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Abstract 

 
Prominent theories of consciousness emphasise different aspects of neurobiology, such as the 

integration and diversity of information processing within the brain. Here, we combine graph 

theory and dynamic functional connectivity to compare resting-state functional MRI data from 

awake volunteers, propofol-anaesthetised volunteers, and patients with disorders of 

consciousness, in order to identify consciousness-specific patterns of brain function. We 

demonstrate that cortical networks are especially affected by loss of consciousness during 

temporal states of high integration, exhibiting reduced functional diversity and compromised 

informational capacity, whereas thalamo-cortical functional disconnections emerge during 
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states of higher segregation. Spatially, posterior regions of the brain’s default mode network 

exhibit reductions in both  functional diversity and integration with the rest of the brain during 

unconsciousness. These results show that human consciousness relies on spatio-temporal 

interactions between brain integration and functional diversity, whose breakdown may 

represent a generalisable biomarker of loss of consciousness, with potential relevance for 

clinical practice. 

 
 
 
 
The brain is a remarkably complex system, with activity patterns poised at a near-

critical point between order and chaos1 ,  integrating inputs from different modalities into 

a unified experience of the world. Recent scientific theories of consciousness have 

appealed to these characteristics to explain how the diverse repertoire of human 

conscious experiences arises from brain function2–7. 

Specifically, consciousness is thought to require brain-wide information broadcasting 

by a “global workspace”, whereby segregated component processes are integrated and 

made available for undertaking higher cognitive functions, producing a unitary 

experience4,5. Indeed, estimates of brain integration derived from graph theory8 are 

reduced in brain networks under propofol anaesthesia9–11 and in patients with disorders 

of consciousness12. 

 

In information theory, entropy quantifies the diversity or unpredictability of information 

content13. Using the entropy of different aspects of brain function to estimate the diversity of 

information, various studies have shown reduced entropy when consciousness fades, such as 

during sleep or anaesthesia14–16, and more recently also in patients with disorders of 

consciousness17. Conversely, entropy increases during states of putatively enhanced 

consciousness induced by psychedelics (see Carhart-Harris (2018) for a recent review), 

supporting the idea that entropy as measured from functional imaging may reflect the richness 

and diversity of conscious experiences. 

The influential Integrated Information Theory identifies consciousness with a quantity Φ, 

combining integration and diversity of information within a system2,3. Studies using a proxy 

for Φ based on the evoked EEG response to Transcranial Magnetic Stimulation (TMS), known 

as Perturbational Complexity Index, have been highly successful at discriminating between 



  

 
 

different states of consciousness, including anaesthesia and disorders of consciousness18–21. 

These studies demonstrate that diversity and integration are both relevant for consciousness, 

and raise the question of how they relate to each other neurobiologically. In particular, although 

the activity and connectivity of integrative hubs such as the posterior cingulate/precuneus and 

other regions of the default mode network (DMN) are highly affected by loss of 

consciousness22,23, a recent study reported that the entropy of the DMN and other higher-order 

cortices were only minimally affected by propofol anaesthesia14. 

 

To address this discrepancy, here we relate voxel-level measures of integration and entropy 

derived from resting-state functional MRI (rs-fMRI), to identify any regions showing 

consistent alterations in both quantities when consciousness is lost. If both entropy and 

integration are related to consciousness, then we should expect their alterations during 

unconsciousness to show some overlap in the brain, thereby identifying regions whose function 

is most relevant for consciousness. 

 

Moreover, brain functions vary over time24, exhibiting dynamics that have recently been shown 

to differ between states of consciousness in both anaesthetized non-human primates11 and 

human patients with disorders of consciousness17. In awake healthy volunteers, the dynamics 

of brain functional connectivity have been shown to transition between states displaying higher 

segregation or integration25,26, with the latter being related to higher arousal and improved 

cognitive performance. Thus, the interplay of brain entropy and integration in supporting 

consciousness may occur temporally as well as spatially, and we set out to investigate this 

hypothesis.  

 

A further consideration is that there are multiple ways in which loss of consciousness may 

occur, whether through pharmacological interventions having widespread effects on brain 

function, or hypoxic-ischemic injuries affecting cortical and subcortical regions of the brain, 

or relatively localised traumatic brain injuries.  In order to identify neurobiological signatures 

of loss of consciousness that are generalisable across these multiple conditions, rather than 

being specific to any of them, here we investigate alterations in brain functions and dynamics 

during unconsciousness arising in common from all of the above-mentioned causes. 

Specifically, we compare brain measures of 16 healthy volunteers while awake and while 

undergoing deep anaesthesia with the common intravenous agent propofol, and we also 

compare the same 16 awake volunteers with 22 patients diagnosed with a disorder of 



  

 
 

consciousness (DOC; unresponsive wakefulness syndrome/vegetative state (UWS) or 

minimally conscious state, MCS) as a result of traumatic or hypoxic/ischemic brain injury.  

 

Focusing on results that are common across the two datasets, we demonstrate that in both DOC 

patients and healthy volunteers undergoing propofol anaesthesia, measures of brain functional 

diversity and integrative capacity are related in both space and time, and their interactions are 

altered during unconsciousness. Furthermore, brain dynamics are also altered during 

unconsciousness: temporal states of high integration exhibit reduced integration and functional 

diversity in unconscious individuals, unlike predominantly segregated states. Additionally, 

thalamo-cortical disconnections become evident during temporal states of high segregation, 

whereas highly integrated states are primarily characterised by altered cortico-cortical 

connectivity; thus, our results contribute to reconcile discrepant findings in the literature about 

the relative roles of cortico-cortical and thalamo-cortical connectivity for 

consciousness9,10,22,27–30. Finally, we show that in both datasets, whole-brain connectivity and 

temporal entropy are both reduced in key regions of the brain’s default mode network. By 

combining different biological approaches with diverse analytical methods investigating both 

spatial and temporal aspects of brain function, these results advance our understanding of 

conscious and unconscious states in the human brain, and their underlying brain dynamics. 

 

 

Results 
 

Reduced Global Integration and Functional Diversity  
 

To determine how integration and entropy interact spatially, we quantified the regional distribution 

of unconsciousness-related changes in these metrics across the brain. We first investigated how 

loss of consciousness affected the global functional connectivity of each region with the 

rest of the brain, which we took as reflecting its capacity for global integration. We 

estimated this with the Intrinsic Connectivity Contrast (ICC), a voxel-wise measure that 

uses graph theory to quantify each voxel’s whole-brain connectivity, computed as the sum 

of the squared Pearson correlation between that voxel’s timeseries and the timeseries of 

every other voxel in the brain31. 

 



  

 
 

Both localised decreases and increases in ICC were evident under deep propofol anaesthesia 

(Supplementary Figure 1a and Supplementary Table 1), with prominent reductions in posterior 

cingulate/precuneus (PCC/PCU), medial prefrontal cortex (mPFC), left angular gyrus (AG) 

and left supramarginal gyrus (SMG) and medial temporal lobe (MTL). Increases were 

primarily localised in the bilateral caudate, and bilateral pre- and postcentral gyri. 

 

Analogous results were observed when comparing the healthy volunteer cohort during their 

awake scan and the DOC patients (Supplementary Figure 1b). ICC reductions were evident in 

PCC/PCU, left AG, mPFC, bilateral MTL, supramarginal gyri (SMG), opercular, postcentral 

and inferior parietal cortices, right fusiform and inferior temporal cortex (Supplementary Table 

2). Increases were localised in the hippocampal formations, cerebellum, and bilateral caudate; 

the latter was shared with the propofol dataset (Supplementary Figure 2 and Supplementary 

Table 3). 

