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Abstract

The Cox proportional hazards model is widely used for semiparametric anal-
ysis of lifetime/ duration data. It is, however, well acknowledged that the pro-
portionality assumption underlying this model is strong; the assumption is of-
ten unreasonable from a theoretical point of view, and found to be empirically
violated in many cases. In the two-sample setup, it is of interest to test pro-
portionality against ordered/ monotone alternatives, where the ratio of hazard
functions/ cumulative hazard functions increase or decrease in duration. Several
tests for proportionality against these kinds of non-parametrically specified or-
dered alternatives exist in the literature (Gill and Schumacher, 1987; Sengupta et.
al., 1998). Recently, a natural extension of such monotone ordering to the case
of continuous covariates has been discussed, and tests for the proportional haz-
ards model against such alternatives developed (Bhattacharjee and Das, 2002).
It is observed that such monotone/ ordered departures are common in applica-
tions, and provide useful additional information about the nature of covariate
dependence.

In this paper, we describe methods for estimating hazard regression models
when such monotone departures are known to hold. In particular, it is shown
how the histogram sieve estimators (Murphy and Sen, 1991) in this setup can
be smoothed and order restricted estimation performed using biased bootstrap
techniques like adaptive bandwidth kernel estimators (Brockmann et. al., 1993;
Schucany, 1995) or data tilting (Hall and Huang, 2001). The performance of
the methods is compared using simulated data, and their use is illustrated with
applications from biomedicine and economic duration data.
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1 Introduction

The proportional hazards (PH) model, and more specifically the Cox regression model
(Cox, 1972), has played an important role in the theory and practice of lifetime and
duration data analysis over the past few decades. This is because, the PH model
(and the Cox regression model) provides a convenient way to evaluate the influence
of one or several covariates on the probability of conclusion of lifetime or duration
spells. However, the PH specification substantially restricts interdependence between
the explanatory variables and the lifetime in determining the hazard. In particular,
the PH model restricts the coefficients of the regressors in the logarithm of the hazard
function to be constant over the lifetime. This may not hold in many situations, or
may even be unreasonable from the point of view of relevant theory. Since, such and
other kinds of misspecifications often leads to misleading inferences about the shape
of the baseline hazard and the effects of explanatory variables, testing the PH model,
particularly against the omnibus alternative, has been an area of active research.

As opposed to such broad alternatives, it is often of interest to explore whether
the hazard rate for one level of the covariate increases in lifetime, relative to another
level (i.e., the hazard ratio increases/ decreases with lifetime), particularly when the
covariate is discrete (two-sample or k-sample setup). This kind of situation could
arise, for example, if the coefficient of the covariate is not constant over time, or is
dependent on some other (possibly unobserved) covariate. In the two-sample setup,
Gill and Schumacher (1987) and Deshpande and Sengupta (1995) have constructed
analytical tests of the PH hypothesis against the alternative of ‘increasing hazard
ratio’, which is equivalent to convex ordering of the lifetime distribution in one sam-
ple with respect to the other (Throughout this article, the word ‘increasing’ would
mean ‘non-decreasing’, and ‘decreasing’ would mean ‘non-increasing’). Under the
same setup, Sengupta et. al. (1998) have proposed a test of the PH model against
the weaker alternative hypothesis of ‘increasing ratio of cumulative hazards’ (star
ordering of the two samples). The above alternative hypotheses (‘increasing hazard
ratio’ and ‘increasing ratio of cumulative hazards’) often provide an explanation for
the phenomenon of ‘crossing hazards’ frequently observed in applications. In fact,
in the empirical literature on survival analysis, convex-ordering/ star-ordering of one
sample with respect to another in the two-sample setup, or one cause of failure to
another in the competing risks setup, as well as their duals (the concave-ordering/
negative-star-ordering hypotheses), have come to be accepted as natural ordered al-
ternatives to the proportional hazards model. Empirical evidence of such ordering
are abundant in the literature on empirical survival analysis, demography and eco-
nomic duration models. Recently, Bhattacharjee and Das (2002) have discussed a
natural extension of such monotone ordering to the case of continuous covariates, and
constructed tests for the proportional hazards model against these alternatives. It is
observed that monotone departures are common in economic and biomedical appli-
cations (Bhattacharjee and Das, 2002; Scheike, 2002), and provide useful information
about the nature of covariate dependence.

