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Applying diffusion coupled deformation theory we investigate how the elastic properties of a solid body are
modified when forced to keep its chemical potential aligned with that of its melt. The theory is implemented at
the classical level of continuummechanics treating materials as simple continua defined by uniform constitutive
relations. A phase boundary is a sharp dividing surface separating two continua in mechanical and chemical
equilibrium. We closely follow the continuum theory of the swelling of elastomers (gels) but now applied to
a simple two phase one-component system. The liquid is modeled by a local free energy density defining a
chemical potential and hydrostatic pressure as usual. The model is extended to a solid by adding a non-
linear shear elastic energy term with an effective modulus depending on density. Imposing chemomechanical
equilibrium with the liquid reservoir reduces the bulk modulus of the solid to zero. The shear modulus remains
finite. The stability of the hyper-compressible solid is investigated in a thought experiment. A mechanical
load is applied to a rectangular bar under the constraint of fixed lateral dimensions. The linear elastic modulus
for axial loading is evaluated and found to be larger than zero, implying that the bar, despite the zero bulk
modulus, can support a weight placed on its upper surface. The weight is stabilized by the induced shear
stress. The density dependence of the shear modulus is found to be a second order effect reducing the density
of the stressed solid (chemostriction).

I. INTRODUCTION

The thermodynamic state of a simple homogeneous liq-
uid in thermal equilibrium is determined by the temper-
ature and one more thermodynamic field variable, which
can be either density, pressure or chemical potential. The
value of total free energy can be found by simply scaling
the corresponding values of a reference system in volume
or mass. Separate specification of mass and volume is
not necessary, the two quantities being essentially equiv-
alent. This equivalence is also reflected in the density. A
increase in mass can always be compensated by a pro-
portional increase of volume leaving the density invari-
ant. This invariance is a key principle of the thermody-
namics of uniform liquids, as formalized by Gibbs (Most
of the material relevant to this paper can be found in
Hansen&McDonald1). Density is a natural state variable
for the description of an isothermal mechanical process.
Alternatively also pressure can be used.

However, complications arise for solids. An isochoric
deformation of an homogeneous solid body, preserving
volume and density, can still change its energy. The rea-
son is the shear rigidity of solids. This is the subject
of the classical theory of elasticity which predates the
Gibbsian thermodynamics of liquids. The state variables
in this theory are strain and temperature. Variation in
density is accounted by an isotropic stretch of a reference
state (Out of the large number of textbooks on classical
classical elasticity we have selected for citation the recent
work by Lubarda&Lubarda2). Density is not treated as
an independent degree of freedom and certainly does not
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contain sufficient information for the specification of the
state of a solid (indeed strain can be inhomogeneous even
if density is homogeneous). There is therefore a dispar-
ity between the description of simple uniform liquids and
solids. This is not a problem at interfaces between ma-
terially closed systems. The boundary conditions of con-
tinuum mechanics can take care of this. The question
is how to match these different descriptions at the inter-
face between a liquid and solid phase if the liquid and
solid are in chemical equilibrium, such as is the case if
the liquid is the melt of the solid. This is the question
addressed in the present contribution.

The study of chemical equilibrium between continuum
models of liquid phases is an established field with a long
history. This was the main driving force behind the de-
velopment of the density functional theory (DFT) of in-
homogeneous liquids1,3. The discussion in the present
paper is however strictly limited to boundaries between
uniform phases as described in the framework of Gibb-
sian thermodynamics. Gibbs extended his scheme by
representing the interface as a sharp dividing surface
with its own energy scaling with the surface area of
the interface1,4. However, while these surface properties
cannot be missing from a realistic description of phase
boundaries, interface energy and surface tension will not
be considered here. The focus is on how to generalize the
dividing surface scheme for an interface between a liquid
and solid bridging the difference in thermodynamic con-
tinuum theory for the two aggregation states.

This requires first of all an expression for the chemi-
cal potential of the solid accounting for the dependence
on shear strain. Also the treatment of the balance of
forces at the interface will have to refined now involv-
ing the Cauchy stress tensor rather than only the hy-
drostatic pressure. Equal chemical potential no longer
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implies equal pressure (even in the absence of surface ten-
sion). Instead chemical and mechanical equilibrium must
be treated as separate but coupled boundary conditions.
The theory to accomplish this generalization already ex-
ists. It is the diffusion coupled deformation (DCD) the-
ory originally developed for the description of diffusion
induced stress in solid solutions. The pioneers in this
field are Larché and Cahn5 Another influential theoreti-
cal contribution is the 1996 paper by Gurtin6. For an up-
date on the experimental evidence for Larché-Cahn the-
ory see Ref. 7. The theory was further extended for the
study of the swelling of polymeric gels8–14. A more recent
application is in lithium ion battery research, in partic-
ular for the understanding of the mechanics of charging
and discharging of silicon cathodes15–18.

The investigation in this paper follows the diffusion
coupled elasticity theory as presented in the book by
Gurtin, Fried and Anand (GFA)19 almost to the letter
(including the notation). There is however one differ-
ence. The diffusive motion of a metal species in alloys
is defined relative to a lattice of sites which can be oc-
cupied by atoms of different species or even vacancies.
Similarly, in a gel the net work of elastic polymers in the
dry state serves as the reference to quantify the migratory
displacement of the solvent. However, the solid in our ap-
plication is a simple one-component system. There is no
external lattice providing a reference. This is not a funda-
mental objection. As pointed out by Baek and Srinivasa
an equivalent separation can be achieved by a decom-
position of the mass current in a convective and diffu-
sive flow8. The continuum mechanical basis of the the-
ory remains valid. Differentiation between a migratory
component (solvent) and elastic but immobile compo-
nent (elastomer) is made by imposing certain “swelling”
constraints on the balance laws8,13,14. Here we carry on
without constraints proceeding to the next stage, the de-
sign of a constitutive model of the simple solid.

The approach taken in this paper is somewhat un-
usual from the perspective of a physical chemist. DCD
theory is an application of the methods of continuum
thermodynamics19,20. The principle equations in con-
tinuum thermodynamics are balance equations involving
time derivatives of densities, entropy and fluxes. Dissipa-
tion is built in at a fundamental level (see also Ref. 21).
It may seem that using non-equilibrium equations to de-
rive thermal equilibrium values is an unnecessary detour.
Variational methods based on free energy minimization
are more direct. However the dynamical route has cer-
tain advantages even under equilibrium conditions. Sys-
tem specific constitutive relations are kept separate from
generally valid field equations. This guards against in-
consistencies which are more of a risk for “multiphysics”
theories which introduce further state variables in ad-
dition to strain19,22. Mass density in DCD theory can
be regarded as such an extended field variable. More-
over the distinction between density and deformation, as
proposed here, is based on a decomposition of the mass
current which is a dynamical quantity. Here it is per-

haps helpful to draw a parallel to the Lorentz continuum
theory of polarization for which the foundation is also
a dynamical theory, the Maxwell-Lorentz equations20,23.
In fact, as suggested by Baek and Srinivasa, mass den-
sity can be treated as the divergence of mass polarization,
replacing density as the fundamental degree of freedom.

Mass exchange across a liquid-solid interface also re-
quires flexibility in constitutive modeling allowing for a
natural transition between liquid and solid. The free en-
ergy density of simple liquids is due to short range steric
repulsion and long range cohesive attraction characteris-
tic of atomic fluids. These interactions, while treated in
a local approximation, are poorly described by lineariza-
tion of isotropic expansion as used in elastic theory. This
suggests to retain the liquid-like local free energy density
in the solid, with a different parametrization, and add a
shear energy term depending on isochoric deformation.
For an isotropic solid such a model contains just one pa-
rameter more determining the strength of the shear elas-
tic energy term. The continuum solid in our model is
missing a reference lattice. Setting the shear modulus to
zero therefore directly turns the solid into a liquid. Un-
fortunately, this makes the model intrinsically non-linear
forcing us to use the demanding machinery of non-linear
continuum mechanics19,24. Non-linearity is also the price
to pay if we want to allow for a density dependence of
the shear elastic interaction. This leads, as we will show,
to chemostriction creating a pressure gap between solid
and liquid. While small, this effect is of interest as a
manifestation of nonlinear elasticity.

Finally a word about the motivation for the work
reported here. While chemomechanical equilibrium
at liquid-solid interfaces is of physical interest, what
prompted the author to look into diffusion coupled defor-
mation was a theoretical problem encountered in a previ-
ous study on electromechanics of dielectric fluids25. The
aim of that investigation was a systematic derivation of
the stress tensor of a simple dielectric fluid polarized by
an external electric field and compare the corresponding
force density to the force density obtained from density
functional treatment of the same free energy functional.
The two expressions for this observable quantity, gener-
ally known as the Korteweg-Helmholtz force, were found
to be identical. More specifically, it was shown that the
density obtained by optimization of the deformation for
a fixed but arbitrary material density in reference space
satisfies the variational DFT equation for density in the
current (deformed) space. It is not at all clear whether
this is a general principle. The results of the present
study suggest that at least for inhomogeneous systems
material density and deformation are independent de-
grees of freedom which must be computed separately by
solving a set of coupled equations. We will return to this
issue in the conclusion.

With the fundamental questions mentioned above in
mind, the present paper is a joint theoretical and applied
investigation. The emphasis is on the thermomechanical
methodology. While almost completely gathered from
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the textbook of GFA which has become a standard ref-
erence in the continuum mechanics literature, this ap-
proach may not be familiar to everybody in the phys-
ical chemistry community. The derivations in the the-
oretical sections are therefore more explicit and lengthy
than strictly necessary claiming the larger part of the pa-
per. Only the last section, section VII, is devoted to the
application to a supported bar of solid in a bath of its
melt. This application is meant more as a thought ex-
periment. The simple continuum model developed here
is too primitive for investigation of realistic solid-liquid
phase boundaries. We conclude with a discussion in sec-
tion VIII, where we also comment on the connection to
the DFT of fluids and solids.

II. KINEMATICS AND BALANCE EQUATIONS

A. Separating diffusive and convective currents

The diffusion coupled deformation methodology used
in this work is patterned after the theory for the absorp-
tion (or release) of solvents by polymeric gels developed
by the continuum mechanics community8–14 (A recent re-
view from a more physical chemistry perspective can be
found in Ref. 21). The solvent and the polymeric network
are clearly distinct interacting components of a compos-
ite system, partly liquid and partly solid. The dry poly-
mer is usually taken as the reference for both the elastic
deformation of the polymer and the migration of the sol-
vent. However it was pointed out by Baek and Srinivasa
that the balance equations can be formally developed as-
suming initially that the gel is a one-component system
with certain constraints imposed at a later stage8(see also
Refs. 13,14). We have adopted their approach leaving out
the constraints. The argument presented in this section is
a justification for treating the deformation of a one com-
ponent system and the density in the reference frame as
separate independent degrees of freedom.

