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Identification of novel risk loci for restless legs syndrome in 
genome-wide association studies in individuals of European 
ancestry: a meta-analysis
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Summary
Background Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and 
physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment 
options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets.

Methods In the discovery stage, we combined three GWAS datasets (EU-RLS GENE, INTERVAL, and 23andMe) with 
diagnosis data collected from 2003 to 2017, in face-to-face interviews or via questionnaires, and involving 15 126 cases and 
95 725 controls of European ancestry. We identified common variants by fixed-effect inverse-variance meta-analysis. 
Significant genome-wide signals (p≤5 × 10–⁸) were tested for replication in an independent GWAS of 30 770 cases and 
286 913 controls, followed by a joint analysis of the discovery and replication stages. We did gene annotation, pathway, and 
gene-set-enrichment analyses and studied the genetic correlations between restless legs syndrome and traits of interest.

Findings We identified and replicated 13 new risk loci for restless legs syndrome and confirmed the previously 
identified six risk loci. MEIS1 was confirmed as the strongest genetic risk factor for restless legs syndrome (odds 
ratio 1·92, 95% CI 1·85–1·99). Gene prioritisation, enrichment, and genetic correlation analyses showed that 
identified pathways were related to neurodevelopment and highlighted genes linked to axon guidance (associated 
with SEMA6D), synapse formation (NTNG1), and neuronal specification (HOXB cluster family and MYT1). 

Interpretation Identification of new candidate genes and associated pathways will inform future functional research. 
Advances in understanding of the molecular mechanisms that underlie restless legs syndrome could lead to new 
treatment options. We focused on common variants; thus, additional studies are needed to dissect the roles of rare 
and structural variations.
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Introduction
Despite the prevalence of restless legs syndrome being 
up to 10% in populations of European ancestry, its 
genetic basis and underlying pathophysiology remain 
unclear. The restless legs syndrome phenotype is an 
unusual composite of sensory and motor symptoms that 
present with distinct circadian rhythmicity. The 
symptoms worsen or are only present in the evening or 
at night and markedly lessen in the early morning. 
Patients feel an overwhelming urge to move, often in 
conjunction with unpleasant sensations, usually in the 
legs. Rest and inactivity provoke the symptoms, whereas 

movement and other external stimuli lead to temporary 
relief.1 Due to the chronic progressive nature of the 
disorder, it has long-lasting effects on patients’ mental 
and physical health. People with restless legs syndrome 
have substantially impaired sleep, reduced overall quality 
of life, and increased risk of depression, anxiety disorders, 
hypertension, and, possibly, cardiovascular disease.2 
Around 2–3% of the general population have severe 
restless legs syndrome, and most need chronic treatment 
with dopaminergics, α2δ ligands, or even opioids.1 
However, long-term use of dopaminergics can lead to 
severe side-effects, including the worsening of symptoms 
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(augmentation). Hence, there is an urgent need for 
alternative treatments. 

The likelihood of developing symptoms of restless legs 
syndrome is strongly affected by genetic factors. Family 
and twin studies have estimated that heritability is 
50–60%.3 Individual genetic risk variants and their putative 
target genes, however, were identified only when genome-
wide association studies (GWASs) became feasible. Six 
risk loci have so far been identified in this way,4–7 and have 
notably shaped research by uncovering potential new 
pathophysiological mechanisms. Genes in these loci 
provided reliable entry points for functional investigations 
at the molecular level and for animal studies.8–11

Given these genetically driven advances, we did a meta-
analysis of GWAS on restless legs syndrome in people 
of European ancestry, followed by replication in an 
independent dataset. We hypothesised that this approach 
would enable us to detect novel risk loci and pathways 
associated with restless legs syndrome that would provide 
further insights into the molecular mechanisms underlying 
the disorder, and yield possible novel therapeutic targets or 
avenues for the repurposing of existing drugs.

Methods
Study populations and phenotype definitions
For the discovery meta-analysis, we combined three 
GWAS datasets. The EU-RLS-GENE consortium GWAS 

includes cases and population-matched controls recruited 
in eight European countries, Canada, and the USA. People 
with restless legs syndrome were recruited in specialist 
outpatient clinics for movement disorders and in sleep 
units. Restless legs syndrome was diagnosed in face-to-
face interviews by an expert neurologist, based on the 
International Restless Legs Syndrome Study Group 
diagnostic criteria.1,12 A subset of the samples had been 
used in previous GWASs for restless legs syndrome 
(appendix p 10).4,6,7

The INTERVAL study13,14 included whole-blood donors 
recruited in England, enrolled between 2012 and 2014. 
The validated Cambridge-Hopkins Restless Legs 
Questionnaire15 was used to identify patients with 
restless legs syndrome and to exclude mimicking 
disorders. Probable and definite cases were combined 
in one group.

