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Abstract

The machine learning community has recently shown a lot of inter-
est in practical probabilistic programming systems that target the
problem of Bayesian inference. Such systems come in different
forms, but they all express probabilistic models as computational
processes using syntax resembling programming languages. In the
functional programming community monads are known to offer a
convenient and elegant abstraction for programming with probabil-
ity distributions, but their use is often limited to very simple in-
ference problems. We show that it is possible to use the monad
abstraction to construct probabilistic models for machine learning,
while still offering good performance of inference in challenging
models. We use a GADT as an underlying representation of a prob-
ability distribution and apply Sequential Monte Carlo-based meth-
ods to achieve efficient inference. We define a formal semantics via
measure theory. We demonstrate a clean and elegant implementa-
tion that achieves performance comparable with Anglican, a state-
of-the-art probabilistic programming system.

Categories and Subject Descriptors G.3 [Probability and Statis-
tics]: Statistical software

General Terms Languages

Keywords Haskell, probabilistic programming, Bayesian statis-
tics, monads, Monte Carlo

1. Introduction
1.1 Bayesian Models for Machine Learning

The paradigm of Bayesian modelling is to express one’s beliefs
about the world as a probability distribution over some suitable
space, and then to use observed data to update this distribution via
Bayes’ rule

P(6|D) = %P(O)P(DW)

where 6 denotes the model parameters (the unobservable beliefs
about the world), D is the observed data, P(f) is the prior dis-
tribution over the parameters (beliefs before the data is observed),
P(0|D) is the posterior distribution (beliefs after data is observed),
P(D]|#) is the likelihood (probability of generating observed data
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given particular values of parameters), and Z is a normalising con-
stant that ensures the posterior is a proper probability distribution.

For example, in a model for linear regression, the data D con-
sists of a set of points (z;,y;), while the parameters 6 = (A, B)
are the slope A and intercept B of the best-fitting line y = Az + B
through the points.

Bayesian inference is the question of computing the posterior
P(0|D), so as to make predictions or decisions. In the example
of linear regression, inference consists of computing the posterior
distribution of the slope and intercept, P((A, B) | (zi,y:)), which
may be used to predict y given an unseen z’, for instance.

Although Bayesian modelling is a robust and flexible frame-
work, inference is often intractable. This problem is usually ad-
dressed in several ways. First of all, the prior and the likelihood are
often chosen to be simple distributions, computationally tractable
if not having analytical closed forms. Sometimes this is enough
to compute the posterior exactly. If not, a wide range of approxi-
mate inference methods can be used to approximately compute the
posterior. We will not review here the vast field of approximate in-
ference, but instead we refer to Barber (2012). We are primarily
concerned with Monte Carlo methods for approximate inference.

1.2 Probabilistic Programming for Bayesian Inference

In traditional approaches to Bayesian models, the mechanics of in-
ference is tightly coupled with the model description. Instead, in
probabilistic programming (Goodman 2013; Gordon et al. 2014),
the intent is to make models and inference algorithms more com-
poseable and reusable by specifying the model as a piece of prob-
abilistic code, and implementing Bayesian inference as an inter-
preter or compiler for the probabilistic code.

There are many probabilistic programming languages with dif-
ferent trade-offs. Many of them are restricted to ensure that the
model has specific properties that make inference easier. For ex-
ample BUGS (Gilks et al. 1994; Lunn et al. 2013) and Infer. NET
(Minka et al. 2009) can only express distributions that can be com-
piled to a finite graphical model. The Stan language (Stan Devel-
opment Team 2014) restricts the model parameters to be contin-
uous and can only handle a finite number of them to ensure that
inference can be performed with the Hamiltonian Monte Carlo al-
gorithm (Neal 2011). Those approaches simplify writing inference
algorithms, but at the price of reduced expressiveness.

Many different solutions were proposed to extend probabilistic
programming systems to potentially infinite models, such as com-
bining graphical models with first-order logic, as in BLOG (Milch
et al. 2005), Markov Logic Networks (Domingos and Richardson
2004), and ProbLog (Kimmig et al. 2011). Others such as HANSEI
(Kiselyov and Shan 2009) embed probabilistic DSLs in existing
programming languages such as OCaml, but are limited to discrete
distributions.

The most general approach, known as universal probabilistic
programming, allows the user to specify any model with a com-
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putable prior, including some Bayesian nonparametric models such
as the Dirichlet Process. The pioneer is Church (Goodman et al.
2008), a functional subset of Scheme equipped with primitives for
constructing standard probability distributions and a conditioning
predicate. Other universal probabilistic programming languages
include Venture (Mansinghka et al. 2014) and Anglican (Wood
et al. 2014), both essentially dialects of Scheme. These universal
languages are more expressive than those that compile to factor
graphs. For example, they support nonparametric models such as
the Dirichlet Process, useful for learning the best number of clus-
ters from the data, but which do not compile to finite factor graphs.
Inference for these more expressive models is harder, and research
on improving inference is flourishing (Goodman and Stuhlmiiller
2014).

1.3 Universal Probabilistic Programming in Haskell

The purpose of this paper is to provide evidence that the general-
purpose functional language Haskell is an excellent alternative
to special-purpose languages like Church, for authoring Bayesian
models and developing inference algorithms.

We embrace the idea of writing Bayesian models using the prob-
ability monad (Ramsey and Pfeffer 2002; Erwig and Kollmans-
berger 2006; Larsen 2011). We go beyond by developing a series
of practical inference methods for monadic models, as opposed to
relying on precise but unscalable methods of exhaustive enumer-
ation of discrete distributions. We show Haskell code for a range
of rich models, including the Dirichlet Process, of the sort other-
wise written in Church and its relatives. We demonstrate that state-
of-the-art Monte Carlo inference algorithms, including Sequential
Monte Carlo (Doucet et al. 2000), Particle Independent Metropolis
Hastings (Andrieu et al. 2010), and Particle Cascade (Paige et al.
2014), written in Haskell, have performance better than the special-
purpose Anglican implementation (Wood et al. 2014), and compa-
rable to Probabilistic C (Paige and Wood 2014).

As a formal foundation for reasoning about models and infer-
ence, we present a formal semantics for our monad. The seman-
tics is in two stages, inspired by recent work on the semantics of
probabilistic while-programs (Hur et al. 2015). In the first stage,
we interpret the monad as a deterministic function that consumes a
stream of random samples to produce results. In the second stage,
we define the distribution (a probability measure) given by closed
expression of monadic type, by integrating its results over arbitrary
random tapes.

