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Abstract— The paper extends the concepts of dominance
and p-dissipativity to the non-smooth family of linear comple-
mentarity systems. Dominance generalizes incremental stability
whereas p-dissipativity generalizes incremental passivity. The
generalization aims at an interconnection theory for the design
and analysis of switching and oscillatory systems. The approach
is illustrated by a detailed study of classical electrical circuits
that switch and oscillate.

I. INTRODUCTION

Dominance analysis and p-dissipativity were recently in-

troduced in [1], [2] to extend the application of dissipativity

theory to the analysis of multistable and oscillatory systems.

The approach is differential, that is, based on the analysis of

linearized dynamics along trajectories, in the spirit of con-

traction theory [3], convergence analysis [4], or differential

stability analysis [5]. It is particularly adapted to systems

whose linearization can be easily parametrized, such as Lure

systems that interconnect linear time-invariant systems with

static nonlinearities [6].

The present paper investigates how to extend this analysis

to nonlinear circuits modeled as linear complementarity

systems: models that consist of linear time-invariant systems

augmented with a static complementarity constraint. The

modeling framework of linear complementarity systems has

proven very useful to analyze systems whose nonlinear dy-

namical behavior arises from non-smooth constraints [7], [8],

[9], [10], [11]. They find applications in a number of fields

including mechanical systems with unilateral constraints

[12], electrical circuits with diodes [13], and mathematical

programming [14].

Linear complementarity systems provide an attractive

framework for dominance analysis because they are general

enough to model switching and oscillatory behaviors often

encountered in the presence of non-smooth constraints and

specific enough to lead to tractable analysis. In particular,

the passivity property of complementarity constraints has

proven central to analyze linear complementarity systems

in the framework of dissipativity theory [15], [9]. Linear

complementarity systems hence offer an ideal platform for

the application of p-dissipativity theory to switching and

oscillatory behaviors.

To account for the non-smoothness of linear complemen-

tarity systems, the differential analysis of [1], [2] has to
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be replaced by incremental analysis [16], [17], [18]. Incre-

mental analysis studies how increments between trajectories

evolve in time, whereas differential analysis only considers

linearized trajectories, that it, infinitesimal increments. In the

context of linear complementarity systems, the difference

is technical rather than conceptual. We show that the main

results of [1], [2] extend to the incremental setting imposed

by non-smooth constraints.

This paper is organized as follows. In Section II we briefly

review the modeling of linear complementarity systems and

its core passivity property. Section III is dedicated to the

property of dominance and p-dissipativeness in the incremen-

tal setting. The example Section IV illustrates the potential

of p-dissipativity theory to analyze classical switching and

oscillatory circuits. The papers ends with conclusions in

Section V.

II. LINEAR COMPLEMENTARITY SYSTEMS AND

INCREMENTAL PASSIVITY

A. Linear complementarity systems

A linear complementarity system [15] consists of a linear

dynamical system subject to a complementarity constraint






ẋ = Ax+Bu+Bv

y = Cx+Du

0 ≤ u ⊥ y ≥ 0,

(1)

where x ∈ R
n is the state variable, u ∈ R

m and y ∈ R
m

are the so-called complementary variables, and v ∈ R
m

is an additional control input. The matrices A,B,C, and

D are constant and of the appropriate dimensions. The

complementarity condition 0 ≤ u(t) ⊥ y(t) ≥ 0 is a

compact representation of the following three conditions: i)

u ∈ R
m
+ , ii) y ∈ R

m
+ , and iii) 〈u(t), y(t)〉 = 0.

A solution of the linear complementarity system (1) is

any tuple (x, u, y, v) such that x : R+ → R
n is an absolutely

continuous function and (x, u, y, v) satisfies (1) for almost all

forward times t ∈ R+. In general, we assume that the initial

conditions x(0) = x0 are such that the complementarity

conditions hold. This implies the absence of jumps in the

initial condition and in the complementarity variables [9].

B. Incremental passivity

A cornerstone in the analysis of linear complementarity

systems is to observe that the complementarity relation

R⊥ = {(y, ζ) ∈ R
m × R

m|0 ≤ y ⊥ −ζ ≥ 0} (2)

defines an incrementally passive relation. We recall the

definition and the proof of that property.