Another popular approach, in this literature, is on interpretation of violations of
the PH model in terms of age-varying covariate effects (for a review, see Scheike, 2002).
1 Several contributions have suggested testing the PH model through detection of

Most of the literature refers to such effects as time-varying effects. We prefer to use the ter-
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age-varying covariate effects (see, for example, Grambsch and Therneau, 1994; Scheike
and Martinussen, 2002), and several methods for estimation of age-varying covariate
effects have been proposed (see, for example, Zucker and Karr, 1990; Murphy and
Sen, 1991; Martinussen et. al., 2002).

In this paper, we build on the notion of ordered departures from proportionality
introduced in Bhattacharjee and Das (2002), and propose estimation methods for
hazard regression models under such order restrictions. Building on a natural in-
terpretation of these alternatives in terms of monotonicity of age-varying covariate
effects, we use biased bootstrap methods to estimate the covariate effects when such
monotone departures are known to hold. The small sample properties of the estima-
tors are explored using simulated data. The methods are shown to be conveniently
implemented in applications, and conducive to useful inference.

In Section 2, we follow Bhattacharjee and Das (2002) and present concepts of
ordered alternatives to the PH model, with respect to continuous covariates. Esti-
mation methods are proposed in Section 3. In Section 4, we illustrate the use of
the estimators using simulations and two real life applications. Section 4 collects the
concluding remarks.

2 Partial ordering with respect to continuous covariates

The concept of partial ordering of lifetime distributions have been quite useful in
applications. The most popular of the available notions of partial ordering, namely
convex ordering and star ordering (Kalashnikov and Rachev, 1986; Sengupta and
Deshpande, 1994), can both be conveniently interpreted in terms of monotonicity
of ratios of hazards/ cumulative hazards over time. These constitute intuitive and
meaningful departures from the PH model in two samples and in the competing
risks framework. Gill and Schumacher (1987), Deshpande and Sengupta (1995), and
Sengupta et. al. (1998) consider several empirical applications where the departure
from the PH model in two samples is evident from the fact that the ratio of the hazard
rates is not constant over the lifetime.

The following definition (Bhattacharjee and Das, 2002) extends, to the continuous
covariate setup, the notion of monotone ordering in two samples discussed in Gill
and Schumacher (1987) (monotone hazard ratio). Let T be a lifetime variable, X a
continuous covariate and let A (¢|x) denote the hazard rate of T', given X = z, at T' = t.
Then, T is defined to be increasing (decreasing) hazard ratio for continuous covariate
(IHRCC (DHRCC)) with respect to X if, whenever x1 > o, A(t|x1) /A (t|x2) Tt
(L t).

IHRCC describes a notion of positive ageing with respect to the continuous co-
variate X; the higher the covariate, the faster the ageing of the individual — a situa-
tion common in empirical applications (Bhattacharjee and Das, 2002; Scheike, 2002).
In biomedical applications, such monotonically age-dependant covariate effects have
been noted in the literature, both under additive hazard models and multiplicative
hazard models. For survival with malignant melanoma, for example, Andersen et.
al. (1992) observe that, while “hazard seems to increase with tumor thickness” (pp.
389), the plot of estimated cumulative baseline hazards for patients with ‘2mm <

minology age-varying so as to distinguish this from any time-series effect that varies with calendar
time.
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tumor thickness < 5mm’ and ‘tumor thickness > 5mm’ against that of patients with
‘tumor thickness < 2mm’ reveal “concave looking curves indicating that the hazard
ratios decrease with time” (pp. 544-545) (see also Martinussen et. al., 2002). Similar
monotonicity has been noted in the empirical literature on economic duration mod-
els. Jayet and Moreau (1991), using French data on employment durations, found
evidence of non-monotone departures from the PH model, in that the ratio of hazard
function for individuals in the age groups 24-28 years to that for 3740 years was
increasing upto a duration of approximately 120 days. Bhattacharjee and Das (2002)
observe evidence of monotone ordering (with respect to “production index”) in data
on strike durations, Bhalotra and Bhattacharjee (2001) and Bhattacharjee et. al
(2002) observe similar evidence in data on child mortality (with respect to mother’s
age at childbirth) and firm exits (with respect to various measures of macroeconomic
instability) respectively.

