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I. DERIVATION OF THE ANALYTICAL MODEL

We will start from basic statistical mechanics and show that the expected value for the partition
function due to bond formation of two ligand-coated particles, denoted by A and B, held at fixed distance
d is given by the double exponential expression

〈Qb(d)〉 =
∑
i,j

eñAñBe
−βε(d)

. (S1)

Here ñA and ñB are the mean number of ligands, respectively, on the particles A and B.

e−βε(d) =
1

SASB

∫
SA

dr1

∫
SB

dr2e
−β∆G(r1,r2) (S2)

is the effective bond formation free energy integrated over both particle surfaces SA and SB, keeping
the inter-particle distance d fixed, and β ≡ 1/(kBT ) the inverse temperature. The bond formation free
energy

∆G(r1, r2) = ∆G0 + ∆Gcnf (r1, r2) (S3)

is a sum of ∆G0, the ligand-ligand hybridisation free energy in solution, and ∆Gcnf(r1, r2), the configu-
ration cost of forming the bond due to the two ligands being grafted to the particle’s surface at positions
r1 and r2 [1]. ∆G0 is determined with respect to the standard concentration ρ0 = 1M.

In the main text we consider ligands being linked to particle’s surface via an ideal polymeric linker
resulting in harmonic stretching penalty with spring constant k describing the stiffness of the total bridge
between the two particles. An individual linker connecting a ligand to a particle has a spring constant
2k. The partition function of the two unbound ligands is simply a Gaussian integral over the two ligand
positions:

qu =

(
π

βk

)3

(S4)

assuming that ligands are ideal and are not excluded by the particles. The bound partition function is a
Gaussian integral over the ligand-ligand complex and it depends on the ligand grafting point positions

qb(r1, r2) =
1

ρ0NA

(
π

2βk

)3/2

eβ
k
2 |r1−r2|

2

, (S5)
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with ρ0 = 1M, the standard molar concentration, and NA the Avogadro’s number. In this ideal harmonic
case the configuration free energy can be expressed analytically

β∆Gcnf(r1, r2) = ln

(
qb(r1, r2)

qu

)
=

βk

2
|r1 − r2|2 + ln

[
ρ0NA

(
2π

βk

)3/2
]
, (S6)

with the first term on the right the linker stretching penalty and the second term the unbound ligands
free energy reference. We stress, however, that the following derivation is general and does not rely on
the specific form of ∆Gcnf .

As we will demonstrate below, the double exponential expression (S1) for the bound partition function
is exact when ligand positions on the particle’s surface are uncorrelated and the number of ligands is
Poisson distributed. The expression is also exact in the limit of weak bonds and holds for both mobile
or immobile ligands. Furthermore, the formula generalises to multiple different ligand types

〈Qb(d)〉 =
∑
i,j

enA,inB,je
−βεij(d)

, (S7)

with nA,i and nB,j being the number of ligands of type i and j on the first and second particle and εij(d)
the interaction matrix between all ligand types i, j .

Moreover, as we shall see below, the same form of the expression also applies to multimeric complexes.
For example trimeric complex contribution to the partition function, with two ligands from particle A
and one from particle B, is

〈Qb,3(d)〉 =
∑
i,j,k

exp
[
nA,inA,jnB,ke

−βε1,k2,ij(d)
]
. (S8)

The sum on the right hand side takes into account all three-legged spiders with two “legs” on the first
particle and one leg on the second. Tensor-like notation is employed where the subscript refers to ligands
on the first particle and superscript to the ligands on the second particle. The trimeric complex formation

free energy ε1
2(d) is a third order tensor with components ε1,k2,ij .

A. Mobile vs. immobile ligands

Thermodynamic properties of a statistical ensemble do not depend on the value of the diffusion constant
as long as it remains nonzero; D > 0. However, the ensemble average of the pair interaction remains the
same for both mobile and immobile ligands if the ensemble properties of ligand distribution on isolated
particles are the same for both cases [2]

〈Qmob
b (d)〉 = 〈Qfixed

b (d)〉 . (S9)

This argument assumes ergodicity, the time average yields the same result as the ensemble average.
A particle with immobile ligands can be viewed as a particle with mobile ligands sampled at a specific
moment in time. We therefore provide derivation of the mean interaction only for mobile binders, relying
on the above argument stating that the result is equally applicable to quenched ligands. Below we provide
derivation of bound partition function for mobile ligands, but Eq.(S9) ensures that the result is equally
applicable to immobile ligands.