 

We then quantified functional diversity as the sample entropy (SampEn) of voxelwise blood-

oxygen-level-dependent (BOLD) signal timeseries32 (see Methods) . Sample entropy, which is 

derived from Approximate Entropy (ApEn)33, is an approximation of Kolmogorov complexity 

for timeseries and is stable even for data sequences of limited length, such as fMRI timeseries32. 

SampEn quantifies how unpredictable a signal is, such that low values of SampEn would 

indicate that the signal is highly stereotyped - with a perfectly predictable series, such as [1,1,1, 

...] having a SampEn of zero, and SampEn increasing as the series becomes more disordered32. 

 

Widespread reductions in BOLD signal entropy were observed under anaesthesia, localised in 

the PCC/PCU, left AG extending to MTL and inferior parietal, and left middle and inferior 

frontal gyri. No increases were observed (Supplementary Figure 1c and Supplementary Table 

4). Crucially, reductions in BOLD signal entropy overlapped with ICC reduction due to 

anaesthesia in PCC/PCU, left AG and left SMG (Figure 1, left panel). Likewise, DOC patients 

showed extensive sample entropy reductions in PCC/PCU and mPFC, as well as bilateral AG 

extending to inferior parietal, left inferior and middle and right middle and superior frontal 

cortices, and inferior and medial temporal lobes, including fusiform gyri and hippocampal 

formations (Supplementary Figure 1d and Supplementary Table 5). Again, these entropy 

reductions largely overlapped with ICC reductions in our group of patients (Figure 1, right 

panel).  

 



  

 
 

Although sample entropy requires the choice of two parameters m and r (see  Methods), entropy 

results were robust to parameter choices (Supplementary Figure 3a,b). However, the use of a 

smaller smoothing kernel did result in fewer and smaller clusters of significantly different 

SampEn (Supplementary Figure 3c,d). In particular, the left SMG cluster disappeared when 

comparing awake and anaesthetised individuals, and the left angular gyrus cluster was 

substantially reduced in size. Nevertheless, the precuneus cluster was maintained, despite 

reduced size, further highlighting the specific importance of the default mode network. 

 

In order to exclude the effect of subject motion as a possible confounding factor, we also 

compared the Sample Entropy of the head motion signals (three translations and three rotations) 

between the awake healthy controls and the two conditions of unconsciousness, using the same 

parameters as for the brain entropy analysis described above. Although a significant reduction 

in the entropy of the head motion in the horizontal plane was observed when comparing DOC 

patients to controls (Supplementary Table 6), this was not the case for deep propofol 

anaesthesia, where instead an increase in the entropy of the timeseries of rotations around the 

vertical axis was observed, compared with the awake condition (Supplementary Table 7).  

 

To characterise the consciousness-specific alterations of entropy and integration in the spatial 

domain, we then computed the overlaps between propofol- and brain injury-induced 

unconsciousness. The posterior cingulate/precuneus, left angular gyrus and left supramarginal 

gyrus showed reductions in both sample entropy and ICC, for both anaesthesia and disorders 

of consciousness (Figure 1, central panel). To establish the spatial extent of connectivity 

changes we carried out follow-up seed-based analysis from these regions31, which showed that 

during unconsciousness the connections between PCC and angular gyrus with the frontal 

portions of the DMN were attenuated, as were their anticorrelations with fronto-parietal control 

networks (FPN), in line with previous evidence27,30,34–39; reduced DMN-FPN anticorrelation 

was also observed from the SMG, which is part of the FPN (Supplementary Figures 4 to 9). 

 

Dynamic Functional Connectivity Alterations  
 

Since consciousness is believed to require a global workspace, integrating relevant information 

from separate modules4,5, we then applied dynamic functional connectivity analysis24 to 

identify temporal states of high integration and high segregation25,26, and to investigate how 



  

 
 

loss of consciousness influenced their probability of occurrence and their functional diversity. 

 

Following the approach of Shine et al. (2016)25, the integrated and segregated states were 

identified by using a machine learning algorithm, known as k-means clustering, to separate 

subject- and session-specific sliding windows of dynamic functional connectivity (FC) into 

two clusters; these were then labelled as the “predominantly integrated” and “predominantly 

segregated” clusters, based on their graph-theoretical properties of participation coefficient and 

within-module degree Z-score25, and each cluster was summarised by one centroid matrix of 

functional connectivity (see  Methods). 

 

Having computed the dynamic states of integration and segregation, we were able to investigate 

whether each state was similarly altered during unconsciousness induced by anaesthesia and 

injury, in terms of its pattern of functional connections (Methods). For comparison purposes, 

we also carried out these analyses for what we term “static” FC (spanning the entire scan 

duration; Figure 2 and Supplementary Figure 10).  

 

In line with previous work, the overall picture from static FC revealed disconnections between 

the bilateral thalami and the precuneus29, disconnections within DMN regions, reduced anti-

correlations between DMN and FPN (showing as unconscious > conscious)22,23, and within-

FPN connectivity increases. Dynamic analysis of states that were partitioned as primarily 

integrated or primarily segregated revealed that alterations in cortico-cortical connectivity were 

primarily observed during the integrated state, whereas thalamo-cortical disconnections (left-

lateralised) were specific to the predominantly segregated state (Figure 2 and Supplementary 

Figure 10). 

 

 

Temporal Integration  
 

To identify the role of temporal integration in consciousness, we investigated how loss of 

consciousness affected the time spent in each state. For each individual, we computed the 

proportion of dynamic matrices assigned to each state, out of the total number (as there were 

only two states, the two analyses are complementary, and only one is reported). Contrary to 

our expectation, time spent in the predominantly integrated state was not significantly different 



  

 
 

between awake (M = 0.61, SD = 0.09) and anaesthetized volunteers (M = 0.55, SD = 0.12),  t 

(15) = 1.79, g = 0.56,  p = 0.093 (repeated-measures t-test). Likewise, the awake volunteers 

did not significantly differ from the DOC patients (M = 0.63, SD = 0.13, t (36) =-0.50, g = -

0.16, p = 0.623 (two-samples t-test;Supplementary Figure 11). 

 

Optimal Information Capacity 
 

However, we reasoned that unconsciousness may also alter the network properties of the brain 

during each individual state of time-resolved functional connectivity. We used the graph-

theoretical property of small-worldness to investigate this possibility (Methods). Small-world 

networks allow for cost-efficient organisation, by maximising local communication and 

minimising costly long-distance connections, thus balancing integration and segregation40,41. 

This measure is therefore often employed to estimate the optimality of a network’s information 

capacity11.  

 

When considering FC calculated over the entire run, we observed a reduction in network small-

worldness between the awake volunteers (M = 2.21, SD = 0.22)  and DOC patients (M = 1.97, 

SD = 0.36, t(36) = 2.31, g = 0.74, p = 0.028, two-samples t-test); however, the healthy 

volunteers when anaesthetized did not show significant differences in small-worldness from 

when they were awake (M = 2.04, SD = 0.27, t (15) = 2.05, g = 0.66, p = 0.063, repeated-

measures t-test). (Figure 3, top left).  

 

Nevertheless, adopting a dynamic approach revealed that the integrated state was 

characterised by reduced small-worldness for both anaesthetised healthy individuals (M = 

1.90, SD = 0.25, t (15) = 3.01, g = 1.03, p = 0.010, repeated-measures t-test);   and DOC 

patients (M = 1.89, SD = 0.26, t (36) = 3.41, g = 1.10, p = 0.002, two-samples t-test) when 

compared to consciousness (M = 2.15, SD = 0.21) (Figure 3 middle left). Conversely, during 

the segregated state there was no significant difference in small-worldness between the 

awake individuals (M = 2.07, SD = 0.24) and either the same individuals under propofol 

anaesthesia, (M = 1.97, SD = 0.24, t (15) = 1.11, g = 0.37, p = 0.286, repeated-measures t-test) 

or the DOC patients (M = 1.91, SD = 0.40, t (36) = 1.40, g = 0.45, p = 0.171, two-samples t-

test) (Figure 3 bottom left). These results were robust to the choice of network node and 

edge definition, in both datasets – although reduced small-worldness was also observed 



  

 
 

during the segregated states, when employing liberal thresholds for edge definition 

(Supplementary Figure 12 and Supplementary Tables 8-10). 

