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Class-K Function Bounds for Positive Definite Functions on Compact Sets
Seungjoon Lee, Jin Gyu Lee, and Hongkeun Kim*

Abstract: This technical note focuses on positive definite functions defined on compact sets which contain the
origin in their interior. It provides a class-K function bounding inequality for the given positive definite function
which is satisfied for its entire domain of definition. An application of the result is also given to analyze the stability
of perturbed nonlinear systems whose nominal parts contain an asymptotically stable equilibrium point at the origin.
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1. INTRODUCTION

Continuous positive definite functions and comparison
functions are ubiquitous in control theory because they are
deeply related with the stability of dynamical systems. For
example, they are used to investigate the Lyapunov stabil-
ity of nonlinear systems in [1, 2], define the input-to-state
stability in [3], and characterize the converse Lyapunov
theorems in [1, 4], to name a few. See [5] for a historical
review of comparison functions and some relations with
positive definite functions.

As stated above, both positive definite functions and
comparison functions are commonly used to study the sta-
bility and its several variants, and also simplify the corre-
sponding analyses. Therefore, the relations between them
are of particular interest and up to now, various inequal-
ities for them have been established in the literature. In
particular, a continuous positive definite function can be
globally bounded below by a class-K function [5, 6] and
can be bounded above and below by class-K functions in
a neighborhood of the origin [1, Lemma 4.3]. That is, the
bounding inequalities hold either locally or globally and to
the best of our knowledge, most of existing works belong
to one of these two cases.

Motivated by the gap between local and global re-
sults, we consider a continuous positive definite function
V : W ! R and investigate the existence of class-K func-
tions a1 and a2 such that the inequality

a1(|x|)V (x) a2(|x|) (1)

is valid for all points x in the compact set W, where W
contains the origin in its interior. Thus, if we are able to
find such comparison functions, then the region of validity

of (1) is maximized and is the same as the given domain
of definition of V . Note in contrast that except for the
global case (i.e., W = Rn), [1, Lemma 4.3] guarantees the
existence of a1,a2 that satisfies (1) only for points in B̄r,
where B̄r is the closed r-ball centered at the origin. A main
restriction here is that B̄r must be contained in W. This
implies that the region of validity of the inequality can be
unacceptably small (i.e., the radius r can be very small)
depending on the shape of the set W and thus, limits the
usage of (1).

One of main challenges in finding such comparison
functions is that the conventional approaches construct,
e.g., a continuous a1 via a continuous auxiliary function
y1(s) = infx2B̄r\Bs

V (x), where Bs is the open s-ball. A
natural adaptation of this function to our case may be
y1(s) = infx2W\Bs

V (x) which however turns out to be dis-
continuous in general. Even worse, the set of discontinuity
of such y1 can be countably infinite. Therefore, a careful
construction of a1 and a2 would be necessary to ensure
their continuity.

Meanwhile, we also provide an application of (1) which
addresses the stability of perturbed nonlinear systems.
Specifically, we show that if the origin of the nominal part
is asymptotically stable, then the solutions of the original
perturbed system possess some stability property. In this
case, the initial conditions are allowed to be in arbitrary
compact subset of the region of attraction of the origin
and this is a consequence of (1) which holds for all x 2 W.

This note is organized as follows. Section 2 includes
our main result and its application to the stability of per-
turbed systems. An example is provided in Section 3 and
the conclusion is drawn in Section 4.

Notation: We denote the set of nonnegative real num-
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bers by R�0. Given a vector x2Rn and a nonempty subset
W of Rn, |x| denotes the Euclidean norm of x and |x|W de-
notes the set-distance defined as |x|W := infz2W |x� z|. C0

and C1 are the sets of continuous and continuously dif-
ferentiable functions, respectively. A function a : R�0 !
R�0 is of class-K if it is continuous, strictly increasing,
and a(0) = 0. We denote it by a 2 K. A continuous
function b : R�0 ⇥R�0 ! R�0 is of class-KL, denoted
as b 2 KL, if for each fixed v � 0, b (·,v) 2 K and for
each fixed u � 0, b (u, ·) is decreasing to zero as v !+•.
Let V : W ! R�0 be a function, where W is a subset of
Rn and contains the origin in its interior. Then, V is
said to be positive definite if V (0) = 0 and V (x) > 0 for
all x 2 W\{0}. Given two sets A and B, A ⇢ B denotes
the proper (or strict) inclusion, whereas A ✓ B denotes
the inclusion with the possibility A = B. The boundary
of a set A is denoted as ∂A. Set minus is defined as
A \ B := {x : x 2 A,x 62 B}. The r-ball centered at the
origin is denoted as Br := {x : |x | < r} and B̄r denotes
its closure, i.e., B̄r = Br [ ∂Br. Let f : X ! Y be a func-
tion and consider A ✓ Y . Then, the preimage of A under
f is defined as f