The 23andMe GWAS dataset comprised samples 
drawn from participants of the customer base of 
23andMe (Mountain View, CA, USA), which is a genetic 
testing company. The restless legs syndrome phenotype 
was determined with one research question, “Have you 
ever been diagnosed with restless legs syndrome?”, 
which had three response options: yes, no, and not sure. 
We include respondents who answered “yes” as cases 
and those who answered “no” as controls, and we 
excluded those who answered “not sure”.

Research in context

Evidence before this study
We searched PubMed for articles published up to July, 2017, with 
combinations of the search term “restless legs AND 
(genomewide OR genome-wide OR GWAS)”, without restrictions 
on language of publication. This search yielded 42 original 
articles, including reports on genetic linkage analyses and 
genome-wide association studies (GWASs). Although linkage 
results on restless legs syndrome have not been reproducible, 
GWASs so far have revealed six risk loci, with the strongest signal 
being in MEIS1, a member of the three aminoacid loop extension 
homeobox gene class. Subsequent studies have suggested 
altered embryonic development of the striatum is also important 
in the aetiology of restless legs syndrome. Nevertheless, the 
pathogenesis needs further elucidation. Changes in 
dopaminergic signalling and brain iron deficiency seem to be 
involved and are targeted by approved drugs. Other suggested 
causes include peripheral hypoxia and unknown metabolic 
factors related to uraemia and pregnancy. The current 
recommended treatment for restless legs syndrome, although 
effective, can lead to serious adverse effects, including worsening 
of symptoms, thus alternatives are needed.

Added value of this study
We did a meta-analysis of three GWAS datasets, which yielded a 
total sample size more than one order of magnitude larger than 
any previously published restless legs syndrome GWAS. We 

discovered 13 new risk loci for restless legs syndrome, taking the 
total from six to 19. Assessment of these candidate genes will 
enable more granular dissection of the pathogenesis of restless 
legs syndrome, which could improve determination of shared 
genetic architecture with other neurological phenotypes and the 
prospects of developing novel and more effective treatment 
options. Our results strongly support the link to neurogenesis, 
changes in neuronal circuit formation, synaptogenesis, and 
axonal guidance, thereby strengthening the concept of restless 
legs syndrome as a neurodevelopmental disorder. The novel risk 
loci include the genes CRBN, which encodes cereblon, and 
MEIS2, which encodes its physiological substrate homeobox 
protein Meis2. As thalidomide targets this interaction, this drug 
could be a candidate for the treatment of restless legs syndrome 
in patients beyond reproductive age.

Implications of all the available evidence
The genes and associated pathways identified provide a 
much-needed basis for future investigation of restless legs 
syndrome, informing which pathophysiological and 
pharmacological concepts to examine in laboratory and clinical 
trials. Our findings further suggest investigating the role of 
neurodevelopmental processes in restless legs syndrome and the 
mechanism of the interaction between cereblon and homeobox 
protein Meis2 in the context of assessing the repurposing of 
thalidomide.
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For the replication study, we used the 23andMe customer 
base to identify a distinct population. We used the same 
selection methods as for the discovery population.

Participants of all the original studies had provided 
informed consent, and the study protocols had been 
approved by the respective ethics committees. Demo
graphics of the study samples are provided in the 
appendix (p 10).

Genotyping, quality control, imputation, and statistical 
analysis
Genotyping, quality-control procedures, imputation, and 
statistical analysis methods of the individual studies are 
described in detail in the appendix (pp 4–5, pp 11–12). In 
brief, all studies did association analyses under an 
additive model by logistic regression on genotype dosage, 
adjusted for age, sex, and components from either multi
dimensional scaling or principal components analysis to 
correct for population stratification.

Meta-analysis procedures
For the discovery stage, summary statistics from each 
individual GWAS dataset were subjected to further 
quality control with EasyQC, version 8.5, and we did a 
fixed-effect inverse-variance meta-analysis with METAL, 
release 2011-03-25 (appendix p 5). To address heterogeneity 
between studies in the identified association signals, we 
did a random-effects meta-analysis with METASOFT, 
version 2.0.1 (appendix p 5). Genomic control was done in 
each study separately before meta-analysis by calculating 
the inflation factor λ and adjusting for it.16

To define independent genome-wide significant signals 
(p≤5 × 10–⁸) in the discovery meta-analysis results, we 
used a two-step procedure (appendix p 5). Briefly, we first 
assigned variants to clusters with the “clump” command 
in PLINK software (version 1.90b3.36) based on the 
association p value and short-range (500 kb) linkage 
disequilibrium (LD), with each clump defined by one lead 
single-nucleotide polymorphism (SNP). Second, we 
tested for statistical independence of the lead SNPs with 
the stepwise model selection procedure implemented in 
GCTA, version 1.25.3, taking into account long-range LD 
(10  Mb) between lead SNPs (appendix p 5). Finally, we 
did standard conditional analysis in the remaining 
independent SNP clusters, adjusted for the top-associated 
lead SNP, to identify secondary independent signals 
within the cluster.