 

Entropy of Temporal States 
 

We then investigated whether entropy also showed state-specific alterations during 

unconsciousness. Whereas voxelwise sample entropy (as discussed earlier) quantifies the 

unpredictability of the signal from each voxel over time, we also wished to examine a 

metric that better represented how these changes related to information exchange. To do 

this, we then tested levels of consciousness based on an alternative measure of brain 

entropy developed by Saenger et al. (2017)42, which quantifies how diverse the pattern of 

connections of each brain region is, , in terms of  the mean normalised Shannon entropy 

of each region’s distribution of FC values (”connectivity entropy”; see Methods). 

 

For FC calculated over the entire run, significantly reduced mean connectivity entropy was 

observed between the Awake (M = 0.90, SD = 0.01) and Deep conditions (M = 0.89, SD = 

0.01, t (15) = 2.69, p = 0.017, g = 0.85, repeated-measures t-test;  Figure 3, top right). 

Compared with the awake healthy controls, mean connectivity entropy was also reduced 

for the DOC patients (M = 0.88, SD = 0.01, t (36) = 3.26, p = 0.002, g = 1.05, two-samples 

t-test; Figure 3, top right). 

 

Network-specific investigations, based on the seven-network parcellation of Yeo et al.43, 

were also performed to identify whether the observed entropy reductions were uniform 

across the brain, or localised to specific resting-state networks. This analysis revealed that 

the significant reduction in connectivity entropy under anaesthesia at whole-brain level 

was reflected by a reduction in DMN regions (Supplementary Figure 13a and 

Supplementary Table 11). In DOC patients, the global effect corresponded to reductions 

in connectivity entropy of the DMN, but also FPN, dorsal attention, visual and limbic 

networks (Supplementary Figure 13b and Supplementary Table 12). 

 

Further state-specific analyses provided insight into the temporal origin of differences in 

connectivity entropy. Significantly reduced mean connectivity entropy was observed in 

the predominantly integrated state between participants when they were awake (M = 0.904, 



  

 
 

SD = 0.007) and anaesthetised (M = 0.897, SD = 0.010, t(15) = 2.22, p = 0.046, g = 0.80, 

repeated-measures t-test; Figure 3, middle right). This global reduction was reflected by 

reduced connectivity entropy in the DMN (Supplementary Figure 13c and Supplementary 

Table 13), in line with results from static FC.  

 

Mean connectivity entropy in the predominantly integrated state was also reduced for DOC 

patients (M = 0.89, SD = 0.01, t(36) = 3.43, p = 0.002, g = 1.10, two-samples t-test) when 

compared with the awake volunteers (Figure 3, middle right). The global reduction in 

connectivity entropy in the patient group reflected significant reductions in DMN, FPN 

and limbic networks (Supplementary Figure 13d and Supplementary Table 14), reflecting 

results from static FC. 

 

Conversely, no significant reductions in mean connectivity entropy of the predominantly 

segregated state were observed between awake (M = 0.93, SD = 0.01) and anaesthetised 

participants (M = 0.92, SD = 0.01, t(15) = 1.43, g = 0.60, p = 0.174, repeated-measures t-

test), either globally or for specific subnetworks (Figure 3, bottom right and Supplementary 

Figure 13e and Supplementary Table 15). Thus, a marked contrast existed between the 

impact of anaesthesia on connectivity entropy in integrated and segregated states. 

 

Instead, the mean connectivity entropy in the predominantly segregated state was 

significantly reduced when comparing the awake healthy controls with DOC patients (M 

= 0.91, SD = 0.01) t(36) = 2.52, p = 0.014, g = 0.81, two-samples t-test. (Figure 3, bottom 

right). This reduction of global entropy in the segregated state of DOC patients was 

reflected in reductions in DMN, visual, somatomotor, dorsal attention and limbic networks 

(Supplementary Figure 13f and Supplementary Table 16). 

 

Comparison of Different DOC Aetiologies 
 

To assess whether our results for the DOC patients may be primarily driven by one 

particular aetiology (traumatic or hypoxic/ischemic brain injury), we repeated the analyses 

presented above, but including only the DOC patients, divided into two groups comparing 

DOC patients with traumatic brain injury (TBI; N = 10) and patients with 

hypoxic/ischemic injury (HBI; N = 12). No significant differences were observed between 



  

 
 

the two groups of DOC patients (Supplementary Table 17 and Supplementary Figure 14). 

 

 

Discussion 
 

We combined graph theory and dynamic functional connectivity to compare human fMRI 

data during conscious wakefulness, and during unconsciousness caused by anoxic brain 

injury, traumatic brain injury, and propofol anaesthesia. To identify general markers of 

loss of consciousness irrespective of its specific origin, we focused on brain alterations 

that were common to both datasets. Our results reveal that consciousness relies on the 

interaction between functional diversity as measured by entropy and integration, in both 

the spatial and temporal domains. 

 

Spatially, we show that key regions of the default mode network, especially the posterior 

cingulate/precuneus, exhibit concurrent reductions in integrative capacity and functional 

diversity, estimated by the Intrinsic Connectivity Contrast (in line with the ICC reductions 

under sevoflurane reported in other studies31) and sample entropy of BOLD signal 

timeseries, respectively. The ICC measures the integrative capacity of a given brain region 

because it reflects changes in either the inputs the region receives, or the outputs it 

broadcasts - both of which are crucial aspects of the process of integrating information. 

Being based on functional connectivity, the ICC is agnostic with regard to directionality; 

however, computational modelling has shown that nodes with high degree, to which ICC 

is related, tend to be the target of information flow from nodes with lower degree44. Thus, 

our results may suggest that during unconsciousness, cortical hubs in the posterior DMN 

regions receive less information from the rest of the brain, and consequently exhibit 

reduced entropy, reflecting reduced informational content and diversity. Since loss of 

consciousness is expected to compromise the ability to exchange and integrate information 

from across the cortex in the brain’s global workspace, our results support the 

identification of the latter at least in part with the DMN. They also support the predictions 

of Integrated Information Theory, according to which unconsciousness can result from a 

loss of information and diversity as well as integrative capacity2,3. 

 

In the temporal domain, the present work advances our knowledge by demonstrating the 



  

 
 

dynamic nature of DMN involvement in loss of consciousness. For both DOC and 

anaesthesia the predominantly integrated state, which is related to higher cognitive 

performance and alertness25, was characterised by reduced DMN-FPN anticorrelations. 

Conversely, disconnections between DMN and thalamus were specific to the 

predominantly segregated state, and within-DMN connectivity reductions were observed 

in both states. Thus, the results presented herein refine our understanding of the relative 

importance of thalamo-cortical and cortico-cortical connectivity for 

consciousness,9,10,22,27–30 by revealing that alterations of DMN cortico-cortical and 

thalamo-cortical connections appear to vary dynamically, depending on the brain’s state 

of integration or segregation. 