These definitions are also closely related to time-varying covariate effects. For ex-
ample, within the class of hazard regression models with age-varying covariate effects
(i.e., where A (t|z) = Ao(t).exp (5(t).x)), IHRCC holds if and only if the prognostic
effect 3(t) increases in age.

Bhattacharjee and Das (2002) proposed tests of the proportional hazards model
against such monotone alternatives, by repeated application of the usual two-sample
tests (Gill and Schumacher, 1987) for different pairs of covariate values, and then
taking supremum, infemum or average of these individual test statistics. While such
monotone structures are observed in many empirical applications, sometimes neither
proportionality nor such monotone alternatives may hold, in the sense that §(t) may
increase in age over one range of the covariate space, and decrease over another; we
call these models non-monotonic alternatives to the proportionality assumption. The
supremum/ infemum tests can detect such situations, and can be used to estimate the
change-point (for details, see Bhattacharjee and Das, 2002). The extension of these
tests to the situation where other covariates are present is straightforward.

Once the nature of non-proportionality is established, whether monotonic or non-
monotonic, using the above tests, Bhattacharjee and Das (2002) suggests using the
iusual estimates of age-varying covariate effects, like the histogram sieve estimator of
Murphy and Sen (1991), for further inference. One would hope that these estimates
would capture the nature of covariate dependence indicated by the tests. It would,
however, be advantageous to construct estimators that impose the ordering implied
by these relationships. We consider such ordered restricted estimation methods in
Section 3.

3 Estimation procedures based on biased bootstrap tech-
niques

We consider a age-varying covariate effect regression model A (t|z) = Ao(t). exp (5(t).x)
where ((t) is known to increase or decrease in t. The basis for this monotonicity
assumption may either be the results of tests of proportionality against monotone
alternatives (Bhattacharjee and Das, 2002), or theoretical considerations, or prior
knowledge. A non-monotonic regression structure can often also be expressed in this
form, in terms of auxilliary covariates. For example, if 3(¢) T ¢ over one range of the
covariate space, say x < xg, and 3(t) | t otherwise, we can write the regression model
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as A(tlz) = Ao(t).exp (B1(t).x1 + Ba(t).x2) ,x1 = x.d (v < xg) ,x9 = —x.I (x > x0),
where (31(t) and (2(t) both increase in t.

In the following three subsections, we discuss estimation of 3(¢) under such models.
We monotonise usual kernel regression or sieve estimates by reweighting the original
data, so as to impose the order restrictions. These methods are inspired by the
biased bootstrap techniques, and in particular data tilting (Hall and Presnell, 1999;
Hall and Huang, 2001) and adaptive bandwidth kernel estimators (see, for example,
Brockmann et. al. (1993) or Schucany (1995))2.

3.1 Data tilting

We begin with a suitable estimator of age-varying covariate effects at r distinct ordered
lifetimes,/ durations tM) <@ < .. < "), Denote this estimator /3,

B t(l)Q tux1, Tnx1, Yaxk: Onx1,Pnx1

« 9).
A 5 t( ),tnxl,'TnxlaYnxkaénxl,pnxl
Brx1 = . R

B (t(r)§ tux1, Tnx1, Ynxk, 6n><17pn><1) |

where the observed (possibly censored) data are of the form (ti,xi,yi(lx k)> (51-) 1=
1,2,...,n, and ppx1 > 0,> p; = 1 represents the weights assigned to the n data
points. Here, x,,x1 represents the covariate for which the age-varying effects are under
study, Y, xr denotes other covariates (whose effects are assumed to be age-constant,
for simplicity), and B may be taken as one of the usual estimators of age-varying
covariate effects, like the ones proposed by Zucker and Karr (1990), Murphy and Sen
(1991) or Martinussen et. al. (2002).