For the joint analysis of the discovery and replication 
stages, summary statistics for independent association 
signals were subjected to fixed-effect inverse-variance 
and random-effects meta-analysis, as in the discovery 
stage (appendix p 5).

Heritability, partitioned heritability, and genetic 
correlation analysis
Heritability and partitioned heritability were estimated 
by LD-score regression (with LDSC, version 1.0.0) and 

using the summary statistics of the discovery meta-
analysis without genomic control correction. Partitioned 
heritability analysis used publicly available partitioned 
LD scores for 52 functional categories based on 
the phase 3 dataset of the 1000 Genomes Project, as 
precomputed by the developers of LDSC. For the genetic 
correlation analysis, we used the LD Hub database 
(version 1.2.2), which provides access to summary-level 
GWAS statistics of more than 200 traits. The analytical 
procedures and settings are detailed in the appendix 
(pp 5–6). To estimate the variance explained by genome-
wide significant association signals, we calculated 
Nagelkerke’s pseudo-R² in the EU-RLS-GENE dataset 
with tenfold cross validation.

Genetic risk score analysis
Genetic risk profiles were generated by estimating 
weighted polygenic risk scores in the EU-RLS-GENE 
dataset. The weights were based on the effect size 
estimates of the discovery meta-analysis (fixed-effect 
model). Polygenic risk scores were calculated with PRSice 
software, version 1.25 (appendix p 6).

Biological interpretation of association signals
As a first step, we did a literature-based annotation 
of protein-coding genes located in the genome-wide 
significant risk loci, defined based on LD, and in their 
vicinity (appendix p 6). To identify the biological and 
cellular pathways underlying the association signals, we 
applied bioinformatic methods for gene prioritisation 
and did enrichment analyses for pathways and tissues. In 
restless legs syndrome, the overall number of risk loci is 
small, restricting the use of standard tools, such as 
DEPICT.17 Moreover, the enrichment analysis could be 
hampered by the clinical heterogeneity of restless legs 
syndrome, its complex phenotype with somatosensory 
and motor symptoms, and pleiotropic effects of the 
candidate genes. Therefore, to enable efficient exploration 
of our data, we developed a new algorithm, called BI-
ENRICH, which builds on the concept of biclustering 
used in gene-expression analysis (appendix pp 6–8). 
Additionally, we used the DEPICT software (version 
rel19413) to do gene prioritisation for each locus and to 
search for gene set and tissue enrichment among these 
genes (appendix p 8).

Data sharing
BI-ENRICH code is available on GitHub. GWAS 
summary statistics will be made available for researchers 
(appendix p 3).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication.
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Results
The discovery stage association study was done in 
15 126 cases and 95 725 controls: 6228 and 10 992 from 
EU-RLS-GENE; 3065 and 24 923 from INTERVAL; and 
5833 and 59 810 from 23andMe. After quality control, 
6 864 281 SNPs and indels with minor allele frequency 1% 
or greater were available for statistical analysis. We 
identified 20 independent association signals meeting 
genome-wide significance (figure 1, table 1, appendix 
p 13). No secondary independent association signals with 
genome-wide significance were found in these 20 regions 
by standard conditional analysis. We assigned the 
20 independent association signals to 19 independent 
genomic risk loci (two mapped to the same gene, PTPRD, 
and are <500 kb apart; appendix p 65). Lead SNPs 
rs1836229 and rs62535767 of these two signals were not 
correlated (r²=0·0002, EU-RLS-GENE dataset). Genomic 
control showed negligible inflation of the median test 
statistic (λ1000=1·004, rescaled to adjust for the large sample 
size), which LD-score regression revealed was mainly due 
to polygenicity (intercept 1·018), as is expected for a 
common complex disorder, rather than being caused by 
population stratification or other confounders. We 
observed between-study heterogeneity at some loci, but 
all signals kept genome-wide significance in the random-
effects meta-analysis (appendix p 14).

Association data for all 20 signals were obtained from 
the replication dataset, which included 30 770 cases and 
286 913 controls (appendix p 10). All 20 association 

signals of the discovery stage were replicated, three at a 
Bonferroni-corrected level of p<0·0025, and 17 meeting 
genome-wide significance (table 1).

