 

(80/20) 

Exact match 68.01% 34.26% 45.45% 57.17 23.12 30.11 

1 notch 96.43% 79.63% 87.27% 94.03 61.25 72.73 

2 notch 99.84% 94.44% 94.55% 98.36 85.00 94.89 

3 notch - 98.15% - 99.56 92.81 98.86 

Observations 644 536/108 270/55 1590 1270/320 710/176 

# of variables 6 6 6 6 6 6 

Countries 109 109 / 108 60/55 109 109/109 62/62 

Notes: Table presents the predictive capacity of our benchmark random forest model, and an extended time series. 

Columns 2-4 present the results also found in Table 3. Columns 5-7 present the results when the model is trained 

on an extended time period.  

At first, these results may seem counterintuitive: more data can typically be expected to 

improve accuracy. However, several unique features of sovereign ratings suggest this may not 

be the case. First, sovereign ratings have an informal ‘lifespan’ of 5-10 years, owing to the fact 

that the political and economic factors on which ratings are based may change substantially 

over this timeframe. Thus, the inclusion of obsolete data may not improve current predictions. 

Perhaps more importantly, our extended time series now includes the build-up, duration, and 

aftermath of the 2008 financial crisis. This was a turbulent period for sovereign ratings and 

fiscal conditions world-wide. As such, the extended time series may actually introduce more 

noise than predictive capacity. Finally, results in terms of the simulated impacts of climate 

change on sovereign ratings were not qualitatively different when the timespan was extended.30 

Thus, for our baseline scenario we focus on ratings issued between 2015 and 2020.  

 

 

 

30 Figures and tables can be provided upon request. 
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Are our results sensitive to the choice of climate-economic model? 

One potential concern with our results is that they could be sensitive to the choice of underlying 

climate-economic model. Models in the macroeconometric climate literature employ a range 

of econometric assumptions and specifications, sometimes leading to substantially different 

conclusions. To assess the sensitivity of our results to the choice of model, we ran the full 

exercise again using Burke et al. (2015) and Kalkuhl and Wenz (2020) rather than Kahn et al. 

(2021) for the underlying impacts of climate on GDP and government balances.  

Using Burke et al. (2015) 

Compared to Kahn et al. (2021), Burke et al. (2015) find more extreme and unequal results 

across countries. For instance, they find that due to climate change, India will face a 92% 

reduction in per capita GDP by 2100, whereas Iceland will face a 513% increase.  

Both the depths of the modelled losses in hot countries and the peaks of the modelled gains 

among Northern countries remain outliers in the literature and present challenges for our 

model. Due to the importance of per capita GDP and its growth rate for simulating ratings, 

Burke et al.’s extreme results create a larger number of climate-induced upgrades, largely 

concentrated at the lower end of the ratings scale. Moreover, our interpolative method for 

extracting the climate-adjusted government balance indicators is less reliable in this setting. 

S&P (2015b) only assessed the effect of GDP losses of up to 12% on our government 

performance variables, but Burke et al.’s estimated per capita GDP losses often exceeded this 

range substantially (e.g., for India, they predict losses of 92%). To avoid extrapolating beyond 

S&P’s data, we capped the negative impacts at 12% GDP loss, and positive impacts at 0% 

gains.  

Figure C.1 Panels A and B illustrate the effect of climate change on investment-grade 

sovereigns for the year 2100 under Burke et al.’s warming and no warming scenario. Panel A 

shows that although the results are clearly noisier than under our baseline model using Kahn et 

al. (2021), we find a similar pattern of substantial downgrades, with greater reductions at the 

higher end of the scale. T-tests indicate the results are statistically significantly different from 

zero at the 1% level. Similarly, Panel B depicts our predicted changes in ratings for 2100 using 

the ‘no climate change’ scenario from Burke et al.’s model. These results show much closer 
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alignment with current observed ratings. T-tests indicate the changes cannot be statistically 

significantly distinguished from zero. 

Figure C.1. Effect of climate on ratings (2100, RCP 8.5 vs no warming scenario)  

 
Figure C.1. depicts climate-induced sovereign downgrades by 2100 under RCP 8.5 (Panel A) and a counterfactual 

scenario in which there is no further warming from 2015 (Panel B), using on Burke et al. (2015) to estimate 

climate-driven GDP losses. The GDP losses reported in Burke et al. (2015) have considerably greater range than 

those reported in Kahn et al. (2021) or Kalkuhl and Wenz (2020). However, the results are qualitatively similar: 

limiting warming will reduce downward pressure on ratings, and downgrades will be most severe at the higher 

end of the rating scale. 

