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Abstract

The work undertaken in this research aims to develop a mathematical model which
can replicate the behaviour of a racing driver controlling a vehicle at its handling limit.
Most of the models proposed in the literature assume a perfect driver. A formulation
taking human limitations into account would serve as a design and simulation tool for
the automotive sector.

A nonlinear vehicle model with five degrees of freedom under the action of external
disturbances controlled by a Linear Quadratic Regulator (LQR) is first proposed to
assess the validity of state variances as stability metrics. Comparison to existing stability
and controllability criteria indicates that this novel metric can provide meaningful
insights into vehicle performance. The LQR however, fails to stabilise the vehicle as
tyres saturate.

The formulation is extended to improve its robustness. Full nonlinear optimisation
with direct transcription is used to derive a controller that can stabilise a vehicle at the
handling limit under the action of disturbances. The careful choice of discretisation
method and track description allow for reduced computing times.

The performance of the controller is assessed using two vehicle configurations,
Understeered and Oversteered, in scenarios characterised by increasing levels of non-
linearity and geometrical complexity. All tests confirm that vehicles can be stabilised
at the handling limit. Parameter studies are also carried out to reveal key aspects of
the driving strategy.

The driver model is validated against Driver In The Loop simulations for simple
and complex manoeuvres. The analysis of experimental data led to the proposal of a
novel driving strategy. Driver randomness is modelled as an external disturbance in
the driver Neuromuscular System. The statistics of states and controls are found to
be in good agreement. The prediction capabilities of the controller can be considered
satisfactory.
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Chapter 1

Introduction and literature review

Simulations are becoming more and more popular in the racing establishment as
they provide a quick and inexpensive alternative to the now banned on-track testing.
Formula One teams resort to simulations in the vehicle design stage, to train drivers
and to find the optimal set of parameters for each racetrack [1].

The most common approach is based on quasi-steady-state assumptions, which
approximates laps to a series of manoeuvres where the vehicle has no unbalanced
forces or moments acting on it. This method allows complex vehicle models to be
incorporated but does not consider the human driver and their role in feedback. A
solution to this problem has been found by resorting to driving simulators. These
machines replicate real driving conditions in the virtual environment; they can be
thought as a glorified version of a racing video-game, where the response of the virtual
vehicle is extremely realistic, the driver has all commands that are available in reality
and motion cueing is provided by hydraulic or electric actuators. However, driving
simulators, besides being very expensive to build and to maintain, do not guarantee
repeatability as a human is present in the loop [2].

There is perhaps too much reliance on perfect driving models, such as [3–5], these not
taking human limitations into account. Lately, an effort to include such limitations has
been made [2, 6]; however, random factors that normally arise in racing circumstances
have been barely taken into account. This work focuses on devising a driver model that
can handle a variety of random factors at the handling limit. This implies that not
only random external factors – such as road profile and wind speed – are considered,
but also the inevitably imperfect cognitive process involved in the driving tasks. This
translates to designing a robust nonlinear controller which can deal with arbitrary
disturbances.
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The aim of this research is to contribute to the development of a virtual driver
model which is able to replicate with high fidelity the behaviour of a real human
driver. Such a model could be used to optimise vehicle parameters without resorting
to a driving simulator and in other areas of automotive engineering, such as collision
avoidance.

Modelling a racing driver is a task that brings together various areas of automotive
engineering. One of these is nonlinear vehicle dynamics, as the vehicle obviously
plays a very important role in the driving task. Since racing involves very aggressive
manoeuvres, modelling nonlinearities is very important; particular attention is given to
modelling tyres, which are ultimately responsible for the forces acting on the vehicle.
Stability metrics are also taken into consideration as they are important performance
parameters. Research into modelling the perfect driver is also very useful as it provides
the base for building more complex models. Lateral, longitudinal and combined control
are considered. In order to be able to improve on existing driver models, advances
in nonlinear robust control have to be considered, in particular tube-based nonlinear
control. The literature review focuses on all these areas of knowledge to describe the
state of art and highlight areas for further research.

1.1 Nonlinear vehicle dynamics

Tyres are the most significant source of nonlinearity in relation to vehicle dynamics [7].
Tyres have to bear the vertical load of the vehicle, bear the longitudinal accelerations

governing the longitudinal dynamics and produce the lateral forces that allow the
vehicle to steer [8]. They are therefore the most critical aspect of any vehicle model
because they provide the forces which are responsible for the handling behaviour. Some
tyre models will be reviewed and their benefits and drawbacks assessed.

The review will continue by looking at how these tyre models can be integrated into
full vehicle models and how the modelling of the components of the vehicle influences
the degree of non-linearity and the complexity of the final model. Finally, an overview
of the work on stability and controllability metrics is outlined.

1.1.1 Tyre models

Tyres have to bear vertical load, absorb road deformations, and produce lateral and
longitudinal forces for the vehicle to turn and accelerate. Tyre models can be steady
state models, in which time is neglected, or transient models, which take time into



1.1 Nonlinear vehicle dynamics 3

account. The latter are much more complex and intractable than the former, so they
are only used if they are relevant to the problem studied.

The main characteristics of tyres’ dynamic behaviour is captured by the tyre
relaxation length; this measure has various definitions but the most intuitive is given by
Cossalter et al. in [9]. It is defined as the distance a point on the tyre in contact with
the road has to roll for the force to build up to 63% of its nominal value. Typical values
for relaxation lengths range from 0.12 m to 0.45 m [9]. Another important parameter
related to the relaxation length is the relaxation time constant, which determines the
first order time lag of the tyre. It is defined in [10] as the relaxation length divided by
the forward velocity.

For racing vehicles, whose tyres are characterised by short relaxation lengths, time
constants are shorter than 5 ms for the majority of race conditions; given the overall
transient dynamics of the vehicle, the relaxation time constant for a racing car is
negligible. It is therefore sensible to consider steady state tyre models.

Pacejka and Sharp, [11], conducted a very comprehensive review of steady state
tyre models, identifying three main approaches: physical, empirical and semi-empirical.
While physical models are based on the mathematical representation of the tyres
behaviour, empirical models use experimental observations to find tyre forces. Semi-
empirical methods are a hybrid approach which assumes the tyre forces to be modelled
by a certain function and try to fit the curves using experimental data. Physical models
are reviewed first, followed by empirical and semi-empirical.

Wong [12] outlines a mathematical model which involves modelling the tread of the
tyre as a stretched string which is restrained by lateral springs. The lateral force and
the self-aligning moment are found assuming a linear lateral displacement of the string.
The model is extended to include traction and braking. However, it is assumed that
the combination of vertical load and lateral slip angle remains within the linear region
and it does not consider high-slips which would lead to sliding. One of the best known
physical models is Fiala model [13], also used in commercial modelling software. The
tyre is modelled as two concentric rings, the inner rigid and the outer elastic, connected
by springs. The contact area is approximated by a quadratic polynomial which allows
the modelling of the non-linear tyre behaviour. Sakai et al [14] improves the Fiala
model by adding additional terms to the self-aligning moment to give a better match
between theoretical and experimental results. An important contribution to physical
models has been given by Sharp who developed a computer model [15] to numerically
calculate tyre forces by approximating the tyre as spokes attached to a rim.
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All the physical models reviewed show common limitations: number of simplifica-
tions necessary to solve the system; approximation on the pressure distribution; inability
to capture strong nonlinarities; computational demand and lack of a closed-form solu-
tion. The use of empirical methods can circumvent most of the aforementioned issues;
these approaches are based on performing experiments and subsequently analysing the
results. Data is either organised in tables, shown in graphs or used to fit equations.
The latter, despite being more challenging, is the preferred method as it offers a lot of
flexibility. The tyre response has been approximated using exponential, arctangent,
polynomial, hyperbolic tangent curves and Fourier series. None of the aforementioned
methods provide a satisfactory result apart from polynomials and series; however, these
suffer from waviness [16]. This problem can be solved by using splines and lower order
polynomials but the method is impractical.

Semi-empirical methods can be used to circumvent these limitations. Instead of
simply fitting data to standard functions, experimental observations are used to generate
functions that capture the tyre behaviour and experimental data is subsequently used
to find the best fit. The most widely used formula is the Magic formula, initially
proposed in [17], later refined in [16] and [7]. The formula is obtained by using functions
that are able to capture the behaviour of the tyres observed in experiments. It was
found that the requirements are met by using a function which includes sinusoidal
and arctangent functions. This method has an excellent agreement with experiments,
it is not computationally intensive and, most importantly, it has an expression in
closed form, which is very important as it allows further manipulation. Combined slip
characteristics can also be modelled by normalising the slip by factors proportional to
the front and rear vertical loads.

1.1.2 Vehicle models

A vehicle model is a mathematical entity that has to capture the physical features
of a real vehicle. For the purpose of this work, vehicle vibrations are not considered.
Various vehicle models are analysed to assess their benefits and drawbacks.

The bicycle model is usually the first vehicle model to be considered because of its
simplicity and the insights it gives into the dynamics of the vehicle. Pacejka [7] gives an
excellent overview of this model. It is comprised of two wheels connected by a rigid rod
representing the body of the vehicle; track width is therefore neglected. Longitudinal
forces are not considered so the forward velocity is assumed to be constant; in this
respect, the driving force required to keep the vehicle at this speed is assumed to be
small with respect to the lateral forces. The steer and slip angles are restricted to
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relatively small values; assuming linear tyres, the equations of motion are easily derived
and can be expressed and solved in closed form, which is very convenient for vehicle
handling analysis.

The bicycle model can also be coupled with nonlinear tyres, giving very good
insights into the behaviour of the vehicle in limit conditions. A closed form solution
cannot be obtained because of the nonlinear tyre forces. Various approaches have been
developed to circumvent this problem. Cole et al [6] linearise the equations of motion
at each time step about the current slip angle to design a controller to handle the
vehicle in limit conditions. Mastinu [18] and Della Rossa [19] analysed a two degrees
of freedom bicycle model using bifurcation analysis, hence phase planes, to predict the
behaviour for ten different types of vehicles. They showed that the dynamic behaviour
varies significantly and that both simple and complex bifurcations arise. The bicycle
model with linear and nonlinear tyres is also used to derive stability criteria.

Longitudinal dynamics are very important as they allow throttle control. The
simplest model is the trolley model, used for instance in [1]. It has three degrees of
freedom, namely the front and rear wheel angular speed and the vehicle forward velocity.
More complex models have been proposed in the context of nonlinear longitudinal
control, for instance in [20]. A very comprehensive longitudinal vehicle model was
employed by Majdoub et al. [21]. They take into account rolling resistance, the effect
of temperature and the geometry of the vehicle.

Aerodynamic effects can easily be incorporated by adding or subtracting drag and
lift forces. The equations of the longitudinal model can be used in conjunction with
the bicycle model to have a simple vehicle model that allows the design of steering and
throttle control. Longitudinal and lateral coupling of the tyres is obtained using the
similarity method described in [7]. Timings chose this configuration in [1].

Even though this model captures well a number of features, it does not consider
neither roll nor weight transfer. Furthermore, drifting manoeuvres cannot be modelled
very accurately because the effect of the differential is neglected.

A four-wheels model can then be used to overcome these limitations; Velenis et al.
[22] used this model to study a controller that stabilises steady-state drifting. They
modelled the vehicle using four wheels, longitudinal and lateral weight transfer; they
included a limited slip differential, which limits the left and right slip difference to
the extent that the left and right drive torques are the same and they correspond
to the driver’s throttle input. The increased complexity and computational power
are justified by a very effective resulting controller. Furthermore, the model can be
complemented with various features to improve the quality of the simulation. Kelly
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used a full dynamic car model in [23]. The 4 wheels model coupled with nonlinear tyres
was complemented with several features of actual vehicles. A simple aerodynamics
model was added to account for drag and lift. The engine was modelled using linear
interpolation on existing Max/Min curves and the gearbox was modelled using an atan
function. A differential in open and locked configurations was also considered.

1.1.3 Stability

Pacejka [7] examines the stability of steady state motion of a car in a straight line and
on a curved path using the bicycle model with nonlinear tyres and handling diagrams.
These are very powerful graphical methods for predicting the behaviour of the nonlinear
bicycle model system. Plotting the ratio of the side force to the vertical load against
the slip angle gives the normalised axles characteristics, which, subtracted horizontally
from each other produce the handling curve.

The diagram is completed by including the graph that shows the relationship
between lateral acceleration (in g units) and the relative path curvature for a series of
speeds. This information can be used to find the hand wheel angle necessary to negotiate
a turn of a given radius at a given forward velocity by finding the difference between
a given point and the plot; furthermore, stability boundaries can be obtained.The
analysis is however limited to steady state manoeuvres.

The stability metrics presented in Dixon [24] and Milliken and Milliken [25], are
derived using the linearised bicycle model under steady state conditions. The theory
behind these as well as their function is analytical and well understood. Milliken and
Milliken [25] also present a quasi-steady state method for describing the behaviour
of the car close to the tyre slip limit, called Force Moment Method. The authors
graphically derive stability conditions and handling characteristics at the limit of
adhesion of the tyres. One such metric is dCN/dAy, where CN is the normalised
yaw moment and Ay the lateral acceleration; it describes the understeer or oversteer
behaviour of the car depending on the sign of the derivative. Ono [26] and Nguyen [27]
describe stability using the phase plane method, where trajectories and states of the
car are plotted for different sets of initial conditions and inputs. These plots are used
to show stable or unstable equilibria and regions of operation as well as tracking the
transient response of the car at a constant speed and steering input. Ono et al. [26]
show that the phase plots bifurcate with changing operating conditions and inputs.

Skoog et al. [28] investigates the ’Frozen Time Eigenvalues’ for time varying systems
of the form ẋ = A(t)x. Desoer [29] followed a previous derivation done by Rosenbrock
[30] to show that for slowly varying systems, if sup ||Ȧ(t)|| , where sup indicates the



1.1 Nonlinear vehicle dynamics 7

supremum, is sufficiently small, the time varying system is asymptotically stable if
the ’Frozen System’ is stable; he also obtained explicit bounds. Skoog et al. [28] have
additionally shown that if the eigenvalues of such slowly varying systems are away
from the Imaginary axis, then the ’frozen time’ system accurately reflects the stability
of the system. If either condition is violated, however, it is shown that the relationship
between the ’Frozen Time’ and continuous systems may not follow.

Evangelou [31] used an eigenvalue analysis of the linearised, time varying state
space model of a motorcycle to investigate its stability. Root loci of the poles of the
motorcycle system were plotted as they varied with time, for different manoeuvres.
Evangelou’s conclusions drawn from his linearised frozen-time model were verified
against nonlinear simulations to find that the frozen-time models could predict the
behaviour of the motorbike model quite accurately. However, they stressed, that this
method should be used with utmost care when inferring stability, especially when the
eigenvalues cross the imaginary axis.

Limebeer et al. [32] studied frozen-time eigenvalues in the context of motion cueing.
They focus on high-performance vehicle simulators where the handling characteristics
are characterised by large accelerations. The stability and response characteristics for
coupled longitudinal and lateral dynamics are characterised using frozen-time eigenvalue
analysis. Motion cues are enhanced with lateral acceleration and yaw cueing filters
based on the frozen-time eigenvalues analysis. These prove to be effective as they are
tested by a professional race driver in a simulator receiving positive feedback.

Johansen et al. [33] argued that it is not sensible to evaluate the stability of a
linearised system at an arbitrary, non-equilibrium point because it is by definition a
transient state. However, Meijaard [34] considered the stability of systems in transient
motion and proposed the concept of ’Linear Practical Stability’ relating to perturbation
growth. A metric called the Practical Stability Index was introduced and was found
useful in analysing the dynamic behaviour of linearised systems.

Research on vehicle stability has been conducted in the context of Electronic
Stability Control systems. They work by detecting when the car is about to become
unstable or uncontrollable and they intervene using individual wheel braking action
[35] or active steering [36] to bring the vehicle back to a stable operating condition;
for the purpose of this project, the focus is on stability evaluation. It was found that
most stability systems work by comparing measured car state data to reference states
calculated in real time by a linear car model receiving the same driving inputs as the
real car. Whenever the difference between the measured and reference states exceeded
some threshold limit, the stability system intervened to stabilise the vehicle. This
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threshold limit was calculated in different ways and details of such methods can be
found in Gerdes et al. [37] and Youn et al. [36]. Their limitation is that real data from
the car is needed to gauge how its handling is degraded in limit handling conditions.

The Aircraft Flying Qualities literature separates the stability of aircraft into static
and dynamic stability. Static stability describes the tendency of the response of aircrafts
to perturbations. Stability derivatives, relating moments about different axes of the
aircraft to rotation about these axes, are used as metrics for static stability [38], [39].

The use of stability and controllability derivatives originally employed in the aircraft
industry is advocated in [25]. If the total lateral force and yaw moment applied to the
vehicle by the tyres are denoted by Ft and Mt then in the case of the linear operating
regime they can be expressed in terms of the vehicle sideslip angle β, yaw rate ψ̇, front
road wheel steer angle δ and six partial derivatives:

Ft =

(
∂Ft

∂β

)
β +

(
∂Ft

∂ψ̇

)
ψ̇ +

(
∂Ft

∂δ

)
δ (1.1)

Mt =

(
∂Mt

∂β

)
β +

(
∂Mt

∂ψ̇

)
ψ̇ +

(
∂Mt

∂δ

)
δ (1.2)

Numerical values of the six partial derivatives can give insight into the handling
behaviour of the vehicle.

A handling diagram is constructed in [7] to depict some aspects of the handling
behaviour of a vehicle. Normalized characteristics of lateral force against slip angle for
front and rear axles are used to construct the diagram. Equilibrium points and their
stability can be determined for combinations of vehicle speed and steering angle. The
portrait depicts the trajectories of two states of the vehicle, for example yaw rate and
lateral velocity. Equilibrium points and their stability can be determined by observing
convergence or divergence of the trajectories. A limitation of the phase portrait is that
only a limited range of operating conditions can be depicted on an individual portrait.

Sideris [40] conducted an in-depth review of the methods outlined in the previous
paragraphs highlighting their benefits and drawbacks. They went on to extend the
practical stability index (PSI) approach by proposing the use of state variances as
stability metrics, considering continuous disturbances instead of single perturbations.
They used the covariance equation to calculate state variances of a disturbed vehicle.
The algorithm was tested on various types of turns; however, it was found that the
variances of lateral path and heading deviations were unbounded. Haslam [41], following
Sideris’ work, found that variances are bounded only if there is a compensatory controller
acting on the disturbances. They implemented an ancillary LQR controller and showed
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that state variances give insightful results for a 90◦ degree corner. The algorithm
is validated against an iterative scheme. A parameter study was also conducted to
demonstrate the potential of the method developed.

1.2 Modelling the perfect driver

The literature reviews done by Timings in [1] and Edelmann [42] are very relevant to
this work; a similar structure is therefore followed. Work on control of vehicle dynamics
is also reviewed as it is closely related to modelling the perfect driver.

1.2.1 Driver’s characteristics

Driver models are mathematical representations of the control actions of a real driver;
they are based on observing actual driving techniques and analysing the biological
processes that occur when driving to determine the characteristics of the ideal driver.
This section focuses on the processes involved in driving: gathering external information,
elaborating on it, generating a command for the neuromuscular system and actuating
it.

Research into the human visionary system has shown the driver relies mainly on
vision for gathering information to determine the optimal path [43] and that the eye
can elaborate positional and velocity information independently from a scene [44].

The first driver model based on preview information was developed by Sheridan
[45, 46]; the path problem is expressed as a local optimal preview problem whereby the
driver seeks to minimise the tracking error over a finite horizon. MacAdam [3] devised
a driver model that minimises the lateral path error by considering the sum of the
square difference between each preview point and the position of the vehicle over a
finite horizon.

Another important characteristic of the driver is its ability to adapt to a varying
plant, as it was shown in [47, 48]. Starting from those observations, McRuer et al.
developed the well known cross-over model in [49, 50] which describes how humans
adapt to a regulation task. It takes the form of a compensatory describing function
that allows good tracking demand at low frequencies and less sensitivity at higher
frequencies.

Research has also focussed on the neurological processes involved in the driving
tasks; it has been proposed – for instance in [3] – that the brain creates a set of
internal models which are selected according to sensory information to generate driving
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commands. Various methods have been proposed to generate these internal models.
Neural networks have been used in [4]; the internal models are described using the
architecture associated with this type of control. Cheng and Fujioka use fuzzy logic to
describe a hierarchical driver model comprised of four layers: decision making, task
planning, manoeuvre and action [5, 51].

1.2.2 Lateral, longitudinal and combined control

A full driver model is not common because most studies focus on specific driver
behaviours which may only require a specific type of control. The focus is generally
on lateral control, longitudinal control or combined control. These will be reviewed
separately.

The majority of driver models focus on the steering action needed to follow a
specified trajectory, hence on lateral control only. Making use of concepts that emerged
during the study of active vehicle suspension [52, 53], Sharp and Valtetsiotis [54]
derived a preview steering controller by projecting an imaginary optical lever ahead
of the vehicle and comparing lateral position points along this lever to the ideal path.
These studies offer a number of interesting insights: firstly, preview control shows a
diminishing return feature whereby preview information becomes decreasingly useful
beyond a particular distance. Secondly, the preview gains reflect the lateral behaviour
of the vehicle.

Ungoren and Peng [55] designed a Model Predictive Controller (MPC) controller
to capture the ability of the driver to adapt to the changing dynamics of the vehicle.
They assumed that the driver learns to invert the vehicle dynamics and to assess the
mismatch between the actual and predicted response. The controller, however, rests on
assumptions that do not fully reflect their ideas: they ignore driver speed control and
restrict themselves to tests of short durations whereby there is no adaptation, which
results in the driver changing the input only twice over the prediction horizon.

Cole et al. [56] compared Linear Quadratic (LQ) methods and predictive control
theory designing path following controllers based on each method. The MPC controller
was derived by solving an unconstrained predictive control problem following Ma-
ciejowski [57]. They highlighted the similarities between the two controllers, showing
that for long previews, the model predictive controller and the linear regulator give an
identical controllers.

In [54, 58], Keen and Cole designed a controller using multiple internal models,
whereby the driver is assumed to have a set of internal models which are recalled
following sensory information to determine the driving input. The number and scope
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of internal models determines the level of skill of the driver. The MPC controller was
derived by linearising the equations of motion about the predicted trajectory.

In the context of an autonomous vehicle, Falcone et al. [59] developed various
controllers able to track vehicles on a slippery road. The path is assumed to be known;
the first attempt at developing a controller was posed as a nonlinear MPC (NMPC)
control problem; the computational burden prevented the controller from working for
reasonable vehicle speeds in real time. The second attempt was a Linear Time Varying
(LTV) controller, imposing constraints on the tyre curve to stabilise the vehicle at
high speeds. Real-time implementation was made possible by reducing the number of
internal models.

The development of driver safety support systems has encouraged research in vehicle
longitudinal control. Sharp [60, 61] worked on speed tracking of road vehicles during
acceleration and braking. They used a linear small-perturbation model whereby the
equilibrium points were calculated using simulations, then deriving state-feedback and
preview gains calculated. They found that, since the dynamics are simpler than in
the lateral case, almost perfect tracking could be achieved. However, the use of small
perturbations limited the tracking tests to profiles with small deviation from a nominal
speed.

A similar approach was used by Fritz [62]. They improved the controller designed
by Sharp by using a complex nonlinear longitudinal vehicle model and minimising
an objective function together with the nonlinear vehicle model in closed-loop. The
results were validated experimentally, showing that the controller can be used over a
satisfactory range of operating conditions.

Even though considering lateral and longitudinal controls separately for a driving
task is convenient, it is only with combined control models that a fuller understanding
of driving can be achieved.

MacAdam [43, 63], used speed control to allow lateral steering control. They
developed a driver model that includes internal vehicle dynamics models, prediction,
steering/speed control and basic sensory and neuromuscular limitations. The infor-
mation about the preview scene is used offline to generate a road centreline to be
tracked. The novel aspect of the model is the ability of the driver to change the preview
distances. A combined driver-vehicle system is obtained using simulations by coupling
the driver model to a vehicle model developed by General Motors.

Falcone et al. [64, 65] detail a model that includes future vehicle speeds and
positions information as well as lateral path and heading angle demands. Two active
steering and torque controllers are developed, one based on NMPC and the other
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based on LTV MPC with fixed model preview. Finally, the LTV MPC is simplified by
substituting the internal vehicle model with a reduced order model linearised about
the current operating conditions. Brake or throttle interventions are neglected for the
linearisation.

The algorithms were tested by simulating a double lane change manoeuvre in icy
conditions. The objective of the vehicle was to maintain a constant velocity throughout
the manoeuvre, hence reducing the tractive force to a minimum.

The NMPC proves to be a good controller at a very high computational cost; the
LTV MPC’s performances are comparable to the NMPC at reduced computational
cost. The reduced order LTV MPC controller shows good tracking abilities; however,
the vehicle is only stable at low speeds. The major limitation in Falcone’s work is the
fact that the target trajectory is not generated.

Chang and Gordon [66, 67] relax this assumption in their work on Collision Avoid-
ance Systems (CAS). They address the problem of path following through an infinite
state representation of the desired path in the form of a reference vector field; however,
this method proves too complex and impractical.

A simpler kinematic policy (KP) is proposed by Gordon and Magnuski [68]. Refer-
ence inputs are established about range and azimuth angles for a number of points that
bound the available vehicle trajectory. The controller comprises three layers: upper,
intermediate and lower. The upper layer can either be a vehicle stability control (VSC)
mode which regulates the sideslip from a stability viewpoint or an autonomous vehicle
controller which aids the driver. The intermediate layer seeks to minimise the predicted
difference between the future and the desired responses of the system; the architecture
of the controller is similar to [69, 58]. The lower layer involves a sliding mode control
and active front steering based on fast slip control. The proposed controller is coupled
to a CarSim model and simulated; the results suggest that the controller is comparable
to an MPC formulation.

1.2.3 Control of high side-slip manoeuvres

The work done on high-sideslip manoeuvres is relevant to this project because modelling
the vehicle during very nonlinear manoeuvres is one of the major challenges for high
fidelity simulations. Various approaches have been proposed in recent years, each of
which has benefits and drawbacks.

Voser et al. [70] considered various drifting equilibria and linearised the vehicle
about these points. They used a simple bicycle model and analysed the dynamics of
drifting manoeuvres assuming steady state conditions; they subsequently linearised
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the vehicle around the equilibrium and designed a simple controller whose aim is
maintaining the vehicle in steady state conditions. The benefits of this method are its
simplicity and its ability to capture the drifting behaviour. However, its scope is too
limited for any practical implementation.

Talvala [71] et al. (2011) designed a combined controller for autonomous racing.
The work is based on studies on lane keeping. The vehicle model used is again a
bicycle model with nonlinear tyres. The overarching idea relies on the minimisation
of a potential field, which is found using an energy based approach. Both lateral and
longitudinal dynamics are considered but they are not strongly coupled. The derived
controller is stable and it has been successfully tested on a real autonomous vehicle.
The main benefits of this approach are its robustness, simplicity and the ability to
model the whole tyre curve. The drawbacks are its conservativeness and the poor
performance at the tyre slip limit.

Keen and Cole [6] approached the problem of a vehicle in limit conditions by
designing a MPC which stabilises a vehicle which is linearised at its current operating
conditions. The model is an enhanced bicycle model with eight degrees of freedom
to account for roll and weight transfer. Data from a real vehicle are used to fit the
equations of motion. The front and rear tyre curves are linearised about several
operating points to obtained an array of linearised vehicle models whose denseness and
scope are meant to represent driver’s skills. A LTV MPC controller is then designed.
The benefits of this method are the accuracy in modelling the vehicle in the nonlinear
region of the tyre curve, but before saturation, and the MPC computational efficiency;
the only major drawback is the instability in the negative slope region of the tyre
curve.

Tavernini [72] considered the problem of finding the optimum manoeuvre time for
a vehicle cornering on different surfaces; the intent of the study is to compare different
driving styles and understand why rally drivers perform very aggressive manoeuvres at
very high slip angles. They used a bicycle model and formulated a constrained optimal
control problem, finding the solution using an indirect method approach. Simulations
are run for a variety of U-turns on surfaces characterised by different grip levels. Results
show that high side-slip manoeuvres are more effective on gravel while low side-slip
turns are better on high grip surfaces, which is what is observed in real racing. The
benefits of Tavernini’s approach benefits are the excellent modelling of the aggressive
behaviour and the ability to model the entire tyre curve. The drawbacks include the
lack of robustness, defined as the ability to drive the system to a stable state after a
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perturbation, the lack of a model for the neuromuscular system and the computational
burden, which prevents simulations from being run in real time.

Klomp [73] considered the optimal recovery of a vehicle from terminal under-steering.
They considered a manoeuvre whereby the vehicle enters a corner too fast and needs
to slow down. The manoeuvre is formulated as an optimal control problem which
minimises the maximum off-tracking from the reference path. Two optimal control
solutions are obtained: an analytical one for a friction-limited particle and the second
a full numerical solution for a 4 wheels vehicle model; the agreement between the two
methods is good. The benefits and drawbacks of this method are similar to those
highlighted for Tavernini.

1.2.4 Minimum time manoeuvre

Timings [1] conducted an in-depth literature review on this topic as it was central to
his PhD thesis. Since this project only makes use of Timing’s results and does not
focus on the generation of the nominal trajectory, the literature review for this section
will be brief as it only seeks to contextualise the results in [1].

Minimum time manoeuvre problems consist of finding the minimum time a given
vehicle can complete a lap in a track of given bounds. The first approaches to simulating
racing laps were based on the quasi-steady-state (QSS) method [74], which approximates
a lap as a sequence of steady state manoevures. The track is divided into several
sections where the longitudinal acceleration of the vehicle is assumed to be constant.
GG speed diagrams [75, 76] are used to determine the behaviour of the vehicle at the
handling limits. In practice, the simulation works by calculating the velocity at the
apex of each corner and extrapolating the dynamics backwards and forwards making
use of the G-G diagrams. Even though this method is robust, gives sensible results
and it is widely used in practice, the underling assumptions are inaccurate because the
transient dynamics, which play an important role in racing, are neglected.

The problem of achieving a minimum laptime can be conveniently posed as one of
optimal control. One of the first comprehensive studies was conducted by Hendrikx
et al. [77]; they used a 3 DoF vehicle model with nonlinear tyre characteristics, load
transfer, an engine torque curve and aerodynamic loads. In spite of the accuracy of the
results, the model is not useful in practice because of excessive computational time.

Casanova studied the optimisation of a transient nonlinear race-car model over a
complete lap of a circuit in [78]. The 7 DoF vehicle model features an engine map and
a combined tyre slip model based on Pacejka’s Magic Formula. The driver model was
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replaced by a nonlinear optimiser which represents the skills of a very expert driver.
The accuracy of the model resulted in a very computationally intensive algorithm.

Komatsu et al. in [79] are the first to apply time-varying linear optimal control
theory to the vehicle path optimisation problem; they use a reference LQR controller
coupled with an iterative method. It is found that the method is capable of determining
an optimal path for limit cornering at a constant vehicle forward velocity. The
computational cost is high.

Velenis and Tsiotras used different optimisation functions to analyse the driving
styles of different racing drivers. In [80–82], they focused on the problem of mini-
mum time manoeuvring for high-speed autonomous vehicles, focussing on real-time
implementation.

One of the most accurate and comprehensive documented lap-time simulator to
date is based on optimal control and was elaborated on by Kelly [23]. They consider
transient response and tyre dynamics; their method does not attempt to model the
driver but rather replaces the driver with a numerical nonlinear optimal controller
with constraints as performance limits. The objective function is set up such that
the method is able to simultaneously find the optimal racing line and driver control
inputs. Kelly was also able to study the performance and stability of a vehicle running
over smooth surfaces and simulated kerbing. In order to capture a variety of physical
effects, such as frequency response over kerbs, each vehicle component was modelled
separately and then as an assembly. These vehicle models are commonly referred to as
multibody models as they assign independent degrees of freedom to different vehicle
components. The final analysis conducted looks at the effects of a thermodynamic tyre
model, characterised by temperature dependent parameters, on vehicle performance.
However, their pursuit of robustness and accuracy has left the approach needing
considerable computational resources, with single manoeuvre execution times typically
being measured in number of GPU hours.

Gerdts et al. [83] used Nonlinear Model Predictive Control (NMPC) to generate
local optimal trajectories which are combined by suitable continuity conditions to
form paths of minimum time around a number of circuits. The vehicle model used is
a single-track model with 3 DoF, aerodynamic drag, rolling resistance and a Magic
Formula tyre model.

Perantoni et al [84] tackled the problem of computational inefficiency by using direct
collocation methods which preserve the complexity of the model at a relatively low
computational cost. The algorithm generates an optimal trajectory, driver inputs and
optimises the vehicle set-up for a given track. The authors claim that, indicatively, a
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simulation taking several hours would take 15 minutes on a standard desktop computer
using their method. These improvements are the results of various refinements of
previous models such as the use of curvilinear coordinates, model non-dimensionalisation
and scaling, the avoidance of ’stiff’ dynamics and more efficient numerical approaches.

Limebeer et al. [85] formulated an efficient optimal control problem to control
hybrid vehicles to overcome problems associated to excessively long computational
times which arise when modelling such systems. Hybrid vehicles are vehicles with
at least two energy sources and they combine two modes of propulsion. The control
problem is then more complex due to the increased complexity of the dynamics and
the extra number of constraints. While traditional numerical techniques employed in
the literature, such as direct multiple shooting, would take an unreasonable time to
converge, the paper focuses on the orthogonal collocation method, which is only now
being accepted as a sensible solution for a constrained control problems. An optimal
control problem is formulated to find the optimal lap-time of a hybrid racing vehicle
conforming with the F1 2016 regulations on energy recovery systems. The vehicle
model is a four wheel vehicle with several features such as a locking differential, brake
balance and weight transfer. The track is described using intrinsic coordinates. The
cost function aim was lap time minimisation and fuel efficiency. The problem is then
solved using a mesh refined orthogonal collocation method, which resulted in a real
time solution for the SPA circuit in Belgium on a standard Intel i7 processor.