�1(A) := {x 2 X : f (x) 2 A}. Half-open
intervals are defined as [a,b) := {x 2 R : a  x < b} and
(a,b] := {x 2 R : a < x  b}. Closed interval [a,b] and
open interval (a,b) are analogously defined.

2. MAIN RESULT

The main result of this note concerns about positive def-
inite functions defined on compact sets. It provides a con-
struction of class-K function bounds for a positive definite
function V : W!R�0 which holds over the entire compact
domain W. Thus, the region of validity of the bounding in-
equality does not depend on the shape of the set W.

Theorem 1: Let V : W ! R�0 be a continuous posi-
tive definite function, where W ⇢Rn is a compact set con-
taining the origin in its interior. Then, there exist class-K
functions a1,a2 : R�0 ! R�0 such that

a1(|x|)V (x) a2(|x|), 8x 2 W. (2)

Proof: (Existence of a1): Let r :=maxx2W |x| and Bs :=
{z 2 Rn : |z | < s}. Let us also define W1,s := W \Bs =
W\ {z 2 Rn : s  |z |  r} and y1(s) := infc2W1,s V (c).
Note that by construction, W1,s ✓ W is a nonempty com-
pact set for every s 2 [0,r], and x 2 W1,|x| for each x 2 W.
Then, y1 : S ! R�0, S := [0,r] is positive definite by the
positivity of V , and V (x)� y1(|x|) holds for x 2 W. More-
over, y1 is increasing (but not necessarily strictly increas-

ing) since for 0  s1 < s2  r, W1,s2 ⇢ W1,s1 and thus,
y1(s1) y1(s2).

Let rcont > 0 be such that Brcont ⇢ W. Then, we claim
that y1 : Scont !R is continuous, where Scont := [0,rcont).1

To prove this, it suffices to show that the preimages of
(�•,a) and (b,+•) under y1 are open in Scont because
(�•,a) and (b,+•) form a subbasis for the topology on
R ([8, p. 103]), where a and b are arbitrary real numbers.

Let us first consider the preimage of (�•,a), given by

y�1
1 ((�•,a)) = {s 2 Scont : infc2W1,s V (c)< a}

= {s 2 Scont : 9z 2 W1,s s.t. V (z )< a}.

Without loss of generality, y�1
1 ((�•,a)) is assumed to be

nonempty since the empty set is open in Scont vacuously.
Let s 2 y�1

1 ((�•,a)) and x 2 W1,s be such that V (x )< a.
Define eV := (a�V (x ))/2 > 0. Then by the continuity
of V , there is dV > 0 such that |z � x | < dV with z 2 W
implies |V (z )�V (x )|< eV . Define

d :=
⇢ d0, if |x |� rcont, (3a)

1
2 min(dV ,rcont � |x |), if |x |< rcont, (3b)

where d0 is any positive number. We show that the d -
neighborhood of s in Scont is contained in the preimage,
i.e., (s�d ,s+d )\Scont ✓ y�1

1 ((�•,a)). Let us consider
s satisfying s 2 (s� d ,s+ d )\ Scont and s > |x |. Note
that in this case, s  |x |< s < rcont because x 2 W1,s and
s 2 Scont. Define

h :=

(
d [1 0 · · · 0]>, if x = 0,⇣

1+ d
|x |

⌘
x , if x 6= 0.

Then, we have |h � x | = d  dV/2 < dV by (3b). It also
holds that again by (3b),

s < s+d  |x |+d  1
2
(|x |+ rcont)< rcont.

