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In the past decade, the zebrafish (Danio rerio) has become a popular model system for the study of vertebrate
development, since the embryos and larvae of this species are small, transparent and undergo rapid
development ex utero, allowing in vivo analysis of embryogenesis and organogenesis. These characteristics can
also be exploited by researchers interested in signaling pathways and disease processes and, accordingly,
there is a growing literature on the use of zebrafish to model human disease. This model holds great potential
for exploring how autophagy, an evolutionarily conserved mechanism for protein degradation, influences the
pathogeneses of a range of different human diseases and for the evaluation of this pathway as a potential
therapeutic strategy. Here we summarize what is known about the regulation of autophagy in eukaryotic cells
and its role in neurodegenerative disease and highlight how research using zebrafish has helped further our
understanding of these processes.
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1. Introduction

1.1. Protein degradation pathways

Efficient degradation of proteins is essential to maintain normal
cell homeostasis. In eukaryotes, there are two main degradative
pathways; the ubiquitin-proteasome pathway and the autophagy-
lysosome pathway. The proteasome is a barrel-shaped multi-subunit
protein complex, the core of which contains the components
necessary for proteolysis. Proteins are generally targeted to the
proteasome after they are tagged by a chain of four or more covalently
bonded ubiquitin molecules. In addition to the specificity imposed by
the requirement of an ubiquitination signal, the narrow core of the
proteasome barrel limits the size of proteins that can be degraded
via this pathway. Typically, short-lived and long-lived cytosolic and
nuclear proteins are degraded by the proteasome. In contrast,
macroautophagy (from hereon referred to as autophagy) can mediate
non-specific, bulk degradation of long-lived cytosolic proteins and
organelles. Autophagic degradation requires the formation of a
double-membraned vesicle, the autophagosome, around a portion of
the cytoplasm. Ultimately, autophagosomes fuse with lysosomes to
form autolysosomes, acidic compartments in which lyosomal hydro-
lases degrade any proteins contained within the vesicle (see Fig. 1).
Autophagy occurs at a basal level in mammalian cells, but is
upregulated in response to various physiological stress conditions
e.g. starvation. While it is primarily a mechanism to ensure cell
survival, there is increasing evidence for the importance of autophagy
as a mechanism for cell death, particularly in insect metamorphosis
[1].

1.2. Zebrafish models of neurodegeneration

The optical clarity, speed of development, and fecundity of
zebrafish have made them a popular vertebrate model for the study
of developmental biology, and, more recently, as an animal model to
study disease processes [2,3]. The creation of transgenic zebrafish is
relatively straightforward [4–7], and has been used to successfully
generate models of a range of human neurodegenerative disorders.
Diseases caused by dominantmutations can bemodeled by expressing
the mutated human gene under the control of a zebrafish promoter.
Such an approach has been used to model polyglutamine expansion
diseases, like Huntington's disease [8], tauopathy [9–11] and amyo-
trophic lateral sclerosis (ALS) [12]. Furthermore, since zebrafish larvae
are transparent, fluorescent transgene constructs can be used in a
variety of ways to examine disease pathogenesis, in vivo. For example,
reporter lines where particular neurons are fluorescently labeled have
been used to investigate the sensitivity of monoaminergic neurons to
the neurotoxin MPTP [13]. Bi-directional transgenic constructs have
been used to create lines in which a fluorescent protein signal is
expressed with the same spatial and temporal control as the disease-
causing protein [11]. Similarly, direct fusion of a fluorescent protein to
the disease-causing transgene has been employed as a read-out of
transgene expression, but can also be used as a marker for protein
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Fig. 1. Schematic model of autophagy. Pre-autophagosomal structures form within the cytoplasm. Atg5, Atg12 and Atg16l proteins are recruited to the structure and facilitate
elongation. The elongated membranes enwrap a region of the cytoplasm and its contents in a double-membraned autophagosome. Lysosomes ultimately fuse with autophagosomes
releasing lysosomal hydrolases into the vesicle resulting in the degradation of its contents.
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aggregation. Such an approach has been used to examine huntingtin
aggregate clearance in vivo, as a method for validating novel
therapeutic strategies [8]. In addition to the creation of stable
transgenic lines to model dominant genetic mutations, transient
over-expression techniques have been used to this end. In such
studies, injection of DNA or mRNA into fertilized eggs results in
transient expression of the disease-causing protein during embryo-
genesis and in early larval stages [14–18]. Although there is an
inherent level of variability in gene expression, thismethodhas proved
powerful for the study of diseasemodifiers inmodels of polyglutamine
disease [14] andmotor neurondisease [16–19] and in the evaluation of
therapeutic strategies [15].