B. Poisson distributed ligands

We consider an ensemble of particle pairs separated by a distance d. Ligands of different types are
grafted to the two particles, as described above the first particle has nA,i ligands of type A and the second
particle nB,j ligands of type j. We use the notation where prime indices j′ refer to specific ligands while
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bare indices j refer to ligand types. The number of ligands per particle is Poisson distributed, i.e. the
probability that the particle holds ni ligands is

p(ni) = e−ñi
ñnii
ni!

, (S10)

with ñi the mean number of ligands of type i on the particle. The ligands are assumed to be mobile
with no correlations in their spatial positions when the particles are isolated; we neglect ligand excluded
volume and assume the ligands behave as an 2D ideal gas confined to the particle’s surface.

1. Single ligand type

Let us first solve the problem in the case of a single ligand type. The number of possible distinct
linking arrangements (the density of states) for a given number of links λ is

Ω(λ) =

(
nA

λ

)(
nB

λ

)
λ! , (S11)

because we need to choose λ bonds out of nA ligands , λ bonds out of nB ligands and there are λ! ways
of binding the chosen ligands together [3, 4].

The canonical partition function for a given number of ligands per particle is a sum over all possible
number of bonds

Qb(nA, nB, ε|d) =

nA∑
λ=0

Ω(λ)e−βε(d)λ (S12)

with ε(d) given by Eq. (S2) and the distance between particles d is kept fixed. Note that the total number
of terms in the sum is min[nA, nB]. The density of states Ω(λ), however, is always zero when λ > nA or
λ > nB. Therefore, either nA, nB or ∞ can be used as the maximum number of terms in the above sum.

For en ensemble of particles with Poisson distributed ligands, Eq (S10), the average bound partition
function

〈Qb〉P(ñA, ñB, ε|d) = 〈Qb(nA, nB, ε|d)〉nA,nB (S13)

is a Poisson average over the ligand numbers, denoted by superscript P. The Poisson averaged partition
function 〈Qb〉P(ñA, ñB, ε|d) is essentially a grand partition function where ligand numbers are allowed to
fluctuate and their mean values are determined by the chemical potential µA = kBT ln(nA). Applying
the Poisson distribution to the canonical partition (S12) we get

〈Qb〉P(ñA, ñB, ε|d) =

∞∑
nA=0

e−ñA
ñnA

A

nA!

∞∑
nB=0

e−ñB
ñnB

B

nB!

∞∑
λ=0

Ω(λ)e−βε(d)λ .

The sum over the λ bonds was extended to infinity such that all three sums are independent and can be
rearranged. Inserting the density of states (S11) and altering the summation order

〈Qb〉P(ñA, ñB, ε|d) =

∞∑
λ=0

1

λ!
e−βε(d)λ

∞∑
nA=0

e−ñA
ñnA

A

(nA − λ)!

∞∑
nB=0

e−ñB
ñnB

B

(nB − λ)!

=

∞∑
λ=0

1

λ!
e−βε(d)λ(ñAñB)λ , (S14)

where the last two sums in the first row are simply a Taylor expansion of an exponential function (by
introducing a new variable: x = n− λ) and evaluate to ñλA and ñλB, respectively. The final result follows
directly since the above equation is again a Taylor expansion of en exponential function

〈Qb〉P(ñA, ñB, ε|d) = exp
(
ñAñBe

−βε(d)
)
. (S15)
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2. Multiple components general derivation

The derivation involving an arbitrary number of distinct ligands is somewhat tedious, but otherwise
follows exactly the same procedure as the above derivation for single ligand type. Let nA and nB denote
vectors of ligand numbers on the A and B particles, e.g. nA = [nA,1, nA,2...]. The probability that
particle A holds a vector nA of ligands is a product of Poisson distributions

p(nA) =
∏
i

p(nA,i) , (S16)

with p(nA,i) given by Eq. (S10) applied to the particle A, and likewise for particle B.
The number of possible distinct linking arrangements between particles A and B is denoted by Ω(λ)

and it depends on the given number of formed links between ij ligand types λij . Note that λ is a matrix.
The canonical partition function is a sum over all possible numbers of λij bonds with binding free energy
εij