 

Using Kalkuhl and Wenz (2020) 

Using the data provided by Kalkuhl and Wenz (2020), we estimate the impact of a decline in 

GDP on sovereign credit ratings for the periods 2030, 2050, 2070 and 2100. Ultimately, we 

once again find qualitatively similar results using Kalkuhl and Wenz (2020) to those reported 

in the paper, based on Kahn et al. (2021). 

 

Kalkuhl and Wenz (2020) estimate the gross regional product under RCP 8.5 for more than 

1500 regions in 77 countries. In order to aggregate this for our country level analysis we 

perform the following procedure. First, we take their backward-looking panel data and assign 

year groupings. That is, we identify country groups for the years 2001-2003, 2005-2007 and 

2012-2014. On this basis we then calculate regional GDP weightings for these year groupings. 

We sum the regional GDP and calculate the proportionality of each region’s GDP against the 

total. We then take the regional weightings forward to estimate country-level GDP loss. As 

some of the data is incomplete, we select the most recent year grouping for each country. 
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Second, we take the product of the regional weighting and the GDP estimate for each of the 

forward-looking years in their data. Finally, we take the sum of the weighted GDP damage 

estimates for each country’s region to arrive at a country-level estimate for GDP losses.  

We apply these new GDP losses to our model following the same procedure as for Kahn et al. 

(2021). Figure C.2 below depicts our primary finding. The graph below shows a unitary solid 

black line which would indicate an estimated rating to be the same as the actual rating. Further, 

we also plot the linear estimations for the actual rating regressed on the estimated rating for the 

years 2030, 2050, 2070 and 2100 from top to bottom. The data points plotted represent the 

observations for 2100. Our results show a similar outcome for Kalkuhl and Wenz (2020) as 

they do for the Kahn et al. (2021) data.  

Figure C.2. Estimated ratings using Kalkuhl and Wenz (2020) 

 

Figure C.2. depicts climate-induced sovereign downgrades by 2030, 2050, 2070, and 2100 under RCP 8.5 using 

Kalkuhl and Wenz (2020) to estimate climate-driven GDP losses. Once again we find qualitatively similar results: 

limiting warming will reduce downward pressure on ratings and this downward pressure increases over time. 

Compared to results based on Kahn et al. (2021), there are slightly larger downgrades in the upper-mid range (10-

15) of the rating scale, though severe downgrades amongst the highest-rated sovereigns are still observed. 
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Appendix D - Additional cost of sovereign and corporate borrowing due to climate-

induced sovereign downgrades  

Table D.1. Additional cost of sovereign borrowing due to climate-induced sovereign 

downgrades (RCP 2.6, 2100) 

Sovereign 

Outstanding 

sovereign 

debt ($ bn) 

Sovereign 

downgrade 

(notches) 

Cost of sovereign 

borrowing ($ bn) 

(lower bound) 

Cost of sovereign 

borrowing ($ bn) 

(higher bound) 

Albania 6.50 0.09 0.00 0.00 

Australia 384.50 0.78 0.24 0.36 

Austria 231.70 0.34 0.06 0.09 

Bangladesh 45.50 0.58 0.02 0.03 

Belgium 436.90 0.49 0.17 0.26 

Benin 3.90 0.20 0.00 0.00 

Botswana 1.10 1.03 0.00 0.00 

Bulgaria 10.80 0.11 0.00 0.00 

Canada 557.10 1.84 0.82 1.23 

Cape Verde 1.30 0.07 0.00 0.00 

Chile 70.50 7.11 0.40 0.60 

China 2464.40 1.80 3.55 5.32 

Colombia 129.80 1.27 0.13 0.20 

Costa Rica 31.40 0.78 0.02 0.03 

Czech Republic 70.20 0.80 0.04 0.07 

Denmark 91.70 0.37 0.03 0.04 

Dominican 

Republic 28.70 0.32 0.01 0.01 

Estonia 0.10 0.45 0.00 0.00 

Finland 118.10 0.23 0.02 0.03 

France 2026.10 0.27 0.44 0.66 

Georgia 2.60 0.47 0.00 0.00 

Germany 1254.30 0.48 0.48 0.72 

India 1365.30 3.73 4.07 6.11 

Indonesia 290.60 3.38 0.79 1.18 

Israel 237.90 0.19 0.04 0.05 

Japan 10396.20 1.42 11.81 17.72 

Jordan 29.50 0.35 0.01 0.01 

Kazakhstan 26.80 1.25 0.03 0.04 

Kenya 37.00 0.46 0.01 0.02 

South Korea 589.50 1.80 0.85 1.27 

Kuwait 16.50 0.51 0.01 0.01 

Latvia 11.20 0.26 0.00 0.00 

Luxembourg 11.70 0.29 0.00 0.00 

Malaysia 189.80 1.10 0.17 0.25 
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Table D.1. Continued 