Loss-of-function models of neurodegeneration have also been
widely explored in zebrafish (see [20] for review). The most widely
used technique for the study of loss-of-function is that of transient
knockdown using antisense technologies. Morpholino oligonucleo-
tides are the most commonly used, validated and accepted
antisense technique in zebrafish [21], although other antisense
technologies, such as peptide nucleic acid mimics (gripNAs) [22],
are now gaining popularity. Recently, spatial and temporal control
of morpholino knockdown has been described, by combining a
neutralizing strand with the morpholino oligonucleotide that is
photocleavable by irradiation with UV light [23]. Transient knock-
down techniques have been used to develop zebrafish models of
Parkinson's disease [24–29], ALS [30] and spinal muscular atrophy
(SMA) [31–33]. In addition to their use for developing disease
models for loss-of function disorders, antisense knockdown tech-
nologies have been used to investigate normal gene function and
elucidate novel signaling pathways in a range of neurodegenerative
disorders including Huntington's disease [34–37], Alzheimer's
disease [38–41] and SMA [32,42–44] and to investigate the role of
progranulin and TDP-43 in the pathogenesis of ALS and frontotem-
poral lobe dementia [17–19,45].

The limitation of such antisense techniques is that knockdown is
transient, usually only lasting to 5–7 d.p.f. Therefore efforts have
focused on the development of methods for targeted gene knockdown
in zebrafish [46–48], with the recent reports of zinc finger nuclease
(ZFN) technology holding promise for the widescale and specific
generation of heritable loss-of-function alleles [49–51]. In addition,
random mutagenesis screens [52,53] have yielded numerous mutant
zebrafish lines in which the mutated gene is implicated in a human
disease, e.g. muscular dystrophy [54–57], and it is hoped that the
continuing screening of mutagenized libraries (e.g. TILLING—Target-
ing Induced Local Lesions in Genomes) will yield mutations in specific
genes of relevance to neurodegenerative disorders.
In addition to the ease of genetic manipulation, zebrafish are also
highly amenable to pharmacological manipulation [58]. This allows
up and down-regulation of cell signaling pathways by chemical
agonists and antagonists, in addition to the use of zebrafish disease
models to test therapeutic strategies [8,11] and perform compound
screens [15]. The zebrafish offers advantages over equivalent rodent
models, since the manifestation of disease phenotypes is typically
more rapid than in their rodent equivalent, larvae can be arrayed in
multi-well plates, and compound requirement is small. Since
zebrafish are highly amenable to both genetic modification [59,60]
and direct compound screening in a tractable fashion [61], they are
potentially a powerful tool for the investigation of the autophagy
pathway and its role in neurodegeneration. The remainder of this
article is dedicated to the application of such zebrafish models to the
study of autophagy.

1.3. The molecular control of autophagy in eukaryotes

Under normal conditions, autophagy occurs at basal levels, but can be
induced rapidly in response to stress conditions and extracellular signals.
Target of rapamycin (TOR), a serine/threonine protein kinase, is a central
component controlling autophagy, integrating signals from multiple
upstream pathways and inhibiting autophagy (see Fig. 2). The regulatory
pathways controlling autophagyarewell describedelsewhere [62], hence
this review focuses on aspects of the pathwaywhere the zebrafishmodel
has or could be employed to further our understanding of this process.

mTOR forms two distinct complexes (mTORC1 and mTORC2),
which vary both in their subunit components and their function. The
mTORC1 complex consists of 3 subunits: mTOR, G protein β-subunit-
like (mSLT8) and the regulator-associated protein mTOR (Raptor).
Under normal conditions, the mTORC1 complex blocks autophagy by
phosphorylating Ulk1 [63–65], but this inhibitory activity is repressed
by rapamycin treatment (a specific TOR inhibitor) or starvation
conditions, leading to an upregulation of autophagy. mTORC1 is itself
inhibited by the action of the tuberous sclerosis complex 1 and 2
proteins (TSC1 and TSC2), which together form a complex (TSC1/2)
(Fig. 2). The mTORC2 complex consists of 4 subunits: mTOR, mSLT8,
Rictor (rapamycin-insensitive companion of mTOR) and mSin1
(mitogen-activated-protein-kinase-associated protein 1). The
mTORC2 complex regulates actin cytoskeleton dynamics and is not
involved directly in the regulation of autophagy [66].