Lot et al. [86] solved the minimum lap time optimal control problem for a go-kart
model using a similar approach. Equations of motion and the cost function Hessians
are derived symbolically. The optimisation problem is then formulated and solved
using indirect methods. The vehicle model used is a seven degrees of freedom vehicle
model that captures all the characteristics of a racing go-kart, such as frame bending
and wheel compliance. The model has been validated against actual track data. After
confirming the reliability of the model, specific go-kart dynamics, such as tyre slippage
and the role of the differential were studied.

Canerini et al. [87] studied the optimization of an innovative steering and roll
systems for a four wheel vehicle. The system is a hybrid between a four and a two
wheels vehicle: the driver operates the handlebars to steer and the throttle pedals to
control speed. The driver can also control the roll movements through two pedals. A
kinematic optimisation of all the components of the novel mechanism, i.e. handlebar,
column, pinion, rack and track-rods to the wheels is performed to minimise undesired
roll behaviour and provide appropriate outer/inner wheel steer angles.
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Jardes et al. [88] focused on the evolution of modern motorsport limited slip
differentials (LSD) which has allowed a high degree of flexibility in terms of tuning,
effectively allowing an adjustment in the torque bias generated in the most salient
phases of track manoeuvres. A particularly relevant task consists of finding the optimal
torque bias profile under different braking and accelerating conditions. Since this task is
prohibitively expensive in terms of computation time, a simple lane change manoeuvre
is considered first. Vehicle stability and agility is evaluated using well known metrics
and compared to open and closed differentials. The optimisation problem showed
that the optimal LSD profile can give a performance gain over its locked differential
counterpart where a quick direction change is required.

Velenis et al. [89] studied haptic steering support for a vehicle close to its handling
limit. The device is aimed at promoting the driver’s perception of the vehicle’s
behaviour by supplying torque cues on the steering wheel. Driving simulator and real
vehicle tests are used to evaluate the proposed support; the scenario used is a skid-pad
where drivers attempt to retain control of the vehicle in limit conditions. Both tests
showed that the device helped drivers driving closer to the target path while reducing
the cognitive load.

Similarly to Tavernini et al. [90], Velenis et al [91] investigated the minimum time
manoeuvring problem using nonlinear optimal control techniques on different road
surfaces. An optimal virtual driver is devised using nonlinear optimisation. Different
transmission layouts and terrain types are considered and all the relative problems
solved. Results showed that many of the driving strategies commonly observed in
motorsports, such as hand braking or late cornering are in fact better for a specific
vehicle configuration.

Even though optimisation has been widely used, other techniques have been em-
ployed for lap-time optimisation. Thommyppillai et al. [74, 92, 93] applied linear
theory to the minimum manoeuvre time problem by considering it as one of accurate
path tracking, which is well studied in the literature. They argue that the variation
in racing line for different racing vehicles on a given track is negligible and that it is
reasonable to assume that the optimal racing line is the one tuned by racing drivers
over the years.

All the models considered so far assume that lap-time minimisation is independent
of driver workload; cognitive effort is particularly high at the handling limit, an often
unstable operating point. An important contribution of this work is accounting for
driver workload in lap-time optimisation, in an attempt to provide a more realistic
simulation tool. This is achieved by developing and validation a model that accounts for
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driver’s physical and cognitive limitations and can operate at the vehicle handling limit.
Said model can then be used for lap-time minimisation. The overarching, long-term,
purpose is shifting the focus from the vehicle properties to closed-loop driver behaviour.

1.3 Nonlinear robust control

Uncertainties play a very important role in lap time simulations because there are
factors such as road roughness, wind speed or neuromuscular noise that cannot be
modelled deterministically. Considering disturbances improves both the accuracy and
the robustness of the model. Robust Model Predictive Control schemes (RMPC)
are used to deal with disturbances; the most common RMPC schemes are: dynamic
programming solution, feedback model predictive control, Min-Max predictive control
and Tube-based model predictive control. Since the model developed in this thesis
extends, among other things, the robust controller Timings developed in [1], the relevant
literature is similar.

Dynamic Programming is a scheme developed by Bellman [94] and involves multi-
stage optimisation. An equation, called the Bellman equation, is derived and if it is
valid over the domain of the function that has to be optimised, the problem is easily
solved using numerical algorithms. The limitation of this method is that it cannot be
used in conjunction with MPC for a system that contains a random variable.

Feedback model predictive control approaches, such as those in [95] and [96], seek
to calculate optimal control laws instead of control actions at each time step. This
scheme modifies the system dynamics to reject disturbances. The resultant problem,
however, is generally too complex to be amenable to a computer solution.

Min-Max model predictive controller aims at reducing the computational burden
of feedback model predictive control by solving a nonlinear Min-Max optimal control
problem at each time instant. The solution is a control input that satisfies all the
constraints for all possible realisation of the uncertainty. Since the worst case scenario
is taken into account, the scheme is conservative. The method has been applied
successfully in [79, 97] but has proven to be dependent on the magnitude of the
disturbances in [98].

Tube-based model predictive control is a method that is as efficient as the Min-Max
but it is not as conservative: it is therefore the ideal candidate for this type of project.
A review of tube-based model predictive control follows

Mayne and Kerrigan [99], building on a series of papers by Rakovic et al. [100, 101]
et al., developed a linear predictive control scheme based on the solution of two
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MPC problems: one for the nominal trajectory with artificially contracted boundary
conditions and one for rejecting disturbances. Feasibility is guaranteed if the tube is
chosen in a way such that its outer limits stay within the original state constraints.
In a more recent work, Mayne et al. [102] extend their work to nonlinear systems.
The nominal controls are found first to determine the centre of the tube; these can be
obtained either using any control policy or an heuristic routine. The ancillary controller
is added to the system to reject disturbances. The deviation of the disturbed states
from the nominal will be minimised in the cost function. Mayne et al. prove that the
states are bound if the first instance of the control sequence is applied, so stability is
not guaranteed if a longer sequence is applied.

Timings et al [1] apply tube based nonlinear control to a racing context. The
nominal trajectory becomes the optimal vehicle path and speed profiles generated by the
perfect driver model using and MPC based algorithm. Disturbances are then added and
constraints redefined to account for the external disturbance forces. An ancillary LQR
controller is added to reject disturbances; the statistics of the response are calculated
in an iterative fashion and they determine the width of the tube within which the
states are bounded. The main limitations of Timings work are the computational time
required, the use of a linear anciliary controller and the incapability of dealing with the
negative slope part of the tyre force curve. Sideris [40] and then Haslam [41] managed
to improve the efficiency of the algorithm dramatically by calculating the statistics of
the response using the covariance equation instead of an iterative method.

Johns [2] extended the work of Timings by considering the relationship between
cognitive effort and laptime, hence refining Timings driver model. They conducted
some experiments to validate the hypothesis that cognitive effort and lap-time are
inversely related. They subsequently designed various controllers to account for the
driver limited cognitive ability. It was found that an intermittent controller that utilises
serial ballistic sequences of controls represents the experimental data better than other
controllers. This controller was used to simulate a whole lap and it was found that an
increase in the controller intermittency period could mimic a lap-time increase due to
increasing cognitive load. Even though the controller is able to replicate the results
from the experiments, its applicability to a vehicle driving at the limit of adhesion
is questionable because it is based on linear assumptions. Robust model predictive
control has also been used in the robotic literature [103] and [104].
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1.4 Summary

A robust mathematical model for a driver is key to the development of low-cost design
and tuning of race cars. The literature review has shown that the problem can be
approached in different ways, each of which has benefits and drawbacks; it is clear that
there is still room for development in various areas. The current state of knowledge is
summarised in the next sections.

1.4.1 Nonlinear vehicle dynamics

The tyre model is the main source of nonlinearities. The most widely used are semi-
empirical models which assume an analytical slip force relationship from trends observed
in the experiments. Pacejka’s Magic Formula stands out as the most accurate and
convenient model. A nonlinear tyre model can be coupled with a vehicle model, the
simplest being the bicycle model, which only models lateral dynamics. The longitudinal
dynamics are usually captured through a trolley model, which allows for throttle control.
It can be coupled with nonlinear tyres to gain insights into the behaviour of the vehicle
through graphical means, such as handling diagrams.The trolley can be considered in
conjunction with the bicycle model to have lateral and longitudinal controls.

Assuming a linear tyre model, a closed form solution to the bicycle model can be
found and its stability assessed. Phase diagrams are used to represent the state space
solution of the bicycle mode and identify stability boundaries. Frozen time eigenvalues
are used to predict the disturbed behaviour of the vehicle. Stability and controllability
derivatives are used to characterise the tendency to oversteer or understeer and the
quantity of damping in the system. All the metrics so far described focus on the
open-loop dynamics of the vehicle without taking the closed loop behaviour of the
driver into account.

Nonlinear vehicle dynamics is a relatively mature field of research; however, there
is the need for better stability and controllability metrics that can account for the
driver’s physical and cognitive limitations. This project aims at expanding the work of
Sideris [40] and Haslam [41] to validate their results and further develop the proposed
metrics.

1.4.2 Modelling the perfect driver

The problem of modelling a perfect driver is formulated as an optimal control problem,
typically using an MPC or an LQR controller. These models, however, represent a
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’perfect’ driver and do not generally take into account human limitations. The most
common and practical approach for minimum time manoeuvring relies on approximating
the motion of the vehicle as a series of quasi-steady manoeuvres. The most successful
attempts, however, have been those relying on nonlinear optimisation. These models
are very accurate; nevertheless, they are very computationally intensive and do not
take into account human limitations in a clear and efficient way.

The challenge for future research is the modelling of an imperfect driver, which
takes into account the randomness in the neuromuscular system and random external
disturbances.

1.4.3 Robust control

Two of the most common approaches to deal with uncertain control problems are
Min-Max MPC, where a single sequence of control actions is used to minimise the
worst case, or feedback min-max MPC where the worst case is minimised over a
sequence of control laws. However, these methods are conservative because they take
into account worst case scenarios. Tube-based model predictive control overcomes
these limitations by finding the controls to generate an undisturbed nominal trajectory
and superimposing the disturbance rejecting controls. Timings [1] applies tube based
nonlinear control to a disturbed vehicle in a racing context by finding optimal controls
and superimposing the action of an ancillary LQR controller. The statistics of the
response are calculated in an iterative fashion which is very computationally intensive.
The limitations of the work are the inability of dealing with the negative part of the
tyre curve, the assumption that the driver has perfect knowledge of the vehicle, the
lack of feedback constraints and the lack of control strategy variation. Sideris [40] and
then Haslam [41] managed to improve the efficiency of the algorithm dramatically by
calculating the statistics of the response using the covariance equation.

The shortcomings of Timings’ algorithm can be overcome by applying nonlinear
tube-based MPC to the lap-time problem. The controller has to be able to simulate the
behaviour of a of a human driver in limit conditions at an acceptable computational
power.

1.5 Research objectives

In order to circumvent some of the limitations in Timings’ work and design an improved
imperfect driver model, the following research objectives are proposed.



1.5 Research objectives 22

1. Complete the work of Sideris and Haslam in using the variance prediction equation
to quantify the stability and controllability of a car performing a manoeuvre.

2. Extend the work of Timings and Johns to develop an MPC-based or other suitable
compensatory controller that is appropriate for the nonlinear handling regime.

3. Implement and assess the effect of the driving strategies proposed by Johns.

4. Explore the performance of the controller, particularly the coupling of the lateral
and longitudinal dynamics.

5. Devise and perform driving simulator experiments in order to identify driver
behaviour and to validate the theoretical developments.



Chapter 2

Quantification of road vehicle
handling quality using a
compensatory steering controller

2.1 Introduction

Automotive engineers tasked with tuning the handling behaviour of a vehicle often use
quantitative objective criteria to assess stability and controllability under various oper-
ating conditions. An ideal criterion would be predictable from the design parameters
of the vehicle and correlate well with subjective assessments. Many criteria have been
used in the past, but these have not taken account of the closed-loop behaviour of the
driver-vehicle system.

Timings [105] adopted ideas from tube-based robust model predictive control. A
continual random disturbance was applied to a simulated nonlinear vehicle negotiating
a lap of a circuit. A simulated driver was assumed to perform closed-loop feedback
control to compensate for the effect of the random disturbance and keep the vehicle
close to the optimal path. The trade-off between the variance of the compensatory
steering control (a measure of the driver’s physical workload) and the lap time was
quantified. A disadvantage of the method was that the variance of compensatory
steering control was determined from an ensemble 1000 time domain simulations, which
was computationally expensive.

The work described in the present Chapter extends the approach in [105] by calcu-
lating the variance of the simulated driver’s compensatory control responses directly,
rather than by simulating an ensemble of time domain responses. In addition, the way
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in which the variance of the compensatory responses changes through the manoeuvre
is examined, and compared against several existing stability and controllability criteria.
It is anticipated that the variance of the driver’s compensatory control action and
the variance of the vehicle’s lateral path displacement from the nominal path might
relate to the driver’s subjective assessment of the stability and controllability of the
vehicle. In addition, by examining the way in which the variances change through the
manoeuvre, it might be possible to tune the vehicle to behave in a desirable manner
at various stages of the manoeuvre. The proposed new criteria differ from existing
criteria by accounting for the closed-loop dynamics of the driver and vehicle, rather
than considering only the open-loop dynamics of the vehicle without consideration of
the driver.

Section 2.2 describes the nonlinear vehicle model and Section 2.3 summarises the
algorithm used to calculate the nominal driver controls (drive/brake torque and steering
angle) to negotiate a ninety-degree bend in minimum time. The compensatory steering
controller is presented in Section 2.4, and the method for calculating the variance
of its response is set out in Section 2.5. Results of the variance calculation for two
different vehicles are presented in Section 2.6 and comparisons to existing stability and
controllability criteria are discussed in Section 2.7.

The work documented in this Chapter is the result of the collaboration of multiple
authors. The nominal controls are found using Timings MPC scheme [105]. Sideris
[40] carried out preliminary work on stability and controllability metrics, focusing on
comparing them. Haslam [41] developed the closed loop LQR controller and performed
the variance calculations. The author of this Chapter reviewed the work, reproduced
the results to ensure consistency and wrote a paper [106], which shares most of its
elements with this Chapter.

2.2 Vehicle model

The vehicle model is similar to that employed in [105]. The lateral and yaw dynamics
of the vehicle are represented by the familiar single-track ’bicycle’ model with five
degrees of freedom as shown in Fig. 2.1. The model complexity is appropriate for
demonstrating the new stability and controllability criteria, but a more detailed model
would likely be required to investigate the performance of a specific vehicle. The forces
generated by left and right tyres on an axle are combined and throughout this Chapter
all parameter values associated with the tyres relate to the combined left and right
tires on the axle.
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Figure 2.1: Vehicle model with associated forces and dimensions.

The equations of motion are:

M(v̇ + uψ̇) = Fyf cos δ + Fxf sin δ + Fyr + Fy (2.1a)

Izψ̈ = a(Fyf cos δ + Fxf sin δ)− bFyr +Mz (2.1b)

M(u̇− vψ̇) = Fxf cos δ − Fyf sin δ + Fxr (2.1c)

If θ̈f = Tf − Fxfrf (2.1d)

Irθ̈r = Tr − Fxrrr (2.1e)

The axis sign convention for the vehicle model is included in Figure 2.1.
A baseline vehicle configuration which represents a standard saloon vehicle equipped

with nonlinear tyres is used. Even though this work focuses on racing vehicles, there is
no need to model one at this stage, as this is done for the validation in Chapters 5 and
6. The baseline configuration is US and not particularly challenging to handle. The
vehicle is chosen so as to have a stable, predictable behaviour in the linear region.

The OS vehicle configuration is achieved by shifting the vehicle centre of mass
rearwards, setting a = 1.38 m and b = 0.92 m, effectively increasing the cornering
stiffness of the rear tyre as shown in [7]. Assuming effects causing a constant force are
negligible, cornering stiffness is proportional to the vertical load on the tyre as per Eq
(3.23). Shifting the centre of mass towards the back of the vehicle increases the load
Fz on the rear tyre, hence the slope of the rear tyre curve. OS vehicles are unstable
beyond critical speed, requiring closed loop control to remain stable.

The parameters and their nominal values are defined in Table 2.1. δ is the front road
wheel steer angle, Tf,r the axle torques and θf,r the wheel/axle angular displacements.
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The subscripts f ,r indicate front and rear and x,y indicate longitudinal and lateral.
A lateral force Fy and a yaw moment Mz applied at the centre of mass of the vehicle
act as disturbances, such as might arise from road roughness, friction variations or
wind gusts. A single control torque T represents a combined drive action (if T > 0)
and brake action (if T < 0). Assuming the vehicle is rear wheel drive, the torque T is
distributed to the front and rear wheels such that

Tf = bf (1−H(T ))T (2.2)

Tr = T − Tf (2.3)

where H(·) is the Heaviside step function and bf is the brake balance (fraction of
braking torque applied to the front axle).

The tyre forces are expressed as functions of the lateral and longitudinal slips. The
effect of longitudinal weight transfer and camber angle have not been taken into account
as racing vehicles are characterised by a low centre of mass. Furthermore, the purpose
of this Chapter is to investigate the behaviour of the controller rather than achieving a
high fidelity simulation. Concerning the sign convention, downwards vertical forces are
considered positive and anticlockwise slip angles are considered positive.

The slips are defined as:

αf = δ − v + ψ̇a

|u|
, αr = −v − ψ̇b

|u|
(2.4)

κf =
θ̇frf − u

|u|
, κr =

θ̇rrr − u

|u|
(2.5)

where αj is the lateral tyre slip, κj is the longitudinal tyre slip and j is f or r. A
normalised slip vector is defined [107]:

sj =

[
sxj

syj

]
=
Cαj

Fpj

[
κj

tanαj

]
(2.6)

where s is the normalised tyre slip and Cαj is the normalised tyre cornering coefficient.
The friction circle limits Fpj are functions of the static axle loads Fzj and of the

form:
Fpj =

Fzj

1 + (
2Fzj

3Mg
)3

(2.7)

where Fzj is the vertical force on the axle. For the purpose of the present study
the height of the vehicle’s centre of mass is set to zero, to minimise the number of
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Table 2.1: Vehicle model parameters and nominal values. Tyre parameter
values are per axle.

Parameter Symbol Value
Mass M 1050 kg

Moment of inertia about z axis Iz 1500 kgm2

Front axle to CoM distance a 0.92 m
Rear axle to CoM distance b 1.38 m

Wheel radius rf , rr 0.28 m
Wheel/axle moment of inertia If , Ir 2 kgm2

Front brake balance bf 0.6
NMS natural frequency ωn 18.85 rad/s
NMS damping factor ξn 0.707
Steering gear ratio G 17

Magic formula coefficient B 1.03
Magic formula coefficient C 1.60
Magic formula coefficient D 1.36
Magic formula coefficient E 0.00

Tyre coefficient c1 69 kN/rad
Tyre coefficient c2 1.4 kN

Gravitational constant g 9.81 m/s2

Discrete time step Td 0.02 s

parameters in the vehicle model and make the results as generic as possible. Thus only
static vertical forces are considered so:

Fzf =
b

a+ b
Mg, Fzr =

a

a+ b
Mg (2.8)

The slip coefficient Cαj is defined as:

Cαj = c1

(
1− exp

(
−Fzj

c2

))
(2.9)

where c1 and c2 are tyre coefficients. Tyre forces can finally be expressed as:[
Fxj

Fyj

]
= P (|sj|))

Fpj

|sj|

[
sxj

syj

]
(2.10)
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where the function P (s) is Pacejka’s magic formula [7]:

P (s) = D sin(C arctan(Bs− E(Bs− arctan(Bs)))) (2.11)

The values of these coefficients, as well as c1 and c2, are shown in Table 2.1, and are
identical for the front and rear axles. Lateral front tyre forces for a range of longitudinal
slips are shown in Fig. 2.2.

Figure 2.2: Lateral tyre force for one axle. The curves show four different levels
of longitudinal slip κ. The vertical axle force Fzj is 6000 N.

The bandwidth-limiting effect of the driver’s neuromuscular system (NMS) is
represented by a second order low-pass filter acting on the hand wheel angle input δsw
to the vehicle [108, 56], given by:

δ̈sw + 2ξnωnδ̇sw + ω2
nδsw = ω2

nδcom (2.12)

where δcom is the commanded hand wheel angle, ξn and ωn are the damping ratio and
natural frequency of the NMS; values for these parameters were informed by [109].
The road wheel steering angle is given by

δ =
δsw
G

(2.13)

The nonlinear vehicle dynamics equations can be expressed as

ẋ = f(x,u) (2.14)

z = g(x) (2.15)
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with state vector
x = [v ψ̇ ψ u θ̇f θ̇r δ̇sw δsw]

T (2.16)

and control input
u = [δcom T ]T (2.17)

A linearised representation of (2.14) and (2.15) is achieved by performing a linearisation
about an arbitrary, possibly non equilibrium point (x0,u0) to give

ẋc = Acxc +Bcuc + Fc (2.18)

zc = Ccxc +Gc (2.19)

where x is the state vector and the matrices relate to the Jacobians through

Ac =
∂f(x,u)

∂x

∣∣∣∣
x0,u0

, Bc =
∂f(x,u)

∂u

∣∣∣∣
x0,u0

(2.20)

Fc = f(x0,u0)−Acx0 −Bcu0 (2.21)

Cc =
∂g(x)

∂x

∣∣∣∣
x0

, Gc = g(x0)−Ccx0 (2.22)

For more details of the linearisation see [105, 110]. Following common practice in
the field of Model Predictive Control the system is then discretised. Zero order hold
discretisation is used; the subscript k indicates that the object is in discrete time and
evaluated at time t = Tdk, where Td is the discrete time step and k is an integer. The
system of equations takes the form

xk+1 = Akxk +Bkuk + Fk (2.23)

zk = Ckxk +Gk (2.24)

2.3 Minimum manoeuvre time calculations

A single 90◦ bend shown in Fig. 2.3 is considered. The track is 10 m wide; it starts
with a straight section of 360 m, followed by a 90◦ bend of length 100 m whose
centreline has a constant radius of 63.7 m. A long straight section follows, with the
simulation terminating 40 m into this. In order to minimise manoeuvre time, the
driver has to maximise speed while attempting to minimise the distance travelled.
The two requirements are clearly conflicting. Following [110] the minimum nominal
manoeuvre time for the undisturbed vehicle described by (2.23) and (2.24) is obtained
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using an efficient MPC formulation. The procedure rests on the idea of gathering
information about the track through a receding horizon which mimics the line of sight
of a real driver. At each time step the vehicle is linearised about the current operating
conditions and future displacements are predicted over the whole prediction horizon. A
quadratic cost function is then formulated to maximise the distance travelled over the
time horizon, hence minimising laptime. The cost function takes the following form:

min
θ(k)

J(k) =
1

2
θT(k)H(k)θk + ηT(k)θ

T
(k)

subject to λ(k)θ(k) = γ(k)

subject to Ω(k)θ(k) ≤ ω(k)

where J(k) is the cost function, θ(k) a vector with the input and controls for the
system, H(k) a weight matrix, ηk, γ(k), ω(k) and Ω(k) matrices related to the system
constraints.

The derivation of the above matrices is very involved so it will be omitted here
as it is outside the scope of this Chapter. The interested reader can refer to [110] for
further details.

Figure 2.3: The road boundaries and the optimal paths of the US and OS
vehicles.
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Optimal controls δsw and T are calculated for two vehicle configurations. One is
defined by the nominal parameter values in Table 2.1 and has a steady-state under-
steering (US) characteristic. The other is defined by the same parameter values except
for a = 1.38 m and b = 0.92 m and has an over-steering characteristic (OS) due to the
rearward position of the centre of mass (CoM). The brake balance bf is the same for
both vehicles. The vehicle begins on the left-hand boundary at the start of the first
straight with speed 30 m/s. The optimisation involves some constraints: the vehicle is
required to remain within the road boundaries; the maximum drive torque is 2 kNm;
the maximum allowable tire slip at any time is that which gives 0.99 of the maximum
feasible horizontal tyre force at that time.

Figure 2.4: Optimal torque (T ) through the manoeuvre for the US and OS
vehicles. The torque is positive (accelerating) if the line is above road level and
negative (braking) when the line is below road level. Both vehicles accelerate
in the first part of the manoeuvre, then brake at corner entry and accelerate at
the exit. The vertical lines correspond to data at time intervals of 0.4 s. The
triangles and circles plotted at road level correspond to the three phases of the
manoeuvre: braking on entry; transition from braking to accelerating at mid
corner; and maximum drive torque at exit.

Fig. 2.4 shows the optimal torque control for the US and OS vehicles. The vertical
lines correspond to data at time intervals of 0.4 s. The constraint on drive torque means
that the torques are equal whilst accelerating on approach to the corner. However
the braking point for the US vehicle is a little later than for the OS vehicle and the
total braking torque is greater, due to the front-biased brake balance and forward
CoM position of the US vehicle. After the apex of the corner the US vehicle begins
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Figure 2.5: Optimal hand wheel angle (δsw) through the manoeuvre for the
US and OS vehicles. The steering angle for the US vehicle is positive through
most of the corner while it is positive at the beginning of the corner for the OS
vehicle and negative (countersteering) towards the exit.

accelerating earlier than the OS vehicle, but the OS vehicle applies maximum drive
torque earlier than the US vehicle. The triangles and circles plotted at road level
correspond to these three phases of the manoeuvre: braking on entry; transition from
braking to accelerating at mid corner; and maximum drive torque at exit. Fig. 2.5
shows the optimal hand wheel angle for the US and OS vehicles. Larger angles are
required for the US vehicle compared to the OS vehicle. Another notable difference is
that a significant countersteering action (negative angle) is applied to the OS vehicle
after the apex of the corner. Comparing the torque and steering controls it can be
observed that for both vehicles on entry to the bend the steering begins at about the
same time as the switch from acceleration to braking. After this point the braking
torque tends to reduce from its peak value as the steering angle increases. This ensures
that the constraint on combined longitudinal and lateral slip is satisfied. For the US
vehicle the peak steering angle occurs at about the same time that braking torque
reaches zero, which is consistent with the slip at the front axle being limiting. Maximum
drive torque is applied to the US vehicle at the point where the steering angle returns
to near zero. The coordination of the steering and torque controls of the OS vehicle is
different to the US vehicle and consistent with the slip at the rear axle being limiting.
The countersteering action begins just before the switch from braking to acceleration
and continues for a short while after maximum drive torque is reached.
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Figure 2.6: Relationship between manoeuvre time and centre of mass position.
The optimal value to minimise manoeuvre time is 0.42.

The effect of CoM position, defined as a/(a+b), on time to complete the manoeuvre
is shown in Fig. 2.6. The brake balance is fixed to the value given in Table 2.1.
Minimum time occurs at a/(a+ b) = 0.42, which is close to the value of 0.4 specified
for the US vehicle.

2.4 Response variance calculation

In the preceding section the optimal controls to achieve minimum manoeuvre time are
calculated. These controls could in principle be applied in a feedforward, open-loop
fashion to the vehicle, and in the absence of disturbances and other uncertainties, the
nominal trajectory would be achieved. In practice the driver will be required to perform
an additional feedback, closed-loop control in order to compensate for disturbances
and other uncertainties, and to stabilise the vehicle if necessary. It is the proposition of
this Chapter that the driver’s compensatory control action and corresponding vehicle
response provide a practical and objective way of quantifying the handling quality of
the vehicle as it travels through the manoeuvre.

It will be assumed that the primary function of the driver’s compensatory control
is to minimise lateral deviation of the vehicle from the nominal optimum trajectory
calculated in Section 2.3. This is an appropriate assumption for a racing driver, but
drivers in other situations may have different objectives.
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The state space equation (2.18) is augmented to include the lateral displacement as
a ninth state.

Figure 2.7: Vehicle in the nominal and perturbed state. The lateral path error
e is shown together with nominal and perturbed longitudinal velocity u, lateral
velocity v, and yaw angle ψ.

Referring to Fig. 2.7 the perturbed longitudinal and lateral velocities are u+∆u

and v +∆v and the perturbed yaw angle is ψ +∆ψ, so that the time derivative of the
lateral path error, neglecting second order terms, can be expressed as:

ė = (v +∆v) + (u+∆u)∆ψ − v

= ∆v + u∆ψ

where ∆ψ is assumed small. In order to include this expression in the state space
equation an additional state is considered:

ẏ = v + uψ (2.25)

This equation is not valid for the large angles ψ that might arise in the nominal case.
However, when small perturbations are considered about a linearisation point y0, (2.25)
reduces to

ẏ0 +∆ẏ = (v0 +∆v) + (u0 +∆u)(ψ0 +∆ψ)

= (v0 + u0ψ0) + (∆v + u0∆ψ + ψ0∆u)

⇔ ∆ẏ = ∆v + u0∆ψ + ψ0∆u
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If ∆y is to be equivalent to e then it is clear that the linearisation point must be
taken about u0, the current nominal longitudinal velocity. However the linearisation
must also be about ψ0 = 0 rather than the true current yaw angle, to ensure that the
lateral path error is independent of the nominal heading angle in the global reference
frame.

Disturbances w are considered to cause small perturbations ∆xk about the current
nominal state x̄k, with nominal control input ūk. The state space equation can be
expressed as

xk+1 = x̄k+1 +∆xk+1 = Ak(x̄k +∆xk) +Bk(ūk +∆uk) +Hkwk + Fk (2.26)

where wk are the disturbances and ∆uk is the compensatory control action added to
the nominal control action.

Disturbances are considered to arise from random lateral force and yaw moment
acting at the centre of mass, and random additional handwheel angle arising from
neuromuscular noise. It is assumed that all three disturbances are zero mean, Gaussian
and uncorrelated. The disturbance covariance matrix takes the following form

cov(wk) =

σ
2
δsw,dist

0 0

0 σ2
Fy,dist

0

0 0 σ2
Mz,dist

 (2.27)

where σ denotes standard deviation and the subscripts denote the signal to which the
standard deviation relates. Values for the variances of the random force and moment
are derived from [111] and are σFy,dist

=730 N and σMz,dist
=360 Nm. Variance of the

handwheel angle disturbance is derived from driving simulator experiments [108, 112]
and is σδsw,dist

=0.1 rad.
The state-space equation (2.23) can be decomposed as the nominal disturbance-free

dynamics:
x̄k+1 = Akx̄k +Bkūk + Fk (2.28)

and the perturbation dynamics:

∆xk+1 = Ak∆xk +Bk∆uk +Hkwk (2.29)

The human driver’s compensatory control action is modelled as a Linear Quadratic
Regulator (LQR) with full state feedback. Other control theories can be used to
represent human control action, such as model predictive control and fuzzy control. An
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LQR model has been shown to represent measured steering behaviour well [108, 112],
and has been shown in some circumstances to be equivalent to model predictive control
[56]. Future work will account for sensory and cognitive limitations [113, 114]. The
objective of the compensatory controller is to provide a control action

∆uk = −Kk∆xk (2.30)

that minimises a quadratic cost function [115] comprising a weighted sum of mean
square compensatory control action and mean square deviation from the nominal state:

J =
∞∑
k=1

(xT
kQxk + uT

kRuk) (2.31)

where Q is the state cost matrix and R the input cost matrix. The two weighting
matrices, Q = diag(qi), where i = 1 : 9 and R = diag(rl) where l = 1 : 2, are chosen
to achieve an acceptable performance trade-off. To penalise steering action ∆δ̇sw is
weighted with q7 = 1 (rad/s)−2 and ∆δsw is weighted with q8 = 1 rad−2. Lateral path
deviation ∆e is weighted with q9 = 10 m−2 and heading error ∆ψ with q3 = 1 rad−2.
To discourage significant compensatory braking or acceleration control the weight on
∆T was set to r2 = 0.01 (Nm)−2. All other states and controls were weighted with
10−6. If measured driving response data are available it is possible to identify values of
the cost function weights [108, 112].

2.5 Compensatory response calculation

Consider the covariance of (2.23):

cov(xk+1) = cov(Akxk +Bkuk +Hkwk + Fk) (2.32)

xk can again be further split up into a nominal component x̄k with cov(x̄k)=0, and a
perturbation ∆xk about this with E(∆xk)=0. Similarly for uk using (2.29) to give

cov(xk+1) = cov(x̄k+1 +∆xk+1) = cov(Ak(x̄k +∆xk) +Bk(ūk +∆uk) +Hkwk + Fk)

(2.33)
The covariance of the nominal components is zero by definition. The variance of the
constant is also zero, so (2.33) becomes

cov(xk+1) = cov(∆xk+1) = cov(Ak∆xk +Bk∆uk +Hkwk) (2.34)
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The expression for ∆uk (2.30) can be substituted into (2.34). Noting that wk is
uncorrelated with the current vehicle state perturbation [116], the covariance equation
becomes

cov(xk+1) = cov((Ak −BkKk)∆xk) + cov(Hkwk) (2.35)

Exploiting the identity cov(Ab) = Acov(b)AT , and remembering that cov(xk) =

cov(∆xk), the covariance equation can finally be expressed as

cov(xk+1) = (Ak −BkKk)cov(xk)(Ak −BkKk)
T +Hkcov(wk)H

T
k (2.36)

The variances predicted using (2.36) are compared with those determined numeri-
cally from an ensemble of 1000 time domain responses calculated using (2.29). Fig.
2.8 shows the time-varying standard deviations of the heading angle and lateral path
deviations of the US vehicle calculated using the two methods. It is clear that the
analytical and numerical results are consistent with each other.