Sovereign 

Outstanding 

sovereign 

debt ($ bn) 

Sovereign 

downgrade 

(notches) 

Cost of sovereign 

borrowing ($ bn) 

(lower bound) 

Cost of sovereign 

borrowing ($ bn) 

(higher bound) 

Mexico 386.40 0.33 0.10 0.15 

Morocco 67.20 1.19 0.06 0.10 

Netherlands 341.40 0.51 0.14 0.21 

New Zealand 52.70 2.29 0.10 0.14 

Macedonia 4.00 0.84 0.00 0.00 

Norway 49.80 0.44 0.02 0.03 

Panama 23.60 0.64 0.01 0.02 

Peru 49.10 1.24 0.05 0.07 

Philippines 134.50 3.60 0.39 0.58 

Poland 222.40 0.89 0.16 0.24 

Qatar 100.20 0.12 0.01 0.01 

Senegal 6.00 0.30 0.00 0.00 

Serbia 14.30 0.81 0.01 0.01 

Slovakia 42.90 1.57 0.05 0.08 

Slovenia 31.00 1.37 0.03 0.05 

South Africa 213.30 0.79 0.13 0.20 

Sri Lanka 57.20 0.27 0.01 0.02 

Suriname 1.7 0.13 0.00 0.00 

Sweden 119.70 0.61 0.06 0.09 

Switzerland 68.60 2.29 0.13 0.19 

Thailand 180.20 0.67 0.10 0.14 

United Kingdom 2710.70 0.82 1.78 2.67 

United States 16673.40 1.25 16.67 25.01 

Vietnam 53.70 0.04 0.00 0.00 

Full sample total 44184.30 0.94 44.66 66.99 

Notes: Translating climate-induced sovereign downgrades into increased sovereign cost of borrowing by 2100 

under RCP 2.6 scenario. Dataset includes 55 downgraded sovereigns and their outstanding sovereign debt figures 

for 2019 obtained from S&P SRIs. Conversion between sovereign downgrades into yields for lower bound is 

based on Afonso et al. (2012) and for higher bound on Gande and Parsley (2005), whereby 1 notch sovereign 

downgrade increases sovereign bond spread by 0.08% and 0.12% respectively. 
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Table D.2. Additional cost of sovereign borrowing due to climate-induced sovereign 

downgrades (RCP 8.5, 2100) 

Sovereign 

Outstanding 

sovereign 

debt ($ bn) 

Sovereign 

downgrade 

(notches) 

Cost of sovereign 

borrowing ($ bn) 

(lower bound) 

Cost of sovereign 

borrowing ($ bn) 

(higher bound) 

Albania 6.50 1.57 0.01 0.01 

Australia 384.50 3.53 1.09 1.63 

Austria 231.70 2.17 0.40 0.60 

Bangladesh 45.50 1.41 0.05 0.08 

Belgium 436.90 1.11 0.39 0.58 

Benin 3.90 1.03 0.00 0.00 

Bolivia 4.90 0.60 0.00 0.00 

Botswana 1.10 3.47 0.00 0.00 

Brazil 1032.60 1.58 1.31 1.96 

Bulgaria 10.80 3.16 0.03 0.04 

Canada 557.10 4.72 2.10 3.16 

Cape Verde 1.30 0.46 0.00 0.00 

Chile 70.50 7.43 0.42 0.63 

China 2464.40 6.53 12.87 19.31 

Colombia 129.80 4.40 0.46 0.69 

Costa Rica 31.40 0.84 0.02 0.03 

Croatia 34.60 0.96 0.03 0.04 

Cyprus 13.80 0.07 0.00 0.00 

Czech Republic 70.20 2.65 0.15 0.22 

Denmark 91.70 0.82 0.06 0.09 

Dominican 

Republic 28.70 0.93 0.02 0.03 

Egypt  0.15 0.03 0.05 

Estonia 0.10 1.40 0.00 0.00 

Fiji 2.30 0.55 0.00 0.00 

Finland 118.10 0.14 0.01 0.02 

France 2026.10 2.70 4.38 6.56 

Georgia 2.60 1.68 0.00 0.01 

Germany 1254.30 0.78 0.78 1.17 

Guatemala 15.90 1.58 0.02 0.03 

Honduras 6.80 0.36 0.00 0.00 

Hungary 93.10 2.14 0.16 0.24 

India 1365.30 5.55 6.06 9.09 

Indonesia 290.60 4.06 0.94 1.42 

Israel 237.90 0.86 0.16 0.25 

Italy 2225.30 0.53 0.94 1.42 

Japan 10396.20 2.56 21.29 31.94 

Jordan 29.50 1.68 0.04 0.06 
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Table D.2. Continued 