Qb(nA,nB, ε|d) =
∑
λ

Ω(λ)e−
∑
ij βεijλij . (S17)

where the sum represents a nested sum over all distinct receptor ligand pairs ij

∑
λ

[·] =

∞∑
λ11=0

∞∑
λ12=0

· · ·
∞∑

λ21=0

∞∑
λ22=0

. . . [·] (S18)

to account for all possible states of distinct bonding arrangements. We note that the maximum term in
each sum is set to inifinity, this choice was made for later convenience, as we will see below the density
of states Ω is such that all terms where

∑
j λij > ni are automatically zero.

The number of states Ω(λ) is given by a product of multinomial distributions because for each ligand
type j on particle A we need to choose how many will bind to different ligand types i on particle B.
Equivalently we need to choose among nA,i ligands how many will get attached to given ligand types
nB,j , and repeat for each ligand type. Finally, we need to bind ligands and receptors together and there
are

∏
ij λij ! ways of connecting them. Therefore, the density of states is

Ω(λ) =
∏
j

(
nB,j !∏

i(λij !) (nB,j −
∑
i λij)!

)∏
i

(
nA,i!∏

j(λij !) (nA,i −
∑
j λij)!

)∏
ij

λij ! . (S19)

The Poisson averaged partition function is a function of the mean ligand vectors ñA and ñB

〈Qn〉P(ñA, ñB, ε|d) =

∞∑
nA=0

∞∑
nB=0

p(nA)p(nB)Qb(nA,nB, ε|d) (S20)

with the Poisson distributions p(nA) and p(nB) given by Eq. (S16) and the sum
∑∞

n=0[·] =
∏
j

∑∞
nj=0[·]

represents nested sum over all ligand types j. Inserting Eqs. (S16), (S17) and (S19) into the above
equation (S20) we rearrange the summation order and obtain

〈Qb〉P(ñA, ñB, ε|d) =

∞∑
λ=0

e−
∑
ij βεijλij

1∏
i,j λij !

∞∑
nA=0

∞∑
nB=0

∏
i

(
e−ñA,i(ñA,i)

nA,i

(nA,i −
∑
j λij)!

)∏
j

(
e−ñB,j (ñB,j)

nB,j

(nB,j −
∑
i λij)!

) .

The summation and product order of the two innermost sums can be rearranged
∑

n

∏
i[·] =

∏
i

∑
ni

[·],
obtaining a product of individual sums, each sum being a Taylor expansion evaluating to ñ

∑
j λij

i . Hence,
we obtain

· · · =
∞∑

λ=0

e−
∑
ij βεijλij

1∏
i,j λij !

∏
ij

(ñA,iñB,j)
λij .
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Combining the products and swapping the summation and product order we get

· · · =
∏
ij

∞∑
λij=0

e−
∑
ij βεijλij

1

λij !
(ñA,iñB,j)

λij , (S21)

which is simply a Taylor expansion for exponential function and the final result follows

〈Qb〉P(ñA, ñB, ε|d) = exp

∑
i,j

ñA,iñB,je
−βεij

 . (S22)

The interaction free energy between the two particles due to bond formation is a sum over all ligand
types

βFb(d) = − ln(〈Qb〉P(ñA, ñB, ε|d))

= −
∑
i,j

ñA,iñB,je
−βεij

= ñAe
−βεñTB . (S23)

In the last row the result is written in standard matrix notation with the matrix e−βε the element-wise
exponential of ε and ñTB is the transpose of the vector ñB.

Notice that each term in Eq. (S21) is proportional to the probability p(λij) of forming λij bonds, hence

p(λij) =
e−βεijλij 1

λij !
(ñA,iñB,j)

λij∑∞
λij=0 e

−βεijλij 1
λij !

(ñA,iñB,j)λij
, (S24)

independent of any other bonds among different i’s and j’s. The average number of formed bonds
between ligand types i and j can, therefore, be obtained

〈λij〉 =
∑
λij

λijp(λij)

=

∑∞
λij=0 e

−βεijλij 1
(λij−1)! (ñA,iñB,j)

λij∑∞
λij=0 e

−βεijλij 1
λij !