Using a notation common in continuum mechanics the
positions of the ”material” particles are indicated by
vectors x. The body is deformable and therefore the
mass density ρ(x) can be inhomogeneous. Moreover, the
body is in motion with the particles following trajectories
which vary smoothly with their location x. As a result
the local density ρ = ρ(x, t) also depends on time. Let
Pt be a spatial region that convects with the body, then

M (Pt) =

∫
Pt

ρdv (1)

is the total mass contained in Pt. Since our system con-
sists only of one component the quantity ρ can be for-
mally set equal to the number density, as in DFT al-
though we will often refer to ρ as a mass density, such
as already in the next sentence. While the material con-
tent of Pt in principle evolves in time, M (Pt) is in fact
a constant because mass is conserved by convective flow.
It is this property that is modified by diffusion and we

will therefore elaborate the conservation of mass in more
mathematical detail.
Following GFA we introduce the notation

˙∫
Pt

ϕdv ≡ d

dt

[∫
Pt

ϕdv

]
(2)

for the time derivative of the convecting integral of a
scalar function φ. Applying the Reynolds transport re-
lation this can be written as19

˙∫
Pt

φdv =

∫
Pt

(φ̇+ φdivv) dv (3)

where v is the material (Lagrangian) velocity. φ̇ is the
corresponding material time derivative

φ̇ = φ′ + v · gradφ (4)

where φ′ = ∂ϕ/∂t is the partial time derivative of φ at
fixed x. The material velocity v is a central quantity in
continuum mechanics and is best understood in terms of
a formal definition relative to a reference frame. Indicat-
ing the positions of the particles in the reference by X
(capital x), the motion of the body can be represented as
a smooth function χ that assigns to each material point
X and time t a spatial point

x = χt (X) = χ (X, t) (5)

The second identity is an alternative notation. v can now
be written as the time derivative

v =
∂χ (X, t)

∂t
(6)

The partial time derivation is evaluated, not at a given
position x in physical space (also called current space),
but at fixed material position X.
The introduction of a reference space and motion map

Eqn. 5 gives the concept of a convecting volume Pt a
more precise meaning. If P is some region in reference
space

Pt = χt(P) (7)

The boundary surface of Pt is carried along by the same
motion χt as the interior points. The total mass is con-
stant and therefore in the notation of Eq. 2

˙∫
Pt

ρdv = 0 (8)

Applying the Reynolds relation Eq. 3 and then substi-
tuting for the material time derivative using Eq. 4 the
integral Eq. 8 can be expanded as

˙∫
Pt

ρdv =

∫
Pt

(ρ̇+ ρdivv) dv

=

∫
Pt

(ρ′ + div (ρv)) dv = 0 (9)
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Since Pt is arbitrary we are allowed to localize this equa-
tion to

ρ′ + div (ρv) = 0 (10)

which is the well known local expression of mass con-
servation, often referred to as point wise mass balance
compared to the part-wise mass balance of Eq. 9.

All of this is of course part of the standard kinematics
setup of continuum mechanics (see GFA and also Ref. 24)
and reiterated here only to distinguish diffusive motion
from convective motion. Driven by the velocity field v
the material particles cannot cross the moving bound-
aries of Pt, but diffusive flow can. A convecting volume
can now acquire or loose mass. Defining a diffusive cur-
rent h the mass balance Eq. 9 is adjusted to

˙∫
Pt

ρdv = −
∫
∂Pt

h · n da+
∫
Pt

hdv (11)

where we have used the conventional notation ∂V for the
boundary surface of a volume V. da is the elementary
area of the surface and n the outward normal. The sign
of the surface integral ensures that a positive h would
lead to an influx of the mass given the convention for
the orientation of the normal n. We have also added
a supply term which can be interpreted as insertion of
mass from an outside reservoir. Eq. 11 can be regarded
as an extended part wise mass balance which using the
divergence theorem can again be localized to

ρ′ + div j = h (12)

where the current j is a superposition of convective and
diffusive motion (see figure 1)

j = ρv + h (13)

Remember that ρ in this presentation is really a num-
ber density and hence, the currents in Eq. 13 are not
momentum densities but particle fluxes.

B. Mass balance in referential form

For additional insight in the separation between con-
vective and diffusive current introduced in section IIA
it is instructive to reformulate the mass balance Eq. 12
in terms of density and currents in the reference frame
specifying the motion (Eq. 5). These transformations are
controlled by the deformation gradient19,24

F = ∇χ, Fij =
∂xi
∂Xj

(14)

where χ is the placement map of Eq. 5. Note that the
nabla (∇) operator indicates differentiation with respect
to coordinates X in the reference space to be distin-
guished from the grad operator (see e.g. Eq. 4) stand-
ing for differentiation with respect to coordinates x in

Fig. 1    

spatial

material

ρ v

hhR

x

X

χt

FIG. 1. Separation of total current j = ρv + h in convective
mass flow ρv (solid arrows) and diffusive current h (dashed
arrows) as written in Eq. 13. On the right is a deformed
convecting volume (solid contour) with on the left its shape
in material (reference) space (dashed contour). Curved arrows
indicate the map χt of Eq. 5 moving points X from reference
space to the positions x in the deformed body at time t. hR is
the material diffusive current obtained by pulling the spatial
current h back according to Eq. 24. While convective motion
cannot cross the boundaries of the body, diffusive current h
can. There is therefore residual diffusive current in reference
space but no convective flow.

physical space containing the deformed body. The two
gradients are related by a linear transformation

∇ = FTgrad ,
∂

∂Xj
= Fij

∂

∂xi
(15)

where FT is the transpose of the deformation gradient
Eq. 14 (FT

ij = Fji). In Eq. 15 and following equations
repeated indices are summed over (Einstein convention)
unless stated otherwise.
We further require that the determinant of F is definite

positive

J = detF > 0 (16)

J is the Jacobian expressing an infinitesimal material vol-
ume element dvR in terms of the corresponding infinites-
imal volume element dv in current space.

dv = JdvR (17)

Therefore, if we want the referential density ρR to satisfy
the integral identity∫

Pt

ρdv =

∫
P

ρRdvR (18)

with Eq. 7 relating the finite volume Pt in current space
to the volume P in reference space we must set

ρR = Jρ (19)
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The inverse of this relation, often referred to as the Euler
continuity equation, is a multiplicative decomposition of
the deformed space density

ρ = J−1ρR (20)

which can be compared to the additive decomposition
Eq. 13 of the current. Differentiating the integral Eq. 18
to time gives

˙∫
Pt

ρdv =

∫
P

ρ̇RdvR (21)

where we could pull the time derivative of the material
integral inside the integration because P, unlike Pt, is
static. In absence of diffusion (Eq. 8) the material den-
sity ρR(X), while possibly varying with position X in
reference space, is independent of time (ρ̇R = 0).

To reformulate the diffusion adapted mass balance law
Eq. 12 in terms of referential variables we next transform
the diffusive current h. In analogy with Eq. 18 we require
that the total flux through a moving surface is invariant.
Thus, defining a convecting surface St = χt(S) where S is
some surface in reference space we look for an expression
of the material diffusive current hR such that∫

St

h · n da =

∫
S

hR · nRdaR (22)

The transformation rule for oriented surface elements as
derived in GFA is

nda = JF−TnRdaR (23)

where we have used the notation F−T =
(
F−1

)T
. There-

fore, to satisfy Eq. 22 we must have

hR = JF−1h (24)

Eq. 24 changing a deformed space flux density to ref-
erence space is known as a Piola transform. The mag-
nitude h of the supply term Eq. 11 is a density and is
transformed similar to ρ (Eq. 19) and therefore

hR = Jh (25)

Substituting Eqs. 21,24 and 25 in Eq. 11 we obtain∫
P

ρ̇RdvR = −
∫
∂P

hR · nRdaR +

∫
P

hRdvR (26)

Localizing applying the divergence theorem in reference
space we find

ρ̇R +DivhR = hR (27)

where the capitalized operator Div is the divergence in
reference space coordinates X. The deformation flow has
been eliminated. Only the diffusive motion remains, sug-
gesting that material space is the natural realm for DFT.

C. Rigidity and local Gibbs-Duhem relation: Overview

The decomposition Eq. 13 of the mass current j in hy-
drodynamic flow ρv and diffusive flux h is rather sus-
pect from the perspective of Newtonian hydrodynam-
ics. There is no mass diffusion in one-component flu-
ids (h = 0). The only diffusion process is momentum
diffusion which is manifested as viscosity. This changes
when the system is solidified. The mobility of atoms
is now hindered. Rigidity sets in and solids respond to
applied shear stress not by viscous flow but by elastic
strain. However the mobility of atoms in not fully ar-
rested. The thermal concentration of vacancies still al-
lows atoms to change places and migrate over finite dis-
tances given enough time. Under these conditions the
distinction between convective motion (the deformation
of the lattice) and particle diffusion is physical, even in
a one-component system. This was formalized in the
seminal paper by Martin, Parodi and Pershan (MPP)
on crystal hydrodynamics26. MPP argued that vacancy
diffision must be considered the third Goldstone mode
complemented the two shear modes to the three modes
required by the Goldstone theorem applied to the trans-
lational symmetry breaking in crystals. This implies that
vacancy fluctuations are not only long time but also long
range. This analysis was further elaborated in Ref. 27
and is the subject of an important chapter in the text
book by Chaikin and Lubensky28.

In addition to point defects crystal mechanics must ac-
count for further defects not displayed by liquids. These
are dislocations and other topological defects28. Topo-
logical defects are also observed in mesophases such as
liquid crystals and are characteristic of rigidity. Their
dynamics can again differentiate between diffusive and
convected motion. Restructuring of the near singular
distortion inside dislocation cores is diffusive and is the
rate limiting process for dislocation mobility. The relax-
ation of the long range elastic deformation induced by
the dislocation is faster and can proceed by convective
motion. This issue has been addressed in detail in recent
studies of dislocation motion using the phase field crys-
tal (pfc) method29,30. The pfc method is a microscopic
approach based on a modulation of the periodic struc-
ture of atomic density in crystals and is also used for
the modelling of solidification and grain boundaries31–35.
These results suggest that separation between diffusion
and convective motion is linked to the microstructure of
density and could therefore also occur in systems without
long range order such fluids confined by hard walls.

These observations regarding flow in rigid systems are
meant as examples of systems where the decomposition
of current Eq. 13 has a physical basis. However, in the
work presented here the separation in convective and dif-
fusive currents is treated as virtual. Virtual currents are
tools used in continuum thermodynamics to derive equi-
librium constitutive relations. This formalism is briefly
summarized in section 38. It is then applied it to obtain
thermodynamic derivative expressions for local chemical
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potential and pressure applying. In regular (“classical”)
inhomogeneous fluids changes in hydrostatic pressure p
and local chemical potential µ are tied together by the
relation

dp(x) = ρ(x)dµ(x) (28)

where x in the notation of section IIA is the position in
current space (see Eq. 5). Eq. 28 can also be expressed
in gradient form

grad p = ρgradµ (29)

where we have suppressed the dependence on x. Under
equilibrium conditions (no currents) liquids are uniform
unless perturbed by an external potential ϕ(x). The gra-
dient of ϕ directly enters the Gibbs equation for chemical
equilibrium

gradµ = −gradϕ (30)

as well as the Euler equation for mechanical equilibrium

grad p = −ρgradϕ (31)

Eliminating gradϕ leads to Eq. 29. Chemical equilib-
rium in fluids implies mechanical equilibrium and vice
versa. For finite mass flow Eq. 29 is an approximation
known local thermodynamic equilibrium.

Adopting a more thermodynamic perspective Eq. 28
can be viewed as a local form of the isothermal Gibbs-
Duhem relation. The global Gibbs-Duhem equation is a
linear relation between the differentials of the thermody-
namic fields in an one-component bulk system.

V dp = −SdT +Ndµ (32)

where V is the volume, N the number of particles and S
the entropy. T is the temperature. Dividing by V and
setting dT = 0 gives dp = ρdµ similar to Eq. 28. How-
ever, as explained in every textbook on thermodynam-
ics, there is more to Eq. 32. In bulk systems pressure
can equated to a volume derivative of the Helmholtz free
energy F

p = −∂F
∂V

(33)

Similarly for chemical potential we have

µ =
∂F

∂N
(34)

The global Gibbs-Duhem relation Eq. 32 is therefore
more than only an equilibrium condition. It is a pro-
found statement about the extensivity of the thermody-
namic limit of bulk systems.