 

Dynamic FC analysis also revealed interactions between functional diversity and integration in 

the temporal dimension: the predominantly integrated state appears particularly vulnerable to 

consciousness-related reductions in the mean Shannon entropy of each region’s pattern of 

functional connectivity. Although this state was not visited less often during unconsciousness, 

we did find reduced small-worldness, a measure of information capacity, suggesting that these 

qualities of the integrated state may be more relevant for consciousness than time spent in it, 

at least in the context of resting-state data. It is important to bear in mind that applications of 

small-worldness and other graph-theoretical measures to brain networks are inherently limited 

by the noisiness of imaging modalities such as fMRI45 – a concern that we sought to address 

in this work by replicating our results pertaining to small-worldness across multiple thresholds, 

and with different node and edge definitions for our networks. 

 

 

The reductions in brain entropy that we observed are consistent with the recent Entropic Brain 

Hypothesis6,7 and with reports of reduced entropy with diminished consciousness15,16,46, 

including using dynamic functional connectivity17, but they appear in partial contrast with those 

of Liu et al. (2019)14. These authors reported that entropy diminishes in primary sensory 

systems when transitioning from light to deep propofol sedation, but not in DMN or other 

higher cognitive systems. However, the present reductions in DMN entropy were obtained 

from two different measures (spatial and temporal), in both anaesthesia and DOC patients, 

demonstrating their robustness. Moreover, it has been shown that at propofol doses lower than 

approximately 2.7 µg mL-1, which is when EEG slow-wave activity reaches saturation 

(SWAS)28,47, the brain is still responsive to external stimuli, despite behavioural 



  

 
 

unresponsiveness, and thus perceptual awareness is thought to be preserved28. Although SWAS 

cannot be confirmed, since EEG monitoring was not present, the dose of propofol we used was 

substantially higher than the one used by Liu et al.14, and closer to SWAS-inducing level.  Thus, 

preserved and reduced DMN entropy in the two studies may reflect preserved and 

compromised perceptual awareness, respectively – thereby resolving the apparent discrepancy, 

in line with extensive evidence relating DMN alterations to unconsciousness, for both 

anaesthesia22,27,30,38,48–50 and DOC23,34–37,39,51–54. 

 

In the present study, the differences in network properties under anaesthesia - concurring with 

those observed in patients with DOC - only became apparent in the integrated state of dynamic 

FC, whereas static FC (i.e. computed over the entire scanning duration) failed to detect them. 

Indeed, earlier studies using only static FC analysis even reported increased small-worldness 

under propofol9,55 whereas reduced small-worldness under propofol was later demonstrated 

using dynamic FC in macaques, consistent with our results11. In line with recent work 

combining graph theory and dynamic functional connectivity to study DOC patients17, our 

results further demonstrate the importance of time-resolved analyses in the study of 

consciousness, to uncover otherwise hidden similarities between different datasets.  

 

Importantly, this work dealt exclusively with data from resting state scanning, which is known 

to preferentially recruit the DMN56; there is evidence that under different paradigms other 

networks, such as the auditory and FPN, are also able to distinguish between conscious and 

unconscious states57. Further work could also relate the present results to independent markers 

of consciousness, such as SWAS28 or naturalistic paradigms57, and determine whether they can 

discriminate between different levels of sedation, or different disorders of consciousness.  

 

Indeed, a limitation of this work is that we have implicitly assumed that both individuals under 

deep propofol anaesthesia and UWS and MCS patients are unconscious. However, MCS 

patients owe their classification to occasional signs of volitional behaviour, which may reflect 

minimal levels of consciousness58. Furthermore, disorders of consciousness are prone to 

relatively high rate of misdiagnosis, with patients categorized as UWS subsequently exhibiting 

signs of awareness when more sensitive measures are employed57. Adding to this complication, 

dreaming has been reported during anaesthesia in up to 27% of cases59. Consequently, despite 

lack of behavioural responsiveness it is not possible to say conclusively that all individuals 

examined here were completely unconscious, in the sense of having no subjective experiences. 



  

 
 

Using additional markers of consciousness, such as SWAS28, PCI18 or naturalistic paradigms57 

may be required in future studies to provide additional evidence of unconsciousness 

independent of behavioural responsiveness. 

 

Other issues of consideration include the scanner hardware and acquisition parameters, which 

were not identical for the two cohorts discussed in the article. A further confound may be that 

DOC patients had reduced entropy of motion timeseries in the horizontal plane compared to 

awake controls, whereas anaesthesia led to increased entropy in the rotation around the vertical 

axis. Additionally, it is important to consider how the anaesthetic agent can indirectly affect 

measures of brain activity by altering physiological parameters, such as arterial concentration 

of carbon dioxide. Since anaesthetized subjects in this study were not intubated but rather 

spontaneously ventilating, propofol-induced respiratory depression may have resulted in 

hypoventilation and increased arterial CO2 levels. We did not measure end-tidal or arterial CO2 

concentrations in our subjects. However, propofol only has relatively minor effects on brain 

hemodynamics60, and BOLD fluctuation amplitudes, connectivity strength and the spatial 

extent of connectivity maps have been shown to be unaffected by hypercapnia during the 

resting state in rats61, thus mitigating this concern.  

In addition to noting that both motion and cardiac, respiratory and physiological noise artifacts 

are accounted for in our denoising procedure (see Methods), we believe that these concerns 

should be further mitigated by our decision to adopt a comparative approach in this work, 

focusing only on results that were observed in both DOC and anaesthesia: if any of the results 

we observed when comparing DOC patients and controls had been due solely to the differences 

in acquisition and scanning parameters, or subject motion, such results should not have also 

been observed under conditions of anaesthesia, where those confounds were not present thanks 

to the within-subjects design – and vice versa for the concern about hypercapnia during 

anaesthesia. Moreover, using the same group of awake healthy volunteers as controls for both 

states of unconsciousness helps to ensure that the results we have found are not confounded by 

differences in control groups, but rather represent deviations from the same common baseline. 

Therefore, we expect that the common results we report should represent genuine markers of 

loss of consciousness, rather than reflecting any idiosyncratic aspects of the specific datasets 

used here. 

Overall, we have demonstrated that loss of consciousness – whether due to propofol 



  

 
 

anaesthesia, hypoxic/ischemic brain injury, or traumatic brain injury – is  accompanied by 

reduced functional diversity and integrative capacity in the posterior DMN, especially during 

temporal states of high integration. Additionally, our time-resolved analysis led us to the 

discovery that the relative importance of cortico-cortical and thalamo-cortical connectivity in 

supporting consciousness varies dynamically with the brain’s state of integration or 

segregation, thereby clarifying a previous point of controversy in the literature. The effects 

reported were observed in both DOC patients (with no differences between TBI and HBI 

patients) and healthy volunteers undergoing propofol anaesthesia. This replication increases 

the  robustness of our results, and it allowed us to narrow down on properties of brain function 

that are likely to be consciousness-specific, whose alterations may therefore represent general 

neurobiological signatures of loss of consciousness, with potential translational value for the 

detection of consciousness during surgery or in patients with a diagnosis of vegetative 

state/unresponsive wakefulness syndrome. 

 

 

Methods 

 

 

Volunteer Recruitment for Propofol Data Collection 
The propofol data were collected at the Robarts Research Institute in London, Ontario (Canada) 

between May and November 2014. A total of 19 (18–40 years; 13 males) healthy, right- 

handed, native English speakers, with no history of neurological disorders were recruited. The 

Health Sciences Research Ethics Board and Psychology Research Ethics Board of Western 

University (Ontario, Canada) ethically approved this study, and all relevant ethical guidelines 

were followed. Each volunteer provided written informed consent, and received monetary 

compensation for their time. Due to equipment malfunction or physiological impediments to 

anaesthesia in the scanner, data from three participants (1 male) were excluded from analyses, 

leaving 16. 