In the joint analysis of discovery and replication stages, 
all loci but one had genome-wide significance in the 
fixed-effect meta-analysis (table 1). All loci in the joint 
random-effects meta-analysis had genome-wide signifi
cance (appendix p 15). Overall, 13 new risk loci were 
identified and all six known genomic risk loci for restless 
legs syndrome were replicated (figure 1, table 1). The 
MEIS1 locus on chromosome 2 was confirmed as the 
strongest genetic risk factor for restless legs syndrome 
(table 1). The lead SNP, rs113851554, located in a putative 
regulatory element in intron eight of MEIS1, is a low-
frequency variant with odds ratio (OR) estimates of 
1·82–2·16, which clearly distinguish it from the other risk 
loci for restless legs syndrome. The amount of heritability 
of restless legs syndrome attributable to all SNPs available 
in our dataset in the LD-score regression was 19·6%. 
Focusing on the 20 independent association signals, 
these explained 11·7% of the observed variance (60% of 
the SNP heritability). In the assessment of distribution of 
genetic risk, calculated from polygenic risk scores based 
on the 20 association signals (appendix p 6), individuals 
in the highest risk group (polygenic risk score >4·4, 
99·5% quantile), had a significantly increased risk of 
restless legs syndrome (OR 17·6, 95% CI 8·5–42·3, 
p=6·9 × 10–²⁶). As this group represents only a very small 
subset of the population, we also compared the genetic 

Figure 1: Manhattan plot showing results of the discovery meta-analysis
Due to their close proximity, two independent risk loci on chromosome 2 (both previously known) and on chromosome 6 (one previously known, one new) appear as 
single peaks. Thus, 19 loci (six previously known and 13 new) are represented. SNP=single-nucleotide polymorphism.
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risk profiles of the 25% quantile (polygenic risk 
score <2·48) and the 75% quantile (polygenic risk 
score >3·15) of our population, which gave an OR of 5·9 
(95% CI 5·3–6·5, p=8·5 × 10–³⁰⁴). The distributions of the 
polygenic risk scores, however, substantially overlapped 
between the cases and controls, which precluded the use 
of these scores for risk prediction (appendix p 43).

To identify biological pathways related to restless legs 
syndrome, we annotated protein-coding genes in or close 
to the genomic risk loci we identified. Six loci contained 

only one gene and had no genes in the immediate 
vicinity: three of the newly identified loci, 
SEMA6D (15q21·1), SETBP1 (18q12·3), MYT1 (20q13·33), 
and three of the previously described genes, MEIS1 
(2p14), PTPRD (9p24·1–p23), and TOX3 (16q12·1). These 
genes function in axonal pathfinding and signalling, 
synaptogenesis, neuronal differentiation, and neuro
genesis (table 2). Most of the remaining loci also 
contained genes linked to neurodevelopment, among 
others (table 2). A basic annotation for additional genes 

Chromosome Position (bp) Effect 
allele

Other 
allele

Effect-allele 
frequency

Protein-coding 
gene context

Discovery stage 
meta-analysis

Replication stage Joint stage meta-analysis

p value Odds ratio 
(95% CI)

p value Odds ratio 
(95% CI)

p value Odds ratio 
(95% CI)

rs12046503 1 107195339 T C 0·59 PRMT6*†, NTNG1†‡ 3·32 × 10⁻³¹ 0·85 
(0·84–0·87)

2·03 × 10¯²⁹ 0·90 
(0·89–0·92)

3·25 × 10¯⁶³ 0·88 
(0·86–0·89)

rs10208712 2 4034446 G A 0·36 DCDC2C*† 3·78 × 10⁻¹⁵ 0·90 
(0·88–0·91)

7·74 × 10¯¹⁹ 0·92 
(0·91–0·94)

1·41 × 10¯³⁴ 0·91 
(0·90–0·92)

rs113851554 2§ 66750564 T G 0·07 MEIS1*†‡¶ 1·1 × 10⁻¹⁸⁰ 2·16 
(2·04–2·29)

4·80 × 10¯²³⁶ 1·82 
(1·75–1·89)

2·00 × 10¯²⁸⁰ 1·92 
(1·85–1·99)

rs1820989 2§ 68069890 C A 0·53 MEIS1¶, C1D,* 
APLF†

1·23 × 10⁻²⁰ 0·88 
(0·86–0·90)

1·98 × 10¯³⁹ 0·89 
(0·87–0·90)

1·39 × 10¯⁵⁸ 0·88 
(0·87–0·90)

rs80319144 2 159199835 T C 0·24 CCDC148*‡, PKP4†‡, 
TANC1‡

3·18 × 10⁻¹⁴ 0·89 
(0·85–0·92)

1·40 × 10¯²² 0·90 
(0·89–0·92)

2·55 × 10⁻²⁶ 0·90 
(0·88–0·92)

rs1848460 3 3448144 T A 0·26 CNTN4‡, CRBN*‡, 
LRRN1‡

5·38 × 10⁻¹⁴ 1·13 
(1·08–1·17)