Can the local Gibbs-Duhem equation Eq. 28 be given a
similar interpretation in terms o some kind of scaling rela-
tion? To answer this question we first need a local equiv-
alent of the thermodynamic derivative relations Eq. 33

and 34. This is the purpose of the Lagrangian density
factorization Eq. 20. It enables us to treat local particle
number represented by ρR and volume represented by J
as independent fields variables. The flux decomposition
Eq. 13 is needed to define the corresponding adjoint ther-
modynamic forces using the thermomechanical scheme
for diffusion coupled deformation as developed in GFA.
This procedure is outlined in section III. Application to
the simple liquid in IV reproduces, as expected, Eq. 28
which in the process is elevated to a constitutive relation
for a simple fluid. This result is valid whether the par-
tition of current in a diffusive and convective component
is physical or not is not.
For solids the status of a local Gibbs-Duhem relation

is more involved. The Euler equation Eq. 31 is replaced
by the Cauchy equation

divT = ρgradϕ (35)

where T is the Cauchy stress tensor. The chemical equi-
librium equation Eq. 30 remains unchanged. As a result,
instead of Eq. 29 we have now

divT = −ρgradµ (36)

which can be interpreted as a generalization of the local
Gibbs-Duhem relation Eq. 29. However, while mechan-
ical equilibrium again implies chemical equilibrium, the
reverse is no longer true. Satisfying Eq. 30 still leaves the
transverse component of the stress tensor unresolved.
Tranverse stress is evaluated by solving the Cauchy

equation taking account of the boundary conditions im-
posed by mechanical surface loading. In fact, body forces
can be ignored for typical elasticity problems2. The
transvere stress is all that matters. It will also turn out
the key point in the application presented in section VII.
Moreover, substituting for p in Eq. 29 the mechanical
pressure p = −trT/3 is in general not correct either.
The divergence of a (symmetric) tensor is not equal to
the gradient of its trace. Ultimately this is all again a
consequence of rigidity. However, note that these com-
plications not only apply to solids but can also affect in-
homogeneous liquids. While liquids yield to shear stress,
the equilibrium stress tensor at liquid interfaces can still
have a deviatoric component. This has led to some con-
troversy in the DFT of liquids4. For a far reaching discus-
sion we refer to the papers by Percus and coworkers36,37

(See also Lovett and Baus38,39).
The analysis in this paper remains strictly within in

the confines of continuum mechanics. Continuum ther-
modynamics is a self contained theory assuming a set
of axioms (see GFA). Derivations can, in principle, be
carried out independently of an atomistic picture. A mi-
croscopic theory is needed at the application stage to
fix constitutive relations for specific systems. The alter-
native is to obtain these relations from experiment. Of
course a foundation in statistical mechanics is the ulti-
mate goal in condensed matter science. This applies in
particular to the separation in a convective and diffusive
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current for one-component systems introduced in Eq. 13.
Fuchs and coworkers have made significant progress to-
wards this end for the case of crystal hydrodynamics40,41.
This concerns the problem raised by MPP macroscopic
theory mentioned earlier26,27. The question for micro-
scopic theory is how to discriminate between the density
in a crystal with vacancies and lattice deformation. Fuchs
et al. designed a deterministic graining procedure ex-
pressing these quantities in terms of instantaneous atom
position. The advantage of defining hydrodynamic field
variables by a deterministic coarse graining scheme is
that these fluctuations of these quantities can be ana-
lyzed by the methods of statistical mechanics and related
to microscopic correlation functions41. The coarse grain-
ing scheme of Ref. 40 is based on reciprocaal space meth-
ods. An up to date review on real space deterministic
coarse methods can be found in Ref. 42.

III. FREE ENERGY AND STATE EQUATIONS

A. Free energy imbalance

Continuum thermodynamics is a non-equilibrium the-
ory in which fluxes play a central role. This is how we
justified in section II the inclusion of material density in
the set of state variables describing the mechanical evo-
lution of a single component system. The dynamical na-
ture of continuum thermodynamics will again be used to
derive equilibrium equations for these variables. Alterna-
tively the chemomechanical equilibrium conditions used
for the application in section VII could also be obtained
using (free) energy based variational methods. This in
fact the procedure followed by Baek and Srinivasa8,13.
However, the DCD theory of GFA is deeply rooted in
non-equilibrium continuum thermodynamics, exploiting
the constraints set by entropy production (see below).
We will adhere to this philosophy and practice, if only
because the constitutive theory for the solid proposed in
later sections is using another idea from the GFA book
which is again formulated in terms of non-equilibrium
continuum thermodynamics concepts.

A decisive step in the transformation of continuum
thermodynamics into a practical tool for calculations was
made by Coleman and Noll who showed how the second
law can be used to derive formal state equations given
set of state variables43. This powerful procedure has be-
come very popular in the continuum mechanics litera-
ture since it was proposed in 1963. However departing
in spirit and implementation from established methods
in DFT the Coleman Noll (CN) procedure has received
little attention from the physical chemistry community.
Since the present paper is largely aimed at this audience
some of the key equations underlying the CN procedure
are summarized below. Our main source is again GFA.
A compact and accessible introduction can be found in
the book by Kovetz20 who applies the CN procedure in
a derivation of the Maxwell stress tensor.

We begin with the equation for the free energy of the
subsystem Pt

Ψ(Pt) =

∫
Pt

ρψmdv (37)

where ψm is the free energy per unit of mass (specific free
energy density). If the system undergoes an isothermal
process the time derivative of Ψ(Pt) is constrained by the
inequality

˙∫
Pt

ρψmdv ≤ W(Pt) + T (Pt) (38)

The quantities on the right hand side are energy flows
from the environment surrounding Pt into system con-
tained in Pt. W(Pt) is the power expended by mechani-
cal forces

W(Pt) =

∫
∂Pt

Tn · v da+
∫
Pt

b · v dv (39)

where T is the Cauchy stress tensor and b is a volume
force density accounting for long range interactions. Re-
call that, in addition to external forces, the traction Tn
and volume force b also account for interactions of Pt

within the body outside Pt (principle of Euler cuts). T
and b satisfy the force balance (Cauchy) equation

divT+ b = 0 (40)

where inertial effects are formally subsumed in b (see
GFA). T (Pt) is the energy flow due to diffusive transport

T (Pt) = −
∫
∂Pt

µh · n da+
∫
Pt

µh dv (41)

h and h are the diffusive flux and supply term appearing
in the mass balance Eq. 11.
The free energy imbalance Eq. 38, also known as the

Clausius-Duhem equation, is the result of the combina-
tion of relations for part wise energy balance and en-
tropy production assuming the temperature is homoge-
neous and constant. Free energy imbalance plays an ab-
solutely central role in the thermodynamics of deformable
systems. The inequality is applied together with force
balance equations such as the Cauchy equation(Eq. 40)
which are assumed given or are derived using the princi-
ple of virtual power19,22. Here the force balance equation
is taken as a proven premise. A derivation using virtual
power balance can be found in Ref. 10.
The Coleman-Noll (CN) procedure, for our purpose, is

best carried out in material variables. Recasting Eq. 37
in referential form we have

Ψ =

∫
Pt

ρψmdv =

∫
P

ψRdvR (42)

where ψR is the free energy per unit of reference volume.
Recalling Eqs. 17 and 20 it is obtained from the specific
free energy by multiplying with the reference density

ψR = ρRψm (43)
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The mechanical energy flow of Eq. 39 in material formu-
lation is written as

W(Pt) =

∫
∂P

TRnR · χ̇ daR +

∫
P

bR · χ̇ dvR (44)

where TR is the first Piola stress tensor and bR the ref-
erential transform of the volume force density. TR is
obtained from the Cauchy stress tensor according to

TR = JTF−T (45)

Eq. 45 is another example of a Piola transform (cf.
Eq. 24). The transformation rule for b is simply

bR = Jb (46)

The counterpart of the spatial Cauchy equation Eq. 40
then becomes

DivTR + bR = 0 (47)

Similarly we write the chemical energy flux Eq. 41 as

T (Pt) = −
∫
∂P

µhR · nR daR +

∫
P

µhR dvR (48)

with the material diffusive flux hR and supply term hR
given in Eq. 24 respectively Eq. 25.

The next step is converting the surface integrals in
Eq. 44 and Eq. 45 to volume integrals over P. Apply-
ing the divergence theorem followed by the chain rule the
first term in the expression Eq. 44 for the expenditure of
mechanical power can we rewritten as∫

∂P

TRnR · χ̇ daR =

∫
P

(TR : ∇χ̇+DivTR · χ̇) dvR
(49)

A : B is the notation for the matrix contraction

A : B = TrATB = AijBij (50)

Adding the second term in Eq. 44 containing bR gives

W(Pt) =

∫
P

(TR : ∇χ̇+ (DivTR + bR) · χ̇) dvR (51)

Replacing ∇χ̇ by the time derivative of the deformation
gradient using Eq. 14

Ḟ =
∂

∂t
∇χ (X, t) = ∇χ̇ (52)

and substituting the force balance equation Eq. 47 we
end up with

W(Pt) =

∫
P

TR : Ḟ dvR (53)

Rather unexpectedly the volume force term due to bR

cancels out.

Repeating a similar procedure for (minus) the surface
term in the transport work rate Eq. 41, again formulated
in material variables

−
∫
∂P

µhR · nR daR = −
∫
P

(µDivhR + hR · ∇µ) dvR

=

∫
P

(µρ̇R − hR · ∇µ− µhR) dvR (54)

we see that the dependence on the contribution of the
mass supply in Eq. 45 is eliminated by the equivalent
term in mass balance Eq. 27. The result is a chemical
work rate

T (Pt) =

∫
P

(µρ̇R − hR · ∇µ) dvR (55)

coupling the time derivative of density and its flux to
the chemical potential and its gradient. Finally because
differentiation with respect to time can be interchanged
with volume integration in material space

˙∫
P

ψRdvR =

∫
P

ψ̇RdvR (56)

the free energy imbalance Eq. 38 can be localized yielding

ψ̇R − µρ̇R −TR : Ḟ+ hR · ∇µ ≤ 0 (57)

Eq. 57 is the key result in the diffusion-deformation cou-
pling theory derived by GFA. They also present a variant
for the deformed body in current space. The reference
space formulation is however more suitable for our pur-
pose.

B. Stress and chemical potential

The free energy imbalance Eq. 57 will now be applied
to obtain expressions of the stress tensor and chemical
potential in terms of derivatives of the reference free en-
ergy density ψR. This is the CN procedure at work.
Adopting ρR and F as primitive variables the functional
form of the reference free energy density ψR defined in
Eq. 43 is written as

ψR = ψ̂R (F, ρR) (58)

with similar expressions for the Piola stress, chemical po-
tential and material mass flux

TR = T̂R (F, ρR)

µR = µ̂R (F, ρR)

hR = ĥR (F, ρR,∇µ) (59)

Note that the chemical potential gradient enters as a fur-
ther state variable determining the diffusive flux. As ex-
plained by GFA this dependence is required to satisfy
the dissipation inequality. This is however not of direct
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concern here. Focusing on equilibrium quantities, the
kinetics of transport will not be considered.

Expanding the time derivative of the free energy den-
sity in the velocities of the chosen state variables

ψ̇R =
∂ψ̂R (F, ρR)

∂F
: Ḟ+

∂ψ̃R (F, ρR)

∂ρR
ρ̇R (60)

and substituting in the free energy imbalance Eq. 57 we
obtain(

∂ψ̂R (F, ρR)

∂F
− T̂R (F, ρR)

)
: Ḟ

+

(
∂ψ̂R (F, ρR)

∂ρR
− µ̂ (F, ρR)

)
ρ̇R

+ ĥR (F, ρR,∇µ) · ∇µ ≤ 0 (61)

CN then require that this inequality holds not only for
the actual velocities of Ḟ and ρ̇R but also for all (admis-
sible) virtual velocities. This is only possible of the affine
forces (the prefactors) vanish

TR =
∂ψ̂R (F, ρR)

∂F
(62)

µ =
∂ψ̂R (F, ρR)

∂ρR
(63)

In addition the diffusive flux must satisfy an transport
inequality

ĥR (F, ρR,∇µ) · ∇µ ≤ 0 (64)

for all (F, ρR,∇µ).
Eqs. 62 and 63 are what one would expect from a direct

variational calculation carried out in reference space us-
ing ψR as free energy density. Eq, 64 goes beyond what
free energy minimization can produce. It is a kinetic
relation reminiscent of Fick’s law for diffusion. In the
present investigation only the thermodynamic derivative
relations Eqs. 62 and 63 are needed. For further discus-
sion about kinetics the reader is referred to GFA.