Figure 2.8: Standard deviation of the lateral path deviation and heading angle
for the US vehicle, calculated using (2.36) and an ensemble of 1000 time domain
responses.

In order to assess the controllability of the vehicle, the covariance calculation is
extended to the control signals. The initial quantities of interest are the hand wheel
rate and the drive/brake torque. The hand wheel rate is chosen over the hand wheel
angle because it has been argued that the physical difficulty arises more from changing
the angle than holding the angle constant [117]. This quantity can be calculated from
(2.36) since δ̇sw is one of the vehicle states. However, this is not the case for the
drive/brake torque. This requires computation of the variance of the vector uk. In
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order to achieve this, uk is split into nominal and perturbed components:

cov(uk) = cov(ūk +∆uk) = cov(∆uk) = cov(−Kk∆xk) (2.37)

Making again use of the identity cov(Ab) = Acov(b)AT , the following is obtained

cov(∆uk) = Kkcov(∆xk)K
T
k (2.38)

Thus, once the state-covariance is computed at each time-step, the covariance matrix
of the input vector can be found using (2.38). A comparison of the analytical and
numerical results is shown in Fig. 2.9, which confirms the validity of the method.

Figure 2.9: Standard deviation of the compensatory hand wheel rate calculated
using (2.36) and drive/brake torque for the US vehicle calculated using (2.38)
and an ensemble of 1000 time domain responses.

2.6 Results

Fig. 2.10 shows the standard deviation of the lateral path error as the two vehicles
travel around the corner. On approach to the bend the error is about 0.04 m but the
error increases as the vehicles pass the apex of the bend, reaching a maximum between
the apex and exit of the bend. The two vehicles behave similarly, although the OS
vehicle experiences a higher maximum value of path error standard deviation, about
0.15 m. Comparison to the nominal control actions in Fig. 2.4 and Fig. 2.5 shows
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that the increase in path error begins some distance after the braking point, once the
steering angle has reached about half its peak positive value. Once accelerating in a
straightline after the exit of the bend the path error reduces to the about the value
seen before braking on approach to the bend.

Fig. 2.11 shows the corresponding results for the heading error. The trends are
similar, although heading error begins increasing later in the manoeuvre than lateral
error. The OS vehicle exhibits two peaks, which occur either side of the switch from
braking to accelerating.

Fig. 2.12 shows the standard deviation of the compensatory hand wheel angle.
The increase in lateral and heading error is generally matched by increase in the
compensatory hand wheel angle. The US vehicle has two peaks, located each side of
the switch from braking to accelerating. The OS vehicle has a large peak just before
the switch from braking to accelerating, and coincident with the first peak in heading
error shown in Fig. 2.11

Further insight to the effect of the centre of mass position can be gained by plotting
the standard deviations as a function of time and of CoM position, however in this
format it is more difficult to relate feaures of the surface plot to locations on the bend.
Fig. 2.13 shows the standard deviation of the compensatory steering control. The
US and OS vehicles correspond to the edges of the surface, at a/(a + b) = 0.4 and
a/(a+ b) = 0.6.

Figure 2.10: Standard deviation of lateral path error through the manoeuvre.
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Figure 2.11: Standard deviation of heading error through the manoeuvre.

Figure 2.13: Surface plot showing how the standard deviation of the com-
pensatory hand wheel angle varies with CoM position and time through the
manoeuvre. The US and OS vehicles correspond to the boundaries of the
surface.

2.7 Discussion

In this section the response variances of the compensatory steering controller are
compared to some of the existing stability criteria reviewed in Section 1.1.3, specifically
stability and controllability derivatives, and frozen-time eigenvalues. These existing
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Figure 2.12: Standard deviation of compensatory hand wheel angle through
the manoeuvre.

criteria are evaluated by considering only the linearised lateral-yaw dynamics of the
vehicle (2.1a) and (2.1b) and linearising the combined slip tyre model at each point
through the manoeuvre.

Fig. 2.14 shows the variation of the directional stability derivative ∂Mt/∂β as
the US and OS vehicles travel through the curve. On approach to the curve the
derivative is negative, which indicates a destabilising condition and arises because the
traction force at the rear wheels decreases the effective cornering stiffness at the rear
axle. After the braking point the derivative becomes positive, consistent with the
stabilising effect of the front-biased brake balance. The subsequent changes of sign
in the derivatives approximately follows the switches between drive and brake torque
shown in Fig. 2.4, consistent with the combined slip behaviour of the tyres. Comparison
with the responses of the compensatory dynamics in Figs. 2.10 to 2.12 reveals that the
standard deviation of the compensatory control actions does not correlate well with
the directional stability derivative: the control actions are large in regions of positive
derivative and in regions of negative derivative.

Fig. 2.15 shows the variation of the yaw damping derivative ∂Mt/∂ψ̇ as the vehicles
travel through the curve. The US and OS vehicles exhibit a similar variation. The
derivative is negative throughout the manoeuvre, corresponding to a stabilising action.
However the magnitude of the derivative reduces significantly in the middle of the
manoeuvre, corresponding approximately to the peaks in the compensatory responses
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Figure 2.14: Directional stability derivative for the OS and US vehicles through
the manoeuvre.

in Figs. 2.10 to 2.12. The reduction is due to a decrease in the cornering stiffness of
the tyres as they approach saturation.

Fig. 2.16 shows the variation of the control moment derivative ∂Mt/∂δsw as the
vehicles travel through the curve. The derivative is high whilst the vehicle is accelerating
on approach to the curve because there are no drive or braking torques on the front
axle to reduce the cornering stiffness. The derivative reduces significantly once the
brakes are applied, and reduces further as hand wheel angle is applied and the front
tyre nears saturation. The US vehicle reaches a significantly lower value than the OS
vehicle because of the forward CoM position of the US vehicle. The trough in the
derivative corresponds approximately to the peak region of the compensatory hand
wheel angle in Fig. 2.12.

Fig. 2.17 shows the real and imaginary parts of the eigenvalues for the lateral-yaw
dynamics of the US vehicle through the manoeuvre. The circles plotted on the time
axis correspond to the three phases of the manoeuvre: braking on entry; transition from
braking to accelerating at mid corner; and maximum drive torque at exit. Positive real
parts indicate instability; non-zero imaginary parts indicate oscillation. The vehicle is
stable throughout the manoeuvre apart from the point where drive torque is applied
at mid-corner until just after the point where maximum drive torque has been applied
at exit. Fig. 2.18 shows the eigenvalues for the OS vehicle. In comparison to the US
vehicle, it becomes unstable earlier in the manoeuvre (mid-way through the braking
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Figure 2.15: Yaw damping derivative for the OS and US vehicles through the
manoeuvre

phase) but returns to stability at about the same time. Comparing this data to the
response variances of the compensatory control, Figs. 2.10 to 2.12, does not show an
obvious relationship to the features of the variance data, apart from a general increase
in variance in the regions of instability.

It is clear from the comparisons made in this section that the response variances of
the driver and vehicle compensatory dynamics give an additional view of the behaviour
of a nonlinear vehicle as it travels through a manoeuvre near to the limit of adhesion.
Further work is needed to understand precisely how the responses should be interpreted,
and to investigate the effect of the neuromuscular properties (damping and natural
frequency). A series of instrumented vehicle or driving simulator experiments with
experienced drivers providing subjective assessments is an obvious next step. It is
anticipated that such experimental data will allow potential benefits of the new criteria
to be revealed. Other extensions to the work are planned: addition of human sensory
and cognitive limitations to the compensatory control model; a nonlinear instead
of linear compensatory controller; and incorporation of the compensatory response
variances as constraints in the calculation of the nominal optimal controls.

2.8 Summary

The brief review of existing criteria in Section 1.1.3 for quantifying stability and
controllability of road vehicles concluded that the practical stability approach was
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Figure 2.16: Control moment derivative for the US and OS vehicles through
the manoeuvre

worthy of further development, with the aim of providing a closer relationship to
subjective assessments by drivers. A minimum manoeuvre time calculation for a five
DoF nonlinear vehicle model reveals that moving the CoM rearwards (without changing

Figure 2.17: Eigenvalues for the US vehicle going through the manoeuvre
described in Section 2.3. The circles plotted on the time axis correspond to the
three phases of the manouvre: braking on entry; transition from braking to
accelerating at mid corner; and maximum drive torque at exit. Positive real
parts indicate instability; non-zero imaginary parts indicate oscillation.
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Figure 2.18: Eigenvalues for the OS vehicle going through the manoeuvre
described in Section 2.3.

the brake balance) requires earlier braking on entry to the corner, countersteering
between mid-corner and exit, and later acceleration out the corner. Calculation of
the response variances of a compensatory LQR steering controller agrees closely with
the variances calculated from an ensemble of time-domain responses, and thus enables
efficient computation of the driver and vehicle response to random disturbances acting
on the vehicle as it travels through the manoeuvre. The variance of lateral path error,
heading error and compensatory hand wheel angle plotted as a function of distance
through the corner reveal how the driver might perceive the change in vehicle operating
point. The main effect of moving the centre of mass rearwards is a sharp increase in
the variance of the hand wheel angle at the transition from braking to accelerating at
mid-corner. Comparison of the variances to existing criteria (eigenvalues and stability
derivatives) demonstrates that the new criteria present an additional perspective of
the dynamic behaviour of a nonlinear vehicle through the manoeuvre, particularly
concerning the driver’s closed loop action. Metrics based on linear models, such as
eigenvalues or phase portraits, have somewhat limited practical applications due to
model simplifications. Stability and controllability metrics can be very insightful when
designing a vehicle but do not provide any information about driver-vehicle interaction.
The novel formulation can help predict a vehicle subjective handling qualities.

Different metrics serve for different purposes. Eigenvalues and state space are a
useful tool for preliminary theoretical analysis; stability metrics can provide useful
insights in the design phase while variance based metrics can be an aid to understand
a vehicle’s handling qualities subjective assessment.



Chapter 3

A NMPC compensatory controller
formulation

3.1 Introduction

The results in [2] show that while the LQR controller performs well for a disturbed
linear vehicle, it fails to control a disturbed nonlinear vehicle at the limit of adhesion.
Racing drivers exploit the whole of the tyre friction circle to maximise tyre forces and
minimise lap time. Non professional drivers are also likely to saturate tyres for extreme
manoeuvres; when avoiding a crash for example. Being able to model the totality of
the tyre curve and controlling the vehicle when operating in the negative slope region
is therefore relevant to improving understanding of driving behaviour.

The problem of finding the minimum manoeuvre time for a vehicle controlled
by an ideal driver has been widely studied in the Optimal Control (OC) literature.
The main focus has been simulating reasonably detailed vehicle models over complex
manoeuvres - such as a full lap on an international racetrack – in an efficient fashion.
However, random factors – such as road roughness, wind speed or the noise in the
driver neuromuscular system – significantly affect driving [111]. The objective of the
proposed controller is to extend previous formulations to incorporate randomness and
thus represent a human driver’s ability to stabilise and control a nonlinear vehicle.

Nonlinear optimisation schemes are ideal for tackling such problems as they are
characterised by a high degree of robustness, though this comes at the expense of
a higher computational burden. The vast literature on control of nonlinear systems
provides a starting point for the analysis. Some fundamental OC concepts are outlined
to define the theoretical framework used to design the controller. Particular attention
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is given to the development of numerical methods for digital computers and how
integration schemes and optimisation algorithms are implemented.

While the subject is an expansive one, this Chapter discusses only concepts that
are directly related to the implementation of the controller, without reviewing theories
which are not directly related to the development of the controller. The interested
reader can refer to [118] and [119] for more comprehensive theoretical explanations.
Cognitive limitations and driving strategies are accounted for so as to have a better
understanding of a real human driver’s approach to the driving task. External random
disturbances are added to the system to account for any non deterministic events
present in the driving task. Due to the random nature of the system, a robust control
scheme is the most obvious approach.

Section 3.2 focuses on the theoretical background necessary to formulate the
problem, concluding with a brief overview on the algorithms which will be used to
solve it. Section 3.3 details the derivation for the lateral controller while Section 3.4
derives the longitudinal controller. All the material covered in Section 3.2 is established,
being reported only for completeness, and so does not constitute any new contribution
to the subject. Section 3.3 and Section 3.4, however, introduce a novel formulation
which, even though it rests on ideas from the literature, is an original contribution to
knowledge.

3.2 Optimal control

Optimal control is a mathematical optimisation method aimed at deriving control
actions that drive systems to a desired state [118]. The core of the process usually
consists of finding the minima of a cost function subject to equality and inequality
constraints. The complexity of the solution depends on the problem requirements.
While low dimensional, linear, unconstrained problems can be solved using simple
calculus techniques [119], more refined techniques – such as Langrangian multipliers –
are required to tackle problems of practical interest. The most general frameworks that
provide optimality conditions are the Pontryagin minimum and Bellman optimality
principles [120]. Though the two formulations are mathematically different and have
different conditions of existence for the solutions, they lead to essentially the same
result for problems formulated in equivalent ways [121].

While problems are usually formulated in continuous time, imposing optimality
conditions inevitably leads to equations that are too complex to be solved analytically.
It is therefore necessary to discretise the problem and apply numerical methods to
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solve it. Discretisation can happen either before or after applying optimality conditions.
The former strategy is referred to as a direct approach while the latter is usually
called an indirect approach [122]. The type of approach is probably the most critical
decision in the solution strategy for an optimal control problem. Both approaches
are viable and lead to the same solutions. However, one can be better suited than
the other for a specific case. Numerical methods are always necessary to solve the
resulting optimal problem. Parameter optimisation schemes are usually preferred over
variational calculus based methods because digital computers made the implementation
of parameter optimisation schemes efficient and reliable. Section 3.2.1 and Section
3.2.2 provide an overview of indirect and direct methods respectively, while Section
3.2.3 discusses the algorithms that can be used to solve the resulting optimal control
problem.

Optimal control strategies are limited to deterministic systems. Since random
disturbances are applied to the vehicle, the theory needs to be extended to include
notions of robust control. Section 3.2.4 outlines the theoretical approach used to embed
robustness into the system.

3.2.1 Indirect methods

Indirect methods impose optimality conditions on continuous problems. While calculus
can be used to derive the optimality conditions for a set of time invariant parameters,
calculus of variations serves the same purpose for a formulation in continuous time.
Optimality conditions for unconstrained problems are obtained by finding a functional
that minimises a cost function [123]. The theory behind this approach is established
and will not be covered here. The interested reader can refer to [124] for a detailed
explanation. Extending the fundamental variation principles to constrained problems
leads to Pontryagin’s minimum principle which states that, given a set of admissible
controls, the control Hamiltonian must take an extreme value [124]. The control
Hamiltonian is an expression that provides the necessary conditions for optimality.
The derivation is again omitted as it is established. The interested reader can refer to
[123] for a comprehensive overview of variational calculus and optimisation methods.
Pontryagin’s minimum principle generalises the condition of optimality to a two-point
boundary-value problem, which is analytically intractable for most practical applications
[119]. The boundary value problem is then solved using well established numerical
methods, such as root-finding or Runge Kutta schemes [125].
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3.2.2 Direct Methods

Direct methods discretise, or transcribe, the problem before applying optimality condi-
tions. A well chosen transcription method is key to an efficient solution. Transcription
techniques aim at describing a time varying problem using constant parameter vectors
[121]. It is clear that difficulties arise when a dynamic system is also described by
differential relationships. In general, the first step for a transcription process is to
define a set of parameters that approximates the continuous functions describing the
model and to then impose constraints that replicate the continuous time differential
relationships. In practice, there are three different families of discretisation methods
used to carry out the aforementioned steps [122].

• Single shooting : the state trajectories are found by placing the nodes on the
control trajectory and solving the resulting state differential equations using
appropriate numerical quadrature techniques. Solutions are found iteratively
until convergence is achieved. The limitations of this method are the lack of
robustness and the difficulty of handling highly nonlinear constraints.

• The lack of robustness can be overcome by using a multiple shooting method, which
divides the trajectory into different sections and imposes boundary conditions to
ensure continuity. The solution methods are then the same as single shooting
techniques.

• The limit case of the multiple shooting technique consists of substeps of the control
trajectory that can be solved using a one-step rule, referred to as collocation
methods. In this method a quadrature rule is implemented at each node to
formulate a parameter optimisation problem to find an array of parameters that
characterise the system at every node.

The advantage of collocation methods is the decoupling of control and states, which adds
robustness. Once a problem is transcribed, optimality conditions can be imposed and
the problem solved, which is essentially equivalent to performing parameter optimisation
on a large data set. An overview of parameter optimisation is given in Section 3.2.3,
together with some of the numerical algorithms used to tackle the problem.

3.2.3 Parameter optimisation algorithms

Section 3.2.2 shows that optimality conditions can be imposed after discretisation.
Since a discrete problem is described by time-invariant parameters, it can effectively
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be treated as a parameter optimisation problem. Any time varying dynamic system
can be described by a sufficiently large number of parameters using the appropriate
discretisation techniques. The size of the resulting problem is usually significant so
choosing the right algorithm is key to obtaining a fast and efficient solution. An
appreciation of the numerical techniques used to solve such problems is essential to
illustrate the operation of the robust controllers described in Section 3.3 and Section 3.4.
The numerical techniques described in this Section can be found in any optimisation
book, for instance in [119]. They are reported here for completeness.

The fundamental parameter optimisation problem consists of finding a vector b

that minimises an objective function J(· ). The problem is usually expressed as

min
b

J(b) (3.1)

The standard calculus result ∂
∂b
J(b∗) = 0 can be used to find stationary points and

higher order derivatives to characterise them. b∗ indicates a local minimum. In
practice, unconstrained optimisation is quite rare. Most problems involve some sort
of constraints; equality constraints being the most common. For a dynamic system
evolving over a timespan, referred to as prediction horizon, the general form of an
optimisation problem with equality constraints takes the following form

min
b

J(b)

subject to fk(b) = 0 k = 1.....Np

(3.2)

where fk is a nonlinear constraint function and Np the number of time steps in the
prediction horizon, also referred to as prediction horizon. The Lagrange Multiplier
theorem, which can be derived using results from linear algebra, defines the conditions
for optimality for a minimisation problem with an equality constraint. A new quantity,
referred to as the Lagrangian, is introduced as a means of quantifying the sensitivity
of the cost function around the constraints. It can be expressed as

L(b,λ) = J(b) +

Np∑
k=0

λkfk(b) (3.3)

where L is the Lagrangian and λk the Lagrangian multiplier at k. The condition for
optimality can be found by minimising the Lagrangian with respect to the vector of
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Lagrangian multipliers λ and the parameter vector b:

∇bL(b
∗,λ∗) = 0

∇λL(b
∗,λ∗) = 0

qT∇bbL(b
∗)q ≥ 0

where q is any vector that belongs to the subspace of first-order feasible cost function
variations. The interested reader can refer to [126] for the proof. The Lagrangian
multipliers are not part of the solution as they are newly introduced variables but they
are useful to understand the nature of the solution and of the constraints. Another class
of constraints to be considered in optimisation is inequality constraints. They arise
often in practical problems and impose bounds on the search domain. An optimisation
problem including inequality constraints can be cast as

min
b

J(b)

subject to fk(b) = 0 k = 1.....Np

hk(b) ≤ 0 k = 1.....Np

where hk(b) is a nonlinear constraint function. It is assumed that both equality and
inequality constraints are applied over the whole prediction horizon. In this case,
first order conditions for optimality can be found by augmenting the Lagrangian
with another vector of multipliers and finding the optimal conditions based on that
system. However, problems with a high number of constraints can make the Lagrangian
prohibitively complex. Alternative solution strategies, which are not always analytic,
have been developed to tackle this problem. Penalty methods, for example, use a series
of unconstrained sub-problems to replace the original constrained problem. Constraints
are enforced by adding an extra term – positive when the states violate the constraints
and zero otherwise – to the cost function of each sub-problem. An example of such
function is known as the quadratic penalty function, defined as

O(b, pn) = J(b) +
1

2pn

Np∑
k=0

f2k(b) (3.4)

where pn is a penalty parameter. The problem can be solved by iterating over pn until
a solution is reached. This method, however, suffers from ill conditioning which can
be tackled by including the term

∑Np

k=0 p(λk) – where p(·) and λk are an estimate of
the Lagrangian multiplier – to the cost function. This method also iterates over the
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estimate of the Lagrangian multiplier and the barrier parameter until convergence is
achieved. A more conservative and robust approach is the interior point barrier method,
where a logarithmic penalty is added to the original cost function. The augmented
cost function when only equality constraints are enforced is

O(b, pn) = J(b)− pn

Np∑
k=0

log fk(b) (3.5)

This approach effectively softens the constraints as it allows the solution to lie in
their vicinity. Iteration is again necessary to find the parameters that satisfy (3.5).
Another class of solvers is referred to as sequential quadratic programming methods.
These methods exploit the properties of the Lagrangian to iteratively find the global
search direction by solving a number of optimisation sub-problems. At each step a
minimisation problem is solved to refine the search direction di until convergence
is achieved. In the case of equality constraints only, the search direction di can be
obtained by

min
d

1

2
dT
i ∇2

bbL(bi,λi)di +∇J(bi)Tdi

subject to fk(bi) +∇fk(bi)
Tdi = 0

where L(bi,λi) is the Lagrangian at iterate bi,λi. The value di is added to the states to
update the search direction at every step of the iteration until convergence is achieved:

bi+1 = bi + di (3.6)

3.2.4 Robust Control

The optimal control theory outlined so far allows the formulation of an optimal control
problem for an arbitrarily complex nonlinear vehicle model without constraints on the
geometry of the manoeuvre. These problems have been studied in great depth in the
vehicle dynamics literature. However, the optimisation routines so far outlined are
not enough to deal with uncertain systems, which is the aim of this work. Notions of
robust control are therefore necessary to lay the theoretical foundations of a controller
that can reject random disturbances. Robust control is the branch of control theory
that deals with uncertain systems. For the purpose of this work a system that has
additive, external disturbances is considered. Even though a number of approaches
have been proposed to tackle this problem, there is no agreement on which is the most
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suitable. A disturbed control problem in its most general form can be expressed as

x(k+1) = gnl(x(k),u(k)) +w (3.7)

where k indicates the current time step, x is the nominal state vector, u the control
action, gnl(·) a nonlinear function and w the disturbance vector. The two most
common approaches to tackle this problem are known as the min-max approach and
the feedback min-max MPC. The min-max approach uses a single open loop control
series to minimise the worst case scenario while for the feedback min-max MPC, the
worst case cost is minimised over a sequence of control laws. Numerous authors,
for instance Rakovic [100], have shown that the open loop approach suffers from
being overly conservative. Some feedback schemes tackle this problem at the expense
of computational resources. Any attempt to improve process efficiency limited the
practical use of the algorithms proposed to simple cases. Mayne tried to obviate this
problem by sacrificing optimality for simplicity. In a work with Kerrigan [99], building
on a series of papers by Rakovic [100, 101] et al., they developed tube based MPC.
The fundamental idea is to use two controllers, where one controller – referred to as
nominal controller – finds the optimal nominal trajectory in absence of disturbances
and the other controller – referred to as compensatory controller – bounds the disturbed
states in the vicinity of the nominal trajectory, effectively creating a tube whose width
changes depend on the disturbances and the structure of the controller. Feasibility is
guaranteed if the tube is chosen in a way such that its outer limits stay within the
original state constraints. The constraints of the nominal controller may have to be
tightened to account for the disturbances; this is usually done iteratively. In a more
recent work, Mayne et al. [102] extended the idea of tube based MPC to nonlinear
systems, showing that linear superposition is not required to obtain robust solutions.

The theory behind this approach is illustrated as it is at the core of the design of
the controllers in Section 3.3 and Section 3.4. Firstly, the nominal controls are found.
Considering the system in Eq 3.7, the centre of the tube can also be found using a
standard MPC controller

x∗
nom(k+1) = gnl(x

∗
nom(k),u

∗
nom(k)) (3.8)

The optimal nominal state, x∗
nom and control u∗

nom can be also be found in different
fashions, for instance by assuming constant controls and states or applying different
control strategies.
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A second controller, referred to as ancillary model predictive controller, is added
to the system to keep the state of the system close to the reference trajectory in
presence of disturbances. The aim of the controller is to minimise the deviation of the
actual trajectory xtot from the optimal trajectory x∗

nom previously calculated. The cost
function to be minimised can therefore be expressed as

J =

Np−1∑
k=0

l(x∗
nom(k) − xtot(k),u

∗
nom(k) − utot(k)) (3.9)

where l(·) is a function that can take any form. The optimal problem yields u∗
tot(k+1) =

min
J

which is the signal that is applied to the plant. It contains the nominal and
disturbed signals. This is a significant difference from the approach used in Chapter
2 as linear superposition is no longer needed. The increase in computational cost is
justified by the improved robustness. Mayne and Kerrigan prove in [102] that the
uncertainty set SK that contains the disturbed trajectories is bounded only if the first
instance of the input sequence u∗

tot(k) is applied in a classical MPC fashion. The tube
is not necessarily bounded if more than one instance is applied. This is an important
point to investigate as prolonged control actions from a single optimisation are an
important aspect of the driver model proposed.

In order to implement tube based MPC on a vehicle, the current states and controls
of the vehicle xtot(k) are measured first. For the purpose of this work, it is assumed
that the driver has perfect knowledge of the states of the vehicle so no predictive filters
are necessary. The optimal undisturbed control sequences x∗

nom(k) and u∗
nom(k) are then

determined. These include the nominal racing line, all the vehicle states and the lateral
and longitudinal inputs necessary to stabilise the vehicle. The ancillary problem is
then solved to obtain u∗

tot(k+1), which is then fed to the disturbed system to integrate
it over time to obtain a measurement for the following set of states xtot(k+1).

3.3 Lateral controller

Section 3.2 provides the theoretical background for the formulation of the driver model.
A lateral controller is considered first. It is assumed that the vehicle travels at constant
speed and that the driver can only control the hand wheel. Since the speed is constant,
accelerating and braking are not considered. This assumption simplifies the vehicle
model but more importantly the tyre model, as only lateral forces have to be considered.
The following sections set out the problem in its general form and then move onto
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describing all its components; namely a track model, a vehicle model, and a tyre model.
Constraints, cognitive limitations and the solution methodology are also considered.
The concepts outlined to develop the lateral controller will be extended to include the
longitudinal control in Section 3.4.

Figure 3.1: Robust controller structure highlighting the main components. The
nonlinear formulation reduces significantly the number of blocks. The subscript
sw indicates steering wheel – i.e. applied to the vehicle.

3.3.1 Problem formulation

Figure 3.1 shows the main blocks of the proposed control approach described in Section
3.2.4. The reference trajectory, which is assumed to be known, is fed to the nonlinear
MPC controller together with the vehicle states. The controller finds the optimal
control input u∗

tot which, after being passed through the neuromuscular filter, is input
to the disturbed nonlinear vehicle. The resulting total states are fed back to the MPC
controller. For the purpose of this work, the nominal state trajectory is assumed to be
known. A sufficiently general formulation for the problem to be solved to find u∗

tot is

min
xtot,utot

J(xtot,utot,x
∗
nom,u

∗
nom)

subject to fk(xtot,utot, ẋtot) = 0 k = 1...Np

hk(xtot,utot) ≥ 0 k = 1...Np

(3.10)

In traditional MPC only the first instance of the control sequence u is fed to the
disturbed plant. The formulation allows for a longer section of the control sequence
to be fed to the plant to account for the driver’s cognitive limitations. Section 3.3.2
describes the track model and Section 3.3.3 the vehicle and tyre model, completing the
description of all terms in Eq. 3.10. Section 3.3.4 elaborates on how driver cognitive
limitations are incorporated in the controller.
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3.3.2 Track description

The first aspect of the solution to be considered is the track description as it determines
the frame of reference, which in turn affects the formulation. The Lateral Path
Error (LPE), defined as the perpendicular distance between the centre of mass of the
vehicle and the reference trajectory, is the most important quantity to consider when
defining the track, as it needs to be minimised to ensure the vehicle stays within a
tube. A Cartesian frame of reference would allow easy expression of the coordinates
of the nominal trajectory with Xref and Yref and the vehicle position using X and
Y. Expressing the LPE in cartesian coordinates would not be straightforward. The
problem can be tackled as one of finding the minimum distance between a point and a
line, which has a well known solution. The proximity strategy proposed by Timings
in [1] could be implemented. Figure 3.2 shows the main quantities involved in the
derivation. The true position of the vehicle X,Y, which is available from the previous
prediction, and its approximate position on track Xapp, Yapp, assuming the distance
travelled is Tds, are compared. An arbitrary number pt of track points in front and
behind the approximate position on track Xapp, Yapp of the vehicle is considered. The
distance between the vehicle true position and these points on the track is calculated
and trigonometry is then used to determine the track data point whose normal goes
through the vehicle position, which is the true minimum distance.

Figure 3.2: Strategy to evaluate the points on the nominal line such that they
are perpendicular to the track and pass through the vehicle centre of mass

This approach is problematic as it involves expressing the LPE with trigonometric
expressions, which eventually appear in the cost function, increasing significantly the
numerical complexity of the problem. A more efficient track formulation, where an
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expression for the LPE would be readily available and could be expressed in a simple
form, would greatly improve the tractability of the problem.

An intrinsic track formulation allows us to express the LPE as a state of the system,
making it readily available in the cost function. The track model described here is the
same used by Lot [127] and Perantoni [128]. Curvilinear coordinates are used to express
the vehicle position. Referring to Figure 3.3, the vehicle position is described in terms
of distance travelled s and lateral offset n(s). The nominal line is described by the

Figure 3.3: Diagram showing the intrinsic curvilinear track description.

distance travelled s and normal n and tangent t unit vectors. The heading direction of
the vehicle is given by ψ and the angle between the vehicle and the reference is given
by ξ, which implies that ψ = θ + ξ, where θ is the angle between t and the global axis.
The key advantage of this track formulation is that the position of the vehicle and its
orientation are included among the states of the vehicle without resorting to numerically
complex functions. A relationship among the different quantities mentioned before
needs to be found to describe the vehicle position in time. The track curvature Ω can
be found exploiting simple geometry concepts:

Ω =
d

ds

(
arctan

dy

dx

)
(3.11)

where x and y are the intrinsic local Cartesian coordinates and s is the total distance
travelled. Since only differential quantities are involved, a global rectangular frame of
reference does not have to be defined. Eq. 3.11 provides a convenient way to relate
rectangular and curvilinear coordinates. Resolving velocities in the t direction provides
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a relationship between the distance travelled and the orientation of the vehicle.

ṡ− nθ̇ = u cos ξ − v sin ξ (3.12)

where n is the lateral path error, θ the absolute heading angle, u the forward vehicle
speed, v the lateral vehicle speed and ξ the angle between the vehicle longitudinal axis
and the reference trajectory. Differentiating θ and rearranging gives

ṡ =
u cos ξ − v sin ξ

1− nΩ
(3.13)

The Lateral Path Error and the heading angle, calculated with respect to the track,
are also included in the formulation

ṅ = u sin ξ + v cos ξ (3.14)

ξ̇ = ψ̇ − Ωṡ (3.15)

The track description shows that most quantities are better expressed as a function of
distance rather than time. This can be achieved by multiplying the equations of motion
by a scalar, derived by Casanova in [78] for rectangular coordinates and Perantoni
[128] for intrinsic coordinates, which converts time increments to distance increments.
It can be expressed as:

sr =

(
ds

dt

)−1

=
1− nΩ

u cos ξ − v sin ξ
(3.16)

3.3.3 Vehicle and tyre model

The vehicle model is the bicycle model as derived in Pacejka [7], where the details
of the derivation can be found. The model is similar to the one used in Section 2.2,
where the formulation, however, included both lateral and longitudinal dynamics. The
equations for the lateral only case are therefore described. They read

M(v̇ + uω) = Fyf + Fyr + Fy,dist (3.17)

Izω̇ = aFyf − bFyr +Mdist (3.18)

where M is the total mass, Iz the total inertia, v the lateral velocity, u the forward
velocity, F is force, y indicates that it is lateral, f and r are front and rear respectively,
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dist indicates that it is a disturbance, ω is the angular yaw rate and a and b the distance
of the centre of mass from the front and rear axle respectively.

Figure 3.4: Vehicle model used to model the lateral dynamics. Force and
moment disturbances are shown in red.

The lateral force is a function of the lateral slip of the tyres, which is in turn a
function of the lateral velocity and the yaw rate. The slip can be expressed as

αf = δ − v + ωa

|u|
(3.19)

αr = −v − ωb

|u|
(3.20)

where δ is the steering angle at the tyres. Nonlinear tyres are the obvious choice as the
aim of the project is to investigate the behaviour of the vehicle close to tyre saturation.
A well established model is Pacejka tyre model, described by Eq. (2.11). Even though
the model is established and allows the description of almost any possible road friction
interaction, its numerical complexity makes the optimal control problem difficult to
solve. Whilst for the lateral controller the resulting optimisation problem is numerically
tractable, the lateral and longitudinal coupling that occurs when longitudinal forces
are considered makes convergence difficult to achieve. Even though it is not strictly
necessary for the lateral case, Equation 2.11 needs to be simplified to ensure consistency
with the combined controller. This particular work focus on track racing, so modelling
different ground surfaces, such as gravel, is not required. Trading control of the shape
of the curve against numerical simplicity does not affect the overall performance of the
controller. The following tyre model has been adapted from Kelly [23]. Defining the
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coefficient of friction as

µy = µymax sin(Qy arctan(Syαn)) (3.21)

where µymax is the maximum coefficient of friction, αn = α/αmax, where α is the slip
angle, αmax the maximum slip angle, and Sy is defined as

Sy =
π

2 arctan(Qy)
(3.22)

where Qy is the stiffness factor. The lateral force can be expressed as

Fy = µyFzα (3.23)

where Fz is the vertical force.
Figure 3.5 shows the lateral force characteristics for the front tyre of an Understeering

and an Oversteering vehicle. Tyre parameters are µymax = 1.27, Qy = 1.61, αmax = 0.12.
These parameters are just indicative and are used for illustration purposes only. The
saturation region starts at 0.12 rad.