1·93 × 10¯⁹ 1·06 
(1·04–1·08)

2·01 × 10⁻¹³ 1·07 
(1·05–1·10)

rs35987657 3 130535567 G A 0·33 ATP2C1*‡, ASTE1† 4·37 × 10⁻¹³ 0·90 
(0·88–0·91)

3·34 × 10¯²³ 0·91 
(0·90–0·93)

3·96 × 10⁻³⁸ 0·90 
(0·89–0·92)

rs17636328 6 37490531 G A 0·20 RNF8†, CCDC167*, 
MDGA1†‡

6·43 × 10¯¹¹ 0·89 
(0·85–0·92)

7·63 × 10¯¹⁸ 0·90 
(0·89–0·92)

2·55 × 10⁻²⁶ 0·90 
(0·88–0·92)

rs61192259 6§ 38453962 A C 0·59 BTBD9*†‡¶, GLO1† 1·36 × 10⁻⁷⁸ 1·31 
(1·28–1·34)

1·05 × 10⁻¹¹² 1·22 
(1·20–1·25)

3·58 × 10⁻²⁰² 1·26 
(1·25–1·28)

rs10952927 7 88359060 G A 0·13 ADAM2‡, STEAP4‡, 
ZNF804B*‡

1·86 × 10⁻¹⁵ 1·17 
(1·13–1·22)

5·01 × 10⁻¹⁷ 1·12 
(1·09–1·14)

1·73 × 10⁻³⁴ 1·13 
(1·11–1·15)

rs1836229 9§ 8820573 G A 0·48 PTPRD*†‡ 1·94 × 10⁻¹⁵ 0·90 
(0·88–0·91)

1·57 × 10⁻²⁹ 0·90 
(0·89–0·92)

7·36 × 10⁻⁴² 0·90 
(0·89–0·91)

rs62535767 9§ 9290311 T C 0·32 PTPRD*†‡ 3·13 × 10⁻¹⁰ 0·91 
(0·88–0·95)

8·77 × 10⁻⁷ 0·95 
(0·93–0·97)

3·23 × 10⁻⁹ 0·94 
(0·93–0·96)

rs340561 13 72848156 T G 0·20 DACH1*†‡, DIS3† 3·93 × 10⁻⁸ 1·09 
(1·05–1·14)

4·91 × 10⁻⁷ 1·05 
(1·03–1·07)

3·23 × 10⁻⁹ 1·06 
(1·04–1·08)

rs996064 15 36208998 T A 0·06 DPH6*, MEIS2‡ 2·96 × 10⁻⁹ 1·21 
(1·14–1·28)

5·45 × 10⁻²¹ 1·22 
(1·17–1·27)

3·39 × 10⁻²⁷ 1·22 
(1·17–1·26)

rs111652004 15 47360367 T G 0·10 SEMA6D*†‡ 1·05 × 10⁻¹⁰ 0·84 
(0·80–0·89)

3·83 × 10⁻¹⁷ 0·87 
(0·84–0·90)

2·69 × 10⁻¹⁶ 0·86 
(0·83–0·89)

rs868036 15§ 68055013 T A 0·32 SMAD3†, 
MAP2K5*¶, SKOR1¶, 
CLN6†

1·09 × 10⁻⁴⁸ 0·80 
(0·77–0·83)

9·23 × 10⁻⁷⁰ 0·85 
(0·84–0·87)

5·48 × 10¯⁶⁹ 0·84 
(0·83–0·86)

rs45544231 16§ 52632730 G C 0·42 TOX3*‡¶ 4·72 × 10⁻⁴⁸ 0·81 
(0·79–0·83)

4·36 × 10–87 0·84 
(0·83–0·86)

7·27 × 10¯¹³³ 0·83 
(0·81–0·84)

rs12450895 17 46772776 A G 0·21 HOXB cluster†‡, 
PRAC1*

4·87 × 10⁻⁸ 1·09 
(1·05–1·14)

2·01 × 10⁻¹⁰ 1·07 
(1·05–1·09)

4·27 × 10¯¹⁴ 1·08 
(1·06–1·10)

rs12962305 18 41870243 T C 0·25 SETBP1*‡ 1·37 × 10⁻¹⁰ 1·11 
(1·06–1·15)

6·59 × 10⁻⁵ 1·04 
(1·02–1·06)

1·11 × 10¯⁷ 1·05 
(1·03–1·07)

rs365032 20 62795405 G A 0·27 MYT1*†‡ 3·36 × 10⁻¹⁴ 1·13 
(1·08–1·17)

7·83 × 10⁻³⁶ 1·13 
(1·11–1·15)

1·73 × 10¯³⁴ 1·13 
(1·11–1·15)