Definition 1: A relation R ⊆ R
m × R

m is incrementally

passive if for any (y1, ζ1) ∈ R, and any (y2, ζ2) ∈ R the

inequality

〈y1 − y2, ζ1 − ζ2〉 ≥ 0 (3)

holds.

Proposition 2: R⊥ is incrementally passive.

Proof: Take (y1, ζ1) ∈ R⊥ and (y2, ζ2) ∈ R⊥.

Then, 〈y1 − y2, ζ1 − ζ2〉 = 〈−y2, ζ1〉 + 〈y1,−ζ2〉 +
〈y1, ζ1〉
︸ ︷︷ ︸

=0

+ 〈y2, ζ2〉
︸ ︷︷ ︸

=0

= 〈y2,−ζ1
︸ ︷︷ ︸

≥0

〉+ 〈y1,−ζ2〉
︸ ︷︷ ︸

≥0

≥ 0.

An alternative description of the relation R⊥ is via the

multivalued map

ζ = ϕ⊥(y) ∈ {ζ ∈ R
m|0 ≤ y ⊥ −ζ ≥ 0} (4)

which leads to the feedback representation in Figure 1.

This Lure type representation of linear complementarity

Fig. 1. Block diagram of the linear complementarity system (1)

systems calls for an analysis rooted in passivity theory: the

linear complementary system is incrementally passive as the

negative feedback interconnection of a linear passive system

Σ with an incrementally passive relation.

Passivity of the linear part is a standard assumption in the

literature on linear complementarity systems; it guarantees

existence and uniqueness of solutions for (1). Details can

be found in [9], [8], [19] based on the following additional

assumption, which ensures well-posedness of the closed loop

in the presence of the throughput term D, [9].

Assumption 3: The linear part of (1) is a minimal realiza-

tion, it is passive and the matrix
[

B

D +D⊤

]

(5)

has full column rank. y

Passivity of the linear part of (1) from u to y reads

V̇ (x) ≤ 〈y, u〉 (6)

where the derivative of the quadratic storage V := xTPx,

P = PT > 0, is computed along the linear dynamics. Pas-

sivity and incremental passivity coincide for linear systems.

In fact, for any pair of trajectories xi, outputs yi and inputs

ui, the incremental dynamics characterized by the variables

∆x = x1 − x2, ∆y = y1 − y2, ∆u = u1 − u2 satisfies

V̇ (∆x) ≤ 〈∆y,∆u〉 . (7)

Since the negative feedback interconnection of incremen-

tally passive systems is incrementally passive [15], the closed

loop linear complementarity system is incrementally passive.

For any constant input v, the resulting closed loop is thus

incrementally stable, that is, there exists a nondecreasing

function β such that

|x1(t)− x2(t)| ≤ β(|x1(0)− x2(0)|) ∀t ≥ 0

for any pair of trajectories x1(·), x2(·) of (1). Furthermore,

if the passive inequality (6) is strict, the resulting closed loop

becomes incrementally asymptotically stable; its trajectories

converge towards each other

lim
t→∞

|x1(t)− x2(t)| = 0 .

In this case, an equilibrium point is necessarily unique and

globally stable.

The concept of incremental stability [20] is analog to the

concept of differential stability in the theory of contraction

[3] or convergent systems [4]. But it does not require any

differentiability of the system dynamics.

C. Beyond linear complementarity relations

For the purpose of this paper, the linear complementarity

condition can be replaced by any incrementally passive static

relation. Figure 2 provides an illustration of incrementally

passive memoryless nonlinearities. Those multivalued maps

are widely used for modeling electronic circuits. For exam-

ple, the three graphs in Figure 2 represent the ideal current-

voltage characteristic of a diode, of a zener diode, and of an

array of diodes [21], [22].

Fig. 2. Popular examples of incrementally passive relations.

Denoting (w, z) ∈ Ri any pair (w, z) that belongs to

the i-th relation in Figure 2, we extend the class of linear

complementarity systems to the family of systems of the

form 





ẋ = Ax+Bu+Bv

y = Cx

(y,−u) ∈ Ri .