Figure 3.5: Front tyre force slip characteristics for an Understeered and an
Oversteered vehicle. The curve shows saturation and the negative slope region.

Equation 3.23 gives the force for equations 3.17 and 3.18 as a function of the slip,
which are expressed in terms of v and ω in (3.19).

A second order filter acting on the steering input is added to the system to take
limitations of the neuromuscular system (NMS) into account [6]. The filter takes the
following form

δ̈sw + 2ζnωnδ̇sw + ω2
nδsw = ω2

nδcom (3.24)
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where ωn is the NMS natural frequency, ξn the NMS damping factor, sw indicates that
the signal is applied at the hand wheel and com indicates that the signal is commanded
from the brain.

A simple aerodynamic model is also added to account for downforce. As vehicle’s
speed is constant for a lateral controller, aerodynamic forces will not vary, resulting
in a constant increase of tyre vertical load. Furthermore, drag is not considered as
longitudinal forces are neglected. Even though computational cost could be reduced
by modelling these effects as an increase in vehicle mass and a CoG shift, they are
included for further developments. Lift is assumed to be governed by standard quadratic
functions

Faz =
1

2
ClρAfu

2 (3.25)

where Cl is the lift coefficient, ρ is air density, Af the vehicle front area and u the
vehicle speed. Faz is assumed to be positive downwards. Assuming that the distances
of the Centre of Pressure (CoP) from the front and rear axles are denoted by aCoP and
bCoP , the vertical forces can be calculated in the following fashion.

Fzf =
b

L
Mg + Faz

bCoP

L
(3.26)

Fzr =
a

L
Mg + Faz

aCoP

L
(3.27)

where L = a+ b is the wheelbase of the vehicle and all other terms have been previously
defined.

Disturbances are added to the system to account for the randomness of a real
driving scenario. A lateral disturbance acting at the centre of mass perpendicularly
to the vehicle’s longitudinal axis and a yaw moment disturbance are considered; as
Figure 3.4 shows. The lateral and moment disturbance terms Fdist and Mdist represent
various factors that can affect driving such as road roughness or wind. Even though
such measurements could be obtained from track data, the disturbance profile used
in Chapter 2 – white Gaussian noise with zero mean is adopted. This assumption
allows testing of the controller: for the validation work, a different disturbance profile
is chosen and it will be discussed in Chapter 5.

3.3.4 Cognitive limitations

The literature shows that real drivers have cognitive limitations, which cannot be
accurately represented by an optimal controller. Young and Stanton [129] define
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cognitive workload as the level of attentional resources required to meet certain
performance criteria. Young and Stanton’s research key outcome is that cognitive
workload for a given task is related to the driver information processing capacity. Patten
[130] shows that human information processing capacity is done through temporary
memory – a sort of human Random Access Memory (RAM) – where data can easily
be overwritten. This theory suggests that the driver cognitive processing capacity
is limited, which implies that online complex optimisations are unlikely to happen.
Johns [2] performed theoretical and experimental work to assess the extent to which
cognitive limitations affect driving. He enriches existing driver models to account for
these limitations and validates the proposed improvements experimentally.

Johns further developed and validated the idea of intermittent control. In traditional
MPC, a control sequence is calculated at every time step and the first term of the
control sequence applied. Following Patten [130], Johns argues that it is unlikely for
the driver to be able to perform an optimisation for frequencies higher than 3 Hz.
He therefore advances the idea of intermittent control, which hypothesises that the
driver applies a longer sequence of the control inputs from the optimisation rather than
only the first one. This approach inevitably leads to a suboptimal solution, and the
robustness and accuracy of this scheme are investigated in this thesis. The time over
which controls are applied will be referred to as the intermittency period, which depends
on the human refractory period ; defined as the period of time over which a nerve or
a muscle is unresponsive to further stimuli after being stimulated. The refractory
period length is closely related to cerebral activity. The steering signal applied over
the intermittency period will be referred to as a hold. Johns identifies a typical hold
length to be approximately 0.5 s and investigated holds further to determine their
nature. Two hold types are identified: Zero Order Hold (ZOH) – when the driver holds
the first control action calculated constant over the intermittency period – and Serial
Ballistic Hold (SBH) – when instances of the calculated control sequence are applied
up to the intermittency period. Figure 3.6 illustrates the characteristics of a controller
incorporating human limitations. The controller samples the states, which are assumed
to be known, at time k. The optimal controls, shown by the dashed line, is calculated
over the prediction horizon, Np. In traditional MPC only the first instance of the
control sequence is applied to the system. In this case it would be up to k+1. In order
to account for the driver cognitive limitations, the controls will be applied over the
intermittency period, up to k +Ni, where Ni is the intermittency period. The ZOH
control is shown as the solid red line; the signal is calculated assuming it is constant
over the intermittency period Ni and the first instance is applied. In the case of SBH,
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shown by the dotted line, the actual control sequence is applied up to k + Ni. The
controls are suboptimal after k+1 if the system is perturbed. Figure 3.6 also shows the
predicted vehicle states, dotted black line, and actual vehicle states, solid black line. If
the optimal control sequence is applied in absence of disturbances in a traditional MPC
fashion, the vehicle states are the same as the predicted states from the optimisation.
In the presence of disturbances, as in this case, the actual vehicle states will not be
the same as the predicted ones. The controller intermittency period needs to be short
enough for the controller to keep the disturbed states bounded.

Figure 3.6: Sketch illustrating the core characteristics of the controller.

Johns showed that drivers are more likely to adopt an SBH approach. In order to
include the driver cognitive limitations so far described, SBH intermittent control will
be assumed for this work.

3.3.5 Cost function

The cost function J(x,u) needs to minimise the lateral offset and ensure the bandwidth
of the input signal to the neuromuscular system is computable by a human. The
proposed cost function is

J = nT q1n+ (ξ − vnom/unom)
T q2(ξ − vnom/unom) + δ̇

T

comq3δ̇com (3.28)

where qn are the cost function weights, bold italic indicates a vector over the whole
prediction horizon, the subscript nom the nominal value of the signal and all other terms
have been previously defined. u indicates the vector of longitudinal vehicle velocities.
A quadratic cost function has been chosen because of its numerical tractability. The
term nT q1n minimises the lateral offset. This term of the cost function shows the
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clear advantage of the intrinsic formulation: the lateral offset can be expressed as
state of the system and enters the cost function as a simple quadratic term. The term
(ξ − vnom/unom)

T q2(ξ − vnom/unom) penalises the heading of the vehicle, effectively
targeting the the rate of change of the lateral offset. The last term δ̇

T

comq3δ̇com penalises
the rate of the change of the commanded steering angle to the neuromuscular system,
avoiding unrealistic frequency content. This term penalises the signal coming out of
the brain, hence serving a different purpose to the NMS filter.

3.3.6 Constraints

A number of constraints are needed to complete the description of the problem. The
dynamics of the vehicle define the most important constraint, the equality constraint
which can be conveniently expressed in state space ẋ = f(x,u) from Eq. 3.10. The
states of the vehicle are obtained by its dynamics, described in Section 3.3.3, the
driver neuromuscular system, Eq. 3.24 and the track, Eqs. 3.13 3.14 and 3.15. All the
equations are multiplied by sr, defined in Eq 3.16 to change the independent variable
from time to distance. There are no inequality constraints on the system as it only
has to follow the nominal line. However, a constraint is put on the tyre slip to limit
the search space to realistic tyre slip. This is done purely to make the numerical
problem more tractable. The slip constraint is at twice the saturation slip to ensure
the controller can explore the totality of the tyre curve. Hence

α < 2αsat (3.29)

where α is the lateral slip and αsat is the saturation slip.
All terms in Eq. 3.10 have been defined. The states of the vehicle by Eqs. 3.13,

3.14, 3.15, 3.17 and 3.24 which result in the following system of equations:

v̇ = sr

(
1

M
(Fyf + Fyr + Fydist)− uω

)
(3.30)

ω̇ = sr

(
1

Iz
(aFyf − bFyr +Mdist)

)
(3.31)

ξ̇ = srω − Ωz (3.32)

ṅ = sr (u sin(ξ) + v cos(ξ)) (3.33)

δ̈sw = sr

(
−2ζωnδ̇sw − ω2

nδsw + ω2
nδcom

)
(3.34)

The cost function is defined in Eq. 3.28.
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3.4 Combined controller

The controller framework so far developed can be easily extended to include the
longitudinal dynamics as the problem formulation is very similar; relying, as it does,
on the same robust control ideas. In fact, the general formulation cast in Section 3.3.1
is valid for a longitudinal scheme as well. The vehicle, driver and tyre model have to
be adapted to include the effect of varying speed to redefine the various terms of Eq.
3.10.

3.4.1 Vehicle model

The vehicle longitudinal dynamics are captured by a simple trolley model, which allows
the vehicle to change its speed. Wheel dynamics are neglected, as spinning wheels
are characterised by fast dynamics which would significantly increase the numerical
complexity of the problem without any great improvement in accuracy [84]. This is
due to the small inertia of the wheel compared to the overall vehicle. The control
inputs for the longitudinal dynamics are therefore the front and rear longitudinal slip,
which enter the equation through the tyre model. The two are treated as independent
control inputs. A longitudinal disturbance is also added to the system as a force acting
longitudinally through the centre of mass.

Figure 3.7: Trolley model showing the forces and the longitudinal force distur-
bance

The equation of motion of the vehicle are different from 2.1 because wheel dynamics
are not accounted for. They can therefore be expressed as

M(v̇ + uω) = Fyf cos δ + Fxf sin δ + Fyr + Fy,dist (3.35)

Izω̇ = a(Fyf cos δ + Fxf sin δ)− bFyr +Mdist (3.36)

M(u̇− vω) = Fxf cos δ − Fyf sin δ + Fxr − Fax + Fx,dist (3.37)
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where δ is the steering angle at the tyres, M is the total mass, Iz the total yaw moment
of inertia about the centre of mass, v the lateral velocity, u the forward velocity, F
is force, y indicates that it is lateral,x that is longitudinal, f and r are front and rear
respectively, Fy,dist the lateral disturbance,Mdist the moment disturbance, Fx,dist the
longitudinal disturbance, ω is the angular yaw rate and a and b the distance of the
centre of mass from the front and rear axle respectively. Small angles have not been
assumed because the longitudinal component of the front tyre force has an effect on the
speed, so (3.35) and (3.36) include trigonometric expressions while (3.17) and (3.18)
do not. An aerodynamic force is introduced by the term Fax. Aerodynamic drag is
assumed to take the simple form

Fax =
1

2
CxρAxu

2 (3.38)

where Cx is the drag coefficient and all other terms have already been defined.

3.4.2 Tyre model

The tyre model has to take into account the lateral, longitudinal forces and the effect
of the friction circle. The tyre model used by Kelly in [23] is adopted. The model is
a parameter-reduced version of Pacejka’s, the same used in Section 3.3.3 for lateral
dynamics, sacrificing control over the curve shape for numerical simplicity. The ability
to model very specific – and uncommon – tyre-surface characteristics is not relevant as
the aim of this work is to evaluate the controller performance at the limit of handling
and not to replicate very specific tyre force-slip characteristics. Furthermore, all the
experimental work is done on asphalt, which can be reproduced by the proposed tyre
model. The lateral slips are defined in Eq. 3.19 and Eq. 3.20. Pacejka’s convention is
used to define the longitudinal slip

κ = −u− rΨ

u
(3.39)

where u is the forward speed, r is the wheel radius and Ψ is the wheel angular speed.
The combined slip is defined as

ϵ =
√
α2
n + κ2n (3.40)
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where αn and κn are the normalised slip which are defined as

αn =
α

αmax

(3.41)

κn =
κ

κmax

(3.42)

where αmax and κmax are the maximum lateral and longitudinal slip and are parameters
of the tyre model. The maximum force in the lateral and longitudinal direction is
assumed to be a function of the vertical force and the coefficient of friction which is
defined as

µx = µxmax sin(Qx arctan(Sxϵ)) (3.43)

µy = µymax sin(Qy arctan(Syϵ)) (3.44)

where Sx and Sy are defined as

Sx =
π

2 arctan(Qx)
(3.45)

Sy =
π

2 arctan(Qy)
(3.46)

where all terms have been previously defined. Finally, the lateral and longitudinal
forces can be expressed as

Fx = µxFz
κn
ϵ

(3.47)

Fy = µyFz
αn

ϵ
(3.48)

Fig. 3.8 shows the force slip characteristics for a tyre with the following parameters:
µmax,y=1.2734, µmax,x=1.2736, Qy=1.5978, Qx=1.6092, αmax=0.0897, κmax =0.0902.
These parameters have been obtained by the author while testing the tyre fitting
algorithm used in Chapter 5 and Chapter 6. Saturation is present in the both the
lateral and longitudinal direction, with only a slight asymmetry present.
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Figure 3.8: Tyre force surface as a function of lateral and longitudinal slip

3.4.3 Cost function

The cost function needs to be expanded to account for longitudinal dynamics. An
expression for cost function is given and all terms explained

J = nT q1n+ (ξ − vnom/unom)
T q2 (ξ − vnom/unom) + δ̇

T

comq3δ̇com+

(V − V nom)
T q4(V − V nom) + κ̇T

f q5κ̇f + κ̇T
r q6κ̇r + (κf + κr)

T q7(κf + κr)
(3.49)

where all vectors are up to prediction horizon,u is the vector of forward velocities,
and nom indicates nominal. The first three terms are the same as for the lateral
controller: minimising the lateral path error, the heading of the vehicle and δ̇. The
difference between the total velocity V =

√
v2 + u2 and the total reference speed

Vnom =
√
v2nom + u2nom only minimises the difference in speed magnitude but not in

direction. However, (ξ − vref/uref)
T q2(ξ − vref/uref) ensures that the heading is

correct. κ̇f and κ̇r are also minimised to avoid unrealistic frequency content in the
longitudinal slip controls. Finally, the sum of the squares of front and rear longitudinal
slip is also minimised with a very low weight q7 to encourage the driver not to accelerate
and brake at the same time.

3.4.4 Constraints and filter

A filter is also added to the longitudinal dynamics to replicate the neuromuscular
behaviour of the driver. The same filter is added for the front and rear slip and takes
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the same form as the NMS filter imposed on lateral dynamics.

κ̈p + 2ζnωnκ̇p + ω2
nκp = ω2

nκcom (3.50)

where p indicates the applied signal and com commanded. Lateral and longitudinal tyre
slips are also constrained to avoid unrealistic values of slip. Again, the constraint is
put at twice the maximum slip angle the vehicle can achieve.

α < 2αsat (3.51)

κ < 2κsat (3.52)

where κ denotes the longitudinal slip for front and rear tyres. The front slip is also
constrained to be less than zero, so it can only be used in braking

κf < 0 (3.53)

The model is fully characterised. The complete system of equations for the longitu-
dinal case is:

v̇ = sr

(
1

M
(Fyft + Fyrt + Fydist

)
− uω (3.54)

ω̇ = sr

(
1

Iz
(aFyft − bFyrt +Mdist)

)
(3.55)

u̇ = sr

(
1

M
(Fxft + Fxrt + Fxdist) + vω

)
(3.56)

ξ̇ = srω − Ωz (3.57)

ṅ = sr(u sin(ξ) + v cos(ξ)) (3.58)

δ̈sw = sr(−2ζωnδ̇sw − ω2
nδsw + ω2

nδcom) (3.59)

κ̈p = sr(−2ζnωnκ̇p − ω2
nκp + ω2

nκcom) (3.60)

The parameter for the NMS filter are assumed to be the same for lateral and
longitudinal controls.
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The total forces can be expressed as

Fyft = Fxf sin
δsw
Gsw

+ Fyf cos
δsw
Gsw

(3.61)

Fxft = Fxf cos
δsw
Gsw

− Fyf sin
δsw
Gsw

(3.62)

Fyrt = Fyr (3.63)

Fxrt = Fxr (3.64)

Vertical forces are described by Eq. 3.26. Small angle approximations have not been
adopted because the longitudinal force of the front tyre in steering is relevant to speed
control. More specifically, approximating to 0 the term sin δsw

Gsw
in Eq (3.62) would lead

to a significant error in the modelling of the longitudinal dynamics because when Fyf

is large, the braking action is not negligible.

3.5 Solution routine

A direct method is preferred because the conditions for optimality do not have to be
directly imposed on the continuous system, allowing for easy incorporation of different
driving strategies, such as SBH and ZOH. ICLOCS, a open-source optimisation suite
from Imperial College [131], has been chosen to implement the optimisation. The
problem is first transcribed using a multiple shooting approach to increase the robustness
of the solution. The CVODES package is used to determine the solution to the initial
value problem. Data structures for the partial derivatives of the stage cost, the
constraints and the system dynamics are found numerically. The resulting discrete
problem is then solved using IPOPT, an interior point algorithm implemented in C++
which interfaces with Matlab through a Mex file. IPOPT is a particularly efficient
algorithm, which eliminates the inequality constraints introducing barrier logarithmic
functions. IPOPT uses the Fortran based MA57 matrix solver to deal with the large,
sparse matrices that are obtained when evaluating inequality constraints. Further
details on the architecture of IPOPT can be found in [131]. The solver parameters are
summarised in Table 3.1. Results are shown in Chapter 4.

3.6 Summary

This Chapter details the derivation of the lateral and longitudinal controller and the
relevant theoretical background.
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Table 3.1: ICLOCS parameters

Parameter Function Value
options.derivatives Derivatives calculation Numeric

options.transcription Transcription method Hermite
options.hessianFD Hessian matrix calculation method central
options.NLP solve Non linear problem solver ipopt
options.ipopt.tol Ipopt tolerance 1e-10
options.ipopt.mu Logarithmic barrier strategy adaptive

Optimal control and robust control theory is described first. The problem for the
lateral controller is then cast and the track and vehicle models described. The model is
then enriched with various features to mimic actual driving behaviour and subsequently
extended to include longitudinal dynamics. An overview of the solution methodology
is also presented.

The contribution to knowledge of this Chapter is the design of a controller than can
mimic the action of a human driver stabilising a vehicle at the handling limit under
the action of random disturbances. Several published controllers can achieve stability
for a vehicle with saturating tyres, however, none considers disturbances and human
limitations in such context.



Chapter 4

Controller performance assessment

4.1 Introduction

Optimal and robust control have been used in Chapter 3 to propose a controller which
can stabilise vehicles at the handling limit under the action of disturbances. Two
separate formulations for lateral and combined controls have been considered. The
aim of this Chapter is to gain insight into the performance of the controllers as well
as assessing the effect the model parameters have on the output. A variety of driving
scenarios are selected to highlight the features of the controller.

The performance of the lateral controller is assessed first. Scenarios with increasing
levels of non-linearity are considered to determine if the control action can stabilise the
vehicle at the handling limit. The chosen target path is a circle, as it allows assessment
of the vehicle’s behaviour about a steady operating point. Two vehicle configurations
are considered to evaluate the different driving strategies: Under Steering (US) and
Over Steering (OS). A parameter study is then carried out to assess the effect of the
main controller parameters. Since this work focuses on mimicking a human driver, the
following driver parameters are considered: the NeuroMuscular System (NMS) cut-off
frequency (ωn), the update time Tu and the penalty on the hand wheel angle steering
rate q3.

The combined controller is then considered. Adding longitudinal controls signifi-
cantly increases complexity, particularly for highly nonlinear manoeuvres where the
coupling between lateral and longitudinal dynamics is significant. The controller is first
tested on a circular path at constant speed in a highly nonlinear scenario to show that
the lateral and longitudinal controls can stabilise the vehicle at the limit of handling. A
more realistic driving scenario, a 90 degree manoeuvre is then considered to show that
the controller can track and stabilise the vehicle as speed and target path curvature
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vary. Finally, a parameter study is carried out, not only to assess the effect of driver
parameters on the controller performance, but also to investigate the coupling between
the lateral and longitudinal dynamics.

Section 4.2 details the baseline parameters used for both the lateral and combined
controller. Section 4.3 includes results for the lateral controller navigating a circle at
constant speed. The action of the combined controller is explored in Section 4.4.

4.2 Vehicle and driver model parameter values

An understanding of the vehicle’s and controller’s parameters is fundamental for
attempts to replicate the behaviour of a human driver. In order to structure the
analysis, they are categorised in the following way: vehicle parameters and driver
parameters.

4.2.1 Vehicle parameters

These parameters define the vehicle characteristics and its handling properties. They
only affect driver responses indirectly so they will not be considered in detail in the
parameter studies. The fundamental objective of the controller, which is to stabilise a
vehicle at its limit of adhesion, is tested together with the trade-off between path error
and control action. Baseline vehicle parameters are shown in Table 4.1. The baseline
values are the same as the vehicle model used in Chapter 2. Some of the parameters
are missing because of the differences in vehicle models discussed in Chapter 3.

The OS vehicle configuration is achieved by shifting the vehicle centre of mass
rearwards, setting a = 1.38 m and b = 0.92 m, effectively increasing the cornering
stiffness of the rear tyre as shown in [7].

Tyre parameters determine the slip force characteristics of the tyres and also
significantly affect the response of the vehicle, however, not being directly related to
the driver response, will not be investigated in depth. They are chosen to represent
a standard nonlinear tyre on asphalt, which saturates above a certain value of slip;
values, taken from [105], are shown in Table 4.4.

4.2.2 Driver parameters

Driver parameters chosen to explore the behaviour of the controller rather than to
attempt the behaviour of a human driver, which will explored in Chapters 5 and
6. The NMS values are chosen to replicate the bandwidth of an expert driver; they
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Table 4.1: Vehicle parameters from [105]

Parameter Symbol Value
Vehicle mass Mt 1050 kg

CoG to front axle distance a 0.92 m
CoG to rear axle distance b 1.38 m

Steer to road wheel angle ratio Gsw 17
Centre of Pressure (CoP) cp 0.5

Cross section area Ax 2 m2

Lift coefficient Cl 0.26
Drag coefficient Cx 0.35

Air density ρ 1.2 kg/m3

are adopted from Timings [105]. Optimal solutions are unaffected by changes in the
prediction horizon if this is long; running simulations for various prediction horizon
lengths showed that the threshold is around 3 seconds. A 4 seconds prediction horizon
is chosen to ensure it does not affect the behaviour of the controller. Johns [2] suggests
an update time of 0.5 s. If random disturbances are applied to the system, only the first
instance of the control sequence guarantees stability [102]. Even though the calculated
control sequence is optimal, if disturbances are applied the longer the sequence used,
the farther the system deviates from optimality. Error propagation depends on the
nature of the system [34]; an intrinsically stable US vehicle allows for longer update
times even when tyres are close to saturation while an unstable OS vehicle needs
higher frequency feedback [7]. Various tests showed that a 0.5 s update time does not
guarantee stability for OS vehicle. A brief heuristic study showed in fact that a 0.05 s
update time -which corresponds to only applying the optimal input- is necessary to
guarantee stability at the handling limit for an OS vehicle. Even though such as short
update time would only be necessary for the OS vehicle at the limit of adhesion, the
same value is also used for the other runs to make them comparable and facilitate the
analysis. The update time is not representative of a human driver, but at this stage
the focus is on the performance of the controller rather than its accuracy in replicating
human driving actions, which will be considered for the validation in Chapters 5 and 6.
Driver parameters, shown in Table 4.2, are taken from [93] and they represent a skilled
driver [93].

Cost function parameters also significantly affect driver’s response as they determine
the overall level of cognitive effort and how it is allocated. They are not directly related



4.2 Vehicle and driver model parameter values 75

Table 4.2: Driver parameters. Lateral and longitudinal NMS parameters are
assumed to be the same.

Parameter Symbol Value
NMS damping ratio ζn 0.707

NMS natural frequency ωn 18.85 rad/s
Update time Tu 0.05 s

Prediction horizon Ts 4 s

to physical quantities, hence choosing baseline values is inevitably heuristic. The
controller is only tested for robustness, so the cost function weights values are only
indicative and they are chosen to yield reasonable results. Firstly, penalty on LPE is set
to 1 and used as a reference; penalty on heading is also set to 1 so that it is penalised
less than the LPE, as the magnitude of the former is typically more than one order of
magnitude smaller than the latter. The frequency content of the HWA is penalised
with a smaller weight to ensure the driver can reject high frequency disturbances. The
penalty on the speed deviation, is the same as the one on the LPE, so the driver
allocates the same cognitive resources to speed and path tracking. Again, the choice is
arbitrary and a real driver may opt for a different strategy but this will be discussed in
details in Chapter 5 and Chapter 6. The weights on κ̇f and κ̇r are chosen to yield a
prompt longitudinal response. Finally, q7 is chosen to avoid braking and accelerating
on the straight without affecting the longitudinal controls significantly. It is found
that given that a value of 0.0001, does not affect the vehicle behaviour yet ensures
that accelerating and braking do not happen simultaneously on the straight. Table 4.3
shows the baseline cost function values.

Table 4.3: Cost function parameters

Parameter Symbol Value
Penalty on deviation from nominal path q1 1

Penalty on deviation from nominal heading q2 1
Penalty on hand wheel angle speed q3 0.0001

Penalty on deviation from nominal speed q4 1
Penalty on front longitudinal slip rate q5 0.001
Penalty on rear longitudinal slip rate q6 0.001

Penalty on longitudinal slip sum q7 0.0001
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Tyre parameters are chosen to represent symmetrical, standard tyres and are taken
from [105]. All the baseline parameters are shown in Tables 4.1, 4.2, 4.3 and 4.4. The
same values were used for the bicycle model in Chapter 2 but are also reported here
for completeness.

Table 4.4: Nominal tyre parameters. The tyre is symmetric in the x and y
direction.

Parameter Symbol Value

Lateral stiffness factor Qy 1.6

Maximum lateral slip αmax 0.12

Lateral friction coefficient µy 1.3

Longitudinal stiffness factor Qx 1.6

Maximum longitudinal slip κmax 0.12

Longitudinal friction coefficient µx 1.3

4.2.3 Disturbances

Disturbances are added to assess how the controller stabilises the vehicle as it deviates
from the reference trajectory. A random disturbance force is added to each of the three
degrees of freedom of the vehicle. A lateral force, Fy,dist acting perpendicularly to the
centre of mass (CoM), disturbs the vehicle laterally, a longitudinal force, Fx,dist acting
parallel to the vehicle centreline disturbs the vehicle longitudinally and a yaw moment,
Mz,dist acting at the centre of mass (CoM). These disturbances are described in detail
in Section 2.4. The nature of the disturbances is arbitrary and can be changed to
investigate the behaviour of the controller under different conditions. Such random
disturbances represent not only the unpredictable factors that characterise driving
– such as road roughness and wind speed – but also mismatches between predicted
model and real model. The nominal value of the standard deviations of the forces and
moments is taken from Ulsoy et al. [111] and included in Table 4.5.

For the parameter study in Section 4.4.3, a pulse disturbance is also introduced to
understand how the driver model recovers from a loss of grip.
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Table 4.5: Disturbance values

Parameter Symbol Value
Fy,dist standard deviation σF,y 730 N
Fx,dist standard deviation σF,x 1430 N
Mz,dist standard deviation σM,z 360 Nm

Figure 4.1: Handling diagrams for the US vehicle. Operating points for both
US cases, are shown. Stability margins are not shown because US vehicles are
always stable.

4.3 Lateral controller results

The lateral controller is first tested in a simple scenario where the vehicle navigates
a target circle at constant speed. The nominal solution is clearly a constant steering
angle, whose magnitude depends on the radius of the circle, the speed and the vehicle
configuration. Since the nominal solution is constant, the effect of disturbances is
apparent. This set up readily allows for changes in the slip level, so as to explore the
totality of the tyre curve. The aim of this simulation is to demonstrate that the lateral
controller can compensate for disturbances acting on the vehicle when the tyres are in
the nonlinear part of the slip-force curve, particularly the saturation region.
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Figure 4.2: Handling diagrams for OS vehicle. The operating points for cases 3
and 4 are shown. The red and light blue solid lines tangent to the handling
diagram represent respectively the critical speeds for points 3 and 4. Point 3 is
stable because the critical speed at that point, represented by the tangent to
the curve, is higher than 30 m/s. Point 4 is unstable because the critical speed
is lower than the vehicle speed.

Two vehicle configurations, Under-Steered (US) and Over-Steered (OS), are con-
sidered at different slip levels for a total of four cases; these are described in Table
4.6. An US and an OS vehicle have been chosen because, whilst the former is easier to
handle and highlights the compensatory action of the controller, the latter is unstable
at the speed and radius it is tested; it is therefore an ideal test for the robustness of the
controller. Two linear cases, Case 1 and Case 3, are considered to provide predictable
solutions against which the nonlinear ones can be compared. Furthermore, they serve
as a preliminary validation; observing trends such as decreasing HWA for similar slip
levels confirms that the controller behaves as expected. Both US and OS vehicle cases
are tested at the handling limit – Case 2 and Case 4 – to show that saturating tyres
do not cause instability. For each case, the HWA, LPE, slips and side-slip angle are
shown.

The states of vehicles in all four tests converge to a steady state solution. Handling
diagrams are an useful way to graphically represent non-linear steady cornering solutions.
The method is established and reported in details in [7] so only an overview is provided
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here. The following force balance can be derived for the steady state solution of the
bicycle model

Fy,f

Fz,f

=
Fy,r

Fz,r

=
ay
g

(4.1)

where ay is the lateral acceleration. Eq (4.1) states that the ratio of the normalised tyre
loads is equivalent to the normalised lateral acceleration. Considering the kinematic
relationship

δ − (αf − αr) =
wb

R
(4.2)

where wb is the wheelbase and R the radius of the circle, a plot of αf − αr against
ay/g, usually referred to as handling diagram, can be obtained by subtracting the
normalised tyre characteristics. The diagram is completed by adding the straight line
that shows the relationship between lateral acceleration and the relative path curvature
at constant speed.

The handling diagram can be used to find the equilibrium conditions for a vehicle
with nonlinear tyres navigating a circle at constant speed by shifting the speed line to
the left over a distance equal the steering angle. The handling diagram can also be
used to assess the stability of the vehicle. The critical speed, which only applies to OS
vehicles, can be found by finding the tangent to the handling diagram at the operating
point. If the vehicle speed is greater than the critical speed, the vehicle is unstable.

Figure 4.1 shows the handling diagram, solid red line, for the US vehicle and the
speed line for 40 m/s, dashed line. This line is shifted to find the two operating
equilibrium points, 1 and 2. The shifted lines are shown as dashed-dotted lines. These
are for the undisturbed vehicle. The US vehicle is always stable so stability margins
need not to be investigated.

In Figure 4.2 the solid black thick lines shows the handling diagram for the OS
vehicle. The speed line for 30 m/s is shown as a dashed line. The line is shifted to find
the equilibrium for point 3; the steering necessary to achieve it is small. This point is
stable as the tangent to the curve, solid red line, is steeper than the speed line for 30
m/s. Point 4 is essentially on the handling diagram, in fact the steering necessary to
turn the vehicle is essentially 0. The tangent has lower gradient than the vehicle speed
line, indicating that the vehicle is unstable.

4.3.1 Under Steering (US) vehicle

Figure 4.3 shows the results for Case § 1, where an US vehicle navigates a 200 m radius
circle at 40 m/s. Tyres are operating beyond the linear region but before saturation,
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(a) Hand Wheel Angle (b) Front and rear slip

(c) Lateral Path Error (d) Side-slip angle

Figure 4.3: US vehicle navigating a 200 m radius circle at 40 m/s under the
action of disturbances. Tyres are just out of the linear region but far from
saturation. The controller is successful at rejecting disturbances and bounding
the states. In order to judge the frequency content, the distance travelled can
simply divided by 40 to obtain the corresponding time into the simulation.
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(a) Hand Wheel Angle (b) Front and rear slip

(c) Lateral Path Error (d) Side-slip angle

Figure 4.4: US vehicle navigating a 110 m radius circle at 40 m/s under the
action of disturbances. Even though tyres are saturating the controller is
successful at rejecting disturbances and bounding the states. In order to judge
the frequency content, the distance travelled can simply divided by 40 to obtain
the corresponding time into the simulation.
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Table 4.6: Testing conditions for the lateral controller. Four cases are considered
to explore the capabilities of the controller and asses its ability to reject
disturbances. Different velocities have been used to show that the controller is
able to stabilise fast as well as slower vehicles.