Following Hall and Huang (2001), and taking p = punis = (1/n,1/n,...,1/n)
as the base case, the objective of the data tilting methodology is to find p = p*
that minimises a power measure of divergence (Cressie and Read, 1984) from py,;s

among all p’s for which the constraint is satisfied, ¢.e., for which B (t(l); t,x,Y,0, p) <
B (t(Q); t,x,Y, 0, p) <...< B (t(”; t,x,Y, 0, p). The usual measure of divergence used

is Dp(p) = {n—=2L1(npi)’} /{p(1 = p)},p # 0,1, Do(p) = — 3L, log(npi) and
Dy(p) = — X1 pilog(np;). The estimator then is

2 2).
DT 6 t( )7tnxlaxnxlaynxk;(snxlap;kle
rx1 =

6 Et(l); tax1, Tnxls Yoxks Onx1sPDax1

B (t(r)v tnXl; xnxl;Ynxka 6n><17p;k7,><1) |

It is reasonably straightforward to abstract to an estimator over a continuous
range of the lifetime axis, instead of the discrete set of points ¢, ¢t ... ("), In this
case, one can have the constraint as

T, N
I(pst,z,Y,8) = / B (sit,,Y,8,p) .1 (F (sit,2,Y,8,p) < 0) ds =0,
0

2SiZer maps (Chaudhuri and Marron, 1999, 2000) are also closely related
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Hall and Huang (2001) have discussed estimation of order restricted regression
functions using data-tilting, when the regression function is monotonically increasing
or decreasing. The extension of the procedure to the case of hazard regression models
is conceptually similar. While this is theoretically an appealing estimation proce-
dure, there are some problems with its implementation in the general form. Firstly,
the likelihood function is complicated, and influence functions are not available in
closed form. Hence, computation of the influence of each datapoint would require
either some sort of Taylor series expansion of the partial derivatives of the objective
function (which is problematic since this function is highly nonlinear), or jacknife-type
computation of row-deletion influence (which is also obviously supoptimal). Second,
the estimation procedure itself involves optimisation in high dimensions, and this
dimension increases directly with the sample size.

In order to proceed, we restrict attention to the class of estimators for which
pj = ij/n where i; > 0 are integers. Further, we fix ng > 1 and at each iteration of
the estimation process, increase the weight of the ng observations with the highest
influence on 1 (]5’"*1) by 1/n each, and correspondingly reduce the weight of the lowest
influence observations. This iterative procedure is continued till we achieve I(p) = 0.

Thus, the algorithm is as follows:

Step 1. Initialize: Fix p = punis, no (the number of p;’s reduced at each iteration),
r = 1 (first iteration), and R (the maximum number of iterations). Compute age-
varying coefficients and I(punif)-

Step 2. Loop: Do while r < R and I(p") <0

a) Computation of influence functions (for each observation for which ]52_1 >
0): This can be done either by computing partial derivatives of the Taylor series
expansion of I(p) with respect to each data point, or by actual row deletion (jacknife)
followed by usual age-varying coeflicient estimation.

b) Compute p,: Increase p; by 1/n for the ng datapoints with highest influence,
and correspondingly reduce p; for the ng datapoints with lowest influence.

c) Compute age-varying coefficients and I(5"+1).

d)yr=r+1.

Endo.

Step 3. If-Else: If I(p") = 0, return p* and age-varying coefficient estimates. Else,
achieve monotonicity by minimum degree of interpolation and/or extrapolation. Such
interpolation/ extrapolation are likely to be required, particularly close to the bound-
aries of the sample space (where data are sparse).

An attractive feature of this algorithm is that the most computation-intensive step
(Step 2a) is amenable to parallel computation. On the other hand, the algorithm
can rapidly reduce effective sample size, by reducing a sizeable number of the p;’s
to nil. The algorithm can be useful in applications, if such sample size reduction
is matched with fast convergence towards monotonicity. How far the algorithm is
effective in applications is thus largely an empirical issue; we address this issue in the
next Section.
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3.2 Local adaptive bandwidth

Adaptive bandwidth selection has a long and fairly established tradition in nonpara-
metric regression.® In addition to the ability to adapt to the density of design points,
and to presence of heteroscedasticity, adaptive bandwidth regression estimators also
have the advantage that they can adapt readily to the structure of the regression func-
tion, smoothing more in flat parts of the curve and less in peaky parts (Brockmann
et. al., 1993).