To the best of our knowledge, this is the first rigorous semantics
for a higher-order probabilistic programming language with condi-
tioning (such as Church, Venture, or Anglican).

The main contributions of the paper are as follows.

e A practical library for probabilistic programming with monads.
Previous approaches were elegant but inefficient. Here we im-
plement state-of-the-art inference algorithms and performance
is comparable with Anglican implementation.

Randomised inference algorithms are viewed as deterministic
transformations of a data structure representing a distribution.
This makes inference clean, easy to implement, and sometimes
even allows for composing implementations of inference algo-
rithms.

We demonstrate that a lazy probabilistic programming language
allows for easy implementation of the Dirichlet Process model
and the Particle Cascade algorithm.

e We present a formal semantics based on measure theory.

1.4 Structure of the Paper

We start in section 2 by showing on multiple examples how to build
probabilistic models with monads. We specify what additional in-
terface functions are required for a probabilistic programming sys-
tem for Bayesian inference and we demonstrate how to use them.
In section 3 we present an implementation of a GADT that satis-
fies those requirements and we explain how the inference problem
manifests itself in this context. Then in section 4 we discuss imple-
mentation of several sampling-based methods for performing infer-
ence in probabilistic programs. In section 5 we present empirical
evidence to correctness of our implementation and compare its per-
formance with a state-of-the-art probabilistic programming system
Anglican, which implements the same set of inference methods.
We also define formal semantics of our approach to probabilistic
programming in section 6. Finally, in section 7 we discuss related
work and in section 8 we conclude.

1.5 Intended Audience

Even though this paper is mainly directed towards the functional
programming audience, we hope that it will also be of interest to
the machine learning community. For this reason we include in the
paper some material that may be difficult to read for people with-
out deep knowledge of Bayesian statistics. We took care to build
up slowly from simple models and algorithms, where possible ap-
pealing to intuition. In particular sections 2 and 4 start with simple
examples, but end with sophisticated models and algorithms which
require substantial background in Bayesian methods to understand.
We hope that even readers without such background will be able to
understand the main points of this paper.

2. Modelling with Monads

In this section we define and motivate the requirements we place on
an implementation of probability distributions. Those requirements
result in an interface, which we use to define probabilistic models.
A large part of this section consists of examples that demonstrate
how to use this interface.

2.1 Requirements

‘We introduce a type Prob to represent probabilities and probability
densities. It is implemented as a Double, but sometimes it is useful
to distinguish between the two. Another advantage is that we could
easily replace Double with LogFloat to reduce the risk of under-
flow.

newtype Prob = Prob {toDouble :: Double}
deriving (Show, Eq, Ord, Num, Fractional, Real,
RealFrac, Floating, Random)

prob :: Double -> Prob

We represent probability distributions over type a using a
datatype Dist a. We place the following requirements on Dist:

1. availability of standard distributions to be used as building
blocks, such as

uniform :: [al -> Dist a
categorical [(a,Prob)] -> Dist a
normal :: Double -> Double -> Dist Double
beta :: Double -> Double -> Dist Double
gamma :: Double -> Double -> Dist Double

2. Monad instance to combine distributions into complex models

instance Monad Dist where
return = Return
(>>=) = Bind
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3. conditioning function, which takes a likelihood and a prior, and
can be used to observe some data generated by the model

condition :: (a -> Prob) -> Dist a -> Dist a

Note that condition expects an explicit function for computing
the likelihood. In practice such a function is usually constructed
by taking a pdf of a distribution representing the noise model
(see section 3.2). Concrete examples are shown later in this
section.

4. a way to sample from a Dist

probability 0.8 and biased with probability 0.2. For a biased coin
we put a prior on its weight according to a Beta distribution. This
is a standard choice that makes it possible to compute the posterior
analytically.

weight :: Dist Prob
weight = do
isFair <- bernoulli 0.8
if isFair then return 0.5 else beta 5 1

sample :: StdGen -> Dist a -> a

where StdGen is a random number generator.

Together those four requirements form an interface for working
with Dist. In the remainder of this section we show how to use this
interface to build probabilistic models of increasing complexity.

2.2 Dice Rolling

We start with a very simple example. Suppose we roll n six-sided
dice and look at the sum of the values in top faces. A distribution
over such outcomes can be written in the following way:

Now we define the likelihood model. We represent outcomes of
a coin toss with Boolean values and we identify the weight of the
coin with the probability of landing True in a single toss. For a coin
with weight w the likelihood is equal to w for the coin landing True
and 1 — w for the coin landing False. We define a toss function
which conditions the distribution over the possible weights of the
coin on an outcome of a single toss. Conditioning on a series of
outcomes is just a fold over the outcomes.

toss :: Bool -> Dist Prob -> Dist Prob
toss b = condition (\w -> if b then w else 1 - w)
tosses :: [Bool] -> Dist Prob -> Dist Prob

tosses bs d = foldl (flip toss) d bs

die :: Int -> Dist Int

die 0 = return O
die 1 = uniform [1..6]
die n = 1liftM2 (+) (die 1) (die (n-1))

We can simulate one roll using the sample function and we
can use standard functions replicate and sequence to generate a
distribution over a number of independent rolls.

The above functions are a simple example of a recurring id-
iom for writing models in this style. In more complicated models
in subsequent subsections model construction is interleaved with
observing data points, so an equivalent of the toss function both
observes a data point and builds a part of the model.

The posterior over the weight of the coin is:

posteriorWeight = tosses observations weight

result = sample g (die n)
results = sample g $ sequence $ replicate k $ die n

An example run would be the following.

> let (n,k) = (3,5)

> let g = mkStdGen O

> sample g $ die n

14

> sample g $ sequence $ replicate k $ die n
[10,8,16,12,10]

In order to get any useful results from the posterior we actually
need to perform inference. We delay the discussion of how to do it
until section 4.

2.4 Linear Regression

A very simple but very useful statistical model is that of linear
regression, where we try to find a straight line that fits a set of
observed data points best. The construction of this model is very
similar to the coin tossing example above, so we only offer a brief
explanation here. We put independent Gaussian priors over the
slope and the intercept and we assume the noise is Gaussian too.