IV. SIMPLE CONTINUUM LIQUID

A. Constitutive relations for the simple liquid

Liquids have no memory. A Lagrangian detour via ref-
erence space should be an unnecessary exercise. More-
over, if we decide to take this route, we expect the choice
of material density to be arbitrary. In this section we
verify that this is indeed the case. This derivation has
been included not only for pedagogical reasons but also
because this issue is going to be relevant later on for the
constitutive definition of a simple solid at the melting
line. We want the solid to resemble a liquid as much as

possible in order to limit the number of order parameters
to a minimum.
The free energy of a ”body” of liquid in the local den-

sity approximation (LDA) is an integral over a local free
energy density f(ρ)

Ψ(B) =
∫
B
f(ρ)dv (65)

The free energy density f(ρ) is exclusively a function of
the density ρ in the spatial (current) frame. Translating
in a free energy density ψR per unit volume in reference
space we have once again using Eqs. 17 and 20

ψR = Jf
(
J−1ρR

)
= ψ̂R (F, ρR) (66)

To work out the constitutive Eq. 63 for the chemical po-
tential we apply the chain rule. The deformation matrix
F is now considered an independent degree of freedom
and kept fixed.

∂ψ̂R (F, ρR)

∂ρR
= J

(
df

dρ

)
∂ρ

∂ρR
+ f

∂J

∂ρR
(67)

J = detF is determined by F only and therefore the sec-
ond term vanishes. Similarly ∂ρ/∂ρR = J−1. Therefore
on account of Eq. 63 we have for the chemical potential

µ =
∂ψ̂R (F, ρR)

∂ρR
=
df

dρ
(68)

reproducing the DFT equation for the chemical poten-
tial. Indeed, as GFA point out, µ is not a density and
should be invariant under pull back to reference space.
Eq. 68 is a central identity for linking DFT and contin-
uum mechanics.
For the evaluation of the LDA Piola stress tensor

Eq. 62 we recall the Jacobi rule for derivatives of de-
terminants

∂J

∂F
= JF−T (69)

which is then used to determine the tensorial deformation
gradient derivative of the density

∂ρ

∂F
= ρR

∂J−1

∂F
= −ρF−T (70)

Substituting in Eq. 62

∂ψ̂R (F, ρR)

∂F
= J

(
df

dρ

)
∂ρ

∂F
+ f

∂J

∂F
(71)

we find using Eqs. 69 and 70

TR =
∂ψ̂R (F, ρR)

∂F
= J

(
−ρ df

dρ
+ f

)
F−T (72)

TR is a stress tensor in reference space. To change this
to an expression for the Cauchy stress T in current space
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we apply the inverse of Eq. 45 defining the Piola stress
tensor TR in terms of the Cauchy stress tensor

T = J−1TRF
T (73)

Applying this transformation to Eq. 72 we find for the
Cauchy stress tensor

T = −p(ρ)I (74)

where

p(ρ) = ρ
df(ρ)

dρ
− f(ρ) (75)

is the familiar thermodynamic pressure of the simple liq-
uid specified by the local free energy density f(ρ). Note
that all explicit dependence on material quantities has
been eliminated.

B. Recovering the local DFT of liquids

Returning to section IIC we are now ready to deliver
on the promise made there and formally verify the equiv-
alence between chemical and mechanical equilibrium for
the LDA fluid. We will do this starting from the con-
tinuum mechanics end by substituting the constitutive
relation for LDA stress (Eqs. 74 and 75) in the force bal-
ance law Eq. 40. We assume, as in Eq. 31, that the body
force b can be derived from a one-particle external po-
tential ϕ(x)

b = −ρgradϕ (76)

b is balanced by the divergence of the Cauchy stress
Eq. 74 which is evaluated using the identity

div pI = grad p (77)

Inserting Eq. 75 yields

divT = −ρgrad
(
df

dρ

)
(78)

Substituting in the Cauchy equation with Eq. 76 we find

ρgrad

(
df

dρ

)
= −ρgradϕ (79)

The next step is using the LDA constitutive relation
Eq. 68 for the chemical potential giving

ρgradµ = −ρgradϕ (80)

Dividing by ρ we have recovered the chemical equilib-
rium condition Eq. 30. Similarly eliminating the factor
ρ in Eq. 79 and integrating results in the regular DFT
equation for the equilibrium density

df

dρ
= µ̄− ϕ (81)

where µ̄ is an integration constant to be identified with
the chemical potential of the external particle reservoir.
Reverting the right hand side of Eq. 80 to a pressure gra-
dient using the force balance gives the local formulation
Eq. 29 of the Gibbs-Duhem relation. Finally, let us em-
phasize here again the more restrictive status of the local
compared to the global Gibb-Duhem relation. The local
version is a constitutive property, not a thermodynamic
principle.
It may seem that this elaborate continuum thermody-

namics argument is a lot of effort to reestablish a relation
that was essentially derived in a couple of lines in section
IIC. Note however, that the treatment of the chemical
potential µ is more general. µ was defined in Eq. 41 as the
energy transferred in diffusive transport. This eventually
led via Eq. 55 to the local free energy imbalance Eq. 57.
Particle transport remains active even in inhomogeneous
closed systems without outside supply of particles (h = 0
in Eq. 41). The continuum thermodynamics definition
of chemical potential is therefore more general than the
role assigned to it in DFT. We regard this as a signifi-
cant advantage of the continuum thermodynamics view
ultimately justifying the definition of chemical potential
for elastic solids in section VI.

V. SIMPLE CONTINUUM SOLID

A. State equation for diffusion coupled deformation

How can the diffusion coupled continuum mechanics
scheme for simple liquids outlined in sections III and IV
be generalized to simple solids? Now the mathemati-
cal machinery of non-linear continuum mechanics can no
longer be avoided. The first step is replacing F by the
right Cauchy Green tensor

C = FTF (82)

Later we will also need the left Cauchy-Green tensor

B = FFT (83)

The advantage of using C and B as state variable rather
than F is that the frame indifference of the stored energy
density is automatically built in. Frame indifference is
not much of an issue for liquids. For elasticity of solids it
is considered crucial as discussed at length in the litera-
ture, including the main theoretical reference used in the
present study19,24. The reader is referred to these text-
books for further explanation. The constitutive relations
Eqs 58 and 59 will have to be reformulated with C , ρR
as independent state variables

ψR = ψ̃R (C, ρR)

TR = FT̃RR (C, ρR)

µR = µ̃R (C, ρR)

hR = h̃R (C, ρR,∇µ) (84)
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TRR is the second Piola stress tensor related to the first
Piola stress tensor TR as

TRR = F−1TR (85)

Unlike TR which changes when observers change frame,
TRR is frame indifferent. With this change of state vari-
ables Eq. 60 is modified to

ψ̇R =
∂ψ̃R (C, ρR)

∂C
: Ċ+

∂ψ̃R (C, ρR)

∂ρR
ρ̇R (86)

which is to be substituted in the fundamental free energy
imbalance relation of Eq. 57. Next using the stress power
relation (see GFA)

TR : Ḟ =
1

2
TRR : Ċ (87)

we obtain(
∂ψ̃R (C, ρR)

∂C
− 1

2
T̃RR (C, ρR)

)
: Ċ

+

(
∂ψ̃R (C, ρR)

∂ρR
− µ̃ (C, ρR)

)
ρ̇R

+ h̃R (C, ρR,∇µ) · ∇µ ≤ 0 (88)

We are now ready to apply the Coleman-Noll procedure,
as we did in section III, yielding state equations for the
second Piola stress tensor and chemical potential

TRR = 2
∂ψ̃R (C, ρR)

∂C
(89)

µ =
∂ψ̃R (C, ρR)

∂ρR
(90)

Using the inverse of the transformation of Eq. 85 we find
for the (first) Piola stress tensor

TR = 2F
∂ψ̃R (C, ρR)

∂C
(91)

Eqs. 91 and 90 are an equivalent reformulation of the
state equations Eq. 62 and 63 valid for both simple liquids
and solids.

B. Separating volumetric and isochoric deformation

This section is the mathematical pivot of our model
for a simple solid. After switching from F to C we need
further refinement of the description of strain. Solids
can sustain shear isochoric deformation. To explicitly
account for the distinction between volumetric and iso-
choric deformation we follow GFA and decompose the
deformation gradient F in a volumetric factor Fv and
isochoric factor Fi

F = FvFi (92)

where Fv is an isotropic tensor proportional the unit ten-
sor 1

Fv = J1/31 (93)

and

Fi = J−1/3F (94)

With this definition the determinant of the isochoric fac-
tor is unity

detFi = 1 (95)

Note that Eq. 95 is not a constraint but an intentional
property of the kinematic variable Fi which in this re-
spect can be compared to a generalized coordinate in
particle mechanics. For liquids in equilibrium the mul-
tiplicative decomposition Eq. 92 is not necessary and in
the theory for the simple liquid in sections III and IV
we could continue to use the full unresolved and uncon-
strained deformation gradient F. The only F derived
property that mattered in the end is its determinant
J leading to a fully isotropic hydrostatic stress tensor
(Eq. 74).
The decomposition of the deformation gradient Eq. 92

is reflected in a similar factorization of the Cauchy-Green
tensor Eq. 82.

C = CvCi

Cv = J2/31

Ci = J−2/3C (96)

Multiplicative decomposition is applied in the contin-
uum mechanics of anelasticity to separate plastic from
elastic deformation. Eq. 96 is however is not meant to de-
scribe an anelastic process. It refines the state variables
describing purely elastic deformation without introduc-
ing additional degrees of freedom. The thermomechanics
of section III should remain valid while the constitutive
formalism of section VA will have to adapted. This is
the procedure applied in GFA which is adopted here. The
reference free energy density from which the constitutive
relations are derived is now written as an explicit func-
tion of Ci, J and the reference density ρR

ψR = ψ̃R (C, ρR) = ψ̃R

(
Ci, J, ρR

)
(97)

The thermochemical principles used to derive equations
of state in section VA remain the same but the mathe-
matics is more involved. We begin by defining two aux-
iliary forces which will be given a more physical inter-
pretation later. The derivative w.r.t C is split into a the
derivative w.r.t the isochoric Cauchy-Green tensor

Πi = 2
∂ψ̃R

(
Ci, J, ρR

)
∂Ci

(98)

and the determinant J

pJ = −
∂ψ̃R

(
Ci, J, ρR

)
∂J

(99)
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pJ will be referred to as the volumetric pressure.
As before, the constitutive theory for stress is based

on Eq. 89 for the second Piola stress tensor. GFA show
that this expression can be split into two terms involving
the forces of Eqs. 98 and 99

TRR = J−2/3

[
Πi − 1

3

(
Ci : Πi

)
Ci−1

]
− JpJC

−1

(100)
This derivation is not straightforward. The author has
not seen it presented anywhere else than in the GFA text-
book. In fact it was a bit of a discovery finding it there. It
is therefore briefly outlined in appendix A. Next Eq. 100
is transformed in an expression for the first First Piola
stress tensor applying Eq. 85

TR = J−1/3

[
FiΠi − 1

3

(
Ci : Πi

)
Fi−T

]
− JpJF

−T

(101)
and from there on to the Cauchy stress tensor using
Eq. 73

T = J−1

[
FiΠiFiT − 1

3

(
Ci : Πi

)
1

]
− pJ1 (102)

GFA then continue their derivation by proving that (see
appendix)

trT = −3pJ (103)

The volumetric pressure pJ of Eq. 99 can therefore be
identified with the actual mechanical pressure p. Intro-
ducing the notation devA for the deviatoric component
of a tensor A

devA = A− 1

3
(trA)1 (104)

The Cauchy stress tensor can be written as

T = T0 − pJ1 (105)

with

T0 = devT = J−1

[
FiΠiFiT − 1

3

(
Ci : Πi

)
1

]
(106)

The corresponding expression for the chemical potential
can be taken over from Eq. 90 without further manipu-
lations

µ =
∂ψ̃R

(
Ci, J, ρR

)
∂ρR

∣∣∣∣∣
J,Ci

(107)

This leaves us with the still rather mysterious tensor Πi

which will turn out to have a simple physical meaning
related to the shear stress for an isotropic elastic solid as
will become clear in section VIA.