This final advantage immediately suggests the usefulness of adaptive bandwidth
estimators for order restricted inference in regression models, including hazard regres-
sions. Since, if one were to smooth more in peaky parts rather than the flat ones,
adaptive bandwidth would be useful in estimating regression functions under order
restrictions in the nature of monotonicity of shape or slope etc.

In the sense that this method involves rewighting of the original data in a particu-
lar way, it is similar to biased bootstrap methods (Hall and Presnell, 1999). However,
this estimation procedure is richer than the data tilting method since it offers the
possibility of choosing different bandwidths at different age levels, instead of choosing
a general overall reweighting of the whole data.

Such adaptive bandwidth estimation is also similar in spirit to the way in which
the location and scale? view (SiZer maps) has been proposed by Chaudhuri and
Marron (1999, 2000) as an attractive way for exploring structures in curves. However,
while Chaudhuri and Marron (1999, 2000) focus on identifying features of a non-
parametric curve that are relatively more robust to changes in bandwidth (in other
words, their focus is on testing), we propose to use adaptive bandwidths to perform
kernel regression estimation subject to some maintained monotone structure.

We begin with a global bandwidth hg which provides an initial kernel estimator
that is reasonably smooth. Now, for each lifetime/ duration ¢ and local bandwidth
h(t) we can estimate a local kernel regression age-varying covariate effect 3 (¢, h(t))
in the neighbourhood of ¢.> Then, our adaptive bandwidth kernel estimator will be
given by 3 (t,h*(t)), where h*(t) minimises fOT ||h(t) — hol|.dt within the class of h(t)’s
that satisfy

I(h();t,x,Y,8) = /OT B (s, h()).I (5" (s,h(.)) < 0) ds = 0.

Given our earlier intuition regarding the fact that a higher bandwidth would
flatten out the kernel estimates, we expect the adaptive bandwidth method to give
higher bandwidths to points on the lifetime/ duration scale that are either peaky in
terms of the age-varying covariate effects, or the data at or around these points are
sparse.

The algorithm is as follows:

Step 1. Fix hg: Obtain kernel estimators for several candidate (fixed) bandwidths,
and choose the one for which the age-varying coefficient estimates are reasonably

3Some recent contributions to this literature are Brockmann et. al. (1993), Schucany (1995),
Hermann et. al. (1995), Hermann (1997) and Fan and Jiang (2000).

4Scale is interpreted here as the “level of resolution” or “bandwidth”.

53 (t, h(t)) can be estimated by a simple modification of the usual estimates of age-varying covariate
effects, like those proposed by Murphy and Sen (1991) or Martinussen et. al. (2002). A simple
reweighting of the data using the weights suggested by the kernel, and then usual estimation with
the reweighted data suffices.
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smooth.

Step 2. Explore a wide range of bandwidths: Obtain kernel estimators for a
wide range of bandwidths hy < ... < hg < ... < h,, both above and below hy.

Step 3. Find candidate h’s: Find h(.) within the class of combinations of band-
widths by < ... < hg < ... < h, for which I (h(.);t,z,Y,6) = 0. Iterate between Step
2 (choosing finer grids and/ or widening the range of candidate bandwidths) and Step
3 until a satisfactory class of candidate h(.)’s is obtained, or if maxima of 0 is not
achievable at all with reasonable bandwidths.

Step 4. Optimal h*: If several h(.)’s achieve a maxima of 0, choose the one that
minimises fOT ||h(t) — hol|.dt. If none achieve 0, choose the one with the highest
I(h(.);t,x,Y,0), and then attain monotonicity by minimum degree of interpolation
and/or extrapolation. As in the case of data tilting, interpolation/ extrapolation may
often be required, particularly close to the boundaries of the sample space.

While this method is obviously less parsimonious than data tilting, it offers more
degrees of choice, and therefore makes it easier for monotonicity to be imposed. In
spite of its lower parsimony, however, this method is easier to implement, being less
computation intensive than the elaborate jacknife procedures required in the previous
method.

Further, we find adaptive bandwidth estimators easier to interpret than data tilt-
ing. Given the optimal bandwidths at the different ages, the user can also infer about
the strength of the monotonicity, much in the same spirit as SiZer maps (Chaudhuri
and Marron, 1999, 2000). Similarly, usual confidence intervals are easier to construct,
and provide useful inference about the strength of the maintained order restriction
at different ages.® Like data tilting, however, adaptive bandwidth estimators may re-
quire some interpolation/ extrapolation, which is obviously undesirable. The degree
to which such measures are necessary is an empirical issue and we shall come back to
it in the context of the simulation exercise presented later in the paper.