This style of constructing a list of independent samples from a
distribution turns out to be very useful and we use it extensively in
this paper. It is worth noting here that our implementation of Dist
is lazy, so it is equivalent to write

results = take k $ sample g $ sequence $ repeat $ die n

It would be natural to attempt different operations on the dis-
tribution, for example we could ask what is the probability of a
specific outcome or outcomes that satisfy a certain condition. How-
ever, in this paper we are only concerned with sampling. The rea-
son for that is we are primarily concerned with solving difficult
problems where exact answers are intractable and we need to re-
sort to approximate sampling. With a collection of samples we can
approximately answer any query about a distribution.

2.3 Coin Tossing

‘We now turn to another simple example to demonstrate how to use
conditioning. We are given a coin, which may be fair or biased,
and we toss it several times to determine which is the case. If the
coin is biased, we also want to determine its weight. We start by
putting a prior over the weight of the coin. The coin is fair with

type Point = (Double, Double)
type Param = (Double, Double)

linear :: Dist Param
linear = do
a <- normal O 1
b <- normal 0 1
return (a,b)

point :: Point -> Dist Param -> Dist Param
point (x,y) =

Conditional (\(a,b) -> pdf (Normal (a*x + b) 1) y)
points :: [Point] -> Dist Param -> Dist Param
points ps d = foldl (flip point) d ps

The above examples are very simple and do not demonstrate
the power of the monadic approach to probabilistic modelling. We
now demonstrate several standard probabilistic models expressed
in a monadic form.

2.5 Hidden Markov Model

A Hidden Markov Model (HMM) is very popular for modelling
sequential data. It consists of two sequences of random variables.
The latent sequence is assumed to be Markovian and stationary,
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that is each of the latent variables only depends on the value of
the previous one and the form of the dependency is the same for
all elements. In the observed sequence each random variable only
depends on the value of the associated latent variable, again in a
stationary way. We aim to infer the values of the latent variables
given the observed ones.

In this particular model we assume that latent variables are
discrete, while the observable ones are continuous. There are three
possible values for each latent state, namely —1, O, and 1. The
observed value is the latent value distorted by Gaussian noise. We
observe values of 16 subsequent states, some close to the values of
latent states, some far away.

hmm :: Dist [Int]
hmm = 1iftM reverse states where
states = foldl expand start values

expand :: Dist [Int] -> Double -> Dist [Int]
expand d y = condition (score y . head) $ do
rest <- d
X <- trans $ head rest

return (x:rest)
score y x = pdf (Normal x 1) y
trans 0 = categorical $ zip [-1..1] [0.1, 0.4, 0.5]
trans 1 = categorical $ zip [-1..1] [0.2, 0.6, 0.2]
trans 2 = categorical $ zip [-1..1] [0.15,0.7,0.15]
start = uniform [[-1], [0], [1]]
values = [0.9,0.8,0.7,0,-0.025,5,2,0.1,0,

0.13,0.45,6,0.2,0.3,-1,-1]

This particular way of implementing an HMM may be some-
what confusing. After all, we could simply expand the entire se-
quence of latent states and then use it to generate likelihoods of the
observations. However, to make inference efficient, it is important
to generate likelihoods as early as possible and to use them only
on the left side of the monadic bind. We will discuss those points
further in section 4.

2.6 Dirichlet Process Mixture of Gaussians

A common task in machine learning is clustering. The problem is,
given a set of data points, to separate it into disjoint clusters based
on similarity. For continuous data points a common model choice
is a mixture of Gaussians, where the likelihood of a point belonging
to a particular cluster is given by a normal distribution. There are,
however, many possible choices for deciding on the number of
clusters. Sometimes it is possible to fix the number of clusters
in advance, sometimes it is necessary to put a prior distribution
over the number of clusters. We choose to use a Dirichlet Process
(DP) mixture, where the number of clusters is not determined by a
specific parameter, but rather can grow with the number of data
points. One way to think about it is that rather than selecting
the number of clusters and then distributing the points between
them, we lazily instantiate an infinite number of clusters and then
distribute the points between them.

The complete review of the DP is beyond the scope of this paper
and we encourage interested readers to consult the specialised
sources (Teh 2010). We merely note that we are using a stick-
breaking representation here, where a DP is generated using an
infinite sequence of random variables. As our implementation of
Dist is lazy, we can code this representation directly.

--lazily generate clusters

clusters = do
let atoms = [1..]
breaks <- sequence $ repeat $ fmap prob $ beta 1 1
let classgen = stick breaks atoms
vars <- sequence $ repeat $ fmap (1/) $ gamma 1 1
means <- mapM (normal 0) vars
return (classgen, vars, means)

obs = [1.0,1.1,1.2,-1.0,-1.5,-2.0,

0.001,0.01,0.005,0.0]

n = length obs

--start with no data points

start = fmap (,[]) clusters

--add points one by one

points = foldl build start obs

build d y = condition (score y . head .
(clusters, rest) <- d
let (classgen, vars, means) = clusters
cluster <- classgen
let point = (cluster, vars !! cluster,

means !! cluster)

return (clusters, point : rest)

snd) $ do

--the likelihood in a cluster is Gaussian
score y (cluster, var, mean) =

-- Normal mean stddev

prob $ pdf (Normal mean (sqrt var)) y

in
--exctract cluster assignments

fmap (reverse . map (\(x,_,_) -> x) . snd) points

3. Implementation

In the previous section we showed how to use the monadic interface
to build probabilistic models. Here we discuss an implementation
of the underlying data structure Dist, focusing in particular on the
task of performing inference.