 

Procedure and Design for Propofol Data Collection 
Resting-state fMRI data were acquired at no sedation (Awake), and Deep sedation 

(anaesthetised: Ramsay score of 562). Ramsay level was independently assessed by two 



  

 
 

anaesthesiologists and one anaesthesia nurse in the scanning room before fMRI acquisition 

began, in each condition. Additionally, participants performed two tests: a computerised 

auditory target-detection task and a memory test of verbal recall, to evaluate their level of 

wakefulness independently of the assessors. 

 

For the Awake condition, participants did not receive a Ramsey score, as this scale is designed 

for patients in critical care. Instead, they had to be fully awake, alert and communicating 

appropriately. An infrared camera located inside the scanner was used to monitor wakefulness. 

For the Deep sedation condition, propofol was administered intravenously using an AS50 auto 

syringe infusion pump (Baxter Healthcare, Singapore); step-wise sedation increments sedation 

were achieved using an effect-site/plasma steering algorithm combined with the computer-

controlled infusion pump. Further manual adjustments were performed as required to reach 

target concentrations of propofol, as predicted by the TIVA Trainer (European Society for 

Intravenous Aneaesthesia, eurosiva.eu) pharmacokinetic simulation program. This software 

also specified the blood concentrations of propofol, following the Marsh 3-compartment 

model, which were used as targets for the pharmacokinetic model providing target-controlled 

infusion. The initial propofol target effect-site concentration was 0.6 µg mL-1, with oxygen 

titrated to maintain SpO2 above 96%. Concentration was then increased by increments of 0.3 

µg mL-1, and Ramsay score was assessed: if lower than 5, a further increment occurred. 

Participants were deemed to have reached Ramsay level 5 once they stopped responding to 

verbal commands, were unable to engage in conversation, and were rousable only to physical 

stimulation. Data acquisition began once loss of behavioural responsiveness occurred for both 

tasks, and the three assessors agreed that Ramsay sedation level 5 had been reached. 

 

The mean estimated effect-site and plasma propofol concentrations were kept stable by the 

pharmacokinetic model delivered via the TIVA Trainer infusion pump; the mean estimated 

effect-site propofol concentration was 2.48 (1.82 - 3.14) µg mL-1, and the mean estimated 

plasma propofol concentration was 2.68 (1.92 - 3.44) µg mL-1. Mean total mass of propofol 

administered was 486.58 (373.30 - 599.86) mg. These values of variability are typical for the 

pharmacokinetics and pharmacodynamics of propofol. Since the sedation procedure did not 

take place in a hospital setting, airway security could not be ensured by intubation during 

scanning, although two anaesthesiologists closely monitored each participant. Consequently, 

scanner time was minimised to ensure return to normal breathing following deep sedation. No 

state changes or movement were noted during the deep sedation scanning for any of the 



  

 
 

participants included in the study. 

 

In the scanner, subjects were instructed to relax with closed eyes, without falling asleep; 8 

minutes of fMRI scan without any task (“resting-state”) were acquired for each participant. 

Additionally, a separate 5-minute long scan was also acquired while a plot-driven story was 

presented through headphones to participants, who were instructed to listen while 

keeping their eyes closed. The present analysis focuses on the resting-state data only; 

the story scan data are not relevant to the work presented here, and will not be 

discussed further. 

 

Propofol MRI Data Acquisition 
MRI scanning was performed using a 3-Tesla Siemens Tim Trio scanner (32-channel 

coil), and 256 functional volumes (echo-planar images, EPI) were collected from each 

participant, with the following parameters: slices = 33, with 25% inter-slice gap; 

resolution = 3mm isotropic; TR = 2000ms; TE = 30ms; flip angle = 75 degrees; matrix 

size = 64x64. The order of acquisition was interleaved, bottom-up. Anatomical 

scanning was also performed, acquiring a high-resolution T1- weighted volume (32-

channel coil, 1mm isotropic voxel size) with a 3D MPRAGE sequence, using the 

following parameters: TA = 5min, TE = 4.25ms, 240x256 matrix size, 9 degrees FA. 

 

Preprocessing of Propofol fMRI Data 
We preprocessed the functional imaging data using a standard pipeline, implemented 

within the SPM12-based (http://www.fil.ion.ucl.ac.uk/spm) toolbox CONN 

(http://www.nitrc.org/projects/conn), version 17f63. The pipeline comprised the 

following steps: removal of the first five scans, to allow magnetisation to reach steady 

state; functional realignment and motion correction; slice-timing correction to account 

for differences in time of acquisition between slices; identification of outlier scans for 

subsequent regression by means of the quality assurance/artifact rejection software 

ART (http://www.nitrc.org/projects/artifact_detect); spatial normalisation to Montreal 

Neurological Institute (MNI-152) standard space with 2mm isotropic resampling 

resolution, using the segmented grey matter image from each volunteer’s high-

resolution T1-weighted image, together with an a priori grey matter template; spatial 

smoothing with a Gaussian kernel of 6mm full width at half-maximum (FWHM). 

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/artifact_detect


  

 
 

 

 

Denoising of Propofol fMRI Data 
To reduce noise due to cardiac and motion artifacts, we applied the anatomical CompCor 

method of denoising the functional data64, also implemented within the CONN toolbox. The 

anatomical CompCor method involves regressing out of the functional data the following 

confounding effects: the first five principal components attributable to each individual’s white 

matter signal, and the first five components attributable to individual cerebrospinal fluid (CSF) 

signal; six subject-specific realignment parameters (three translations and three rotations) as 

well as their first- order temporal derivatives; the artifacts identified by ART; and main effect 

of scanning condition64. Linear detrending was also applied, and the subject-specific denoised 

BOLD signal timeseries were band-pass filtered to eliminate both low-frequency drift effects 

and high-frequency noise, thus retaining frequencies between 0.008 and 0.09 Hz. 

 

 

Recruitment of DOC PatientsA sample of 71 patients with Disorders of Consciousness 

was included in this study. Patients were recruited from specialised long-term care centres. To 

be invited to the study, patients must have had a DOC diagnosis, written informed consent to 

participation from their legal representative, and were capable of being transported to 

Addenbrooke's Hospital. The exclusion criteria included any medical condition that made it 

unsafe for the patient to participate (decision made by clinical personnel blinded to the specific 

aims of the study) or any reason they are unsuitable to enter the MRI scanner environment (e.g. 

non-MRI-safe implants), significant pre-existing mental health problems, or insufficient 

English pre injury. After admission, each patient underwent clinical and neuroimaging testing. 

Patients spent a total of five days (including arrival and departure days) at Addenbrooke's 

Hospital. Coma Recovery Scale-Revised (CRS-R) assessments were recorded at least daily for 

the five days of admission. If behaviours were indicative of awareness at any time, patients 

were classified as MCS; otherwise UWS. We assigned MCS- or MCS+ sub-classification if 

behaviours were consistent throughout the week. The most frequent signs of consciousness in 

MCS- patients are visual fixation and pursuit, automatic motor reactions (e.g. scratching, 

pulling the bed sheet) and localisation to noxious stimulation whereas MCS+ patients can, in 

addition, follow simple commands, intelligibly verbalise or intentionally communicate58,65. 

Scanning occurred at the Wolfson Brain Imaging Centre, Addenbrooke’s Hospital, between 



  

 
 

January 2010 and December 2015; medication prescribed to each patient was maintained 

during scanning. All clinical investigations were conducted in accordance with the Declaration 

of Helsinki and all relevant ethical guidelines. Ethical approval for testing patients was 

provided by the National Research Ethics Service (National Health Service, UK; LREC 

reference 99/391).  