All p values were obtained by fixed-effect inverse-variance meta-analyses. The threshold for genome-wide significance was p≤5 × 10¯⁸. For each locus, only the selected protein-coding genes are listed by genomic 
position (direction 5’ to 3’ on chromosome). GWAS=genome-wide association study. Position=GRCh37/hg19 coordinates. bp=base pair. *Selected by nearest gene. †Selected by BI-ENRICH prioritisation 
(nominal p<0·05). ‡Selected by manual annotation. §Loci already discovered in previous GWASs.4,6,7 ¶Gene reported in previous GWASs.4,6,7

Table 1: Association results for lead single-nucleotide polymorphisms reaching genome-wide significance in the discovery meta-analysis
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linked to the risk loci and regional association plots for 
all loci are provided in the appendix (pp 16–19, pp 44–86).

These observations were substantiated by bioinformatic 
enrichment and gene prioritisation analyses. The 
BI-ENRICH algorithm showed that most of the top 
pathways identified for restless legs syndrome were related 
to neurodevelopment, including neurogenesis (genes 
MDGA1, MYT1, NTNG1, and SEMA6D), cell-junction 
organisation (PKP4 and SMAD3), and axon guidance 
(NTNG1 and SEMA6D). Moreover, locomotor behaviour 
(BTBD9, CLN6, HOXB8, and MEIS1) was highlighted 
(figure 2, appendix pp 20–22). Pathways related to DNA 
repair and maintenance (APLF, ASTE1, DIS3, PRMT6, 
and RNF8) were also detected by the enrichment analysis. 
Consistent with these results, BI-ENRICH prioritised 
genes related to neurodevelopment and DNA-damage 
repair (appendix pp 23–30). Use of the standard version of 
DEPICT returned no significant results (appendix 
pp 31–32). However, including the UniProtKB biological 
process annotations in the gene-set definitions, genes 
prioritised by DEPICT were enriched for neurogenesis 
(false discovery rate <0·05, appendix p 33). Finally, we did 
stratified LD-score regression to partition the heritability 
carried by all SNPs to specific functional categories. 
14·8% of the SNPs that reside in regions associated with 
histone marks in the CNS explain 44·7% of the variance. 

This CNS enrichment is significant (enrichment factor 
44·7/14·8=3·0, p=0·0043). Consistent with this obser
vation, tissue enrichment analyses with BI-ENRICH and 
DEPICT ranked brain and spinal cord tissues at the top, 
but false discovery rates were greater than 0·2, and only 
spinal-cord tissue (BI-ENRICH) and mesencephalon 
(DEPICT) were significant (appendix pp 34–37).

Finally, we used LD-score regression to assess the 
genetic correlation between restless legs syndrome and 
diseases and traits of interest (figure 3, appendix p 38). 

Genes Functions related to neurodevelopment

rs12046503 NTNG1 Presynaptic cell-adhesion molecule involved in synapse formation18

rs10208712 DCDC2C Encodes neuronal migration protein doublecortin, a member of the DCX protein family of cell-adhesion molecules; unknown function, but other members of the DCX 
family act in neuronal migration and axonal growth and have been linked to neurological and developmental disorders19

rs113851554 
rs1820989

MEIS1 Implicated in neurogenesis, specification of neuronal cell type, and establishing connectivity between neurons and their target field; binds HOX proteins of all paralogue 
groups, participates in controlling HOX gene expression20

rs80319144 PKP4 Encodes the cell-adhesion molecule plakophilin-4, which serves as a scaffold for signalling complexes and plays a part in cell adhesion and neurite outgrowth21

rs1848460 CRBN, 
CNTN4

Cereblon, encoded by CRBN, is the substrate receptor of a Cullin4a RING E3 ubiquitin ligase and regulates assembly and expression of calcium-activated potassium 
channels in the brain;22,23 contactin-4, encoded by CNTN4, is a cell-adhesion molecule with an important role in axon guidance, synapse formation, and neuronal 
network plasticity24

rs17636328 MDGA1 Encodes MAM domain-containing glycosylphosphatidylinositol anchor protein 1, which is a trans-synaptic cell-adhesion molecule implicated in synapse 
development25,26

rs10952927 ZNF804B, 
ADAM22

ZNF804B, which is highly homologous to ZNF804A, has been associated with schizophrenia and bipolar disorder;27 ADAM22 is a synaptic receptor involved in 
synaptic transmission and synaptic disorders28

rs1836229
rs62535767

PTPRD Related to functions in axon guidance and synaptogenesis, especially in the formation of excitatory synapses29,30

rs340561 DACH1 Dach1 is a transcription factor acting as a neurogenic cell-fate determining factor31