Since |h |= |x |+d < rcont from above and Brcont ⇢ W, the
vector h lies in W and thus, satisfies that h 2 W1,s \{z 2
W : |z �x |< dV}. This implies

V (h) |V (h)�V (x )|+V (x )< eV +V (x )< a,

leading to s 2 y�1
1 ((�•,a)). On the other hand, if

we consider s 2 (s� d ,s+ d )\ Scont and s  |x |, then
h 2 W1,s and V (h)< a hold, where h := x . That is, again
s 2 y�1

1 ((�•,a)). Therefore, (s � d ,s + d ) \ Scont ✓
y�1

1 ((�•,a)) and hence, the preimage y�1
1 ((�•,a)) is

open in Scont.
1The function y1 can be discontinuous in S. For example, consider the compact set W = [�1,2] and the positive definite function

V (x) =

⇢
x

2, �1  x  0,
2x

2, 0 < x  2.

Then, V is of C1 but y1 is discontinuous at s = 1. This is because y1(s) = s
2 for 0  s  1 but y1(s) = 2s

2 for 1 < s  2. In general, the
set of points in S at which y1 is discontinuous is at most countable. This follows from the monotonicity of y1 in s [7, Theorem 4.30].
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We now turn our attention to the preimage of (b,+•)
under y1, i.e.,

y�1
1 ((b,+•)) = {s 2 Scont : infc2W1,s V (c)> b}.

Suppose again y�1
1 ((b,+•)) is nonempty and let s 2

y�1
1 ((b,+•)). Define eV := (infc2W1,s V (c)� b)/2 > 0.

Then, by the continuity of V on W, for any x 2 W1,s, there
is dV,x > 0 such that each vector h 2 W\BdV,x (x ) guar-
antees |V (h)�V (x )| < eV , where BdV,x (x ) := {z 2 Rn :
|z � x | < dV,x}. Note that BdV,x (x ), x 2 W1,s cover W1,s,
i.e, W1,s ⇢

S
x2W1,s

BdV,x (x ). Thus by the compactness of
W1,s, there are finitely many subcovers whose union again
contains W1,s. Denote such sets as Bdi

(xi) := {z 2 Rn :
|z �xi|< di}, i = 1, . . . , p. Since

Sp

i=1 Bdi
(xi) is open and

includes W1,s as a subset, W1,s\∂
Sp

i=1 Bdi
(xi) =?. More-

over, because ∂
Sp

i=1 Bdi
(xi) is bounded and the boundary

of a set is always closed, ∂
Sp

i=1 Bdi
(xi) is compact. There-

fore, the distance between the two compact sets W1,s and
∂
Sp

i=1 Bdi
(xi) is well-defined and positive. Let us denote

such distance as d , i.e.,

d := infz2∂
Sp

i=1 Bdi
(xi),c2W1,s

|z �c|> 0.

Then, we claim that for each h satisfying |h |W1,s < d ,
there is an index j such that h 2 Bd j

(x j). If not, there
is h such that |h |W1,s < d but h /2 Bd j

(x j) for every j =
1, . . . , p. This implies that h is an element of the com-
plement of

Sp

i=1 Bdi
(xi) which is a closed set containing

∂
Sp

i=1 Bdi
(xi) as its boundary. As a result, |h |W1,s � d

by the definition of d . This contradicts to the assump-
tion that |h |W1,s < d and thus, proves the claim. Fi-
nally, we show (s� d ,s+ d )\ Scont ✓ y�1

1 ((b,+•)). If
s 2 [s,s+ d )\ Scont, then we have W1,s ✓ W1,s, imply-
ing that b < infc2W1,s V (c) infc2W1,s V (c). On the other
hand, if s 2 (s � d ,s)\ Scont, then for every h 2 W1,s ,
|h |W1,s < d holds and thus, there is i with 1  i  p such
that h 2 Bdi

(xi). This implies

V (h)�V (xi)� |V (h)�V (xi)|> inf
c2W1,s

V (c)� eV .