 

As a focus of this study was on graph-theoretical properties of the brain, patients were 

systematically excluded from the final cohort analysed in this study based on the following 

criteria: 1) large focal brain damage (i.e. more than 1/3 of one hemisphere) as stated by an 

expert in neuroanatomy blinded to the patients' diagnoses; 2) excessive head motion during 

resting state scanning (i.e. greater than 3mm in translation and/or 3 degrees in 

rotation); 3) suboptimal segmentation and normalization of images. A total of 22 adults (14 

males; 17 -70 years; mean time post injury: 13 months) meeting diagnostic criteria for 

Unresponsive Wakefulness Syndrome/Vegetative State or Minimally Conscious State due to 

brain injury were included in this study (Table 1).  

 

Patient MRI Data AcquisitionResting-state fMRI was acquired for 10 minutes (300 

volumes, TR=2000ms) using a Siemens Trio 3T scanner (Erlangen, Germany). Functional 

images (32 slices) were acquired using an echo planar sequence, with the following parameters: 

3 x 3 x 3.75mm resolution, TR = 2000ms, TE = 30ms, 78 degrees FA. Anatomical scanning 

was also performed, acquiring high-resolution T1-weighted images with an MPRAGE 

sequence, using the following parameters: TR = 2300ms, TE = 2.47ms, 150 slices, resolution 

1 x 1 x 1mm. 

 

 

Preprocessing and Denoising of Patient fMRI DataDue to the presence of deformations 

caused by brain injury, rather than relying on automated pipelines, patients’ brains were 

individually preprocessed using SPM12, with visual inspections after each step. Additionally, 

to further reduce potential movement artifacts, data underwent despiking with a hyperbolic 

tangent squashing function. The remaining preprocessing and denoising steps were the same 

as described above for the propofol data. 

 

 



  

 
 

Intrinsic Connectivity Contrast 
 

The global connectivity of each voxel with the rest of the brain was analysed using the Intrinsic 

Connectivity Contrast (ICC)31 as implemented in the CONN toolbox. The ICC is a voxelwise 

measure of whole-brain connectivity based on the graph-theoretical notion of degree, which 

quantifies the number of connections of a node with other nodes in its network. Consistently 

with this notion, a higher ICC index corresponds to higher global connectivity. 

For each voxel i,  
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(1) 

 

where i, j are voxels, and t(x) is the BOLD fMRI timeseries of voxel x. Subsequently, the ICC 

values in the whole brain are normalised, by subtracting the average ICC value across all voxels 

from the ICC of each voxel, and then dividing each voxel’s ICC by the standard deviation of 

the ICC values across all voxels. 

The result is a brain map of voxelwise Intrinsic Connectivity Contrasts, whose distribution is 

Gaussian with zero mean and unitary variance. These ICC values can then be used as ROIs for 

further seed-based analysis in a data- driven fashion. As the biological meaning of estimating 

functional connectivity of a white matter voxel from BOLD data is dubious, the ICC analysis 

was restricted to grey matter voxels. 

 

 

 

Voxelwise Sample Entropy of BOLD Timeseries 
 

Sample entropy (SampEn) estimates the probability that similar sequences of observations in 

a timeseries will remain similar. To compute SampEn, the timeseries is divided into chunks of 

m timepoints each; chunks are then compared to find the distance between them, calculated as 

the largest absolute difference between any value in the first chunk and any value in the second 



  

 
 

chunk (Chebyshev distance). Two chunks are deemed similar if their distance is less than a 

value r. Subsequently, the procedure is repeated for chunks of length m+1. The result is the 

probability that if two data sequences of length m have distance less than r (i.e. are similar), 

then sequences of length m+1 also have distance less than r. The negative logarithm of this 

quantity corresponds to SampEn. 

 

SampEn =  − log
𝐴𝐴
𝐵𝐵

 

                                                                                           (2) 

 

Here, A is the number of chunks of length m+1 that are similar (have Chebyshev distance less 

than r), and B is the number of chunks of length m that are similar. 

Unlike Shannon entropy, SampEn depends on the choice of parameters m and r. Here, we used 

m = 3 and r = 0.6 times the standard deviation of the data. These parameter values were 

identified as optimal for calculation of SampEn from resting-state fMRI data32. The entropy of 

the BOLD signal timeseries was calculated using the Brain Entropy Mapping Toolbox 

(BENtbx; https://cfn. upenn.edu/ zewang/BENtbx.php) 32 implemented in MATLAB. Each 

subject’s preprocessed and denoised resting-state fMRI timeseries were used as inputs for 

BENtbx. For each subject, the toolbox computed the SampEn of each voxel’s timeseries, 

producing as output a subject- specific 3D brain map, with an entropy value in each voxel. 

Each subject-specific image was then spatially smoothed with the toolbox-recommended 

Gaussian kernel of 10mm FWHM. 

 

Overlap of Sample Entropy and ICC Results 
 

To identify the spatial overlaps between maps of statistical differences in ICC or SampEn 

values in DOC and anaesthesia, the fslmaths functions from FMRIB Software Library (FSL; 

https://fsl.fmrib.ox.ac.uk/fsl) was used to binarise the thresholded significance maps. For each 

dataset (anaesthesia and DOC), the binarised ICC and entropy masks were then superimposed 

on each other, to find regions that showed reductions in both entropy and integration. Thus, 

one mask of ICC-entropy overlap was obtained for each dataset. Finally, to identify whether 

the same regions showed common reductions of entropy and integration in both DOC and 

anaesthesia, the two dataset-specific masks of ICC-entropy overlap were themselves 

superimposed to find their overlap. The result was a single brain mask, showing those brain 



  

 
 

regions that significantly reduced both their temporal entropy and their global connectivity 

between conscious and unconscious conditions, both in the propofol and the DOC datasets. 

 

Connectivity Matrix Construction 
 

To construct matrices of functional connectivity, normalised brains were parcellated into 90 

cortical and subcortical regions of interest (ROIs) derived from the Automated Anatomical 

Labelling (AAL) atlas, covering the entire brain excluding Cerebellum and Vermis66. 

Each ROI was also assigned to one of 7 well-characterised resting-state networks (RSNs), 

derived from resting-state intrinsic connectivity analysis of 1000 healthy individuals43: Default 

Mode Network (DMN), Somatomotor (SOM), Visual (VIS), Salience/Ventral Attention 

Network (SAL), Dorsal Attention Network (DAN), Fronto-Parietal Network (FPN), and 

Limbic plus subcortical regions (LIM). 

The timecourses of denoised BOLD signals were averaged between all voxels belonging to a 

given AAL-derived ROI, using the CONN toolbox. The resulting region-specific timecourses 

of each subject were then extracted for further analysis in MATLAB version 2016a. Functional 

connectivity was estimated as the Pearson correlation coefficient between the timecourses of 

each pair of ROIs, over the full scanning length. 

 

Dynamic Functional Connectivity 
 

Dynamic connectivity matrices were derived using an overlapping sliding- window 

approach11,24. For each subject and each condition, tapered sliding windows were obtained by 

convolving a rectangle of 22 TRs (44s) with a Gaussian kernel of 3 TRs, sliding with 1 TR step 

size. This resulted in 229 windows/timepoints per condition for the awake and anaesthetised 

subjects, and 273 windows for the DOC patients. 

Within each of the resulting overlapping temporal windows of 22 TRs, a 90-by-90 matrix of 

functional connectivity was estimated, with the connection between each pair of AAL-derived 

ROIs being given by the Pearson correlation between their timecourses within that window. 