VI. ISOTROPIC ELASTIC SOLID

A. Stress tensor and chemical potential

A simple liquid can be turned into a simple solid by
adding an elastic term eΛ to the local free energy density

ψ (ρ,F) = f(ρ) + eΛ(ρ,C
i) (108)

with eΛ a function of spatial (deformed) density ρ and the
right isochoric Cauchy-Green tensor defined in Eq. 96

ϵΛ(ρ,C
i) =

Λ(ρ)

2

(
trCi − 3

)
(109)

Λ(ρ) is a density dependent (i.e. non-linear) shear elastic
coefficient. In the limit of small deformation Λ can be
identified with the shear Lamé coefficient of linear elas-
ticity theory as will be verified in section VIC.
Shear stress is the signature of the break down of mo-

bility at microscopic level. Failing a detailed representa-
tion of atomic position in our model the elastic coefficient
Λ plays the role of a continuum order parameter for the
transition from a liquid to a simple solid. This is why Λ
has been made dependent on the spatial density ρ and
not on the material density ρR in the reference frame. In
this way the shear elastic response can be triggered by
the modest difference in density between the liquid and
solid phase. The free energy density of Eqs. 108 and 109
can therefore be thought of as defining a Landau type free
energy function for solidification. However, in a contin-
uum mechanics framework this distinctly non-standard
construction raises a number of technical questions. In
particular, shear strain is now an isochoric deformation
of a reference space attached to the current deformed
density. Further discussion will be deferred till after the
presentation of the application in section VII.
To obtain the constitutive relations for the isotropic

solid, the free energy density Eq. 108 is subjected to a
similar treatment as the liquid free energy density in sec-
tion IVA. First the spatial free energy density is con-
verted it to a free energy density in material space.

ψR = ψ̃R

(
Ci, J, ρR

)
= fR (J, ρR) +

ΛR (J, ρR)

2

(
trCi − 3

)
(110)

For the local energy density fR there is no difference with
Eq. 66 for the liquid

fR (J, ρR) = Jf
(
J−1ρR

)
(111)

As intended ΛR is of the same form

ΛR (J, ρR) = JΛ
(
J−1ρR

)
(112)

with the prefactor J having the same effect (see below)
The expression Eq. 107 for the chemical potential is

easy to work out. The reference density derivative of
the isotropic first term has already been dealt with in
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section IV. The ρR derivative of the second anisotropic
term has an extra the factor

(
TrCi − 3

)
which is however

independent of density. We can therefore directly copy
from Eq. 68 to find

µ = µ̄+ κΛeΛ (113)

where µ̄ is the regular local density chemical potential

µ̄ =
df

dρ
(114)

and we have introduced the coefficient

κΛ =
1

Λ

dΛ

dρ
(115)

characterizing the density derivative of the shear Lamé
modulus. The shear elasticity adds a finite contribution
to the chemical potential for strained systems but only
when the elastic coefficient varies with density (κΛ ̸= 0).
Where it concerns the effect on the chemical poten-
tial, a density dependent shear Lamé modulus plays the
same role as a density dependent dielectric susceptibil-
ity in electrostriction suggesting to refer to κΛ as the
chemostriction coefficient.

The evaluation of the volumetric pressure of Eq. 99
involves taking a derivative to J . Inserting the model
reference free energy density Eq. 110 gives

pJ = −∂fR
∂J

− 1

2

∂ΛR

∂J

(
trCi − 3

)
(116)

The partial derivative is carried out at fixed reference
density ρR and shear strain Ci. Substituting Eq. 111
and applying the chain rule we can rewrite the first J
derivative in Eq. 116

p̄ = −∂fR
∂J

= −f − J
∂f

∂J
(117)

On account of Eq. 19 we can convert this into a derivative
to current density ρ.

p̄ = −J df
dρ

∂ρ

∂J
− f = ρ

df

dρ
− f (118)

which is of same form as what we found section IVA for
the pressure of the simple liquid. Consistent with Eq. 114
for the local density chemical potential p̄ will be referred
to as the local density pressure. The J derivative of ΛR

of Eq. 112 can be treated by a similar procedure yielding

dΛR

dJ
= Λ− ρ

dΛ

dρ
= Λ(1− ρκΛ) (119)

where κΛ is the chemostriction coefficient defined in
Eq. 115. Combining we obtain the expression for the
total mechanical pressure pJ

pJ = p̄+ (ρκΛ − 1) eΛ (120)

The suffix J of pJ can be dropped but will often be re-
tained for clarity. Note that in the limit of linear elas-
ticity (κΛ = 0) the mechanical pressure Eq. 120 remains
sensitive to shear strain while chemical potential Eq. 113
still is determined by the local density contribution only.
This contrast between chemical potential and pressure
was already pointed out by Gurtin in Ref. 6.
The deviatoric Cauchy stress tensor T0 is the inter-

esting mechanical property special to solids. This is the
next quantity to evaluate. The discouraging looking ex-
pression Eq. 106 for T0 turns out to be rather simple
for the isotropic solid Eq. 108. The energy derivative is
contained in the auxiliary stress-like tensor Πi defined
in Eq. 98. This is a tensorial derivative with respect to
the isochoric Cauchy-Green tensor Ci which Ci appears
as its trace in the energy term Eq. 109. Fortunately the
derivative of trace of a symmetric tensor is simple. Us-
ing Eq. A2 which is valid for any symmetric tensor, we
obtain

Πi = ΛR1 (121)

Substituting in Eq. 106 gives

T0 =
ΛR

J

[
FiFiT − 1

3

(
trCi

)
1

]
(122)

Recalling the definition of the left Cauchy Green tensor
(Eq. 83) and noting that trCi = trBi we find that the
deviatoric Cauchy stress tensor of a hyperelastic isotropic
simple solid is proportional to the corresponding devia-
toric component of Bi

T0 =
ΛR

J
devBi = ΛdevBi (123)

where we have used Eq. 112 to change back to the spatial
form of the Lamé modulus.
Comparing to Eq. 74 for the liquid we see that, in ad-

dition to a modification of the isotropic pressure term,
there is now also an anisotropic term proportional to the
shear Lamé modulus of the elastic model. This is of
course a familiar result in non-linear elasticity theory (see
Ogden24). However, this expression is commonly given
in terms of the full left Cauchy-Green tensor B. The fact
that we can replace B by Bi is a convenient feature of the
volumetric-isochoric decomposition of Eq. 92. The other
important point to note is that the deviatoric stress of
Eq. 123 and corresponding isotropic (total) pressure of
Eq. 120 were derived in conjunction with a consistent
expression for the chemical potential. This is Eq. 113
making it possible to define chemomechanical coupling
coefficients in the form of the chemistry strain tensor in-
troduced in the next section.

B. Chemomechanical response

In thermodynamics each independent state variable is
associated with a thermodynamic force. In a hyperelastic
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(Green elastic) material all thermodynamic forces can be
obtained as derivatives of the stored energy density ψR

in the reference frame with respect to the chosen set of
state variables. This was implemented in section VB for
the volumetric/isochoric separation of the deformation
gradient matrix. The corresponding thermomechanical
response functions can therefore be formulated as second
derivatives with respect these state variables. Starting
with the mechanical pressure p = pJ , this quantity, nor-
mally defined as a derivative of free energy wrt to volume,
was in Eq. 99 identified with (minus) the derivative of ψR

w.r.t the determinant J of the deformation gradient ma-
trix. Accordingly we define a bulk modulus as the second
derivative w.r.t J

KJ = − ∂pJ
∂J

∣∣∣∣
ρR,Ci

=
∂2ψ̃R

(
Ci, J, ρR

)
∂J2

(124)

Allowing for variation of the reference density ρR the
chemical potential could be identified with the derivative
w.r.t ρR (Eq. 107) leading GFA to define a chemistry
modulus

Γ =
∂µ

∂ρR

∣∣∣∣
J,Ci

=
∂2ψ̃R

(
Ci, J, ρR

)
∂ρ2R

(125)

As argued in section II, reference density ρR and J are
formally independent state variables in diffusion coupled
deformation theory and hence the mixed derivative can
be interpreted as chemomechanical coupling coefficient

Σ =
∂µ

∂J

∣∣∣∣
ρR,Ci

=
∂2ψ̃R

(
Ci, J, ρR

)
∂J∂ρR

= − ∂pJ
∂ρR

∣∣∣∣
J,Ci

(126)

The second identity is a version of the Maxwell relation.
While treated as independent variables in thermome-

chanical balance equation, material density ρR and “lo-
cal” volume J are coupled in the constitutive model
Eq. 108 for the simple elastic solid. They only appear
combined in the product ρ = J−1ρR (Eq. 20). As a re-
sult the partial derivatives in Eqs. 124, 125 and 126 can
all be expressed as derivatives to spatial density ρ. Let us
first see how this works out for Σ. Changing J derivatives
at constant ρR to ρ derivatives Eq. 126 is transformed to

Σ =
∂µ

∂ρ

∂ρ

∂J
= − ρ

J

∂µ

∂ρ
(127)

where the explicit specification of the variables kept con-
stant in the partial derivative have been suppressed. Sub-
stitution of Eq. 113 gives for the density derivative of the
chemical potential

∂µ

∂ρ
=
dµ̄

dρ
+

1

2

d (ΛκΛ)

dρ

(
trCi − 3

)
(128)

with the chemostriction coefficient κΛ defined in Eq. 115.
Setting dκΛ/dρ = 0 we obtain

∂µ

∂ρ
=
dµ̄

dρ
+ κ2ΛeΛ (129)

The local density contribution µ̄ is a function of density
only with a derivative determined by the compressibility.
This follows from Eqs. 114 and 118

dp̄

dρ
=

d

dρ

(
ρ
df

dρ
− f

)
= ρ

d2f

dρ2
= ρ

dµ̄

dρ
(130)

and is yet another formulation of the local Gibbs-Duhem
relation Eq. 28 valid for LDA functionals. Replacing the
density derivative of p̄ by the compressibility

κρ =
1

ρ

dρ

dp̄
(131)

we have

dµ̄

dρ
=

1

ρ2κρ
(132)

Substituting in Eq. 129 yields

∂µ

∂ρ
=

1

ρ2κρ
+ κ2ΛeΛ =

∂µ

∂ρ

∣∣∣∣
Ci

≡ η
(
ρ,Ci

)
(133)

This expression for the chemical potential differentiated
to spatial density will reappear frequently which is why
we have given it its own symbol η in the last step, where
we also have inserted a reminder that is still a partial
derivative. The isochoric deformation is fixed. ρ2η can
be interpreted as an effective bulk modulus corrected for
the effect of chemostriction. The correction is positive
since the elastic energy eΛ can be expected to be larger
(or equal) to zero. The solid becomes harder to compress.
Returning to of Eq. 126, Σ can now be written in terms

of the coefficient η of Eq. 133. Substituting in Eq. 127
we obtain

Σ = −ρη
J

(134)

Evidently Σ is always negative. Next, the chemistry
modulus Γ of Eq. 125 is subjected to similar manipula-
tion with a similar result. The ρR derivative at constant
J can again be converted to a derivative to spatial density
ρ and we can write

Γ =
∂µ

∂ρ

∂ρ

∂ρR
=

1

J

∂µ

∂ρ
=
η

J
(135)

The bulk modulus of Eq. 124 is equally proportional to
η. First the J derivative at constant ρR is exchanged for
a ρ derivative

KJ = −∂pJ
∂ρ

∂ρ

∂J
=
ρ

J

∂pJ
∂ρ

(136)

Then substituting Eq. 120 and using Eq. 130 we have

∂pJ
∂ρ

=
1

ρκρ
+ κ2ΛρeΛ = ρη (137)

and hence we can write the bulk modulus of Eq. 124 as

KJ =
ρ2η

J
(138)
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Having converted all ρR and J partial derivatives to ρ
derivatives we can now assemble the differential for the
chemical potential (still keeping Ci fixed)

dµ = ΓdρR +ΣdJ = η

(
dρR
J

− ρ
dJ

J

)
= ηdρ (139)

Applying the same procedure to the differential of the
volumetric pressure we find

dpJ = −KJdJ − ΣdρR

= ρη

(
−ρdJ

J
+
dρR
J

)
= ρηdρ (140)

Comparing Eqs. 139 and Eq. 140 we must conclude that

∂pJ
∂ρ

∣∣∣∣
Ci

= ρ
∂µ

∂ρ

∣∣∣∣
Ci

(141)

This is of the same form as Eq. 130 for the local density
pressure p̄ and chemical potential µ̄. The differential in-
crements of pJ and µ again statisfy a local Gibbs-Duhem
relation (Eq. 28) now including a shear elastic contri-
bution. The extension of the Gibbs-Duhem relation to
volumetric pressure in a solid is an intentional feature of
Eq. 108. It is a consequence of making the shear modu-
lus Λ in Eq. 109 depend on spatial density ρ rather than
reference density ρR.