(ñA,iñB,j)λij

= ñA,iñB,je
−βεij . (S25)

Hence, the average of the total number of bonds is exactly equal to the negative interaction free energy,
Eq. (S23),

〈λtot〉 =
∑
ij

〈λij〉 = −βFb(d) . (S26)

C. Weak interaction limit

In the weak interaction limit the partition function of two spherical particles separated by a distance
d can also be derived analyticaly. As described above the first particle has nA,i ligands of type i and
the second particle nB,j ligands of type j. We use the notation where prime indices j′ refer to specific
ligands while bare indices jr efer to ligand types. The probability that two specific ligands are bound is

pi′j′ = pi′pj′e
−β∆Gi′j′ (ri′ ,rj′ ) , (S27)

with pi′ and pj′ the probability that, respectively, ligands i′ and j′ are free. ∆Gi′j′(ri′ , rj′) is the
hybridisation free energy, Eq. (S3), which depends on the exact positions of the ligand grafting points,
ri′ and rj′ . This form implies that the probabilities of i′ and j′ to be free are not correlated.

The weak interaction limit is obtained when each and every ligand has a low probability of being
bound: pi′ → 1 for all pi′ . In this limit the valence limited nature of ligand-ligand interactions is not
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important; any bond between two ligands can be formed irrespective of whether the same two ligands
have some probability of already being bound. The partition function taking into account all possible
states is a product over all links:

Qw
b (rnA , rnB) =

∏
i′,j′

(1 + e−β∆G(ri′ ,rj′ )) , (S28)

because each link between ligands i′ and j′ can be either present or not, irrespective of other links.
Since all ligands are mostly unbound, pi′ → 1, any correlations between ligand positions also become
unimportant. For mobile ligands we must integrate Eq. (S28) over all possible independent links keeping
the interparticle distance d fixed

Qw
b (d) =

1

S1S2

∫
S1

drnA

∫
S2

drnB

∏
i′,j′

(1 + e−β∆G(ri′ ,rj′ )) =
∏
i,j

(
1 + e−βεij(d)

)ninj
. (S29)

We have used Eq. (S2) to obtain εij(d) and the fact that upon integration any link between ligand types
i and j will result in the same contribution. Finally, since all ligands are mostly unbound: pij ∼ 0, the

Boltzmann factor is small: e−βεij(d) =
pij
pipj

< 1 and the we can use the first order approximation to the

exponential function obtaining

Qw
b (d) = exp

∑
i,j

nA,inB,je
−βεij(d)

 . (S30)

Exactly the same expression is in the case of Poisson distributed ligands, Eq. (S22).

D. Comparison with canonical theory

In Figures S1 and S2 we compare between valence limited interaction theory (VLIT) by Angioletti et.
al [1], which self-consistently solves the canonical problem, Eqs. (S17,S19), and our double exponential
solution (S22). For simplicity, we limit ourselves to a system of 2 spherical particles, each particle
holding n = nA = nB mobile binders with uncorrelated positions on the particle’s surface. We use n = ñ
for comparison between canonical [1] and Poisson averaged free energies: βFb = ñ2e−βε. e−βε =

pij
pipj

denotes the effective free energy of hybridising a single pair, pij is the probability that binders form a
link (bond) and pi, pj are the probabilities that the two binders i and j are free. We observe that free
energies converge when the number of ligands is large or when the individual bonds are weak.

In Figure S3 we shows that Poisson averaging the canonical solution (VLIT theory) gives us the same
result as the double exponential.
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(c) n = 1000

FIG. S1: Comparison between canonical (VLIT) theory [1] and grand canonical (DExp)
expression (S22) for the binding free energy between 2 particles each with n binders. As expected, at

large n or weak bonds both expressions converge.
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(d) ε = 7kBT