3.1 List of Values

The simplest possible implementation would be a list of weighted
values, such as suggested by Erwig and Kollmansberger (2006).
This approach is very easy to understand, but it is also very limited.
It can not be used with continuous distributions and it is tied to
a particular, inefficient inference strategy. Nonetheless, we present
this implementation below, in the hope that it makes the semantics
of the interface easier to understand. We call this implementation
Explicit, since it represents a distribution explicitly as a collection
of weighted values.

stick :: [Prob] -> [a] -> Dist a
stick (b:breaks) (a:atoms) = do
keep <- bernoulli b
if keep then return a else stick breaks atoms

dpMixture :: Dist [Int]
dpMixture =

let

newtype Explicit a = Explicit {tolList :: [(a,Prob)]l}
instance Functor Explicit where
fmap f (Explicit xs) = Explicit $ map (first f) xs

instance Monad Explicit where
return x = Explicit [(x, 1)]
(Explicit xs) >>= f =
Explicit [(y,p*q)| (x,p) <- xs,
(y,q) <- tolist (f x)]

condition (Explicit xs) c =

Explicit $ normalize $ reweight c xs
reweight ¢ xs = map (\(x,p) > (x, p * ¢ x)) xs
normalize xs = map (second (/ w)) xs where

w = sum $ map snd xs

sample g (Explicit xs) =
scan r xs where
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r = fst $§ randomR (0.0,1.0) g
scan v ((x,p):ps) =
if v <= p then x else scan (v-p) ps

uniform = Explicit . normalize
categorical = Explicit . normalize
bernoulli p = categorical [(True,p), (False,1-p)]

. map (,1)

3.2 Sampleable Type Class

In this work we are mainly concerned with sampling-based infer-
ence algorithms. In a pure functional language such as Haskell
those algorithms can be implemented as pure functions that take
an additional argument which serves as a source of randomness.
To specity which data types can be sampled from we introduce the
Sampleable type class.

class Sampleable d where
sample : StdGen -> d a -> a
sampleR :: Double -> d a -> a

The function sample uses a standard pseudo-random number
generator and is the one that forms the basis of our implementation.
The function sampleR uses a number from [0, 1] interval as a source
of randomness. We do not use it in practice, but it is useful for
defining semantics in section 6.

Finally, we import implementation of standard probability dis-
tributions such as normal or gamma from the random-fu' pack-
age. The uppercase constructors such as Normal or Gamma in this
paper are imported from random-fu. Their lowercase counterparts
are wrappers that make them Sampleable. Apart from sampling,
those standard distributions also support computing the probability
density function with the following signature:

pdf :: d a -> a -> Double

3.3 GADT

There is no single best inference method to be used in all cases, so
we decide on an implementation that provides as much flexibility
as possible. One way to do that would be to make Dist a type class
with different inference algorithms corresponding to different in-
stances of it. However, this implementation would make it difficult
to compose inference algorithms in a way that is used in section
4.5. For this reason we implement Dist as a GADT which can be
identified as a free monad.

data Dist a where
Return : a -> Dist a
Bind :: Dist b -> (b -> Dist a) -> Dist a
Primitive :: Sampleable d => d a -> Dist a
Conditional :: (a -> Prob) -> Dist a -> Dist a
condition = Conditional

instance Functor Dist where
fmap = 1iftM

instance Monad Dist where
return = Return
(>>=) = Bind

instance Sampleable Dist where
sample g (Return x) =x
sample g (Bind d f) = sample gl y where
y = f (sample g2 d)
(gl,g2) = split g
sample g (Primitive d) = sample g d
sample g (Conditional ¢ d) = undefined

The Primitive constructor can be used with any Sampleable
type. This includes the basic set of elementary distributions as well
as any user-defined distributions.

A Dist can only be sampled from if it is not conditioned.
This design choice is motivated by the fact that conditioning is a
declarative description of the posterior, which does not specify how
to sample from it. Before a conditional distribution can be sam-
pled from, we need to apply an inference algorithm that specifies
a way of sampling from the posterior, either exactly or approxi-
mately. For this reason we choose to view inference as a determin-
istic Dist to Dist transformation. An inference method, several of
which are discussed in section 4, converts a Dist into an (approxi-
mately) equivalent Dist, but one without conditionals. The notion
of equivalence of distributions is formally defined in section 6. In
practice we can often get better results by trying to approximate
a Dist with a collection of samples. For this reason we also con-
sider inference methods that transform a Dist a into Dist [a] or
Dist [(a,Prob)]. In principle we could recover the relevant Dist

a by sampling from such a collection at the end. We show some
examples of this later on.

4. Inference

The central question in probabilistic modelling is how to do infer-
ence efficiently. In the previous section we explained that we in-
terpret inference as a Dist to Dist transformation that preserves
semantics while removing conditionals. Ideally inference meth-
ods would just be functions Dist a -> Dist a, but in practice this
would often discard useful information. For this reason we provide
two implementations of every inference algorithm. An inference
function produces a distribution over collections of samples, while
inference’ produces a distribution over single values.

We present implementations of several inference methods, in
particular of the Particle Markov Chain Monte Carlo (PMCMC)
(Andrieu et al. 2010) methods that were first used for probabilis-
tic programming in Anglican (Wood et al. 2014). Some of them
require the presence of Conditionals to be independent of any ran-
dom choices in the model. In modelling terms this is a reasonable
assumption, since the observed data is fixed. To enforce this con-
straint we require that all the Conditionals should be placed on the
left of the monadic Bind. We emphasise this means the left of >>=
and not the left of <- in a do block. In a do block this constraint
means that all Conditionals must be placed on the right of the first
<-.

The above condition is enforced by the sample function which
is undefined for the Conditional case. The inference algorithms
we present only remove Conditionals from the left of Bind, so
if there are any Conditionals on the right of it, they will remain
after inference and fail when sample is called on the result. It
would be desirable to enforce this requirement statically through
the type system, but unfortunately it would prevent Dist from being
an instance of the Monad class. Specifically, consider the following
design.

data PDist a where
Return :: a -> PDist a
PBind :: PDist b -> (b -> PDist a) -> PDist a
Primitive :: Sampleable d => d a -> PDist a

data CDist a where

PD :: PDist a -> CDist a
CBind :: CDist b -> (b -> PDist a) -> CDist a
Conditional (a => Prob) -> CDist a -> CDist a

'https://hackage.haskell.org/package/random-fu

In the above PDist is a distribution without conditioning, while
CDist is one with conditioning. PDist is a IstinlineMonad, but
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unfortunately CDist is not, as the signature of CDist does not match
the signature of >>=.

4.1 Sampling from the Prior

The very first thing we show is how to draw samples from the
prior. The prior can be regarded as the simplest approximation to
the posterior, but not one relevant in practice. We still discuss it
here for completeness. Algorithmically sampling from the prior
amounts to discarding Conditionals in a Dist. As discussed above,
the Conditionals should only be placed on the left of Bind, so we
do not need to worry about what is right of Bind.

prior’ :: Dist a -> Dist a

prior’ (Conditional ¢ d) = prior’ d

prior’ (Bind d f) Bind (prior’ d4) f
prior’ d =d

proportional to the ratio of scores between the current sample and
the proposed one. In case of rejection the current sample is retained
as the next sample. It can be proven that under certain mild condi-
tions the marginal distributions of subsequent samples converge to
the true posterior, regardless of the starting point. In practice, how-
ever, we often take the whole sequence of samples to approximate
the posterior.