Sovereign 

Outstanding 

sovereign 

debt ($ bn) 

Sovereign 

downgrade 

(notches) 

Cost of sovereign 

borrowing ($ bn) 

(lower bound) 

Cost of sovereign 

borrowing ($ bn) 

(higher bound) 

Kazakhstan 26.80 4.65 0.10 0.15 

Kenya 37.00 0.89 0.03 0.04 

South Korea 589.50 2.57 1.21 1.82 

Kuwait 16.50 0.60 0.01 0.01 

Latvia 11.20 2.33 0.02 0.03 

Lithuania 16.90 1.79 0.02 0.04 

Luxembourg 11.70 0.76 0.01 0.01 

Malaysia 189.80 6.07 0.92 1.38 

Mexico 386.40 5.55 1.72 2.57 

Mongolia 4.90 0.40 0.00 0.00 

Morocco 67.20 5.02 0.27 0.40 

Netherlands 341.40 0.81 0.22 0.33 

New Zealand 52.70 2.69 0.11 0.17 

Macedonia 4.00 1.57 0.01 0.01 

Norway 49.80 0.57 0.02 0.03 

Pakistan 141.90 0.24 0.03 0.04 

Panama 23.60 3.59 0.07 0.10 

Paraguay 5.20 0.95 0.00 0.01 

Peru 49.10 5.25 0.21 0.31 

Philippines 134.50 3.76 0.40 0.61 

Poland 222.40 4.13 0.73 1.10 

Portugal 224.90 1.23 0.22 0.33 

Qatar 100.20 0.66 0.05 0.08 

Romania 88.90 3.04 0.22 0.32 

Russia 191.40 0.42 0.06 0.10 

Rwanda 1.40 0.67 0.00 0.00 

Saudi Arabia 167.50 0.31 0.04 0.06 

Senegal 6.00 0.94 0.00 0.01 

Serbia 14.30 1.98 0.02 0.03 

Slovakia 42.90 5.90 0.20 0.30 

Slovenia 31.00 2.87 0.07 0.11 

South Africa 213.30 3.15 0.54 0.81 

Spain 1096.20 2.85 2.50 3.75 

Sri Lanka 57.20 1.12 0.05 0.08 

Suriname 1.70 0.61 0.00 0.00 

Sweden 119.70 1.30 0.12 0.19 

Switzerland 68.60 2.62 0.14 0.22 

Thailand 180.20 2.28 0.33 0.49 

Turkey 204.50 1.30 0.21 0.32 

Ukraine 51.20 0.02 0.00 0.00 

United Kingdom 2710.70 3.46 7.50 11.25 
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Table D.2. Continued 

Sovereign 

Outstanding 

sovereign 

debt ($ bn) 

Sovereign 

downgrade 

(notches) 

Cost of sovereign 

borrowing ($ bn) 

(lower bound) 

Cost of sovereign 

borrowing ($ bn) 

(higher bound) 

United States 16673.40 4.68 62.43 93.64 

Uruguay 27.10 2.70 0.06 0.09 

Vietnam 53.70 2.25 0.10 0.14 

Full sample total 48678.10 2.18 135.24 202.86 

Notes: Translating climate-induced sovereign downgrades into increased sovereign cost of borrowing by 2100 

under RCP 8.5 scenario. Dataset includes 80 downgraded sovereigns and their outstanding sovereign debt figures 

for 2019 obtained from S&P SRIs. Conversion between sovereign downgrades into yields for lower bound is based 

on Afonso et al. (2012) and for higher bound on Gande and Parsley (2005), whereby 1 notch sovereign downgrade 

increases sovereign bond spread by 0.08% and 0.12% respectively. 
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Table D.3. Additional cost of corporate debt due to climate-induced sovereign downgrades 

(RCP 2.6, 2100) 

Sovereign 

Sovereign 

downgrade 

(notches) 

Outstanding 

corporate debt   

($ bn) 

Increase in cost 

of debt ($ bn) 

lower bound 

Increase in cost 

of debt ($ bn) 

higher bound 

Australia 0.78 213 0.08 0.14 

Austria 0.34 44 0.01 0.01 

Belgium 0.49 70 0.02 0.03 

Bulgaria 0.11 2 0.00 0.00 

Canada 1.84 515 0.45 0.80 

Chile 7.11 89 0.30 0.53 

China 1.80 4061 3.51 6.14 

Czech Republic 0.80 15 0.01 0.01. 