FIG. S2: Comparison between canonical (VLIT) theory [1] and grand canonical (DExp)
expression (S22) for the binding free energy between 2 particles each holding n binders. We also show
the logarithm of the expected fraction formed of bonds: ln(〈λ〉/n), shown as dotted blue line. When

the fraction of formed bonds is low, both the canonical and grand-canonical treatments converge.
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FIG. S3: Consistency check: Poisson averaging of the canonical (VLIT) theory [1] results in the same
free energy as obtained the double exponential expression (DExp) (S22). The small deviation arises

due to the approximations in the VLIT theory. Parameters: βε = 1
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II. MULTIMERIC COMPLEXES GENERALIZATION

Recently, Mognetti et. al. [5, 6] extended the valence limited theory to multimeric complexes when
more than two ligands can participate in forming a joint link. Our theory generalises to such multimeric
complexes. For mathematical clarity we shall use tensor notation for dealing with multimeric complexes.
The subscripts shall refer to the particle A and the superscripts to particle B. For dimeric links considered
above a given configuration of links between the two colloids is described by a second order tensor λ1

1

where the sub- and super-scripts 1,1 mean that each bond is formed by linking 1 ligand from particle
A and one ligand from particle B. En individual element of the tensor is λ1,i

1,j . For a trimeric complex

forming connection between the two particles there are two possible third order tensors: λ1
2 and λ2

1,
because there can be two linkers from particle A and one from B, or vice versa. In this notation the
topology of the complex, e.g. λ0

2 is a loop formed by two ligands on particle A, λ1
1 a bridge between the

two particles, and λ3
2 captures all “spiders” complexes with two legs on the particle A and three legs on

particle B. The same tensor notation will also be used for the ligand complexation free energy ε(d). For
brevity we shall in the following omit the explicit notation of ε dependance on the inter-particle distance
d.

A. Trimeric complexes

Let us first consider trimeric complexes where two ligands on particle A and one ligand on particle B

form a trimeric complex. λ1,k
2,ij denotes the number of trimeric complexes between ligand types i and j

on particle A and type k on particle B. We must chose λ1,k
2,ij linkers of type i on particle A, again λ1,k

2,ij

linker of type j from particle A, and λ1,k
2,ij linkers of type k from particle B. Moreover there are (λ1,k

2,ij !)
2

ways of connecting the chosen linkers together. Hence, the number of possible states of forming such a
trimeric complex is

Ω(λ1,k
2,ij) =

(
nA,i

λ1,k
2,ij

)(
nA,j

λ1,k
2,ij

)(
nB,k

λ1,k
2,ij

)
(λ1,k

2,ij !)
2 , if i 6= j

=

(
ni,A

λ1,k
2,ij

)(
nj,A − λ1,k

2,ij

λ1,k
2,ij

)(
nB,k

λ1,k
2,ij

)
(λ1,k

2,ij !)
2 , if i = j . (S31)

The cases where both ligands forming the complex are of the same type or not must be distinguished.
ni,A and nk,B are the total number of ligands of type i and k, respectively, on particles A and B. The

above number of states only considers λ1
2 trimeric complexes. Different topologies of complexes can,

however, coexist.
Considering at most trimeric complexes and, to avoid tedious indexing, only one ligand type per

particle, i = j = k = 1 (note this does not imply that the ligands on particle A and B are the same). The
number of states when forming λ1

1 dimeric bonds (bridges) and λ1
2, λ2

1 trimeric complexes (three legged
spiders) is obtained by choosing λ1

1, λ1
2 and λ2

1 ligands out of the total available nA and nB ligands

Ω(λ1
1, λ

1
2, λ

2
1) =

(
nA

λ1
1

)(
nB

λ1
1

)
λ1

1!

(
nA − λ1

1

λ1
2

)(
nA − λ1

1 − λ1
2

λ1
2

)(
nB − λ1

1

λ1
2

)
(λ1

2!)2 × (S32)(
nA − λ1

1 − 2λ1
2

λ2
1

)(
nB − λ1

1 − λ1
2

λ2
1

)(
nB − λ1

1 − λ1
2 − λ2

1

λ2
1

)
(λ2

1!)2

=
nA!nB!

λ1
1!λ1

2!λ2
1!(nA − λ1

1 − 2λ1
2 − λ2

1)!(nB − λ1
1 − λ1

2 − 2λ2
1)!