The built in liquid-like behaviour is also reflected in
the chemomechanical response coefficients KJ ,Γ and Σ.
Multplying with factors of density to obtain compatible
physical dimensions we define a 2× 2 Hessian

K =

(
KJ ρΣ

ρΣ ρ2Γ

)
(142)

Substitution of Eqs. 134, 135 and 138 yields

K =
ηρ2

J

(
1 −1

−1 1

)
(143)

We immediately see that K has a zero eigenvalue. The
other eigenvalue is

Kρ =
2ηρ2

J
=

2

J

(
κ−1
ρ + (κΛρ)

2
eΛ

)
(144)

which is positive definite. These eigenvalues characterize
the response to normal varations in ρR and J at constant
Ci. Increasing ρR amounts to locally adding particles at
fixed volume. Scaling up J corresponds to an increase
of local volume at fixed particle number. An increase
in ρR compensated by the same increase in J conserves
density ρ (Eq. 20). This has no effect on the energy of
our model and must therefore give a zero eigenvalue. The
complementary combination of increasing ρR and scaling
back J leads to higher spatial density and therefore in
an change in energy. The eigen value is finite. A change
in J with a value opposite of what was needed for the

zero eigenvalue will double the deformed density. This
explains the factor 2 in Eq. 144.
Continuing with the response to a variation in isochoric

deformation we define the tensor

Sµ =
∂µ̃
(
Ci, J, ρR

)
∂Ci

∣∣∣∣∣
ρR,J

(145)

Substituting Eq. 113 and using Eq. A2

Sµ =
κΛΛ

2

∂trCi

∂Ci
=
κΛΛ

2
1 (146)

Corresponding first order change in chemical potential

dµ = Sµ : dCi =
κΛΛ

2
tr
(
dCi

)
(147)

Adding to Eq. 139 we find for the total differential of the
chemical potential

dµ = ηdρ+
κΛΛ

2
tr
(
dCi

)
(148)

A similar derivation gives for the pressure response

Sp =
∂p̃
(
Ci, J, ρR

)
∂Ci

∣∣∣∣∣
ρR,J

=
ρκΛΛ

2
1 = ρSµ (149)

Finally we investigate the chemomechanical response
in the natural equilibrium state. This state is stress and
strain free.

F0 = C0 = B0 = 1, J0 = 1, e0Λ = 0 (150)

The solid nature of the system becomes apparent in the
finite response to shear deformation

S0
µ =

κΛΛ

2
1, (151)

where the “0” superindex has been omitted from the
quantities on the r.h.s in the understanding that they
are to be evaluated in the natural equilibrium state. In
particular, setting dµ = 0 in Eq. 148 we have for a me-
chanical action at constant chemical potential carried out
with the natural state as initial state

dρ = −ρ2κρκΛ
(
Λ

2
tr
(
dCi

))
= −ρ2κρκΛdeΛ (152)

Eq. 152 is a key result in our chemomechanical analysis.
It shows that chemostriction (κΛ ̸= 0) couples density
and shear strain under conditions of constant chemical
potential. Shear stress can therefore induce changes in
density while the solid remains in chemical equilibrium
with a liquid reservoir. This is impossible for a system
under hydrostatic pressure for which density can only
be changed by a change in chemical potential as is the
common behavior for simple liquids.
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C. Linear elastic modulus parameters

The mechanochemical response coefficients of section
VIB are complemented by a set of elastic moduli for-
mally defined as the Cauchy-Green tensor derivative of
the second Piola stress tensor

C = 2
∂T̃RR

(
Ci, J, ρR

)
∂Ci

∣∣∣∣∣
ρR,J

(153)

Working this out for the expression Eq. 100 of TRR is a
daunting task even for simple isotropic elastic solids. The
analysis will therefore be restricted to the small strain ex-
pansion relative to the equilibrium state Eq. 150. This
all that is necessary for the application in section VIIB.
The model system is a body of solid material of rectan-
gular shape with an axis frame oriented along edges. In
this geometry the left and right Cauchy Green tensors are
identical. As usual in continuum mechanics x, y and z co-
ordinates are labeled by the numerals m = 1, 2, 3. Writ-
ten in coordinate index form the isochoric tensor (Eq. 96)

is

Bi
mn =

1

(λ1λ2λ3)
2/3

λ2mδmn (154)

where λ1, λ2, λ3 are the principle stretches. Because of
the requirement of unit determinant for isochoric defor-
mation the trace

trBi =
1

(λ1λ2λ3)
2/3

(
λ21 + λ22 + λ23

)
(155)

is not a quadratic function of the principal stretches. Set-
ting λm = 1+ ϵm and expanding in strains ϵm to second
order we obtain

trBi − 3 =
4

9

[
3
(
ϵ21 + ϵ22 + ϵ23

)
+ 2 (ϵ1ϵ2 + ϵ1ϵ3 + ϵ2ϵ3)

]
=

4

9

[
5

3
(ϵ1 + ϵ2 + ϵ3)

2
+

1

3
(2ϵ1 − ϵ2 − ϵ3)

2

+(ϵ2 − ϵ3)
2
]

(156)

The second line is a spectral representation in terms of
normalized eigenmodes, an “A” mode with eigenvalue
(4/9)5 and two independent “E” modes with eigenvalue
(4/9)2. There is no term linear in ϵm. The elastic energy
is parabolic in ϵm with a minimum of eΛ = Λ(trBi −
3)/2 = 0 at ϵ1 = ϵ2 = ϵ3 = 0.

For the stress tensor we also need the deviatoric component of Bi as defined in Eq. 104

devBi =
1

3 (λ1λ2λ3)
2/3

2λ21 − λ22 − λ23 0 0
0 2λ22 − λ21 − λ23 0
0 0 2λ23 − λ21 − λ22

 (157)

Now Taylor expansion does generate a term first order in ϵm

devBi =
2

3

2ϵ1 − ϵ2 − ϵ3 0 0
0 2ϵ2 − ϵ1 − ϵ3 0
0 0 2ϵ3 − ϵ1 − ϵ2

 (158)

Eq. 158 can be used to cast the deviatoric Cauchy stress
tensor of Eq. 123 in the conventional Lamé representation
of linear elasticity

T0 = 2µiϵ+ λitrϵ (159)

The superscript i has been added as a reminder that
Eq. 159 only accounts for stress due to isochoric defor-
mation. Both µi and λi are therefore proportional to the
parameter Λ introduced in Eq. 109.

µi = Λ, λi = −2Λ/3 (160)

confirming that Λ can indeed be interpreted as the shear
modulus G (also indicated by µ). λi on the other hand is
not the full Lamé λ. Indeed, evaluating the bulk modulus

according to the usual textbook expression2

K = λ+
2

3
µ (161)

and substituting the moduli of Eq. 160 gives Ki = 0
which would indicate that the system is not stable. How-
ever we have ignored the isotropic term in the stress ten-
sor as given in Eq. 105. The corresponding contribution
to the bulk modulus is obtained from the small strain
expansion of the volumetric pressure pJ . Using Eq. 138
we first write dpJ as a differential of J

dpJ = −KJdJ = ρ2η
dJ

J
(162)
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Next substituting the small strain approximation to J

J = 1 + trϵ (163)

we can write the full linearized Cauchy stress tensor as

T = 2Λϵ+

(
ρ2η − 2Λ

3

)
trϵ (164)

which implies that the proper Lamé λ is equal to the
sum ρ2η − 2Λ/3. Substituting in the standard expres-
sion Eq. 161 for the bulk modulus the 2Λ/3 terms cancel
and we are back at Eq. 138 for KJ . Note however that
for finite chemostriction the bulk elastic response is still
affected by shear strain (see Eq. 133 for η).

Of interest is also the Young modulus E associated
with the linear elastic model defined by Eq. 164. Con-
sulting again Ref. 2 we use the relation

E =
9Kµ

(3K + µ)
=

9ρ2ηΛ

(3ρ2η + Λ)
(165)

Similarly, choosing a for our application convenient equa-
tion for the Poisson ratio we have

ν =
1

2
− E

6K
=

1

2
− 3Λ/2

(3ρ2η + Λ)
(166)

Evidently ν < 1/2 and decreases with increasing mag-
nitude Λ > 0 of the isochoric elastic energy. Young’s
modulus of Eq. 165 vanishes for Λ = 0. This is the ten-
sile stress response expected for a liquid. However, the
Poisson’s ratio as predicted by Eq. 166 remains finite for
vanishing Λ tending to ν = 1/2 . A Poisson ratio of a
half is the correct limiting behaviour for an incompress-
ible solid (K → ∞) . However our Λ = 0 system is com-
pressible (finite K) but has lost shear rigidity (E = 0) as
is charactersitic for a liquid. Regardless this fundamental
difference Eq. 166 assigns the same ν = 1/2. We have
no explanation for this paradox other than that Eq. 166
may not be meaningful for liquids.

VII. PERMEABLE LIQUID SOLID INTERFACE

A. Mechanochemical equilibrium at the dividing surface

Consider a sharp dividing surface separating a solid
from its melt. The solid and liquid are modeled as ho-
mogeneous continua. The dividing surface at this level of
modeling acts as discontinuity in the constitutive equa-
tions. The solid and the liquid are in chemical and me-
chanical equilibrium exchanging mass as well as volume.
The chemical potential and pressure of the liquid phase
are those of the simple liquid of section IV

µl = µ̄l =
dfl
dρ

∣∣∣∣
ρ=ρl

pl = p̄l = ρlµ̄l − fl(ρl) (167)

For the solid we use the isotropic elastic continuum model
of section VI. The local density chemical potential and
pressure are of the same form as for the liquid.