Denmark 0.37 25 0.00 0.01 

Estonia 0.45 1 0.00 0.00 

Finland 0.23 39 0.00 0.01 

France 0.27 777 0.10 0.18 

Germany 0.48 241 0.06 0.10 

Israel 0.19 66 0.01 0.01 

Japan 1.42 845 0.58 1.01 

Luxembourg 0.29 30 0.00 0.01 

Malaysia 1.10 176 0.09 0.16 

Netherlands 0.51 180 0.04 0.08 

Norway 0.44 91 0.02 0.03 

Peru 1.24 21 0.01 0.02 

Philippines 3.60 14 0.02 0.04 

Poland 0.89 20 0.01 0.01 

Slovakia 1.57 5 0.00 0.01 

Slovenia 1.37 1 0.00 0.00 

Spain 0.41 138 0.03 0.05 

Sweden 0.61 9 0.00 0.00 

Thailand 0.67 116 0.04 0.07 

United Kingdom 0.82 564 0.22 0.39 

United States 1.25 7126 4.28 7.48 

Total BIS  1.06 15531 9.90 17.33 

Notes: Translating climate-induced sovereign downgrades into increased corporate cost of debt by 2100 under 

RCP 2.6 scenario. Data availability from BIS on corporate debt restricts our sample to 28 countries. To calculate 

the value of corporate debt affected by sovereign downgrades we first convert the sovereign rating changes into 

sovereign yield which we then convert into corporate sovereign yield. To convert sovereign ratings into yields we 

use lower bond (0.08%) from Afonso et al. (2012) and higher bound (0.12%) from Gande and Parsley (2005). To 

then translate these into corporate spreads we use Almeida et al. (2017)’ conversions, with 0.6 for lower bound 

and 0.7 for higher bound. We multiply sovereign rating changes (see column 2) by an amount of outstanding debt 

at end-June 2020 (column 3) and 0.00048 for a lower bound (0.08%*0.6) and 0.00084 (0.12%*0.7) for a higher 

bound.  
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Table D.4. Additional cost of corporate debt due to climate-induced sovereign downgrades 

(RCP 8.5, 2100) 

Sovereign 

Sovereign 

downgrade 

(notches) 

Outstanding 

corporate debt   

($ bn) 

Increase in cost 

of debt ($ bn) 

lower bound 

Increase in cost 

of debt ($ bn) 

higher bound 

Australia 3.53 213 0.36 0.63 

Austria 2.17 44 0.05 0.08 

Belgium 1.11 70 0.04 0.07 

Bulgaria 3.16 2 0.00 0.01 

Canada 4.72 515 1.17 2.04 

Chile 7.43 89 0.32 0.56 

China 6.53 4061 12.73 22.28 

Croatia 0.96 3 0.00 0.00 

Czech Republic 2.65 15 0.02 0.03 

Denmark 0.82 25 0.01 0.02 

Estonia 1.40 1 0.00 0.00 

Finland 0.14 39 0.00 0.00 

France 2.70 777 1.01 1.76 

Germany 0.78 241 0.09 0.16 

Hungary 2.14 3 0.00 0.01 

Israel 0.86 66 0.03 0.05 

Italy 0.53 152 0.04 0.07 

Japan 2.56 845 1.04 1.82 

Lithuania 1.79 1 0.00 0.00 

Luxembourg 0.76 30 0.01 0.02 

Malaysia 6.07 176 0.51 0.90 

Netherlands 0.81 180 0.07 0.12 

Norway 0.57 91 0.02 0.04 

Peru 5.25 21 0.05 0.09 

Philippines 3.76 14 0.03 0.04 

Poland 4.13 20 0.04 0.07 

Portugal 1.23 37 0.02 0.04 

Slovakia 5.90 5 0.01 0.02 

Slovenia 2.87 1 0.00 0.00 

Spain 2.85 138 0.19 0.33 

Sweden 1.30 9 0.01 0.01 

Thailand 2.28 116 0.13 0.22 

Turkey 1.30 9 0.01 0.01 

United Kingdom 3.46 564 0.94 1.64 

United States 4.68 7126 16.01 28.01 

Total BIS 2.66 15699 34.94 61.15 
Notes: Translating climate-induced sovereign downgrades into increased corporate cost of debt by 2100 under RCP 8.5 scenario. Data 

availability from BIS on corporate debt restricts our sample to 34 countries. To calculate the value of corporate debt affected by 

sovereign downgrades we first convert the sovereign rating changes into sovereign yield which we then convert into corporate 

sovereign yield. To convert sovereign ratings into yields we use lower bond (0.08%) from Afonso et al. (2012) and higher bound 

(0.12%) from Gande and Parsley (2005). To then translate these into corporate spreads we use Almeida et al. (2017)’ conversions, 

with 0.6 for lower bound and 0.7 for higher bound. We multiply sovereign rating changes (see column 2) by an amount of outstanding 

debt at end-June 2020 (column 3) and 0.00048 for a lower bound (0.08%*0.6) and 0.00084 (0.12%*0.7) for a higher bound.  
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Appendix E - The effect of increased temperature volatility on sovereign ratings 