. (S33)

The expression is rather complicated, and we haven’t even considered different ligand types.
The canonical partition function is a sum over all possible linking states

Qb(nA, nB, ε
1
1, ε

1
2, ε

2
1|d) =

∞∑
λ1
1=0

∞∑
λ1
2=0

∞∑
λ2
1=0

Ω(λ1
1, λ

1
2, λ

2
1)e−β(ε11λ

1
1+ε12λ

1
2+ε21λ

2
1) , (S34)

with the multimeric complex formation free energy employing the same tensor notation as we are using
for the bonds λ. The dimerisation free energy ε11 is equivalent to what we previously called ε(d) in
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Eq. (S12). Analogous to the dimer free energy Eq. (S2), the trimeric complex formation free energy is
defined as a three-ligand integral

e−βε
1
2 =

1

S2
ASB

∫
SA

dr1

∫
SA

dr2

∫
SB

dr3e
−β∆G(r1,r2,r3) , (S35)

for the case of two ligands on particle A and one on particle B. The trimer complexation free energy

∆G(r1, r2, r3) = ∆G0,tri + ∆Gcnf(r1, r2, r3) (S36)

depends on ∆G0,tri, the trimer formation free energy in solution, and the configurational contribution,
analogous to Eq. (S3).

Poisson averaging the canonical partition function, Eq. (S34), all correlations within the density of
states, Eq. (S33), disappear

〈Qb〉(d) =

∞∑
nA=0

e−ñA
ñnA

A

nA!

∞∑
nB=0

e−ñB
ñnB

B

nB!
Qb(nA, nB, ε

1
1, ε

1
2, ε

2
1|d)

= 〈Q1
1〉〈Q1

2〉〈Q2
1〉 (S37)

and the partition function can be written as a product of three independent contributions: dimeric links
and two topologies of trimeric complexes. The dimeric partition function has already been evaluated
above, Eq. (S15), we are only using a slightly different (tensor) notation

〈Q1
1〉 = exp

[
ñAñBe

−βε11
]
. (S38)

The trimeric contributions evaluate to

〈Q1
2〉 = exp

[
ñ2

AñBe
−βε12

]
,

〈Q2
1〉 = exp

[
ñAñ

2
Be
−βε21

]
. (S39)

for a single ligand type.
Finally, the generalisation to different ligand types is tedious, but straightforward, and follows the

same procedure as employed for dimeric links, Eqs. (S16-S22)

〈Q1
2〉 = exp

∑
i,j,k

ñA,iñA,j ñB,ke
−βε1,k2,ij

 ,

〈Q2
1〉 = exp

∑
i,j,k

ñA,iñB,j ñB,ke
−βε2,jk1,i

 . (S40)

The free energy due to bond formation βFb(d) = − ln(〈Qb〉(d)) is, therefore, a sum of individual
contributions due to dimeric and trimeric complexes

βFb(d) = −
∑
i,j

ñA,iñB,je
−βε1,j1,i −

∑
i,j,k

ñA,iñA,j ñB,ke
−βε1,k2,ij −

∑
i,j,k

ñA,iñB,j ñB,ke
−βε2,jk1,i . (S41)

B. Higher order complexes

Generalisation to 4th and higher order complexes follows an analogous treatment to the trimeric
complexes discussed above. The total partition function factorizes in topologies of the complexes

〈Qb〉(d) =
∏
a=1

a−1∏
b=1

〈Qba〉 , (S42)
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with 〈Qba〉 the Poisson averaged partition function of a (a + b)-meric complexes with a ligands from
particle A and b ligands from particle B

〈Qba〉 = exp

[
b···∑
a···

∏
a

(ñA,·)
∏
b

(ñB,·)e
−βεb,···a,···

]
. (S43)

The sum
∑b···
a··· representing (a + b) nested sums and εb,···a,··· is an element of a (a + b)th order tensor

specifying binding free energies for all combinations of ligand types within an (a+ b)-meric complex.
Note that we do not need to consider loops, or complexes (spiders) with all ‘legs’ on a the same particle,

e.g. Q0
2. These complexes are also present for isolated particles, d→∞, and cancel out when calculating

the interaction free energy as the ratio of bound-to-unbound partition functions βFb(d) = − ln
(
Qb(d)
Qb(∞)

)
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