(8)

Following the approach of linear complementarity systems,

for a solution of (8) we mean any tuple (x, u, y, v) such

that x : R+ → R
n is an absolutely continuous function

and (x, u, y, v) satisfies (8) for almost all forward times

t ∈ R+. Indeed, the closed loop (8) allows for the block

diagram representation in Figure 1, with ϕ⊥ replaced by



ϕRi
, the static multivalued map associated to the relation

Ri. Thus, for any passive relation Ri, the closed loop (8) is

incrementally passive. We remark that incremental passivity

guarantees existence and uniqueness of solutions also for

general maximal monotone static multi-valued maps, [8].

III. DOMINANCE AND p-DISSIPATIVITY

A. Dominance

Dominance was recently introduced in [1], [2], [6] as a

generalization of incremental stability for smooth nonlinear

systems. Motivated by dominance analysis of linear comple-

mentarity systems, we extend the definition of dominance

in a nonsmooth setting, replacing differential analysis by

incremental analysis as in the previous section.

For the sake of simplicity in this section, and the rest of

the paper, we consider generic pairs of trajectories x1(·) and

x2(·), and we adopt the notation ∆x = x1−x2 to denote their

mismatch. ∆ẋ = ẋ1− ẋ2 is defined for almost every t by the

right-hand side of (8) computed for x1 and x2, respectively.

A similar notation is adopted for inputs ∆u = u1 − u2 and

outputs ∆y = y1 − y2. Finally, we say that a symmetric

matrix P has inertia {p, 0, n − p} when it has p negative

eigenvalues and n− p positive eigenvalues.

Definition 4: The nonsmooth system (8) is p-dominant

with rate γ ≥ 0 if there exist a matrix P = P⊤ with inertia

{p, 0, n − p} and a constant ε ≥ 0 such that for any pair

trajectories of (8),
[
∆ẋ

∆x

] [
0 P

P 2γP + εI

] [
∆ẋ

∆x

]

≤ 0. (9)

Strict p-dominance holds for ε > 0.

Note that dominance is just incremental stability if P is

positive definite, which corresponds to p = 0. But we are

interested in the generalization corresponding to p = 1 and

to p = 2.

For smooth closed systems ẋ = f(x), (9) is equivalent to

the linear matrix inequality inequality

∂f(x)⊤P + P∂f(x) + 2γP + εI ≤ 0 ∀x ∈ R
n (10)

where ∂f(x) denotes the Jacobian of f at x. In the linear

case, f(x) = Ax, (10) implies the existence of an invariant

splitting such that R
n = En ⊕ En−p, where Ep is the p-

dimensional eigenspace associated to the dominant modes

of A (eigenvalues of A whose real part is larger than −γ),

and En−p is the (n− p)-dimensional eigenspace associated

to the transient modes of A (i.e., the eigenvalues of A

whose real part is smaller than −γ). Roughly speaking,

in the nonlinear case the property of dominance forces the

asymptotic behavior to be p-dimensional [2, Theorem 2], as

shown by the analysis of the linearized flow in [2, Theorem

1]. The following theorem extends [2, Theorem 2] to the

nonsmooth case.

Theorem 5: Assume v constant and suppose that all the

trajectories of (13) are bounded. Let Ω(x) be the set of all

ω-limit points of x and let (13) be strictly p-dominant with

rate γ ≥ 0. Then, the flow on the Ω(x) is topologically

equivalent to the flow of a p-dimensional system.

Proof: Consider any pair of trajectories x1(·) and x2(·),
define the increment ∆x(·), and consider the quadratic form

V (∆x(t)) = ∆x(t)TP∆x(t). From (9),

d

dt
V (∆x(t)) ≤ −2γV (∆x(t)) − ε‖∆x(t)‖2,

therefore

d

dt
e2γtV (∆x(t)) ≤ −εe2γt‖∆x(t)‖2.