Table E.1. Climate-adjusted Sovereign Credit Ratings by Scenario, with increased 

temperature volatility (2030) 

Sovereign 

RCP 2.6 RCP 8.5 

Baseline 

Increased 

Volatility Baseline 

Increased 

Volatility 

Albania 6.99 6.95 6.88 6.76 

Angola 6.22 6.22 6.25 6.27 

Argentina 5.57 5.74 5.66 5.96 

Australia 19.31 19.26 19.23 18.58 

Austria 18.70 18.69 18.65 18.25 

Azerbaijan 10.44 10.44 10.43 10.44 

Bahamas 10.53 10.54 10.53 10.56 

Bangladesh 7.92 6.50 7.88 3.75 

Belarus 6.73 6.77 6.85 7.00 

Belgium 17.47 17.48 17.44 17.41 

Belize 5.16 5.17 5.22 5.30 

Benin 6.80 6.80 6.81 6.79 

Bolivia 8.67 8.68 8.69 8.68 

Bosnia and 

Herzegovina 6.57 6.59 6.74 6.87 

Botswana 12.98 12.97 12.85 12.26 

Brazil 8.64 8.64 8.60 8.62 

Bulgaria 11.29 11.38 11.35 11.09 

Burkina Faso 6.04 6.04 6.08 6.13 

Cameroon 6.41 6.42 6.44 6.50 

Canada 19.07 18.87 18.60 17.16 

Cape Verde 5.97 5.99 5.94 5.90 

Chile 14.41 13.57 14.11 11.98 

China 14.82 14.80 14.48 14.26 

Colombia 10.07 10.08 10.00 8.58 

Congo 5.45 5.46 5.47 5.50 

Congo D.R. 5.17 5.17 5.35 5.48 

Costa Rica 7.78 7.74 7.73 7.58 

Croatia 9.96 10.05 9.95 10.02 

Cyprus 10.82 10.84 10.79 10.67 

Czech Republic 16.20 16.20 16.14 15.86 

Denmark 19.63 19.62 19.61 19.44 

Dominican 

Republic 7.69 7.69 7.65 7.57 

Ecuador 6.30 6.41 6.36 6.68 

Egypt 5.70 5.70 5.67 5.67 

El Salvador 5.79 5.79 5.84 5.83 
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Table E.1. Cont.     

 RCP 2.6 RCP 8.5 

Sovereign Baseline 

Increased 

Volatility Baseline 

Increased 

Volatility 

Estonia 16.54 16.52 16.47 16.18 

Fiji 7.91 7.99 8.03 8.39 

Finland 18.78 18.79 18.78 18.77 

France 17.67 17.70 17.59 17.36 

Georgia 7.88 7.84 7.84 7.44 

Germany 19.51 19.49 19.47 19.37 

Ghana 5.82 5.83 5.82 5.84 

Greece 7.00 7.41 7.06 7.78 

Guatemala 8.46 8.46 8.51 8.53 

Honduras 7.72 7.72 7.73 7.72 

Hungary 11.50 11.56 11.53 11.39 

Iceland 15.44 15.45 15.44 15.50 

India 9.78 9.41 9.16 7.83 

Indonesia 9.37 9.11 8.91 7.69 

Iraq 6.45 6.48 6.50 6.68 

Ireland 16.65 16.65 16.65 16.63 

Israel 16.27 16.29 16.23 16.08 

Italy 11.90 11.90 11.80 11.76 

Japan 15.75 15.63 15.65 14.98 

Jordan 7.11 7.03 7.01 6.19 

Kazakhstan 11.01 10.86 10.91 10.17 

Kenya 6.62 6.61 6.60 6.53 

Korea 17.50 16.84 17.42 15.80 

Kuwait 17.51 17.49 17.49 17.47 

Latvia 14.20 14.21 14.13 13.62 

Lebanon 4.65 4.60 4.61 4.39 

Lithuania 14.46 14.48 14.43 14.31 

Luxembourg 19.70 19.64 19.68 19.56 

Malaysia 12.91 12.91 12.67 12.52 

Mexico 12.66 12.66 12.55 12.10 

Mongolia 5.67 5.68 5.67 5.69 

Morocco 9.83 9.80 9.60 8.92 

Mozambique 3.41 3.49 3.44 3.54 

Netherlands 19.51 19.47 19.48 19.40 

New Zealand 17.79 14.61 17.73 9.89 

Nicaragua 5.94 5.95 5.95 5.98 

Nigeria 6.85 6.86 6.87 6.92 

North Macedonia 8.21 8.24 8.24 7.10 

Norway 19.58 19.58 19.57 19.55 

Oman 10.48 10.48 10.49 10.42 

Pakistan 5.65 5.63 5.62 5.51 
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Table E.1. Cont.     