Here we use a very simple variant of MH where the proposal
distribution is the prior and the score is the likelihood. For the read-
ers familiar with the existing probabilistic programming literature,
note that this is not a single-site MH as proposed by Wingate et al.
(2011), but rather an MH that proposes the entire trace from the
prior. The single-site MH is discussed in section 8.

The subsequent inference methods rely on sampling from the
prior, but rather than discarding the likelihood score they retain it
and use it to reweight the samples. For this purpose we define a
function that accumulates the scores rather than discarding them.

prior :: Dist a -> Dist (a,Prob)
prior (Conditional ¢ d) = do
(x,s) <- prior
return (x, s * ¢
prior (Bind d f) =
(x,8) <- prior 4
y <- f x
return (y,s)
prior d = do
X <-d
return (x,1)

Q.

x)
do

mh :: Dist a -> Dist [al
mh d =
fmap (map fst) $ proposal >>= iterate where
proposal = prior d
iterate (x,s) = do
(y,r) <- proposal
accept <- bernoulli $ min 1 (r / s)
let next = if accept then (y,r) else (x,s)
rest <- iterate next
return $ next:rest

mh’ :: Int -> Dist a -> Dist a
mh’ n d = fmap (!! n) (mh d)

4.2 Importance Sampling

The subsequent methods will often use collections of weighted
samples, so we define some helper functions to deal with them.

type Samples a = [(a,Prob)]

resample :: Samples a -> Dist (Samples a)

resample xs = sequence $ replicate n $ fmap (,1) $
categorical xs where
n = length xs

flatten :: Samples (Samples a) -> Samples a

flatten xss = [(x,p*q) | (xs,p) <- xss, (x,q) <- xs]

A simple but useful inference method is that of importance sam-
pling. In essence importance sampling amounts to drawing samples
from a tractable proposal distribution (here the prior) and reweight-
ing them in a suitable way (here by the likelihoods). As discussed
above, we can either retain all the samples to approximate the pos-
terior or just draw one of them at the end.

4.4 Sequential Monte Carlo

There exists a more powerful inference method, somewhat simi-
lar to importance sampling, called Sequential Monte Carlo (SMC)
(Doucet and Johansen 2011). Originally SMC was used only with
sequential data, where latent variables can be arranged in a se-
quence with some data being observed at each step. SMC approxi-
mates the partial posterior at each step by a collection of weighted
samples, called particles, which are reweighted according to the
likelihood of the observed data at each step. In order to avoid ac-
cumulating excessive weight on a small number of particles, the
particles are resampled at each step.

It was recently shown that SMC can be applied to probabilistic
programs (Wood et al. 2014) and similarly we can apply it to
do inference on a Dist. The essential feature that allows for it is
that the presence of Conditionals is not affected by any random
choices, that is, all Conditionals are to the left of Bind.

importance’ :: Int -> Dist a -> Dist a
importance’ n d = importance n d >>= categorical

normalize :: Samples a -> Samples a
normalize xs = map (second (/ norm)) xs where

4.3 Metropolis-Hastings

Another way to obtain the correct posterior by drawing samples
from a different proposal distribution is Markov Chain Monte Carlo
(MCMC) (Neal 1993). Perhaps the most popular MCMC method
used for Bayesian inference is the Metropolis-Hastings (MH) al-
gorithm. The MH algorithm generates an infinite sequence of sam-
ples, called a Markov Chain, by proposing a new sample from a
proposal distribution and accepting or rejecting it with probability

smc :: Int -> Dist a -> Dist (Samples a)
smc n (Conditional c¢c d) = updated >>= resample where
updated = fmap normalize $
condition (sum . map snd) $ do
ps <- smc n d
let gs = map (\(x,w) -> (x, ¢ x * W) ps
return gs
smc n (Bind d f) = do
ps <- smc n d
let (xs,ws) = unzip ps
ys <- mapM f xs
return (zip ys ws)
smc n d = sequence $ replicate n $ fmap (,1) 4

smc’ :: Int -> Dist a -> Dist a
smc’ n d = smc n d >>= categorical

We emphasize the fact that SMC does not actually remove
Conditionals, but rather replaces them with different ones. The
new scores are weighted averages of likelihood scores across all the
particles, which is sometimes called a pseudo-marginal likelihood.
It is useful to retain the pseudo-marginal likelihood, since it can be
used to correct for bias introduced by SMC. The reason we do it
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this way is that it allows us to compose two inference methods to
obtain better results. In particular, it is possible to discard the extra
information and recover the ordinary SMC algorithm by composing
smc with prior’.

smcStandard :: Int -> Dist a -> Dist (Samples a)
smcStandard n = prior’ . smc n

smcStandard’ :: Int -> Dist a -> Dist a
smcStandard’ n = prior’ . smc’ n

Another possibility is to combine results of several SMC runs
by weighting the particles according to the pseudo-marginal likeli-
hoods. We can accomplish it by composing smc with importance.

smcMultiple :: Int -> Int -> Dist a -> Dist (Samples a)
smcMultiple k n = fmap flatten . importance k . smc n

smcMultiple’ :: Int -> Int -> Dist a -> Dist a
smcMultiple’ k n = importance’ k . smc’ n

4.5 Particle Independent Metropolis Hastings

The idea that SMC can be used as a part of a more powerful
inference algorithm is not new. In particular, there exist a family
of MCMC algorithms, called Particle MCMC (PMCMC) (Andrieu
etal. 2010), which use SMC to obtain a proposal distribution for the
MH algorithm. Perhaps the simplest PMCMC algorithm is Particle
Independent Metropolis-Hastings (PIMH), which is an MH with
proposals generated by independent SMC runs and the scores equal
to pseudo-marginal likelihoods. We can obtain PIMH simply by
composing smc with mh.