By integration,

V (∆x(t)) ≤ e−2γtV (∆x(0))− ε

∫ t

0

e−2γ(t−τ)‖∆x(τ)‖2dτ

(11)

Let x̄1 and x̄2 be two different points of Ω(x) and define

∆x̄ = x̄1 − x̄2. Note that both x̄1 and x̄2 are accumulation

points of a suitable trajectory, therefore ∆x̄ 6= 0 and (11)

implies

V (∆x̄) < 0. (12)

Let HP , VP be the eigenspaces of P associated to the p

negative eigenvalues of P , and n−p positive eigenvalues of

P , respectively. Let Π : Rn → HP be the projection onto

HP along VP . We claim that Π restricted to Ω is one-to-

one. In fact, assume by contradiction that for x̄1, x̄2 ∈ Ω(x),
x̄1 6= x̄2 implies Π(∆x̄) = 0, it follows that ∆x̄ ∈ VP

and therefore V (∆x̄) > 0 which contradicts (12). Hence, Π
restricted to Ω(x) is one-to-one.

Now, for each constant input v, consider the equivalent

representation of the system (8) based on the differential

inclusion

ẋ ∈ Fv(x) . (13)

Using the results above, if y ∈ ΠΩ(x) then there exists a

unique initial condition z(0) ∈ Ω(x) such that y = Πz(0)
and the flow Πz(t) in HP is generated by the vector field

Gv(y) = ΠFv(Π
−1y), y ∈ Ω(x) (14)

which is p-dimensional.

Theorem 5 shows that the asymptotic behavior of a strict

p-dominant system is strongly constrained for small values

of p.

Corollary 6: Let the assumptions of Theorem 5 hold. In

addition, assume that solutions of (8) are unique. Then all

solutions asymptotically converge to

1) a unique equilibrium point, if p = 0.

2) an equilibrium point, if p = 1.

3) an equilibrium point, a set of equilibrium points and

connecting arcs, or a limit cycle, if p = 2.

Under uniqueness of solutions, distinct trajectories cannot

intersect. For p = 1, the asymptotic dynamics are one-

dimensional, forcing bounded trajectories to converge to

some fixed point. Uniqueness of solutions is also sufficient

for guaranteeing the validity of the Poincaré-Bendixson

Theorem, see e.g., [23, Theorem 5.3]. Hence, under the

assumption of uniqueness of solutions, a 2-dominant system

with a compact limit set that contains no equilibrium point

has a closed orbit.



B. Incremental p-dissipativity

Dissipativity theory is an interconnection theory for sta-

bility analysis. In the same way, p-dissipativity is an inter-

connection theory for dominance analysis [2], [6]. It mimics

standard dissipativity theory in the differential/incremental

setting but relies on quadratic storage functions that have a

prescribed inertia.

Definition 7: A nonsmooth system (8) is p-dissipative

with rate γ ≥ 0 and incremental supply w : Rm ×R
m → R

w(∆u,∆y) :=

[
∆y

∆u

]⊤ [
Q L⊤

L R

] [
∆y

∆u

]

(15)

if there exists a matrix P = P⊤ with inertia {p, 0, n − p}
and ε ≥ 0 such that

[
∆ẋ

∆x

] [
0 P

P 2γP + εI

] [
∆ẋ

∆x

]

≤ w(∆y,∆u) (16)

for any pair of trajectories. Strict p-dissipativity holds for

ε > 0.

0-dissipativity coincides with the classical concept of

incremental dissipativity. p-dissipativity allows for an inter-

connection theory for non-smooth systems, as clarified by the

next theorem. The simplest example is given by the closed

loop in Figure 1.

Theorem 8: Let Σ1 and Σ2 be (strict) p1 and p2 dissipa-

tive respectively, both with rate γ ≥ 0 and supplies

wi(∆ui,∆yi) =

[
∆yi

∆ui

]⊤ [
Qi Li

L⊤
i Ri

] [
∆yi

∆ui

]

, i = 1, 2.

The negative feedback interconnection

u1 = −y2 + v1, u2 = y1 + v2

of Σ1 and Σ2 is (strict) (p1 + p2)-dissipative with respect to

the input v := [v1, v2]⊤ and the output y := [y1, y2]⊤, with

incremental supply given by

[
∆y

∆v

]⊤







Q1 +R2 −L1 + L⊤
2 L1 R2

−L⊤
1 + L2 Q2 +R1 −R1 L2

L⊤
1 −R⊤

1 R1 0
R2 L⊤

2 0 R2







[
∆y

∆v

]

.

and rate γ ≥ 0. In addition, if
[
Q1 +R2 −L1 + L⊤

2

−L⊤
1 + L2 Q2 +R1

]

≤ 0

then the interconnection is (strictly) (p1 + p2)-dominant.