 RCP 2.6 RCP 8.5 

Sovereign Baseline 

Increased 

Volatility Baseline 

Increased 

Volatility 

Panama 11.71 11.70 11.62 11.47 

Papua New 

Guinea 6.69 6.69 6.73 6.73 

Paraguay 9.21 8.81 9.17 7.94 

Peru 11.88 11.74 11.78 8.80 

Philippines 11.19 10.66 10.70 9.01 

Poland 12.68 12.70 12.54 12.11 

Portugal 10.76 10.75 10.74 10.20 

Qatar 17.20 17.19 17.14 17.12 

Romania 11.13 11.13 11.11 9.43 

Russia 11.24 11.27 11.20 11.17 

Rwanda 6.44 6.44 6.45 6.46 

Saudi Arabia 14.36 14.39 14.37 14.39 

Senegal 6.70 6.70 6.70 6.66 

Serbia 8.35 8.29 8.25 7.65 

Slovakia 14.75 14.61 14.34 12.53 

Slovenia 15.14 15.01 14.88 14.50 

South Africa 8.95 8.89 8.77 7.67 

Spain 13.40 13.40 13.25 13.13 

Sri Lanka 6.23 6.23 6.19 6.13 

Suriname 6.52 6.40 6.46 5.91 

Sweden 19.44 19.39 19.40 19.16 

Switzerland 19.63 19.37 19.40 18.20 

Tajikistan 5.79 5.79 5.88 5.94 

Thailand 12.33 12.32 12.32 11.27 

Trinidad and 

Tobago 13.36 13.39 13.34 13.44 

Turkey 8.70 8.55 8.56 7.68 

Uganda 6.14 6.14 6.15 6.17 

Ukraine 5.89 5.90 5.91 5.79 

United Kingdom 17.51 17.51 17.42 16.76 

United States 18.51 18.43 18.24 17.54 

Uruguay 12.36 12.36 12.33 12.16 

Vietnam 8.31 8.29 8.26 6.78 

Zambia 5.59 5.62 5.63 5.66 
Notes: Table E.1. compares ratings in 2030, with and without increased temperature volatility. Columns 2-3 report 

results under RCP 2.6. Columns 4-5 report results under RCP 8.5.  
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Table E.2. Climate-adjusted Sovereign Credit Ratings by Scenario, with increased 

temperature volatility (2050) 

Sovereign 

RCP 2.6 RCP 8.5 

Baseline 

Increased 

Volatility Baseline 

Increased 

Volatility 

Albania 6.95 6.88 6.20 5.13 

Angola 6.22 6.23 6.24 6.25 

Argentina 5.69 6.00 5.95 6.11 

Australia 19.29 19.13 18.50 16.51 

Austria 18.70 18.62 18.19 16.80 

Azerbaijan 10.44 10.47 10.43 10.53 

Bahamas 10.54 10.55 10.55 10.97 

Bangladesh 7.89 3.76 7.22 2.98 

Belarus 6.74 6.85 7.06 8.35 

Belgium 17.48 17.53 17.41 17.02 

Belize 5.16 5.17 5.36 5.24 

Benin 6.80 6.80 6.68 6.61 

Bolivia 8.68 8.69 8.31 8.28 

Bosnia and 

Herzegovina 6.70 6.76 7.13 7.23 

Botswana 12.98 12.94 12.00 10.79 

Brazil 8.64 8.66 8.22 7.92 

Bulgaria 11.39 10.69 11.05 8.37 

Burkina Faso 6.04 6.05 6.13 6.27 

Cameroon 6.42 6.43 6.50 6.48 

Canada 18.89 18.22 16.20 15.34 

Cape Verde 5.99 5.93 5.86 5.68 

Chile 13.30 9.86 10.35 9.42 

China 14.81 14.78 13.41 12.70 

Colombia 10.08 10.05 9.19 6.94 

Congo 5.46 5.46 5.55 5.60 

Congo D.R. 5.17 5.17 5.92 6.25 

Costa Rica 7.67 7.32 7.07 6.91 

Croatia 10.00 10.09 9.85 9.57 

Cyprus 10.83 10.86 10.66 10.03 

Czech Republic 16.20 16.20 15.92 14.51 

Denmark 19.63 19.62 19.53 18.88 

Dominican 

Republic 7.69 7.69 7.54 7.30 

Ecuador 6.33 6.66 6.57 3.83 

Egypt 5.70 5.71 5.68 5.62 

El Salvador 5.79 5.80 5.92 5.85 

Estonia 16.54 16.53 16.20 15.63 

Fiji 8.04 8.29 8.42 7.22 



 

64 

 

Table E.2 Cont.     