 

Derivation of Integrated and Segregated States 
 

States of higher integration or segregation were identified from the patterns of connectivity 



  

 
 

between regions, by establishing a “cartographic profile”25,26 based on the module assignments 

of each ROI, considered as a network node. Firstly,  within each time-resolved functional 

connectivity matrix (weighted and signed),  the asymmetric algorithm  of Rubinov and Sporns 

(2011)67 implemented in the MATLAB-based Brain Connectivity Toolbox (BCT; 

http://www.brain-connectivity-toolbox.net)8 was used to identify network modules by applying 

the Louvain greedy algorithm 68, which iteratively evaluates different ways of assigning nodes 

to modules, in order to maximise the resulting modularity function Q: 
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1
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(3) 

where υ is the total weight of the graph (sum of all edges), wij is the (signed) weight of the edge 

between nodes i and j, eij is the weight of an edge divided by the total weight of the graph 

(positive and negative edges are denoted with ‘+’ and ‘−’ superscripts, respectively), and δMiMj 

is set to 1 when nodes i and j are in the same module and 0 otherwise. 

 

In the case of signed graphs, a module is defined as a group of nodes that are positively 

correlated with each other, but negatively correlated with nodes belonging to different 

modules8. Due to its stochastic nature, the algorithm was repeated for 100 iterations for each 

time-resolved network, and the module size resolution parameter γ was set to one, the 

default25,26. 

 

Based on the modularity assignments identified in the previous step, we then derived the 

participation coefficient and within-degree Z-score for each node. The participation coefficient 

Pi quantifies the degree of connection that a node entertains with nodes belonging to other 

modules: the more of a node’s connections are towards other modules, the higher its 

participation coefficient will be8. Conversely, the participation coefficient of a node will be 

zero if its connections 

 are all with nodes belonging to its own module. 
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Here, κis is the strength of positive connections between node i and other nodes in module s, ki 

is the strength of all its positive connections, and M is the number of modules in the network, 

as identified by a given modularity detection algorithm. The participation coefficient ranges 

between zero (no connections with other modules) and one (equal connections to all other 

modules). A network with high average participation coefficient can be expected to have high 

levels of integration between its constituent modules. 

 

Conversely, the within-module degree Z-score Zi is a measure of a node’s connectivity with 

other nodes belonging to its module. It indicates how much larger (or smaller) the node’s 

connections to other nodes in the module are, relative to the average connection strength within 

that module. A node with high within-module degree Z-score has stronger-than-average 

coupling with the other nodes in its module8. 

 

 

𝑧𝑧𝑖𝑖  =  
𝜅𝜅𝑖𝑖𝑖𝑖  −  𝜅̅𝜅𝑖𝑖𝑖𝑖
𝜎𝜎𝜅𝜅𝑖𝑖𝑖𝑖

 

    

(5) 

 

where κis is the strength of connections between node i and other nodes in module s, and 𝜅̅𝜅is 

and σκis  are respectively the average and the standard deviation of κis over all nodes belonging 

to module s. The Brain Connectivity Toolbox was used to derive both the participation 

coefficient and within-degree Z-score for each node. 

 

Subsequently, joint histograms of participation coefficient and within-module Z-score were 

produced for each timepoint (using MATLAB code made freely available by Shine et al. (2016) 

at https://github.com/macshine/integration/)25, since together, these two measures quantify 

both a node’s inter- modular and intra-modular connectivity. For each subject, the joint patterns 

were then used to assign each timepoint to one of two clusters, using an unsupervised machine 

learning algorithm known as k-means clustering (setting k = 2)25. To avoid the possibility of 

the algorithm becoming stuck in local minima, it was repeated 500 times with random re-

initialisation of the two clusters’ initial points. This was performed individually for each subject 



  

 
 

and condition. Following Shine et al. (2016)25, Pearson correlation was chosen as distance 

metric for the algorithm. 

 

Finally, the cluster with higher mean participation coefficient was labelled  as the integrated 

state, while the cluster with lower average participation coefficient was considered to be the 

segregated state25. For each subject, a centroid matrix of functional connectivity was computed 

for each state, as the element-wise median of the timepoint-specific FC matrices assigned to 

the cluster corresponding to that state. The proportion of time spent in each state was also 

estimated, as the number of timepoints assigned to that cluster, over the total number of 

timepoints. 

 

Dynamic State Connectivity Analysis 
 

Once an integrated and a segregated state centroids had been derived for  each subject and 

condition, we investigated how the pattern of connectivity in each state varied between the 

conscious and unconscious conditions. Since this work focuses on the common aspects of 

unconsciousness induced by different means, we sought to identify which connections were 

significantly affected in the same way in both datasets. This involved a two-step analysis. First, 

for each state (integrated, segregated) the corresponding centroid matrices were compared 

between Awake and Deep conditions, and between conscious controls and DOC patients. Thus, 

a matrix of mean differences was computed for each state in each dataset, so that the edge Wi,j 

represented the mean difference across conditions in the strength of the connection between 

regions i and j. Subsequently, the matrices were significance-thresholded by setting to 0 any 

edge that did not reach a significance level of α < 0.05 (FDR-corrected for multiple 

comparisons), as assessed by t-tests (paired for the propofol dataset, independent-samples for 

the DOC dataset). The resulting matrices of significant edges were then combined across 

datasets, to construct a matrix of common unconsciousness-induced connectivity differences. 

In this matrix, if both significance-thresholded matrices had a positive edge at position i,j, edge 

wi,j was set to the minimum value  of the two; if both thresholded matrices had negative values 

at i,j, edge wi,j was instead set to the maximum of the two (i.e. smaller absolute value); and wi,j 

was set to 0 in all other cases. The presence of a non-zero edge in the resulting matrix therefore 

indicates that the corresponding regions i and j show consistent changes in their functional 

connectivity as a result of unconsciousness, regardless of how it was induced - with the 



  

 
 

direction of the alteration being given by the sign of wi,j, and its weight representing the 

minimum extent of such alteration.  After performing this analysis for the integrated and 

segregated state, the same analysis was also performed on the static FC matrices. This revealed 

whether any of the patterns of change observed in the static FC were specifically due to changes 

in the segregated or the integrated state. 

 

Brain Graph Construction 
 

In graph theory, a graph G=(N,K), is a mathematical representation of a network of N nodes 

(or vertices, typically represented as points) connected by K edges (or links, typically 

represented as lines between pairs of points). Here, subject- and condition-specific brain graphs 

were constructed by thresholding the corresponding functional connectivity matrices (see 

above), so that nodes were given by AAL-derived brain regions, and edges were given by their 

functional connectivity. We thresholded each FC matrix proportionally, at density levels 

ranging between 10% and 25%, sampled in steps of 5%. To ensure robustness of the result, 

graph-theoretical metrics were averaged across thresholds for each subject and session before 

analysis. 

Since edge weight can be expected to carry biological meaning as the strength of 

communication between different regions, we chose not to binarise the graphs. In line with 

similar work9 we used weighted graphs for the analyses presented here, made possible by the 

availability of algorithms for weighted graph analysis8.  

To ensure that our results could not be attributed to our choice of node and edge estimation, we 

ran the same graph-theoretical analyses (for static FC, integrated state and segregated state, in 

both anaesthetised individuals and DOC patients) with different parameter choices: for edges, 

we applied higher density levels (30 to 50%, in 10% steps) and binarised rather than weighted 

edges; for nodes, we used the 234 ROIs of the Lausanne scale 125 template69) (Supplementary 

Figure 11-14). 

 

Graph Metrics 
 

The graph-theoretical properties used in this work are described below, based on the definitions 

provided by Rubinov and Sporns (2010, 2011)8,67. Each measure was computed for the static, 

integrated and segregated functional connectivity matrix of each subject, for each scanning 



  

 
 

session. All graph-theoretical measures were computed using the Brain Connectivity Toolbox8. 

 

 

Characteristic path length (L) is a network-wide measure of how effortful it is on average to 

move between different nodes in the network. This metric is calculated as the average length 

of the shortest path d between every pair of  nodes in the network. 
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The characteristic path length is understood as inversely related to the ability to integrate 

information across the whole network8. 