µ̄s =
dfs
dρ

∣∣∣∣
ρ=ρs

, p̄s = ρsµ̄s − fs(ρs) (168)

The parametrization is different and therefore the equi-
librium density at coexistence (ρs ̸= ρl). In this respect a
simple liquid-solid interface is similar to a liquid-vapour
interface. However, unlike Eq. 167, we no longer can set
µs = µ̄s and ps = p̄s. The reason is the contribution of
the elastic energy term in Eq. 109 controlled by the den-
sity dependent shear Lamé Modulus Λ. The mechano-
chemical potential of the solid was given in Eq. 113 and
repeated in the notation used in this section for later
reference

µs = µ̄s + κΛeΛ (169)

Similarly copying Eq. 120 the volumetric pressure in the
solid is written as

ps = p̄s + (ρsκΛ − 1) eΛ (170)

where the substript J has now been omitted. Adding the
deviatoric stress tensor of Eq. 123 gives the full non-linear
Cauchy stress tensor of the solid

Ts =
(
p̄s + (ρsκΛ − 1) eΛ

)
1+ ΛdevBi (171)

The main question investigated in this section is how
shear strain affects the discontinuity in density when
crossing the dividing surface. This is not only a matter
of change of the volume occupied by the solid. Chem-
ical equilibrium maintains the same chemical potential
across the interface and as a result strain can also induce
a transfer of mass between the two phases. This is diffu-
sion coupled deformation in action at a dividing surface.
Setting µl = µs and substituting Eqs. 167 and 169 we
have

µ̄l − µ̄s = κΛeΛ (172)

This is the chemical boundary condition. In addition the
system must also satisfy a mechanical boundary condi-
tion involving the Cauchy stress tensor at dividing sur-
face or more precisely the traction vector relative to the
surface normal n:

Tsn = Tln (173)

whereTl = −p̄l1 is the Cauchy stress tensor on the liquid
side of the interface. Substituting the Ts of Eq. 171 and
rearranging we have

(pa + p̄l − p̄s + eΛ)n+ ΛdevBin = ρsκΛeΛn (174)

The pressure pa added to the liquid reference pressure p̄l
represents the normal traction force due to an externally
applied load.
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The liquid plays the role of a reservoir with fixed chem-
ical potential µ̄l and pressure p̄l. These quantities are not
degrees of freedom but parameters. Eqs. 172 and 174 are
therefore set of coupled chemomechanical equations for
the equilibrium reference density ρR and elastic degrees
of freedom J and Ci of the solid.

B. Linearization: Solid bar immersed in its melt

The diffusion coupled deformation theory based in the
multiplicative decomposition Eq. 96 of the Cauchy-Green
tensor is intrinsically non-linear. To avoid thermochemi-
cal inconsistencies the chemo-mechanical surface balance
equations Eq. 172 and 174 were therefore derived strictly
staying within the non-linear framework. With these
equations established it is now safe to expand in the
strain assuming it is small. The deviatoric isochoric left
Cauchy Green tensor devBi determining in Eq. 174 the
shear stress will be replaced by its linear approximation
Eq. 158. The elastic energy eΛ appearing both in Eq. 172
and 174 is proportional to the trace of Bi which is in low-
est order a quadratic function of strain as was verified in
Eq. 156. Linearizing Eq. 172 in the isochoric deformation
we must conclude that to first order the local chemical
potentials remain equal (µ̄l = µ̄s). Similarly, omitting
from Eq. 174 the terms proportional in eΛ reduces the
mechanical equilibrium condition to

(pa + p̄l − p̄s)n+ ΛdevBin = 0 (175)

where devBi is understood to be the linear approxima-
tion Eq. 158.

Surface tension is not taken into account in this first
exploratory study. It can therefore be assumed that in
abence of external loads the solid will be free of shear
stress (we will return to this important point in section
VIII). Hence, zero pa sets Bi = 0 and what is left of
Eq. 175 balances the local pressures in the two phases
(p̄s = p̄l). However a finite load not only induces shear
strain, it also perturbes the equilibrum solid density ρs
and with it the local pressure. p̄s. As a result p̄s and p̄l
no longer cancel. With the liquid acting as a reservoir
p̄l is constant whatever the value of pa. Therefore to
first approximation p̄s − p̄l = (dps/dρs)∆ρs. Changes in
density are second order in the strain (Eq. 152) and we
set p̄l = p̄s in Eq. 175 which simplifies it to

ΛdevBin = −pan (176)

As expected the induced strain is proportional to the
applied stress.

While Eq. 176 may look familiar, it is not the reg-
ular response of a stable linear isotropic elastic contin-
uum. The strain is entirely controlled by the deviatoric
Cauchy stress tensor Eq. 159. But this means, as noted
in section VIC that the bulk modulus K = 0. The
system is infinitely compressible. This clearly extreme
mechanical behavior is in fact consistent with classical

nucleation theory as will be further discussed in section
VIIC. However, some rigidity remains. It shows up,
for example, in the simple geometry used in the study
of diffusive creep of gels9,44: A typical experiment con-
sist of placing a bar of gel surrounded by bath of solvent
on a rigid substrate which constrains stretching in y and
z direction: λ2 = λ3 = 1 or in linear approximation
ϵ1 = ϵ, ϵ2 = ϵ3 = 0 (see Fig. 2). A weight is placed on the
upper surface applying a load in the x direction. This
will squeeze out some of the absorbed liquid. In what
is best considered as a thought experiment, we exchange
the block of for a bar of simple solid and the liquid by
its melt. In this one-dimensional geometry Eq. 176 is
reduced to

ΛdevBi
11 = −pa (177)

Fig. 2    

2 3 1λ λ= =

1 1λ ε= +

ap liquid phase

solid phase

FIG. 2. Constrained axial loading of a solid bar (dark gray)
immersed in a bath of its melt (light gray). Solid and liq-
uid phase are in chemomechanical equilibrium (double half
arrows). The bar is supported by a rigid substrate (black) in-
hibiting deformation in the 2 and 3 direction (stretches λ2, λ3

are unity). A weight is placed on the upper surface applying a
stress force pa compressing the bar in the 1 direction leading
to a strain ϵ < 0. Experiments of this type are standard for
the study of the swelling of polymeric gels (A detailed dis-
cussion can be found in the textbook by Doi44). Here this
set-up is transferred in a thought-experiment to a solid-liquid
interface of a simple one-component system.

Reading the linear approximation to devBi
11 from

Eq. 158 we find for the strain ϵa induced by the applied
load pa.

ϵa = −3pa
4Λ

(178)

The bar responds to the constrained tensile stress with a
modulus

M =
4

3
Λ (179)

The elastic constant M is known in the seismology lit-
erature as the P-wave modulus determining the velocity
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of longitudinal waves under conditions of negligible shear
motion. The P-wave modulus of Eq. 179 should be com-
pared to value obtained for a bar without the additional
non-mechanical boundary condition (see Fig. 3). The
linear elastic properties are now determined by the Lamé
stress tensor of Eq. 164 giving

M =
1

κρ
+

4

3
Λ (180)

Comparing to Eq. 179 we see that chemical equilibrium
has eliminated the local density bulk modulus term 1/κρ,
consistent with the vanishing bulk modulus under these
conditions. Still the modulus for axial loading remains
finite and positive suggesting that a new mechanical equi-
librium can be established under loading.

Fig. 3    
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FIG. 3. Constrained axial contraction of a rectangular bar
decomposed in volumetric compression followed by isochoric
shear. The stretches λi, i = 1, 2, 3 for each operation are
given below. Indicated are also the corresponding linear elas-
tic moduli: M is the so-called P-wave modulus, K the bulk
modulus and G the shear modulus. In the linear approxi-
mation M = K + 4G/3 (cf. Eq. 180). For an open system
exchanging mass with a liquid reservoir, as realized in the
system of Fig. 2, the bulk modulus vanishes (K = 0) elimi-
nating the free energy cost of the volumetric compression (see
section VIIB). The shear modulus G > 0 remains finite and
therefore also M .

C. Chemostriction and stability

Similar to electrostriction, the most noticeable effect
of chemostriction is a change in density. Under chemical
equilibrium conditions this change in solid density is de-
scribed by Eq. 152. This relation implies that chemostric-
tion forces, being proportional to the elastic energy, are
a non-linear effect and can therefore be ignored in lin-
earized equilibrium equations, as we did in section VIIB.
Still for given first order strain obtained independently of
chemostriction we can compute the second order change

in density. Such a non-selfconsistent decoupled approach
is often applied for a first exploration of non-linear effects.
The non-linear quantity of interest is the shear elastic en-
ergy eΛ. Inserting the strain of Eq. 178 in Eq. 157 we find

eΛ(ϵa) =
Λ

2

(
4

3
ϵ2a

)
=

3

8

p2a
Λ

(181)

The elastic energy increases with the square of the per-
turbation as is the expected behavior in linear response
theory. Evaluation ∆ρs of Eq. 152 for the elastic energy
of Eq. 181 gives

∆ρs = −
(
3p2a
8Λ

)
κρκΛρ

2
s (182)

The density always decreases whether the applied stress
is compressive ( pa > 0) or tensile (pa < 0). For a tensile
load a decrease in density would be the normal response
because stretching at fixed lateral dimensions increases
the volume of the bar. Under compression a reduction
of solid density can only be achieved by conversion of
solid material to liquid which is an admissible degree of
freedom for an open system. The change in density is
accompanied by a change in volumetric pressure which
can be computed using Eq. 140.

∆ps = ρsη∆ρs = −ρs
(

1

ρ2sκρ
+ κ2ΛeΛ

)
κρκΛρ

2
seΛ (183)

Substitution of Eq. 181, neglecting higher order terms
quadratic in eλ, we obtain

∆ps = −κΛρseΛ = −3

8

κΛρs
Λ

p2a (184)

In section VIB we argued that expressions such as
Eq. 183 relating the differential of volumetric pressure
and chemical can be regarded as a solid variant of a local
Gibbs-Duhem relation. It must kept in mind, however,
that Eq. 184 is specific to our simple constitutive model.
In this context, note also that a discontinuity in volumet-
ric pressure is not a violation of mechanical equilibrium.
Force balance in a planar geometry is controlled by the
normal pressure. Due to elastic rigidity these two mea-
sures of pressure can deviate as explained in section IIC.
Having determined the changes in geometry we are

ready for a closer investigation of the energetics and sta-
bility. First of all there is the issue of the zero bulk
modulus. We were led to this conclusion by the lin-
ear analysis of section VIIB. However the lack of re-
sistance to volumetric expansion is an inherent property
of the original non-linear constitutive model as formu-
lated by Eqs. 108 and 109. With equal principle stretch
in all directions, the isochoric Cauchy-Green tensor Bi is
unity. The trace should be 3 as confirmed by evaluating
Eq. 155 for λ1 = λ2 = λ3. Similarly Eq. 157 for the devi-
atoric stress is the zero tensor. The shear elastic energy
eΛ = 0 and the Cauchy stress tensor becomesTs = −p̄s1.
There is no difference with the hydrostatic stress tensor
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Tl = −p̄l1 of the liquid other than the actual density
dependence of the LDA pressure p̄.
This is what the volumetric-isochoric factorization of

deformation built into the constitutive model of the solid
was designed for. Under load and strain free chemo-
mechanical equilibrium p̄s = p̄l and µ̄s = µ̄l. The liq-
uid/solid dividing surface can be displaced, expanding or
shrinking the volume of the solid, at no free energy cost
provided the shape is not changed. This picture is con-
sistent with classical nucleation theory. When there is no
net decrease in free energy to be gained by enlarging the
volume occupied by the growing phase, the nucleus will
collapse under the stress exerted by the surface tension.
Surface tension is not accounted for in our model and,
hence, the volume of the solid body is arbitrary. Clearly
the introduction of surface tension is badly needed to
make the diffusion coupled deformation scheme proposed
here more realistic. Further discussion of this point is de-
ferred to the concluding remarks in section VIII

The case for stability under axial loading is not as rig-
orous. The problem is the non-selfconsistent treatment
of the chemostriction energy in the linearization scheme
applied in section VIIB. Consider a change of shape pre-
serving density. The cost in energy is the shear energy
eλ which is quadratic in the strain. This is the only con-
tribution to the energy accounted for in section VIIB.
However, as argued above, chemostriction perturbs the
density. To second order in the strain the change in solid
density ∆ρs is proportional to the elastic energy as is in-
dicated by Eq. 182. The corresponding contribution to
the energy density can be estimated as µs∆ρs and is of
the same order as eΛ. The total shear stress induced free
energy density change is therefore

∆f = eλ + µs∆ρs =
(
1− κρκΛρ

2
sµs

)
eΛ (185)

For a stable solid (µs < 0) the deformation process will
be exergonic (∆f > 0) assuming as before that the
chemostriction coefficient κΛ > 0 (the magnitude Λ of
the shear interaction increases with density). Axial load-
ing will still come at an energy cost but clearly this will
ned to be confirmed by a rigorous self consistent non-
linear treatment.