rs996064 MEIS2 Involved in neurogenesis and contributes to determination of dopaminergic-cell fate; binds HOX proteins of all paralogue groups and participates in controlling 
expression of HOX genes32

rs111652004 SEMA6D Involved in axonal pathfinding and signalling; exerts repulsive or attractive effects on axons, depending on the specific combinations of its main receptor with co-
receptors; SEMA6D knockout mice show misdirection of proprioceptive axons and their associated oligodendrocytes in the dorsal horn, affecting proper synapse 
formation33,34

rs45544231 TOX3 Implicated in neurogenesis, specification of neuronal cell type, and establishing connectivity between neurons and their target fields35

rs12450895 HOXB cluster 
family 

Assign positional identities to neurons along the rostrocaudal axis in hindbrain and spinal cord, which is crucial in the specification of neural subpopulations and their 
target cells; mouse models show the necessity of Hoxb genes for correct neuronal specification, migration, and circuit formation36,37

rs365032 MYT1 Myt1 kinase is a transcription factor expressed in neural progenitor cells in the central and peripheral nervous systems; involved in neuronal differentiation by 
suppressing neural progenitor fate and promoting neurogenesis38

Only risk loci with candidate genes linked to functions in neurodevelopment are listed. Annotation of the genes was done as described in the appendix (p 6).

Table 2: Candidate genes linked to functions in neurodevelopment

Figure 2: Representation of significantly enriched functional gene sets found by the BI-ENRICH analysis
Similarities between gene sets are measured with the Jaccard index, with low being J<0·3, medium 
being J≥0·3 to <0·5, and high being J≥0·5. Empirical p values are shown.
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Restless legs syndrome showed some positive correlations 
with neuropsychiatric diseases, whereas correlations were 
mainly negative with neurodegenerative disorders 
(figure 3), although none reached nominal significance. 
Few supporting data are available from corresponding 
epidemiological studies. Two small studies showed 
increased prevalence of restless legs syndrome among 
people with amyotrophic lateral sclerosis.39,40 One study 
showed prevalence of 4% among people with Alzheimer’s 
disease, which is lower than the average 6–12% in elderly 
people of European descent,41,42 but making a diagnosis of 
restless legs syndrome in cognitively impaired individuals 
is challenging and the findings are difficult to interpret. 
Data on restless legs syndrome and Parkinson’s 
disease were inconclusive, showing wide-ranging 
prevalence (0–50%), with some studies proposing restless 
legs syndrome as a risk factor for Parkinson’s disease and 
others showing protective effects.43 Moreover, 
dopaminergic treatment of Parkinson’s disease has been 
suggested to precipitate restless legs syndrome in some 
patients.44 The risk locus on chromosome 15q23 
(encompassing MAP2K5 and SKOR1) overlaps with 
GWAS signals of four different traits, including the 
posterior cortical atrophy variant of Alzheimer’s disease 
(appendix pp 39–41). The ORs of the shared SNP 
rs11637445 were 1·48 for posterior cortical atrophy 
and 0·89 for restless legs syndrome, which is consistent 
with the negative correlation between these two disorders. 
We found a significant positive correlation between 
restless legs syndrome and depressive symptom 
phenotypes and with neuroticism (figure 3, appendix 

p 38). These genetic correlations are in line with 
epidemiological associations, which show increased 
prevalence of these phenotypes in patients with restless 
legs syndrome.42,45 Overall, the correlations between 
restless legs syndrome and neurological or psychiatric 
phenotypes were low to moderate. We found a positive 
genetic correlation with number of children (r=0·22, 
p=0·0079). Pregnancy is a validated risk factor for restless 
legs syndrome, and parity increases the risk of developing 
restless legs syndrome in later life.46 Sleep-related 
phenotypes and iron-related traits showed correlations in 
line with published data,1,47 but none reached nominal 
significance. Finally, negative genetic correlations were 
generally seen between restless legs syndrome and 
measures of educational attainment (figure 3), although 
this association does not seem to be widely reported.

Discussion
This association study identified 20 independent 
association signals that reached genome-wide significance 
in 19 risk loci, of which 13 had not been previously 
reported. A subset of these signals showed between-study 
heterogeneity in our meta-analyses; in a random-effects 
meta-analysis that accounted for heterogeneity, all reached 
genome-wide significance. Effect-size estimates and 
strength of the association signal in these loci varied 
between studies, probably because of differences in 
phenotyping methods (clinical face-to-face interview, self-
reporting by participants via a validated questionnaire, and 
self-reporting by use of one question). These differences 
can lead to variation in the proportions of misclassified 

Figure 3: Genetic correlation between restless legs syndrome and other traits
Data are mean (SE) correlations, based on linkage disequilibrium score regression in LD-Hub (appendix pp 5–6). PMID=PubMed article unique identifier. *p<0·05. †p<0·005.
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cases and controls and might have modified some of the 
association signals. Moreover, the specific features of the 
restless legs syndrome phenotype, such as disease severity 
or preponderance of motor or sensory symptoms, might 
have varied between the studies. Detailed clinical data were 
scarce, and the restless legs syndrome phenotypes in the 
INTERVAL and 23andMe datasets were not clinically 
validated and, therefore, we cannot further address the 
underlying causes of heterogeneity. Studies including 
detailed assessments of restless legs syndrome symptoms 
are needed to dissect the specific roles of and possible 
interactions between genetic variants in the risk loci and 
the resulting phenotypes.