 

 

The clustering coefficient of node i (Ci) is a node-specific measure of how well connected a 

node’s neighbourhood is; in a binarized graph, it is calculated as the fraction of neighbours of 

the node that are also neighbours of each other.  

 

 

𝐶𝐶𝑖𝑖  =
2𝑡𝑡𝑖𝑖
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(7) 

 

where ti is the number of triangles around node i, (for binarized graphs) or the geometric mean 

of triangles around node i (for weighted graphs). The mean of all nodes’ clustering coefficients 

(i.e. the network’s mean clustering coefficient) indicates how well connected, on average, the 

neighbourhoods present in the network tend to be. When applied to brain networks, the 

clustering coefficient is thought to represent the degree  of information integration at a local 

level, and hence the potential for efficiently performing specialised, segregated local 

processing8. 

 

Both the characteristic path length and mean clustering coefficient are typically provided as 

normalised, i.e. divided by the corresponding metric of a random graph with the same number 



  

 
 

of nodes and edges, and preserved degree distribution8. Here, we used the average of the same 

measures computed for 100 random graphs, each constructed by randomly rewiring each edge 

in the original graph 100 times. 

 

 

Small-worldness: a network is considered to be small-world if it has both the high mean 

clustering coefficient typical of regular lattice networks, but also the small characteristic path 

length typical of random networks40. Small-worldness represents the balance between 

integration/global processing (low characteristic path length) and segregation/local processing 

(high mean clustering coefficient), and is summarised by S, the ratio of the graph’s normalised 

mean clustering coefficient to normalised characteristic path length8.. 

 

𝑆𝑆graph  =  
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 Connectivity Entropy 
 

Complexity of a given state of functional connectivity was estimated by the mean normalised 

Shannon entropy of the connections of each ROI. Following the procedure of Saenger et al., 

(2017)42, the connectivity values in each column of the matrix were assigned into n bins to 

construct a distribution, and a normalised version of the Shannon entropy of this distribution 

was computed  for each node according to the following equation42: 
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To constrain the entropy values between 0 and 142, the original Shannon entropy was 

normalised by the Shannon entropy of a uniform distribution, which corresponds to log(n). 

Here, we followed Saenger and colleagues42, always using n = 10 bins. 



  

 
 

 

Statistical Analysis 
 

The statistical significance of within-group differences between the awake and deep 

anaesthetised conditions was determined with non-parametric permutation t-tests (repeated-

measures), with 10,000 permutations. Permutation- based two-samples t-tests with 10,000 

permutations were instead used to assess group differences between the awake condition of the 

propofol dataset (used as healthy control group) and the DOC patients, and between the TBI 

and HBI subgroups of DOC patients. All tests were two-sided. For measures that showed a 

significant difference, the effect size was also estimated using Hedge’s g. 

When subnetwork-specific analyses were performed, the Benjamini-Hochberg procedure70 

was adopted to control the false discovery rate across multiple comparisons, at a corrected α 

level of 0.05. This procedure was also applied for the analysis of FC matrix differences. 

For the statistical analyses performed on brain maps (ICC and SampEn), group-level 

comparisons were implemented as a GLM, using parametric paired t-tests for the differences 

between awake and deep anaesthesia conditions, and unpaired t-tests for the differences 

between DOC patients and controls. All tests were two-sided. The resulting output maps of 

group differences were thresholded at voxelwise p <0.001 (uncorrected), and corrected for 

multiple comparisons by applying a family-wise error (FWE) cluster-based correction, 

resulting in p < 0.05. These steps were performed within the SPM12-based CONN toolbox for 

the ICC analysis, and directly in SPM12 for the SampEn analysis. 

 

Data Availability 
The data that support the findings of this study are available from the corresponding author 

upon reasonable request. Source data underlying Figures 2 and 3, Supplementary Figures 10 to 

14 and Supplementary Tables 6 to17 are provided as a Source Data file. 

 

Code Availability 
The CONN toolbox is freely available online (http://www.nitrc.org/projects/conn). 

Code for the "cartographic profile"25 is freely available online 

(https://github.com/macshine/integration/). 

The Brain Connectivity Toolbox code used for graph-theoretical analyses is freely available 

online (https://sites.google.com/site/bctnet/). The Brain Entropy Toolbox is freely available 

http://www.nitrc.org/projects/conn
https://github.com/macshine/
https://sites.google.com/site/bctnet/


  

 
 

online (https://cfn.upenn.edu/zewang/BENtbx.php). The code used to compute the Sample 

Entropy (SampEn) of motion timeseries in MATLAB is freely available online 

(https://uk.mathworks.com/matlabcentral/fileexchange/35784-sample-entropy). 
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Figure 1: Brain maps of consciousness-related reductions in Intrinsic Connectivity 

Contrast (ICC, reflecting integrative capacity) and sample entropy (reflecting 

functional diversity over time), and their overlaps between and within datasets. 

Regions in blue display reduced ICC during unconsciousness (increases are shown 

in Supplementary Figures 1 and 2); yellow indicates reduced sample entropy during 

unconsciousness; and red indicates regions showing both reduced entropy and ICC. 

Overlaps between anaesthesia (left) and DOC (right) are shown in the middle. 

Images are shown on medial and lateral surfaces of a smoothed standard Montreal 

Neurological Institute (MNI-152) structural T1 scan, in neurological convention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

 

 
 

Figure 2: Common differences in functional connectivity (r values) when considering 

both awake volunteers > anaesthetized (repeated-measures t-test, FDR-corrected), and 

awake volunteers > DOC patients (two-samples t-test, FDR-corrected). (a) 

Differences from static FC (computed over the entire scanning length). (b) Differences 

from dynamic FC, observed only in the integrated state (left) or only in the segregated 

state (right). Hot colours indicate conscious > unconscious, and cold indicate 

unconscious > conscious (increased correlation, or decreased anti-correlation). Source 

data are provided as a Source Data file. 

 
 



  

 
 

 

 

Figure 3: Violin plots of the mean connectivity entropy (left) and small-world values 

(right) for the static (a,b), integrated (c.d) and segregated (e,f) states, comparing 

conscious healthy controls and unconscious individuals due to anaesthesia 

(repeated_measures t-tests) and brain injury (two-samples t-tests). The small-world 

index was calculated as the ratio of normalised clustering coefficient to normalised 

characteristic path length. n.s. not significant; * p < 0.05; ** p < 0.01; white circle, 

mean; center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range. Source data are provided as a Source Data file. 

 
 
 



  

 
 

Table 1: Demographic information for patients with Disorders of Consciousness.  

 

Sex Age Months post 
injury 

Aetiology Diagnosis CRS-R Score 

M 46 23 TBI UWS 6 
M 57 14 TBI MCS- 12 

M 46 4 TBI MCS 10 

M 35 34 Anoxic UWS 8 
M 17 17 Anoxic UWS 8 

F 31 9 Anoxic MCS- 10 

F 38 13 TBI MCS 11 
M 29 68 TBI MCS 10 

M 23 4 TBI MCS 7 

F 70 11 Cerebral bleed MCS 9 
F 30 6 Anoxic MCS- 9 

F 36 6 Anoxic UWS 8 

M 22 5 Anoxic UWS 7 
M 40 14 Anoxic UWS 7 

F 62 7 Anoxic UWS 7 

M 46 10 Anoxic UWS 5 
M 21 7 TBI MCS 11 

M 67 14 TBI MCS- 11 

F 55 6 Hypoxia UWS 12 
M 28 14 TBI MCS 8 

M 22 12 TBI MCS 10 

F 28 8 ADEM UWS 6 

 
CRS-R, Coma Recovery Scale-Revised; UWS, Unresponsive Wakefulness Syndrome; MCS, Minimally Conscious State; 

TBI, Traumatic Brain Injury. 
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