Proof: The proof follows by standard arguments of

dissipativity theory. See also [1].

Classical dissipativity theory provides a tool to analyze

stable systems, that is, 0-dominant systems, as intercon-

nection of dissipative open systems, that is, 0-dissipative

systems. Theorem 8 generalizes this conclusion: 1-dominant

systems can be analyzed as interconnections of 0-dissipative

systems with a 1-dissipative system; 2-dominant systems

can be analyzed as interconnections of 0-dissipative systems

with a 2-dissipative system, or as interconnections of two

1-dissipative systems.

C. p-Passivity of linear complementarity systems

As in the classical theory, p-passivity is p-dissipativity for

the particular supply rate

w(∆u,∆y) :=

[
∆y

∆u

]⊤ [
0 I

I 0

] [
∆y

∆u

]

(17)

We have seen in Section II that the linear complementarity

relation R⊥ is 0-passive (since 0-passivity and incremen-

tal passivity coincide). Also the static nonlinearities Ri in

Section II-C are 0-passive. Thus, from Theorem 8, the non-

smooth system (8) is the negative feedback loop of a 0-

passive static nonlinearity with a linear system, whose degree

of p-passivity determines the degree of passivity of the closed

loop. The degree of passivity of the linear part restricts the

asymptotic behavior of the system.

We observe that for linear systems of the form ẋ = Ax+
Bu, y = Cx, the inequality (16) with (17) reduces to the

simple feasibility test

ATP + PA+ 2γP ≤ −εI PB = CT

for some matrix P = PT with inertia {p, 0, n − p};

a numerically tractable condition. Also, p-passivity has a

frequency domain characterization based on the rate-shifted

transfer function G(s− γ) = C(sI − (A+ γI))
−1

B, [6]:

Proposition 9: A linear system is p-passive if and only if

the following two conditions hold,

1) ℜ{G(jω − γ)} > 0, for all, ω ∈ R ∪ {+∞}.

2) G(s − γ) has p poles on the right-hand side of the

complex plane.

Frequency domain conditions prove useful in capturing the

limits of the theory and for the selection of the systems

parameters, as shown in the next section.

IV. SWITCHING AND OSCILLATING LCS CIRCUITS

A. The operational amplifier is 0-passive

A model of the operational amplifier is shown in Figure

3: a first order model [24], with additional voltage saturation

limits, implemented via ideal diodes, to take into account

the physical limitations of any op-amp device. Note that the

right-most element ×1 in the model denotes a buffer, which

decouples the output current from the internal circuit. We

make the usual assumption of infinite input impedance Zin =
+∞ and 0 output impedance Zout = 0.

The model in Figure 3 is described by the linear comple-

mentarity system

ẋa = −
1

RaCa

xa +
α

Ca

VE −
1

Ca

(ID1
(t)− ID2

) (18a)

V0 = xa (18b)

0 ≤ −V0 + E1 ⊥ ID1
≥ 0, (18c)

0 ≤ V0 + E2 ⊥ ID2
≥ 0. (18d)

where we assume that the voltage sources E1 and −E2 are

constant and Ei > 0, i = 1, 2. The model is derived via

Kirchhoff’s laws together with the complementarity condi-

tions for the diodes [21]. xa denotes the voltage across the

capacitor Ca. The input is set to VE and the output is V0.



Fig. 3. A nonsmooth model of an operational amplifier

For completeness, we write (18) in the standard lin-

ear complementarity form (1) by taking VE = V1 − V2,

u = [ID1
, ID2

, E1, E2]
⊤, v = [−αV1,−αV2, 0, 0]

⊤, A =
− 1

RaCa

, B = 1
Ca

[−1, 1, 0, 0],

C =







−1
1
0
0






, and D =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






.

A representation of (18) is the negative feedback inter-

connection of a strictly 0-passive system with a 0-passive

relation R defined by (18b),(18c), and (18d), linking voltage

V0 and the difference of diode currents IDD = ID1
− ID2

.