pimh :: Int -> Dist a -> Dist [Samples al
pimh n = mh . smc n

pimh’ :: Int -> Int -> Dist a -> Dist a
pimh’ kn =mh’ k . smc’ n

4.6 Particle Cascade

A final inference algorithm that we discuss here is the recently pro-
posed Particle Cascade (PC) (Paige et al. 2014). PC is essentially
SMC with an infinite number of particles, where resampling is done
only based on previous particles and not on subsequent ones. The
result of PC is an infinite sequence of samples that can be consumed
lazily until desired accuracy is achieved. Within a lazy probabilistic
programming language we can implement PC in almost the same
way as SMC, changing only the resampling function.

cascade :: Dist a -> Dist (Samples a)
cascade (Conditional ¢ d) = do
ps <- cascade d
let gs = map (\(x,w) -> (x, ¢ x * w)) ps
resamplePC gs
cascade (Bind d £) = do
ps <- cascade d
let (xs,ws) = unzip ps
ys <- mapM f xs
return (zip ys ws)
cascade d = sequence $ repeat $ fmap (,1) d

cascade’ :: Int -> Dist a -> Dist a

cascade’ n d = cascade d >>= categorical . take n

We do not show the code for the resamplePC function here,
as it implements a complicated mathematical formula that would
be difficult to read. We refer the interested readers to Paige et al.
(2014).

5. Evaluation

We evaluate our implementation by running some of the inference
algorithms from section 4 on selected models from section 2. Our
purpose is to demonstrate correctness and efficiency of implemen-
tation, not to investigate relative performance of different inference
methods. In order to establish correctness we compare the empir-
ical posterior consisting of samples obtained from inference algo-
rithms to an exact posterior. We carefully select models for which
we can compute the exact posterior by a combination of analyti-
cal and computational methods. We use KL divergence, a standard
metric of dissimilarity between distributions, to compare our results
to the exact posteriors. For a correct sampler the KL divergence
should decay approximately according to a power law, producing a
straight line on a log-log scale. The results are given in figure 1.

We judge efficiency of our implementation by comparing execu-
tion times with Anglican and Probabilistic C. We run all the exper-
iments using a single core of an Intel Core i7 CPU 920 @ 2.67GHz
on a machine running Ubuntu 14.04. Although Anglican and Prob-
abilistic C can run inference utilising multiple cores, we only used
one to get a better comparison with our implementation, which is
currently sequential. In section 8 we briefly discuss how it could
be parallelised. Anglican was originally an interpreted language,
but was recently reimplemented > by compiling to Clojure code
directly. We compare our implementation against the new, faster
version (0.6.5).

We emphasise that the benchmarks are not meant to be defini-
tive. We only present them to demonstrate that the performance of
our implementation is comparable to state-of-the-art. The results of
our tests are presented in table 1. We only report execution times
for SMC, but PIMH is almost identical. Comparing speed of PC
implementations is more difficult, since our version lets us con-
trol the final number of particles, while Anglican and Probabilistic
C give control over the starting number of particles. We note that
our implementation seems not to scale as well as Anglican with
the number of particles. The probable cause for it is that we use
an inefficient resampling algorithm, which could be fixed in a later
version.

Table 1. Comparison of efficiency of Sequential Monte Carlo-
based inference engines in three different probabilistic program-
ming systems: the one described in this paper (Haskell), Anglican,
and Probabilistic C. We report the wall clock time taken to com-
plete a single iteration of SMC with the given number of particles
on a single core. We note that the results were largely consistent
across different runs, but we do not attempt to rigorously analyse
their variability. Those figures are not intended as a definitive eval-
uation, but rather as a rough indication of relative efficiencies. For
Probabilistic C we were unable to run 10000 particles, which re-
quires spawning 10000 processes simultaneously.

model | particles | Haskell | Anglican | Prob-C
100 0.05s 0.2s 0.1s

HMM | 1000 0.4s 1.0s 2.9s
10000 10s 9s -
100 0.05s 0.1s 0.1s

DP 1000 0.4s 0.5s 3.2
10000 6.3s 3.9s -

5.1 Dice Rolling

As a first test we choose the very simple model of rolling dice from
section 2.2. We turn it into an inference problem by conditioning it
with likelihood inversely proportional to the result.

2https://bitbucket.org/dtolpin/anglican
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Figure 1. KL divergence between the empirical posterior from
samples and the exact posterior as a function of the number of
samples drawn for the HMM model. The lines drawn are mean
values of KL taken across 20 independent runs. We compare three
algorithms: SMC, PIMH, PC, each using 100 particles. SMC and
PIMH converge to the correct posterior relatively fast. PC is less
efficient per sample drawn, but still displays correct behaviour. The
models are described in detail in section 2.

10000

conditionalDie :: Int -> Dist int

conditionalDie n =

condition ((1 /) . fromIntegral) (die n)

We use 5 dice and obtain the exact posterior by exhaustively
enumerating all possible outcomes. The results clearly show that
all the inference methods converge to the exact posterior.

5.2 Hidden Markov Model

The next model is more challenging and practically relevant. We
use the HMM, exactly in the form as defined in 2.5. We compute the
exact marginal distribution for each latent state using the forward-
backward algorithm. The KL divergence reported is actually a sum
of KL divergences between exact and empirical marginal posteriors
for each latent state. We only include KLs for the latent variables
that have corresponding observations, that is we exclude the initial
state.

5.3 DP Mixture of Gaussians

Our final test is the DP mixture model from 2.6. We report the KL
divergence between posteriors over the total number of clusters for
the data points presented in 2.6. The exact posterior was computed
by exploiting the conjugate Normal-Inverse-Gamma prior, the ex-
act values of the Chinese Restaurant Process prior, and an enumer-
ation of all possible partitions.

6. Formal Semantics

In this section we formally define the semantics of Dist. Two
major technical difficulties involved are defining and conditioning
probability distributions over uncountable sets. We turn to measure
theory for a solution to those problems. Measure theory is a large
subject and rather than trying to review it here, we refer the readers
to general texts such as (Rosenthal 2006).

We only define semantics for distributions over sufficiently sim-
ple types and under certain simplifying assumptions. Specifically,
we require that all the functions involved always terminate, so we
can treat Haskell functions as total. We also require that there is
only a finite number of Conditional points in the GADT. Relaxing
those requirements is an important goal, but it is outside the scope
of this paper.