3.3 Interpolation/ extrapolation of usual age-varying coefficient es-
timates

The fact that both the two methods suggested so far may require further refining
through interpolation/ extrapolation, particularly towards the boundary of the sam-
ple space, raises another interesting possibility. One could achieve monotonicity by
directly applying such interpolation/ extrapolation methods on the usual estimates
of time-varying covariate effects.

We explored this possibility in the empirical exercise described in Section 4; how-
ever, these estimates required a substantially greater degree of interpolation, and
particularly, extrapolation. We therefore used the (unadjusted) Murphy-Sen estima-
tor to benchmark the findings with the biased bootstrap techniques.

6These confidence intervals are, however, not proper confidence intervals of the adaptive bandwidth
estimator since they are not adjusted for pretesting. Pretesting-adjusted confidence intervals can be
constructed by resampling (bootstrap or jacknife) from the original sample; such construction will,
however, be computation intensive.
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4 Applications and simulations

In this section, we analyse issues relating to performance of and implementation of
the above methods by way of a small simulation study, and two applications — one
each in biomedicine and economic duration models.

4.1 Simulation study

Randomly right censored data are generated from the following age-varying coefficient
hazard regression model:

A X =x) =2.exp (tz),

where X are generated from Uniform[—1,1], and the censoring random variable C'
has distribution function F(c) = (¢ — 0.005)3, ¢ € [0.005, 1.005].

20 random samples of 500 observations each were generated from this data generat-
ing process and Murphy-Sen histogram sieve estimation and the two biased bootstrap
techniques described in Section 3 were applied to each. An Epanechnikov kernel was
used, and the histogram sieve estimators of Murphy and Sen (1991) were used for
estimation of age-varying covariate effects. For data tilting, R and ng were taken as
12 and 10 respectively. The methods were evaluated at 10 equidistant lifetimes 0.06
to 0.60 with increments of 0.06.

The performance of the data tilting method was the worst of the three. None of
the 20 samples converged to a monotone model in 12 iterations, and a high degree of
interpolation/ extrapolation had to be employed, particularly close to the boundaries.
As expected, the effective sample size was reduced to about 430 in the 12 iterations.
Though the average decrease in |I(p)| was about 83 per cent, the estimates were
wayward; for ¢ = 0.06 and ¢ = 0.60, for example, the average estimates were -0.594
and 3.282 respectively, as compared to values of (3(0.06) = 0.06 and 3(0.60) = 0.60
respectively under the model.

Adaptive bandwidth estimator performed the best of the three, the average esti-
mates for t = 0.06 and ¢ = 0.60 were 0.022 and 0.662 respectively. However, only 4
of the 20 samples converged to monotone estimates (i.e., I (h*(.);t,2z,Y,8) =0), and
monotonicity for the others had to be achieved by interpolation/ extrapolation. The
Murphy-Sen estimator by contrast had average estimates for ¢ = 0.06 and ¢t = 0.60
of 0.033 and 0.534 respectively. However, the adaptive bandwidth estimator appears
to be more efficient, with the estimates for the different samples tightly clustered
together, as seen from the box and whiskers plot for these two estimators in Figure
1 (adaptive bandwidth) and Figure 2 (Murphy-Sen histogram sieve estimator). The
average absolute deviation of the estimates from actual values for these 10 points was
0.020 for adaptive bandwidth and 0.042 for Murphy-Sen, while this measure was as
high as 0.567 for our implementation of the the data tilting estimator.

Therefore, on the basis of our simulation study, the adaptive bandwidth estimator
appears to work better in terms of empirical performance, and we concentrate on this
estimator in the following two applications.