Note that the last inequality is a consequence of the facts
that xi 2 W1,s ✓ W, h 2 W\Bdi

(xi), and V is continuous
on W. Since the inequality above holds for any h 2 W1,s
and the right-hand side is independent of h , we get

inf
h2W1,s

V (h)� inf
c2W1,s

V (c)� eV > b,

yielding that (s�d ,s+d )\Scont ✓ y�1
1 ((b,+•)). There-

fore, y1(s) is of C0 on Scont = [0,rcont).
A function a1 :R�0 !R�0 that satisfies all the required

properties is now constructed as follows. Let r1 be any
number such that 0 < r1 < rcont, and define

a1(s) :=

(
ȳ1(s)y1(s), if 0  s  r1,

ā1(s), if s > r1,

where ȳ1 and ā1 are any C0 strictly increasing function
such that 0  ȳ1(s) < 1 for 0  s  r1, lims!r

+
1

ā1(s) =
ȳ1(r1)y1(r1), and ā1(s) y1(s) for r1 < s  r. Then, a1
is strictly increasing and continuous on R�0, and a1(0) =
0, i.e., a1 2 K. Moreover, it holds that V (x) � y1(|x|) �
a1(|x|) for all x 2 W.

(Existence of a2): Let us define W2,s := W \ B̄s =
W \ {z 2 Rn : |z |  s} and y2(s) := supc2W2,s

V (c) for
s 2 S. Then, W2,s ✓ W is nonempty and compact for
each s 2 S, and x 2 W2,|x| for any x 2 W. In addition,
y2 : S ! R�0 is positive definite and V (x)  y2(|x|) for
all x 2 W. Note that y2 is increasing because W2,s1 ⇢ W2,s2

whenever 0 s1 < s2  r. Moreover, it can be verified that
y2 is continuous on Scont = [0,rcont) since for 0  s < rcont,
B̄s ⇢ W and hence, W2,s = B̄s.

With a positive constant r2 < rcont, let us define

a2(s) :=

(
(1+ ȳ2(s))y2(s), if 0  s  r2,

ā2(s), if s > r2,

where ȳ2 and ā2 are any C0 strictly increasing function
such that ȳ2(s) � 0 for 0  s  r2, lims!r

+
2

ā2(s) = (1+
ȳ2(r2))y2(r2), and ā2(s) � y2(s) for r2 < s  r. Then,
a2 satisfies all the required properties, i.e., a2 2K on R�0
and V (x) y2(|x|) a2(|x|) for all x 2 W. ⇤

Theorem 1 can be applied to various stability problems
of nonlinear systems. Among them, we provide a stability
result for perturbed nonlinear systems as an application.
Consider a nonlinear system given by

ẋ = f (x)+ eg(t,x), x 2 Rn, (4)

where f : D ! Rn is locally Lipschitz, g : [0,•)⇥D !
Rn is piecewise continuous in t and locally Lipschitz on
[0,•)⇥D uniformly in t, g(t,0) is bounded for t � 0, and
D ✓ Rn is the domain. In addition, e 2 [�e0,e0] is a con-
stant, e0 > 0, f (0) = 0, and 0 2 D. In (4), the second
term eg(t,x) represents perturbations that may result from
modeling errors, uncertainties, or disturbances.

Assumption 1: The origin x = 0 is an asymptotically
stable equilibrium point for the nominal part of (4), i.e.,

ẋ = f (x), (5)

where its region of attraction is given by RA ✓ D.
Theorem 2: Let Assumption 1 hold. Then, for any

compact set X ⇢ RA, there exists e? > 0 such that for all
|e| e? and all x(0) 2 X ,

(a) the solution x(t) of (4) satisfies

|x(t)| b (|x(0)|, t)+ g(|e|), 8t � 0, (6)

where b 2KL and g 2K; and
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(b) if in addition, f 2 C1, the perturbation is vanishing
(i.e., g(t,0) = 0 for t � 0), and x = 0 is a locally expo-
nentially stable equilibrium point for (5), then x = 0
of the perturbed system (4) is locally exponentially
stable and limt!+• x(t) = 0 holds.

Proof: Proof of (a): Since the origin of (5) is asymptot-
ically stable by Assumption 1, it follows from [1, Theorem
4.17] that there are positive definite functions V 2 C1 and
W 2 C0, both of which are defined for all x 2 RA, such that

V (x)!+• as x ! ∂RA, (7)
∂V

∂x
f (x)�W (x), 8x 2 RA

and every level set of V (x) is a compact subset of RA. In
addition, by (7) and the fact that X ⇢ RA, there always ex-
ists d > 0 such that X ✓ W := {x 2 Rn : V (x)  d}. Note
that the level set W ⇢ RA is compact.