VIII. SUMMARY AND DISCUSSION

The paper reports on a continuum mechanics investi-
gation of the mechanical response of a solid in equilibrium
with its liquid phase at the melting line. The liquid is
modeled by the usual free energy density depending on
local density only (no gradients). Steric repulsion and co-
hesion in the solid are represented by a similar local free
energy density. Allowing for a different parametrization
this constitutive design makes the solid resemble the liq-
uid as closely as possible which is appropriate for a solid
in equilibrium with its melt. The crucial difference is
that the local density functional in the solid is extended

with an elastic energy term accounting for shear defor-
mation. The magnitude of the elastic term is controlled
by a non-linear Lamé shear modulus varying with den-
sity. This elastic coefficient therefore effectively acts as
an order parameter. A finite value turns a liquid into
a solid without explicit modeling of positional ordering
of atoms. Interface energy and surface tension have not
been included in the present minimal model.

Chemo-mechanical equilibrium between solid and liq-
uid is imposed by requiring that the chemical poten-
tial and normal component of the Cauchy stress tensor
are continuous across the interface. The expressions for
the chemical potential and stress tensor of the simple
continuum solid are derived applying diffusion coupled
deformation theory. This theory was originally devel-
oped for the study of diffusion induced stress in multi-
component systems but following a suggestion by Baek
and Srinivasa8 the formalism is applied here to a one-
component two-phase system. Consistent with classical
nucleation theory we find that the bulk modulus of a
solid body immersed in a bath of its melt vanishes. How-
ever the solid keeps its shear rigidity. This is demon-
strated by evaluating the elastic modulus for constrained
axial loading of a rectangular bar. This example also il-
lustrates how density dependence of the shear modulus
gives rise to chemostriction. This somewhat unconven-
tional name has been chosen because of the similarity to
electrostriction in a dielectric fluid polarized by an ex-
ternal electric field. Chemostriction is manifested in a
decrease in equilibrium density and pressure of the solid
under mechanical loading. Similar to electrostriction, the
effect is quadratic in the applied force and therefore the
same for tensile dilation and compression.

The application is the subject of the final section with
the larger part of the paper taken up by a detailed and
inevitably technical explanation of the methodology. The
reason that this was felt appropriate is that the diffusion
coupled solid mechanics and constitutive theory as ap-
plied here have a number of non-standard aspects. There
is first of all the question of the background against which
diffusive motion is measured. In the theory of solvent
permeation of gels the reference is provided by the poly-
meric network. In section II we propose that in a one-
component system the convective flow as defined in con-
tinuum mechanics can be used as reference for migration
of mass. Changing over to a Lagrangian picture, this
argument leads us to treat material mass density in the
reference space as an independent degree of freedom in
addition to the deformation. The diffusion coupled defor-
mation theory as presented by Gurtin, Fried and Anand
(GFA)19 is then applied without modification leading to
expressions for the chemical potential and stress tensor
in terms of derivatives of the free energy density.

The constitutive model of the solid also makes non-
standard assumptions about reference. This concerns the
reference for shear deformation. The elastic coefficients
in the model, including the non-linear shear modulus,
are functions of the spatial (deformed) density. Similar
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to a liquid, specification of a material space is not needed.
Current space is the (constitutive) material space. To im-
plement this idea for the shear motion the deformation
gradient tensor was factorized in a volumetric expansion
and an isochoric deformation following a mathematical
scheme again taken over from GFA. Shear deformation is
effectively defined as displacive motion of covectors tan-
gent to surfaces of constant volume density as quantified
by J . However isochoric deformation, while preserving
local volume, can change inhomogeneous density. The
example in the present application is Eq. 152 linking the
change in density of the solid at constant chemical po-
tential to the energy stored in the shear strain. As a
result shear deformation can modify the shear modulus
creating a self-consistency problem. This complication
was evaded in the present application by linearization
of the final mechanical equilibrium equations. The cou-
pling to density was shown to be a second order effect
and can be ignored for in the determination of the first
order shear. However in future fully non-linear applica-
tions (see below) these inconsistencies can no longer be
ignored. Hopefully we can learn from anelasticity theory
where coupling of deformation to an evolving structure in
material space is a major topic of research. The relatively
“accessible” example is thermo-elasticity19. Thermal ex-
pansion leads to another stress free reference state.

The thermomechanical formalism and non-linear con-
stitutive model developed in the paper are applied in a
thought experiment probing the mechanical response of
a block of solid in chemomechanical equilibrium with its
liquid phase. We first verify that enforcing equilibrium
mass exchange across the dividing surface sets the bulk
modulus of the solid body to zero. The application then
continues showing how the mechanical response is stabi-
lized by the remaining shear rigidity. This is illustrated
by evaluating the elastic modulus for constrained axial
loading of a solid bar in bath of its melt. This analysis is
carried out by linearizing the constitutive elastic model
of the solid. The resulting strain is then used to estimate
the chemostriction due to the loading. The chemostric-
tion is a consequence of the density dependence of the
shear modulus and is a quadratic effect.

Clearly our elementary model system is far removed
from a phase equilibrium of a realistic solid-liquid sys-
tem such as ice cubes in a beaker of water. First of
all what is missing dearly is surface energy and surface
stress. Moreover for the description of the shape of a
crystal the surface energy will also have to be orientation
dependent. This level of modeling is required to address
questions such as the generalization of the Young-Laplace
equation to solid interfaces50. Furthermore the migration
of realistic solid-liquid phase boundaries can be expected
to be hindered by kinetic barriers, such as activated ac-
cretion. However, the key message of the thermomechan-
ical exercise reported in this paper still stands we believe.
This is that chemical and mechanical equilibrium must
be treated separately at interfaces.

A simple elastic model, extended with surface tension,

could already be useful for the investigation of soft capil-
larity. Similar to externally applied surface loads, surface
tension will equally deform the interior of a soft solid.
This is the subject of the new and fascinating field of
elasto-capillarity45–47. Solid nucleation will be a more
ambitious goal. Again the question can be asked how
the capillary stress is modified by chemical equilibrium
at the dividing surface. What will be the effect on the
nucleation barriers? Elastocapillarity is not part of the
analysis in most microscopic numerical studies of solid
nucleation48–51 and freezing of confined nanophases52. It
could be important because at the melting line solids are
soft. The study of nucleation will also force us to recon-
sider another aspect of sharp interface modeling s applied
in this paper. The boundary between solid and liquid,
while flexible in the deformed system, is fixed in mate-
rial space defining the reference volume and shape of the
solid body. This issue touches on the fundamental ques-
tion about the relation between thermodynamic tension
and elastic stress53.

We conclude with a very brief comment on the relation
to the DFT of inhomogeneous fluids. Density gradients
can generate deviatoric stress. The well-known exam-
ple is the Korteweg capillary stress tensor54. This tensor
can be derived form the square gradient (Cahn-Hilliard)
free energy density by a Lagrangian procedure similar
to the one applied in this paper. The free energy den-
sity is pulled back to a reference space and differentiated
with respect to the deformation gradient yielding a Pi-
ola stress tensor. Pushed forward to current space, the
result is identical to the Korteweg stress tensor55. There
is finite stress but no strain (F = 1) as is also consis-
tent with the freedom of choice of reference space. This
raises the question, can stress in an inhomogeneous fluid
in principle generate spontaneous (“eigen”) strain given
a suitably accurate density functional? In other words,
can a variational minimization of a pure DFT functional
extended with a search for the optimal shear deforma-
tion tensor break symmetry and find an F ̸= 1? And if
it does, is this point where the fluid is no longer a fluid
but a solid? This possibility is suggested by the obser-
vation that the higher order gradient functionals used in
phase field crystal theory31–35 exhibit elastic response.
The same is true for the non-local density functionals
used in the DFT of crystals32,56,57. Unfortunately evalua-
tion of the stress tensor of a pattern forming (Hohenberg-
Swift) density functional33 is very demanding and proba-
bly not very practical, at least not without further coarse
graining29. Here a hybrid strain-density functional could
be an option. The strain could play a similar role as the
one-electron orbitals in the Kohn-Sham approach to the
DFT of electronic structure.

Similar questions concerning spontaneous strain in for-
mally liquid systems arise in electric double layers mod-
eled by Poisson-Boltzmann theory. The Maxwell stress
tensor, generated by the electrostatic potential gradient,
comes in general also a with deviatoric component. Can
highly charged double layers develop shear elasticity and
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show chemo-mechanical response resembling the solid bar
investigated in the previous sections? Another matter is
possible coupling between Maxwell and steric stress. This
requires a distinction between charge and mass density
which is usually not explicitly made in modified Poisson-
Boltzmann theory58. How are these electromechanical
effects reflected in the differential capacitance profile?
As mentioned in the introduction, these questions, which
are beginning to be explored59,60, were the original mo-
tivation for the present investigation and is already the
subject of ongoing research23. Furthermore, a continuum
mechanics based analysis of stress may hopefully also be
useful for the interpretation of the results of surface force
balance experiments carried out in electrically active soft
matter61.
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Appendix A: More of the maths for section VB

Listed are a selection of the equations needed in the
derivation of the expression of Eq. 105 for the Cauchy
stress tensor under multiplicative decomposition Eq. 92
of the deformation gradient tensor F. Detailed full
derivations can be found in section 55 of GFA. Equations
numbers in italic refer to the equations in that section.
First we give the C (Cauchy-Green) derivatives of three
important functions of C: The determinant of F

∂J

∂C
=

1

2
JC−1 (A1)

of the trace of C

∂trC

∂C
= 1 (A2)

and of the isochoric factor Ci Eq. 96

∂Ci

∂C
= J−2/3

(
I− 1

3
Ci ⊗Ci−1

)
(A3)

where I is the fourth-order identity tensor. These identi-
ties are used in the derivation of Eq. 100 for the second
Piola stress tensor. In GFA this is Eq. 55 .7 which is

written out in full below

TRR = 2
∂ψ̃R(C)

∂C

=
2

J2/3

(
I− 1

3
Ci ⊗Ci−1

)
∂ψ̃R

(
J,Ci

)
∂Ci

+J
∂ψ̃R

(
J,Ci

)
∂J

C−1

=
2

J2/3

[
∂ψ̃R

(
J,Ci

)
∂Ci

− 1

3

(
Ci :

∂ψ̃R

(
J,Ci

)
∂Ci

)
Ci−1

]

+J
∂ψ̃R

(
J,Ci

)
∂J

C−1 (A4)

All derivatives are at constant material density ρR which
has been suppressed as an argument of ψ̃R. Substitu-
tion of the short hand notations of Eqs. 98 and 99 yields
Eq. 100.
The multiplicative decomposition is given a particu-

larly useful physical meaning by Eq. 103 for the trace of
the Cauchy stress tensor Eq. 102 (Eq. 55 .9 ). The proof
proceeds by showing that the trace of T0 of eq. 106 van-
ishes. Following gain GFA we write now suppressing all
mentioning of arguments to ψ̃R

trT0 =
2

J
tr

[
Fi ∂ψ̃R

∂Ci
FiT − 1

3

(
Ci :

∂ψ̃R

∂Ci

)
1

]

=
2

J

[
FiT :

∂ψ̃R

∂Ci
FiT −Ci :

∂ψ̃R

∂Ci

]

=
2

J

[
FiTFi :

∂ψ̃R

∂Ci
−Ci :

∂ψ̃R

∂Ci

]

=
2

J

[
Ci :

∂ψ̃R

∂Ci
−Ci :

∂ψ̃R

∂Ci

]
= 0 (A5)

confirming that T0 is the deviatoric component of the
Cauchy stress tensor Eq. 102.
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