4.2 Example: Malignant melanoma data

These data pertain to 205 patients (148 of these are censored) with malignant melanoma
(cancer of the skin) on whom a radical operation was performed at the Department
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of Plastic Surgery, University Hospital of Odense, Denmark. Andersen et. al. (1992)
have reproduced the data and elaborately analysed it, and have discussed the findings
of several other researchers who have worked on it. One of the strongest prognostic
factors in malignant melanoma identified in the literature is tumor thickness. As dis-
cussed in Section 2, Andersen et. al. (1992) find possible violation of the PH model
in these data, particularly in favour of alternatives like DH RCC'. Further, the plot of
the cumulative regression functions for log-thickness (Martinussen et. al., 2002) also
indicate a distinct concave shape, though the constant coefficient estimate lies almost
entirely within the 95 percent confidence band of the cumulative regression function.

Our earlier work (Bhattacharjee and Das, 2002) showed that the null hypothesis
of proportional hazard is rejected in favour of the alternative DHRCC' over the
upper range of the covariate space, while for patients with small tumors, there was
some evidence of an ITHRCC' pattern (this was also confirmed by the Murphy-Sen
histogram sieve estimators). Figures 3 and 4 show kernel estimators of the age-varying
covariate effects for various bandwidths, for patients with tumor thickness less than,
and greater than 1.8 mm respectively. One can see that the monotonicity evident
from the tests come out prominently in these plots, and that constrained estimation
using adaptive bandwidth selection can be used to obtain order-restricted covariate
effects for tumor thickness.

4.3 Example: Macroeconomic instability and business failure

Bhattacharjee et. al. (2002) have analysed firm exits in the UK through bankruptcy
over the period 1965 to 1998. The data pertain to around 4300 listed manufacturing
companies, covering approximately 49,000 company years and including 166 exits due
to bankruptcy. The data are right censored (by the competing risks of acquisitions,
delisting etc.), left truncated in 1965, and contain delayed entries. A major focus of
the analysis is on the effect of macroeconomic instability on business failure. Two
measures of macoeconomic instability are considered: turnaround in business cycle
(a measure of the curvature of the Hodrick-Prescott filter of output per capita) and
volatility in exchange rates (maximum monthly change in exchange rates over a year).
Theory suggests that the effect of the first measure on bankruptcy may be negative,
and the second one positive.

The tests of proportional hazards against monotone departures proposed in Bhat-
tacharjee and Das (2002) indicate monotone departures in both cases, and this is also
confirmed by the Murphy-Sen estimates, after conditioning on industry dummies and
firm level factors like size, profitability and cash flow.

The kernel estimates of age-varying covariate effects (Figures 5 and 6) for several
candidate bandwidths confirm that the detrimental effect of uncertainty diminishes
with the age of the firm, post-listing. The adaptive bandwidth estimators along with
90 per cent confidence bands (not adjusted for pre-testing) confirm these findings
(Figures 7 and 8), and provide usable and meaningful estimates of the prognostic
impact of instability on corporate failure. The confidence bands also provide useful
inference about the strength of the monotonicity relationship; they depend strongly
on the magnitude of the bandwidth, and hence not only on the peakedness feature of
the kernel estimates at different points, but also on the density of data around these
durations.

In summary, the adaptive bandwidth estimators appear to be an useful way to
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estimate hazard regression models under monotone departures from proportionality.
Their empirical performance is good, and they provide useful inference in applications.
By contrast, data tilting methods are difficult to obtain and often to interpret, and
their performance in the simulation study was poor.

5 Concluding remarks

This paper proposes estimation methods for hazard regression models under order
restrictions, where the age-varying covariate effects are known to be monotonically
increasing or decreasing. Such situations occur frequently in applications, and encom-
pass a wide range of regression models for survival and duration data. T'wo versions
of biased bootstrap methods are considered, and usual estimates of age-varying co-
variate effects, suitably monotonised by interpolation/ extrapolation, are used for
benchmarking the performance of these estimators.

The adaptive bandwidth estimator proposed in the paper performed very well
with simulated data, and are very useful in applications. Though the estimator was
not able to produce a monotone feature at all points on the duration scale (and
particularly near the boundary of the sample space), interpolation/ extrapolation in
these regions restored monotonicity and improved the estimator.

Together with our earlier work (Bhattacharjee and Das, 2002) on testing propor-
tionality against monotone alternatives in hazard regression models, these inference
techniques provide a new and useful way of analysing lifetime / duration data regres-
sion models in non-proportional hazards situations.
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