Let V (x) be a Lyapunov function candidate for the orig-
inal perturbed system (4). Then, its time derivative along
the solution of (4) is given by

V̇ (x)�W (x)+ e ∂V

∂x
g(t,x), 8x 2 W, t � 0. (8)

Since W 2 C0 is positive definite and W is compact, Theo-
rem 1 guarantees the existence of a 2K such that W (x)�
a(|x|) holds for all x 2 W. Moreover, a constant M > 0
exists such that

����
∂V

∂x
g(t,x)

���� M, 8x 2 W, t � 0,

because of the continuity and boundedness of ∂V/∂x and
g(t,x), respectively. These yield that

V̇ (x)�a(|x|)+ |e|M, 8x 2 W. (9)

Meanwhile, since V 2 C1 is positive definite, there also
exist a1,a2 2K by Theorem 1 such that

a1(|x|)V (x) a2(|x|), 8x 2 W (10)

holds, where a1,a2 : R�0 ! R�0. Thus, (9) becomes

V̇ �a(V )+ |e|M, 8 V  d,

where a := a �a�1
2 2 K. Together with Lemma 1 in Ap-

pendix, this leads to, for each |e| e1 and t � 0,

V (x(t)) b̄ (|V (x(0))|[0,ḡ(|e|M)], t)+ ḡ(|e|M), (11)

where e1 > 0, b̄ 2 KL, and ḡ := a�1 2 K. Then, by (11)
and (10),

|x(t)| a�1
1

�
b̄ (|V (x(0))|, t)+ ḡ(|e|M)

�

 a�1
1

�
2b̄ (a2(|x(0)|), t)

�
+a�1

1 (2ḡ(|e|M))

is satisfied for all x(0) 2 W. Note that the last inequal-
ity follows from the fact that a�1

1 is defined on R�0.
Therefore, the inequality (6) holds if we let b (u,v) :=
a�1

1 (2b̄ (a2(u),v)) and g(u) := a�1
1 (2ḡ(Mu)).

Proof of (b): Since the nominal system (5) is expo-
nentially stable, the matrix A := ∂ f

∂x
(0) is Hurwitz by [1,

Corollary 4.3] and thus, there is a symmetric positive def-
inite matrix P = P

> > 0 satisfying A
>

P+PA = �I. Let
V0(x) := x

>
Px. Then, its time derivative along the solution

of (4) becomes

V̇0(x) = x
>(A>

P+PA)x+2x
>

P(eg(t,x)+ f̃ (x)),

where f̃ (x) := f (x)�Ax. Note that by the definition of
f̃ , there exists re0 > 0 such that B̄re0 ✓ W and | f̃ (x)| 
|x|/(8kPk) holds for all x 2 B̄re0 , where kPk is the induced
2-norm of P. Together with the local Lipschitzness of g,
this implies that

V̇0(x)�|x|2 +L1|e||x|2 +2kPk|x|| f̃ (x)|
�( 3

4 �L1|e|)|x|2, 8|x| re0

for some L1 > 0. If we set e2 := 1/(4L1), then for all
|e|  e2, we have V̇0(x)  � 1

2 |x|
2 for all x 2 B̄re0 . As a

result, if |x(t1)|  re := re0

q
lmin(P)
lmax(P)

for some t1 � 0, then
x(t) of the perturbed system (4) converges to the origin ex-
ponentially fast for all t � t1, where lmin(P) and lmax(P)
denote the smallest and largest eigenvalues of P, respec-
tively.

We now turn our attention to (8) which can be written
as V̇ (x)  �a(|x|)+ L2|e||x| for all x 2 W and for some
L2 > 0. Define r := maxx2W |x| and e3 := a(re)

2L2r
. Then, for

all x 2 W\Bre
and |e| e3,

V̇ (x)�1
2

a(|x|)� 1
2

a(re)+ e3L2r =�1
2

a(|x|)

holds. This implies that for any x(0) 2 W, the solu-
tion of (4) will enter the set B̄re

within a finite time,
say t = t1. Therefore, the result follows if we set e? :=
min(e0,e1,e2,e3). ⇤