Case Nonlinearity Vehicle configuration Radius (m) Speed (m/s)
§ 1 Mild US 200 40
§ 2 High US 110 40
§ 3 Mild OS 120 30
§ 4 High OS 80 30

so the action of the controller is focussed only on rejecting disturbances. Figure 4.3a
shows that the Hand Wheel Angle (HWA) is characterised by a high frequency response.
Since disturbances have zero mean, the HWA mean is very close to the steady state
value. The effect of tyre nonlinearity is small because for this test deviations from the
steady state value are small. The frequency of the oscillations would be lower if the
update time were higher, so the results are not representative of a real human driver.
Again, the validation in Chapter 5 and 6 will consider a more accurate comparison
with an actual human driver. Figure 4.3b shows that the front slip is greater than the
rear slip, as expected for a US vehicle. Both slips are far from saturation, indicated
by the dotted line. Again, oscillations around the nominal value are present due to
disturbances. Figures 4.3c and 4.3d show that the controller successfully manages to
keep the Lateral Path Error LPE and the side-slip angle bounded. The mean LPE
is not zero because integral action is not present. This applies to all cases. Case §2
provides a more interesting set of results, shown in Figure 4.4. The radius of the circle
is reduced to 110m to push the tyres into the saturation region. Figure 4.4a shows
that the controller operates in a radically different fashion under these conditions.
Steering corrections are characterised by high amplitude and low frequency. The tyre
force-slope has a low gradient, which implies that large changes in HWA are necessary
to change the tyre forces to reject disturbances. Since changes are large, the frequency
is lower because δ̇ is limited by the cost function. As shown in Figure 4.4b, the front
slip is significantly higher than the rear, and even though it goes well beyond the
saturation point, the controller successfully stabilises the vehicle. The magnitude of
the slip increases suddenly and significantly as it crosses the saturation point. This
is due to the disturbances pushing the tyres into the negative slope region. Since the
force disturbance is normally distributed, peaks of 4σ can have a significant effect
when the vehicle is at the limit of adhesion. Figure 4.4c confirms that the LPE is
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effectively bounded and the vehicle manages to follow the target path. Finally, Figure
4.4d shows that the side-slip angle follows a pattern which is very similar to the steering,
characterised by the superposition of high and low frequency dynamics. Again, the
controller successfully manages to bound the side-slip angle despite the saturating
tyres, ensuring good path tracking.

4.3.2 Over Steering (OS) vehicle

Results for Case §3 are shown in Figure 4.3. Even though speed and radius for Case §1
and Case §2 are not the same as for Case §3 and Case §4, the slip level is similar, making
a qualitative comparison reasonable. The compensatory action of the HWA, shown in
Figure 4.5a, around the nominal value, which is approximately 0.14 rad, successfully
stabilising the vehicle. At equivalent slip levels, the OS vehicle HWA in Figure 4.5a
is considerably lower than the US vehicle HWA in Figure 4.3a, confirming that the
model behaves as expected. This follows from the fact that the understeer coefficient –
a linear concept which can extended to a nonlinear vehicle operating at constant slip
– decreases as the centre of mass is moved towards the rear of the vehicle. A more
comprehensive discussion of this standard result in vehicle dynamics can be found in
[7]. The Lateral Path Error (LPE), Figure 4.5c is bounded and small but has a higher
absolute value than its US counterpart. The difference is attributable to the steering
characteristics and the open loop response of the different vehicle configurations [25].

The radius is reduced in Case §4 to assess the performance of the controller for
a saturating vehicle. In fact, Figure 4.6a shows that the mean of the HWA is close
to zero. The vehicle speed is higher than its critical speed at that operating point,
as indicated by the handling diagram in Figure 4.2, which means that the vehicle is
beyond its stability limit. The steering activity is characterised by a high frequency
and high amplitude response, necessary to avoid instability. The rear slip steady state
mean is again significantly larger than the front, as per the nature of the vehicle. The
variation in front slip angle is greater than the rear because it is a function of the
HWA activity. The LPE, Figure 4.6c, is characterised by a steady state error and
oscillates around that value. The constant offset is caused by the vehicle being just
above the limit of adhesion, with tyres that cannot provide enough force to keep it
on the nominal line and the absence of an integral term in the cost function. Finally,
the sideslip angle, 4.6d, is the largest of all the four runs so far analysed, the reason
having been outlined in the previous paragraph.
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(a) Hand Wheel Angle (b) Front and rear slip

(c) Lateral Path Error (d) Side-slip angle

Figure 4.5: OS vehicle navigating a 120 m radius circle at 30 m/s under the
action of disturbances. Tyres are just out of the linear region but far from
saturation. The controller is successful at rejecting disturbances and bounding
the states. In order to judge the frequency content, the distance travelled can
simply divided by 30 to obtain the corresponding time into the simulation.
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(a) Hand Wheel Angle (b) Front and rear slip

(c) Lateral Path Error (d) Side-slip angle

Figure 4.6: OS vehicle navigating an 80 m radius circle at 30 m/s under the
action of disturbances with tyres saturating. The controller is successful at
rejecting disturbances and bounding the states. The vehicle is clearly very
difficult to stabilise – in fact significant steady state LPE is present. In order
to judge the frequency content, the distance travelled can simply divided by 30
to obtain the corresponding time into the simulation.
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4.3.3 Lateral controller parameter study

The controller in its baseline configuration is able to stabilise the vehicle for highly
nonlinear manoeuvres and unstable configurations, confirming the robustness of the
proposed formulation. The effect of the key parameters can now be considered to gain
a better understanding of the operation of the controller and to further confirm that it
behaves as expected. A parameter study on all the model parameters would obviously
be infeasible given the large number of parameters involved. The effect of changing
the centre of mass position has already been explored in Section 4.3.2, establishing
that the controller behaves as expected. The focus of this section is to explore driver
behaviour and cognitive load. As such, those parameters affecting driver behaviour are
considered in most depth. These are:

• The NMS cut-off frequency, which affects the bandwidth of the compensatory re-
sponse control of the driver. The bandwidth characteristic of the driver influences
the closed loop behaviour significantly. [6].

• The penalty on the hand wheel angle speed q3, which is a primary determinant
of the steering action characteristics [105].

• The update time, which determines how frequently the driver performs optimisa-
tions to calculate control sequences.

The US configuration described in Section 4.2 is not representative of a real driver;
some of the parameters – such as update time – are chosen to ensure the controller
can stabilise vehicles at the stability limit. The main objective of this parameter study
is to understand the influence of the parameters of the driver model. It is therefore
necessary to modify some of the baseline parameter values described in Section 4.2
to achieve a more suitable baseline configuration. Firstly, the update time is set to
0.5 s to represent a real human driver. Secondly, the NMS natural frequency is set
to 1 Hz, in the middle of the human-achievable bandwidth. Moreover, tyre stiffness
is decreased by 40 % to accentuate the effect of the disturbances and increase the
variation in controls as parameters are changed, making the results of the parameter
study easier to interpret.

The radius is of the circle is 160 m and the vehicle is travelling at 40 m/s. Figure
4.7 shows the equilibrium position on a handling diagram. Tyres are beyond the linear
region but not saturating. Extreme handling conditions are avoided because they
would make the effect of each parameter harder to isolate. The combined controller
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parameter study – Section 4.4.3 – investigates the effect of saturating tyres in details.
The disturbances are described in Section 4.2.3.

Figure 4.7: Handling diagrams for the parameter study; the speed is 40 m/s
and the radius is 160m.

A few terms are clarified. When referring to the Mean Square Spectral Density
(MSSD), the roll-off frequency indicates the boundary at which the signal starts being
attenuated. The roll off indicates the slope after the roll-off frequency. When referring
to the LPE, the time history is considered. An element of the LPE time history is
referred to as LPEk. The LPE standard deviation is defined as

σLPE =

√∑LPEnum

k=1 (LPEk − µLPE)2

LPEnum

(4.3)

where LPEnum is the number of elements in the LPE time history and µLPE is the
LPE mean. The LPE Root Mean Square (rms) is defined as

rmsLPE =

√∑LPEnum

k=1 LPE2
k

LPEnum

(4.4)

The LPE standard deviation is the time history probability density function standard
deviation and the LPE rms is the Root Mean Square of the time signal.

The first parameter to be considered is the NMS natural frequency. The baseline
configuration is 1 Hz, which is increased to 3 Hz and lowered to 0.2 Hz.

Figure 4.8a shows that, as the NMS natural frequency decreases, the standard
deviation of the HWA signal decreases, while the mean remains the same. Figure 4.8b
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shows the HWA MSSD. While the roll-off is the same for the three values, the roll-off
frequency for the 0.2 Hz case is significantly lower than for 1 and 3 Hz. This explains
the decrease in standard deviation 4.8a as the bandwidth of the NMS filter limits the
high frequency steering activity.

(a) Hand Wheel Angle probability density
function

(b) Hand Wheel Angle Mean Square Spec-
tral Density

Figure 4.8: HWA probability density function and HWA Mean Square Spectral
Density for a US vehicle navigating a circle at 40 m/s with tyres in the nonlinear
region but not saturating at three levels of NMS frequency.

The difference between 1 Hz and 3 Hz is very small compared to the 0.2 Hz result.
The reason for this behaviour is due to the penalty q3, which reduces the frequency
content of the HWA signal as shown in Figures 4.9a. Since the HWA MSSD is already
limited by the weight on the δ̇, increasing the NMS natural frequency will not have
any effect beyond a certain threshold. This result is very important for the validation,
as it shows that these two parameters are closely linked and have a similar effect on
the frequency response of the driver.

Figure 4.9a shows the significant effect changing q3 has on the HWA MSSD, affecting
both the roll-off frequency and the roll off. The lower q3, the higher the cutoff frequency
and the steeper the roll-off, resulting in improved path tracking capabilities due to the
increase in NMS bandwidth. It is also interesting to explore the idea that the penalty
is somewhat correlated to the effort the driver puts into driving the vehicle. In order to
show this, the LPE Root Mean Square (rms) and HWA speed rms are plotted as q3 is
varied. Figure 4.9b clearly shows that there is inverse correlation between HWA speed
and LPE. Increasing q3, which corresponds to limiting the "effort" [105] provided by
the driver, causes the LPE to increase.
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(a) Hand Wheel Angle Mean Square Spectral
Density

(b) Tradeoff between HWA speed and
LPE

Figure 4.9: HWA MSSD and tradeoff between HWA speed and LPE for a US
vehicle navigating a circle at 40 m/s with tyres in the nonlinear region but not
saturating for varying q3.

Finally, the effect of the update time is considered. Figure 4.10a shows that a shorter
update time decreases the LPE standard deviation significantly. This is expected, as
increasing the update time increases the degree of suboptimality of the solution. The
HWA MSSD, Figure 4.10b is not affected significantly, showing that the frequency
content is not necessarily correlated to the LPE.

4.4 Combined results

The lateral controller can successfully stabilise a nonlinear vehicle at the limit of
handling at constant speed as shown in Section 4.3. Longitudinal dynamics are added
to the system to account for speed changes, making the controller more representative
of actual racing. The changes to the model and the formulation are detailed in Chapter
3. The aim of this Section is to confirm that the controller can stabilise a vehicle at
the limit of adhesion using lateral and longitudinal controls. A particularly challenging
manoeuvre, a circle whose radius of curvature is smaller than a physically attainable
one, is analysed in Section 4.4.1 to test the effectiveness of the compensatory action
of the controller. A 90 degree corner where the nominal trajectory was generated by
an MPC controller is considered in Section 4.4.2 to evaluate the response in an actual
driving scenario.
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(a) Lateral Path Error probability density
function

(b) HWA Mean Square Spectral
Density

Figure 4.10: LPE probability density function and HWA Mean Square Spectral
Density for a US vehicle navigating a circle at 40 m/s with tyres in the nonlinear
region but not saturating for varying update time.

4.4.1 Circle

Various tests in Section 4.3 showed that the lateral controller can stabilise the vehicle
as it navigates a circle at constant speed under the action of disturbances, highlighting
the differences between OS and US vehicles. The same tests could be repeated for
the combined controller, however, a more challenging manoeuvre is chosen to better
highlight the characteristics of the controller.

The vehicle navigates target circle at constant speed whose radius is smaller than
the physically achievable one for the given tyre characteristics, speed and configuration.
For this particular test, the tyre parameters are given in Table 4.4, the speed is set
to 30 m/s, the vehicle is a US one and the radius is set at 55 m. The vehicle is
subjected to the lateral and moment disturbances described in Table 4.5 and Section
4.2.3. Longitudinal disturbances are not considered so as to isolate the effect of the
lateral disturbances and gain an understanding of how they can affect longitudinal
controls. The constraint on the lateral and longitudinal slip is removed to better
explore the behaviour of the controller. The parameter study in Section 4.4.3 considers
the effect of longitudinal disturbances.

If the lateral controller was tested under the same conditions, the vehicle would
find its equilibrium on a circle whose radius is larger than the target one, at constant
speed. Evidence of this behaviour was present in Case §4 of Section 4.3.2, where the
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vehicle was right at the limit of adhesion and the LPE showed a significant steady
state error. Even though no integral action was present, the steady state error was
significantly larger than the other cases so it is attributable to saturating tyres. The
test is not repeated for the lateral controller because, since speed would be constant,
comparing vehicle states would not be insightful.

This set-up forces the tyre to be in the highly nonlinear region of the curve. Clearly,
a trade-off between speed error and LPE is necessary because the tyres cannot provide
enough force to match the target path and speed. The nominal solution, without
disturbances, is superimposed on all Figures 4.11, indicating that the first section of
the time history is the transient response arising from the initial conditions. Steady
state is achieved in the second section, where the disturbed signals show the response
to random disturbances.

Figure 4.11a shows the HWA. The standard deviation of the signal is very significant
because of the highly nonlinear nature of the tyre curve at the operating point. The
HWA speed δ̇sw would be impossible to achieve for a human driver. The literature,
for instance [132], shows that the maximum achievable δ̇ is about 10 rad/s while the
simulated δ̇sw reaches values of 15 to 20 rad/s multiple times. The graph is not shown
because it would not add any further relevant information. The aim of the test is to
show that the controller can stabilise the vehicle at the very limit of handling, which
the extreme values demonstrate.

Figure 4.11b shows the LPE that, again, is far from zero, as the vehicle cannot
physically follow the nominal path. In absence of disturbances the lateral path error
would settle to a constant value such that the vehicle would end up on a concentric
circle with a larger radius. Due to the action of random disturbances, the vehicle
oscillates around the nominal solution. Figure 4.12 shows the path of the vehicle. After
the initial transient, the vehicle settles around a circle which has the same centre as
the reference and a larger radius.

Figure 4.11c shows the speed of the vehicle. The average speed is lower than the
target as the radius of the circle is too small for the vehicle to match both the target
speed and path.

The LPE and Speed Error relative magnitude depends on the cost function weights,
as there is an inevitable trade off between the two: tyre load can be decreased by
decreasing the velocity or increasing the LPE. The cost function weights q1 and q4

determine the nature of the trade-off.
Figure 4.11d shows the longitudinal slip of the front and rear tyres of the vehicle.

The front slip is zero for most of the manoeuvre as the vehicle is rear wheel drive;
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(a) Hand Wheel Angle (b) Lateral Path Error

(c) Vehicle Speed (d) Front and rear longitudinal slip

Figure 4.11: Vehicle navigating a 55 m radius circle at 30 m/s under the action
of disturbances. The radius of the circle is too small for the vehicle to track
the trajectory, so there is a steady state error in both speed and lateral path
error. Even though there are instances where both tyres are on the saturation
limit, the controller stabilises it successfully.
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significantly negative values are observed in 3 instances where the controller finds
necessary to apply braking torque at the front. This can be surprising because the
vehicle is below its target speed. However, the nominal speed and radius the controller
is tracking are different from the required ones due to them being beyond the vehicle
physical limits. The speed therefore oscillates around a lower value, around 25 m/s.
Even though the overall longitudinal torque is positive to overcome the longitudinal
component of the front tyre, the magnitude of the oscillations is large enough for the
controller to require a small braking torque in some instances. The rear slip average
value is positive because it needs to provide the torque to overcome air resistance and
overcome the front wheel longitudinal force component, which is slowing the vehicle
down. Since the front wheel steer angle values are large, this component is significant.

Figures 4.13a and 4.13b show that both the front and rear slip are well beyond
the saturation limit while the vehicle is still stable. This shows that the controller is
successful at stabilising the vehicle when the tyres are beyond saturation. Figure 4.14
shows the front and rear tyre saturation as a percentage of the maximum combined
slip throughout the manoeuvre. The initial transient causes both the front and the
rear to go well beyond saturation. Front and rear slip decrease in the subsequent part
of the manoeuvre.

Figure 4.15 shows the slips time histories with reduced vertical range. While the
front slip stays close to 100 %, sometimes lower, the rear is beyond saturation for
most of the manoeuvre. While the longitudinal action is needed to overcome the
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Figure 4.12: Vehicle path for a vehicle navigating a 55 m radius circle at 30
m/s under the action of disturbances. The radius of the circle is too small for
the vehicle to track the trajectory, so a constant LPE is present.
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(a) Front tyre slip (b) Rear tyre slip

Figure 4.13: Front and rear slip for a vehicle navigating a 55 m radius circle at
30 m/s under the action of disturbances. The radius of the circle is too small
for the vehicle to track the trajectory, so tyres saturate. The colorbar indicates
the tyre force (N)
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Figure 4.14: Slip time history showing that both front and rear tyres saturate
for most of the manoeuvre.

front tyre longitudinal force, the large rear slip level also suggests that the controller
accelerates to cause the rear tyre to saturate, effectively increasing its compliance and
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Figure 4.15: Slip time history with reduced vertical range to show the slip
around saturation. The rear saturates far more than the front.

making the vehicle easier to steer. This behaviour is difficult to isolate in this test; the
lateral/longitudinal coupling is investigated in more depth in Section 4.4.3.

4.4.2 Comparison with MPC controller

Nominal path and speed profiles used so far lead to steady state solutions in absence of
disturbances. While they are useful to gain a better understanding into the behaviour
of the controller, a more complex manoeuvre needs to be considered to assess the
behaviour of the controller in a more realistic scenario where speed varies. The 90◦

bend used in Chapter 2, Figure 2.3, is considered. The path and speed trajectories that
minimise manoeuvring time are found using an efficient MPC framework [133] and are
used as target trajectories for the NMPC controller. They are described in Section 2.3.

The first set of result examines how well the nonlinear controller tracks the nominal
path and speed in absence of disturbances. The driver and vehicle model used in [133]
is essentially equivalent to the one used for the nonlinear controller; there is however
one subtle difference worth mentioning. The wheel motion is neglected in the nonlinear
controller but considered in the MPC. The maximum absolute value of the acceleration
in the target speed trajectory happens in braking and it is about 1g, which, using the
wheel parameters in [133], leads to a total wheel inertial torque of 20 Nm, which is
around 1.5 % of the total torque. The effect is therefore negligible. The driver and
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vehicle parameter values used are the same as [133] to ensure results are comparable.
The cost function weights are those described in Section 4.2.2.

Given that the vehicle is at its handling limit, the task is challenging and it also serves
as a preliminary validation. Figure 4.16a shows the MPC and the nonlinear controller
HWA. The two driving strategies are very similar, with the nonlinear controller putting
in slightly less steering at the apex. Also, fewer oscillations are present at the beginning
of the corner and the manoeuvre is generally smoother. The different approach is due
to the difference in formulation. Firstly, the MPC linearises the system at every time
step whereas the nonlinear controller uses a direct collocation method. Secondly, the
NMPC cost function, which is described in Section 3.4.3, is different. While the MPC
minimises manoeuvre time, the nonlinear formulation tracks optimal states, effectively
using the MPC controller output as the target.

Figure 4.16b shows that the LPE is zero at the beginning of the manoeuvre and in
the order of 10−2 as the vehicle negotiates the corner. Figure 4.16c shows a good match
of the speed profiles with the vehicle accelerating, braking into the corner, hitting the
apex at constant speed and then accelerating to exit the corner. A closer look at the
difference in speed, Figure 4.16d, shows that the error is around 0.1 % for corner entry
to increase to about 1 % at corner exits, where tyres are close to saturation and both
lateral and longitudinal forces are needed. Figures 4.17a and 4.17b show that the whole
of the tyre curve is utilised, both laterally and longitudinally. Both tyres saturate in
both the lateral and the longitudinal direction, and the controller is able to stabilise
the vehicle in both braking and turning. The MPC controller, despite the difference in
δsw, exploits the tyre force in the same way.

After establishing that the controller can successfully track the optimal signals,
external disturbances are added to confirm that the stabilising action is not compromised
by random external forces. Disturbances are added to all the three degrees of freedom
of the vehicle and they are described in Section 4.2.3 and Table 4.5. The controller
manages to track the reference states as Figure 4.18 shows. A full set of results is not
shown here because it would be redundant and would not add any new or interesting
insights. Figure 4.18a shows that the LPE is higher in the middle of the corner, which
is where the tyres saturate laterally. Figure 4.17b shows that the maximum errors
in speed occur at corner entry and corner exit; that is at the highest moment of
longitudinal activity. For the disturbed system, the speed error, Figure 4.18b is on
average 30 % higher than the speed error for the undisturbed case, shown in Figure
4.16d, in the first section of the manoeuvre. At entry and exit, it is three times and
twice as large respectively.
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Figure 4.16: Comparison between the MPC and the nonlinear controller for
the 90 degrees corner shown in Figure 2.3.
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(a) Front slip (b) Rear slip

Figure 4.17: Nonlinear controller slips for the 90 degrees corner shown in Figure
2.3. Both front and rear tyres are saturating. The colorbar indicates the tyre
force (N).

Disturbed results could be compared to the results from the LQR controller described
in Chapter 2. One of the main research objectives of the thesis is improving the linear
controller as it is deemed unsatisfactory. The comparison could be done in a number
of ways, such as comparing time histories or statistics. However, drawing quantitative,
fact-based conclusions on which approach is better would only be speculative work
because of the lack of an objective, experimental benchmark. Observing that both the
LPE and the speed error increase as tyres saturate is consistent with the findings in
Chapter 2, for instance in Figure 2.10. More specific conclusions are difficult to obtain.
The fact that the NMPC manages to stabilise the vehicle as tyres saturate confirms
that the research objective is met, as the LQR would be unstable for the negative slope
region section of the tyre curve. An in-depth assessment of the controller accuracy is
performed in Chapters 5 and Chapter 6, where an experimental benchmark is available.
The LQR is not tested as it would not ensure stability for the tests performed to obtain
the experimental data.

4.4.3 Combined controller parameter study

The parameter study described in Section 4.3.3 is extended to the longitudinal case.
The main objective is to investigate the cross-coupling between steering control and
speed errors, and between wheel torque control and lateral path errors. Two scenarios
are considered to meet these objectives:
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Figure 4.18: Lateral Path Error and Speed error for the 90 degrees corner
shown in Figure 2.3 with nominal disturbances acting on the vehicle.

• An pulse in lateral force, longitudinal force or yaw moment is applied to the
vehicle at the centre of mass while the vehicle navigating a circle.

• Continuous random disturbances are applied to the vehicle.

Pulse disturbance

The control actions required to recover the vehicle from a disturbed set of states are
particularly sensitive to model parameters, making the scenario ideal for a parameter
study. These conditions are replicated by applying an pulse disturbance to the baseline
US vehicle navigating a circle at a constant speed of 30 m/s. The radius is changed
to achieve different slip conditions. Pulse disturbances are constant external forces or
moments acting on the vehicle over a single time step, essentially a Dirac delta function
shifted in time to allow the vehicle to achieve steady state, as shown in Figure 4.19.
Pulse disturbances are introduced on all three degrees of freedom.

The lateral pulse disturbance is a 1230 N force perpendicular to the centre of mass
pointing to the outside of the circle acting after the vehicle has travelled 200m along its
target path. The pulse magnitude has been chosen to increase the slip enough to cause
a significant corrective action, without causing the vehicle to spin. The value has been
found iteratively by trial and error. The yaw disturbance is a 960 Nm moment acting
at the centre of mass 200 m into the simulation. Finally, the longitudinal disturbance
is a 2240 N force acting longitudinally at the same point in distance.

Disturbances are not active for all tests. Different configurations in terms of
disturbances, variable parameters and constraints are used to meet the parameter
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Figure 4.19: Diagram showing the nature of the pulse disturbance. The force
at the beginning of the simulation is zero and then increases to Fmax over a
single time-step k to then return to zero. The moment disturbance takes the
same form.

study objectives. Table 4.7 shows the four Cases considered. The radius determines
the level of nonlinearity: mild for a 120 m radius and high for a 70 m radius. The
parameters that are varied are the cost function weights on the lateral and longitudinal
control activity. These are:

• The cost function weight q1 determines the penalty on the deviation from the
nominal trajectory.

• The cost function weight q3 determines the penalty on δ̇ magnitude.

• The cost function weight q4 determines the penalty on the deviation from the
nominal speed.

• The cost function weight q6 determines the penalty on κ̇r magnitude.

Each Case is run for three values of the study parameter, namely, 1E-7, 0.025 and
1, unless otherwise stated. Longitudinal disturbances denote a longitudinal force only,
while lateral disturbances denote a lateral force and a moment. The front longitudinal
slip is constrained to 0 in all cases to isolate the rear action. Each case focus on a
different aspect of the controller:
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• Case 1 focuses on longitudinal controls. There are only longitudinal disturbances
and lateral controls are constrained so the longitudinal action is isolated.

• Case 2 focuses on lateral controls. There are only lateral disturbances and
longitudinal controls are constrained so the lateral action is isolated.

• Cases 3 and 4 focus on the lateral/longitudinal interaction. Only lateral distur-
bances are present but both lateral and longitudinal controls are active.

Table 4.7: Test cases for parameter study with pulse disturbances. The
nonlinearity level is adjusted by changing the radius. The weights on the LPE
and u, i.e. speed, indicate which state is penalised.

Case Radius Disturbances Parameter Constraints q1 q4

1 120 Longitudinal q6 δ̇ & κ̇f 1E-3 10
2 120 Lateral and yaw q3 κ̇r & κ̇f 10 1E-3
3 120 Lateral and yaw q3 κ̇f 10 1E-3
4 70 Lateral and yaw q3 κ̇f 10 1E-3

In the following analysis, the term heading angle refers to the angle ξ, the angle
between the vehicle longitudinal axis and the target path described in Section 3.3.2.

In Case 1 the vehicle navigates the circle and a forward pulse longitudinal force
is applied at its centre of mass. The simulation is repeated for three values of q6, the
penalty on κ̇, 1E-7, 0.025 and 1. The lateral controls are not active and they do not
intervene, making the case straightforward to interpret. Figure 4.20a shows that, as q6
increases, the longitudinal action decreases and the speed error increases , Figure 4.20b.
This confirms that the longitudinal action and speed error are inversely proportional.

Case 2 focuses on confirming that lateral control action and LPE are inversely
proportional. The vehicle is disturbed laterally, q1 is high,10, and the test is repeated
for three values of q3, 1E-7, 0.025, 1. The longitudinal rear slip is constrained to zero
to isolate the lateral dynamics. Figure 4.21a shows that as q3 increases the control
action decreases. Figure 4.21b confirms that the less prompt the control action causes
an increase in the LPE. Figure 4.21c shows that the vehicle heading oscillates if the
control action is not prompt, causing a larger path error. It is also interesting to note
that the LPE for q3 = 1 is much larger than the other two cases, while the heading is
very similar. This shows that the LPE is more sensitive to the lateral force disturbance
than the yaw moment disturbance.
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(a) Rear Longitudinal Slip (b) Speed error

Figure 4.20: Rear longitudinal slip and speed error for Case 1 showing the
effect of changing the longitudinal controls’ weight. The legend indicates q6
values.

Case 3 is characterised by the same conditions as Case 2 but the longitudinal rear
slip is not constrained, with the aim of exploring the coupling between lateral and
longitudinal dynamics.

The HWA for Case 3, shown in Figure 4.22a, is the same as Case 2 for q3 = 1E − 7

and q3 = 0.025. Only the corrective action for q3 = 1 is smaller, with a peak to peak
value of 0.1 rad vs 0.15 rad. Since all conditions, but the longitudinal action, are the
same, this difference confirms that the lateral controls are affected by the longitudinal
action of the controller. The LPE, Figure 4.22b, follows a similar pattern: the response
for q3 = 1E − 7 and q3 = 0.025 is the same as Case 2 but the maximum amplitude
of the deviation for q3 = 1 is smaller, −0.08 m vs −0.12 m, indicating the mitigating
effect of the longitudinal action. The heading error, shown in Figure 4.22c, is also
reduced by about 30 % for q3 = 1. Figure 4.22d shows the HWA speed, which decreases
as the penalty increases.

Figure 4.23a shows the longitudinal action of the controller and the vehicle speed
error. Longitudinal controls intervene when the HWA action is not prompt. For the
first two values of q3, 1E-7 and 0.025, rear controls do not intervene as the LPE is
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(c) Heading Error
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(d) HWA speed

Figure 4.21: Key states and controls for Case 2 showing the effect of changing
the lateral controls’ weight. The legend indicates q3 values.
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(c) Heading Error
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(d) HWA speed

Figure 4.22: Key states and controls for Case 3 showing the effect of changing
the lateral controls’ weight and the interaction between lateral and longitudinal
controls. The legend indicates q3 values.
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(a) Rear longitudinal slip
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(b) Speed error

Figure 4.23: Rear longitudinal slip and Speed error for Case 3 showing the
effect of changing the lateral control weights and the interaction between lateral
and longitudinal controls. The legend indicates q3 values.

small but, as the HWA action becomes less responsive, negative slip is generated. The
braking action reduces the cornering stiffness of the rear tyre, increasing the turning
moment generated by the front force. The controller accelerates later to compensate
for the velocity error. Figure 4.23b shows that the speed error is small for the first two
cases because the longitudinal action is not significant, while it is significant in the
third case. The improvement in path tracking comes at the expense of a large speed
error; this is the result of the high q1/q4 ratio.

Case 4 replicates the conditions in Case 3, but at the limit of adhesion with the
front tyre saturating. This allows assessment of how the increase in nonlinearity affects
the rear longitudinal action. Figure 4.24a shows that the HWA decreases as the penalty
on q3 is increased. The control action variation is more marked than Case 3, because
of the low tyre stiffness near saturation. Thus, a large change in slip, and hence HWA,
is required to correct the lateral force. Figure 4.24b shows that the LPE increases as q3
increases. The LPE is significantly larger than in Case 3 because of the limited force
tyres can provide for a corrective action when close to saturation. Saturating tyres
have a significant effect on the heading error as well; Figure 4.24c in fact shows that
it is not very sensitive to changes in lateral control action. HWA speed follows the
expected pattern, decreasing as q3 increases, as Figure 4.24d shows.

Figure 4.25a shows that longitudinal controls intervene in all cases because the LPE
is large. This results in the speed error shown in Figure 4.25b but more importantly



4.4 Combined results 106

150 200 250 300 350
0

0.5

1

1.5

2

2.5

Distance (m)

H
a
n
d
W

h
ee
l
A
n
g
le
(r
a
d
)

1e−7
0.025
1

(a) HWA

150 200 250 300 350 400
−2

−1.5

−1

−0.5

0

0.5

Distance (m)

L
a
te
ra
l
p
a
th

er
ro
r(
m
)

1e−7
0.025
1

(b) LPE

150 200 250 300 350 400
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Distance (m)

H
ea
d
in
g
er
ro
r(
ra
d
)

1e−7
0.025
1

(c) Heading Error
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(d) HWA speed

Figure 4.24: Key states and controls for Case 4, showing the effect of changing
the lateral controls weight and the interaction between lateral and longitudinal
controls when the vehicle is saturating.
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(a) Rear longitudinal slip
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(b) Speed error
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(c) Rear lateral force
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(d) Rear longitudinal force

Figure 4.25: Rear longitudinal slip and speed error for Case 4 showing the
effect of changing the lateral control weights and the interaction between the
lateral and longitudinal controls when the vehicle is saturating. Rear lateral
and longitudinal forces are also included showing how the controller increses
the longitudinal slip to decrease the cornering stiffness of the tyres. The legend
indicates q3 values.
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in a decrease of the rear lateral force, shown in Figures 4.25c, again increasing the
turning moment of the front tyre. The longitudinal slip, Figure 4.25d, also decreases
significantly as a result of the braking action. Since the aim of the controller is
decreasing the rear tyre lateral stiffness, it could either increase or reduce the speed.
The latter is chosen because the heading of the vehicle is pointing away from the
reference path, hence covering more distance in the wrong direction would increase the
LPE.

Figure 4.26: Sketch of the vehicle for Case 4 as it is disturbed. Both the
heading angle and wheel angles in the sketch are not to scale to emphasise the
behaviour of the vehicle. Figure 4.25 shows the actual values. Rear and front
tyre circles are shown with arrows indicating the magnitude and direction of
the forces. The vehicle is shown at 200 m, 225 m, 275 m and 375 m.

Figure 4.26 shows four snapshots of Case 4 for q3 = 0.025 to illustrate the vehicle
time evolution as it is disturbed. The drawing is purely illustrative and does not
introduce any new quantity. Geometries have been exaggerated to show the behaviour
of the vehicle. The dotted circles around the tyres indicate the maximum available force
and the red solid arrows the actual forces. Force components parallel and perpendicular
to the vehicle longitudinal axis are also shown by the dotted arrows.

The first frame, taken at 200m, shows that as the vehicle is navigating the circle in
steady state before the pulse disturbance is applied. The lateral and moment pulse
disturbances are applied immediately after the frame. The vehicle is displaced laterally
and turned towards the outside of the circle. In the second frame, corresponding to
225m, it travels towards the outside of the circle. The lateral and longitudinal coupling
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becomes apparent here: the rear longitudinal slip increases, increasing the longitudinal
force, thus decreasing the effective cornering stiffness of the tyres, and making the
vehicle easier to turn towards the inside of the circle. While the LPE is still negative –
Figure 4.24c at 275 m – the heading error overshoots the equilibrium position in the
third frame. The rear slip becomes positive to accelerate the vehicle and to provide
the lateral force to turn the vehicle back to its equilibrium position. The fourth frame
shows the vehicle back to its equilibrium state.

Random disturbance

The response of the controller under the action of random disturbances is also considered.
The US vehicle in its baseline configuration navigates a 120 m radius circle at 30 m/s.
Tyres in the nonlinear region but far from saturation. The nature of the disturbances
is described in Section 2.4 white Gaussian noise with zero mean and an arbitrary
standard deviation. Figures 3.4 and 3.7 shows the model with the disturbances acting
on it. Given that the mean is zero, the direction of the force or moment is irrelevant.
The standard deviations values are included in Table 4.5.