Let us consider Dist to be a function from a suitable source of
randomness to a pair consisting of a value and a weight. For this
purpose we define Haskell functions semantics and density.

type P a = [Double] -> Maybe (a, Prob, [Doublel)
semantics :: Dist a -=> P a
semantics (Return x) tape = Just (x,1,tape)
semantics (Bind d f) tape = do
(x,p,t ) <- semantics d tape
(y,q,t’) <- semantics (f x) t
return (y,p*q,t’)
semantics (Primitive d) [] = Nothing
semantics (Primitive d) (r:rs) = Just (sampleR r d,1,rs)

semantics (Conditional c¢ d) tape = do
(x,p,t) <- semantics d tape

return (x, p * ¢ x, t)

density :: Dist a -> (a -> Bool) -> [Double] -> Prob
density m i t = case semantics m t of
Just (x,p,.) | ix —>p
-> 0

We choose a source of randomness to be a finite list of real
numbers from the [0, 1] interval. This means the source may some-
times be insufficient, which is why the result is wrapped in a Maybe
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type. On the other hand, semantics always terminates on Dists that
consume randomness indefinitely. The function sampleR used with
Primitive is defined in section 3.2. The function density approx-
imates the unnormalised posterior density for the specified model
using a finite source of randomness.

The definition above can be used to show that Dist obeys
the monad laws up to equivalence defined by semantics. Rather
than presenting a tedious but straightforward proof, we show an
equivalent, but perhaps more difficult to understand, definition of
semantics’ based on monad transformers. There P’ is itself a
monad, so the proof is trivial.

type P’ a = ReaderT [Double] (StateT Prob Maybe) a

semantics’ :: Dist a -> P’ a
semantics’ (Return x) = return x
semantics’ (Bind d f) = semantics’ d >>= semantics’ . f
semantics’ (Primitive d) = do
rs <- ask
case rs of
N -> lift $ 1lift Nothing

(r:_) -> local tail $ return $ sampleR r d
semantics’ (Conditional c¢ d) = do
x <- semantics’ d
lift $ modify (* c x)
return x

runDist’ :: Dist a -> [Double] -> Maybe (a,Prob)
runDist’ d rs = (‘runStateT‘ 1) $ (‘runReaderT‘ rs) $
semantics’ d

density’ :: Dist a -> (a -> Bool) -> [Double] -> Prob
density’ m i rs = case runDist’ m rs of
Just (x,p) | i x ->p
->0

To simplify the task of deriving measures from Dists we restrict
the type T in Dist T not to contain any function types. This restric-
tion only applies to the type of the final expression we wish to give
semantics to and not to any intermediate components used for its
construction. We do it solely to avoid technical difficulties associ-
ated with defining measures on function spaces and in principle this
restriction could be lifted, at least to some degree. Formally, we re-
quire T to be either an integer, a real, or constructed by any finite
sums and products of the two.

Definition 1. We define the set of simple types S to be the smallest
set containing int and real and closed under binary sums and
products. A type T is simple if T € S, or equivalently if it is
generated by the following grammar:

T :=intlreal|T+T|T x T
Our examples in section 2 either define distributions over simple

types, or lists of statically known length, which could be easily
encoded as a simple type.

Definition 2. For any simple type T we define [T to be the set
of all possible values of this type. This is defined recursively as
follows:

[int] = Z
[real] = R
[Ty + To] = [Th] U [1%]
[Th x T2] = [T1] % [T=]
where U is a disjoint union and X is a Cartesian product.

Definition 3. For any simple type T we define a o-algebra Yr
recursively as follows:

Yint = 0z(2)

Yrear = or({(a,b)|a,b € R})
Y4y = U[[T1+T2]]({A (] B|A e¥n,Be ETQ})
Yrixmy =0 xr]({A X BlJA€ X1, ,B€ Xn,})

where o x (S) is the smallest o-algebra over the set X that is a
superset of S.

Together a pair ([1],X7) forms a measurable space and we
interpret values of type Dist T to be measures over this space.

With the above definitions in place, we proceed to define the
semantics in terms of a uniform probability measure on the space
of sources of randomness. Since we cannot construct a uniform
measure on [0, 1]°°, we resort to a limit construction involving
Borel measures on [0, 1]™ for each finite n.

Definition 4. For any simple type I" and any expression M :: Dist

T, we define its semantics [M] to be a measure i on ([T], X1).
For any A € X7, u(A) is defined using a limit of Lebesgue
integrals. Specifically, for every n € N, let vy, be a Borel measure
on the set [0,1]™ representing random sources of fixed length n.
Then

- lil’nnﬁoo ,un(A)
WA = o T

un(A) = /(density M A)dvn,

In the above definition, in density M A we are writing A for its
indicator function. This definition is only valid if the denominator
is finite, otherwise we consider the model to be misspecified. The
denominator can not be 0, so any zero-measure observations need
to be noisy. See section 2.1 for more details about conditioning.

An important technicality to note is that definition 4 implicitly
assumes the function density M A to be measurable. We do not
prove this, but we claim that this restriction is not a problem in
practice and we conjecture that it is in fact not possible to define in
Haskell a non-measurable between Euclidean spaces. The question
of measurability only becomes an issue when we consider giving
semantics to more complex terms, which we do not attempt here.

We leave for future work allowing for more sophisticated types
to be used at top level. This includes recursive types, such as lists
with potentially infinite, lazily evaluated values, and function types,
including higher-order functions.

7. Related Work

The work on semantics of probabilistic programming languages
dates back to Dexter Kozen (1981, 1985).

We believe that our formal semantics is the first detailed seman-
tics for a higher-order probabilistic programming language with
conditioning, an essential ingredient of Bayesian modelling. Ram-
sey and Pfeffer (2002) propose formal semantics of a stochastic
A-calculus in terms of probability monads and measure terms, but
without considering conditioning. Borgstrom et al. (2013) develop
a compositional semantics of first-order functional programs, in-
cluding conditioning on zero-probability events, based on measure
transformers, but they do not consider the higher-order case. In re-
cent work, van de Meent et al. (2015) provide a formal operational
semantics for a Church-like language to associate expressions with
execution traces, so as to explain an inference method, Particle
Gibbs with Ancestor Sampling, as opposed to the semantics of
the Bayesian model. Instead, we have expressed various inference
methods as executable Haskell code, and our formal semantics cap-
tures the meaning of a Bayesian model directly as a probability dis-
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tribution. Some recent works develop operational equivalence for
probabilistic A-calculus but without considering continuous distri-
butions, or constructs for conditioning. Dal Lago et al. (2014) de-
velop a bisimulation theory for an untyped calculus, while Bizjak
and Birkedal (2015) investigate operational equivalence and step-
indexed logical relations for a typed probabilistic A-calculus. Gretz
et al. (2015) consider the semantics of conditioning in probabilistic
while-programs, together with transformations to eliminate condi-
tioning, but without higher-order functions.