The conservation of TOR signaling pathway has been explored in
zebrafish using both pharmacological manipulation and morpholino
gene knockdown [67]. Zebrafish have a single homologue of mTOR
which, although expressed ubiquitously during early embryogenesis,
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becomes localized to the head and developing gut between 35
and 57 hours post-fertilization (h.p.f.). Treatment of zebrafish with
rapamycin during early embryogenesis resulted in developmental
delay, but did not cause any overt defects. However, longer treatment
resulted in specific defects in the growth and morphogenesis of the
zebrafish gut. Morpholino knockdown of zebrafish mTOR, raptor and
S6 kinase (an mTOR effector that regulates translation but not
autophagy) resulted in defects in the development of the digestive
tract that phenocopy those observed with rapamycin treatment,
whereas knockdown of rictor had only minimal effects in gut growth
and morphogenesis [67]. This study demonstrates a critical role for
TOR via the TORC1 complex in vertebrate intestinal development.
Importantly, since TOR regulates many processes besides autophagy,
many of these consequences of mTOR inhibition may be autophagy-
independent. The equivalent studies have not been performed in
mouse embryos, since knockdown of mTOR results in embryonic
lethality [68]. This highlights the advantages that the zebrafish offers
over the mouse in the study of gene knockdown effects, as embryonic
events can be more readily visualized. However, a recent study using
morpholino knockdown of the autophagy-related gene gabarap
reported microcephaly and jaw defects in zebrafish morphants [69],
whereas gabarap knockout mice are phenotypically normal [70],
suggesting that further studies are needed to determine whether the
roles of autophagy in mammalian development are conserved in non-
mammalian vertebrates. Many more components of the autophagy
pathway and aspects of TOR-independent autophagy regulation
remain unexplored in zebrafish. A summary of the zebrafish homologs
of selected mammalian components of the autophagy regulatory
pathway are listed in Table 1. The ability to perform gene knockdown
and to temporally control signaling pathways using pharmacological
inhibitors, as described above, highlight the potential of this model for
the investigation of autophagy regulation.

1.4. Tools for assessing autophagy in zebrafish

In addition to understanding the molecular control of autophagy
and its conservation between zebrafish and mammals, it is important
Fig. 2. Simplified schematic of the regulatory pathways controlling autophagy. Additional r
investigated in zebrafish.
to examine the onset of expression of the pathway components. The
formation of autophagosomes is assessed by the conversion of LC3-I to
LC3-II, since LC3-II is specifically associated with autophagosomes. In
contrast to the mouse embryo, where LC3-II is observed in oocytes
[71], He et al. demonstrated that zebrafish LC3-II was only detectable
from 32 h.p.f. onwards. Although RT-PCR analysis demonstrated
the presence of transcripts of the autophagy genes beclin and lc3 at
0 h.p.f., ulk1a and ulk1b (identified as putative zebrafish homologs
of the single mammalian ulk1 autophagy gene) and atg9a and atg9b
were not expressed until at least 23 h.p.f. [72]. The later expression of
these autophagy genes may explain why autophagosome formation
(as measured by LC3-II) is delayed in the zebrafish embryo relative to
mammalian embryos, and also raises questions about the importance
of autophagy in early embryogenesis in this organism.

Gene knockdown studies could be of great value in dissecting
the roles of individual pathway components (listed in Table 1) in the
regulation of autophagy. This approach has been widely adopted
in vitro, using siRNA and shRNA (comprehensively reviewed in [73]).
However, little work has been performed to confirm these findings
in vivo. Here, gene knockdown in zebrafish may offer advantages over
knockout mouse studies, which are, by comparison, lengthy and
costly. Such an approachwas recently employed by Dowling et al. [74]
investigating the work of myotubularins in the regulation of
autophagy and in the pathogenesis of centronuclear myopathy.
Myotubularins (MTM) and myotubularin-related proteins (MTMR)
are family of phosphatases that dephosphorylate phosphinositides.
Using siRNA, MTMR14 (also called Jumpy) was previously demon-
strated to act as a suppressor of autophagy in vitro, since knockdown
resulted in an increase in autophagosome formation [75]. In zebrafish,
knockdown of MTMR14 was shown to cause a similar increase in
autophagy (as measured by LC3-II levels) and double knockdown
studies with MTM1 resulted in a phenotype reminiscent of human
centronuclear myopathy [74].