Together, the 20 association signals accounted for 60% of 
the SNP-based heritability of 19∤6% estimated in this study. 
Our dataset was limited to SNPs and small indels with 
minor allele frequency of 1% or greater. Therefore, we 
could not assess the contribution of rarer or structural 
variants, which are likely to have larger effect sizes and 
might explain another part of the heritability of restless legs 
syndrome. Future large-scale whole-genome sequencing 
efforts might have the power to detect such variants.

The main aim of our study was to provide new clues to 
understanding the biology of restless legs syndrome. 
Candidate genes and pathway analyses across the 19 risk 
loci converge on functions important in the development 
of the CNS, such as neurogenesis and neural-circuit 
formation, including axon guidance and synaptogenesis. 
Additionally, the BI-ENRICH analysis highlighted 
DNA-damage repair, which is important for development 
and maintenance of the nervous system, as having a 
relevant role.48,49 The involvement of perturbations in 
neurodevelopmental processes is in line with previous 
functional studies of MEIS1 that identified the embryonic 
ganglionic eminences as relevant structures of restless legs 
syndrome biology.50 Our pathway analysis was designed to 
have high sensitivity to avoid downward bias, such as false-
negative results due to incomplete information provided by 
the annotation databases. To avoid upward bias (ie, false-
positive enrichment results), we corrected by sampling and 
null-GWAS permutation (phenotype label permutation). 
Significance of results in the tissue enrichment analyses 
might have been hindered by a lack of appropriate samples 
from relevant anatomical regions or developmental stages 
in the input datasets. Nonetheless, neuronal tissues were 
consistently prioritised, and nominally significant regions, 
such as midbrain structures and spinal cord, have 
previously been implicated in restless legs syndrome.51

At present, major concepts in the pathophysiology of 
restless legs syndrome address alterations in the 
dopaminergic neurotransmitter system and in brain iron 
metabolism, and are supported by evidence from animal, 
imaging, and human post-mortem studies.47 Even though 
our enrichment analyses did not specifically highlight 
corresponding biological processes, the new risk loci 
offer potential bases for functional studies that might 
shed light on mechanisms underlying the suspected 

changes of the dopaminergic neurotransmitter system or 
brain iron metabolism. Moderate, albeit non-significant, 
positive genetic correlations are being reported with 
neuropsychiatric disorders, such as schizophrenia or 
bipolar disorder, for which evidence of contributing 
pathological events that affect early neurodevelopment 
and the correct setup of neuronal circuitry is growing.52,53

Finally, annotation of the risk loci identified a gene  with 
a product targeted by an existing drug that is readily 
available for repurposing. The ubiquitin ligase substrate 
receptor, cereblon, which is encoded by CRBN (locus on 
chromosome 3p26) is a target of the drug thalidomide, 
and homeobox protein Meis2, which is encoded by MEIS2 
(locus on chromosome 15q14), has been identified as an 
endogenous substrate of cereblon.33 Thalidomide was 
initially licensed as a hypnotic, but was withdrawn from 
the market because of teratogenicity. Thalidomide and its 
analogues are now used as immunomodulatory drugs in 
cancer. They block binding of homeobox protein Meis2 to 
the ubiquitin ligase, thereby modulating its activity.20 
Thalidomide and thalidomide-like substances, therefore, 
could be potential candidates for therapeutic use in 
restless legs syndrome, including in women beyond 
reproductive age. Moreover, this finding might also 
provide clues to the sleep-promoting mechanisms of 
this drug. Carefully designed clinical trials are needed to 
further investigate these drugs.

With the 13 new risk loci identified for restless legs 
syndrome, the total becomes 19. Our results suggest 
that altered embryonic neurodevelopment, impaired  
neurogenesis at later age, or both, could underlie restless 
legs syndrome pathogenesis. The exact molecular 
mechanisms, the relevant times in life, and the 
connection to brain iron metabolism and the 
dopaminergic system are unknown, but the implicated 
loci, candidate genes, and candidate pathways will provide 
impetus for further functional research in restless legs 
syndrome. Finally, the possibility of repurposing 
thalidomide could lead to translation of these research 
findings into the care of patients.
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