A monadic Haskell library for probabilistic programming pro-
gramming was first introduced by Erwig and Kollmansberger
(2006). Later Larsen (2011) suggested using GADTSs to improve
performance of such a library. Both of these approaches, however,
were limited to problems that can be solved by exhaustively enu-
merating all possible outcomes.

Many different probabilistic programming systems were pro-
posed as practical tools for Bayesian modelling and inference and
it is not possible to list them all here. Perhaps the first widely in-
fluential one was BUGS (Gilks et al. 1994), which performs Gibbs
sampling on finite graphical models. Restricting models to those
that can be represented by finite graphs allows for implementation
of efficient inference algorithms and was successfully leveraged by
systems such as Infer. NET (Minka et al. 2009) and Stan (Stan De-
velopment Team 2014). Those tools are fast and practical, but they
do not target as wide a range of models as our approach.

A lot of work has been put into combining graphical models
with first-order logic (Getoor and Taskar 2007), which extends the
set of representable models. Some of the languages in this cate-
gory include BLOG (Milch et al. 2005), Markov Logic Networks
(Domingos and Richardson 2004), ProbLog (Kimmig et al. 2011),
and IBAL (Pfeffer 2001). Those languages are more expressive
than graphical models, but they still can not express models such
as the Dirichlet Process. An approach similar to ours was taken by
Kiselyov and Shan (2009) in HANSEI, which embeds a probabilis-
tic programming language in OCaml. However, even though it can
compose distributions in arbitrary ways, it is still limited to discrete
distributions.

The idea of a universal probabilistic programming language,
which can handle both discrete and continuous distributions and
compose them in arbitrary ways, was pioneered by Goodman et al.
(2008) in Church. Even though very expressive, Church struggles
with making inference efficient. Several Church-inspired languages
were invented in an attempt to make inference faster, such as Ven-
ture (Mansinghka et al. 2014), Anglican (Wood et al. 2014), and
Probabilistic C (Paige and Wood 2014). Anglican was first to im-
plement, in the context of probabilistic programming, the SMC-
based inference methods used in this paper. Our work differs from
Anglican by embedding a probabilistic programming language in
Haskell and implementing inference as a deterministic data struc-
ture transformation.

Fun (Gordon et al. 2013; Bhat et al. 2013) is an embedding of
probabilistic programming in F#. Probabilistic models are quoted
F# expressions, instead of being of monadic type. Inference is
achieved by parsing the quoted expressions and translating to en-
gines such as Infer.NET.

Pfeffer (2009) describes a probabilistic object-oriented pro-
gramming language called Figaro, which builds probabilistic pro-
grams as data structures in Scala. It targets Metropolis-Hastings
with custom proposals, rather than SMC, as the primary inference
methods. Another probabilistic programming language embedded
in Scala is WOLFE (Riedel et al. 2014). WOLFE goes beyond stat-
ing models via generative processes (as in our work), and allows
the programmer to compose a model in terms of scalar objectives or
scoring functions, and operations such as maximization and sum-
mation. WOLFE can express conditional random fields, Markov

logic networks, and matrix factorization, but has not been applied
to sequential Monte Carlo methods.

8. Conclusion and Future Work

The main focus of this work was on making probabilistic program-
ming with monads practical by implementing powerful approxi-
mate inference algorithms. We accomplished this goal by defin-
ing a GADT Dist representing probability distributions and imple-
menting Sequential Monte Carlo and Particle Markov Chain Monte
Carlo algorithms to perform inference on it. We showed that our
implementation is competitive with Anglican, the original imple-
mentation of those algorithms in a non-monadic probabilistic pro-
gramming setting. All of our code is freely available as a Haskell
library °.

Apart from using monads, a distinctive feature of our framework
is that randomised inference algorithms can be implemented as
deterministic transformations on a data structure representing a
distribution. This approach makes the implementation clean and
convenient and sometimes makes it possible to compose inference
algorithms by simply composing the functions implementing them.
In particular we obtained Particle Independent Metropolis Hastings
by composing Sequential Monte Carlo with Metropolis Hastings.
We also define formal semantics for Dist using measure theory.
This semantics could be used to define a notion of correctness for
inference algorithms.

We identify four directions for future work. The most straight-
forward one is to parallelise the implementation. Because we im-
plement inference as a function from Dist to Dist, we could at the
same time parallelise inference and sampling from a model. The
main obstacle is that currently we are only using monads to build
Dists and monads are inherently sequential. From the probabilis-
tic point of view, two random variables can be sampled in parallel
if they are independent conditionally on what was sampled earlier.
We may enable parallel sampling if we introduce additional Dist
constructors that make conditional independence explicit, such as
Independent :: Dist a -> Dist b -> Dist (a,b).

An interesting problem is how to extend the Dist GADT to
allow for implementation of other successful general-purpose in-
ference algorithms. The form of Dist presented in this paper is
very simple and does not expose all the important information
about the model. For example we could not implement the single-
site Metropolis-Hastings proposed by Wingate et al. (2011), the
GADT does not contain the lexical information needed to tag dif-
ferent random choices in the model. This issue could be overcome
by introducing another constructor for structure-modifying random
choices. An alternative would be to do a separate preprocessing step
on the Haskell source code to capture the required information.

Another direction is extending the formal semantics defined in
section 6. It would be desirable to extend the definitions to cover
recursive types and function types, as well as expressions that
may not terminate. In the long run, having Dists with formally
defined semantics and inference algorithms that manipulate Dist
s deterministically, we might hope to formally prove correctness
of inference algorithms. It would also be interesting to develop a
rigorous mechanized form of our semantics, building on the work
of Eberl et al. (2015).

Finally, we plan to investigate the idea of composing inference
algorithms in probabilistic programming. The crucial requirement
for making such composition really useful is finding more general-
purpose inference algorithms that can be composed.

3https://github.com/adscib/monad-bayes
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