The relations 0 ≤ −V0(t) + E1 and 0 ≤ V0(t) + E2

imply −E2 ≤ V0(t) ≤ E1. Thus, the output of the op-amp

V0(t) = xa(t) always belongs to the interval [−E2, E1]. For

V0(t) = E1, (18c) and (18d) imply that ID1
(t) ≥ 0 and

ID2
(t) = 0, respectively, that is, IDD(t) ≥ 0. Similarly,

V0(t) = −E2 implies IDD(t) ≤ 0 and V0(t) ∈ (−E2, E1)
implies IDD(t) = 0. Hence, R corresponds to the 0-passive

relation represented in Figure 2.ii). Its associated multivalued

function ϕR maps the voltage V0 into

IDD = ϕR(V0) ∈







(−∞, 0], V0(t) = −E2

{0}, −E2 < V0(t) < E1

[0,+∞), V0(t) = E1 .

The operational amplifier model (18) is thus given by the

feedback loop in Figure 4, combining the 0-passive linear

system Σa with matrices A = − 1
RaCa

, B = 1
Ca

, and C = 1,

with the 0-passive nonlinearity ϕR. The transfer function of

Σa reads

G(s) =
1
Ca

s+ 1
RaCa

. (19)

and Proposition 9 guarantees strict 0-passivity with rate γ ∈
[0, 1

RaCa

). By Theorem 8, the op-amp is thus a strictly 0-

passive device from VE to V0 with rate γ ∈ [0, 1
RaCa

).

B. Positive feedback amplifier: multistable Schmitt trigger

The positive feedback interconnection of the op-amp with

an additional passive network leads to 1-passive circuits. For

Fig. 4. Block diagram of the operational amplifier (18)

instance, the Schmitt trigger circuit represented in Figure 5

contains an op-amp, whose model is given by (18), and a

linear network Σc represented by

Σc :

{

ẋ1 = − R1+R2

R1R2C1
x1 +

1
R2C1

ν1

y1(t) = −x1 ,
(20)

where x1 is the voltage across the capacitor C1.

Fig. 5. Schmitt Trigger circuit formed as the positive feedback intercon-
nection of the circuit in Figure 3 with a RC network

Their interconnection is characterized by the positive

feedback identity

VE = x1, ν1 = V0 . (21)

Positive feedback loops of two 0-passive systems are not

0-passive. But Σc is also strictly 1-passive from the input ν1
to the output y1 with rate γ ∈ ( R1+R2

R1R2C1

,+∞), which allows

to rewrite (21) as negative feedback

VE = −y1, ν1 = V0 . (22)

Indeed, the positive feedback in (21) is equivalent to the neg-

ative feedback between a strictly 0-passive system, the op-

amp, and a strictly 1-passive system, Σc. Thus, by selecting

the circuit parameters to satisfy

R1 +R2

R1R2C1
<

1

RaCa

, (23)

Theorem 8 guarantees that the Schmitt trigger is strictly 1-

passive with rate γ ∈ ( R1+R2

R1R2C1
, 1
RaCa

). The closed loop is

thus strictly 1-dominant.

An interpretation of (23) is that the linear circuit Σc must

have a slower dynamics than the op-amp dynamics, to deter-

mine a dominant behavior of dimension 1. Mathematically,

(23) guarantees the existence of a common rate γ ≥ 0
for which op-amp and Σc are respectively 0-passive and 1-

passive, as required by Theorem 8.

A 1-passive circuit can be multistable. Bounded trajecto-

ries of a strictly 1-dominant system necessarily converge to

a fixed point. Boundedness of trajectories follows from the



saturation of the op-amp voltage, which essentially “opens

the loop” for large overshoots. To enforce multistability, we

look for circuit parameters that guarantee the existence of at

least one unstable equilibrium point. The condition

1

Ra

<
αR1

R1 +R2
, (24)

makes the zero-equilibrium unstable.

The parameters in Table I satisfies (23) and (24), enabling

bistability. The value of resistance Ra and capacitance Ca

have been taken from [24], to ensure good matching between

simulations and the behavior of a real op-amp component.

Figure 6 shows the trajectories of the system from two dif-

ferent initial conditions (xa(0), x1(0)) ∈ {(−2,−2), (2, 2)}.