Two cases are considered. In Case a1 a force and moment disturbance act on the
vehicle and q3 is varied logarithmically from 10E-6 to 10E0. In the second case, Case a2,
a longitudinal disturbance acts on the vehicle and q5 and q6 are varied logarithmically
from 1E-6 to 1E0. Disturbances are described in 4.2.3.

Figure 4.27 shows the relationship between the LPE and δ̇ for Case a1. As the
weight on δ̇ increases, its RMS decreases and the LPE increases as expected, showing
an inverse relationship between control effort and path tracking accuracy.

Figure 4.28, again Case a1, shows that as δ̇ decreases, κ̇ increases slightly. Even
though the variation is not dramatic, this test suggests a degree of lateral and longi-
tudinal coupling. In this case, the increase in longitudinal action does not affect tyre
cornering stiffness as tyres are not saturating so it is likely to be used to adjust the
speed, reducing it when the vehicle heading is not optimal. The overall effect on the
LPE is however negligible as Figure 4.27 shows that δ̇ is the main factor influencing
the LPE.
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Figure 4.27: LPE RMS vs δ̇ RMS for a US vehicle navigating a circle at constant
speed under the action of lateral disturbances – Case a1. Labels indicate the
value of q3.
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Figure 4.29: κ̇ RMS vs speed error RMS for a US vehicle navigating a circle at
constant speed under the action of longitudinal disturbances – Case a2. Labels
indicate the value of q5 and q6.
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Figure 4.28: δ̇ RMS vs κ̇ RMS for a US vehicle navigating a circle at constant
speed under the action of lateral disturbances – Case a1. Labels indicate the
value of q3.

Case a2 focuses on the longitudinal controls. The longitudinal slip weights q5 and q6
are both varied between 1E-6 and 1E0 simultaneously. Figure 4.29 shows that there is
an inverse relationship between longitudinal controls and speed error, again highlighting
the inverse relationship between control effort and speed tracking accuracy. Finally,
Figure 4.30 shows that the coupling between the lateral and longitudinal controls is
weaker when longitudinal disturbances are applied. The δ̇ range is in the order of
1E-3 while the variation in Case a1 was in the order of 1E-1. Despite its magnitude,
there is a clear trend that shows an increase in δ̇ for increasing κ̇. Interestingly, the
LPE range, not shown as it would not add any relevant insight into the behaviour
of the controller, is 1E-6 so it is not the cause for the δ̇ increase. The vehicle travels
slightly slower than the reference speed. As κ̇ increases, the speed error reduces and
the vehicle travels slightly faster, which increases the mean δ necessary to navigate the
circle as the vehicle is US. The tyre curve, despite not saturating, is still nonlinear so
an increase in the operating point can decrease the local stiffness, hence an increase in
steering activity. This effect is almost negligible but relevant to explain the δ̇ increase.
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Figure 4.30: δ̇ RMS vs κ̇ RMS for a US vehicle navigating a circle at constant
speed under the action of longitudinal disturbances – Case a2. Labels indicate
the value of q5 and q6.

4.5 Summary

The aim of this Chapter was to assess the validity of the formulation proposed in
Chapter 3 and to gain insight into the operation of the controller. A lateral only and
a combined controller are considered. Driving scenarios of increasing difficulty are
considered. The lateral controller is tested on a circular path at constant speed under
the action of disturbances. The controller manages to stabilise a US and OS vehicle
at the handling limit, confirming the robustness of the formulation. The combined
controller is tested in a similar yet more challenging scenario where the target path and
speed are physically unachievable for the controller. Again, the controller minimises
the deviation from the target, stabilising the vehicle. The controller has also been
successfully tested in more demanding driving conditions – a 90 degree corner at the
limit of handling – managing to stabilise the vehicle.

Parameter studies on the lateral and longitudinal controller are also included in the
Chapter. Different methodologies have been used to confirm a correct understanding
of the effect of the parameters on the states and the controls. It was found that the
weight q3 on the hand wheel angle rate has a significant effect on the HWA and that it
is coupled with the NMS natural frequency. It was also shown that the update time
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does not affect the frequency response of the steering significantly but does have a
significant effect on the LPE. The combined parameter study further confirmed the
direct relationship between control effort and path tracking accuracy. It also showed
that longitudinal controls can be used to drive lateral states to equilibrium.

There are two main original contributions to knowledge in this Chapter. Firstly, it
has been confirmed that the formulation in Chapter 3 can stabilise a vehicle under the
action of disturbances in a variety of scenarios. Secondly, it has been shown that the
controller can use longitudinal controls to drive lateral states to equilibrium, confirming
the predicted coupling.



Chapter 5

Lateral controller validation

5.1 Introduction

Chapter 3 detailed the derivation of the lateral and longitudinal controllers while
Chapter 4 investigated their performance in different driving conditions and assessed
the effect of key parameters. The results obtained are encouraging, as the controller
manages to stabilise the vehicle in very challenging driving scenarios. The nonlinear
formulation successfully tracks the optimal nominal states generated by an MPC
minimising manoeuvre time for a 90 degree corner.

A more structured validation is necessary to confirm how well the controller can
mimic a real human driver. To this end experimental data is collected from a Driver
In the Loop (DIL) driving simulator. Even though one might argue that comparing
the simulation results with actual track data would be more insightful, performing the
experiments using a driving simulator has several advantages:

• Ability to vary track geometry and car setups

Performing experiments in a virtual environment allows one to choose arbitrary
track geometries and car set-ups with minimal effort, facilitating exploration of
controller performance in very specific and controlled operating conditions. Data
from track sessions would allow for only a limited range of operating conditions.

• Data availability

Even though racing cars are fitted with several sensors, certain quantities are
difficult to measure directly and have to be estimated from other measurements.
Performing experiments in a driving simulator gives easy access to all variables
in the environment.
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• Driver feedback

Performing experiments in the driver simulator allows subjective feedback from
the driver to be collected easily, which would not be possible if track data
from previous races was used. Even though the driver of a real car could also
provide feedback, performing the experiments on a real vehicle to gather feedback
would be overly expensive. Since the overarching aim of the study is to enhance
understanding of how racing drivers handle vehicles at the handling limit, having
qualitative feedback is useful as it allows for comparison with the quantitative
results.

Despite the aforementioned advantages, it is important to question the validity of
the driving simulator data as the whole experimental validation rests on it. Formally
quantifying driving simulators performance would be problematic because of the analysis
intrinsic subjectivity; however, they are ubiquitous in the racing industry. Formula 1
teams have been using them for several years as substitute for testing and for driver
training purposes. This reliance on simulators show that DIL simulations can replicate
actual driving to a satisfactory degree of accuracy. If the proposed controller could
match DIL simulations fidelity, Formula 1 teams could use it, saving a considerable
amount of resources every year.

Section 5.2 describes the experimental setup, Section 5.3 analyses the data collected
from the driving simulator, Section 5.4 outlines the procedure used for model identi-
fication and Section 5.6 shows the comparison between experimental and simulated
data. This Chapter focuses on the validation of the lateral controller while Chapter
6 examines the combined controller. The two are considered separately because they
require different driving experiments.

5.2 Driving experiment

5.2.1 Experimental setup

The experiment was performed in a driving simulator consisting of the body of a
car mounted on a moving platform allowing mainly lateral and yaw motion. Electric
actuators are used for motion cueing. An offboard, 8 meters diameter, 270-degree
viewing angle screen is mounted in front of the platform for visual cueing. Images
are projected by 6 projectors with a 120 Hz update frequency and 2560x1600 px
resolution. The steering system has a force feedback mechanism for advanced cueing.
More information about the simulator hardware and software, developed in-house,
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could not be obtained due to confidentiality reasons. The vehicle model used in the
driving simulator is a full nonlinear version of a 2014 Formula One car in the baseline
configuration for the Circuit de Barcelona-Catalunya. The vehicle model, tyre model
and aerodynamic map were not disclosed to the author for confidentiality reasons.

5.2.2 Driving task

A professional driver with extensive racing experience was asked to follow circular
paths of different radii at constant speed under the action of disturbances. Engineers
set up the digital environment with the desired vehicle configuration and a circular
track. The simulator would then start and the vehicle would be brought to steady
state at the target speed before disturbances started acting on the vehicle. The driver
would then try to follow the target path under the action of the disturbances for at
least 3 km, before decelerating and ending the session. This procedure, referred to as a
run, is repeated several times with different parameters values to explore the behaviour
of the vehicle. Vehicle speed is held constant and the driver only controls the steering.

Figure 5.1 shows the vehicle navigating the circle and the main associated quantities.
Table 5.1 details the conditions for all the runs. Since simulation time is expensive,
the experiment was not exclusively performed for this validation so specific changes
in vehicle configuration are also due to the requirements of other experiments that
were performed in the same session. The first column indicates the run number, the
second the radius of the circle and the third the constant speed of the vehicle in m/s.
Set up changes are indicated in the fourth column. The Baseline configuration refers
to the vehicle parameters in Table 5.2. Finally, the steady state lateral acceleration,
expressed as a percentage of the maximum lateral acceleration, is also provided. The
value is the ratio between the lateral acceleration of the given vehicle in the given
conditions and the maximum lateral acceleration that the tyres can physically allow
for the given speed. Lateral acceleration is a convenient metric to define how close to
the limit the vehicle is as it considers both vehicle speed and radius of curvature. The
value provided refers to steady state conditions, so the actual disturbed vehicle is likely
to be closer to saturation.

The vehicle was subjected to an external random force acting 0.67 m in front of
the vehicle CoG pointing towards the outside of the circle; the yawing motion of the
vehicle is therefore disturbed as well. While the disturbance profile used in Chapter 4
was random Gaussian noise, the experimental one is different. Figure 5.2 shows the
disturbance MSSD. It is characterised by a 1 Hz cutoff frequency. The mean force is 57
N [49 N, 66 N at 95 % confidence interval] and the standard deviation is 717 N [712 N,
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Figure 5.1: Setup for the experiment. The vehicle navigates a circle while a
random force and moment disturbances are applied. R indicates the radius of
the circular path. The force and moment are resolved at the centre of mass.
Their distribution is almost symmetrical about zero so the direction in the
diagram is arbitrary.

724 N at 95 % confidence interval]. These values are used for all the runs apart from
6,7,8 and 9, where they are halved. The mean is not zero as in Chapter 4; however,
this is not a concern for the validation as the exact same disturbances are replicated in
the simulation environment. Furthermore, the mean is 7 % of the standard deviation,
suggesting that its contribution is minor. Kolmogorov-Smirnov test indicates that the
force probability density function can be approximated by a normal distribution with
a 5 % confidence level. The pdf and the normal distribution are shown in Figure 5.3.
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Table 5.1: Description of the experimental conditions for all runs. The per-
centage of the maximum acceleration is the ratio between the vehicle lateral
acceleration and the maximum lateral acceleration tyres can physically allow
for the given speed rounded to 5% . CoG indicates the centre of gravity and
CoP centre of pressure.

Run Radius
R (m)

Speed
u (m/s) Set-up changes

% of max
lat. acc’n

ay
1 80 40.8 Baseline 85
2 80 40.8 CoP moved 4 % forward 85
3 80 40.8 CoG moved 2% forward 85
4 80 40.8 Vehicle yaw inertia increased by 20% 85
5 80 31.7 Baseline 60
6 80 44.4 Disturbance halved 90
7 40 26.9 Disturbance halved 90
8 115 60.3 Disturbance halved 90
9 115 55.6 Disturbance halved 85
10 165 67.5 Baseline 75
11 115 54.2 CoP moved 4 % forward 85
12 165 67.5 CoP moved 4 % forward 75
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Figure 5.3: Disturbance force probability density function and fitted probability
distribution. Kolmogorov-Smirnov test indicates to a 5 % confidence interval
that a normal distribution fits the data .
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Figure 5.2: Mean Square Spectral Density for force disturbances showing the
cutoff frequency at 1 Hz

Most of the simulation parameters, namely the tyre model, driver characteristics,
aero-map and vehicle model, are not known, so need to be estimated. Data for a bicycle
model approximating the simulator model was provided by the company. The aero-
model does not have to be fitted because only steady state operations are considered.
The identification procedure for driver characteristics and tyre model is described in
Section 5.4. Parts of the reported runs have not been considered because of the driver
losing control of the vehicle or hardware malfunction.

5.3 Data analysis

The data is collected from the driving simulator at a sampling frequency of 200 Hz
and fully describes the motion of the vehicle and the tyre forces. The travelled path
is given in cartesian coordinates. The total distance travelled and the vehicle speed
are also provided separately. The hand wheel angle is provided, together with the tyre
slips and the tyre forces, allowing calculation of all the vehicle states and tyre forces.

In order to identify the experimental model parameters and perform the validation,
the lateral path error, the steering rate and the tyre forces for the bicycle model
described in Section 3.3.3 are required. Since the vehicle travels along a circle centred
at X = 0 and Y = 0 with deviations on either side, the lateral path error will simply
be the difference between the magnitude of the position vector and the radius of the
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Figure 5.4: LPE pdf for the first 6 runs. The probability density function
shows that the distribution resembles a normal distribution with a fairly large
standard deviation. Only the first 6 runs have been shown to avoid clutter.

circle.
nexp = R−

√
X2 + Y 2 (5.1)

where X and Y are the Cartesian coordinates of the vehicle. The steering rate is
obtained by numerically differentiating δsw.

5.3.1 Lateral Path Error

Figure 5.4 shows the LPE pdfs for runs 1 to 6 and Figure 5.5 for runs 7 to 12. The LPE
is approximately normally distributed with a large standard deviation and nonzero
mean in most cases. The fact that the driver may tend slightly to the outside instead
of the inside could be attributable to the nature of the disturbance and the tyre
saturation. The following qualitative discussion attempts to explain the phenomenon
which deserves more attention. Section 5.3.2 shows that disturbances have a positive
mean, resulting in a mean force towards the outside. Even though the driver should be
able to compensate for such force, it may still have an effect. Secondly, an increase in
steering action would increase the front axle saturation level while decreasing δ would
decrease it, causing the vehicle to be harder to control when steered towards the inside.
Statistically, the driver will therefore be better at rejecting disturbances pushing the
vehicle towards the inside of the circle, this resulting in a positive LPE.
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Such asymmetry is confirmed by Figure 5.6, which shows that the mean LPE values
for all runs are positive. The mean of all mean values, 0.34 m, is half of the mean
standard deviation, 0.78 m, indicating that the steady state deviation is not negligible.
Furthermore, the highest mean values, correspond to high levels of tyres saturation,
confirming that slip level affects the compensatory action.

5.3.2 Driving strategy

The experimental data is quite insightful, as it reveals interesting features of the driving
strategy.

The hand wheel angle time history shows that the driver does not continually adjust
δsw, instead holding it constant for time spans from 0.1 to more than 1.0 s. Figure 5.7
clearly shows ZOHs across runs and hence across operating conditions. Hold strategies
have been described in detail in Section 3.3.4.

For a ZOH δ̇sw is theoretically zero and practically very close to zero. Quantifying
the ZOH gives an important insight into the driver’s behaviour. The simplest and
most direct approach is to calculate the proportion of time over which δ̇sw is close to
zero. The integration boundaries are somewhat arbitrary; for the purpose of this work
|δ̇sw|<0.005 rad/s is considered close to zero. Integrating δ̇sw pdf around zero shows
that δ is flat on average 60 % of the time, quantitatively confirming the presence of
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Figure 5.5: LPE pdf for runs 7 to 12. The probabilities density functions are
similar to the first 6 runs.
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Figure 5.6: LPE mean values for all 12 runs. The chart shows that the values
are always positive, implying a consistent bias towards the outside of the circle.
The highest mean values correspond to runs where the vehicle is closer to
saturation.

hold behaviour. This metric however only shows the total length of the holds for each
run but it does not provide any insight into the length of each hold.

The hold behaviour would be better quantified by a metric that takes into account
the ratio between hold time and total time. Given that data sampling frequency is 200
Hz, the hold length space can be discretised with a 0.005 s time-step. Hp indicates the
total hold time of holds of length p, where p is a multiple of 0.005 s.

Hp = p ∗Nt,p (5.2)

where Nt,p is the total number of holds of length p. For instance, H0.1 indicates the
total hold time for holds of 0.1 s.

H0.1 = 0.1 ∗Nt,0.1 (5.3)

where Nt,0.1 is the total number of holds of length 0.1 s. Referring to the longest hold
length as Hp,max, the hold length space is divided into fhold = Hp,max/0.005 units. A
metric capturing the hold behaviour would be the ratio between the cumulative hold
time for a specific hold and the total hold time. The ratio for hold lengths p can be
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Figure 5.7: Time histories for the HWA for 6 runs. The hold behaviour is
evident in all the runs.

defined as

Hper
p =

∑fhold
j=p Hj∑f
j=1Hj

∗ 100 (5.4)

Clearly, for p = 1, Hper
p = 100%. Plotting Hper

p ∀p against p, Figure 5.8 gives an
excellent insight into the hold behaviour. Firstly, it shows that the hold behaviour is
consistent over different runs; run 5 deviates slightly from the mean for short holds
but the all other runs show a remarkable consistency. At 0.005 s, the cumulative time
is equal to the total hold time. Hper

p decreases slightly up to 0.1 s, indicating that a
large proportion of holds are shorter than 0.1 s. It then drops off significantly between
0.2 and 0.4 s, which corresponds to a racing driver update time range [2]. Only few
holds are longer than 1 s.

Figure 5.8 enables understanding of how holds are distributed but it does not
provide any information about how often they are used. A new metric, similar to Hper

p

is therefore introduced to account for the total time. Referring to the total run time as
Trun,

Hpert
p =

∑fhold
j=p Hj

Trun
∗ 100 (5.5)

Figure 5.9 shows that the total hold time is between 60 % and 70% for the first 6 runs
and it is significant across hold lengths.
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Figure 5.8: Hper
p showing a marked decrease between 0.2 and 0.4 s.

It is now clear that ZOH needs to be accounted for in the model. It has so far been
assumed that the driving strategy relies on SBHs and hence on the driver applying the
calculated sequence of controls over the refractory time. This assumption needs to be
modified to account for the new findings discussed.

The driving strategy can be modelled as pure ZOH, where hold transitions are
smooth because they are filtered by the NMS. In order to check this hypothesis, a
pure ZOH has been superimposed to the experimental one assuming that δsw takes
the value of the following hold as soon as each one finishes. The signal is then filtered
by the neuromuscular filter and superimposed. Figure 5.10 shows the three signals:
experimental, ZOH and filtered ZOH.

From now on, ZOH present in the experimental signal will be referred to as ZOHexp

to distinguish them from the superimposed ZOH. The time interval is divided into five
sections. The experimental signal exhibits three ZOHsexp, section 1; at δsw,a; 3; at δsw,b;
and 5; at δsw,c, connected by smooth signals. A pure ZOH signal is superimposed at
δsw,a over section 1. The pure ZOH then increases to δsw,b over sections 2 and 3 where
the new ZOHexp begins to finally decrease to δsw,c in section 4 and 5. The filtered ZOH
is the pure ZOH passed through a NMS. Its actual shape depends on the nature of
the filter. This assumption is tested by superimposing the pure and filtered ZOH on
two sections of Run 1. Figure 5.11 show that the difference between the experimental
δsw and the filtered ZOH is acceptable for small changes between holds but becomes
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Figure 5.9: Hpert
p showing that the driver holds δsw for more than 60 % of each

run.

significant for larger changes. More importantly, the experimental δsw gradient is
different from the filtered ZOH, showing that the driving strategy is different.

The idea of a filtered ZOH is not the best approach. An alternative way to model
the steering action is to assume that it is a mix of SBH and ZOH. One can assume
that the driver applies a series of steering actions and then, once they feel that the
vehicle is in a stable configuration, they keep the δsw constant, essentially moving from

Figure 5.10: Sketch showing the superposition of the ZOH and the filtered
ZOH signal over the experimental one. Labels do not report units because the
sketch is for illustrational purposes only.
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one stable configuration to the other. Figure 5.12 sketches the proposed steering signal,
formed by a SBH sequence, lasting TSBH , at the beginning followed by a ZOH, lasting
TZOH . Both TSBH and TZOH are allowed to vary to replicate experimental results. The
total update Tu time will be

Tu = TZOH + TSBH (5.6)

5.4 Vehicle and tyre model characterisation

The model used in the simulator is a fully nonlinear version of the 2014 car in the
Barcelona configuration, with full details not disclosed to the author for confidentiality
reasons. Bicycle model parameters have to be identified to give best fit to the simulator
vehicle model.

Before exploring the procedure that has been used to fit parameters, a new con-
vention is introduced for the sake of clarity. From now on, experimental data/model
refers to the data from the driving simulator and simulation data/model refers to the
results of the simulations run with the nonlinear controller. Since both data come
from a digital environment, the distinction is made clear. In order to replicate the
experimental data three groups of parameters need to be considered: the vehicle, tyres
and driver.
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Figure 5.11: Comparison between experimental data, Zero Order Hold approxi-
mation and filtered ZOH for a section of Run 1 that shows poor agreement.
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Figure 5.12: Proposed driving strategy, a Serial Ballistic Hold followed by a
ZOH.

5.4.1 Vehicle parameters

Vehicle parameters for an equivalent bicycle model were provided by Renault and are
reported in Table 5.2. The model includes the centre of pressure for the aerodynamic
model without specifying the aerodynamic map. However, the map is not necessary for
this experiment as the speed is constant, meaning the aerodynamic effects are static
and are embodied in the vertical tyre forces.

Table 5.2: Bicycle model parameters

Parameter Symbol Value
Mass M 735 kg

Inertia Iz 1100 kgm2

Front distance to CoG a 1.89 m
Rear distance to CoG b 1.61 m
Front distance to CoP aCOP 1.93 m
Rear distance to CoP bCOP 1.57 m

Steering ratio Gsw 11
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5.4.2 Tyre model identification

The tyre model is not provided for confidentiality reasons. The time history of tyre
slip and the tyre forces are available, so a tyre model can be fitted to the experimental
data. While the experimental vehicle model is four wheeled, simulations are run with
a bicycle model, which only has two wheels. In order to accommodate this difference,
the total axle force is obtained by adding the right and left wheel forces

Fyit = Fyil + Fyir (5.7)

where the subscript y refers to the force direction, i the axle, front or rear, and l or r

are abbreviations for left and right. The slip values for the left and right wheels, on
the other hand, are averaged.

αt =
αf + αr

2
(5.8)

where αt is the total slip.
An established parameter identification technique consists of minimising the differ-

ence between the simulated and experimental output for the same experimental input
[134]. In the case of tyre parameters identification, this translates to minimising the
difference between the experimental tyre force and the simulated tyre force for the
experimental slip time history. The cost function to be minimised is therefore

Jt =
k=Pv∑
k=1

(Fexp,k(αexp,k)− Fsim,k(αexp,k))
2 (5.9)

where Pv is the vector length. There are a number of well established algorithms to
perform this operation, from brute force to heuristic routines [135]. The Nelder Mead
algorithm has been chosen because it is robust to noise and does not rely on gradient
[134], making it ideal for non-smooth functions such as experimental data.

Nelder Mead makes use of polytopes formed by n + 1 vertices in n-dimensional
space to numerically locate the minimum value of a function [134]. The function values
are calculated at the vertices of the simplex and the worst point is replaced by one
generated by reflecting across the centroid. Comparing the current best point with the
previous best point indicates whether the simplex has to expand towards the newly
reflected point or contract towards the previous best point. The iteration process
continues until the diameter of the simplex is smaller than a specified tolerance value.
The method can be implemented using the Matlab function fminsearch.

The parameters that have to be fitted for Equation (3.23) are: Qi, µi, αi.
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Table 5.3: Tyre model coefficients fit for all runs. The subscript f denotes front
and r denotes the rear.

Run µf Qf αf fevalf µr Qr αr fevalr

1 2.4858 1.6905 0.1600 2.67E-8 2.3564 1.7667 0.1597 5.98E-8
2 2.3564 2.5667 0.1597 4.56E-8 2.5439 1.6077 0.1565 4.16E-8
3 2.4438 1.6613 0.1246 3.57E-8 2.8926 1.0288 0.1343 4.2E-8
4 3.2446 0.7301 0.1101 3.72E-8 2.6126 1.2136 0.1318 3.71E-8
5 3.6432 0.6559 0.1132 3.90E-8 2.5544 1.9422 0.1432 3.43E-8
6 1.5749 3.6936 0.1495 5.47E-8 2.7386 1.7638 0.1813 5.47E-8
7 2.6259 2.6849 0.1807 9.70E-8 2.0802 1.4678 0.1332 2.99E-8
8 1.9846 1.3362 0.0921 2.77E-8 3.3103 2.1019 0.2102 4.04E-8
9 3.2751 2.6538 0.1859 6.16E-8 3.1584 1.6257 0.1241 8.76E-8
10 2.4858 1.6905 0.1435 1.10E-8 2.2432 2.4523 0.2334 3.61E-8
11 2.6374 1.8001 0.1495 7.49E-8 3.8414 0.8276 0.1394 6.13E-8
12 2.9898 1.5798 0.1241 2.82E-8 2.4136 1.6176 0.1662 4.32E-8

Tyres are fitted to a good degree of accuracy in all runs with normalised residues,feval,
in the region of 1E-8, which is widely considered more than acceptable. The standard
value in Matlab is 1E-4.

Table 5.3 shows that there are significant differences between the coefficients for
different runs. In other words, the values of the coefficients that allow a good fit for
a certain run are not the same for all other runs. Even though this is expected as
conditions are different for each run, the extent of the discrepancies, up to 35 %, needs
to be discussed. There may be two main causes of such differences: the assumptions
made and the actual tyre model. The main assumption, made by adding tyre forces
and averaging slips, can introduce an error. However, since the experiment is done
in steady state conditions, this is unlikely to be significant because load transfer is
accounted for in the tyre coefficients. Steady state conditions also eliminate variations
in vertical force due to aerodynamic effects. Differences between the experimental and
simulation tyre model are the most likely cause of discrepancies among runs. The
simulation tyre model does not take into account thermal effects, wear and constant
offsets. Even though the experimental model is not disclosed, it is very likely to include
if not all, most of these effects. While the simulation tyre model may capture very well
the slip force characteristics for one run, it may be problematic to extend this to more
runs.
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Figure 5.13: Tyre model fit for run 4

Figure 5.13 shows the fit for run number 4. The data fits the experimental results
well. The experimental slip region does not extend beyond saturation so the slip force
characteristics for large slips need to be extrapolated.

Figure 5.14: Diagram showing the vehicle model validation process. The
experimental δsw and the same set of disturbances are fed to the experimental
and simulated vehicle and tyre models and the outputs compared.
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Figure 5.15: Comparison between the experimental and simulated model lateral
velocity.

5.4.3 Vehicle and tyre model validation

In this section the term vehicle model will refer to the vehicle and tyre model. The model
accuracy is quantified to provide an indication for its contribution to the differences
between the experimental and simulated signals in Section 5.6. The measured δsw is
fed to the simulated vehicle model and its outputs compared with the experimental
vehicle model. The process is detailed in Figure 5.14.

The output xsim is then compared to xexp. Only v and ω are compared as they fully
characterise the lateral vehicle motion. Data from run 1 is used for the comparison.

Given that the same disturbance time history is used, the systems are not random.
Figure 5.15 shows that the experimental and simulation lateral velocities are reasonably
close. The differences in the simulated and experimental signals is quantified using the
mean of the relative error, er,x. For any signal x, the relative error is

er,x =

∣∣∣∣xsim − xexp

xexp

∣∣∣∣ ∗ 100 (5.10)

The mean er,v, is 12 % with a 9% standard deviation. Figure 5.15b shows the
signals in more details, confirming that the match is satisfactory. The difference in
for the yaw rate is lower than the average velocity: the mean error is 3% with a 2%
standard deviation. Given the assumptions and the parameter identification procedure,
the match is satisfactory. Since the assumptions made for the bicycle model such as
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lack of lateral load transfer and lack of differential, do not introduce a significant error
for steady state driving, differences are mainly attributable to the tyre model. The
tyre model identification inevitably leads to an error as the experimental tyre model is
likely to account for several features that are not present in the simulation one.

The statistics for the first 6 runs are summarised in Table 5.4.

Table 5.4: Vehicle model validation errors from the first 6 runs rounded to the
nearest percentage point.

Run er,v(%) er,ω(%)

1 9 3
2 9 4
3 8 3
4 12 5
5 11 4
6 14 6

5.5 Driver model parameters fitting

The driver model parameters to be fitted are: the NMS natural frequency ωn, the
NMS damping factor, ξn, Eq 3.50, the weights q1, q2 and q3, Eq 3.28, the driver update
time Tu, holds length TSBH and TZOH and the prediction horizon Ts, all described in
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Figure 5.16: Comparison between the experimental and simulated model.



5.5 Driver model parameters fitting 133

Section 3.3.4. Given the large number of parameters to fit, some assumptions have to
be made to avoid over-fitting [135].

Since it is only the relative values of the weights of the cost function that are
important, one of the three weights can be set to 1. The choice is arbitrary; however,
preliminary parameter studies, not shown in this work, indicated that the system is less
sensitive to changes in q2/q1 or q2/q3 than q1/q3 , so q2 it will be set to 1 to improve
the identification algorithm efficiency.

A reliable measure of the SBH and ZOH holds would be difficult to capture as
they are not constant. The identification procedure would only yield constant values
instead of a probability distribution. The lengths of the SBH and ZOH are therefore
identified by measuring them directly from the experimental data; they then enter
the identification procedure as known parameters. An algorithm has been devised to
identify holds; these are taken as sections of δsw where the speed is close to zero, with
the limit being set at 0.01 rad/s. The HWA is assumed to be a sequence of SBH and
ZOH holds, each of length tSBH,h and tZOH,h, where h indicates the hold number. The
update time will therefore be Tu,h = TSBH,h + TZOH,h. The algorithm finds the signal
section where δ̇ <0.01 rad/s. These are the ZOHs; the SBHs are the sections of the
signal connecting the ZOHs. Figure 5.17 shows a portion of the time history for run 1
where holds are identified. The horizontal line shows the ZOH as solid lines and SBH
as dashed lines. The number of holds prior to 50 s is referred to as n. The first SBH in
Figure 5.17 has a length of TSBH,n+1, which is followed by a ZOH of length TZOH,n+1.
The SBH and ZOH holds that follow will last TSBH,n+2 and TZOH,n+2 and so on. It is
clear that the solid sections on the horizontal line correspond to the ZOH, showing
that the algorithm successfully captures the ZOH and SBH.

The majority of ZOHs are below, with only a few beyond 1 s. The pdfs for the first
6 runs is shown in Figure 5.18, indicating an exponentially decreasing trend for all
runs. A Pareto distribution would best describe the pdfs. For ZOHs shorter than 0.1 s,
the ratio TSBH/TZOH is uniformly distributed between 0.5 and 2, indicating that the
SBH section of Tu ranges between half and twice TZOH . For longer ZOHs, TSBHs is
always less than 0.4*TZOH . This results in Tu never being longer than 2 seconds.

Furthermore, it has been shown in the literature – for instance in [136] – that the
effect of the prediction horizon on the output becomes insignificant beyond a certain
value, which varies depending on the driver model and the driving scenario. Running
a quick parameter study showed that the prediction horizon has very little effect if it
is beyond 6 s. In order to further simplify the parameter fitting, the prediction horizon
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Figure 5.17: Section of the δsw signal for Run 1 showing the identified sequence
of SBHs and ZOHs and their lengths.

is set to 6 s. The prediction horizon is three times longer than the longest update, so
there is not coupling between the two.

Finally, experimental disturbance time histories have been used instead of generating
random time histories using the statistics of the normal distribution fitted in Figure
5.3.

After all the aforementioned simplifications, the parameters that have to be fitted
are therefore the NMS natural frequency ωn, the NMS damping factor, ξn, the weight q3
on the steering velocity and the weight q1 on LPE. Due to the highly nonlinear nature
of the problem, the choice of parameter identification algorithms is quite restricted.
The main classes are [134]:

• Derivative approximation methods

These methods approximate derivatives by finite differences and then use linear
regression to find the parameters. However, this would defeat the purpose of the
nonlinear system. Also, due to the iterative nature of the problem, it would be
problematic to implement.

• Bayesian methods

This family of methods makes use of probability based higher order systems
such as Markov Chain and Monte Carlo to estimate parameters. This family of
methods would require an prohibitively expensive computational power and also
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Figure 5.18: ZOH probability density function for the first 6 Runs.

would not be very useful as parameter identification does not involve random
variables.

• Optimisation methods

This family of methods attempts to minimise the difference between the simulation
and experimental data by varying the model parameters; the algorithm used
for the controller actually belongs to this class. The choice of cost function is
therefore crucial.

Optimisation methods are the most suitable option because they offer a good trade
off between accuracy and computational time. Derivative free methods are particularly
indicated for experimental identification, where intricate computations are needed to
find derivatives efficiently and accurately [137]. Nelder Mead, which has also been
used to calculate the parameters for the tyre model, is a very fast algorithm and can
achieve convergence significantly faster than other methods [134]. In order to fit the
parameters, a cost function involving a metric that captures the essence of the model
has to be set up. Since the noise in the driver NMS system introduces randomness
in the system, it is necessary to introduce quantities that capture the statistics and
frequency content of the signals to quantify the goodness of fit.

For the purpose of this analysis, the Mean Square Spectral Density (MSSD) of the
steering input is considered. The MSSD is particularly useful, as it describes how the
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variance is distributed over the frequency domain. The magnitude of the difference
between the experimental and simulation values multiplied by the frequency window is
therefore used to compare the two areas. An algebraic description is provided by Eqs
(5.11) and (5.12) describes the The difference in time histories would not be a reliable
metric because of the randomness in the driver NMS.