 RCP 2.6 RCP 8.5 

Sovereign Baseline 

Increased 

Volatility Baseline 

Increased 

Volatility 

Finland 18.79 18.85 18.78 18.76 

France 17.70 17.71 17.19 16.13 

Georgia 7.87 7.81 7.67 6.47 

Germany 19.51 19.49 19.41 19.15 

Ghana 5.83 5.84 5.85 5.88 

Greece 7.13 7.82 7.81 7.35 

Guatemala 8.46 8.48 8.51 8.39 

Honduras 7.72 7.72 7.63 7.70 

Hungary 11.52 11.65 11.50 8.84 

Iceland 15.44 15.48 15.49 15.73 

India 9.34 8.02 6.36 5.58 

Indonesia 9.03 7.83 7.24 6.99 

Iraq 6.46 6.57 6.66 6.98 

Ireland 16.66 16.65 16.60 16.59 

Israel 16.28 16.33 16.12 15.63 

Italy 11.90 11.90 11.81 11.93 

Japan 15.62 14.72 14.64 13.92 

Jordan 7.08 6.76 6.54 5.71 

Kazakhstan 10.84 9.90 10.18 9.07 

Kenya 6.61 6.60 6.49 6.39 

Korea 17.35 15.69 16.39 7.72 

Kuwait 17.50 17.51 17.48 17.42 

Latvia 14.21 14.26 13.65 12.52 

Lebanon 4.54 4.29 4.29 4.15 

Lithuania 14.47 14.52 14.35 12.81 

Luxembourg 19.70 19.64 19.62 19.27 

Malaysia 12.91 12.90 11.96 11.03 

Mexico 12.66 12.65 10.72 8.36 

Mongolia 5.67 5.68 5.68 5.40 

Morocco 9.82 9.77 8.03 6.56 

Mozambique 3.41 3.54 3.59 3.94 

Netherlands 19.50 19.44 19.44 19.14 

New Zealand 17.55 7.61 16.81 7.01 

Nicaragua 5.93 5.96 5.98 6.11 

Nigeria 6.85 6.89 6.84 6.88 

North Macedonia 8.22 6.95 7.16 6.40 

Norway 19.58 19.58 19.56 19.37 

Oman 10.48 10.50 10.46 10.03 

Pakistan 5.64 5.66 5.46 5.26 

Panama 11.70 11.70 11.13 10.35 
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Table E.2 Cont.     

 RCP 2.6 RCP 8.5 

Sovereign Baseline 

Increased 

Volatility Baseline 

Increased 

Volatility 

Papua New 

Guinea 6.69 6.75 6.64 6.66 

Paraguay 9.19 7.87 8.83 3.77 

Peru 11.84 11.16 10.08 7.82 

Philippines 10.51 8.91 8.78 8.90 

Poland 12.69 12.81 12.22 9.71 

Portugal 10.75 10.49 10.25 9.74 

Qatar 17.19 17.20 17.06 16.90 

Romania 11.13 10.89 9.36 7.84 

Russia 11.28 11.29 10.78 10.16 

Rwanda 6.44 6.46 6.33 5.95 

Saudi Arabia 14.37 14.44 14.36 14.17 

Senegal 6.70 6.70 6.63 6.54 

Serbia 8.33 7.94 7.60 7.04 

Slovakia 14.68 14.15 12.28 10.11 

Slovenia 14.95 14.76 13.79 13.16 

South Africa 8.94 8.71 7.84 6.57 

Spain 13.41 13.41 12.72 11.98 

Sri Lanka 6.24 6.23 5.98 5.77 

Suriname 6.49 5.98 6.32 4.88 

Sweden 19.41 19.32 19.31 18.30 

Switzerland 19.30 18.01 17.87 17.41 

Tajikistan 5.79 5.80 6.13 6.25 

Thailand 12.33 12.33 12.04 10.53 

Trinidad and 

Tobago 13.39 13.46 13.37 13.60 

Turkey 8.66 8.34 8.26 6.91 

Uganda 6.14 6.14 6.17 6.17 

Ukraine 5.89 5.95 5.77 5.29 

United Kingdom 17.51 17.51 16.93 14.85 

United States 18.39 18.03 16.45 14.28 

Uruguay 12.36 12.31 11.73 10.09 

Vietnam 8.31 8.28 7.85 6.07 

Zambia 5.61 5.65 5.50 5.26 
Notes: Table E.2. compares ratings in 2050, with and without increased temperature volatility. Columns 2-3 report 

results under RCP 2.6. Columns 4-5 report results under RCP 8.5.  
 

 

 