Remark 1: Theorem 2 complements the results of
Theorem 4.18 and Lemmas 9.1, 9.2, and 9.3 of [1]. This is
because except for the global case, they restrict the initial
conditions to be ranged over a ball whose radius might
be very small. In contrast to this, Theorem 2 holds for
any initial conditions in an arbitrary compact subset of the
region of attraction of the nominal system (5). This was
possible due to the bounding inequality (2) which is valid
for the entire compact set as in Theorem 1.
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3. EXAMPLE

Consider the perturbed nonlinear system (4), where
x 2 R, f (x) := x(x+ 1)(x� 10), and g(t,x) := sin(10t).
Then, its nominal part ẋ= f (x) satisfies Assumption 1 and
the region of attraction of x = 0 is given by RA = {x 2 R :
�1 < x < 10}. Note that the other two equilibrium points
x =�1 and x = 10 are unstable which can be readily ver-
ified via, e.g., the linearization.

Consider the Lyapunov function candidate for the nom-
inal system given by

V (x) :=

(
Vn(x), if �1 < x  0,
Vp(x), if 0 < x < 10,

where

Vn(x) :=

(
33.64� 6.584

x+1 + 0.3301
(x+1)2 , if �1 < x �0.9,

x
2, if �0.9 < x  0

and

Vp(x) :=

8
><

>:

2x
2, if 0 < x  1,

4x�2, if 1 < x  9,
30+ 4

10�x
, if 9 < x < 10.

Then, it can be shown that V is C1 and positive definite,
V (x) ! +• as x ! ∂RA, and guarantees that ∂V

∂x
f (x) 

�2x
2 for each x 2 RA.

We now construct a1,a2 2 K such that the inequal-
ity (2) holds for W := [�0.9,9] ⇢ RA. Note that the ap-
proach of [1, Lemma 4.3] is not applicable here because
in [1], (2) can be valid only in the region that |x| < r

with r < 1. Recalling that y1(s) = infc2W1,s V (c) and
y2(s) = supc2W2,s

V (c), where they are given in the proof
of Theorem 1, it can be verified that

y1(s) =

(
Vn(�s), if 0  s  0.9,
Vp(s), if 0.9 < s  9,

and y2(s) = supc2W2,s
V (c) =Vp(s) for all s 2 [0,9]. Note

that y1 is discontinuous at s = 0.9 and yi, i = 1,2 are al-
ready strictly increasing. Based on these functions, we
define

a1(s) :=

(
Vn(�s), if 0  s  0.9,⇣

1� e
�(s�0.9)

2

⌘
Vp(s), if 0.9 < s  9

and a2(s) := (1.1� 0.1e
�s)y2(s). The functions related

are plotted in Fig. 1. It shows (2) is indeed valid on
[�0.9,9].

Fig. 1. Plot of V (x), yi(|x|), and ai(|x|).

Finally, a simulation of the perturbed system (4) is per-
formed and its result is given in Fig. 2. It is seen that the
state trajectory is ultimately bounded as expected by The-
orem 2. Note that the ultimate bound may be calculated
through the proof of Theorem 2 which however may be
conservative than the simulation result.

Fig. 2. A simulation result with x(0) = 9 and e = 0.1.

4. CONCLUSION

In this note, class-K function bounds for positive def-
inite functions have been studied. The emphasis of the
result is on the region of validity of the bounding inequal-
ity which is the same as the whole compact domain of
definition of the given positive definite function. An ex-
plicit construction of such class-K functions is also given,
as well as an application of the result to the stability of
perturbed systems.

APPENDIX

The lemma below is a generalization of [4, Lemma 4.4]
and [1, Lemma 4.4] to where the time derivative of a func-
tion is not necessarily strictly negative.

Lemma 1: Let t0 � 0 and y(t) be a C1 function satis-
fying that y(t)� 0 for all t � t0 and

ẏ �a(y)+ eM, y 2 D, (12)

2In case of D = [0,d), d can be +•.
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where a 2K, e 2 [0,e0], e0 > 0, and M � 0. The set D is
either [0,d] or [0,d) with d > 0.2 Then, there exist e1 > 0
and b 2KL such that for each e 2 [0,e1],

y(t) b (|y(t0)|[0,g(eM)], t � t0)+ g(eM), t � t0 (13)

holds for all y(t0) 2 D, where g := a�1. Moreover, y(t) 2
D for all t � t0.