Even though it could be argued that an additional term accounting for LPE
would be necessary, minimising the difference in steering MSSD is enough to match
the simulation and experimental models. Since the process is stationary, the MSSD
will just be the Fourier Transform of the autocorrelation function. In discrete time,
considering a finite window of 1 ≤ g ≤ G with the signal sampled at discrete times
δg=δ(g∆t) the MSSD becomes

Sδδ =
(∆t)2

Trun

∣∣∣∣∣
G∑

g=1

δge
−iωfg

∣∣∣∣∣
2

(5.11)

where Trun is the total time of the experiment, ωf is the normalised frequency and t

time.
The cost function therefore becomes

Jp =
G∑
1

(Sexp
δδ − Ssim

δδ )dωh (5.12)

Eq. 5.12 is minimised using Nelder Mead algorithm. Some of the data is therefore
needed for the fitting and some for the actual comparison. Parameters are also likely to
vary between runs because of the human intrinsic randomness and the different vehicle
operating conditions so it is necessary to perform a dedicated fitting for each run.

Augmented Dickey-Fuller tests [138] showed that in every run any window of at
least 1.5 km can be considered stationary, implying that signal statistics are constant
for any sample longer than 1.5 km. Since each run is about 4 km long, half of the
run can be used for the comparison and half for the fitting. However, Nelder Mead
is very sensitive to initial conditions [135]. Given that it is an heuristic algorithm, it
does not guarantee a global optimum, allowing a variety of solutions. The interaction
between the driver natural frequency and the penalty on δsw shown in Chapter 4 causes
further complication. In fact, if the initial conditions for the NMS filter and weight
q3 in the cost function are chosen randomly, some numerically sound yet physically
unrealistic combinations arise. The initial optimisation parameters need to be chosen
in the vicinity of the solution for reasonably fast convergence.
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Making use of the results in the parameter studies in Chapter 4, a set of initial
optimisation parameters for all 12 runs is found. For this first set of initial optimisation
parameters, convergence was only achieved for 8 runs. For the remaining 4, the
initial optimisation parameters were iteratively tuned by plotting the cost function.
Convergence was then achieved for all runs. The first 2 km of each run are used to
identify the parameters. Results are shown in Tables 5.5 and 5.6.

Table 5.5: Simulation parameters runs 1 to 6 using 2 km of data. J∗p indicates
the minimum value of the cost function.

1 2 3 4 5 6
NMS Natural Frequency (ωn)(rad/s) 15.9 14.9 16.1 16.1 14.1 15.2

NMS Damping Factor (ξn) 0.71 0.69 0.70 0.69 0.68 0.67
LPE rate Weight (q1) (m−0.5) 3.52E-3 6.23E-3 2.83E-3 4.24E-3 5.61E-3 6.22E-3
δ̇sw Weight (q3) (rad/s−0.5) 2.12E-4 1.21E-4 6.34E-4 3.92E-4 5.16E-4 6.31E-4

J∗p (rad2) 1.12E-5 2.31E-4 5.42E-3 9.92E-2 9.20E-5 4.54E-2

Table 5.6: Simulation parameters for runs 7 to 12. J∗p indicates the minimum
value of the cost function.

7 8 9 10 11 12
NMS Natural Frequency (ωn)(rad/s) 16.9 14.7 14.9 15.3 15.4 16.1

NMS Damping Factor (ξn) 0.65 0.68 0.68 0.67 0.67 0.68
LPE Weight (q1) (m−0.5) 1.11E-3 4.24E-3 9.23E-3 6.87E-3 2.45E-3 9.46E-4
δ̇sw Weight (q3) (rad/s−0.5) 3.23E-4 7.21E-4 1.05E-3 6.18E-4 6.62E-4 4.29E-4

J∗p (rad2) 4.56E-5 1.92E-4 3.21E-5 7.62E-5 3.49E-5 6.21E-4

The identified values are consistent with the observed behaviour. Both the NMS
Natural Frequency (ωn), which varies between 15 and 17 rad/s, and the NMS damping
factor, which varies between 0.65 and 0.7, are within an acceptable range for a racing
driver [136]. Cost function weights are more difficult to consider as they do not have an
immediate physical meaning. However, they can be compared to those used in Chapter
4; even though the model, driver and tyre parameters, are different, a qualitative
comparison can indicate if the identified q1 and q3 are reasonable. Section 4.3.3 shows
that the LPE has a 10−2 m order of magnitude for q1 = 1; the experimental LPEs
and the identified q1 are in the order of 1 m and 10−3 respectively. A decrease of 3
orders of magnitude in the cost function weight resulted in an increase of 2 orders of
magnitude in the signal, showing that the trend is reasonable. Finally, the value of q3
and the experimental δ̇ are consistent with the set of results shown in Section 4.3.3 .
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This first qualitative assessment is only indicative and preliminary, as a more insightful
comparison is shown in Section 5.6.

Rather than using an average set of parameters from Table 5.5 and 5.6, each run
is simulated with its respective fitted parameters. Since driving conditions change
significantly, the NMS parameters and cost function weights vary as well, hence using
the fitted parameters for each run leads to a better match. If an average set of
parameters had to be used, the model should be extended to account for variable driver
parameters.

5.6 Data comparison

After identifying vehicle, tyre and driver parameters, experimental and simulation
outputs can be compared. The aim of the proposed controller is to replicate what the
driver does. Given the noise in the driver NMS, comparing time histories – despite
being indicative – would not be a reliable measure of the experimental and simulated
signals differences, so statistics are considered.

The system has one input, δcom, and four output states, namely δsw, v, ω and the
LPE. Comparing all of them would not be practical so only δsw and the LPE are used,
as they are the most indicative measures of the model performance.

The MSSD of the δsw is compared, the reasons for this choice being outlined
in Section 5.5. Instead of comparing the MSSD of the total δsw signals, only the
compensatory activity – obtained by subtracting the signal mean – is considered to
highlight the corrective action of the controller. The signal mean is calculated by
finding the average of the δsw time history. An increase or decrease in the mean could
be attributable to the action of the controller compensating the disturbances due to the
nonlinearity of the vehicle. However, the mean is subtracted for both the simulated and
experimental signals, effectively taking this effect into account if present. A snapshot
of the δsw time histories is also included to provide a more intuitive visual comparison.

The LPE probability density function (pdf) is also compared to assess how effective
the model is at keeping the vehicle close to the reference path. Three runs: namely 1,
3, 4 and 6, are analysed as they provide enough information to gain an insight into the
performance of the controller in different slip conditions. In Run 1 the vehicle is in
its baseline configuration at 85 % of the max lateral acceleration, so not too close to
saturation. Vehicle parameters are changed in run 3 and it is instructive to compare
the performance of the controller as vehicle parameters are changed. Run 4, where
differences between experimental and simulated data are the largest among runs, is
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included to highlight the fact that the controller cannot replicate all driving conditions
with the same level of fidelity. Finally, run 6 is considered because tyres are close to
saturation.

5.6.1 Run 1

Figure 5.19 shows a snapshot of δsw time history for run 1. Firstly, it is clear that both
time histories show similar statistics in terms of mean and standard deviation. The
ZOH behaviour is present in both signals, confirming that the mixed SBH and ZOH
approach helps mimic the behaviour of the driver. The experimental and simulated
signal velocity, δ̇sw can have opposite sign, for instance at 1600 m. Since Tu is measured,
a better match could be expected. It is reasonable to expect a difference between
the driver and controller action for every optimisation. As the simulation progresses,
differences in control actions will cause the states of the vehicle to be different, resulting
in different time histories. The statistics, however, are unaffected because the mean
and standard deviation of the signal measure the overall compensatory action rather
than single instances.
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Figure 5.19: Experimental and simulated HWA time history for Run 1. The
mean is not subtracted to provide a more informative figure.

Figure 5.20 shows the δsw MSSD. The match here is excellent; the power distribution
over the frequency spectrum is very similar, showing that both mean and standard
deviation are close across the whole frequency spectrum. The only noticeable difference
is a "bump" at very low frequency, around 0.1 Hz, indicating a control action that
happens over 10 seconds – approximately over a whole lap. This behaviour is present in
most, but not all, runs. The controller does not account for any control action increase
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at such low frequency. This difference is likely caused by a minor change in the mean
signal over the laps, which is thought to be the result of the change in cognitive effort
the driver devotes to the task. The human attention capacity is limited [139] and the
controller does not account for any cognitive deterioration over time, which is likely to
happen especially for such a repetitive task. This behaviour should be investigated
further to confirm the claim.
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Figure 5.20: Experimental and simulated HWA MSSD for Run 1

Finally, Figure 5.21 shows the pdf of the LPE. Since, the LPE is a combination
of two vehicle states, v and ξ, the difference between the experimental and simulated
signals is amplified. Despite the differences, the match is satisfactory as the mean and
standard deviation are comparable. As such, given that the intent is to replicate the
behaviour of a human, the lateral path error match can be considered satisfactory.

5.6.2 Run 3

In this run the CoG is moved 2 % forward.
Figure 5.22 shows the time history of δsw. The mean values of this run, 0.89 rad

and 0.90 rad for experimental and simulated respectively, are slightly larger than the
means of run 1, 0.84 rad and 0.85 rad for simulated and experimental respectively. As
the CoG is moved forward, under-steering is increased hence a larger steering angle is
necessary. This effect is mitigated by the large aerodynamic forces that decrease the
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Figure 5.21: Experimental and simulated LPE pdf for Run 1

effect of the change in CoG on the tyre vertical load. After the test, the driver also
mentioned that, though he noticed a difference, it was not major. The time history
again shows a good agreement between the experimental and the simulated results.

The frequency response – shown in Figure 5.23 again shows an excellent agreement,
especially at higher frequencies. The frequency increase around 0.1 Hz is still present.

The LPE, Figure 5.21 shows a very similar mean but a slightly different standard
deviation. The experimental results are clearly not symmetric, while the simulation is.
This was considered in Section 5.3 where it was observed that it is easier to straighten
the vehicle rather than turning it in. While the controller does not require additional
"resources" to control the vehicle as tyres are saturating, the driver will try to reduce
time spent at the limit to avoid mistakes and reduce the cognitive load required.
Furthermore, limb lateralisation [140] could also introduce a further bias in the LPE.
The difference in standard deviations is also attributable to discrepancies between the
simulation and experimental vehicle models and the noise in the driver’s NMS.

5.6.3 Run 4

The vehicle inertia is increased by 20 %.
It is immediately clear from Figure 5.25 that the driving strategy is different, with

the simulation requiring much larger corrective actions to achieve stability for a section
of the time history, between 1500 m and 1800 m. This is also reflected in the δsw
MSSD, shown in Figure 5.29, where the frequency content of the simulated signal is
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Figure 5.22: Experimental and simulated HWA time history for Run 3. This
run was 6 km long so 3 km of data was used for identification and 3 km for
data comparison. The mean is not subtracted to provide a more informative
figure.

higher. The simulated LPE also has as larger standard deviation, indicating that path
tracking capabilities are reduced.

The cause of the discrepancy is attributable to the increase in steering activity
between 1500 and 1800 m, rather than to a steady and constant mismatch. This
excessive corrective action, which also leads to an increase in the LPE, is caused by
4 σ disturbance realisation. While the driver does not react promptly, allowing the
heading error to increase to avoid a destabilising action, the controller tries to correct
it, increasing the LPE and the steering activity. This is an example where the cost
function weights should be varied; with a lower q2, the response would be more similar
to the driver. This development can be considered in further work.

5.6.4 Run 6

Run 6 is the most challenging to reproduce because the vehicle is closer to the limit.
Even though the maximum acceleration is only increased by 5 %, the nonlinear nature
of the tyre model makes the increase significant. The δsw time history shown in Figure
5.28 indicates that the match is not as good as for the other runs.
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Figure 5.23: Experimental and simulated HWA MSSD for Run 3

This is confirmed by Figure 5.29, which shows that the frequency responses do not
overlap as well as before. However, given that the intent is modelling a human driver,
the match can still be considered more than satisfactory.

Figure 5.30 shows that the LPE pdf match is acceptable, but the difference is
marked. The controller outperforms the driver considerably, with the latter allowing
for LPE of up to 4 m. As the vehicle approaches the limit and tracking becomes more
erratic, the difference between the experimental and simulated LPE increases. As the
vehicle approaches the handling limit, the degree of nonlinearity increases significantly;
differences in the vehicle and driver model are therefore amplified. Furthermore, the
tyre model around saturation is only approximated due to the lack of experimental
data points; this introduces further error.

5.7 Summary

This Chapter validated the lateral controller by comparing its output to data from a
driver-in-the-loop driving simulator. Analysing experimental data has shown that the
SBH assumption is not the best approach for this scenario, so a mixed ZOH and SBH
driving strategy has been proposed. Driver and tyre parameters have been chosen to
make experimental and simulation conditions comparable.

Comparing the statistics of the simulated and experimental signals has shown
that the controller can mimic the controls of a real human driver to a good degree of
accuracy. As vehicle limits are approached, biological biases and differences in vehicle
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Figure 5.24: Experimental and simulated LPE pdf for Run 3

models become more significant. The fact that the difference between experimental
and simulated LPE was more marked than the difference between simulated and exper-
imental steering input shows that the tyre and vehicle model differences contributed to
the overall error. Other discrepancies, such as the low frequency increase in the HWA
MSSD and the difference in mean LPE, have been justified, but further work is needed
to corroborate the claims made.

The primary original intellectual contribution in this Chapter is the formulation
and validation of a novel driving strategy that includes both SBH and ZOH. The
validation of the lateral controller under the action of disturbances is also a relevant
contribution.
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Figure 5.25: Experimental and simulated HWA time history for Run 4. This
specific run was 6 km long so 3 km of data was used for identification and 3 km
for data comparison. The mean is not subtracted to provide a more informative
figure.
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Figure 5.26: Experimental and simulated HWA MSSD for Run 4
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Figure 5.27: Experimental and simulated LPE pdf for Run 4
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Figure 5.28: Experimental and simulated HWA time history for Run 6
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Figure 5.29: Experimental and simulated HWA MSSD for Run 6. The mean is
not subtracted to provide a more informative figure.
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Figure 5.30: Experimental and simulated LPE pdf for Run 6



Chapter 6

Combined controller validation

6.1 Introduction

The lateral controller was validated in chapter 5, where it was shown that it can replicate
the behaviour of a racing driver to a good degree of accuracy. The experimental
conditions were limited to a constant curvature manoeuvre, which is not representative
of actual driving. This chapter extends the validation to the combined controller, using
data from a simulator practice session on an international racetrack as a benchmark.

The driver completed 30 laps on the Circuit de Catalunya racetrack on the same
high fidelity simulator described in Section 5.2. Experimental data analysis confirms
a number of driving behaviours, such as Zero Order Holds (ZOHs), observed in the
constant curvature experiment in Section 5.3.2. The tyre and driver model parameters
are identified from the experimental data. Simulated and experimental signals are then
compared for a manoeuvre where tyres saturate both laterally and longitudinally.

Section 6.2 analyses the experimental data while Section 6.3 details the process
used to fit the tyre and driver models and Section 6.4 the disturbance modelling the
sensorimotor noise. Sections 6.5 describes the comparison between the simulated and
experimental data.

6.2 Experimental data

Data is collected as a professional driver laps around the Montmelo racetrack, shown
in Figure 6.1 [141]. While in the constant curvature experiment an external lateral
random force was acting on the vehicle, external disturbances are not considered in
this test. The main advantage of this approach is isolating the effect of the driver
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Figure 6.1: Montmelo circuit in the configuration used for the experiments.
The same numbering convention will be used throughout the chapter.

intrinsic noise. The vehicle is in its baseline configuration and it is described in Section
5.4.1. Driver mistakes and spins are excluded from the analysis. The time histories,
despite the absence of disturbances, display a varying degree or randomness caused by
the noise in the driver sensorimotor system.

Data is sampled at 200 Hz, so signals are not equally spaced along track length
because velocity varies. The model independent variable is distance and not time,
therefore the distance domain must be equispace. This is achieved by finding the
intersection between the vehicle trajectory and the normal to the centreline at 0.1 m
increments. Interpolation is used to find the exact value of the signal, thus ensuring
consistency in space for all signals.

The Lateral Path Error (LPE) is not provided as it can be defined in a number
of ways. For the purpose of this validation, the LPE is defined as the minimum
perpendicular distance between the position of the vehicle and the nominal line, the
same definition used in Section 3.3.2. Instead of simply calculating the magnitude, this
approach records which side of the nominal line the vehicle is. The sign convention
used is consistent with the one described in Section 3.3.2.

The signals lap to lap variation is of interest as it gives insight into driver randomness;
the standard deviation at a given position on the track is used to quantify it. For any
signal Si,j , where i indicates the position on the track and j the lap number, the mean
at position i will be

µi =
1

Lt

Lt∑
j=1

Si,j (6.1)
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where Lt is the total number of laps. The standard deviation can then be calculated as

σi =

√√√√ 1

Lt

Lp∑
j=1

(Si,j − µi)2 (6.2)

Figure 6.2 shows δsw time histories for all 30 laps and their average; several features,
such as holds and high frequency actions, are lost in the averaging process. The
absolute value of the δsw reaches 3 rad, which corresponds to about half a turn of the
Hand Wheel Angle.
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Figure 6.2: Hand Wheel Angle time histories from the driving simulator. Thirty
laps are recorded. The thick black line shows the average.

The signal standard deviation is considered in Figure 6.3. Figure 6.4 shows that
the standard deviation is significant in sections of the track characterised by high
curvature, which correspond to high levels of tyre saturation. The increase in standard
deviation in areas of high curvature, and hence higher steering activity, suggests that
the noise in the driver NMS system is roughly proportional to the absolute value of
δsw. Even though the data presented does not provide enough evidence to infer a
causal relationship, this observation is relevant for the data comparison in Section 6.5.1.
While it is not clear for the averaged signal, there is strong evidence of hold behaviour
as δ̇ is consistently close to zero. Section 6.2.1 further analyses the hold behaviour.
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Figure 6.3: HWA standard deviation against distance travelled. The magnitude
is approximately 0.01 rad on straight sections, to increase up to 0.4 rad.

The HWA standard deviation is related, yet does not translate directly, to the
standard deviation in LPE. The LPE time histories are shown in Figure 6.5. Firstly,
the LPE is not zero on the straight, implying that the driver does not always follow the
same line. This behaviour is counter-intuitive, as the controller would manage to drive
the LPE to zero on a straight line in absence of disturbances. This discrepancy will

Figure 6.4: HWA standard deviation along the track. The value is generally
highest as the vehicle is navigating corners with tyres close to saturation. The
evidence provided, however, is not enough to determine a causal relationship.
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be further discussed in Chapter 7. Figures 6.6 and 6.7 show that the LPE is highest
either midcorner or at corner exit. These driving scenarios are again characterised
by significant steering activity and tyre saturation. Finally, a marked increase in
standard deviation is apparent in turn 3. The corner is long and characterised by
decreasing curvature, which allows drivers to choose different trajectories, trading speed
for distance travelled. Furthermore, it follows from corners 1 and 2, so any difference
in exit position and speed affects the driving strategy significantly.
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Figure 6.5: Lateral path error time histories ensemble for 30 laps from the
driving simulator. Large standard deviations are evident in certain parts of the
track.
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Figure 6.6: Lateral Path Error standard deviation against distance travelled.
The highest value of 1.65 m corresponds to corner 3 where the curvature is low.

Figure 6.7: Lateral path error standard deviation along the track. Corner
entries are characterised by a low standard deviation while it increases from
mid-corner until the end of corner. One would usually expect the magnitude to
be lowest at the apex. However, given the high power of the vehicle, position
accuracy is sacrificed for a faster exit.

Gerdes et al. performed a similar data collection exercise in [142] where they
considered the deviation of the vehicle from the nominal line. It is instructive to
compare the collected data to Gerdes et al. work; even though the vehicles are different,
a degree of similarity in the responses is expected. The deviation from path is taken
as the absolute value of the local deviation from the median, referred to as MAD,
which can be compared to the standard deviation of the LPE. The LPE patterns are
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mostly similar. The magnitude ranges from 10 cm to about 1.5 m for both. The most
significant difference is in large curvature corners where the MAD is low while the
LPE standard deviation is higher. This is particularly noticeable in corner 3 of the
Barcelona racetrack. The difference is thought to be due to the nature of the vehicle
and the driver skill level.

Figure 6.10: Speed standard deviation. The highest values correspond to
braking points, where small differences cause a large speed error.

Figure 6.8 shows the speed profile, which is generally consistent across laps. Braking
points and corner 3 are the only sections where the signal deviates significantly from
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Figure 6.8: Vehicle speed time histories ensemble for 30 laps from the driving
simulator. The thick black line shows the average.
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Figure 6.9: Speed standard deviation against distance travelled. The highest
value is 7 m/s at the first braking point. Apart from braking points, the
standard deviation is always less than 3 m/s.
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Figure 6.11: Throttle time histories ensemble for 30 laps from the driving
simulator. The on-off behaviour is clear.

the nominal. Figures 6.9 and 6.10 show the standard deviation for the speed. The
highest values are clearly in braking. Interestingly, the standard deviation along corners
is independent of curvature. The lowest values of standard deviation are found on the
straight. Gerdes et al. [142]only reports the velocity profiles for two corners, where the
deviations are comparable to the ones in this work.
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The throttle time history, shown in Figure 6.11, is consistent. The black line
superimposes well on the time histories and the standard deviation is generally small.
Figures 6.12 and 6.13 show the rear longitudinal slip standard deviation so as to
determine the extent to which the longitudinal controls vary, especially traction forces.
Clearly, the highest levels of standard deviation happen at corner exits where the
acceleration is higher. Different braking points, shown in Figure 6.14 for corner 1,
while resulting in significant speed standard deviation, do not translate to an increase
in rear slip standard deviation. Around the braking point, the speed decreases slightly,
then increases to finally drop. This behaviour is unexpected; speed signals from [142]
do not show this "step", which suggests that it is likely to be a feature of the simulator
vehicle model that is not considered by the simulation vehicle model.

The HWA, speed profile, the LPE and the throttle profile provide good insight
into the driving strategy, highlighting some expected and unexpected features. Fig-
ure 6.2 shows evidence of hold behaviour, so is worth investigating to yield a more
comprehensive picture of the driver’s behaviour.
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Figure 6.12: Rear slip time history. It is difficult to readily quantify the extent
of the variation because slip does not have an intuitive physical meaning. The
maximum value is 0.08 while it is close to 0 on the straight sections.
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Figure 6.13: Rear longitudinal slip standard deviation along the track. The
magnitude generally increases at corner exit, where the longitudinal activity is
highest.

6.2.1 Hold strategy

The Hand Wheel Angle for a vehicle navigating a circle at constant speed is constant
[7]. Constant δsw, hence ZOHs, would therefore be expected for corners characterised
by constant curvature and constant speed in the absence of disturbance. It is therefore
instructive to look at how the holds relate not only to the curvature (Ωz), but also to
the rate of change of curvature (dΩz/ds). Holds are found using the algorithm described
in Section 5.3.2; the lower bound being set to 0.005 s for a hold to be considered as
such.

Figure 6.15 shows the relationship between curvature and hold lengths. Each dot
corresponds to an instance of a hold of given length at a given curvature. The same
hold can span a range of curvature, hence the short vertical lines. The curvature range
over which holds happen is wide. Figure 6.16 confirms that the driver actually makes
extensive use of ZOH as holds up to 0.5 s are consistently present over the whole range
of dΩ/ds. This result has very important consequences for the data comparison; it
suggests that the driver makes extensive use of ZOH in all sections of the track, hence
the ZOH+SBH approach can be extended for the combined controller as well.

Hper
p and Hpert

p , defined in defined in Section 5.3.2, are considered to gain insight
into the driving strategy and to compare them to the hold statistics of the constant
radius experiment described in Chapter 5. The two straight sections, between corners
16 and 1 and 9 and 10, are excluded because the curvature is 0.

Figure 6.17 shows that Hpert
p is constant for hold lengths shorter than 0.1 s, where

it starts rolling off. The percentage of lap time where δsw was held constant varied
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Figure 6.14: Change in speed at Corner 1 braking point. The variation in
braking point is highlighted top right.

between 25 % and 35 %, indicating a marked hold strategy lap to lap variation. A
clear and consistent roll off is observed around 0.1 s, which suggests that the hold
activity is higher for shorter holds. Figure 6.18 shows that, while the hold behaviour is
consistent across laps for short holds, differences in percentage of total hold time arise
as holds get longer. The figure also indicates that the SBHs are between 65 % and 75
% of the total lap time, with a mean of 70%. For ZOHs up to 0.5 s, hence over the
majority of the ZOH domain, TZOH/TSBH is uniformly distributed with a 0.78 mean,
indicating that the SBH holds are longer than the ZOHs. The update time statistics
can also be inferred from Figure 6.17; the hold time where the roll off starts, short of
0.1 s, indicates that most ZOH are shorter. This suggests that if TZOH/TSBH = 0.78,
the Tu average will be in the region of 0.18 s.

Figure 6.19 highlights the differences in roll off. While it initiates at the same hold
length, just short of 0.1s, Hper

p slope for the combined controls experiment is higher
than the lateral control experiment. This indicates that the former is characterised by
shorter holds, again a consequence of varying Ωz

Figure 6.20 shows the comparison between the mean values of Hpert
p for the constant

and varying curvature scenarios. It is immediately clear that the driver holds δsw
significantly more, 62 % vs 30% for the constant curvature experiment, which is what
one would expect. This confirms that even though ZOHs are found as Ωz is varying,
ZOHs are more likely to be observed for low values of dΩz/ds.
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Figure 6.15: Hold times for all 30 laps for various Ωz along the track. The
horizontal lines at 0.04 and 0.025 m−1 indicate the maximum and minimum
values of dΩ/ds. The focus of the figure is the presence of holds over the
curvature range rather than their distribution.

6.3 Model identification

After analysing the experimental data, the simulation model must be characterised.
The vehicle model is the same as the one used in Chapter 5, characterised by the

parameters in Table 5.2. However, for the constant speed experiment, drag was not
considered and the constant lift forces simply affected the weight distribution of the
vehicle. These assumptions are no longer valid for the variable speed experiment;
models for drag and lift must therefore be specified.

Tyre model parameters must also be identified; varying vertical forces, lateral and
longitudinal components must be taken into account. Values from Table 5.3 are not
used because the lateral/longitudinal coupling and aerodynamic effects affect tyres
lateral behaviour so the fitting is repeated.

The driver model and the cost function parameters are the final part of the
identification process.

6.3.1 Aerodynamic parameters identification

Both lift and drag models are to be identified.
The aerodynamic map was not disclosed, so a model for lift needs to be proposed.

The vehicle model used to derive the controller assumes that the lift force is proportional
to the square of the velocity. Aerodynamic forces for F1 cars are modelled by complex
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Figure 6.16: Hold times for all 30 laps for various Ωz/ds levels along the
track. The horizontal lines at 1E-3 and -4E-4 1/m2 indicate the maximum
and minimum curvature. The focus of the figure is the presence of holds over
dΩ/ds range rather than their distribution.
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Figure 6.17: Hpert
p showing that the total hold time is between 25 % and 35 %

of the total lap time, with an average of 30 %. A marked decrease in percentage
of total lap time is observed for holds longer than 0.1 s.
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empirical aerodynamic maps [143], it is therefore unrealistic to assume that the lift
coefficient is constant. A better approximation can be found following Kutz [144],
who shows that linear dependence on speed can capture the aerodynamic effects to a
satisfactory degree of accuracy. The lift force, assuming it is positive downwards, can
therefore be expressed as

Faz =
1

2
CLAfρv

2 (6.3)

where all terms have been previously defined and CL can be expressed as

CL = aLv + bL (6.4)

where aL and bL are constant coefficients. Since the force is assumed to be positive
downwards, CL is positive.

The total vertical force balance is considered so lateral and longitudinal load transfer
does not have to be taken into consideration.

Fzt =Mg + Faz (6.5)
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Figure 6.18: Hper
p showing a marked decrease in percentage of total lap time is

observed for holds longer than 0.1 s. The lower bound for the holds is set to
0.005 s, which corresponds to the simulator sampling rate.
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Figure 6.19: Hpert
p comparison between the lateral and combined experiment

for the whole time showing a marked difference.

where all terms have been previously defined. Since both Fzt and Faz are a function of
velocity, aL and bL can be found by minimising the following cost function:

Jlift =

k=Nl∑
k=1

(F sim
zt(k) − F exp

zt(k))
2 (6.6)

where F sim
zt(k) and F exp

zt(k) are the simulated and experimental vertical forces at distance
step k and Nl is the total number of distance steps over the 30 laps. Nelder Mead was
used to minimise the cost function, obtaining aL = −0.033 and bL = 5.026. Data for
F exp
zt(k) was provided by the industrial partner.

The drag force also needs to be considered. Drag force is not available so it can
only be estimated. Assuming that

F exp
ax = FLon −Mtu̇ (6.7)

where FLon is the total tyre longitudinal force.
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Figure 6.20: Hper
p comparison between the lateral and combined experiment.

Assuming the drag force and coefficient are modelled in the same fashion as the lift
in (6.3) and (6.4) , the simulated drag force can be obtained by

F sim
ax =

1

2
CxAfρv

2 (6.8)

where all terms have been previously defined and Cd can be expressed as

Cx = axv + bx (6.9)

where ax and bx are constant coefficients.
The difference between the experimental and simulated drag force can be minimised

to find the ad and bd The cost function can be expressed as

Jd =

k=Nl∑
k=1

(F exp
(d,k) − F sim

(d,k))
2 (6.10)

where F exp
(d,k) and F sim

(d,k) are the experimental and simulated drag force at distance step
k and Nl is the total number of distance steps over the 30 laps. Nelder Mead is used
to minimise (6.10) to give ad = −0.0023 and bd = 1.72.
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6.3.2 Tyre model identification

The tyre model was not disclosed for confidentiality reasons, so parameters need to
be chosen to make the simulation and experimental models comparable. The time
histories for the slip and tyre forces are provided for the four wheel vehicle. Left and
right wheel forces are added to find the total front and rear axle forces, while left
and right slips are averaged to find average slips. The procedure follows from the one
described in Section 5.4.2. However, fitting the tyre model for a vehicle with combined
controls is more challenging than fitting the model for a lateral only controller due to
two factors:

• Varying vertical force

Since speed is changing, the effect of the aerodynamic forces is not constant and
cannot be taken into account by the tyre model.

• Combined lateral and longitudinal effect

As lateral and longitudinal forces are present, the model is inevitably more
complex. While only the magnitude of the force error was minimised in the
lateral case, both magnitude and direction need to be considered in the combined
case.

The variation in vertical forces is considered in Section 6.3.1. Tyres are characterised
by three parameters per direction, namely Q, µ and αmax or κmax. There are therefore
a total number of six parameters to be fitted per axle.

The cost function that needs to include both longitudinal and lateral forces to
optimise for the magnitude as well as for the direction of the force. It can be expressed
as

Jtl =

k=Nl∑
k=1

|F exp
(k) − F sim

(k) |2 (6.11)

where F exp
(k) and F sim

(k) are the horizontal tyre force vectors at distance step k and Nl is
the total number of distance steps over the 30 laps.

The procedure is applied to both front and rear tyres separately. The resulting
parameters are reported in Table 6.1.

Figure 6.21 shows that the force magnitude and direction of the front tyre are a
close match, with an average error of only 2 % for the force and 6 % for the direction.
Only one lap is reported for clarity but the full set of 30 laps has been used to generate
the data in Table 6.1.
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Table 6.1: Tyre model coefficients fit for front and rear tyres.

Tyre µy Qy αmax µx Qx κmax

Front 1.7909 1.7061 0.1564 1.4554 1.5922 0.1419
Rear 1.7406 1.5770 0.1795 1.6303 1.6077 0.1364
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Figure 6.21: Comparison between the total front tyre force magnitude and
direction for the fitted and experimental results.

Figure 6.22 shows the contour plot of the slip-force surface. The advantage of
plotting the contour instead of the surface is the fact that it is constant over the whole
range of vehicle speeds as aerodynamic forces simply scale the surface vertically. This
implies that the projection of the force slip characteristics on the α− κ plane gives an
immediate graphical representation of the tyre slip characteristics for the lap and for
the whole speed range. Aerodynamic forces only scale the tyre curve, limiting their
effect to the F − α and F − κ planes. The shape of tyre curve is asymmetric, which
shows that the experimental tyre model has different characteristics in the lateral and
longitudinal direction. Load transfer effects, which are not accounted for in the bicycle
model, are captured by the tyre model and they could contribute to tyre asymmetry.
Red lines show the measured slip, which exceeds the 0.15 radius friction circle several
times both laterally and longitudinally.

Figures 6.22 show that the magnitude and direction of the rear force also match
closely.
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Figure 6.22: Fitted front tyre curve and slip force characteristics. The front
tyre curve is plotted for 40 m/s. This, however, cannot be inferred from the
figure as only the α− κ plane is showed.
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Figure 6.23: Comparison between the total rear tyre force magnitude and
direction for the fitted and experimental results.
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6.3.3 Driver and cost function parameters identification

Tyre parameters have been successfully characterised, so driver model parameters
should now be considered. Following the identification procedure in Section 5.5, the
difference between experimental and simulated δsw MSSDs could be minimised. While
comparing the simulated output with the experimental one is still a valid strategy,
external disturbances are not acting on the vehicle so the lap to lap variation is due to
driver internal disturbances, which are unknown. Given the number of variables in
the model and its complexity, trying to identify all the parameters with an unknown
disturbance in the system would be computationally too expensive. An alternative
approach needs to be considered.