Another valuable tool in the study of autophagy is the measure-
ment of LC3-II levels. Western blotting to detect LC3-II can be used
to determine the number of autophagosomes and to measure
changes in autophagic flux. Using such an approach, He et al. [72]
egulatory pathways exist in mammalian cells (reviewed in [62,73]) but have yet to be
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Table 1
Zebrafish homologs of key components of the autophagy pathway.

Mammalian gene Zebrafish homolog(s) Accession number(s) RefSeq status Notes

Akt/Protein kinase
B (Akt1)

No sequence homologs for
Akt1 identified in Genbank

AMBRA1 No sequence homologs
identified in Genbank

ATG10 atg10 NM_001037124 Provisional
ATG12 atg12 XM_694510 Model Predicted homolog.
ATG16L1 atg16l1 NM_001017854 Provisional
ATG3 apg3l, autophagy 3-like NM_200022 Provisional
ATG4A atg4a NM_001024434 Provisional
ATG4B atg4b NM_001089352 Provisional
ATG4C atg4c NM_001002103 Provisional
ATG4D LOC795933 autophagy-related

4D-like
XM_001333057 Model Predicted homolog.

ATG5 atg5 Isoform 1: NM_001009914 Provisional
Isoform 2: NM_205618 Provisional

ATG7 atg7 XM_002663680 Model Predicted homolog; partial mRNA sequence.
ATG9A atg9a NM_001083031 Provisional
ATG9B atg9b NM_001080705 Provisional
Bcl2 bcl2 NM_001030253 Provisional
Beclin1 beclin1 NM_200872 Provisional
Gabarap gabarap NM_001013260 Validated
GβL/MLST8 mlst8 NM_199877 Provisional
MAP1LC3A map1lc3a NM_214739 Provisional
MAP1LC3B map1lc3b

map1lc3b-like
NM_199604
XM_002664472

Provisional
Model

Possible gene duplication in zebrafish.

MAP1LC3C zgc:56565 NM_200298 Provisional
PTEN ptena NM_200708 Provisional ptena and ptenb encode functional enzymes with

spatially distinct expression patterns [86,87].ptenb NM_001001822 Provisional
Raptor Rptor (raptor-like) XM_002662358 Model Predicted homolog.
Rheb Rheb NM_001076748 Validated
Rictor Rictor XM_001921872 Model Predicted homolog. Homolog previously reported

in [67] (XM_685234) has now been removed
from Genbank.

SQSTM1 sqstm1 XM_002662358 Provisional
TOR mTOR NM_001077211 Provisional
TSC1 tsc1a NM_200052 Provisional TSC1b reported in [88] now annotated as

non-coding RNA.(tsc1b) (NR_023332) Provisional
TSC2 tsc2 XM_690820 Model Predicted homolog.
Ulk1 Ulk1b XM_002665925 Model Chromosome 21 (predicted homolog). Two zebrafish

homologs (Ulk1a and Ulk1b) reported in [72], based
on Blast searches but no accession numbers published.

Ulk2 No sequence homologs
identified in Genbank

UVRAG uvrag NM_201069 Provisional
VPS45 vps45 XM_002665582 Model
WIPI1 wipi1 NM_200391 Provisional

Zebrafish homologs of mammalian genes were identified using NCBI Entrez Nucleotide and NCBI Entrez Gene search engines [89,90]. Due to the incomplete nature of these
databases, zebrafish homologs for somemammalian genes do not have entries (e.g. AMBRA, Ulk2). However, search tools such as BLAST can be used to identify zebrafish homolog(s).
RefSeq status is a useful indicator of the confidence that the homolog has been correctly assigned [91]. Searches correct as of 30th October 2010.
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demonstrated that rapamycin increases autophagosome synthesis in
larval zebrafish, compatible with its effects in other organisms. In
addition, the number of autophagosomes (LC3-II levels) in zebrafish
can be enhanced by treatment with lysosomal inhibitors such as
pepstatinA, E64d [72], or ammonium chloride [76]. These agents
reduce the acidity of the lysosome and thereby decrease autophago-
some/LC3 degradation. Measuring LC3-II levels in the presence or
absence of lysosomal inhibitors provides a useful tool for measuring
autophagic flux in cells [77] and has recently been applied to in vivo
investigations in zebrafish to assess the effects of antioxidants on
autophagy [76]. To further study the process of autophagy in
zebrafish, He et al. [72] generated transgenic reporter lines expres-
sing GFP-tagged lc3 andGabarap, and demonstrated that distribution
of the fluorescently tagged proteins changed appropriately following
treatment with a variety of known autophagy inducing and
inhibiting agents. These lines will be of value in future studies for
the validating the mechanism of action of compounds and could be
used in combination with the disease models described elsewhere in
this issue to evaluate the role of autophagy in the pathogenesis of
neurodegeneration.
1.5. Autophagy as a therapeutic strategy for neurodegenerative diseases