Proof: First of all, we assume with no loss of gener-
ality that a is locally Lipschitz on D. If not, one can al-
ways find a locally Lipschitz function ā 2 K such that
a(y) � ā(y) holds, and proceed the proof with the re-
placement of (12) by ẏ �ā(y)+ eM.

If M 6= 0 and limy!d� a(y) is finite, define e1 :=
min(e0, limy!d� a(y)/(2M)). Otherwise, set e1 := e0.
Then, for all e 2 [0,e1], {0  y  g(eM)} ⇢ {0  y < d}
holds since g = a�1 2 K and y  g(eM)  g(e1M) < d.
Moreover, for such e , the set {0  y  g(eM)} is posi-
tively invariant because ẏ  �a(y) + eM = 0 whenever
y = g(eM). In other words, if y(t0) 2 [0,g(eM)] and
e 2 [0,e1], we have

y(t) g(eM)< d, t � t0. (14)

Let us now consider the case that y(t0)2 D\ [0,g(eM)].
Let q be a number such that g(eM) < q < d and define
f(y) :=

R
y

q

1
�a(u)+eM

du for y2R�0\ [0,g(eM)]. Then, f 2
C1 and is strictly decreasing. Moreover, by the local Lip-
schitzness of a , it holds that limy!g(eM)+ f(y) = +•. In-
deed, let La > 0 be such that |a(y)�eM| La |y�g(eM)|
for all y 2 [0,q]. Then, for g(eM)< y  q,

f(y) =
Z

q

y

1
a(u)� eM

du �
Z

q

y

1
La (u� g(eM))

du

= {ln(q� g(eM))� ln(y� g(eM))}/La

is satisfied. Thus, f(y)!+• as y ! g(eM)+.
Let w := � limy!+• f(y) > 0 (with the possibility that

w = +•). Then, f : R�0 \ [0,g(eM)]
onto��! (�w,+•),

f�1 : (�w,+•)
onto��! R�0 \ [0,g(eM)], and both of them

are strictly decreasing. Let us define

b̃ (u,v) :=

(
0, if u 2 [0,g(eM)],

f�1(f(u)+ v)� g(eM), otherwise,

and b (u,v) := b̃ (u+ g(eM),v). Let t1 := inf{t 2 R : 0 
y(t)  g(eM)} = inf{t 2 R : |y(t)|[0,g(eM)] = 0}. Since
y(t0) 2 D\ [0,g(eM)], 0 < t1 +• and y(t)> g(eM) for
t 2 [t0, t1). Moreover, for such t, �a(y(t))+ eM < 0 and
thus, y(t) is decreasing. Therefore, by (12), we have

Z
t

t0

ẏ(t)
�a(y(t))+ eM

dt �
Z

t

t0

dt = t � t0.

The change of variable, u = y(t), leads to the inequality

Z
y(t)

y(t0)

1
�a(u)+ eM

du � t � t0

which is equivalent to f(y(t)) � f(y(t0)) + t � t0. This
in turn yields that y(t)  f�1(f(y(t0)) + t � t0) and for
t 2 [t0, t1),

y(t) f�1 �f(|y(t0)|[0,g(eM)] + g(eM))+ t � t0
�

= b (|y(t0)|[0,g(eM)], t � t0)+ g(eM). (15)

Thus, the inequality (13) follows from (14), (15), and the
definition of t1.

It only remains to show that b 2 KL and y(t) 2 D

for t � t0. The continuity of b follows from the con-
tinuity of f and f�1 in their respective domains and
limu!0+ b (u,v) = 0 = b (0,v). For each fixed v, b (u,v)
is of class-K because it is a strictly increasing function
of u with its domain of definition being R�0. Note that
f�1 and f are both strictly decreasing. For each fixed u,
b (u,v) is decreasing in v and limv!+• b (u,v) = 0 by con-
struction. As a consequence, b 2 KL. Finally, y(t) 2 D

since (14) holds if y(t0)2 [0,g(eM)], and whenever y(t0)2
D \ [0,g(eM)], we have y(t)  b (y(t0)� g(eM), t � t0)+
g(eM) b̃ (y(t0),0)+ g(eM) = y(t0). ⇤
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