The identification process is simplified by neglecting the system randomness. Rather
than comparing the disturbed signals, the experimental averaged signals and the
nominal, undisturbed simulated signals are compared. This assumption does not
introduce a significant error for two reasons:

• Lap to lap variation magnitude

The lap to lap variation is small, typically around 5 %, of the actual signal
magnitude. While it is significant for the data comparison, it can be neglected in
the parameter identification.

• Driver intrinsic randomness

Cost function weights attempt to model driver behaviour. In this work, they
are assumed to be constant. However, it is clear from the experimental results
in Section 6.2 that they are not only variable, but they are also characterised a
certain degree of randomness. Cost function weights are likely to vary with track
conditions, such as curvature and speed, but also lap to lap due to the driver
intrinsic randomness. A similar argument can be made for the NMS filter: both
the natural frequency and damping attempt to model an intrinsically random
system. Since the deterministic, constant driver model only approximates the
random nature of the human, an estimate obtained from comparing nominal
signals is sensible. The approach to include driver randomness into the system
is discussed in 6.5.1. Systematic disturbances, such as road roughness at same
point on the track, have not been taken into consideration because they were not
present in the experimental model.

Before specifying the cost function and detailing the identification, a number of
assumptions is made to reduce the search space of the algorithm. Given that the
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same driver performed both the constant speed and variable speed experiments, the
lateral dynamics NMS filter parameters are assumed to be the average of those found
in Section 5.5. The longitudinal filter dynamics are assumed to the same as the lateral
as the muscles and the nervous system are the same. The effect of the filters is affected
by the cost function weights q3, q5 and q6 so these should account for any discrepancy
that arises from the aforementioned assumptions.

The update time is taken from measured data. As per Section 5.3.2, the signal is
assumed to be a sequence of holds which are composed of ZOHs and SBHs, the sum of
the two being the update time. These are measured using the algorithm described in
Section 5.3.2.

Finally, the cost function weight q7 is assumed to be 1E-4 because several tests
performed by the author showed that this value ensures that the driver does not apply
accelerating and braking torque simultaneously on the straight for any cost function
parameter space used in this work.

The cost function for the identification can now be set up. Parameters need to be
adjusted to track the nominal speed and path, while replicating the behaviour of the
driver. All controls are included in the cost function, which can be expressed as

Jsl = (δsw,sim − δsw,exp)
T (δsw,sim − δsw,exp) (6.12)

+(κf,sim − κf,exp)
T (κf,sim − κf,exp) (6.13)

+(κr,sim − κr,exp)
T (κr,sim − κr,exp) (6.14)

Jsl is minimised using the Nelder Mead algorithm. The parameter studies performed
in Chapter 4 and the validation in Chapter 5 provide a good baseline for an initial
guess.

Since disturbances are not present, optimality is guaranteed over the whole pre-
diction horizon. An arbitrary long update time can therefore be used, decreasing
computational time considerably. The resulting values are shown in Table 6.2, specify-
ing the values that have been identified and those assumed from the previous experiment
or measured. The average states and controls are calculated using Eq (6.1).

Figure 6.24 shows the comparison between the experimental and the simulated δsw.
The match is excellent with the biggest difference being at δsw peaks, hence at the
limit of adhesions. The metric used for comparison is the relative error, calculated
using Eq 5.10. The maximum relative error is around 20%, which happens at 2200 m
into the simulation. The average error is much lower, around 3% for the whole lap.
Neglecting δsw peaks at 2100 m and 3500 m, a t-test shows that the difference between
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Table 6.2: Parameters for the combined validation

Parameter Symbol Value Derivation
Steering NMS damping ratio ζn 0.68 Assumed from Ch. 5
Steering NMS natural frequency ωn 15.47 rad/s Assumed from Ch. 5
Penalty on deviation from
nominal path q1 0.97 Identified

Penalty on deviation from
nominal heading q2 1.03 Identified

Penalty on hand wheel angle
speed q3 0.0101 Identified

Penalty on deviation from
nominal speed q4 0.504 Identified

Penalty on front longitudinal slip
speed q5 0.0015 Identified

Penalty on rear longitudinal slip
speed q6 0.00097 Identified

Penalty on longitudinal speed
sum q7 0.0001 Assumed from

parameter study
Update time Tu Variable Measured

experimental and simulation signals is not significant at 5%. The match is excellent in
some sections of the track. Even for corner number 3, which is difficult to interpret, a
good match is observed. This is a very encouraging result because the approximations
made for driver, vehicle and tyre models do not result in a substantial difference in
nominal driving strategy.

The match between the lateral forces is also excellent, as shown in Figure 6.25. The
error in this case is always below 4%. Such a good match would not be expected due
to approximate modelling of the aerodynamic map and the load transfer. However, the
tyre model also captures aerodynamics effects, increasing the fidelity of the simulation.
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Figure 6.24: HWA for experimental and simulated lap. The match is excellent,
with an average error of 3 %.
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Figure 6.25: Sum of front and rear, hence total, lateral force for experimental
and simulated lap.

Figure 6.26 gives a measure of the front tyre saturation for the simulated vehicle.
Plotting the tyre surface for different velocities would not be insightful, also in light of
the fact that the maximum available force is speed dependent. Instead, the difference
between the maximum available slip, which is independent of the vertical load, and
the total slip is considered.

∆ϵ = ϵmax − ϵ (6.15)
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Figure 6.26: Difference between total slip and maximum available slip for the
front tyre of the simulated vehicle. The front saturates several times over the
course of the lap.

Clearly, when ∆ϵ < 0, tyres are saturating. Since the tyre model is only linearly
dependent on Faz, the slip at which the horizontal force reaches its maximum value for
a given vertical force, which is about 0.14, is constant. Instead of using ∆ϵ as a metric,
the total slip could simply be plotted, indicating its saturation value. The proposed
method, however, can be extended to tyre curves that vary arbitrarily with speed so it
is a valuable addition to the thesis.

On the main straight, between corners 16 and 1, the total slip is approximately zero,
so ϵ = 0.14. As the vehicle brakes, the slip increases, causing the tyres to saturate just
before 1000 m. This happens various times over the lap, showing that the controller
can stabilise the vehicle even when tyres are saturating. It is interesting to notice that
the slip changes quite abruptly throughout the lap apart from a section around 1250
m. This corresponds to corner 3, where the slip decreases gradually, making it one of
the hardest corners to interpret.

The behaviour of the rear tyre is similar, it saturates in correspondence of corners
and braking points. The only difference is that slip never decreases to zero as a certain
amount of traction force is always present.

Figure 6.27 shows that the speed profiles are very close, confirming that the
longitudinal dynamics are modelled well. Figure 6.28 better quantifies the speed error
by considering the difference in speed. The error is small and never exceeds 4 %. The
error is negative for most of the lap, which means that the simulated vehicle is slower
than the experimental one. The speed tracking error for the nominal signal does not
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Figure 6.27: Vehicle speed for experimental and simulated lap

take into account the difference in braking points and other features of the signals
which are lost in the averaging process. These will be further explored in Section 6.5.1.

Figure 6.29 shows the total longitudinal force. The match is excellent, but not as
good as for the lateral case. Poor modelling of drag is likely to be the most significant
contributing factor, given the complexity of the aerodynamic map and the assumptions
made. In order to investigate this further, the aerodynamic map is needed.
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Figure 6.28: Speed error for experimental and simulated lap. A negative values
indicates that the simulated vehicle is slower than the experimental one.
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Figure 6.29: Total vehicle longitudinal force. The front and rear tyre forces are
added.

6.4 Sensorimotor system noise

All model parameters have now been identified so experimental and simulated data can
be compared. However, Section 6.2 shows that there is a statistically significant lap to
lap standard deviation for all signals in absence of external disturbances, suggesting
that a certain degree of randomness is also present in the driver. This needs to be
accounted for to replicate the experimental results in the simulation environment.

Wolpert et al. [145] show that both the sensory system and the neuromuscular
system are characterised by the presence of a certain degree of unpredictability. They
confirm that noise contributes significantly to trial-to-trial variability. This suggests
that confirming that the lap to lap variation may be attributable to said noise. Further
randomness is also introduced by an imperfect knowledge of the dynamics of the vehicle
and grip levels. These phenomena can be modelled as random disturbances in the
driver controls.

Figure 6.4 shows that sections of high δsw standard deviation correspond to high
curvature, hence high steering activity, suggesting that the disturbance is proportional
to the signal magnitude. Nash et al.[114] show that noise in the neuromuscular system
is signal-dependent. The disturbance is assumed to be white noise with zero mean and
a standard deviation proportional to the signal magnitude. It is applied directly on
δcom. The new commanded signal δcom,t becomes

δcom,t = (1 + rn)δcom (6.16)
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where δcom,t is the total steering angle and rn is a random number drawn from a
Gaussian distribution with zero mean and standard deviation Ξ, where Ξ is a constant.
The value of Ξ is found heuristically and it is set to 0.6.

The HWA at the steering wheel will then be δcom,t filtered by the neuromuscular
system

δ̈sw + 2ζnωnδ̇sw + ω2
nδsw = ω2

nδcom,t (6.17)

Figure 6.11 shows the on-off nature of longitudinal signals and Figure 6.10 shows
that high standard deviation values correspond to braking points and that subsequent
deviations from the mean are caused by the lap to lap variation in braking points
rather by than a continuous disturbance. This suggests that the longitudinal controls
are affected by continuous random sensorimotor noise and randomness in the timing of
control events, with the latter being more significant. In order to simplify the analysis,
only continuous longitudinal noise is taken into account. Even though it is not as
significant as the timing of control events, it is similar to all the disturbances used for
the model so far. Introducing a different type of disturbance would require a careful
reconsideration of the controller architecture. The continuous disturbance is assumed
to be a random gaussian noise with zero mean and a 0.02 standard deviation, which is
chosen heuristically. There is no evidence of signal dependent noise for the longitudinal
controls in the literature so the disturbance enters the equation of motion unaltered.

6.5 Data comparison

The controller was then tested on a single manoeuvre, Corner 1 and 2, multiple times
to replicate the standard deviation naturally present in the driving task. The test is
performed in absence of external random forces on the vehicle.

6.5.1 Comparison – measured time parameters

The whole lap was not considered because of the high computational cost. Corners 1
and 2 were chosen because the manoeuvre involves a representative variety of driving
conditions. That is braking after the straight, with tyres saturating longitudinally, and
two corners where tyres saturate laterally. The simulation is repeated fifteen times,
which, even though it is not thirty, is enough to ensure that the results are statistically
relevant. This is confirmed by running a Bayesian bootstrap on the data.

A prominent feature of the signal is the presence of ZOH, as Figure 6.15 and 6.16
show, which is consistent with the mixed SBH-ZOH hypothesis proposed in Section
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Figure 6.30: Comparison between the disturbed experimental and simulated
states for corners number 1 and 2.

5.3.2 . This strategy introduces further randomness into the system and it is replicated
by assuming that each hold is an SBH followed by a ZOH, with the sum the two
being the update time. The SBH and ZOH pattern for the the first fifteen laps
from the driving simulator experiment was measured and replicated in the simulation
environment, introducing a variable update time as a consequence.

Figure 6.30 shows the time histories of the inputs and the key states, the speed and
the LPE. Figure 6.30a confirms that the controller tracks the nominal signal well, as the
difference between the experimental and simulated means is negligible. The variance
of both signals is also comparable, suggesting that the SBH and ZOH approach and
the magnitude of the disturbance are reasonable.
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The means of the experimental and simulated longitudinal rear slip, Figure 6.30b,
do not match as closely as for the lateral controls. Longitudinal aerodynamics effects
are difficult to capture and cause a discrepancy.

Figure 6.30c shows that even though the speed match is reasonably good, the
controller fails to capture the differences in braking points, effectively affecting the rest
of the signal time history. The mean and the variance, however, are reasonably close.

Figure 6.30d shows that the deviation from the LPE error is again comparable as
the driver enters the corners. On the straight, the simulated path error is zero, which
is consistent with what one would expect. However, the experimental data shows
that there actually is path error. In the absence of external disturbances, the LPE on
a straight line should theoretically be zero. The real driver, however, does not put
significant emphasis on the trajectory on the straight, as this does not affect lap-time;
resulting in LPE on the straight. Cost function weights are assumed to be constant, so
the controller cannot predict such behaviour, which is limited to a driving scenario
only affecting the lap-time marginally.Random errors are more significant than in other
cases; this is due to the fact that on the straight the driver does not consistently follow
the same path.

The experimental and simulated LPE and δsw standard deviation are compared,
as they are good metrics to quantify the accuracy of the model. The longitudinal
states and controls are not considered because longitudinal disturbances have not been
applied to the vehicle.

The experimental and simulated HWA, Figure 6.31a, do not match well at the
beginning of the manoeuvre. This is the result of the higher LPE deviation on the
straight, which the controller fails to replicate. After the 200 m mark, the magnitudes
of the standard deviations are comparable; while their time histories do not match
perfectly, their mean values differ by 20%, which is reasonable given that the model is
attempting to replicate a very complex system.

The LPE sd, Figure 6.31b, confirms that the controller can replicate the LPE to a
very satisfying degree of accuracy. While the difference is marked in the first section of
the manoeuvre, as curvature increases the sd time histories follow the same pattern,
the simulation lagging slightly in the first corner and the experimental lagging in the
second corner. The peak magnitudes have very similar magnitudes, the first being
almost identical and the second only 10 % different.

The MSSD of the inputs are also considered, as they contain information on mean,
variance and frequency content all in one signal.
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(a) Hand Wheel Angle standard deviation
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Figure 6.31: Comparison between signals standard deviations for corners
number 1 and 2.

Figure 6.32a shows the average experimental and simulated δsw MSSD for 15 runs .
At low frequencies the match is excellent, with an average 4 % error, which is consistent
with the fact that the nominal HWAs match well. As frequency increases, the match
in the frequency range of interest is still satisfactory, with errors never exceeding 6
%, showing that the δsw standard deviation is distributed equally over the frequency
content. Some discrepancies are noticeable at higher frequencies, but these have very
low magnitude, as they are beyond the limit of the driver’s bandwidth.

The compensatory action of the controller can also provide good insights into its
performance. For any signal S, the compensatory action can be calculated as

Scom = S − µS (6.18)

where µS is the signal mean. Figure 6.33a shows δsw compensatory action MSSD. The
simulated activity is 5 % to 10 % higher over the whole frequency range, indicating
that either the disturbance level is too high or the match is still satisfactory.

Figure 6.32b shows that, for low frequencies, the match for the longitudinal rear
slip is good – with errors below 5 %-, confirming that the longitudinal dynamics can
be captured to a good level of accuracy. The match is again not as good as for the
δsw because assumptions made for modelling aerodynamic forces, drag in particular,
have a more significant effect. At higher frequencies the only noticeable difference is
the effect of the filter around 3 Hz, whose impact is not as clear for the experimental
results. The interaction between the filter dynamics and the penalty of the signal in
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the cost function is strong. In this case, the filter effect is more noticeable, though
the difference is small and insignificant for the overall driving strategy given the low
magnitude of the signal at which it happens. The compensatory κr MSSD, Figure
6.33b, shows a similar pattern: a very good match at low frequencies and a higher
difference at higher frequencies.
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Figure 6.32: Comparison between the disturbed experimental and simulated
MSSD for corners number 1 and 2.

6.5.2 Comparison - Estimated time parameters

Section 6.5.1 shows that the proposed controller can replicate to a reasonable degree of
accuracy the behaviour of a human driver. In the identification procedure, the ZOHs,
the SBHs lengths, hence the update time, are measured. This approach does not allow
to reproduce driver’s behaviour in absence of experimental data, which partially defeats
the purpose of the simulation. In order to circumvent this limitation, time parameters
can be estimated from the measured data. Firstly, the minimum update time is set to
0.01 s. A shorter minimum update time, 0.005 s, was used to calculate Hper

p and Hpert
p ;

however, research on human refractory times [2] suggests that the lower bound is 0.01
s.

In order to have an estimate of the update time, the ZOH and SBH lengths
for each control action need to be estimated. A joint probability density function
could therefore be derived. However, the probability distribution of the ratio between
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Figure 6.33: Comparison between the compensatory experimental and simulated
MSSD for corners 1 and 2.

the ZOH length and the update time, TZOH/Tu, can be approximated to a uniform
distribution with a 0.56 mean, as outlined in Section 6.2.1. It is therefore safe to
assume that Tu = 1/0.56 ∗ TZOH , eliminating the need for a joint probability function.
A pdf for TZOH can be found by fitting the experimental data. Figure 6.34 shows the
experimental pdf in black. The clear exponential nature of the curve suggests that a
Pareto distribution would best fit the data. Since the asymptote is not zero, a Pareto
type II, also known as Lomax distribution, is the best candidate.

p(tZOH) =
αl

λ

(
1 +

tZOH

λl

)−(α+1)

(6.19)

where αl and λl are constant parameters. The line of best fit, shown in Figure 6.34, is
found using the Nelder-Mead algorithm, which yielded αl = 7.9 and λl = 0.22. The
data set was obtained from a single driver, so little can be said about the universality
of the result. However, even though the distribution parameters are likely to vary for
different drivers, results in Chapter 5 and Chapter 6 suggest that a Pareto distribution
could be used to model the hold behaviour of other drivers as well.

The time parameters are obtained by generating a random TZOH from p(tZOH) and
multiplying by 1/Tuz,avg to obtain Tu.

The comparison between simulated and experimental data is repeated using the
estimated time parameters, keeping everything else constant. The longitudinal controls
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Figure 6.34: Average experimental hold length pdf and the fitted Pareto
distribution

and states are not considered as they are not directly affected and do not change
significantly. Results in the following Figures are labelled in the following way:

• Simulated results using estimated parameters - Sim. estimated

• Simulated results using measured parameters - Sim. measured

• Experimental results - Experimental.

The δsw time histories, Figure 6.35a show that estimating time parameters does
not introduce a significant error. The HWA standard deviation of the simulation with
estimated parameters, Figure 6.35b, follows the same pattern as the simulation with
measured parameters; the magnitude is larger in places but the difference is generally
less than 10 %.

The LPE time histories and standard deviation, Figures 6.36a and 6.36b, indicate
that estimating time parameters increases the path tracking error by no more than 10
%, without changing the fundamental behaviour of the controller significantly.

Figure 6.37 shows the comparison between the MSSDs of the simulated δsw with es-
timated time parameters, MSSDsim,e, the experimental one MSSDexp and the simulated
one with measured time parameters MSSDsim,m. The frequency response is consistent
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Figure 6.35: Comparison between the disturbed experimental and simulated
δsw time history and standard deviation for corners 1 and 2.

with what was previously observed; MSSDsim,e and MSSDsim,m are characterised by
very similar responses, with variations well below 3 % for the frequency range of interest.
The match with the experimental signal is still acceptable, which indicates that the
controller can be used to replicate the behaviour of a human driver. Figure 6.38, shows
that estimating parameters increases the compensatory action at higher frequencies by
no more than 15 %.

6.6 Summary

This Chapter has focused on the analysis of experimental data from a driving simulator
and the validation of the combined controller.

The statistics of the inputs and states have been considered and most expected
behaviours confirmed. As tyres saturate, the driver becomes more erratic, introducing
significant randomness in all signals. Long sections of the track characterised by
decreasing curvature, such as corner 3, are the most difficult to interpret, as a high
LPE and variance in throttle position indicate. While the longitudinal controls are
consistent across laps, the braking point, especially at the end of the straight, varies
considerably. The analysis of experimental data also revealed that ZOH are common in
sections of the track where the curvature is not constant, highlighting the importance
of this strategy.



6.6 Summary 182

100 150 200 250 300 350 400 450
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Distance (m)

L
a
te
ra
l
P
a
th

E
rr
o
r(
m
)

Sim. estimated
Experimental
Sim. measured

(a) Lateral Path Error time history

100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance (m)

L
a
te
ra
l
p
a
th

er
ro
r
sd
(m

)

Sim. estimated
Experimental
Sim. measured

(b) Lateral Path Error standard deviation

Figure 6.36: Comparison between the disturbed experimental and simulated
δsw time history and standard deviation for corners 1 and 2.

The tyres have been fitted by minimising the difference between the time history of
the forces. A simple aerodynamic model has also been devised. The controller has then
been used to track the nominal data to tune the model parameter with a very good
match obtained. Simulated and experimental data were compared for corners 1 and 2,
showing that the controller can predict the randomness of the driver to a good degree
of accuracy. Tyres saturate both laterally and longitudinally as the vehicle navigates
the two corners, making the manoeuvre representative of most track driving conditions.
The result can be expected to be generalised to any geometry without any significant
loss of accuracy. Data from different drivers would be needed to formally quantify the
universality of the model; however, tuning cost function weights and NMS parameters
can gather for a variety of driving skills.

This Chapter has shown that the controller can track the nominal states of a vehicle
at the limit of adhesion in standard racing conditions and predict driver behaviour
to a good degree of accuracy. The proposed model can capture the system’s intrinsic
randomness.

The main intellectual contribution made in this Chapter is the design of the
procedure to compare experimental and simulated data to confirm that the controller
can achieve the research objective.

Experimental data also revealed some areas for improvement such as variable cost
function weights. These are explored in more detail in Chapter 7.
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Figure 6.37: Comparison between δsw MSSDsim,e, δsw MSSDexp and δsw
MSSDsim,m for corners 1 and 2.
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Chapter 7

Conclusions and further work

The work undertaken in this research was aimed at developing a mathematical model
which can mimic the behaviour of a racing driver controlling a vehicle at the limit of
adhesion. Reproducing a human driver in a virtual environment could reduce the need
for a driver in DIL simulators as well as providing an extremely useful design tool for
all types of vehicles.

Section 7.1 summarises the main conclusions from each Chapter, specifying all
contributions to knowledge while Section 7.2 recommends directions for further work.

7.1 Conclusions

7.1.1 Literature Review

The literature review considered developments in nonlinear vehicle dynamics; more
precisely the tyre, vehicle and driver models aimed at modelling a car at the handling
limit. This review highlighted that the vast amount of work done on lap-time minimi-
sation led to the development of very sophisticated tools to minimise lap time in a
deterministic environment.

It was also shown that very few attempts, however, have been made at trying to
mimic the actual response of a human driver and little attention has been given to
dealing with the uncertainties that characterise the real driving task. Moreover, most
of the work done in this direction assumes a certain degree of linearity; the operational
range of the tyres is often limited, thus making the models unsuitable for handling the
vehicle at the limit of adhesion.

Control techniques were therefore reviewed to lay the foundations for a robust
scheme that could stabilise the vehicle at the handling limit under the action of random
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disturbances and attempt to mimic a human driver. It was therefore established that
devising a controller that could mimic a human driver handling a vehicle at its limit
could be an important contribution to knowledge.

7.1.2 Stability Metrics

Preliminary work included concluding a project aimed at developing novel stability
metrics based on robust control ideas.

An extensive literature review on stability and controllability metrics is performed
by Sideris [40]. A bicycle model augmented with a filter to account for the driver’s
neuromuscular system is used to find an ideal nominal, undisturbed, time-optimising
trajectory using Timings MPC scheme [105]. Haslam [41] added disturbances to the
system and superimposed a Linear Quadratic Regulator (LQR) to mimic the action of
a human driver. He then computed state variances in an efficient fashion exploiting
the linearity of the system. Calculations are validated against an iterative method.

Other stability metrics are also computed for comparison. The proposed stability
and controllability metrics prove to be superior as:

• They relate to the response of the closed-loop driver-vehicle system and are thus
likely to represent the driver’s subjective assessment of the vehicle better than
metrics derived from the vehicle dynamics alone.

• They are very fast to compute.

These stability metrics are used to analyse a 90 degree corner, yielding intuitive
results confirming that the vehicle is harder to control as tyres are close to saturation.
The original contribution to this Chapter was reviewing the work, independently
reproducing the results to ensure consistency and representing them in an intuitive
fashion. The work, including a refined version of the review by Sideris, resulted in a
paper [106].

7.1.3 Driver Model Derivation

The linear driver model developed in Chapter 3 cannot guarantee stability for a vehicle
at the limit of adhesion. Rather, a robust formulation able to deal with non-linearities
has to be implemented. Firstly, notions of optimal and robust control are reviewed.
These are then applied to derive a robust, nonlinear controller based on the concept of
tube based MPC.
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An MPC controller is used to find a nominal trajectory that is tracked by an
ancillary controller as the vehicle is subjected to disturbances. Nonlinear optimisation
is implemented for the ancillary controller. A single input, lateral control is considered
first.

A bicycle model with nonlinear tyres, augmented with a filter to account for the
driver NMS, is used for the derivation. An intrinsic track model is preferred, as it
greatly simplifies the cost function. The model is enriched with features, such as update
time and different hold types, which allow it to mimic the behaviour of a human driver.

The formulation is extended to include longitudinal dynamics, modifying the vehicle
and tyre models accordingly. The work done in this Chapter shows how to apply
the robust control techniques developed in [102] to a physical system. The authors
of [102] highlight that most of the advances in the nonlinear robust control field are
theoretically sound but of limited practical use. Controlling a vehicle under the action of
disturbances is a practical application that reveals various features of the the controller.

The contribution to knowledge of this Chapter is the derivation of a driver model
able to stabilise a vehicle under the action of disturbances. Optimal control formulations
present in the literature, for instance [83–86], despite the very complete vehicle models,
are deterministic and do not take randomness into account.

7.1.4 Driver Model Testing

The validity of the formulation proposed in Chapter 3 is tested on increasingly challeng-
ing driving scenarios. The lateral controller manages to stabilise US and OS vehicles
at the handling limit under the action of disturbances, confirming the robustness of
the formulation.

The combined controller deals with an even more challenging scenario, where the
target path and speed are physically unachievable. Here, the model manages to keep the
vehicle at the limit of adhesion, minimising both the deviation from the nominal path
and the speed error. The controller is also tested in more realistic driving conditions –
a 90 degree corner, showing that robustness is independent of track geometry.

Parameter studies are an important section of the Chapter. The effect of the
parameters on the states and controls is investigated using a variety of approaches.
It is concluded that both the weight q3 on δ̇ and the NMS filter have a significant
effect on δsw frequency content. The update time is found not to affect the frequency
response of the steering significantly. The effect on the LPE is evident, however. The
parameter study on the combined lateral and longitudinal controller further confirms
two important features of the model: the direct relationship between control effort
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and path tracking accuracy and the coupling between longitudinal controls and lateral
dynamics.

This Chapter confirms that the controller can stabilise a vehicle with saturating
tyres under the action of random forces, extending the work in [105]. The variety of
driving scenarios tested demonstrates the controller effectiveness.

Two original contributions to knowledge are made in this Chapter, namely con-
firming that the formulation can stabilise a vehicle when at the limit of adhesion and
finally investigating the effect of longitudinal controls on lateral states.

7.1.5 Driver Model Validation – Lateral Controls

While the controller achieves stability under a number of driving conditions, comparing
the controls to those of an actual driver can give important insights into how well
the model can mimic a human operator. Data for a driver navigating a circle under
the action of disturbances from a driver-in-the-loop simulator is analysed. The SBH
assumption is refined by adding a ZOH at the end, effectively proposing a mixed ZOH
and SBH driving strategy.

The driver and tyre models’ parameters are fitted to experimental data, rendering
experimental and simulation conditions comparable. The statistics of the simulated
and experimental signals show an excellent match. Despite the assumptions underlying
the model, such as the lack of load transfer, the controller can mimic the controls of the
human driver to a good degree of accuracy. Biological biases and differences in vehicle
models become more significant as the vehicle’s limits are approached. The difference
between experimental and simulated LPE was more marked than the difference between
controls, suggesting that the tyre and vehicle model discrepancies contributed to the
overall error.

The formulation of a novel driving strategy that includes SBH and ZOH is the
most important original contribution in this Chapter. This extends the work in [2] on
driving strategy. Confirming the lateral controller soundness and the ability to mimic
a real human driver is another significant contribution.

7.1.6 Driver Model Validation – Combined Controls

The validation is extended to the combined controller. Experimental data of a driver
lapping an international racetrack is considered. Disturbances are not applied to the
vehicle, so the driver’s intrinsic randomness is accounted for by disturbances in the
neuromuscular system. Experimental data is analysed, confirming most expected
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behaviours. As tyres saturate, the driver becomes more erratic, introducing significant
randomness in all signals. Longitudinal controls are generally consistent across laps,
but braking points are characterised by considerable randomness. The randomness in
lateral controls appears to be proportional to the signal amplitude. Finally, a careful
consideration of the driving strategy shows that ZOHs are used extensively, regardless
of track curvature.

Model parameters are identified from experimental data and a simple aerodynamic
model is proposed. Cost function parameters are tuned by tracking the nominal
signal. Simulated and experimental data is compared for corners 1 and 2, showing that
the controller can predict the randomness of the driver with a satisfactory degree of
accuracy.

There are two main contributions to knowledge in this Chapter. Firstly, data from
a human driver is analysed to characterise the driver’s behaviour, in a similar fashion
to [142] but for a Formula 1 vehicle. Secondly, simulated and experimental data is
compared to confirm that the controller can simulate the control actions of the human
test subject with statistical properties that agree to a useful level of accuracy.

This Chapter has also highlighted various areas for improvement and potential for
further work, expanded upon in Section 7.2.

7.2 Further work

Even though the research objectives have been met, the controller developed would
still not be suitable for practical applications. However, extending the work done could
make the formulation implementable in a practical context. Suggestions for further
work follow.

7.2.1 Model extensions

Though the vehicle model used here is able to capture to a good degree of accuracy
the behaviour of a real vehicle, refining the dynamic formulation would clearly lead to
a model more applicable to actual racing conditions.

Firstly, the bicycle model could be extended to a four-wheels model to account for
load transfer and a limited slip differential. Longitudinal load transfer, despite being
almost negligible, could be added. Engine maps, gear shifts and KERS would also be
relevant, especially when considering longitudinal dynamics. An empirical aerodynamic
map could be added to model both drag and down-force. Very strong non-linearities,
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such as driving on curbs, wheels lifting or locking, would be important contributions to
the model if real racing scenarios are to be reproduced. Finally, the tyre model could
be enhanced to include thermal effects and wear.

7.2.2 Numerical efficiency

One of the biggest hurdles to the practical implementation of this scheme is the
computational burden associated with it. The efficiency of the proposed formulation
could be improved in a number of ways.

Firstly, symbolic rather than numerical derivatives could be used, avoiding very
expensive differentiation routines. Secondly, the whole algorithm could be coded in a
lower level programming language, such as C. Finally, and perhaps most importantly,
parallelisation could be exploited. The dynamics, the constraints and the cost function
can be evaluated independently on separate processors due to the full state and control
discretisation.

7.2.3 Variable update time

The hold behaviour and variable update time are clearly governed by a number of
feedback inputs, including the distance from the ideal line, the orientation of the vehicle
and the grip level. It would be instructive to find the correlation among the feedback
signals and the update time variation.

A threshold strategy - which assumes a perfect correlation between update time and
LPE – has been implemented and tested in the context of the validation in Chapter 5.
Comparison with experimental data has shown that the assumption is wrong so it has
not been included in the thesis. A cross correlation study could be carried out on a
number of parameters to understand those that have a significant effect on the update
time. Slip level is likely to be an important factor. Hand wheel torque feedback is in
fact very widely used by racing drivers to adjust their feedback action.

7.2.4 Parametric uncertainty

Real drivers do not have perfect knowledge of the vehicle dynamics, so internal models
are not the same as actual full scale ones. Uncertainties might involve time variation
of parameters such as the tyre-road friction coefficient. The current work assumes that
the driver has either perfect knowledge of the vehicle or that parametric uncertainty is
included into the driver’s sensorimotor system noise.
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An more rigorous approach to model the discrepancies – for instance using predictive
filters – would be an significant improvement for the controller.

7.2.5 Control strategy variation

Experimental data suggests that the driver varies their compensatory control strategy
throughout the lap. For instance, the LPE is not zero on the straight, even in absence
of disturbances. Furthermore, depending on vehicle states, the driver may opt for
different ways of allocating their cognitive resources. These differences in control
strategy might be accommodated by the variation in cost function weights.

In order to formulate a more realistic driving strategy, it would be necessary to
identify which factors - such as speed or curvature – affect driving strategies and then
adjust the cost function weights accordingly.

Another aspect to take into account in this context is driver fatigue. The total
cognitive capacity assigned to the driving task should somehow be correlated with the
length and intensity of the driving task, making nominal state tracking increasingly
more erratic for long and challenging scenarios. An important step in all these
developments will be experimental validation of the driver’s feedforward and feedback
control strategies and of the relationship between objective and subjective responses,
extending the work in 2.

7.2.6 Online controls retrieval

It is very unlikely that a human can perform online optimisations, even for longer
update times. It could be hypothesised that the driver retrieves signals previously
learned and applies them depending on the states of the vehicle. This idea follows from
observing the learning process [146].

An inexperienced driver explores the vehicle performance boundaries and then
replicates the motions learned. Racing drivers may have an internal control library
generated through experience, from which they would choose controls depending on
the situation. It is also possible that the actual driving signals are generated from very
few primitives [146] which are then scaled or modified to fit the current conditions.

An experience driver can push a vehicle to the limit on a track they have never
driven on in less than 50 laps. Evidence can be found in the lap-times for races on new
racetracks. In the inaugural Sochi GP in 2015, drivers were able to consistently lap
within 3 % of their personal best lap in Free Practice 2, so after approximately 25 laps.
Even though they all practised on the simulators before, this suggests that signals may
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be stored and then adapted to the circumstances. It would be instructive to explore
this idea by creating libraries of controls and applying them at each update time.
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