A common feature of many late-onset neurodegenerative disorders,
including Parkinson's disease, Alzheimer's disease, Huntington's dis-
ease, tauopathies, and various spinocerebellar ataxias is the accumula-
tion of misfolded or aggregating proteins within the cell. Under normal
conditions, the basal rate of autophagy is not sufficient to prevent the
accumulation of cytoplasmic aggregate-prone proteins aggregates
over many years. However, induction of autophagy by treatment with
rapamycinhas proven effective in enhancing the clearanceof aggregate-
prone proteins in vitro [78–80] and in vivo, in Drosophila models of
Huntington's disease and tauopathy [79,80] and mouse models of
Huntington's disease and spinocerebellar ataxia type 3 [79,81]. These
studies provide proof-of-principle that upregulation of autophagy may
be an effective therapeutic strategy for the clearance of aggregate-prone
proteins.While rapamycin has been demonstrated to be effective and is
prescribed for chronic use in people, it has side effects that make it
desirable to find safer and possibly more specific autophagy inducers
that can be used to treat patients for many decades. In some cases,
patients may be asymptomatic gene carriers of mutations causing
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conditions like Huntington's disease, where the objective of the
treatment would be to delay onset of disease. Several groups have
now identified novel compounds that induce autophagy in vitro [82–
85], although the challenge remains as to how best to validate these
findings in vivo. Traditionally, in vivo validation has been performed
on rodent models. However, large scale screens can produce tens or
possibly hundreds of “hits” that require further validation, including
in vivo testing, in order to select the best therapeutic candidate for
further development. Validating all “hit” compounds in rodent
models is often not feasible due to the length and cost of trials, in
addition to large amounts of compound required for long-term
treatment regimes. Here zebrafish models offer a distinct advantage,
since many of the neurodegenerative disease models described to
date develop disease phenotypes at larval stages [8,9,11]. Williams et
al. used such a screening cascade to identify novel inducers of
autophagy from a library of FDA-approved drugs. Primary screens
were performed using increased clearance of mutant α-synuclein
(that causes familial Parkinson's disease) and mutant huntingtin
(that causes Huntington's disease) as indicators of increased
autophagy. Compounds demonstrated to be effective in cell-based
assays were then tested in Drosophila and zebrafish models of
Huntington's disease [8]. As screening assays become more sophis-
ticated, with a shift towards high-content read-outs, zebrafish
models offer great potential for the development of novel screening
assays, using, for example, fluorescent reporters or high-throughput
behavioral analysis to identify agents that ameliorate the disease
phenotype.
1.6. Future directions

While this review highlights the potential for zebrafish as a model
for the study of autophagy, a number of uncertainties or technical
limitations remain and should be considered as priorities for future
investigation:

• Gene duplications—the conservation of function between mamma-
lian and zebrafish proteins is unclear for genes where zebrafish
possess several homologs (e.g. PTEN) and further work is needed to
assess the overlapping and/or non-redundant roles of these. In
addition, caution is needed in the interpretation of potentially
duplicated sequences identified in genomic databases and it is
expected that the ongoing annotation of the zebrafish genome will
clarify whether previously reported duplications (e.g. tsc1a and
tsc1b [88], ulk1a and ulk1b [72]) are genuine or whether these have
arisen from incomplete annotation.

• Targeted gene knockouts—although morpholinos provide a pow-
erful tool for transient gene knockdown, an effective technology
for permanent gene knockdown would be desirable for some
studies.

• Compound uptake and distribution—while zebrafish offer huge
potential for in vivo validation of novel therapies, little is known
about compound absorption, distribution or metabolism. Of par-
ticular relevance to the study of neurological disorders, it is
important to consider the timing of zebrafish blood–brain barrier
formation and the similarities or differences between this barrier in
zebrafish and mammals.
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