Fig. 6. Schmitt trigger trajectories from two different initial conditions.

R1 = 1KΩ Ra = 1MΩ C1 = 100µF E1 = 12V
R2 = 1KΩ α = 0.1 Ca = 15.9nF E2 = 12V

TABLE I

PARAMETER VALUES FOR THE SIMULATION OF THE SCHMITT TRIGGER.

C. Mixed feedback amplifier: relaxation oscillator

The interconnection of the op-amp with two slow passive

networks, one with negative and one with positive feedback,

leads to 2-passive circuits. For instance, the circuit in Figure

7 is a typical architecture for the generation of relaxation

oscillations. It is derived from the Schmitt trigger through

the addition of a slow network Σd, in negative feedback,

represented by

Σd :

{

ẋ2 = − R3+R4

R3R4C2

x2 +
1

R4c2
ν2

y2 = x2,
(25)

where x2 is the voltage across the capacitor C2.

The interconnection of the op-amp and of the two net-

works Σc and Σd is given by the mixed positive/negative

feedback

VE = x1 − x2, ν1 = ν2 = V0 . (26)

which can be written as a standard negative feedback loop

using the aggregate output y = y1 + y2, for instance

VE = −y = −y1 − y2, ν1 = ν2 = V0 . (27)

Fig. 7. Relaxation Oscillator realized as the mixed positive and negative
feedback of two RC networks and an op-amp

Taking a1 = 1
R2C1

, a2 = 1
R4C2

, b1 = R1+R2

R2R1C1
and b2 =

R3+R4

R3R4C2

, the aggregate transfer function from V0 to y reads

G(s) = −
a1

s+ b1
+

a2

s+ b2
=

(a2 − a1)s+ a2b1 − a1b2

(s+ b1)(s+ b2)
.

(28)

For a2 = 0, there is no negative feedback and the system

reduces to the Schmitt trigger. For a2 6= 0, the negative

feedback loop either stabilizes the closed loop system, typi-

cally for parameter values that guarantee 0-passivity of G(s),
or induces oscillations, typically for parameter values that

guarantee 2-passivity of G(s).
For instance, G(jω − γ) has positive real part if

a2(b2 − γ)− a1(b1 − γ) > 0

a2(b1 − γ)− a1(b2 − γ) > 0

Hence, by Proposition 9, if

0<γ<min

{

b1, b2,
1

RaCa

}

,
a2

a1
>max

{
b1 − γ

b2 − γ
,
b2 − γ

b1 − γ

}

then G(s) is strictly 0-passive with rate γ. The overall closed

loop has a globally asymptotically stable fixed point. In

contrast, for

0<max{b1, b2}<γ<
1

RaCa

,
a2

a1
<min

{
b1 − γ

b2 − γ
,
b2 − γ

b1 − γ

}

G(s) is strictly 2-passive with rate γ. Thus, by Theorem 8,

the overall closed-loop is 2-dominant with rate γ. Indeed,

γ divides the fast op-amp dynamics from the dominant two

dimensional slow dynamics of the linear networks.

We conclude the section with a numerical simulation. The

parameters of Table I together with R3 = 3.3KΩ, R4 =
1KΩ and C2 = 200µF satisfy the conditions above, thus

guarantee strict 2-dominance the closed loop with rate γ =
25. The fixed point in 0 is unstable but all trajectories remain

bounded (the constraint xa ∈ [−E2, E1] implies that x1 and

x2 remain bounded), which enforces oscillations, as shown

in Figure 8.

V. CONCLUSIONS

We extended the concept of dominance to the analysis of

nonsmooth linear complementarity systems. The extension

mimics the smooth case when uniqueness of solutions is



Fig. 8. Trajectories of the relaxation oscillator in Figure 7. xa(·) –
thin/black line; x1(·) – thick/gray line; x2(·) – dashed line.

assumed. The approach is based on the interconnection

theory of dissipativity. It opens the way to the analysis of

switching or oscillatory circuits with no restriction on the

dimension of the state-space. The potential of the approach

was illustrated with a detailed analysis of well-known circuits

based on op-amps, predicting multistable and oscillatory

behaviors, while providing margins on the circuit parameters

to enable such behaviors.
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